27Фев

Как проверить вискомуфту полного привода: Как проверить работу полного привода (простой способ!) — журнал За рулем

Как проверить своими руками работоспособность муфты kia sportage

  • Здравствуйте.
    Проверить работоспособность муфты можно подняв автомобиль на подъемнике и включив передачу при заведенном двигателе (как при начале движения)- если задние колеса при этом будут вращаться, то муфта работает. Но эта проверка касательно ее исправности ничего не кажет. Для этого надо муфту снимать и разбирать. Она находится возле редуктора заднего моста (на схеме под номером «2»).
    Также стоит проверить подшипник карданного вала и раздаточную коробку.

    Россия, Subaru Legacy

  • org/Answer»>

    СПСИБО. А КАКИМ ОБРАЗОМ ПРОВЕРИТЬ ПОДШИПНИК ЭЛЕКТРОМАГНИТНОЙ МУФТЫ?

    Республика Мордовия, Kia Sportage

  • Подшипник можно проверить, пошатав рукой кардан в районе муфты. Если при этом проявляется люфт, то подшипник необходимо менять. Также следует учитывать, что данная проверка носит относительный характер, в случае подозрения на неисправность подшипника, муфту скорее всего придется разбирать.

    Россия, Subaru Legacy

  • org/Answer»>

    СКАЖИТЕ, ЧТО ЕЩЕ МОЖЕТ ШУМЕТЬ ? НАЧИНАЕТ ШУМЕТЬ ПРИ 40 КМ, ЗАТЕМ ПРОПАДАЕТ И ОПЯТЬ НАЧИНАЕТ ПРИ 70КМ. ЗВУК ТАКОЙ ,ЧТО КАК БУДТО ЕДЕШЬ ПО СТИРАЛЬНОЙ ДОСКЕ.

    Республика Мордовия, Kia Sportage

  • Для начала стоит проверить ступичные подшипники, а также подшипник карданного вала. Также не лишнем будет проверить масло в редукторе заднего моста. Дополнительно стоит проверить состояние тормозных механизмов (они маловероятно, но все же могут быть причиной шума).

    Россия, Subaru Legacy

  • org/Answer»>

    МАСЛА ЗАМЕНИЛ ВО ВСЕЙ ТРАНСМИССИИ. На СТО СКАЗАЛИ СТУПИЧНЫЕ ПОДШИПНИКИ НЕ ШУМЯТ И ПОДВЕСНОЙ ТОЖЕ НОРМАЛЬНЫЙ. ВСЕ ЭТО НАЧАЛОСЬ ПОСЛЕ ЗАМЕНЫ МАСЕЛ И ПРОЕЗДА 2 Т.КМ, НЕ МОГЛО ЛИ ЭТО ПОВЛИЯТЬ.

    Республика Мордовия, Kia Sportage

  • Это могло повлиять. Возможно Вам залили неподходящее по требованиям масло или его просто недолили.

    Россия, Subaru Legacy

  • ЗАЛИВАЛИ ЗИК И ПРИСАДКУ СУПРОТЕК В РАЗДАДКУ И В ЗАДНИЙ МОСТ, ТУДА ПОЛОЖЕНО ОДНОЙ ВЯЗКОСТИ. НО КАК ЗАШУМЕЛО Я САМ ЗАМЕНИЛ НА ШЕЛЛ СПИРАХ.

    Республика Мордовия, Kia Sportage

  • А какой именно марки масло «Shell» залито?
    Для начала стоит попробовать заменить масло в заднем редукторе, но вероятно придется менять муфту.
    Допуск по маслу для заднего редуктора вашего автомобиля такой API GL5, вязкость 80W90. Для замены вам понадобится около 08,-1л.

    Россия, Subaru Legacy

  • Я как раз его и заменил на Шелл Спиракс API GL-5 80W-90. От муфты гул может передаваться по кардану в перед? Шумит то с переди.

    Республика Мордовия, Kia Sportage

  • Да, гул может передаваться.
    Также если звук доносится спереди, стоит проверит уровень и состояние масла в раздатке и КПП.

    Россия, Subaru Legacy

  • И в раздадке и в кпп залито новое масло, проехал 5т.км. Но когда подвешивали автомобиль такого шума не было, может и правда ступичные подшипники.

    Республика Мордовия, Kia Sportage

  • Ступичные подшипники в данном случае стоит проверить одно из первых.

    Россия, Subaru Legacy

  • В ДОМАШНИХ УСЛОВИЯХ МОЖНО ПРОВЕРИТЬ? КАК ПРАВЕЛЬНО ЭТО СДЕЛАТЬ?

    Республика Мордовия, Kia Sportage

  • org/Answer»>

    Проверять на источник гула лучше всего на подъемнике.
    Касательно ступичных подшипников — проверить наверняка их без снятия, особенно учитывая то, что шум проявляется только после 40 км/ч будет достаточно сложно. Можно попробовать просто поддамкратитв автомобиль, повращать колеса и прислушаться к звуку при этом.

    Россия, Subaru Legacy

что это, устройство и принцип работы :: Autonews

adv.rbc.ru

adv.rbc.ru

adv.rbc.ru

Autonews

Телеканал

Pro

Инвестиции

Мероприятия

+

Новая экономика

Тренды

Недвижимость

Спорт

Стиль

Национальные проекты

Город

Крипто

Дискуссионный клуб

Исследования

Кредитные рейтинги

Франшизы

Газета

Спецпроекты СПб

Конференции СПб

Спецпроекты

Проверка контрагентов

Библиотека

Подкасты

ESG-индекс

Политика

Экономика

Бизнес

Технологии и медиа

Финансы

РБК КомпанииРБК Life

adv. rbc.ru

Фото: Shutterstock

adv.rbc.ru

Читайте также

В конструкции автомобиля вискомуфта используется для решения разных задач, и достаточно успешно. Как это достигается?

  • Что это
  • Устройство
  • Преимущества и недостатки
  • Неисправности
  • Как выбрать

adv.rbc.ru

Что такое вискомуфта

Вискомуфта (вязкостная муфта / VC или viscous coupling) — это устройство для передачи усилия с помощью вязкостных свойств специальных жидкостей. Вискомуфту в 1917 году изобрел американец Мелвин Северн, но практическое применение устройство нашло лишь через полвека. На британском Jensen Interceptor FF, первом в мире серийном легковом полноприводном автомобиле без претензий на внедорожность, вискомуфта отвечала за блокировку межосевого дифференциала. С тех пор VC в автомобилестроении применялась:

  1. Для автоматического подключения полного привода.
  2. Для блокировки дифференциалов.
  3. В системе охлаждения ДВС.

Фото: press.ocenin.ru

Устройство и принцип работы вискомуфты

Действие вискомуфты основано на свойстве так называемых неньютоновских (или дилатантных) жидкостей густеть и расширяться при внешнем воздействии. В VC используются жидкости на основе силикона. В зависимости от задач, выполняемых муфтой, различают два основных типа ее конструкции:

  1. При использовании VC в трансмиссии герметичный цилиндрический корпус исправной муфты заполнен дилатантной жидкостью на 90% с учетом ее расширения при перемешивании и нагреве. Внутри корпуса находятся два набора чередующихся перфорированных дисков, между которыми имеется зазор от 0,2 до 0,4 мм. Одни диски связаны с ведущим, а другие с ведомым валом трансмиссии. В обычных условиях движения скорости вращения дисков примерно одинаковы и дилатантная жидкость сохраняет текучесть. При пробуксовке, сопровождающейся возникновением заметной разницы в скоростях вращения валов трансмиссии, жидкость начинает интенсивно перемешиваться и густеть. В результате происходит либо подключение полного привода, либо блокировка дифференциала.
  2. При использовании VC в приводе вентилятора охлаждения двигателя дилатантная жидкость находится в специальных камерах внутри корпуса муфты и поступает в пространство между ведущим (соединен с коленчатым или распределительным валом ДВС) и ведомым (соединен с крыльчаткой вентилятора) дисками через пружинные клапаны. За их открытие отвечает чувствительная к нагреву биметаллическая полоса, которая закреплена на обращенной к радиатору стороне корпуса VC. Таким образом, муфта начинает замыкаться по мере прогрева двигателя. Чем горячее радиатор, тем больше дилатантной жидкости поступает в пространство между дисками и тем быстрее вращается вентилятор. С понижением температуры охлаждающей жидкости в радиаторе биметаллическая полоса постепенно принимает изначальную форму. При этом закрываются клапаны, отвечающие за подачу дилатантной жидкости в пространство между дисками, и открывается сливной канал. По нему под действием центробежной силы дилатантная жидкость постепенно возвращается в резервуары, что приводит к замедлению вентилятора. В настоящее время эта конструкция в легковых автомобилях уступила место более эффективным электрическим вентиляторам охлаждения ДВС.

Фото: voditelauto.ru

Преимущества и недостатки вискомуфты

Как известно, у любой медали две стороны, и VC не исключение. Среди преимуществ вискомуфты:

  1. Простота устройства.
  2. Невысокая стоимость для производителя.
  3. Надежность.
  4. Независимость от электрической сети автомобиля, что снижает нагрузку на генератор.
  5. Сохранение работоспособности после длительного простоя, в том числе при повышенной влажности, к которой чувствительны электрические системы.
  6. Отсутствие необходимости в обслуживании.
  7. Мягкость срабатывания, что особенно заметно при использовании VC в трансмиссии.

Минусов у вискомуфты тоже немало:

  1. Недостаточное быстродействие, что снижает эффективность полного привода.
  2. Склонность к перегреву в условиях тяжелого бездорожья при использовании в трансмиссии.
  3. Громоздкость и выраженная зависимость габаритов от величины передаваемого усилия, что затрудняет проектирование трансмиссии высокомощных легковых автомобилей и внедорожников.
  4. Невозможность обеспечить работу вентилятора при выключенном двигателе.
  5. Забор части мощности двигателя при использовании в приводе вентилятора системы охлаждения ДВС.
  6. Низкая ремонтопригодность. Часто это связано с отсутствием информации о типе использованной в данной VC дилатантной жидкости, от свойств которой зависят момент смыкания дисков и величина передаваемого усилия.

Фото: thewikihow.com

Признаки неисправности вискомуфты

Несмотря на свою надежность, VC, как любой механизм, может выйти из строя. Это указывает на следующие проблемы.

  1. Наличие потеков дилатантной жидкости на корпусе муфты свидетельствует об износе сальников.
  2. Одинаковая скорость вращения вентилятора на холодном и прогретом двигателе. Причина — в утечке дилатантной жидкости или неисправности механизма ее подачи в пространство между ведущим и ведомым диском.
  3. Посторонние шумы, вибрации при работе вентилятора — признак износа подшипника VC.

Как выбрать вискомуфту

В случае необходимости замены вискомуфты и при отсутствии информации о ее модели есть смысл обратиться в интернет-магазины. Там можно найти код оригинальной муфты и коды аналогов. В этих поисках нужно знать:

  1. VIN-код автомобиля.
  2. Данные о модели автомобиля, годе выпуска и параметрах двигателя.

adv.rbc.ru

adv.rbc.ru

Как проверить и заменить муфту вентилятора охлаждения двигателя

Муфты вентилятора охлаждения двигателя можно найти на обычных автомобилях с задним приводом, когда передняя часть двигателя обращена к радиатору.

Существует два основных типа муфт вентиляторов: тепловые и нетермические. Нетермические муфты менее распространены и работают непрерывно при 30-60% оборотах двигателя. Они не такие дорогие, но менее эффективны, отбирают мощность у двигателя и снижают расход топлива.

Наиболее распространена термомуфта вентилятора. Спереди установлена ​​термоактивируемая пружина. Когда температура двигателя повышается, пружина открывает клапан, позволяя силиконовому маслу из резервуара в муфте заполнить полость, заставляя вентилятор увеличивать скорость. Когда температура двигателя падает, пружина закрывается и захватывает силикон в бачке. Это приводит к тому, что вентилятор освобождается и вращается на выбеге, устраняя сопротивление двигателя. Это эффективно для увеличения экономии топлива. Автомобили последних моделей имеют два типа крепления вентилятора сцепления. В одном сцеплении используется одна большая гайка, которая навинчивается на вал водяного насоса. Другой тип крепится болтами к фланцу водяного насоса с помощью нескольких крепежных деталей.

Процедура проверки

  • При выключенном двигателе прокрутите вентилятор вручную. Некоторое сопротивление указывает на то, что сцепление работает. Если вентилятор вращается свободно без сопротивления, неисправна муфта.
  • Раскачать вентилятор. Если он качается, то подшипник неисправен и сцепление необходимо заменить.
  • Если вентилятор имеет большое сопротивление или замерз и не вращается, это тоже плохо.
  • Визуально проверьте следы силикона от центра сцепления, указывающие на неисправность.
  • Запустите двигатель и наблюдайте за скоростью вращения вентилятора. Если вентилятор работает на холостом ходу в холодном состоянии и не набирает обороты при повышении температуры двигателя до нормальной, неисправна муфта.
  • Если есть сомнения, замените муфту вентилятора. Необходимые инструменты

Набор гаечных ключей

  • Фиксатор шкива для предотвращения проворачивания шкива при ослаблении гайки
  • Набор торцевых головок и трещотка
  • Процедура замены
  • Установите планку, удерживающую шкив, надев концы на противоположные болты на шкиве водяного насоса.
  • Может потребоваться снятие кожуха вентилятора.
  • НЕ ИСПОЛЬЗУЙТЕ ПНЕВМАТИЧЕСКИЙ МОЛОТ ДЛЯ ОСЛАБЛЕНИЯ ГАЙКИ. Это только повредит подшипник водяного насоса, что приведет к преждевременному выходу из строя.
  • С помощью гаечного ключа соответствующего размера поверните большую гайку муфты вентилятора против часовой стрелки, чтобы ослабить ее. После ослабления поверните вентилятор вручную, и гайка сойдет.
  • Положите вентилятор и муфту на стол муфтой вентилятора вниз. Выверните болты, крепящие муфту к вентилятору. Замените сцепление и затяните болты.
  • После разъединения проверьте вентилятор на предмет поломки любого типа: погнутые или треснувшие лопасти, ослабленные заклепки, крепящие лопасти к основанию. В случае сомнений замените лопасть вентилятора.
  • Замените вентилятор и муфту в порядке, обратном снятию.
  • Вентилятор и муфта с болтовым креплением снимаются путем откручивания блока на шкиве водяного насоса с помощью гаечного ключа. Замена муфты вентилятора аналогична описанной выше.

Диагностика муфты вентилятора системы охлаждения


Дом, Библиотека по ремонту автомобилей, Автозапчасти, Аксессуары, Инструменты, Руководства и книги, Автомобильный БЛОГ, Ссылки, Индекс


Copyright AA1Car.com

На двигателях с вентиляторами охлаждения с ременным приводом часто используется муфта вентилятора для экономии энергии и снижения шума. Муфта вентилятора отключается, замедляет или отключает вентилятор охлаждения двигателя, когда дополнительное охлаждение не требуется. Вентилятор прогоняет воздух через радиатор и конденсатор кондиционера, когда автомобиль движется недостаточно быстро, чтобы обеспечить достаточный поток воздуха для охлаждения. Вентилятор может потреблять от пары лошадиных сил до 12 или 15 л.с. на большом V8, поэтому, уменьшая паразитные потери мощности двигателя, муфта вентилятора заметно влияет на экономию топлива.

Муфта вентилятора также снижает шум, замедляя или отключая вентилятор на высоких скоростях, а некоторые даже помогают увеличить скорость прогрева двигателя в холодную погоду.

ДВА ТИПА МУФТ ВЕНТИЛЯТОРА

Существует два основных типа муфт вентиляторов: тепловые и нетермические (также называемые «ограничивающими крутящий момент»).


Термомуфта вентилятора системы охлаждения реагирует на тепло от радиатора.

Термомуфты вентиляторов имеют переднюю часть термочувствительной биметаллической винтовой пружины, которая реагирует на изменения температуры. Когда воздух, проходящий через радиатор, горячий, пружина расширяется и открывает внутренний клапан, который уменьшает проскальзывание сцепления. Это заставляет вентилятор вращаться быстрее для улучшения охлаждения. Когда воздух охлаждается, пружина сжимается и закрывает клапан. Это увеличивает степень проскальзывания муфты, позволяя вентилятору замедлиться и уменьшить охлаждение.


Силиконовая жидкость заполняет пространство между пластинами внутри муфты вентилятора.

МУФТА ВЕНТИЛЯТОРА

Сцепление состоит из гидромуфты, заполненной маслом на силиконовой основе. На разрезе слева область между зубьями на дисках сцепления заполнена силиконовой жидкостью. Внутренний клапан открывает и закрывает проход между основной полостью для жидкости и резервуаром для жидкости. Когда проход открыт, жидкость попадает в муфту и заставляет вентилятор вращаться быстрее. Когда клапан закрыт, жидкость течет обратно в резервуар, но не возвращается, что приводит к проскальзыванию муфты и замедлению вращения вентилятора.

Нетепловая (с ограничением крутящего момента) муфта вентилятора не имеет функции определения температуры. Он реагирует только на скорость, ограничивая максимальную скорость вращения вентилятора от 1200 до 2200 об/мин в зависимости от приложения.

ПРОБЛЕМЫ МУФТЫ ВЕНТИЛЯТОРА

Проскальзывающую муфту вентилятора часто упускают из виду как причину перегрева двигателя.

По мере старения муфты вентилятора ухудшение качества жидкости постепенно приводит к увеличению проскальзывания (около 200 об/мин в год). После нескольких лет эксплуатации сцепление может проскальзывать настолько сильно, что вентилятор не справляется с потребностями двигателя в охлаждении, и двигатель перегревается. В этот момент часто требуется замена.

Другими признаками неисправности муфты вентилятора могут быть ослабление муфты (проверьте вентилятор на биение) или масляные потеки, исходящие наружу от ступицы муфты.

Если сцепление заедает, вентилятор может не выключаться, вызывая чрезмерное охлаждение и шум, особенно на высоких скоростях

ПРОВЕРКА МУФТЫ ВЕНТИЛЯТОРА

Хорошее сцепление должно оказывать определенное сопротивление при вращении вручную (конечно, при выключенном двигателе!). Но если вентилятор вращается с небольшим сопротивлением (более 1-1-1/2 оборота), муфта вентилятора слишком сильно пробуксовывает и ее необходимо заменить.

Если вентилятор заедает, не вращается или оказывает большое сопротивление, значит, он заклинил и его также необходимо заменить.

Скорость вентилятора также можно проверить с помощью оптического тахометра, пометив мелом одну из лопастей вентилятора и используя индикатор времени, чтобы наблюдать за изменениями скорости и/или прислушиваться к изменениям шума вентилятора при изменении скорости двигателя.

Вам также следует попробовать пошевелить лопасти вентилятора вручную. Если есть какие-либо колебания вентилятора, плохой подшипник в муфте вентилятора или изношенный подшипник на валу водяного насоса. Плохой подшипник водяного насоса обычно приводит к протечке водяного насоса и/или шуму, но не всегда. Снимите муфту вентилятора и проверьте, есть ли люфт на валу водяного насоса. Если он тугой (нет люфта или биения), замените муфту вентилятора.


Что находится внутри механической муфты вентилятора

КАК И КОГДА ЗАМЕНЯТЬ МУФТУ ВЕНТИЛЯТОРА

Многие эксперты считают хорошей идеей заменить муфту вентилятора одновременно с водяным насосом, если водяной насос вышел из строя. Причина в том, что оба стареют примерно с одинаковой скоростью, поэтому, если водяной насос вышел из строя, муфта вентилятора также может вскоре выйти из строя. Как мы упоминали ранее, муфта вентилятора с большим пробегом может чрезмерно проскальзывать, увеличивая риск перегрева.

27Фев

Коксование масла: Почему коксуется смазка

Почему коксуется смазка

30.01.2017

Здравствуйте, уважаемые читатели блога!

Сегодня я хотел бы прояснить вопрос о так называемом «коксовании» смазочных материалов и об особенностях пластичных смазок противостоять высоким температурам. Вопрос, кстати, задан не от скуки, ведь в Сети «гуляет» множество подобных вопросов.

Итак, что называют коксованием? Техническим термином это слово не является, но используется в просторечии для обозначения явления обугливания масла или смазки от действия высоких температур. Собственно, «кокс» это уголь. И вполне логично обугливание называть «коксованием», то есть превращением в уголь.

Технически правильно это явление называется образованием оксидных отложений. Ведь масло, превратившись в уголь, выпадает в осадок или откладывается на внутренних поверхностях механизма или системы смазки. Автолюбители, помнящие времена дефицита качественных моторных масел и вынужденные использовать подручные масла, поймут о чём речь. Как выглядит клапанная крышка двигателя, покрытая изнутри пластилиноподобной массой чёрного цвета, многие тоже вспомнят.

Таким образом, обугливание смазочного материала происходит при длительном воздействии высоких температур, превышающих термоокислительную стойкость базового масла. Оксидные соединения в смазках и маслах также образуются при повышенных температурах в замкнутой полости в присутствии растворенных воздуха, влаги и в контакте с цветными металлами, оказывающими каталитический эффект.

Рис. 1 Так выглядят продукты коксования моторного масла в области клапанного механизма двигателя автомобиля

Устойчивость масел к окислению при высоких температурах характеризуется стандартизованным показателем, который так и называется – термоокислительная стабильность. Определяется она, например, по ГОСТ 23175-78 или по методике ASTM D943.

Прежде чем перейти к рассмотрению проблемы «коксования» пластичных смазок, хочу еще раз вспомнить о моторных маслах – ведь это самый наглядный и почти бытовой пример, который знаком большинству. Ответим на вопрос, а что изменилось в современных моторных маслах, благодаря чему они не только перестали «коксоваться», но и создают в двигателе моющий эффект?

Ну, конечно, первое, что напрашивается в ответ, это применение современных эффективных моющих присадок в составе масла. Верно? Верно…

Но не это главное, так как принципиально снизить склонность смазочных материалов к «коксованию» можно, повысив термоокислительную устойчивость за счет использования современных базовых масел II, III и IV групп по классификации института нефти API, а также внедрением антиокислительных присадок.

Очевидно, что синтетические и улучшенные путём гидроочистки или гидрокрекинга минеральные базовые масла имеют более однородный фракционный состав и обладают более высокой антиокислительной стойкостью. В сочетании данных базовых масел с антиокислительными присадками, замедляющими процесс окисления, достигается синергетический эффект, радикально повышающий способность масел и смазок противостоять высоким температурам.

Рис. 2 Так выглядит свежая смазка в подшипнике

Наконец, перейдем к рассмотрению проблемы «коксования» пластичных смазок. Дело в том, что в пластичных смазках это явление носит более сложный характер, причиной чего является наличие в составе загустителя. Загустители, несмотря на различное химическое происхождение, также могут «коксоваться» либо образовывать сгустки в виде пластилиноподобной массы коричневого или чёрного цвета.

Рис. 3 А это «закоксовавшаяся» пластичная смазка на роликах подшипника качения

Смазка в любом случае теряет эксплуатационные свойства и подлежит замене. Как вычленить в данном случае причину разрушения смазки и решить проблему? Действительно, не установив причину, мы не решим проблему.

Общая причина, однако, известна. Это высокая температура. Поэтому давайте рассуждать.

Случай первый.

Если при обслуживании узла мы наблюдаем образование налета на поверхностях застойных зон подшипника, но смазка сохраняет свою консистенцию и внешний вид, то, вероятно, дело в образовании оксидных соединений в результате окисления базового масла. Смазка при этом меняет цвет на более тёмный.

В этом случае следует предпринять следующие меры:

  1. Применить смазку на синтетическом базовом масле,
  2. Применить смазку на поликарбамидном комплексе – полимочевине,
  3. Сократить интервал обслуживания (замены смазки) узла,
  4. Увеличить цикличность подачи смазки централизованной системой смазывания.

Выбор меры зависит от рекомендаций по обслуживанию узла и конструкции агрегата/машины.

Случай второй.

В процессе эксплуатации машины в подшипниковых узлах наблюдается образование сгустков массы, напоминающей пластилин. Цвет массы при этом — от темно-коричневого до черного. Это характерно для смазок на минеральных маслах, которые при длительном воздействии высоких температур как бы пересыхают. Это связано с испарением (выкипанием) базового масла из смазки и сгущением загустителя до пластилиноподобного состояния.

В этом случае следует принять одну или несколько мер:

  1. Применить смазку на синтетическом базовом масле,
  2. Сократить интервал обслуживания (смазки) узла,
  3. Увеличить цикличность подачи смазки централизованной системой смазки.

Очевидно, что независимо от характера потери свойств смазки при высоких температурах, меры следуют похожие. Но, даже применение синтетических смазок или смазок на полимочевине позволяет лишь частично решить данную проблему. Поэтому смысл этих мер – в более частой замене смазки.

Однако, коль речь зашла о смазках с высокой стойкостью против образования высокотемпературных осадков и «пересыханию», то считаю не лишним привести пару примеров таких продуктов от российской компании ARGO.

Вот смазка на полиальфаолефиновом синтетическом базовом масле с высокой термоокислительной стабильностью и низкой испаряемостью:

ARGO TermoSint 100 EP2

Характеристика

Метод

EP2

Загуститель

Li-Complex

Диапазон рабочих температур, ºС

-40..+180

Классификация смазок

DIN 51502

KPHC2R-40

Цвет смазки

Визуально

Красный

Класс консистенции NLGI

DIN 51818

2

Пенетрация 0,1 мм

DIN ISO 2137

265-295

Вязкость базового масла при 40ºС, мм2/с

DIN 51562-1

100

Температура каплепадения, ºС

DIN ISO 2176

260

Нагрузка сваривания, Н

DIN 51350

2607

А вот беззольная смазка на поликарбамидном загустителе – полимочевине с высокой стойкостью против «коксования» за счет естественных антиокислительных свойств загустителя:

ARGO TermoLux P 150 EP2

Показатель

Метод

EP2

EP3

Загуститель

Polyurea

Polyurea

Диапазон рабочих температур, ºС

-20. .+150

-20..+150

Классификация смазок

DIN 51502

KP2N-20

KP3N-20

Цвет смазки

Визуально

Синий

Синий

Класс консистенции NLGI

DIN 51818

2

3

Пенетрация 0,1 мм

DIN ISO 2137

265-295

220-250

Вязкость базового масла при 40ºС, мм2/с

DIN 51562-1

145

145

Температура каплепадения, ºС

DIN ISO 2176

260

270

Нагрузка сваривания, Н

DIN 51350

4900

4900

Тест на коррозию

ASTM D 1743

Проходит

Проходит

 

Обе эти смазки преимущественно рекомендованы для подшипников электродвигателей и вентиляторов, перекачивающих нагретые газы (и воздух). На мой взгляд, это наиболее массовый и показательный пример.

На этом предлагаю завершить своё повествование и в режиме вопрос-ответ обсудить практические вопросы, связанные с вышеизложенной проблемой. Напоминаю свой e-mail: [email protected]

До новых встреч в блоге!

 

Технология производства нефтяного кокса и используемое в промышленности сырье — Нефтехимия и газохимия

Коксование — это разложение при высокой температуре без доступа воздуха твердых и жидких горючих ископаемых с образованием летучих веществ и твердого остатка — кокса.

Коксование — это разложение при высокой температуре без доступа воздуха твердых и жидких горючих ископаемых с образованием летучих веществ и твердого остатка — кокса.

Сырье для получения нефтяного кокса

Качество сырья оказывает первостепенное влияние на характеристики конечного продукта − нефтяного кокса.

Производство кокса в СНГ в основном осуществляется на установках замедленного коксования (УЗК).

Характерной особенностью условий работы УЗК является использование в качестве сырья разнообразных смесей, остающихся на заводах в результате переработки нефти.

Сырьем служат:

  • тяжелые фракции нефти, образующиеся в результате атмосферной и вакуумной перегонки нефти (мазут, полугудрон, гудрон),
  • тяжелые нефтяные остатки (ТНО):
    • крекинг-остатки от термического крекинга мазута и гудрона,
    • тяжелый газойль каталитического крекинга,
    • остатки масляного производства (асфальт пропановой деасфальтизации гудрона, экстракты фенольной очистки масел и др.).

Из всех нефтяных остатков, склонных к образованию различных видов структур кокса, предпочтительными считаются ароматические концентраты (дистиллятный крекинг-остаток) и некоторые другие высокомолекулярные углеводороды.

По этой причине дистиллятное сырье относят к перспективным видам сырья.

НПЗ имеют разные производственные условия и работают на различной нефти, поэтому для каждого НПЗ установки замедленного коксования строились с учетом конкретных условий.

Среди основных параметров, определяющих качество нефти, таких как плотность, фракционный и химический состав нефтепродуктов, наиболее значимыми являются плотность и показатель сернистости.

Сера − одна из самых нежелательных примесей в составе сырой нефти и конечного продукта − кокса.

В зависимости от массовой доли серы кокс, так же как и нефть, классифицируется на малосернистый, сернистый, высокосернистый.

Сернистый кокс отличается менее благоприятными свойствами, по сравнению с малосернистым коксом: вызывает коррозию оборудования, повышенное количество трещин в электродных изделиях, разрушение огнеупорной кладки печей прокаливания, вследствие чего его использование ограничено определенными областями.

Нефть, поступающая на нефтеперерабатывающие заводы, различается по составу, особенно по содержанию серы.

Для для России характерна переработка в основном сернистой и высокосернистой нефти.

К малосернистым (нефть с содержанием серы менее 0,5%) относят большую часть бакинской, грозненской, сахалинской, туркменской и некоторой украинской нефти, а также казахстанской нефти.

Сернистую нефть с содержанием серы 0,5-2,5% добывают в Урало-Поволжском районе (Туймазинское, Ромашинское месторождения и другие), в Западной Сибири (Самотлорское, Нижневартовское, Мегионское и другие).

К высокосернистым (нефть с содержанием серы более 2,5%) относятся месторождения − Арланское, Радаевское, Покровское (Урало-Поволжский район).

В настоящее время основным сырьем для получения кокса являются сернистая нефть.

Применение технологий, позволяющих получать качественный кокс независимо от состава исходной нефти, решает многие проблемы:

  • обеспечивает электродную промышленность качественным сырьем,
  • позволяет задействовать в производстве более широкий диапазон нефти,
  • углубить процесс переработки нефти на НПЗ.

С целью обессеривания конечного продукта применяется прокаливание кокса.

Еще один путь получения обессеренного нефтяного кокса из высокосернистых марок нефти − это предварительное удаление серы из сырой нефти методом гидрообессеривания, гидрокрекинга, или деасфальтизации.

Этот вариант считается более действенным, несмотря на то, что является более сложным и требует дополнительных затрат.

На российские заводы нефть поставляется, главным образом, по системе магистральных нефтепроводов (МНП) Транснефти, в которой Западно-Сибирская нефть, марки Siberian Light смешивается с более тяжелой и сернистой нефтью марки Urals.

Способы получения сырого и обожженного нефтяного кокса

Коксование нефтяного сырья − наиболее жесткая форма термического крекинга нефтяных остатков.

Осуществляется при низком давлении и температуре 480-560 оС, с целью получения нефтяного кокса, а также углеводородных газов, бензинов и керосино-газойлевых фракций.

При коксовании происходит расщепление всех компонентов сырья с образованием жидких дистиллятных фракций и углеводородных газов; деструкция и циклизация углеводородов с интенсивным выделением керосино-газойлевых фракций; конденсация и поликонденсация углеводородов и глубокое уплотнение высокомолекулярных соединений с образованием сплошного коксового остатка.

Промышленный процесс коксования осуществляется на установках 3х типов: периодическое коксование в коксовых кубах, замедленное коксование в камерах, непрерывное коксование в псевдоожиженном слое кокса-носителя.

Замедленное коксование

Замедленное (полунепрерывное) коксование наиболее широко распространено в мировой практике.

Сырье, предварительно нагретое в трубчатых печах до 350-380 оС, непрерывно поступает на каскадные тарелки ректификационной колонны (работающей при атмосферном давлении), стекая по которым, контактирует с поднимающимися навстречу парами, подаваемыми из реакционных аппаратов.

В результате тепло- и массообмена часть паров конденсируется, образуя с исходным сырьем так называемое вторичное сырье, которое нагревается в трубчатых печах до 490-510 оС и поступает в коксовые камеры − полые вертикальные цилиндрические аппараты диаметром 3-7 м и высотой 22-30 м.

В камеру реакционная масса непрерывно подается в течение 24-36 часов и благодаря аккумулированной ею теплоте коксуется.

После заполнения камеры коксом на 70-90% его удаляют, обычно струей воды под высоким давлением (до 15 МПа).

Кокс поступает в дробилку, где измельчается на куски размером не более 150 мм, после чего подается элеватором на грохот, где разделяется на фракции 150-25, 25-6 и 6-0,5 мм.

Камеру, из которой выгружен кокс, прогревают острым водяным паром и парами из работающих коксовых камер и снова заполняют коксуемой массой.

Летучие продукты коксования, представляющие собой парожидкостную смесь, непрерывно выводятся из действующих камер и последовательно разделяются в ректификационной колонне, водоотделителе, газовом блоке и отпарной колонне на газы,

Типичные параметры процесса: температура в камерах 450-480 оС, давление 0,2-0,6 МПа, продолжительность до 48 часов.
Достоинства замедленного коксования − высокий выход малозольного кокса.

Из одного и того же количества сырья этим методом можно получить в 1,5-1,6 раза больше кокса, чем при непрерывном коксовании.

На российских НПЗ эксплуатируются 1-блочные и 2-блочные установки коксования (каждый блок состоит из 2х или 3х реакторов) нескольких типов.

Компоновка, проектирование установок произведены по проектам институтов Гипронефтезаводы и ВНИПИнефть.

Периодическое коксование

Проводят в горизонтальных цилиндрических аппаратах диаметром 2-4 м и длиной 10-13 м.

Сырье в кубе постепенно нагревают снизу открытым огнем.

Далее обычным способом выделяют дистилляты, кокс подсушивают и прокаливают (2-3 часа).

После этого температуру в топке под кубом постепенно снижают и охлаждают куб сначала водяным паром, а затем воздухом.

Когда температура кокса понизится до 150-200 оС, его выгружают.

Типичные параметры процесса: температура в паровой фазе 360-400 оС, давление атмосферное.

Этим способом получают электродный и специальный виды высококачественного кокса с низким содержанием летучих.

Однако способ малопроизводителен, требует большого расхода топлива, а также значительных затрат ручного труда и поэтому почти не используется в промышленности.

Непрерывное коксование в кипящем слое (термоконтактный крекинг)

Сырье, предварительно нагретое в теплообменнике, контактирует в реакторе с нагретым и находящимся во взвешенном состоянии инертным теплоносителем и коксуется на его поверхности в течение 6-12 минут.

В качестве теплоносителя используется обычно порошкообразный кокс с размером частиц до 0,3 мм, реже более крупные гранулы.

Образовавшийся кокс и теплоноситель выводят из зоны реакции и подают в регенератор (коксонагреватель).

Там слой теплоносителя поддерживается во взвешенном состоянии с помощью воздуха, в токе которого выжигается до 40% кокса, а большая его часть направляется потребителю.

Благодаря теплоте, выделившейся при выжигании части кокса, теплоноситель нагревается и возвращается в реактор.

Для перемещения теплоносителя используется пневмотранспорт частиц кокса, захватываемых потоком пара или газа.

Дистиллятные фракции и газы выводят из реактора и разделяют так же, как при замедленном коксовании.

Типичные параметры процесса: температура в теплообменнике 300-320 оС, реакторе 510-540 оС и регенераторе 600-620 оС, давление в реакторе и регенераторе 0,14-0,16 и 0,12-0,16 МПа соответственно, теплоноситель — (6,5-8,0)

Коксование в кипящем слое используют для увеличения выхода светлых нефтепродуктов. Кроме того, сочетание непрерывного коксования с газификацией образующегося кокса может быть применено для получения дизельного и котельного топлива.

Прокаливание

Перед использованием нефтяной кокс обычно подвергается облагораживанию, включающему несколько процессов.

При прокаливании удаляются летучие вещества и частично гетероатомы (например, сера и ванадий), снижается удельное электрическое сопротивление.

При графитировании 2-мерные кристаллиты превращаются в кристаллические образования 3-мерной упорядоченности.

В общем виде стадии облагораживания можно представить следующей схемой: Кристаллиты → карбонизация (прокаливание при 500-1000 оС) → 2-мерное упорядочение структуры (1000-1400 оС) → предкристаллизация (трансформация кристаллитов при 1400 оС и выше) → кристаллизация, или графитированние (2200-2800 оС).

Применение кокса:

  • алюминиевая промышленность, в качестве восстановителя (анодная масса) при выплавке алюминия из алюминиевых руд (бокситов). Удельный расход кокса 550 — 600 кг/т алюминия.
  • сырье для изготовления электродов, используемых в сталеплавильных печах;
  • сырье для получения карбидов (кальция, кремния), которые применяются при получении ацетилена;
  • производство шлифовочных, абразивных материалов,
  • при изготовлении проводников, огнеупоров и др.
  • в качестве восстановителей и сульфидирующих агентов (сернисты1 и высокосернистый),
  • для изготовления химической аппаратуры, работающей в условиях агресивных сред, в ракетной технике и тд (конструкционный материал).

Потребление кокса:
В мире потребляется около 100 млн т/год нефтяного кокса:

  • цветная металлургия использует — 23%,
  • черная металлургия — 7%,
  • сжигание в энергетических установках — 30%,
  • другое применение — 40%.

Как предотвратить закоксовывание – ExxonMobil Aviation Distributor Europe

Инфлюенсеры:

  • Закоксовывание происходит из-за того, что температура и время выдержки масла превышают пределы стабильности масла.
  • Коксообразование резко возрастает, когда локальные температуры контакта металлов превышают 300°С.
  • Эксплуатационные факторы могут влиять на образование кокса, например, остановы в горячем состоянии, которые способствуют образованию кокса.
  • Препятствия потоку или изменения направления вызывают снижение скорости потока и увеличение времени пребывания масла.
  • Высокие температуры после останова из-за кондуктивного или конвекционного тепла увеличивают осаждение в зонах с низким дренажем.
  • Отверстия для очистки с низким зазором увеличивают вероятность блокировки из-за осыпания.
  • Длительное бездействие самолета способствует поглощению влаги коксовыми отложениями, которые обычно исчезают после запуска
  • Незащищенные химически активные металлы в масляной системе, такие как свинец, кадмий или магний, могут увеличивать отложения (реакция между маслом и металлами).
  • Низколегированное железо и медь могут стимулировать коксообразование за счет катализа.
  • Положительная промывка поверхностей системы большим потоком жидкого масла сокращает время пребывания.
  • Увеличенный поток воздуха в зонах контакта с высокотемпературным металлом снижает количество коксовых отложений, образующихся за счет улетучивания масла.
  • Тепловая изоляция подводящих, отводящих или вентиляционных линий в газовом тракте может значительно уменьшить отложения.

Депозитов:

  • Хотя отложения нежелательны, если они образуются, предпочтительнее оставаться там, где они образуются.
  • Выпадение кокса может привести к закупорке фильтров и каналов масляной системы двигателя.
  • Выделение может произойти при поглощении влаги во время длительных периодов простоя и тепловых циклов двигателя.
  • Растрескивание, растрескивание и подъем отложений с поверхности пласта приводит к захвату большего количества нефти, что увеличивает образование кокса.

Решения:

MobilJet Oil 387 — самое передовое синтетическое масло для реактивных турбин, когда-либо разработанное ExxonMobil. Оно обеспечивает идеальный баланс, обеспечивая оптимальную работу двигателя и улучшенную защиту двигателей и компонентов.

Возможные преимущества и преимущества:

Предотвратит преждевременный и незапланированный ремонт двигателя

Помогает свести к минимуму утечки масла, которые могут привести к задержкам и отменам рейсов

Помогает снизить затраты на ремонт и техническое обслуживание двигателя

Эффективная смазка компонентов при температурах до -40°F.

Как авторизованный дистрибьютор ExxonMobil Aviation Lubricants, мы рады предоставить вам как деловую, так и техническую поддержку, имеющую решающее значение для вашей компании. Aviolubes объединяет мощность и гибкость семейной компании (с 1929 года) с ноу-хау всех автомобильных, тяжелых, морских, промышленных и авиационных решений ExxonMobil и опытом крупнейшего в мире игрока ExxonMobil.

Нефтяное коксование – Как контролировать