2Июн

Для чего предназначен электродвигатель: типы, устройство, принцип работы, параметры, производители

Что такое электродвигатель?

В этом разделе представлены определения и термины на тему электродвигатели, а также приведены сокращения слов с данной тематикой.

Термины и их определения по тематике – электродвигатели*:

Термин

Определение термина

Асинхронная машина

машина переменного тока, в которой скорость вращения ротора зависит от частоты приложенного напряжения и от величины нагрузки (противодействующего момента на валу)

Бесконтактная машина

вращающаяся электрическая машина, в которой все электрические связи обмоток, участвующих в основном процессе преобразования энергии, осуществляются без применения коммутирующих или скользящих электрических контактов

Вращающийся электродвигатель

вращающаяся электрическая машина, предназначенная для преобразования электрической энергии в механическую

Двигатель с фазным ротором

двигатель, концы фазных обмоток ротора которого прикреплены к трем медным кольцам, укрепленным на валу ротора и изолированным как между собой, так и от стального сердечника ротора

ИСО

международная организация, занимающаяся выпуском стандартов

Исполнительный электродвигатель

Вращающийся электродвигатель для высокодинамического режима работы

Коэффициент полезного действия

отношение полезной (отдаваемой) мощности к затрачиваемой (подводимой)

Международная электротехническая комиссия

международная некоммерческая организация по стандартизации в области электрических, электронных и смежных технологий. Некоторые из стандартов МЭК разрабатываются совместно с Международной организацией по стандартизации (ISO)

Механическая характеристика двигателя 

зависимость между вращающимся моментом и скольжением

Минимальный пусковой момент асинхронного двигателя с короткозамкнутым ротором (синхронного двигателя, синхронного компенсатора)

минимальный вращающий момент, развиваемый асинхронным электродвигателем с короткозамкнутым ротором (синхронным двигателем, синхронным компенсатором) между нулевой частотой вращения и частотой вращения, соответствующий максимальному моменту при номинальных значениях напряжения и частоты питающей сети

Момент трогания вращающегося электродвигателя

минимальный вращающий момент, который необходимо развить вращающемуся электродвигателю для перехода от состояния покоя к устойчивому вращению

Моментный электродвигатель

вращающийся электродвигатель, предназначенный для создания вращающего момента при ограниченном перемещении, неподвижном состоянии или медленном вращении ротора

Номинальная мощность

мощность, для работы с которой в номинальном режиме машина предназначена заводом-изготовителем

Номинальная частота вращения

частота вращения, соответствующая работе машины при номинальных напряжении, мощности и частоте тока и номинальных условиях применения

Номинальный входной момент синхронного вращающегося электродвигателя

вращающий момент, который развивает синхронный вращающийся электродвигатель при номинальных напряжении и частоте питающей сети, замкнутой накоротко обмотке возбуждения и при частоте вращения, равной 95% синхронной

Номинальный ток

ток, соответствующий работе машины в номинальном режиме с номинальной мощностью и частотой вращения при номинальном напряжении

Номинальными данными электрической машины

данные, характеризующие работу машины в режиме, для которого она предназначена заводом-изготовителем – это мощность, напряжение, ток, частота, КПД, коэффициент мощности, частота вращения и др.

Реактивный синхронный двигатель

синхронный двигатель, вращающий момент которого обусловлен неравенством магнитных проводимостей по поперечной и продольной осям ротора, не имеющего обмоток возбуждения или постоянных магнитов

Реактивный шаговый электродвигатель

шаговый электродвигатель с неактивным ротором из магнитного материала

Ротор

вращающаяся часть машины

Серводвигатель

серводвигатель используется в составе сервомеханизма для точного управления угловым положением, скоростью и ускорением исполнительного механизма

Скольжение

разность скоростей ротора и вращающегося поля статора

Статор

неподвижная часть машины

Тормозной момент вращающегося электродвигателя

вращающий момент на валу вращающегося электродвигателя, действующий так, чтобы снизить частоту вращения двигателя

Универсальный электродвигатель

вращающийся электродвигатель, который может работать при питании от сети как постоянного, так и однофазного переменного тока

Шаговый электродвигатель

вращающийся электродвигатель с дискретными угловыми перемещениями ротора, осуществляемыми за счет импульсов сигнала управления

Шаговый электродвигатель с постоянными магнитами

шаговый электродвигатель, возбуждаемый постоянными магнитами

Электрический двигатель

электрическая машина, осуществляющая преобразование электрической энергии в механическую

Электродвигатель пульсирующего тока

вращающийся электродвигатель постоянного тока, рассчитанный на питание от выпрямителя при пульсации тока более 10%

Электромашинный преобразователь

вращающаяся электрическая машина, предназначенная для изменения параметров электрической энергии

Электромашинный тормоз

вращающаяся электрическая машина, предназначенная для создания тормозного момента

Электростартер

Вращающийся электродвигатель, предназначенный для пуска двигателя внутреннего сгорания или газовой турбины

* Более подробную информацию см в ГОСТ 27471-87 —  МАШИНЫ ЭЛЕКТРИЧЕСКИЕ ВРАЩАЮЩИЕСЯ (Термины и определения)

 

Сокращения по теме электродвигатели:

Сокращения

Определение сокращения

International Organization for Standardization, ISO

международная организация, занимающаяся выпуском стандартов

АД

асинхронный двигатель

АДКР

асинхронный двигатель с короткозамкнутым ротором

АДФР

асинхронный двигатель с фазным ротором

БД

база данных

ВРД

вентильный реактивный двигатель

ВЭМЗ

Владимирский электромоторный завод

ГОСТ

региональный стандарт, принятый Межгосударственным советом по стандартизации, метрологии и сертификации Содружества независимых государств

ДПР

датчик положения ротора

КДПТ

коллекторный двигатель постоянного тока

ЛЭЗ

Ленинградский Электромашиностроительный Завод

МЭК

международная электротехническая комиссия (англ. International Electrotechnical Commission)

НПЗ

нефтеперерабатывающий завод

ПМ

постоянные магниты

ПТ

постоянный ток

СД

синхронный двигатель

СДПМ

синхронный двигатель с постоянными магнитами

СДПМВ

синхронный двигатель со встроенными постоянными магнитами

СДПМП

синхронный двигатель c поверхностной установкой постоянных магнитов

СРД

синхронный реактивный двигатель

СЭЗ

Сафоновский электромашиностроительный завод

ЭП

электрический преобразователь

ЭГ

электрогенератор

Принцип работы и устройство электродвигателя

Принцип работы электродвигателя

Рубрики статей

  • Все
  • Новости и новинки
  • Новости компании
  • Обзоры продукции

Отредактировано: 14. 01.2022


Электродвигатели преобразуют электрическую энергию в механическую. Таким образом, электрические двигатели противоположны генераторам, которые преобразуют механическое движение в электрическую энергию. Существует множество различных типов и конструкций электродвигателей. Однако все электродвигатели основаны на сходном принципе работы.

Объяснение магнитных полей и силы Лоренца

Электродвигатель использует важнейшую силу природы — силу Лоренца. Как это работает и почему электродвигатель может это сделать, мы сначала объясним вам на основе упрощенных основ, прежде чем мы перейдем к конструкции.

Каждый магнит имеет два полюса: северный и южный. Магнитные силы всегда действуют с севера на юг и воздействуют на так называемые ферромагнитные материалы (кобальт, железо, никель). Твердые тела, такие как железо, всегда притягиваются к магниту. Однако, если есть два магнита, случается следующее: одни и те же полюса отталкиваются друг от друга (южный и южный, северный и северный полюса) — разные полюса притягиваются (южный и северный).

Электричество также имеет два разных полюса. Здесь есть плюс и минус. Это называется электрическим зарядом . Плюс означает, что частица имеет положительный заряд. Минус означает, что частица имеет отрицательный заряд.

Воздействие на заряд (плюс или минус) в магнитном поле называется силой Лоренца. Проще говоря, северный магнитный полюс отталкивает положительный заряд и притягивает отрицательный. Южный магнитный полюс притягивает положительный заряд и отталкивает отрицательный. Каждый электродвигатель основан на этом принципе. Он использует магнитное воздействие постоянного магнита на электромагнит (который находится под напряжением и имеет заряд).

Устройство и функции двигателя

Так называемый статор расположен под корпусом электродвигателя. Он состоит из стабильного магнитного поля (постоянный магнит). Это означает, что северный и южный полюса имеют фиксированное положение и не меняются. Ротор (лат. rotare = крутить) находится в самом двигателе, прикреплен к валу и поэтому может вращаться. Его электрическое магнитное поле постоянно меняется: северный и южный полюса меняются местами. Ротор окружен статором. Якорь представляет собой железный сердечник ротора. На него намотаны катушки ротора, по которым течет ток. С помощью этих катушек создается изменяющееся магнитное поле. Если якорь представляет собой постоянный магнит, то катушек нет.

Коммутатор (также называемый переключателем полюсов) сидит на валу ротора. Ток течет через него. Его задача — повернуть магнитное поле ротора и, таким образом, поменять местами полюса. Это всегда происходит при достижении определенного положения. К коммутатору присоединены скользящие контакты, питающие ротор электричеством. Если электродвигатель теперь находится под напряжением, в роторе создается магнитное поле. Только тогда он становится вращающимся электромагнитом.

По описанному выше принципу, что одноименные полюса всегда отталкиваются друг от друга, ротор начинает вращаться. Электромагнитное поле ротора всегда регулируется коммутатором таким образом, что северный полюс ротора и северный полюс статора (аналогично южному полюсу) обращены друг к другу. Проще говоря, через каждые пол-оборота меняется полярность ротора. В противном случае северный полюс и южный полюс были бы обращены друг к другу, и двигатель остановился бы.

Существует также вариант электродвигателя без коммутатора. В двигателях переменного тока магнитное поле изменяется в соответствии со скоростью вращения ротора. Одни и те же полюса «автоматически» обращены друг к другу. В этом случае структура немного отличается. Тем не менее, основные части остаются.

Разновидности электродвигателей

На данный момент используют большое количество электродвигателей, которые отличаются конструкцией. В основном их делят по двум характеристикам.

Принцип электропитания:

  1. Переменного тока, когда двигатель работает, получая питание непосредственно от электросети.
  2. Постоянного тока, когда двигатель работает от источника постоянного тока (батареек, аккумуляторов и т.п.).

Принцип работы:

  1. Синхронный, вращение происходит в синхронизации с магнитным полем, вызывающим движение. У таких двигателей есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронный, вращающийся ротор движется медленнее вращающегося магнитного поля в статоре. В таком двигателе нет щеток и обмоток на роторе, и он является одним из самых распространенных, что объясняется его простотой.

Если стоит выбор, где купить электродвигатель, выбирайте надёжного поставщика. Компания «АнЛан» занимает лидирующие позиции на рынке РФ с 2007 года. Разумная цена и европейское качество — то, что отличает продукцию компании от других организаций.

Копирование контента с сайта Anlan.ru возможно только при указании ссылки на источник.
© Все права защищены.


Рекомендуемые статьи

Компания АнЛан поздравляет всех женщин с Международным женским днем!

05

March

2022

Дорогие и уважаемые женщины, от всей души поздравляем вас с 8 Марта!

Открыть

Поздравляем с Днем России!

09

June

2022

Уважаемые коллеги и партнеры! Компания Анлан поздравляет вас с важным государтсвенным праздником — Днем России!

Открыть

Лотки для прокладки кабеля

10

March

2020

В современном здании много внимания уделяется монтажу системы энергоснабжения. Даже в обычной квартире в ход идет несколько сотен метров кабеля, что уж говорить о крупных коммерческих или индустриальных объектах! Кабельный лоток — это конструкция, незаменимая при монтаже энергосистем, поскольку позволяет облегчить прокладку кабеля. 

Открыть

Описание и расшифровка силового кабеля NYM

27

August

2021

Кабель NYM должен соответствовать немецкому стандарту VDE 088253 и VDE 0250 часть 204, поэтому большинство российских заводов выпускает его клон под аббревиатурой NUM. Часто применяемый в строительных проектах, он используется как в бытовых, так и в коммерческих и промышленных целях.

Открыть

Оптоволоконное оборудование

10

November

2015

Краткое содержание:

  1. Использование оптических патч-кордов и пигтейлов
  2. Сферы применения оптического оборудования

В статье вы узнаете об использовании пигтейлов и патч-кордов, а также о сферах где применяется оптическое оборудование.

Открыть

Что такое модули и порты SFP?

19

November

2021

Порт SFP — это стандартизированный разъем для модульных приемопередатчиков. К оптическим или электрическим приемопередатчикам можно подключать сетевые кабели на основе меди или волоконно-оптические кабели, в зависимости от типа. Они часто встречаются на сетевых коммутаторах.

Открыть

Рекомендуемые товары

IEK DRV056-A4-000-1-1510 Электродвигатель АИР DRIVE 3ф 56A4 380В 0.12кВт 1500об/мин 1081

IEK DRV056-A4-000-1-1510 Электродвигатель АИР DRIVE 3ф 56A4 380В 0.12кВт 1500об/мин 1081

Артикул: DRV056-A4-000-1-1510

Цена: 7 392,23 ₽

От 25 000 ₽ 7 392,23 ₽

От 100 000 ₽ 7 392,23 ₽

IEK DRV071-A8-000-2-0720 Электродвигатель АИР DRIVE 3ф 71A8 380В 0. 18кВт 750об/мин 2081

IEK DRV071-A8-000-2-0720 Электродвигатель АИР DRIVE 3ф 71A8 380В 0.18кВт 750об/мин 2081

Артикул: DRV071-A8-000-2-0720

Цена: 12 803,72 ₽

От 25 000 ₽ 12 803,72 ₽

От 100 000 ₽ 12 803,72 ₽

IEK DRV112-M4-005-5-1520 Электродвигатель АИР DRIVE 3ф 112M4 380В 5.5кВт 1500об/мин 2081

IEK DRV112-M4-005-5-1520 Электродвигатель АИР DRIVE 3ф 112M4 380В 5.5кВт 1500об/мин 2081

Артикул: DRV112-M4-005-5-1520

Цена: 41 180,65 ₽

От 25 000 ₽ 41 180,65 ₽

От 100 000 ₽ 41 180,65 ₽

Электродвигатель постоянного тока движений подачи МТ МТА МТВ

Данные высокомементные электродвигатели предназначены для металлообрабатывающих станков с ЧПУ, роботов, трансманипуляторов и др. Типовое обозначение деталей формируется: З — Условное обозначение момента, М — мотор, Т — серия, А — модификация по моменту, С — электромагнитный тормоз, Р — резольвер с мультипликатором, К — фотоэлектрический растерный преобразователь (пульс — кодер). Если в обозначении двигателя присутствует цифра 2,5 — значит передающее число мультипликатора — 1:2,5. Если в обозначении отсутствует буквы С,Р или К, значит нет встроенного тормзоза, резольвера или пульс — кодера (ФРП).

Руководство MT (pdf)

Условия работы

Электродвигатели предназначены для работы в следующих условиях:

  • температура окружающей среды: +5С — +40С;
  • высота уровня моря: до 1000м;
  • относительная влажность: до 80% при 30С.

Окружающая среда должна быть взрывобезопасной. Не должно быть токопроводящей пыли, агрессивных газов и паров с концентрацией, разрушающей металлы и изоляцию.

Описание комплекта электродвигателя

Комплект электродвигателей состоит из машины постоянного тока с встроенным температурным датчиком:

  • датчика частот вращения (тахогенератора)
  • электромагнитного тормоза без зазора;
  • датчика углового положения вала типа резольвера или пульскодера

Технические параметры электродвигателей

Тип1МТ /1МТ-С/2МТА /2МТА-С/3МТА /3МТА-С/4МТА /4МТА-С/4МТБ /4МТБ-С/5МТ /5МТ-С/
Мg0Нм7*1321233047
MmaxНм5080110120170190
nmaxмин-1150015001500150015001500
Jкг. м20.0150 /0.0178/0.0190 /0.0223/0.0260 /0.0290/0.0290 /0.0318/0.0366 /0.0416/0.0366 /0.0416/
UmaxВ70100140170190190
Ig0а262630262848
Вескг263033364044
Тормоз МтНм131313132424
Тормоз Iта1.11.11.11.11.31.3
Рекомендуем. преобразователь4АЕВ16 3РЕВ164AEB16 3PEB164AEB16 3PEB164AEB16 3PEB164AEB16 3PEB168AEB16 5PEB16

* Нм в режим S2 — 120 min

Если встроить электромагнитный тормоз, то вес всех двигателей, указанных в таблице увеличивается как следует:

  • для типа 1МТ-С, 2МТА-С, 3МТА-С, 4МТА-С на 3,6 кг;
  • для типа 4МТВ-С и 5МТ-С на 6,0 кг.

Если встроить датчик углового положения вала, то вес двигателей увеличивается как следует: — для типа «Резольвер» на 0,5 кг; — для типа «Пульс — кодер» на 1,2 кг.

Для решения проблем, возникающих при эксплуатации станков с ЧПУ либо трансманипуляторов или роботов, мы предлагаем вам приобрести у нас электроприводы постоянного тока или электроприводы станков для главного движения или для привода подачи.

Разработанные и выпускаемые болгарским брендом «Артех» (ARTECH) на заводах, оснащенных самым современным и высокоточным оборудованием от лучших мировых производителей, электроприводы станков соответствуют ГОСТам и сертифицированы для использования в промышленности и сельском хозяйстве.

У нас вы найдете электродвигатели серии МР для главных приводов металлообрабатывающих станков, сконструированные и произведенные с учетом новейших тенденций в этой области.

Характерные особенности электропривода постоянного тока серии МР: вынужденное охлаждение, встроенный датчик тепловой защиты, шихтовый магнитопровод, тепловой класс изоляции «F» или «H», встроенный тахогенератор; выбор охлаждения, как и модификации монтажа осуществляется по выбору клиента. Скорость вращения, уровень шума и уровень вибрации тоже варьируется исходя из требований клиента. Следует отметить, что тип охлаждения, монтажные размеры и уровень вибрации соответствуют требованиям IEC.

Электроприводы постоянного тока серии МР могут поставляться мощностью от 3,7 кВ до 70 кВ и массой от 86 до 764 кг.

Всегда в наличии также и электроприводы постоянного тока для привода подачи серий МТ, МТА и МТВ различных модификаций. Электродвигатели электроприводов постоянного тока предназначаются для работы в следующих условиях: относительная влажность помещения до 80% при 30о С, температура окружающей среды от +5 до +40о С, высота над уровнем моря до 1000м. В окружающей среде не должно быть агрессивных газов и паров, токопроводящей пыли.

Электродвигатели постоянного тока серии П-21, П-22

Купить Электродвигатели постоянного тока серии П-21, П-22

Электродвигатели постоянного тока  серии П предназначены для длительного режима работы в электроприводах постоянного тока в условиях умеренного, морского и тропического климата. Электрические машины изготавливаются с самовозбуждением.
Электрические машины П21М, П22М имеют исполнение оболочки по степени защищенности IP23; машины ПБ21М, ПБ22М – IP54
Условия эксплуатации Электродвигатели постоянного тока  рассчитаны для работы при температуре окружающего воздуха от минус 40ºC до плюс 40ºC. Относительная влажность окружающего воздуха 95±3% при температуре 20º±5ºC. Вибрация, ударные сотрясения, длительные наклоныоси машины от 45º в любую сторону и при качке до 45º с периодом качки 7-9 с.Возбуждение электродвигателей постоянного тока  независимое, смешанное, параллельное, последовательное.Изоляция электродвигателей постоянного тока  класса нагревостойкости В по ГОСТ 8865-87.Общий уровень интенсивности воздушного шума и уровня составляющих спектра вибрации электродвигателей постоянного тока  соответствуют утвержденным нормам.Электродвигатели постоянного тока  выдерживают перегрузку по току:

  • 2 Iн в течении 1 мин. – стабильное напряжение;
  • 1,5 Iн в течение 2 мин. – меняющееся напряжение;
  • 4 Iн в течение 20 с.

Номинальный режим работы электродвигателей постоянного тока  — продолжительный (SI по ГОСТ 183-74).Электродвигатели постоянного тока  допускают работу в режимах:

  • кратковременном – S2
  • повторно-кратковременном – S3

Основные параметры электродвигателей постоянного тока серии П 2

Тип дви-
гателя
U=50 B U=75 B U=110 B U=220 B
N,
кВт
I,
A
n,
об/мин
N,
кВт
I,
А
n,
об/мин
N,
кВт
I,
А
n,
об/мин
N,
кВт
I,
А
n,
об/мин
П21М 0,50 14,50 1400 0,50 9,60 1350 0,26
0,33
0,66
1,40
3,85
4,65
8,40
16,60
750
1000
1500
3000
0,26
0,33
0,66
1,40
1,97
2,36
4,18
8,30
750
1000
1500
3000
ПБ21М             0,24
0,35
0,80
3,10
4,50
9,30
1000
1500
3000
0,24
0,35
0,80
0,38
1,55
2,20
4,70
2,30
1000
1500
3000
1500
П22М 1,00 26,00 1500 0,90 15,60 1500 0,39
0,50
0,95
1,00
5,20
6,40
11,07
23,20
750
1000
1500
3000
0,39
0,50
0,95
2,10
2,60
3,20
5,54
11,60
750
1000
1500
3000
ПБ22М             0,35
0,50 1,00
4,50
6,50
11,50
1000
1500
3000
0,35
0,50
1,00
2,30
3,00
5,65
1000
1500
3000
П22К 0,50 13,50 1400 0,50 8,70 1400 0,50 6,20 1400      

Габаритные и установочно-присоединительные размеры электродвигателей постоянного тока серии П 2

Тип машины Размеры в мм Масса в кг
L1 L2 L10 L11 L30 L33 h h2 h3 h5 h6 h20 h40 h41 b1 b2 b10 b11 d1 d2 d10 d20 d22 d30
П21М 50 180 215 349 140 6 6 24,5 20,5 15 317 6 6 200 240 22 18 15 165 М12 248 37,8
ПБ21М 40 475
ПБ21М 439 290 34,8
П22М 205 240 464 317 43,8
П22М 40 475
ПБ22М 464 290 40,8

 
 
 
 
 
 


Информация относится к следующим наименованиям каталога


НаименованиеЕд.  изм.Цена с НДС, р.
Электродвигатель 0,3 кВт 1000 об П21 220/220 В IM3601шт42 000,00
Электродвигатель 0,33 кВт 1000 об П21М 220 В IM1001 возбуждение смешанноешт45 000,00
Электродвигатель 0,39 кВт 750 об П22М 110 В IM1001 возбуждение смешанноешт27 300,00
Электродвигатель 0,39 кВт 750 об П22М 220 В IM1001 возбуждение смешанноешт27 300,00
Электродвигатель 0,5 кВт 1350 об П21М 75 В IM2101 возбуждение смешанноешт42 000,00
Электродвигатель 0,5 кВт 1400 об П21М 50 В IM1001 возбуждение смешанноешт33 600,00
Электродвигатель 0,5 кВт 1400 об П21М 50 В IM2101 возбуждение смешанноешт36 800,00
Электродвигатель 0,66 кВт 1500 об П21М 110 В IM1001шт21 560,00
Электродвигатель 0,66 кВт 1500 об П21М 110 В IM2101 возбуждение смешанноешт35 600,00
Электродвигатель 0,66 кВт 1500 об П21М 110/110 В IM1001 возбуждение независимоешт21 560,00
Электродвигатель 0,66 кВт 1500 об П21М 220 В IM1001 возбуждение смешанноешт19 600,00
Электродвигатель 0,66 кВт 1500 об П21М 220 В IM3601 возбуждение смешанноешт21 560,00
Электродвигатель 0,9 кВт 1500 об П22 У3 75 В IM2101шт82 000,00
Электродвигатель 0,9 кВт 1500 об П22М 75 В IM1001 возбуждение смешанноешт37 130,00
Электродвигатель 0,9 кВт 1500 об П22М 75 В IM2101 возбуждение смешанноешт37 130,00
Электродвигатель 0,95 кВт 1500 об П22М 110 В IM2101 возбуждение смешанноешт35 600,00
Электродвигатель 0,95 кВт 1500 об П22М 110/110 В IM1001 возбуждение независимоешт28 000,00
Электродвигатель 0,95 кВт 1500 об П22М 220 В IM1001 возбуждение смешанноешт39 300,00
Электродвигатель 0,95 кВт 1500/2000 об П22М 220 В IM2101 возбуждение смешанноешт35 600,00
Электродвигатель 1,0 кВт 1500 об П22М 50 В IM1001 возбуждение смешанноешт30 130,00
Электродвигатель 1,4 кВт 3000 об П21М 220 В IM1001 возбуждение смешанноешт47 960,00
Электродвигатель 1,4 кВт 3000 об П21М 220 В IM2101 возбуждение смешанноешт47 960,00
Электродвигатель 1,4 кВт 3000 об П21М 220 В IM3601 возбуждение смешанноешт26 800,00
Электродвигатель 1,4 кВт 3000 об П21М 220/220 В IM3601 возбуждение независимоешт23 320,00
Электродвигатель 1,4 кВт 3000/3500 об П21М 110 В IM2101 возбуждение смешанноешт21 200,00
Электродвигатель 1,5 кВт 3000 об П21 220 В IM2101 возбуждение смешанноешт38 200,00
Электродвигатель 1,5 кВт 3000 об П21 220 В IM3601 возбуждение смешанноешт39 000,00
Электродвигатель 2,1 кВт 2800 об П22М 220 В IM1001 возбуждение смешанноешт42 000,00
Электродвигатель 2,1 кВт 2800 об П22М 220 В IM2101 возбуждение смешанноешт60 000,00
Электродвигатель 2,1 кВт 3000 об П22М 220/220В IM2101 возбуждение независимоешт26 800,00
Электродвигатель 2,1 кВт 3000/3500 об П22М 110 В IM2101 возбуждение смешанноешт25 800,00
Электродвигатель 2,2 кВт 3000 об П22 220 В IM2101шт32 000,00
НаименованиеЕд.  изм.Цена с НДС, р.

Асинхронные электродвигатели НВА-55 и НВА-22

⇐ ПредыдущаяСтр 14 из 20Следующая ⇒

Назначение

Электродвигатели НВА-22 и НВА-55 — асинхронные, трехфазные, с корот-козамкнутым ротором. Электродвигатель НВА-22 предназначен для приводов главных компрессоров, а НВА-55 -для привода вентиляторов охлаждения тяго­вых двигателей, реакторов, выпрямительных установок.

Технические характеристики

Технические характеристики электродвигателей НВА-55 и НВА-22 приве­дены в таблице 3.2.

Таблица 3.2 — Технические характеристики

 

 

Наименование показателей Величина
НВА-22 НВА-55
Род тока трехфазный, симметричный
Напряжение номинальное (линейное), В
Мощность номинальная на валу, кВт
Ток линейный номинальный, А 70,5
Частота, Гц
Частота вращения (синхронная), об/мин
КПД номинального режима, % 82,7 90,2
Коэффициент мощности номинального режима 0,57 0,82
Режим работы ПВ до 50% с числом включений до 30 в час S1
Класс изоляции F
Масса, кг

Устройство двигателей и их составных частей

Электродвигатели защищенного исполнения, горизонтальной установки, са­мовентилируемые.

Двигатели в соответствии с рисунком 3.15 состоят из следующих узлов: статора, ротора, двух подшипниковых узлов, коробки выводов.

Статор имеет станину 17, сердечник 9 и обмотку 11.

Станина — сварная стальная включает два фланца 12 с приваренными ребрами 8 и обшивку 7. Сердечник набран из изолированных листов электротех­нической стали. В открытые пазы сердечника уложена двухслойная обмотка из прямоугольного изолированного провода. Обмотка статора пропитана эпоксид­ным компаундом.

Для заземления электродвигателя на лапах предусмотрены болты 20.

Ротор состоит из вала 22, сердечника 10 и короткозамкнутой обмотки. Вал изготовлен из стали марки 45. Сердечник набран из листов электротехнической стали.

Сварные подшипниковые щиты 5,13, посаженные на вал шариковый и роликовый подшипники 15, 2, внутренние 4 и наружные 3,14 крышки образуют подшипниковые узлы.

Предусмотрены лабиринтные уплотнения защищающие подшипники от по­падания пыли и предотвращающие вытекание смазки из них. Смазка подшипни­ков — консистентная. Пополнение смазки производится через маслопроводы.

Питание к двигателю подводится проводами, проходящими через уплот­няющий сальник коробки выводов 19.

Коробка выводов — штампованная. Клеммная панель обеспечивает креп­ление подводящих и выводных проводов.

Выводы обмотки, двигателя и контактные болты панели коробки выво­дов имеют буквенно-цифровую маркировку.

Двигатель НВА-22 отличается от двигателя НВА-55 шагом по пазам об­мотки статора и скосом пазов на роторе.

Шаг по пазам двигателя НВА-55 1-11, НВА-22 1-6.

Пазы ротора НВА-55 прямые, а ротора НВА-22, выполнены со скосом, равным зубцовому делению статора.

Электродвигатель П22К-50У2

Назначение

Электродвигатель постоянного тока П22К-50У2 предназначен для приво­да вспомогательного компрессора подъема токоприемника.

Технические характеристики

Технические характеристики электродвигателя П22К-50У2 приведены в таблице 3. 3.

Таблица 3.3 — Технические характеристики

 

Наименование показателей Величина
Мощность номинальная на валу, кВт 0,5
Напряжение номинальное, В
Ток номинальный, А 13,5
Частота вращения номинальная, об/мин
Частота вращения максимальная, об/мин
Класс изоляции обмоток: — якоря — полюсов ВF
Возбуждение независимое
Масса, кг

Устройство двигателя и его составных частей

Электродвигатель в соответствии с рисунком 3.16 — реверсивный, защи­щенного исполнения, с естественным охлаждением, горизонтальной установки, на двух подшипниках качения 3,19с одним свободным концом вала.

Станина электродвигателя 15 -стальная, сварная. В станине установле­ны два главных полюса. Сердечники полюсов 14 и якоря 13 шихтованы из листов электротехнической стали. Конструкция полюсов и катушек возбуждения 12 — мо­ноблочная с изоляцией типа «Монолит-2».

Обмотка якоря — всыпная, простая петлевая, крепится в пазах клиньями. Якорь и полюсные катушки пропитаны лаком и покрыты эмалью. Коллектор вы­полнен на прессмассе.

Схема соединений полюсных катушек и якоря — в соответствии с рисунком 3.17.

Подшипниковые щиты 6,16 силуминовые, армированные, стальными коль­цами под установку подшипников. Крышки 2,7,11,17,18,20 также силуминовые. Винт 1 закрывает смазочное отверстие подшипниковой камеры.

На траверсе 5 установлены два пальца 8 щеткодержателей 9, на каждом из которых закреплены по два щеткодержателя со щетками 10. Положение щеток относительно коллектора регулируется поворотом траверсы и установкой про­кладок между пальцами и щеткодержателями. Стопорение траверсы осуществ­ляется болтом 4.


Режим работы двигателя на электровозе — кратковременный.

Электродвигатель ДВ-75УХЛЗ

Назначение

Электродвигатель постоянного тока ДВ-75УХЛЗ предназначен для при­вода вентилятора электрокалорифера.

Технические данные

Технические характеристики электродвигателей ДВ-754УХЛЗ приведены в таблице 3.4.

Таблица 3.4 — Технические характеристики

 

Наименование показателей Величина
Мощность номинальная, Вт
Напряжение номинальное, В
Ток (при номинальной нагрузке), А не более 1,25
Частота вращения номинальная, об/мин
Частота вращения максимальная, об/мин
Режим работы продолжительный
Класс изоляции обмоток А
Возбуждение последовательное
Масса, кг 2,3

В схеме электровоза двигатель работает от сети постоянного тока 50 В. 4.3 Устройство электродвигателя и его составных частей

Электродвигатель в соответствии с рисунком 3.18 состоит из статора 5, полученного обливкой пакета железа алюминиевым сплавом, алюминиевых под­шипникового щита 7 и траверсы 2 с электрощетками 3, стяжных шпилек 10, якоря 6 и колпака 4.

Охлаждение двигателя — естественное; исполнение — закрытое, с одним свободным концом вала, без лап; крепление осуществляется хомутом, охваты­вающим корпус двигателя, на котором имеется специальный кольцевой паз.

В двигателе установлены шариковые подшипники. Для смазки подшипни­ковых узлов применена консистентная смазка.

Токоприемник Л1У1-01

Назначение изделия

Токоприемник Л1У1-01 предназначен для создания подвижного электричес­кого контакта между электрооборудованием электроподвижного состава и кон­тактной сетью.

Технические характеристики

Номинальное напряжение переменного тока, кВ. ………………………………… 25

Номинальный ток, А:

при стоянке………………………………………………………………………………. 50

при движении………………………………………………………………………….. 900

Номинальное давление сжатого воздуха в цилиндре

пневматического привода, МПа (кгс/см2)……………………………………….. 0,5 (5)

Наибольшая скорость движения электровоза, км/ч…………………………….. 140

Устройство и работа

Токоприемник Л1У1-01 в соответствии с рисунком 4.1 состоит из основа­ния 5, двух нижних рам 1 с системой рычагов для шарнирного соединения с пнев­матическим приводом 6 и подъемными пружинами 7. Две верхние рамы 2 шар-нирно соединены между собой и с нижними рамами. Рамы 2 несут каретки 3 с контактной частью токоприемника — полозом 4. Полоз оборудован угольными вставками, установленными на медной подложке.

Работа токоприемника осуществляется следующим образом. В цилиндр пневматического привода 6 подается сжатый воздух, который, действуя на порш­ни, сжимает опускающие пружины 10 и через тягу 8, освобождает валы 11 от уси­лия, создаваемого этими пружинами. Под действием подъемных пружин 7 пово­рачиваются валы 11 и токоприемник поднимается, обеспечивая необходимое на­жатие на контактный провод в диапазоне рабочей высоты.

Для опускания токоприемника сжатый воздух из цилиндра пневматическо­го привода 6 через вентиль токоприемника выбрасывается в атмосферу, пружи­ны 10 нейтрализуют действие пружин 7 и создают опускающее усилие, которое через систему рычагов и тяги 8 складывает токоприемник.

Полоз 4 подрессорен двумя пружинами каретки 3 для обеспечения надеж­ного контакта между полозом и контактным проводом при небольших изменениях его высоты. Синхронизация движения подвижных частей токоприемника дости­гается при помощи тяги 9 (смотри рисунок 4.2), шарнирно закрепленной с валами нижних рам 1.

Кинематическая схема токоприемника приведена на рисунке 4.2.

 

 

⇐ Предыдущая9101112131415161718Следующая ⇒

Читайте также:




Электродвигатели высоковольтные 6-10кВ

Асинхронный электродвигатель — это электрический агрегат с вращающимся ротором, скорость которого отлична от скорости вращения магнитного поля статора.
Перед тем как купить асинхронный электродвигатель необходимо обязательно оценить параметры двигателя. Различия агрегатов могут быть как для однофазных, так и трехфазных асинхронных электродвигателей.

Основными характеристиками асинхронных двигателей являются:
Пусковой момент, ток.
Регулировка скорости вращения ротора. Самые распространенные:
   Регулируется напряжение и частота, применением преобразователей.
   Изменяется количество полюсных пар. Добавляется дополнительная обмотка с режимом переключения.
Рабочие характеристики определяются зависимостью частоты вращения, полезного момента на роторе, коэффициента мощности, тока статора, от полезной мощности.
Тормозные режимы:
   Рекуперативные.
   Противовключение.
   Динамические.

Электродвигатели общепромышленные асинхронные 5АИ, АИР
Электродвигатели 5АИ (взаимозаменяемые с такими маркировками как: А, АИР, АИРМ, 4А, 4АМ, 4АМУ, 5А, 5АМ, 5АМУ, АД, АДМ) с короткозамкнутым ротором, предназначены для продолжительного режима работы S1, частотой переменного тока 50 Гц, напряжением от 220/380/660 В, в зависимости от исполнения.
Мощность электродвигателей: от 0,12кВт до 500кВт

Электродвигатели общепромышленные асинхронные АСВО
Электродвигатели асинхронные трехфазные с короткозамкнутым ротором специальные обдуваемые вертикальные двухскоростные АСВО предназначены для безредукторного привода вентиляторов градирен Режим работы продолжительный S1 от сети частотой 50 Гц. Вид климатического исполнения: У1, У5.
Мощность электродвигателей: от 45кВт до 90кВт
Электродвигатели взрывозащищенные асинхронные ВАСО
Трехфазные, асинхронные двигатели ВАСО с короткозамкнутым ротором, взрывозащищенные, вертикальные, предназначены для приводов воздушного охлаждения. ВАСО имеют левое направление вращения, продолжительный режим работы — S1, материал обмотки статора класса нагревостойкости — F.
Мощность электродвигателей: от 6,5кВт до 90кВт
Электродвигатели взрывозащищенные асинхронные ВАО2
Электродвигатели ВАО2 предназначены для продолжительной работы — S1, от сети переменного тока частотой 50Гц и напряжения 380/660В. Данный тип двигателей применяется в области горнодобывающей промышленности,бумажно-целлюлозной, добыче и транспортировке газов, нефтяной промышленности, а также в помещениях с высокой взрывоопасностью.
Мощность электродвигателей: от 55кВт до 315кВт
Электродвигатели взрывозащищенные асинхронные ВАО7
Электродвигатели взрывозащищенные асинхронные обдуваемые ВАО7 предназначены для работы в области горнодобывающей промышленности, насыщенной газами и пылью, а также в взрывоопасных помещениях. Режим работы двигателей — S1 продолжительный. Исполнение по взрывозащите — 1ExdIIBT4, PBExdI; PB4B. Вид климатического исполнения — У2; У5; Т2; Т5.
Мощность электродвигателей: от 200кВт до 1000кВт
Электродвигатели высоковольтные асинхронные ДАЗО
Двигатели ДАЗО предназначены для механизмов, не требующих регулирования частоты вращения, таких как насосы, вентиляторы, дымососы и др. Соединения двигателя с приводным механизмов, осуществляется по средству упругой муфты. Контроль температуры обмотки сердечника статора, осуществляется шестью медными термопреобразователями, заложенными в пазы статора.
Мощность электродвигателей: от 200кВт до 2000кВт
Электродвигатели высоковольтные асинхронные А4
Высоковольтные электродвигатели серии А4 с короткозамкнутым ротором применяются для приводов, не требующих частотного регулирования скорости вращения, таких как насосы, вентиляторы и т.п. Двигатели А4 предназначены для работы от сети переменного тока частотой 50Гц, напряжением 3000, 6000 и 10000В. Серия А4 изготавливается степенью защиты IP23, климатического исполнения У3.
Мощность электродвигателей: от 200кВт до 1000кВт
Электродвигатели высоковольтные асинхронные 4АЗМ
Электродвигатели широко применяются для приводов быстроходных механизмов: компрессорное оборудование, холодильные машины, сетевые, центробежные насоса и др. Двигатели 4АЗМ устанавливаются в помещениях не содержащих агрессивных паров и газов, которые могут способствовать разрушению конструкционных материалов и изоляции двигателя. Температура окружающей среды для двигателей с разомкнутой системой вентиляции, не должна превышать 40°С.
Мощность электродвигателей: от 315кВт до 8000кВт
Электродвигатели высоковольтные асинхронные АОД
Асинхронные двигатели серии АОД, предназначены для механизмов с тяжелыми условиями запуска, такими как вентиляторы, дымососы и других механизмов с подобными условиями пуска. Двигатели предназначены для работы от сети частотой 50Гц, переменного напряжения 3000В и 6000В. Изготавливаются данные двигатели напряжением 3000 и 6000В в едином габарите, без потери мощности.
Мощность электродвигателей: от 400кВт до 1600кВт
Электродвигатели высоковольтные синхронные СДН/СДН3
Синхронные двигатели предназначены для механизмов, не требующих регулировки скорости вращения. Данные двигатели предназначены для работы в продолжительном режиме — S1 от сети переменного тока частотой 50, 60 Гц. СДН/СДНЗ изготавливаются на напряжение 6000В и 10000В. Двигатели выполняются на подшипниках скольжения с кольцевой и комбинированной смазкой, с одним или двумя валами, на лапах.
Мощность электродвигателей: от 315кВт до 3200кВт
 

Компания «ВП-АЛЬЯНС» поставляет только сертифицированное оборудование с гарантией до 5 лет. При потребности заказчика, выполняется выезд мастера на объект, монтаж, пусконаладочные работы, диагностика и ремонт электротехнического оборудования.

Купить электродвигатель для насоса, вентиляции, градирни или др. механизма Вы можете оставив заявку на нашей почте [email protected] или связавшись с нашими менеджерами по телефону (800) 500-06-98.

Виды электродвигателей:

Двигатели А4 с короткозамкнутым ротором, предназначены для электроприводов в устройствах, механизмах, машинах, где не регулируется частота вращения.
Асинхронные серии ВАСО, взрывозащищенные вертикального исполнения с короткозамкнутым ротором применяются в приводах воздушного охлаждения. Редукторы не предусмотрены, эксплуатируются в средах, способных образовать взрывоопасные смеси.
Асинхронные электродвигатели трехфазные с короткозамкнутым ротором, серии ДАЗО используются в приводах, где не регулируется частота вращения. Работают в сетях переменного тока частотой 50 Гц. Питающее напряжение – 3 000, 6 000, 10 000 В..
Серия ВАО2 относится к асинхронным, взрывозащищенным с короткозамкнутым ротором, применяются в приводах, работающих в условиях повышенной концентрации газа, пыли. Используются для работы в средах, образующих взрывоопасные смеси (газы, пары и пыль с воздухом).
Двигатели взрывозащищенные, обдуваемые ВАО4 пригодны к эксплуатации в опасных условиях. Шахты, опасные по газу и пыли, взрывоопасные зоны помещений, установок.

 

Что такое электродвигатель?

Электродвигатель представляет собой устройство, которое превращает поток электрического тока в механическое вращение шпинделя или ротора. Во многих приложениях вращение превращается в линейное движение.

 

Как работает электродвигатель?

Существует множество вариантов и вариантов электродвигателей; например, двигатели постоянного тока – щеточные или бесщеточные и двигатели переменного тока – асинхронные (или асинхронные) и синхронные. Двигатели могут работать при различных напряжениях в зависимости от области применения и доступного источника питания.

Работа двигателя зависит от двух свойств электрического тока. Во-первых, электрический ток, протекающий по проводу или катушке, создает магнитное поле.

Во-вторых, изменяющийся ток в проводнике, например, от источника переменного тока, индуцирует напряжение в проводнике (самоиндукция) или во вторичном проводнике (взаимная индуктивность). Ток, протекающий в цепи вторичного проводника, также будет создавать магнитное поле, как указано выше.

У магнита одинаковые полюса отталкиваются, а противоположные притягиваются. Во всех двигателях конструкция использует это свойство для обеспечения непрерывного вращения ротора.

 

 

 

На приведенной ниже диаграмме показана кривая трехфазного переменного тока; каждая фаза разделена фазовым углом 120 0 , как показано на векторной диаграмме в середине.

 

 

При определенном фазовом угле будет результирующее направление поля, которое можно вычислить путем сложения векторов; постоянный магнит(ы) в роторе будет выглядеть так, чтобы выровняться с направлением поля, и по мере того, как форма волны переменного тока «прогрессирует» во времени, ротор будет вращаться, как показано на рисунке.

для 30 °:

для 90 °:

для 180 °:

и SO One Complete Cycle (360 0 )). эффективно вернется в исходное положение и повторит процесс снова.

 

Как выбрать электродвигатель?

Не во всех случаях можно использовать трехфазный синхронный двигатель; хотя размер эффективен для его мощности, приведенный выше двигатель был бы слишком большим, например, для привода DVD-плеера. Кроме того, трехфазное питание не было бы идеальным для бытовых (или большинства коммерческих) ситуаций; Таким образом, применение является важным фактором при определении размера и напряжения питания.

Мощность (через крутящий момент), требуемая от двигателя, является важным фактором; каковы динамические аспекты применения – нагрузка, ускорение/торможение и расстояния, которые необходимо переместить в радиальном или поперечном направлении?

Также важна стабильность скорости вращения; двигатель должен работать с постоянной скоростью, даже при низких оборотах?

Наконец, следует учитывать условия окружающей среды — какова рабочая температура и могут ли возникнуть проблемы с водой или пылью? Будет ли двигатель работать во взрывоопасной среде и будет ли требоваться класс ATEX?

 

Типы электродвигателей

Как указано выше, существует множество вариантов двигателей; с питанием от постоянного или переменного тока и различных напряжений, в зависимости от применения.

Важным фактором при выборе двигателей является разница между серводвигателями и шаговыми двигателями. Серводвигатель имеет механизм обратной связи — сигнал обратной связи сравнивается с заданным значением до тех пор, пока не будет нулевой разницы, когда двигатель достигнет желаемого положения.

 

 

Шаговый двигатель также обеспечивает управление, но его можно рассматривать как цифровую версию двигателя со специальной конструкцией. Несколько независимых катушек статора (статор является неподвижной частью двигателя) и специально разработанный ротор позволяют двигателю перемещаться в заданное положение или под углом в соответствии с командой.

Шаговые двигатели идеально подходят для маломощных и недорогих приложений, таких как дисковод компакт-дисков. И наоборот, серводвигатели лучше подходят для приложений с более высокой мощностью, высоким ускорением и высокой точностью.

 

Типичные области применения электродвигателей

Электродвигатели находят широкое применение в быту, например, в стиральных машинах для компакт-дисков, DVD-дисков и т. д., и в коммерческих целях, например, в медицине, офисах и промышленности. В сочетании с линейным исполнительным механизмом типичными приложениями являются, среди прочего, автомобилестроение, погрузочно-разгрузочные работы, робототехника, производство продуктов питания и напитков, а также упаковка.

 

Нужно ли мне что-то еще, чтобы электродвигатели работали?

Подходящее электропитание и соответствующие кабели для оборудования имеют важное значение. В любом случае двигатель должен быть соединен с его приводными компонентами напрямую, через шестерни или ремни, и для этого может потребоваться демпфирование вибрации. Датчики температуры являются разумным дополнением, и в случае возможного перегрева потребуется вентилятор с подходящей вентиляцией.

Кабели необходимы для подачи питания и сигналов управления между двигателем и приводом (см. статью «Что такое электропривод»).

Хотите узнать больше?

Прочтите наши статьи об электрических приводах, двигателях и крутящем моменте, чтобы лучше понять их, или воспользуйтесь нашим конфигуратором электрических приводов, чтобы спроектировать и заказать цилиндр по индивидуальному заказу.

Зачем нужны более легкие электродвигатели

Что такое электродвигатель?

Электродвигатель, как преобразователь энергии, преобразует электрический ток в механическое движение, управляя переходом магнитного поля. И наоборот, они могут преобразовывать механическое движение в электрическую энергию, поэтому их называют генераторами. Электродвигатели и генераторы имеют различную электрическую конструкцию; однако физическим принципом обоих процессов генерации является электромагнитная индукция. В генераторе изменения магнитного поля из-за механического движения индуцируют ток, и вырабатывается электрическая энергия, тогда как в электрическом двигателе электрический ток, протекающий через проводник, индуцирует магнитные поля, которые приводят к механическому движению. Переменное магнитное притяжение и отталкивание создают предпосылку для создания движения.

Как работают электродвигатели?

Статор и ротор являются основными частями обычного электродвигателя. Термин «статор» описывает неподвижную, все еще стоящую часть электродвигателя. Ротор, находящийся на противоположной стороне, является подвижной (вращающейся) частью электродвигателя.

Статор обычно включает в себя сердечник, обернутый (обычно медными) проводами. Эта катушка создает магнитное поле, когда электрический заряд течет по проводам. В результате ротор следует за переменным магнитным полем статора; и, таким образом, вращается.

Если плоскостное направление магнитного потока параллельно оси вращения электродвигателя, то он называется электродвигателем с радиальным потоком. Если плоскостное направление магнитного потока перпендикулярно оси вращения электродвигателя, то он называется электродвигателем с осевым потоком. В дополнение к типу двигателя, поскольку большинство электродвигателей изготовлены с радиальным потоком, термин «осевой поток» упоминается только в том случае, если двигатель является электродвигателем с осевым потоком. Например в нашем Бесщеточный электродвигатель постоянного тока с осевым магнитным потоком: AFPM-S.

Термин «блинчатый электродвигатель» очень часто объединяется с электродвигателями с осевым потоком из-за их тонкой, плоской в ​​осевом направлении конструкции.

Какие типы электродвигателей существуют?

Доступны различные типы электродвигателей. Источник питания — это один из способов различить различные типы.

Электродвигатели постоянного тока

К этому типу относятся электродвигатели, работающие на постоянном токе (DC), такие как батареи. Как и большинство электродвигателей, двигатели постоянного тока включают в себя неподвижную часть, статор, и подвижную часть, ротор. Статор состоит либо из постоянных магнитов, которые непрерывно создают магнитное поле, либо из электромагнита, который используется для создания магнитного потока. Катушки различных типов используются для создания электромагнитных полей. Если катушка питается от источника постоянного тока, она создает магнитный поток и превращается в электромагнит. Ротор подвижен, так что он может вращаться и совпадать с притягивающими полюсами магнитного потока.

Чтобы электродвигатель оставался в непрерывном движении, магнитное выравнивание необходимо менять на обратное снова и снова. Это непрерывное изменение направления электрического тока внутри катушки называется импульсом. Если импульс достигается за счет щетки, которая разрезает и снова соединяет цепь в обоих направлениях, то речь идет о коллекторном двигателе постоянного тока. В настоящее время почти каждый двигатель постоянного тока является бесщеточным, где генерация импульсов регулируется электронным регулятором скорости (ESC).
Меняющиеся силы притяжения и отталкивания поддерживают вращение ротора.

Бесщеточные электродвигатели постоянного тока хорошо известны тем, что обеспечивают большой крутящий момент и могут хорошо контролироваться на переменной скорости. Поэтому они предпочтительнее для довольно небольших приложений, идеальный выбор для аэрокосмических приложений, дронов, БПЛА, электрических велосипедов, лифтов или электромобилей.

Асинхронные электродвигатели переменного тока

Вместо постоянного тока для электродвигателя переменного тока требуется переменный электрический ток. В асинхронных двигателях переменного тока вращение происходит за счет электромагнитной индукции ротора. Статор содержит обмотки (катушки), смещенные на фиксированный угол для каждой фазы тока. При подключении к переменному току каждая катушка создает магнитное поле, которое вращается в ритме временно смещенной частоты линии. Ротор, индуцируемый электромагнитным полем, начинает вращаться, следуя по магнитному пути. По этой причине электродвигатели переменного тока также называют асинхронными двигателями, поскольку они работают только за счет электромагнитно индуцированного напряжения. Они работают асинхронно, потому что скорость вращения ротора, индуцируемого электромагнитным полем, никогда не поспевает за скоростью вращения магнитного потока. Из-за этого скольжения КПД асинхронных двигателей переменного тока уступает двигателям постоянного тока.

Синхронные электродвигатели переменного тока

В технологии синхронного электродвигателя переменного тока скорость прямо пропорциональна входной частоте переменного тока и изменяется при изменении частоты. Как правило, ротор оснащен постоянными магнитами, а не обмотками. Таким образом, электромагнитная индукция ротора может быть исключена, а также ротор вращается синхронно без проскальзывания с той же скоростью вращения, что и поток статора. КПД и удельная мощность значительно выше, чем у асинхронных электродвигателей.

Что отличает Turncircles: наш сверхлегкий бесщеточный электродвигатель постоянного тока с осевым магнитным потоком для любого применения из нашей масштабируемой и наращиваемой системы

Наша сверхлегкая технология бесщеточного электродвигателя постоянного тока с постоянными магнитами является опережающим осевым потоком и обеспечивает более высокий крутящий момент при меньшем весе. Вот где беспрепятственная эффективность достигается на уровне приложений.

Почему электродвигатели с постоянными магнитами?

Высококачественные магниты изготавливаются из редкоземельного неодимового металла, который является очень тяжелым и дорогим металлом. Однако при правильном использовании мы можем извлечь из них максимальную пользу, потому что постоянные магниты являются очень эффективными устройствами для хранения энергии. Однажды намагничившись, они сохраняют свой заряд в течение сотен лет.

По оценкам, неодимовый магнит теряет около 5% своего магнетизма каждые 100 лет.

Постоянные магниты также обеспечивают гибкость конструкции электродвигателя, поскольку их можно размещать независимо от источника питания.

Поскольку мы хотим эффективно использовать всю магнитную силу постоянных магнитов, нам нужно направить эту силу туда, где она необходима: прямо рядом с катушкой. Увеличенная магнитная сила не только обеспечит высокий крутящий момент, но и повысит эффективность двигателя.
Для этого обычно за магнитами помещают подложку из ферромагнитного сплава. Эта железная опорная пластина делает электродвигатель тяжелым.

Необходимости в опорной пластине можно избежать за счет конфигурации массива Хальбаха, когда постоянные магниты расположены особым образом, магнитное поле будет сосредоточено на одной стороне массива.

Почему электродвигатель с постоянными магнитами с осевым потоком?

Конструкция электродвигателя с осевым потоком является следствием максимизации крутящего момента электродвигателя. В то же время он поддерживает концентрацию магнитного поля на статоре.

Поэтому ожидается, что двигатели BLDC с осевым магнитным потоком будут генерировать больший крутящий момент на единицу веса по сравнению с другими конструкциями электродвигателей.

Различные типы электродвигателей, используемых в электромобилях

Если вы заинтересованы в глубоком погружении в технологию двигателей внутреннего сгорания, вы должны быть готовы к тому, что вас обстреляет множество различных концепций. Безнаддувные двигатели, двигатели с турбонаддувом, непосредственный впрыск, непрямой впрыск или как прямой, так и непрямой впрыск! Бензин, дизель, СПГ, СНГ, цикл Аткинсона, цикл Миллера, цикл Будэка, цикл Дизеля и цикл Отто (см. двигатель Mazda Skyactiv-X), турбо с фиксированной геометрией, турбо с изменяемой геометрией, турбо с двойной прокруткой, регулируемые фазы газораспределения… список продолжается. на.

Почти автоматически возникает вопрос: почему у нас так много конструкций и концепций двигателей внутреннего сгорания? Ответ прост — потому что ни один из них не является достаточно хорошим с точки зрения эффективности. В поисках повышения эффективности инженеры внедряли множество конструкций на протяжении всей истории автомобилестроения. Актуально ли это разнообразие конструкций и для электродвигателей? Сколько типов двигателей используется в электромобилях? Ответ только 3 основных. Познакомимся с ними.

Асинхронный асинхронный двигатель — Краткий урок истории

Асинхронный асинхронный двигатель не является чем-то новым. Он был изобретен двумя независимыми исследователями — единственным и неповторимым Николой Теслой и Галилео Феррарисом. Несмотря на то, что итальянский изобретатель впервые разработал этот двигатель в 1885 году, Никола Тесла первым подал заявку на патент в 1888 году.

Изобретение асинхронного двигателя, без сомнения, является одним из величайших достижений в использовании электричества для обеспечения нашей жизни. Внедрение этого типа двигателя настолько широко распространено в наши дни, что без него очень трудно представить повседневную жизнь. Эти двигатели используются во многих электрических устройствах, и подавляющее большинство промышленных двигателей относятся к асинхронному асинхронному типу.

Исторический патент Николы Теслы на асинхронный двигатель

Как работает асинхронный асинхронный двигатель?

Все электродвигатели состоят из двух основных частей. Статическая часть называется статором, а вращающаяся часть называется ротором. Начнем со статора — обычно это стальной цилиндр с прорезями и медными катушками, сплетенными с определенной геометрией. Эти катушки питаются трехфазным переменным током, который был преобразован из постоянного тока (обеспечиваемого аккумулятором) в силовой электронике. Этот ток создает вращающееся магнитное поле в статоре, и скорость этого вращающегося магнитного поля называется синхронной скоростью.

По сути, вот как работает этот тип двигателя: переменное напряжение подается на медные катушки (или обмотки), и в результате мы получаем вращающееся магнитное поле, это поле индуцирует напряжение в роторе, которое, в свою очередь, вызывает протекание тока. . Этот поток тока создает собственное вращающееся магнитное поле в роторе, которое отстает от магнитного поля статора. Сила между двумя магнитными полями, которые приводят в движение ротор, называется силой Лоренца. Затем движение ротора передается на колеса автомобиля через соответствующий редуктор.

Этот двигатель называется асинхронным, потому что вращающееся магнитное поле ротора и статора не синхронизированы. Индукционная часть возникает из-за вращающегося магнитного поля, напряжения и тока, индуцируемых статором. Когда мы нажимаем на педаль акселератора, магнитное поле ротора немного отстает от поля статора. Когда мы замедляемся и двигатель работает как генератор (рекуперативное торможение), то вращающееся магнитное поле ротора опережает статор. Эта разница во вращающихся магнитных полях называется «скольжением» и обычно составляет до 5 % в зависимости от конструкции двигателя.

Типовой КПД трехфазного асинхронного двигателя, используемого в автомобильной промышленности, составляет около 90 %. Благодаря своей надежности, простоте, долговечности и отсутствию требований к экзотическим материалам этот двигатель используется почти исключительно в промышленных процессах. Кроме того, его хорошие характеристики перегрузки делают его идеальным двигателем по требованию, поэтому его часто используют в качестве переднего двигателя в электромобилях с полным приводом.

Плюсы

  • Хорошая эффективность
  • Дешево сделать
  • Нет необходимости в редкоземельных материалах
  • Почти идеальная надежность

Минусы

  • Большие потребности в охлаждении
  • Меньшая удельная мощность
  • Более низкий КПД по сравнению с другими двигателями

Некоторые автомобили, использующие асинхронные асинхронные двигатели: Audi e-Tron SUV, Mercedes-Benz EQC, Tesla Model S, 3, X и Y на передних осях, а автомобили VW Group MEB также используют их на передних осях.

Асинхронный двигатель, используемый в Mercedes-Benz EQC

Синхронный двигатель с постоянными магнитами

Основное различие между асинхронными асинхронными двигателями и синхронными двигателями с постоянными магнитами заключается в способе создания и взаимодействия вращающихся магнитных полей в роторе и статоре. . В синхронных двигателях с постоянными магнитами в роторе имеется собственное вращающееся магнитное поле, создаваемое постоянными магнитами (отсюда и название двигателя). Вращающиеся магнитные поля ротора и статора в этих двигателях заблокированы, и скольжение отсутствует.

Постоянные магниты в роторе являются одним из ключевых элементов, повышающих удельную мощность и повышающих эффективность двигателя. Повышенная удельная мощность означает высокую мощность при малом объеме, поэтому двигатели с постоянными магнитами используются исключительно в PHEV. Электродвигатель в этих транспортных средствах размещен в коробке передач, и существуют ограничения по пространству.

Постоянные магниты изготавливаются из редкоземельных материалов, большинство из которых контролируется Китаем. Есть вопросы об этических аспектах процесса добычи, и по этой причине многие производители стараются сократить использование этих материалов в своих двигателях. Тем не менее, синхронный двигатель с постоянными магнитами является королем КПД — он может достигать до 94-95% и когда в машине только один мотор, то используется именно этот тип мотора.

Плюсы

  • Очень высокая эффективность
  • Нижнее охлаждение требует
  • Высокая удельная мощность

Минусы

  • Стоимость производства
  • Потребность в редкоземельных материалах
  • Теоретическая опасность размагничивания

Hyundai Ioniq 5 Двигатели с постоянными магнитами

Двигатели с постоянными магнитами используются в Hyundai Ioniq 5, Kia EV6, Tesla Model S, 3, X и Y на задних осях. Автомобили VW Group MEB также используют их на задних мостах, Jaguar i-pace, Audi e-tron GT и Porsche Taycan, и это лишь некоторые из них.

Синхронный двигатель с электрическим возбуждением

Синхронные двигатели с постоянными магнитами обеспечивают наилучший КПД из всех, но для их конструкции требуются редкоземельные материалы. Для решения этих проблем некоторые производители, а именно BMW, Renault Groupe и Smart в настоящее время, используют гибридную конструкцию двигателя — они используют синхронные двигатели, для которых не требуются редкоземельные материалы.

Итак, как работают эти моторы? Что ж, вместо использования постоянных магнитов в роторе для создания тока в этих двигателях используются щетки и контактные кольца. По данным BMW, этот тип двигателя обеспечивает КПД до 93%, что очень близко к эффективности двигателей с постоянными магнитами. Несмотря на то, что этот тип двигателя кажется очень многообещающим, тот факт, что в нем используются щетки, означает, что в какой-то момент потребуется замена этих компонентов. Будем надеяться, что производители, разрабатывающие такой мотор, используют щетки с достаточно долгим сроком службы.

Синхронный двигатель BMW с электрическим возбуждением

Pros

  • Очень высокий КПД
  • Дешевле в производстве, чем синхронный двигатель с постоянными магнитами
  • Отсутствие риска размагничивания
  • Нет необходимости в редкоземельных материалах

Минусы

  • Щетки долговременная надежность

Этот тип двигателя используется в BMW iX3, iX и i4; Renault Megane E-TECH и SMART EQ.

Как сделать простой электродвигатель | Научный проект

Научный проект

Энергия бывает разных форм. Электрическая энергия может быть преобразована в полезную работу, или механическую энергию с помощью машин, называемых электродвигателями. Электродвигатели работают за счет электромагнитных взаимодействий : взаимодействия тока (потока электронов) и магнитного поля .

Узнайте, как сделать простой электродвигатель.

Скачать проект

  • Батарея D
  • Провод изолированный 22Г
  • 2 длинные металлические швейные иглы с большими ушами (уши должны быть достаточно большими, чтобы продеть проволоку)
  • Пластилин для лепки
  • Изолента
  • Хобби-нож
  • Малый круглый магнит
  • Тонкий маркер
  1. Начиная с центра проволоки, плотно и аккуратно обмотайте ее вокруг маркера 30 раз.
  2. Сдвиньте спираль, которую вы сделали, с маркера.
  3. Оберните каждый свободный конец провода вокруг катушки несколько раз, чтобы скрепить ее, затем направьте провода от петли, как показано на рисунке:

Что это? Какова его цель?

  1. Попросите взрослого помочь вам с помощью канцелярского ножа снять верхнюю половину изоляции провода на каждом свободном конце катушки. Открытый провод должен быть обращен в одном направлении с обеих сторон. Как вы думаете, почему половина провода должна оставаться изолированной?
  1. Проденьте каждый свободный конец катушки проволоки через большое игольное ушко. Старайтесь, чтобы катушка была как можно более прямой, не сгибая концы проволоки.
  1. Положите батарею D боком на ровную поверхность.
  2. Наклейте пластилин для лепки с обеих сторон батареи, чтобы она не скатилась.
  3. Возьмите 2 маленьких шарика пластилина и накройте ими острые концы иглы.
  4. Поместите иглы вертикально рядом с клеммами каждой батареи так, чтобы сторона каждой иглы касалась одной клеммы батареи.
  1. Используйте изоленту, чтобы прикрепить иглы к концам батареи. Ваша катушка должна висеть над батареей.
  2. Прикрепите небольшой магнит к боковой стороне батареи так, чтобы он располагался по центру под катушкой.
  1. Покрутите катушку. Что происходит? Что происходит, когда вы вращаете катушку в другом направлении? Что произойдет с большим магнитом? Аккумулятор побольше? Более толстый провод?

Двигатель будет продолжать вращаться при нажатии в правильном направлении. Двигатель не будет вращаться, когда первоначальный толчок будет в противоположном направлении.

Металл, иглы и проволока создали замкнутый контур цепи , которая может проводить ток. Ток течет от отрицательной клеммы батареи через цепь к положительной клемме батареи. Ток в замкнутом контуре также создает собственное магнитное поле , которое можно определить по «Правилу правой руки». Делая знак «большой палец вверх» правой рукой, большой палец указывает в направлении тока, а изгиб пальцев показывает, в какую сторону ориентировано магнитное поле.

В нашем случае ток проходит через созданную вами катушку, которая называется якорем двигателя. Этот ток индуцирует магнитное поле в катушке, что помогает объяснить, почему катушка вращается.

Магниты имеют два полюса, северный и южный. Взаимодействие север-юг скрепляет друг друга, а взаимодействия север-север и юг-юг отталкивают друг друга. Поскольку магнитное поле, создаваемое током в проводе, не перпендикулярно магниту, прикрепленному лентой к батарее, по крайней мере, некоторая часть магнитного поля провода будет отталкиваться и заставлять катушку продолжать вращаться.

Так почему нам нужно было снимать изоляцию только с одной стороны каждого провода? Нам нужен способ периодически разрывать цепь, чтобы она пульсировала и выключалась в такт вращению катушки. В противном случае магнитное поле медной катушки выровняется с магнитным полем магнита и перестанет двигаться, потому что оба поля будут притягиваться друг к другу. То, как мы настроили наш двигатель, делает так, что всякий раз, когда ток проходит через катушку (придавая ей магнитное поле), катушка находится в хорошем положении, чтобы отталкиваться магнитным полем неподвижного магнита. Всякий раз, когда катушка не отталкивается активно (в течение тех долей секунды, когда цепь выключена), импульс переносит ее вокруг, пока она не окажется в правильном положении, чтобы замкнуть цепь, создать новое магнитное поле и оттолкнуться от стационарного снова магнит.

После перемещения катушка может продолжать вращаться, пока батарея не разрядится. Причина того, что магнит вращается только в одном направлении, заключается в том, что вращение в неправильном направлении заставит магнитные поля не отталкивать друг друга, а притягивать.

Заявление об отказе от ответственности и меры предосторожности

Education.com предоставляет идеи проекта научной ярмарки для ознакомления только цели. Education.com не дает никаких гарантий или заявлений относительно идей проекта научной ярмарки и не несет ответственности за любые убытки или ущерб, прямо или косвенно вызванные использованием вами таких Информация. Получая доступ к идеям проекта научной ярмарки, вы отказываетесь и отказаться от любых претензий к Education.com, возникающих в связи с этим. Кроме того, ваш доступ к веб-сайту Education.com и проектным идеям научной ярмарки покрывается Политика конфиденциальности Education. com и Условия использования сайта, включая ограничения об ответственности Education.com.

Настоящим предупреждаем, что не все проектные идеи подходят для всех отдельных лиц или во всех обстоятельствах. Реализация любой идеи научного проекта следует проводить только в соответствующих условиях и с соответствующими родителями. или другой надзор. Чтение и соблюдение мер предосторожности всех материалы, используемые в проекте, является исключительной ответственностью каждого человека. За дополнительную информацию см. в справочнике по научной безопасности вашего штата.

Общие типы электродвигателей

Электродвигатель представляет собой электрическое устройство, преобразующее электрическую энергию в механическую. Механическая энергия может вращать вентиляторы электромобиля, миксер, конвейеры или шины. Электродвигатель — это рабочая лошадка отрасли передачи электроэнергии.

Все двигатели имеют определенные характеристики. Таким образом, мы можем классифицировать их на основе конкретных функций или стандартов.

Двигатели, используемые в Северной Америке, чаще всего соответствуют стандартам NEMA (Национальной ассоциации производителей электрооборудования). Их обычно называют двигателями NEMA. Практически весь остальной мир использует метрическую версию, называемую СИ или международный стандарт, известную как стандарты МЭК. Часто называют двигателями IEC. NEMA использует лошадиные силы и дюймы, в то время как IEC использует миллиметры и киловатты

 

Мы классифицируем два типа электродвигателей в зависимости от источника питания:

 

  • Двигатели постоянного или постоянного тока
  • Двигатели переменного тока или двигатели переменного тока


Двигатели постоянного тока

Двигатели постоянного тока были первым типом широко используемых двигателей, поскольку они могли питаться от существующих систем распределения электроэнергии постоянного тока. Обычно они оснащены постоянными магнитами в своей статической части, но некоторые другие содержат электромагниты вместо постоянных магнитов в статоре. Скорость двигателя постоянного тока можно регулировать в широком диапазоне, используя либо переменное напряжение питания, либо изменение силы тока в его обмотках возбуждения. Небольшие двигатели постоянного тока используются в игрушках, инструментах и ​​бытовой технике.

 

Переменный ток означает, что ток вместо того, чтобы течь в одном направлении, движется вперед и назад и меняет направление с определенной частотой в герцах. В большинстве стран в качестве частоты переменного тока используется 50 Гц (50 Гц или 50 циклов в секунду). Лишь немногие используют 60 Гц. Стандартом в Соединенных Штатах является электричество переменного тока с частотой 60 Гц.

 

Мы классифицируем два основных типа двигателей переменного тока в соответствии с фазами:

 

  • Однофазные
  • Трехфазный

 

Однофазный двигатель

Однофазный двигатель работает от однофазного источника питания. Они содержат два типа проводки: горячую и нейтральную. Их мощность может достигать до 3кВт. Их можно использовать в основном в домах, офисах, магазинах, небольших непромышленных компаниях и других устройствах, таких как дрели, кондиционеры и системы открывания и закрывания гаражных ворот.

 

Трехфазный двигатель

Трехфазный двигатель работает от трехфазного источника питания. Они управляются тремя переменными токами одинаковой частоты, пики которых приходятся на переменные моменты. Они могут иметь мощность до 300 кВт и скорость от 900 до 3600 об/мин. Благодаря высокой эффективности и низкой стоимости трехфазный двигатель переменного тока чаще всего используется в промышленности.

 

Мы также можем классифицировать двигатели по типу корпуса. Мы расскажем об этом в другой статье.
Читайте здесь: Наиболее распространенные типы корпусов электродвигателей .

 

 

Электричество является наиболее экономичным способом передачи энергии на большие расстояния по проводам. Однако использовать электроэнергию напрямую практически невозможно, например, для перекачивания воды требуется механическая энергия. В этом случае нам необходимо производить механическую энергию из электричества для выполнения механической работы. По этой причине мы используем электродвигатели, которые потребляют электричество на входе и отдают механическую мощность на выходе.

 

Ознакомьтесь с некоторыми приложениями, где требуются электродвигатели:

 

 

  • Промышленное использование. Существуют различные процессы во всех отраслях промышленности, в которых нам требуется механическая энергия от электродвигателей, например, перемешивание, подъем, вытягивание и т. д.

 

 

  • Домашнее хозяйство. Для комфортной жизни мы полагаемся на многие электроприборы, для которых требуются электродвигатели, такие как кондиционеры, электрические вентиляторы, пылесосы, водяные насосы, кофемолки, миксеры и т. д.

 

Не стесняйтесь  Свяжитесь с нами , если у вас есть какие-либо вопросы, нужна дополнительная информация или если вы заинтересованы в покупке электродвигателей.

HVH Industrial Solutions is an authorized distributor of the following electric motor manufacturers:  Elektrim Motors,   WEG , Toshiba Motors & Drives , Brook Crompton , Lafert North America , MGM Electric Motors North American Electric , Techtop Electric Motors Aurora Motors,   Worldwide Electric,  and  Rossi .  Мы тесно сотрудничаем с их инженерными командами, чтобы обеспечить превосходное обслуживание клиентов и поддержку.

Запросить цену



Владимир Арутюнян

Владимир Арутюнян является учредителем HVH Industrial. Он имеет степень магистра в области машиностроения и более 10 лет опыта работы в области передачи механической энергии.

Не стесняйтесь связаться с Владом на Linkedin: https://www.linkedin.com/in/vladharut



Как работает двигатель электромобиля?

Автор Алекс Рамос

Делиться Твитнуть Делиться Электронная почта

Электромобили

есть везде, и это здорово. Но задумывались ли вы когда-нибудь о том, как на самом деле работает двигатель электромобиля?

Изображение предоставлено: Herr Loeffler/Shutterstock

Электродвигатели повсюду. Вероятно, не будет преувеличением сказать, что современная цивилизация, какой мы ее знаем, могла бы выглядеть иначе, если бы не изобретение электродвигателя. Электродвигатели также вездесущи в вашей повседневной жизни, от электрических водяных насосов до электродвигателей, приводящих в действие охлаждающие вентиляторы.

Но в последнее время самая большая шумиха вокруг электродвигателя связана с огромным распространением электромобилей.

Если вы задаетесь вопросом, как работает двигатель электромобиля, вы попали по адресу. Читайте дальше, чтобы узнать все подробности о том, как работают электродвигатели и чем они отличаются от двигателей внутреннего сгорания.

Что такое асинхронный электродвигатель?

Асинхронный двигатель — чудо инженерной мысли. Забавно, что этот тип электродвигателя изобрел Никола Тесла, и компания по производству электромобилей, носящая его имя, также использует асинхронные двигатели для некоторых своих знаменитых электромобилей. В частности, в Model S и ее двоюродном брате Model X используются асинхронные двигатели переменного тока (в более новых моделях используется синхронный двигатель с постоянными магнитами и асинхронный двигатель). В общих чертах, асинхронный двигатель — это двигатель, который преобразует электрическую энергию в механическую с помощью наведенного магнитного поля.

Вероятно, он входит в тройку величайших изобретений всех времен, и это не преувеличение. Асинхронный двигатель довольно прост, единственной движущейся частью является его ротор, поэтому силовые агрегаты электромобилей должны оказаться очень надежными с годами. Кстати, это одно из ключевых преимуществ электромобилей перед бензиновыми автомобилями с точки зрения надежности. Асинхронный двигатель имеет неподвижную часть, называемую статором, а также внутреннюю часть, которая фактически вращается, называемую ротором.

Через ротор проходит вал, который можно использовать для перемещения предметов, когда ротор вращается. Примером этого является вращающийся вентилятор, соединенный с валом асинхронного двигателя, или, возможно, колеса электромобиля, движущиеся в результате механического движения вала ротора. Асинхронный двигатель переменного тока присутствует не только в электромобилях; это основной продукт во всех аспектах повседневной жизни. Многие современные заводские машины используют асинхронные двигатели переменного тока, особенно если важны надежность и низкие эксплуатационные расходы.

Это одна из основных причин, по которой в некоторых высокопроизводительных электромобилях используются асинхронные двигатели. Они чрезвычайно надежны, а также очень эффективны. В то время как асинхронные двигатели производят свою долю тепла (именно поэтому они часто имеют вентиляторы и ребра, встроенные в конструкцию), они в высшей степени эффективны. По данным Министерства энергетики США, электромобили могут фактически использовать более 77% электроэнергии, которую они получают от зарядки непосредственно на колеса автомобиля. Согласно тому же источнику, автомобили с бензиновым двигателем могут преобразовать только от 12% до 30% энергии, запасенной в бензине, в полезную мощность непосредственно на колесах автомобиля.

электромобиля преобразуют более 77% электроэнергии из сети в мощность на колесах. Обычные автомобили с бензиновым двигателем преобразуют только около 12–30% энергии, запасенной в бензине, в мощность на колесах.

Это огромная проблема и одна из причин, по которой электромобили более безопасны для окружающей среды, особенно при подключении к экологически чистому источнику энергии.

Как работает асинхронный двигатель переменного тока?

Проще говоря, асинхронный двигатель переменного тока работает за счет электризации проводящих медных катушек, расположенных вокруг статора. Переменный ток, протекающий через медные катушки, индуцирует вращающееся магнитное поле. Очевидно, что в электромобиле электричество, которое позволяет осуществить этот шаг, подается от аккумулятора электромобиля.

Однако

Батареи вырабатывают энергию постоянного тока, поэтому, прежде чем электричество от батареи может быть преобразовано в механическую энергию электродвигателем, оно должно пройти промежуточный этап через инвертор, который преобразует мощность постоянного тока, обеспечиваемую батареями, в требуемую мощность переменного тока. Вращающееся электромагнитное поле, создаваемое в статоре, приводит к возникновению тока в роторе при его движении, который, в свою очередь, индуцирует электромагнитное поле в роторе. Вот почему асинхронные двигатели называются индукционными, потому что они работают, индуцируя магнитное поле.

Волшебство происходит, когда вращающаяся ЭДС индуцирует электрический ток в роторе, который, в свою очередь, производит свою собственную ЭДС, заставляющую ротор вращаться, следуя за вращающимся магнитным полем статора. Ротор вращает вал, который является полезной частью электродвигателя, позволяя создавать механическую энергию из электроэнергии. С точки зрения электромобилей, то, как эти электродвигатели обеспечивают мощность, означает, что крутящий момент доступен мгновенно, с чем автомобили с ДВС даже не могут конкурировать.

Преимущества электродвигателей перед двигателями внутреннего сгорания

Первым очевидным преимуществом электродвигателей перед двигателями внутреннего сгорания является резкое уменьшение количества движущихся частей. Если вы посмотрите на любую базовую анимацию вращения газового двигателя по сравнению с вращением электродвигателя, вы сразу заметите, насколько сложнее этот процесс для газового двигателя. Уменьшение количества движущихся частей напрямую связано с техническим обслуживанием этих различных силовых установок.

С электродвигателем мало что может выйти из строя, особенно из-за износа. Между тем, двигатель внутреннего сгорания имеет множество движущихся частей, которые могут выйти из строя. Это не означает, что электродвигатель не может сломаться, но если он лишен многих деталей, которые выходят из строя в бензиновом двигателе, их не нужно будет заменять.

Одним из основных дефектов обычных двигателей является цепь привода ГРМ (или ремень), которой нет даже в электродвигателе.

23Май

Как работает инжекторная система впрыска бензинового двигателя: Системы впрыска бензиновых двигателей

Система питания инжекторного двигателя: характеристика, устройство

Система питания инжекторного двигателя современного автомобиля — это сложнейший «организм», состоящий из датчиков, исполнительных устройств и самого главного — блока управления. Не зря в народе его называют «мозги». Именно блок управления контролирует работу всей системы впрыска топлива.

С его помощью происходит нормальное функционирование двигателя, регулировка угла опережения зажигания, момента впрыска топливовоздушной смеси и многих других параметров.

Описание

За многолетнюю историю автомобилестроения появилось несколько типов впрыска топлива. И конструкции инжекторной системы бензинового двигателя различаются, причём существенно. Дизель достаточно схож в системе впрыска с инжектором.

Но есть огромные отличия в конструкции отдельных механизмов — степень сжатия в дизельном моторе во много раз выше. В целом же первые конструкции инжекторных систем очень сильно были похожи на дизельные.

Центральный впрыск топлива

Моновпрыск — это самый простой механизм. Второе название — центральный впрыск. И он же был первым в истории. Массовое применение получил в США в начале 2 половины ХХ века. Как работает центральный впрыск? Простота — это именно то, что понравилось не только автовладельцам, но и производителям. Конструкция очень схожа с карбюратором, только вместо него применяется форсунка.

Она устанавливается на впускном коллекторе — одна на все цилиндры двигателя, независимо от их общего количества. Топливо поступает в коллектор постоянно, как и воздух. В результате происходит образование топливовоздушной смеси, которая распределяется по цилиндрам.

Плюсы и минусы

Преимущества, которыми обладает центральная система впрыска:

  • простота и дешевизна конструкции;
  • для смены режимов работы достаточно провести регулировку одной форсунки;
  • при смене карбюратора на инжектор (моновпрыск) существенных изменений в систему питания не производится.

К недостаткам относится то, что не выходит достигнуть высоких показаний экологичности. Поэтому на сегодняшний день автомобили с моновпрыском нельзя встретить в продаже и эксплуатации в развитых странах Америки, Европы и Азии. Разве что в странах третьего мира они будут беспрепятственно колесить по дорогам.

И самое большое неудобство — это то, что при выходе из строя форсунки двигатель останавливается и запустить его невозможно.

Распределённый впрыск топливной смеси

В таких системах количество форсунок равно числу цилиндров. Все форсунки находятся на впускном коллекторе, топливовоздушная смесь подаётся при помощи общей для всех топливной рампы. В ней происходит смешивание бензина и воздуха. Режимы работы форсунок:

  1. Фазированный впрыск — самые современные системы работают именно с его использованием. Количество форсунок и цилиндров одинаковое, открытие и закрытие электроклапанов происходит в зависимости от того, какой такт проходит двигатель. Наилучшим режимом работы мотора считается такой, при котором открытие форсунки происходит непосредственно перед началом такта впуска. И двигатель работает устойчиво, и достигается высокая экономия бензина. Преимущества такой топливной системы очевидны.
  2. Одновременный впрыск топливовоздушной смеси — открытие форсунок не зависит от такта. Они все открываются одновременно, несмотря на то, что находятся на впускных коллекторах «своих» цилиндров. Это несколько модернизированный моновпрыск, несмотря на то, что форсунок несколько, управление ими происходит так, будто установлена всего одна. В общем, такие конструкции надёжны и работа их стабильна, но по характеристикам уступают более современным конструкциям.
  3. Попарно-параллельный впрыск топливной смеси немного отличается от предыдущего. Главное отличие — открываются не все форсунки разом, а парами. Одна пара открывается перед впуском, вторая — перед выпуском. Именно так обычно работает впрыск. Из употребления такие системы вышли давно, но, например, если выходит из строя датчик фаз, современные инжекторы переходят в аварийный режим (попарно-параллельный впрыск происходит вместо фазированного, так как без параметров этого датчика работа невозможна).
  4. Системы непосредственного впрыска топлива имеют высокую стоимость, но и надёжность у них завидная. Экономичность и мощность двигателя на высоком уровне, регулировка подачи топливовоздушной смеси максимально точная. Мотор может быстро изменить режим работы. Электромагнитные форсунки устанавливаются в ГБЦ, смесь распыляется непосредственно в камеру сгорания цилиндра (отсюда и название системы).

В конструкции отсутствует впускной коллектор и клапан. Реализация конструкции довольно сложная, так как в ГБЦ на каждый цилиндр есть отверстия под свечи, клапаны (2 или 4, в зависимости от типа мотора). Элементарно не хватает места для установки форсунки.

Изначально такие системы впрыска устанавливались на габаритные и мощные двигатели, на бюджетных их не встретить. И ремонт таких систем выливается в круглую сумму.

Система датчиков инжекторных двигателей

Без этих компонентов работа системы впрыска топлива невозможна. Именно датчики сообщают блоку управления всю информацию, которая необходима для работы исполнительных устройств в нормальном режиме. Неисправности системы питания инжекторного двигателя по большей части вызывают именно датчики, так как они могут неверно производить замеры.

  1. Датчик расхода воздуха устанавливается после воздушного фильтра, так как в конструкции имеется дорогостоящая платиновая нить, которая при попадании мелких посторонних частиц может засоряться, отчего показания окажутся неверными. Датчик считает, какое количество воздуха проходит через него. Понятно, что взвесить воздух не представляется возможным, да и объем его измерить проблематично. Суть работы заключается в том, что внутри пластиковой трубки находится платиновая нить. Она нагревается до рабочей температуры (более 600º, именно это значение закладывается в ЭБУ). Поток воздуха охлаждает нить, блок управления фиксирует температуру и, исходя из этого, вычисляет количество воздуха.
  2. Датчик абсолютного давления необходим для более точного снятия показаний о количестве потребляемого двигателем воздуха. Состоит из 2 камер, одна из которых герметична и внутри у неё вакуум. Вторая камера соединена с впускным коллектором. В последнем при впуске разрежение. Между камерами устанавливается диафрагма с пьезоэлементом, который вырабатывает небольшое напряжение во время изменения давления. Это значение напряжения поступает на вход блока управления.
  3. Датчик положения коленвала располагается рядом со шкивом генератора. Если присмотреться, то можно увидеть, что на шкиве есть зубья, причём они расположены на одинаковом расстоянии друг от друга. Суммарное число зубьев — 60, оси соседних расположены на расстоянии 6º. Но если присмотреться ещё внимательнее, то можно увидеть, что 2-х не хватает. Этот промежуток необходим, чтобы датчик фиксировал положение коленвала максимально точно. Датчик вырабатывает напряжение, которое тем больше, чем выше частота вращения.
  4. Датчик фаз (распредвала) работает на эффекте Холла. В конструкции есть диск с вырезанным сегментом и катушка. При вращении диска вырабатывается напряжение. Но в момент, когда прорезь находится над чувствительным элементом, напряжение снижается до 0. В этот момент первый цилиндр находится в ВМТ на такте сжатия. Благодаря датчику фаз точно подаётся искра на свечу и открывается своевременно форсунка.
  5. Датчик детонации расположен на блоке ДВС между 2 и 3 цилиндрами (чётко посередине). Работает на пьезоэффекте — при наличии вибрации происходит генерирование напряжения. Чем сильнее вибрация, тем выше уровень сигнала. Блок управления при помощи датчика изменяет угол опережения зажигания.
  6. Датчик дроссельной заслонки представляет собой переменный резистор, на который подаётся напряжение 5 В. В зависимости от того, в каком положении находится заслонка, напряжение уменьшается. Иногда случаются поломки — в начальном положении показания датчика прыгают. Стирается резистивный слой, ремонт невозможен, эффективнее установить новый.
  7. Датчик температуры ОЖ, от него зависит качество воспламенения топливовоздушной смеси. С его помощью не только происходит коррекция угла опережения зажигания, но и включение электровентилятора.
  8. Лямбда-зонд расположен в системе выпуска отработанных газов. В современных системах, которые удовлетворяют последним экологическим стандартам, можно встретить 2 датчика кислорода. Лямбда-зонд отслеживает количество кислорода в выхлопных газах. У него есть внешняя часть и внутренняя. За счёт напыления из драгметалла можно оценить количество кислорода в выхлопных газах. Внешняя часть датчика «дышит» чистым воздухом. Показания передаются на блок управления и сравниваются. Эффективные замеры возможны только при достижении высоких температур (свыше 400º), поэтому часто устанавливают подогреватель, чтобы даже в момент начала работы двигателя не наблюдалось перебоев.

Исполнительные механизмы инжекторных систем

По названию видно, что эти устройства выполняют то, что им скажет блок управления. Все сигналы от датчиков анализируются, сравниваются с топливной картой (огромной схемой работы при тех или иных условиях), после чего подаётся команда на исполнительный механизм. Следующие исполнительные механизмы входят в состав инжекторной системы:

  1. Электрический бензонасос, установленный в баке. Он нагнетает в рампу бензин под давлением около 3,5 Мпа. Вот какое давление в топливной системе должно быть, при нем распыление смеси окажется наиболее качественным. При повышении оборотов коленвала увеличивается расход бензина, нужно его больше нагнетать в рампу, чтобы удерживать давление на уровне. В нижней части насосов устанавливается фильтр, который нужно менять хотя бы раз в 30000 км пробега.
  2. Электромагнитные форсунки устанавливаются в рампе и предназначены для подачи топливовоздушной смеси в камеры сгорания. Чем дольше открыт клапан форсунки, тем больше смеси поступит в камеру сгорания — именно такой принцип дозирования лежит в основе.
  3. Дроссельный механизм приводится в движение педалью из салона. Но в последние годы набирает популярность электронная педаль газа. Это означает, что вместо тросика используется потенциометр на педали и небольшой электродвигатель на дроссельной заслонке.
  4. Регулятор холостого хода предназначен для контроля количества воздуха, поступающего в топливную рампу при полностью закрытой дроссельной заслонке. На карбюраторных моторах аналогичную функцию выполняет «подсос». Несмотря на то, что топливная система отличается, суть работы остаётся той же — подача смеси и её сгорание.
  5. Модуль зажигания — короб, в котором находится 4 высоковольтные катушки. Хорошая конструкция, но крайне ненадёжная — высоковольтные провода имеют свойство портиться. Намного эффективнее окажется использование для каждой свечи отдельной катушки, выполненной в виде наконечника.

Работа двигателя с инжекторной системой впрыска

А теперь можно рассмотреть и принцип работы системы питания инжекторного двигателя. При включении зажигания происходит переход в рабочий режим всех механизмов и устройств. Первым делом насос нагнетает бензин в рампу до минимального давления, которого хватит для запуска.

А дальше все ждут, когда провернётся коленвал, и с его датчика пойдёт сигнал на блок управления о положении поршней в цилиндрах. Одновременно с этим датчик фаз выдаёт сигнал о том, какой такт совершается. После анализа данных блок управления даёт команду на форсунки (в зависимости от того, в каком цилиндре происходит впуск).

При вращении коленвала постоянно снимаются данные с датчиков и, исходя из них, происходит открывание нужных электромагнитных форсунок на определённый промежуток времени. Смесь воспламеняется, отработанные газы выходят через выпускной коллектор. По тому, какое содержание кислорода в них, можно судить о качестве сгорания топлива.

Если содержание кислорода большое, то смесь сгорает не до конца. Блок управления производит корректировку угла опережения зажигания, чтобы добиться наилучших показаний.

Но вот во время прогрева некоторые датчики не влияют на работу системы управления. Это датчики расхода воздуха, детонации и абсолютного давления. При достижении рабочей температуры включаются они в работу. Причина — во время прогрева невозможно соблюсти все условия, в частности, соотношение бензина и воздуха. Уровень СО в выхлопных газах тоже будет зашкаливать, поэтому контроль всех этих параметров не следует производить.

Система впрыска

На современных автомобилях используются различные системы впрыска топлива. Система впрыска (другое наименование — инжекторная система, от injection – впрыск) как следует из названия, обеспечивает впрыск топлива.

Система впрыска используется как на бензиновых, так и дизельных двигателях. Вместе с тем, конструкции и работа систем впрыска бензиновых и дизельных двигателей существенным образом различаются.

В бензиновых двигателях с помощью впрыска образуется однородная топливно-воздушная смесь, которая принудительно воспламеняется от искры. В дизельных двигателях впрыск топлива производится под высоким давлением, порция топлива смешивается со сжатым (горячим) воздухом и почти мгновенно воспламеняется. Давление впрыска определяет величину порции впрыскиваемого топлива и соответственно мощность двигателя. Поэтому, чем больше давление, тем выше мощность двигателя.

Система впрыска топлива является составной частью топливной системы автомобиля. Основным рабочим органом любой системы впрыска является форсунка (инжектор).

Системы впрыска бензиновых двигателей

В зависимости от способа образования топливно-воздушной смеси различают следующие системы центрального впрыска, распределенного впрыска и непосредственного впрыска. Системы центрального и распределенного впрыска являются системами предварительного впрыска, т.е. впрыск в них производится не доходя до камеры сгорания — во впускном коллекторе.

Центральный впрыск (моновпрыск) осуществляется одной форсункой, устанавливаемой во впускном коллекторе. По сути это карбюратор с форсункой. В настоящее время системы центрального впрыска не производятся, но все еще встречаются на легковых автомобилях. Преимуществами данной системы являются простота и надежность, а недостатками — повышенный расход топлива, низкие экологические показатели.

Система распределенного впрыска (многоточечная система впрыска) предполагает подачу топлива на каждый цилиндр отдельной форсункой. Образование топливно-воздушной смеси происходит во впускном коллекторе. Является самой распространенной системой впрыска бензиновых двигателей. Ее отличает умеренное потребление топлива, низкий уровень вредных выбросов, невысокие требования к качеству топлива.

Перспективной является система непосредственного впрыска. Впрыск топлива осуществляется непосредственно в камеру сгорания каждого цилиндра. Система позволяет создавать оптимальный состав топливно-воздушной смеси на всех режимах работы двигателя, повысить степень сжатия, тем самым обеспечивает полное сгорание смеси, экономию топлива, повышение мощности двигателя, снижение вредных выбросов. С другой стороны ее отличает сложность конструкции, высокие эксплуатационные требования (очень чувствительна к качеству топлива, особенно к содержанию в нем серы).

Для снижения выбросов твердых частиц в атмосферу с отработавшими газами применяется комбинированная система впрыска, объединяющая систему непосредственного впрыска и систему распределенного впрыска на одном двигателе внутреннего сгорания.

Системы впрыска бензиновых двигателей могут иметь механическое или электронное управление. Наиболее совершенным является электронное управление впрыском, обеспечивающее значительную экономию топлива и сокращение вредных выбросов.

Впрыск топлива в системе может осуществляться непрерывно или импульсно (дискретно). Перспективным с точки зрения экономичности является импульсный впрыск топлива, который используют все современные системы.

В двигателе система впрыска обычно объединена с системой зажигания и образует объединенную систему впрыска и зажигания (например, системы Motronic, Fenix). Согласованную работу систем обеспечивает система управления двигателем.

Системы впрыска дизельных двигателей

Впрыск топлива в дизельных двигателях может производиться двумя способами: в предварительную камеру или непосредственно в камеру сгорания.

Двигатели с впрыском в предварительную камеру отличает низкий уровень шума и плавность работы. Но в настоящее время предпочтение отдается системам непосредственного впрыска. Несмотря на повышенный уровень шума, такие системы имеют высокую топливную экономичность.

Определяющим конструктивным элементом системы впрыска дизельного двигателя является топливный насос высокого давления (ТНВД).

На легковые автомобили с дизельным двигателем устанавливаются различные конструкции систем впрыска: с рядным ТНВД, с распределительным ТНВД, насос-форсунками, Сommon Rail. Прогрессивные системы впрыска — насос-форсунки и система Сommon Rail.

В системе впрыска насос-форсунками функции создания высокого давления и впрыска топлива объединены в одном устройстве – насос-форсунке. Насос-форсунка имеет постоянный (неотключаемый) привод от распределительного вала двигателя, поэтому подвержена интенсивному износу. Это качество насос-форсунки направляет предпочтения автопроизводителей в сторону системы Сommon Rail.

Работа системы впрыска Common Rail основана на подаче топлива к форсункам от общего аккумулятора высокого давления – топливной рампы (в переводе common rail — общая рампа). Другое название системы — аккумуляторная система впрыска. Для снижения уровня шума, улучшения самовоспламенения и снижения вредных выбросов в системе реализован многократный впрыск топлива — предварительный, основной и дополнительный.

Системы впрыска дизельных двигателей могут иметь механическое или электронное управление. В механических системах регулирование давления, объема и момента подачи топлива производится механическим способом. Электроника образует систему управления дизелем.

 

 

Принцип работы инжекторного двигателя

Принцип работы двигателя внутреннего сгорания (ДВС) основан на сгорании небольшого количества топлива в ограниченном объеме. При этом высвобождающаяся энергия преобразуется за счет движения поршней в механическую энергию. Дозированное количество топлива обеспечивается карбюратором или специальным устройством – инжектором. Двигатели с такими устройствами называются инжекторными. Рабочий принцип инжекторного двигателя прост – подача в нужный момент времени нужного количества топлива в нужное место.

Содержание

  1. Как работает ДВС
  2. О карбюраторе, его достоинствах и недостатках
  3. Про инжекторные моторы
  4. Устройство впрыска
  5. Виды впрысковых систем
  6. Одноточечный впрыск
  7. Многоточечный впрыск
  8. Непосредственный впрыск

Как работает ДВС

Чтобы ясно понимать различие между двумя типами силовых устройств, необходимо предварительно коснуться того, как вообще работает ДВС. Существует несколько отличающихся типов, из которых самыми распространенными будут:

  1. бензиновые;
  2. дизельные;
  3. газодизельные;
  4. газовые;
  5. роторные.

Принцип работы мотора лучше всего можно понять на примере бензинового двигателя. Самый популярный из них – четырехтактный. Это означает, что весь цикл преобразования энергии, образующейся при сгорании топлива, в механическую осуществляется за четыре такта.
Устройство двигателя таково, что последовательность выполнения тактов следующая:

  • впуск – заполнение цилиндров топливом:
  • сжатие – подготовка топлива к сгоранию;
  • рабочий ход – преобразование энергии сгорания в механическую;
  • выпуск – удаление продуктов сгорания топлива.

Для обеспечения работы двигателя у каждого из них своя задача. Во время первого такта поршень опускается из верхнего положения до крайнего нижнего, открывается клапан (впускной) и цилиндр начинает заполняться топливно-воздушной смесью. Во втором такте клапана закрыты, а движение поршня происходит от нижнего положения к верхнему, смесь в цилиндре сжимается. Когда он доходит до верхнего положения, на свече проскакивает искра и поджигается смесь.

При ее сгорании образуется повышенное давление, которое заставляет двигаться поршень от верхнего положения к нижнему. После его достижения под действием инерции вращения коленвала поршень начинает двигаться опять вверх, при этом срабатывает выпускной клапан, продукты сгорания топлива выводятся наружу из цилиндра. Когда поршень дойдет до верхнего положения, закрывается выпускной, но зато открывается впускной клапан и весь цикл работы повторяется.

Здесь необходимо сделать небольшое дополнение. Раз мы рассматриваем бензиновый мотор, то в нем подача бензина в цилиндры двигателя возможна различными способами. Исторически первой была разработана подача и дозировка бензина при помощи карбюратора. Это специальное устройство, которое обеспечивает необходимое количество топливно-воздушной смеси (ТВС) в цилиндрах.

Топливно-воздушной называется смесь воздуха и паров бензина. Она приготавливается в карбюраторе, специальном устройстве, для их смешивания в нужной пропорции, зависящей от режима работы двигателя. Будучи достаточно простым по своему устройству, карбюратор длительное время успешно работал с бензиновым мотором.
Однако по мере развития автомобиля выявились недостатки, с которыми в сложившихся к тому времени условиях уже было трудно мириться разработчикам двигателя. В первую очередь это касалось:

  • топливной экономичности. Карбюратор не обеспечивал экономного расходования бензина при внезапном изменении режима движения машины;
  • экологической безопасности. Содержание в отработанных газах токсичных веществ было достаточно высоким;
  • недостаточной мощности двигателя из-за несоответствия ТВС режиму движения автомобиля и его текущему состоянию.

Чтобы избавиться от отмеченных недостатков был реализован иной принцип подачи топлива в мотор – с помощью инжектора.

Про инжекторные моторы

У них есть еще одно название – впрысковые двигатели что, в общем-то, никоим образом не изменяет сути происходящих явлений. По выполняемой работе впрыск напоминает принцип, реализуемый в работе дизеля. В двигатель в нужный момент через форсунки инжектора впрыскивается строго дозированное количество топлива, и оно поджигается искрой со свечи, хотя при работе дизеля свеча не используется.

Весь цикл четырехтактного ДВС, рассмотренный ранее, остается неизменным. Основное отличие в том, что карбюратор готовит ТВС за пределами двигателя, и она потом поступает в цилиндры, а у инжекторного двигателя последних моделей бензин впрыскивается непосредственно в цилиндр.

  • повышение мощности на 7-10%;
  • улучшение показателей топливной экономичности;
  • снижение уровня токсичных веществ в составе выхлопных газов;
  • обеспечение оптимального количества топлива, зависящее от режима движения автомашины.

Это только основные достоинства, которые позволяет получить инжекторный двигатель. Однако у каждого достоинства есть и свои недостатки. Если карбюраторный мотор чисто механический и его можно отремонтировать практически в любых условиях, то для управления инжекторным требуется сложная электроника и целая система датчиков, из-за чего работы (регламентные и ремонтные) необходимо проводить в условиях сервисного центра.

Устройство впрыска

Если посмотреть, как выглядит устройство ДВС с впрыском вместо карбюратора, то можно выделить:

  • контроллер впрыска – электронное устройство, содержащее программу для работы всех составных узлов системы;
  • форсунки. Их может быть как несколько, так и одна, в зависимости от используемой системы впрыска;
  • датчик расхода воздуха, определяющий наполнение цилиндров в зависимости от такта. Сначала определяется общее потребление, а потом программно пересчитывается необходимое количество для каждого цилиндра;
  • датчик дроссельной заслонки (ее положения), устанавливающий текущее состояние движения и нагрузку на двигатель;
  • датчик температуры, контролирующий степень нагрева охлаждающей жидкости, по его данным корректируется работа двигателя и при необходимости начинается работа вентилятора обдува;
  • датчик фактического нахождения коленчатого вала обеспечивающий синхронизацию работы всех составных узлов системы;
  • датчик кислорода, определяющий его содержание в выхлопных газах;
  • датчик детонации контролирующий возникновение последней, для ее устранения по его сигналам меняется значение опережения зажигания.


Вот примерно так выглядит в общих чертах система, обеспечивающая впрыск топлива, принцип работы должен быть вполне понятен из ее состава и назначения отдельных элементов.

Виды впрысковых систем

Несмотря на достаточно простое описание работы инжекторного мотора, приведенное ранее, существует несколько разновидностей, осуществляющий подобный принцип работы.

Одноточечный впрыск

Это самый простой вариант реализации принципа впрыска. Он практически совместим с любым карбюраторным двигателем, разница заключается в применении впрыска вместо карбюратора. Если карбюратор во впускной коллектор подает ТВС, то при одноточечном впрыске во впускной коллектор впрыскивается через форсунку бензин.

Как и в случае с карбюраторным мотором, при такте впуск двигатель всасывает готовую топливно-воздушную смесь, и его работа практически не отличается от работы обычного двигателя. Преимуществом такого мотора будет лучшая экономичность.

Многоточечный впрыск

Представляет дальнейший этап совершенствования инжекторных моторов. Топливо по сигналам от контроллера подается к каждому цилиндру, но тоже во впускной коллектор, т.е. ТВС готовится вне цилиндра и уже в готовом виде поступает в цилиндр.
В таком варианте реализации принципа инжекторного двигателя возможно обеспечить многие из преимуществ, присущие впрысковому двигателю и отмеченные ранее.

Непосредственный впрыск

Является следующим этапом развития инжекторных двигателей. Впрыск топлива выполняется прямо в камеру сгорания, чем обеспечивается наилучшая эффективность работы ДВС. Итогом такого подхода является получение максимальной мощности, минимального расхода топлива и наилучших показателей экологической безопасности.

Инжекторный ДВС является следующим этапом в развитии бензинового мотора, значительно улучшающий его показатели. В моторах, использующих систему впрыска топлива, возрастает мощность, а также экономическая эффективность их работы, они отличаются значительно меньшим отрицательным влиянием на окружающую среду.

Система питания бензиновых двигателей.. | Physics.Math.Code

Система питания бензиновых двигателей
══════════════
Двигатель внутреннего сгорания является первоисточником крутящего момента и всех последующих процессов механического и электронного типа в транспортном средстве. Его функционирование обеспечивает целый комплекс устройств. Это система питания бензинового двигателя. Как она устроена, какие бывают поломки, следует рассмотреть каждому владельцу транспортных средств с бензиновым двигателем. Это поможет правильно эксплуатировать и проводить техобслуживание системы.
══════════════
Общая характеристика
══════════════
Устройство системы питания бензинового двигателя позволяет обеспечить нормальное функционирование транспортного средства. Для этого внутри топливного агрегата происходит приготовление смеси из горючего и воздуха. Система питания бензинового двигателя также хранит и обеспечивает подачу компонентов для приготовления топлива. Смесь распределяется по цилиндрам мотора.
При этом система питания ДВС работает в разных режимах. Сначала мотор должен запуститься и прогреться. Затем проходит период холостого хода. На двигатель действуют частичные нагрузки. Существуют также переходные режимы. Двигатель должен правильно функционировать при полной нагрузке, которая может возникать в неблагоприятных условиях.

При этом система питания ДВС работает в разных режимах. Сначала мотор должен запуститься и прогреться. Затем проходит период холостого хода. На двигатель действуют частичные нагрузки. Существуют также переходные режимы. Двигатель должен правильно функционировать при полной нагрузке, которая может возникать в неблагоприятных условиях.

Чтобы мотор работал максимально правильно, нужно обеспечить два основных условия. Топливо должно сгорать быстро и полностью. При этом образуются отработанные газы. Их токсичность не должна превышать установленные нормы. Чтобы обеспечить нормальные условия для функционирования узлов и механизмов, система питания топливом бензинового двигателя должна выполнять ряд функций. Она обеспечивает не только подачу топлива, но и производит его хранение и очистку. Также система питания очищает воздух, который подается в топливную смесь. Еще одной функцией является смешение в правильной пропорции компонентов горючего. После этого топливная смесь передается в цилиндры мотора.

Независимо от разновидности бензинового ДВС, система питания включает в себя ряд конструкционных элементов. В нее входит топливный бак, который обеспечивает хранение определенного количества бензина. Также система включает в себя насос. Он обеспечивает подачу топлива, его перемещение по топливопроводу. Последний состоит из металлических труб, а также шлангов из специальной резины. По ним передается бензин из бака к двигателю. Излишек горючего также по трубкам возвращается обратно. Система подачи бензина обязательно имеет в своем составе фильтры. Они очищают горючее и воздух. Еще одним обязательным элементом являются устройства, которые готовят топливную смесь.
══════════════
Бензин
══════════════
Назначение системы питания бензинового двигателя заключается в подаче, очистке и хранении бензина. Это особый вид топлива, который обладает определенным уровнем испаряемости и детонационной стойкости. От его качества во многом зависит работа двигателя.

Показатель испаряемости говорит о способности бензина менять свое агрегатное состояние из жидкого в парообразное. Этот показатель в значительной степени влияет на особенности образования топливной смеси и ее горение. В процессе работы ДВС участвуют только газообразная часть топлива. Если же бензин находится в жидком виде, он отрицательно влияет на работу мотора.

Жидкое топливо стекает по цилиндрам. При этом с их стенок смывается масло. Такая ситуация влечет за собой быстрый износ металлических поверхностей. Также жидкий бензин препятствует правильному сгоранию топлива. Медленное сгорание смеси приводит к падению давления. При этом мотор не сможет развивать требуемую мощность. Токсичность отработанных газов повышается. Также еще одним неблагоприятным явлением при наличии жидкого бензина в двигателе является появление нагара. Это ведет к быстрому разрушению мотора. Чтобы поддерживать показатель испаряемости в норме, нужно приобретать топливо в соответствии с погодными условиями. Существует летний и зимний бензин. Рассматривая назначение системы питания бензинового двигателя, следует рассмотреть еще одну характеристику топлива. Это детонационная стойкость. Этот показатель оценивается при помощи октанового числа. Для определения детонационной стойкости новый бензин сравнивают с показателями эталонных типов топлива, октановое число которых известно заранее. В состав бензина входят гептан и изооктан. По своим характеристикам они противоположны. У изооктана отсутствует способность к детонации. Поэтому его октановое число составляет 100 ед. Гептан же, наоборот, сильный детонатор. Его октановое число составляет 0 ед. Если смесь в ходе испытаний состоит на 92% из изооктана и на 8% из гептана, октановое число составляет 92.
══════════════
Способ приготовления топливной смеси
══════════════
Работа системы питания бензинового двигателя в зависимости от особенностей ее конструкции может значительно отличаться. Однако независимо от того, как она устроена, к узлам и механизмам выдвигают ряд требований. Система подачи топлива должна быть герметичной. В противном случае появляются сбои в различных ее участках. Это приведет к неправильной работе мотора, его быстрому разрушению. Также система должна производить точную дозировку топлива. Она должна быть надежной, обеспечивать нормальные условия функционирования двигателя в любых условиях.

Еще одним немаловажным требованием, которое сегодня выдвигается к системе приготовления топливной смеси, является простота в обслуживании. Для этого конструкция имеет определенную конфигурацию. Что позволяет владельцу транспортного средства самостоятельно проводить техобслуживание при необходимости. Сегодня система питания бензинового двигателя отличается по способу приготовления топливной смеси. Она может быть двух типов. В первом случае при приготовлении смеси применяется карбюратор. В нем смешивается определенное количество воздуха с бензином. Вторым способом приготовления топлива является принудительный впрыск во впускной коллектор бензина. Этот процесс происходит через инжекторы. Это специальные форсунки. Такой тип двигателей называется инжекторным. Обе представленные системы обеспечивают правильную пропорцию бензина и воздуха. Топливо при правильной дозировке сгорает полностью и очень быстро. На этот показатель в значительной степени влияет количество обоих ингредиентов. Нормальным считается соотношение, в котором присутствует 1 кг бензина и 14,8 кг воздуха. Если же происходят отклонения, можно говорить о бедной или богатой смеси. В этом случае условия для правильной работы мотора ухудшаются. Важно, чтобы система обеспечивала нормальное качество топлива, которое подается в ДВС. Процедура происходит в 4 такта. Существуют также и двухтактные бензиновые моторы, но для автомобильной техники они не применяются.
══════════════
Карбюратор
══════════════
Система питания бензинового карбюраторного двигателя основана на действии сложного агрегата. Он смешивает бензин и воздух в определенной пропорции. Это карбюратор. Чаще всего он имеет поплавковую конфигурацию. Конструкция включает в себя камеру с поплавком. Также в системе есть диффузор и распылитель. Топливо готовится в смесительной камере. Также конструкция имеет дроссельную и воздушную заслонки, каналы для подачи ингредиентов смеси с жиклерами.

Ингредиенты в карбюраторе смешиваются по пассивному принципу. При движении поршня в цилиндре создается пониженное давление. В это разряженное пространство устремляется воздух. Он сначала проходит через фильтр. В смесительной камере карбюратора происходит формирование топлива. Бензин, который вырывается из распределителя, в диффузоре дробится потоком воздуха. Далее эти две субстанции смешиваются.

Карбюраторный тип конструкции включает в себя разные дозирующие устройства, которые последовательно включаются при работе. Иногда несколько из этих элементов работают одновременно. От них зависит правильная работа агрегата.

Далее через впускной коллектор и клапаны топливная смесь попадает в цилиндр мотора. В необходимый момент эта субстанция воспламеняется под воздействием искры свечей зажигания.

Система питания бензинового двигателя карбюраторного типа еще называется механической. Сегодня ее практически не применяют для создания моторов современных автомобилей. Она не может обеспечить выполнение существующих энергетических и экологических требований.
══════════════
Инжектор
══════════════
Инжекторный двигатель является современной конструкцией ДВС. Она значительно превышает по всем показателям карбюраторные системы питания бензинового двигателя. Инжектор является устройством, которое обеспечивает впрыск топлива в мотор. Такая конструкция позволяет обеспечить высокую мощность двигателя. При этом токсичность отработанных газов значительно снижается.

Инжекторные двигатели отличаются стабильностью работы. Автомобиль при разгоне демонстрирует улучшенную динамику. При этом количество бензина, которое требуется транспортному средству для передвижения, будет значительно ниже, чем у карбюраторной системы питания. Топливо при наличии инжекторной системы сгорает более качественно и полноценно. При этом система управления процессами полностью автоматизирована. Вручную не потребуется производить настройки агрегата. Инжектор и карбюратор значительно отличаются конструкцией и принципом работы.

Инжекторная система питания бензинового двигателя имеет в своем составе специальные форсунки. Они под давлением впрыскивают бензин. Затем он смешивается с воздухом. Такая система позволяет сэкономить расход топлива, увеличить мощность мотора. Она увеличивается до 15%, если сравнивать с карбюраторными типами ДВС.

Насос инжекторного мотора является не механическим, как это было в карбюраторных конструкциях, а электрическим. Он обеспечивает требуемое давление при впрыске бензина. При этом система подает топливо в нужный цилиндр в определенное время. Весь процесс контролирует бортовой компьютер. При помощи датчиков он оценивает количество и температуру воздуха, двигателя и прочие показатели. После проведения анализа собранной информации, компьютер принимает решение о впрыске топлива.
══════════════
Особенности инжекторной системы
══════════════
Инжекторная система питания бензинового двигателя может иметь разную конфигурацию. В зависимости от особенностей конструкции бывают устройства представленного класса нескольких видов. К первой группе относятся моторы с одноточечным впрыском топлива. Это самая ранняя разработка в области инжекторных двигателей. Она включает в себя всего одну форсунку. Она находится во впускном коллекторе. Эта инжекторная форсунка распределяет бензин для всех цилиндров мотора. Эта конструкция имеет ряд недостатков. Ныне ее практически не используют при изготовлении бензиновых двигателей транспортных средств. Более современной разновидностью стал распределительный тип конструкции впрыска. Например, такая конфигурация системы питания у бензинового двигателя «Хендай Икс 35».

Эта конструкция имеет коллектор и несколько отдельных форсунок. Они смонтированы над впускным клапаном для каждого цилиндра отдельно. Это одна из самых современных разновидностей системы впрыска топлива. Каждая форсунка подает горючее в отдельный цилиндр. Отсюда топливо попадает в камеру сгорания. Распределительная система впрыска может быть нескольких видов. К первой группе относятся устройства одновременного впрыска топлива. В этом случае все форсунки одновременно впрыскивают топливо в камеру сгорания. Ко второй группе относятся попарно-параллельные системы. Их форсунки открываются по две. Они приводятся в движение в определенный момент. Первая форсунка открывается перед тактом впрыска, а вторая – перед выпуском. К третьей группе относятся фазированные распределительные системы впрыска. Форсунки открываются перед тактом впрыска. Они вводят под давлением топливо непосредственно в цилиндр.
══════════════
Устройство инжектора
══════════════
Система питания бензинового двигателя с впрыском топлива имеет определенное устройство. Чтобы произвести техобслуживание такого мотора самостоятельно, нужно понимать принцип его работы и конструкции. Инжекторная система имеет в своем составе несколько обязательных элементов (схема представлена далее).
В нее входят электронный блок управления (бортовой компьютер) (2), электронасос (3), форсунки (7). Также имеется топливная рампа (6) и регулятор давления (8). Обязательно систему контролируют датчики температуры (5). Все перечисленные компоненты вступают между собой во взаимодействие по определенной схеме. Также в системе присутствует бензобак (1) и фильтр очистки бензина (4).

Чтобы понять принцип работы представленной системы питания, нужно рассмотреть взаимодействие представленных элементов на примере. Новые автомобили часто оснащаются инжекторной системой с распределенным по нескольким точкам впрыском. При запуске мотора топливо поступает на бензонасос. Он находится в топливном баке в горючем. Далее горючее под определенным давлением поступает в магистраль. В рампе установлены форсунки. По ней производится подача бензина.

В рампе есть датчик, который регулирует давление топлива. Он определяет давление воздуха в инжекторах и на впуске. Датчики системы передают информацию бортовому компьютеру о состоянии системы. Он синхронизирует процесс подачи компонентов смеси, корректируя их количество для каждого цилиндра.

Зная, как устроен инжекторный процесс, можно провести самостоятельно техническое обслуживание системы питания бензинового двигателя.

#научные_фильмы@physics_math
#двигатели@physics_math
#техника@physics_math
#физика@physics_math
#машиностроение@physics_math

Система питания бензинового двигателя с впрыском топлива. система распределённого впрыска, состав элементов и работа. преимущества системы впрыска топлива

Прямой впрыск топлива – хорошо или плохо?

Двигатели с непосредственным впрыском (также используется термин «прямой впрыск», или GDI) начали появляться на автомобилях не так давно. Однако технология набирает популярность и все чаще встречается на моторах новых автомобилей. Сегодня мы в общих чертах постараемся ответить, что такое технология непосредственного впрыска и стоит ли ее опасаться?

Для начала стоит отметить, что главной отличительной особенностью технологии является расположение форсунок, которые размещены непосредственно в головке блока цилиндров, соответственно, и впрыск под огромным давлением происходит напрямую в цилиндры, в отличие от давно зарекомендовавшей себя с лучшей стороны системы впрыска горючего во впускной коллектор.

Прямой впрыск впервые был испытан в серийном производстве японским автопроизводителем Mitsubishi. Эксплуатация показала, что среди плюсов главными преимуществами стали экономичность – от 10% до 20%, мощность – плюс 5% и экологичность. Основной минус – форсунки крайне требовательны к качеству топлива.

Стоит также отметить, что схожая система уже долгие десятилетия успешно устанавливается на дизельные двигатели. Однако именно на бензиновых моторах применение технологии было сопряжено с рядом трудностей, которые до сих пор не были окончательно решены.

В видео с YouTube-канала «Savagegeese» объясняется, что такое прямой впрыск и что может пойти не так в ходе эксплуатации автомобиля с данной системой. В дополнение к главным плюсам и минусам в видеоролике также объясняются тонкости профилактического обслуживания системы.  Кроме того, в ролике затрагивается тема систем впрыска во впускные каналы, которые можно в изобилии наблюдать на более старых моторах, а также моторы, которые используют оба метода впрыска горючего. Наглядно используя диаграммы Bosch, ведущий объясняет, как все это работает.

Чтоб узнать все нюансы, предлагаем посмотреть видео ниже (включение перевода субтитров поможет разобраться, если вы не очень хорошо знаете английский). Для тех, кому не слишком интересно смотреть, об основных плюсах и минусах непосредственного впрыска бензина можно прочитать ниже, после видео:

Итак, экологичность и экономичность – благие цели, но вот чем чревато использование современной технологии в вашем автомобиле:

Минусы

1. Очень сложная конструкция.

2. Отсюда вытекает вторая важная проблема. Поскольку молодая бензиновая технология подразумевает внесение серьезных изменений в конструкцию головок цилиндров двигателя, конструкцию самих форсунок и попутное изменение иных деталей мотора, к примеру ТНВД (топливный насос высокого давления), стоимость автомобилей с непосредственным впрыском топлива выше.

3. Производство самих частей системы питания также должно быть крайне точным.  Форсунки развивают давление от 50 до 200 атмосфер.

Прибавьте к этому работу форсунки в непосредственной близости со сгораемым топливом и давлением внутри цилиндра и получите необходимость производства очень высокопрочных компонентов.

4. Поскольку сопла форсунок смотрят в камеру сгорания, все продукты сгорания бензина также осаждаются на них, постепенно забивая или выводя форсунку из строя. Это, пожалуй, самый серьезный минус использования конструкции GDI в российских реалиях.

5. Помимо этого необходимо очень тщательно следить за состоянием двигателя. Если в цилиндрах начинает происходить угар масла, продукты его термического распада достаточно быстро выведут из строя форсунку, засорят впускные клапаны, образовав на них несмываемый налет из отложений. Не стоит забывать, что классический впрыск с форсунками, расположенными во впускном коллекторе, хорошо очищает впускные клапаны, омывая их под давлением топливом.

6. Дорогой ремонт и необходимость профилактического обслуживания, которое тоже недешевое.

Помимо этого, в видео также объясняется, что при ненадлежащей эксплуатации на автомобилях с прямым впрыском могут наблюдаться загрязнение клапанов и ухудшение производительности, в особенности на турбированных двигателях.

Плюсы

1. Экологичность.

2. Экономичность (правда, здесь нужно сделать оговорку: реальная экономия бензина доступна в условиях, близких к идеальным) – экономия 5-10%.

3. Немного более высокая мощность.

4. GDI при непосредственном попадании топлива в цилиндр охлаждает головку поршня.

5. Происходит лучшее смешение топливовоздушной смеси в цилиндрах.

6. Меньше детонация.

7. Требуется гораздо меньше топлива, смесь при определенных условиях работы мотора может обедняться до 30:1

8. Процесс работы двигателя точнее контролируется при помощи компьютера.

Какими бывают инжекторы?

От форсунок в решающей степени зависит подача топлива в инжекторном двигателе. Долгое время весьма распространенной была система моновпрыска, при которой через одну форсунку можно осуществлять впрыск во все цилиндры. Определенное время она существовала наряду с многоточечным впрыском.

Эти виды инжекторов развивались по-разному. Моновпрыск не соответствовал Евро-3, быстро устарел и встречается не часто. Сегодня доминирует более совершенная система, с помощью которой осуществляется распределенный впрыск топлива.

Здесь на коллектор впуска цилиндра ставится отдельная форсунка или посредством нее топливная смесь попадает непосредственно в камеру сгорания. Распределенный впрыск топливной смеси может быть:

  • Одновременным;
  • Попарно-параллельным;
  • Фазированным или последовательным.

Особого внимания требуют машины, на которые ставятся несовершенные инжекторные системы подачи топлива. «Газель» является одним из примеров тому. Замена карбюраторного двигателя на инжекторный порой не уменьшала большой расход топлива.

Продолжительность впрыска и кривая интенсивности подачи (впрыска)

Термин «интенсивность подачи» описывает кривую характеристику количества впрыснутого в камеру сгорания топлива как функцию угла поворота коленчатого или кулачкового вала (соответственно углы поворота коленчатого или кулачкового вала).

Одним из главных параметров, влияющих на кривую интенсивности подачи, является продолжительность впрыска. Она измеряется в углах поворота коленчатого или кулачкового вала или в миллисекундах и является периодом, в течение которого открыта форсунка и топливо впрыскивается в камеру сгорания, На рисунке показано, как подача количества впрыскиваемого топлива начинается с помощью кулачкового вала насоса и как топливо впрыскивается из форсунки (как функция угла поворота кулачкового вала). Можно видеть, что характеристика давления и кривая интенсивности подачи сильно изменяются между элементом насоса и форсункой, и что на них влияют детали, которые определяют впрыск (кулачок, элемент насоса, нагнетательный клапан, топливопровод (магистраль подачи) и форсунка).

Различные системы дизельных двигателей требуют различной продолжительности впрыска в каждом из случаев. Двигатели с непосредственным впрыском требуют примерно 25 — 30° поворота коленчатого вала при определенном числе оборотов, а двигатели с предкамерой — угла поворота коленчатого вала в 35 — 40°. Продолжительность впрыска при 30°- повороте коленчатого вала, соответствующем повороту на 15° кулачкового вала, означает продолжительность впрыска в 1,25 миллисекунд для числа оборотов ТНВД, равному 2000 об/мин.

Для поддержания расхода топлива и выбросов серы на низком уровне, продолжительность впрыска должна быть определена как функция рабочей точки и зависит от начала впрыска. При начале впрыска должно протекать лишь малое количество топлива, тогда как в конце требуется большое количество топлива. Форсунка затем должна закрыться как можно быстрее. Такая кривая интенсивности подачи приведет к медленному повышению давления сжатия. Сгорание, таким образом, будет «мягким». В двигателях с непосредственным впрыском шум от сгорания заметно меньшается, если малая часть топлива, впрыснутого в камеру сгорания, мелко распылена перед основным впрыском.

Такой метод впрыска остается очень дорогим. В двигателях с разделенной камерой сгорания (с предкамерой или вихревой камерой) используются игольчатые дросселирующие форсунки. Эти форсунки образуют одну струю топлива и определяют кривую интенсивности подачи. Форсунки управляют поперечным сечением выхода как функцией хода клапана впрыска (нагнетательного клапана).

Вторичный впрыск (или так называемое «капание») особенно нежелателен и происходит из-за быстрого повторного открывания форсунки после ее закрывания, и она впрыскивает плохо подготовленное топливо позже в процессе сгорания. Эго топливо сгорает не полностью или вообще не сгорает и выходит через выхлопные газы как несгоревшие углеводороды.

Быстрозакрывающиеся форсунки предотвращают такое «капание». «Мертвый объем» в нижней части у седла форсунки производит эффект, подобный «капанью». Пары топлива, накапливающиеся в этом объеме, выходят в камеру сгорания после окончания сгорания и также поступают в выхлопные газы, где увеличивают выбросы несгоревших углеводородов. Наименьший «мертвый объем» получается у форсунок с седлом с отверстиями.

Достоинства

Инжекторы имеют достаточно много плюсов

  1. Экономия.

За счет дозированной подачи топлива уменьшается его расход. Даже в системах первых серий автомобилей, расход топлива в сравнении с карбюраторными уменьшается в среднем на 30— 40%. В современном мире разница увеличивается до двух раз у автомобилей схожей массы и рабочего объема.

  1. Повышение мощности двигателя.

Происходит особенно сильно на низких оборотах. Общее повышение составляет 7— 10% за счет более качественного наполнения цилиндров и более оптимального угла опережения зажигания.

  1. Экологичность.

Благодаря появлению датчиков по параметрам выхлопов, контролируется снижение токсичности.

  1. Упрощение и автоматизация запуска двигателя.
  2. Повышение динамических свойств автомобиля.

Возможности управления двигателем расширяются за счет моментальной реакции системы впрыскивания на каждую изменившуюся нагрузку.

  1. Независимость от погодных условий.

Как известно, карбюратор зависит от уровня атмосферного давления (например, в горах), что совершенно отсутствует у инжектора. В том числе под сильным наклоном влияния на работу инжектора не ощущается, что нельзя сказать о карбюраторе (при повороте 15 градусов могут появиться перебои в работе).

  1. Отсутствие необходимости в периодическом обслуживании.

Удобство инжекторной подаче топлива состоит в том, что имеются достаточно много возможностей для настройки параметров собственноручно, владельцем транспорта. По этой причине, единственное, что может потребоваться – это замена элементов, вышедших из строя.

  1. Повышенная защита от угона.

Блок электрических систем двигателем настроен так, что подача топливной смеси в мотор не будет осуществляться без полученного позволения от иммобилайзера.

  1. Нет сбора горючей смеси в выпускном тракте.Нет опасности попадания пламени во впускной тракт и последующего его возгорания при некорректной работе системы зажигания (звук, похожий на хлопки, а в дальнейшем пожар или нарушение систем питания). Благодаря тому, что в инжекторах горючее поступает лишь в момент открывания форсунки нужного цилиндра, топливо не может накопиться в каллекторе.
  2. Способность изменить высоту капота. В результате того, что система впрыска располагается не поверх двигателем, а по его бокам, появляется возможность понижения уровня капота, чего не скажешь о карбюраторной системе.

Системы питания с впрыском бензина

Понятие об инжекторных двигателях

Инжекторными называются двигатели с искровым зажиганием топливной смеси, в которых в качестве топлива используют бензин, а процесс смесеобразования происходит с помощью форсунки или форсунок, впрыскивающих топливо под давлением во впускной трубопровод или в цилиндр двигателя.

Впрыск топлива вместо использования процесса карбюрации позволил получить ряд определенных выгод, поэтому в последние годы все системы питания, использующие впрыск все больше вытесняют карбюраторные системы питания двигателей, особенно на легковых автомобилях.

Широкому применению систем впрыска топлива на грузовых автомобилях в настоящее время препятствуют такие их недостатки, как повышенная сложность обслуживания и дороговизна используемых приборов и узлов. Однако, с учетом несомненных преимуществ, позволяющих получить ощутимую долгосрочную выгоду, можно предположить, что и на грузовом автотранспорте, особенно малой и средней грузоподъемности, системы впрыска бензина найдут широкое применение в ближайшие годы. На грузовых автомобилях повышенной грузоподъемности и автобусах достойной конкуренции дизельным двигателям пока нет.

***

Достоинства и недостатки систем впрыска топлива

Несомненным преимуществом систем впрыскивания топлива по сравнению с карбюраторными системами питания являются следующие:

  • отсутствие устройств, создающих сопротивление потоку воздуха на впускном трубопроводе (карбюратора) и вследствие этого более высокий коэффициент наполнения цилиндров, что обеспечивает получение более высокой «литровой» мощности;
  • возможность использования большего перекрытия клапанов, когда открыты одновременно впускной и выпускной клапаны, что улучшает процесс продувки камеры сгорания чистым воздухом, а не горючей смесью;
  • более точное дозирование количества топлива, необходимого для работы двигателя на различных режимах его работы;
  • снижение температуры стенок цилиндров, днища поршней и выпускных клапанов из-за лучшей продувки и более равномерного состава горючей смеси, что позволяет без опасности детонации поднять степень сжатия смеси в цилиндре на 2…3 единицы;
  • снижение количества оксидов азота при сгорании топлива, т. е. снижение токсичности отработавших газов;
  • улучшение смазывания зеркала цилиндров двигателя и, как следствие, снижение уровня механических потерь на трение.

Таким образом, благодаря перечисленным достоинствам системы питания с впрыском топлива позволяют обеспечить по сравнению с карбюраторной системой (при прочих равных условиях) более высокую мощность двигателя, улучшенную экономичность, снижение выбросов вредных веществ в атмосферу и повышение степени сжатия, а также повысить ресурс двигателя.

Особенно ценным качеством бензиновых систем питания, использующих впрыск, является возможность объединить управление систем питания и зажигания посредством единого управляющего центра (компьютера), что открывает широкие динамические и экономические перспективы для инжекторных двигателей, а также возможность существенной автоматизации многих процессов в их работе.

Не лишены системы впрыска воздуха и недостатков:

  • относительно высокая стоимость;
  • сложность технического обслуживания, требующая специального оборудования и высокой квалификации обслуживающего персонала;
  • повышенные требования к качеству и очистке бензина.

***

Учебные дисциплины
  • Инженерная графика
  • МДК.01.01. «Устройство автомобилей»
  •       Общее устройство автомобиля
  •       Автомобильный двигатель
  •       Трансмиссия автомобиля
  •       Рулевое управление
  •       Тормозная система
  •       Подвеска
  •       Колеса
  •       Кузов
  •       Электрооборудование автомобиля
  •       Основы теории автомобиля
  •       Основы технической диагностики
  • Основы гидравлики и теплотехники
  • Метрология и стандартизация
  • Сельскохозяйственные машины
  • Основы агрономии
  • Перевозка опасных грузов
  • Материаловедение
  • Менеджмент
  • Техническая механика
  • Советы дипломнику
Олимпиады и тесты
  • «Инженерная графика»
  • «Техническая механика»
  • «Двигатель и его системы»
  • «Шасси автомобиля»
  • «Электрооборудование автомобиля»

Преимущества и недостатки системы распределенной подачи ТС

Подобный тип системы топливной подачи имеет некоторые преимущества и недостатки. Наиболее значимые из них мы отдельно выделим.

  • долговечность и надежность;
  • высокая экономичность использования топлива;
  • низкая токсичность отработанных газов бензиновых ДВС;
  • низкая вероятность появления сбоев в работе системы в условиях экстремального вождения (например, при преодолении крутых спусков и подъемов, при езде в дождь или гололед).
  • сложная и дорогостоящая конструкция, оснащенная чувствительной системой электронного управления;
  • высокая стоимость ремонта и замены основных электронных элементов системы;
  • особенность конструкции требует проведения ремонтных и профилактических работ только высококвалифицированными специалистами.

Система датчиков инжекторных двигателей

Без этих компонентов работа системы впрыска топлива невозможна. Именно датчики сообщают блоку управления всю информацию, которая необходима для работы исполнительных устройств в нормальном режиме. Неисправности системы питания инжекторного двигателя по большей части вызывают именно датчики, так как они могут неверно производить замеры.

  1. Датчик расхода воздуха устанавливается после воздушного фильтра, так как в конструкции имеется дорогостоящая платиновая нить, которая при попадании мелких посторонних частиц может засоряться, отчего показания окажутся неверными. Датчик считает, какое количество воздуха проходит через него. Понятно, что взвесить воздух не представляется возможным, да и объем его измерить проблематично. Суть работы заключается в том, что внутри пластиковой трубки находится платиновая нить. Она нагревается до рабочей температуры (более 600º, именно это значение закладывается в ЭБУ). Поток воздуха охлаждает нить, блок управления фиксирует температуру и, исходя из этого, вычисляет количество воздуха.
  2. Датчик абсолютного давления необходим для более точного снятия показаний о количестве потребляемого двигателем воздуха. Состоит из 2 камер, одна из которых герметична и внутри у неё вакуум. Вторая камера соединена с впускным коллектором. В последнем при впуске разрежение. Между камерами устанавливается диафрагма с пьезоэлементом, который вырабатывает небольшое напряжение во время изменения давления. Это значение напряжения поступает на вход блока управления.
  3. Датчик положения коленвала располагается рядом со шкивом генератора. Если присмотреться, то можно увидеть, что на шкиве есть зубья, причём они расположены на одинаковом расстоянии друг от друга. Суммарное число зубьев — 60, оси соседних расположены на расстоянии 6º. Но если присмотреться ещё внимательнее, то можно увидеть, что 2-х не хватает. Этот промежуток необходим, чтобы датчик фиксировал положение коленвала максимально точно. Датчик вырабатывает напряжение, которое тем больше, чем выше частота вращения.
  4. Датчик фаз (распредвала) работает на эффекте Холла. В конструкции есть диск с вырезанным сегментом и катушка. При вращении диска вырабатывается напряжение. Но в момент, когда прорезь находится над чувствительным элементом, напряжение снижается до 0. В этот момент первый цилиндр находится в ВМТ на такте сжатия. Благодаря датчику фаз точно подаётся искра на свечу и открывается своевременно форсунка.
  5. Датчик детонации расположен на блоке ДВС между 2 и 3 цилиндрами (чётко посередине). Работает на пьезоэффекте — при наличии вибрации происходит генерирование напряжения. Чем сильнее вибрация, тем выше уровень сигнала. Блок управления при помощи датчика изменяет угол опережения зажигания.
  6. Датчик дроссельной заслонки представляет собой переменный резистор, на который подаётся напряжение 5 В. В зависимости от того, в каком положении находится заслонка, напряжение уменьшается. Иногда случаются поломки — в начальном положении показания датчика прыгают. Стирается резистивный слой, ремонт невозможен, эффективнее установить новый.
  7. Датчик температуры ОЖ, от него зависит качество воспламенения топливовоздушной смеси. С его помощью не только происходит коррекция угла опережения зажигания, но и включение электровентилятора.
  8. Лямбда-зонд расположен в системе выпуска отработанных газов. В современных системах, которые удовлетворяют последним экологическим стандартам, можно встретить 2 датчика кислорода. Лямбда-зонд отслеживает количество кислорода в выхлопных газах. У него есть внешняя часть и внутренняя. За счёт напыления из драгметалла можно оценить количество кислорода в выхлопных газах. Внешняя часть датчика «дышит» чистым воздухом. Показания передаются на блок управления и сравниваются. Эффективные замеры возможны только при достижении высоких температур (свыше 400º), поэтому часто устанавливают подогреватель, чтобы даже в момент начала работы двигателя не наблюдалось перебоев.

Типичные неисправности инжекторных двигателей. Практические советы

Современные автомобили с системами впрыска, мощным и экономичным двигателем хороши в дальних поездках. Но именно там, вдалеке от «продвинутых» СТО и квалифицированных специалистов, тревожный сигнал «Check Engine» (Check Engine — лампочка на щитке приборов говорящая о том что ЭБУ(электронный блок управления) обнаружил проблемы в системе управления двигателем), особенно пугает путешественников. Одни ударяются в панику и, боясь необратимых последствий, достают из багажника трос. Другие, напротив, хладнокровны: раз мотор работает, значит, лампа «просто ошиблась» и «сама погаснет» — можно ехать в прежнем темпе.

Умение распознавать симптомы типичных впрысковых недугов, представлять, чем грозит горящая желтая лампа, поможет сохранить нервы, деньги, время и мотор. Если двигатель исправен, сигнал «Check Engine» должен погаснуть через 0,6 секунды после пуска — этого хватает на то, чтобы система самодиагностики убедилась: все в порядке. Если все же лампочка продолжает гореть, то есть место присутствие неисправности, которую возможно выявить с помощью специального мотор-тестера на СТО или своими силами. Что касается “своими силами” – это поверхностная диагностика, которая может дать примерное определение неисправности, причина этому – отсутствие специальных измерительных приборов и параметров компонентов системы впрыска. Но в дороге, в отсутствии СТО, это может помочь Вам и придать уверенность, что машина все-таки доедит до назначенного пункта.

Как происходит впрыск топлива на карбюраторном двигателе

Содержание

  1. Карбюраторный двигатель
  2. Устройство карбюраторного двигателя
  3. Принцип работы карбюраторного двигателя
  4. Характеристики карбюраторного двигателя
  5. Управление карбюратором
  6. Регулировки карбюратора
  7. Виды и особенности работы систем впрыска бензиновых двигателей
  8. Краткая история появления
  9. Виды систем впрыска бензиновых двигателей
  10. Моновпрыск, или центральный впрыск
  11. Распределенный впрыск (MPI)
  12. Непосредственный впрыск топлива (GDI)
  13. Как работает карбюраторный двигатель — принцип работы
  14. Обогащение смеси в карбюраторе
  15. Дополнительный впрыск даже при резком ускорении
  16. Система питания топливом бензинового (карбюраторного) двигателя
  17. Инжекторные топливные системы
  18. Видео

Карбюраторный двигатель

Карбюраторный двигатель — это отдельный вид двигателя внутреннего сгорания (ДВС) с наружным формированием смеси. В карбюраторном двигателе внутреннего сгорания горючая смесь по коллектору проходит в цилиндры двигателя и вырабатывается в карбюраторе.

Карбюратор — конструкция в системе питания двигателей внутреннего сгорания, которая служит для перемешивания бензина с воздухом, образовывает горючую смесь и корректирует ее потребление. На сегодняшний день карбюраторные системы заменяются инжекторными.

Смесь представляет собой пары бензина смешанные с воздухом. Когда она проходит в цилиндры двигателя происходит перемешивание с отработанными газами и образование рабочей смеси, которая в конкретный момент поджигается системой зажигания. Поджигание смеси производится благодаря тому, что бензин поступает в газообразном виде и имеется достаточное количество воздуха для горения.

Карбюраторные двигатели подразделяются на четырехтактные и двухтактные. Рабочий цикл четырехтактного карбюраторного двигателя складывается из четырех тактов, они состоят из четырех полуоборотов коленчатого вала; двухтактные же состоят из двух полуоборотов коленчатого вала. Двухтактные двигатели наиболее легкие и получили свое применение в мотоциклах, мотокультиваторах, бензопилах и в других аппаратах.

Двигатели этого типа делятся на два подтипа:

Устройство карбюраторного двигателя

Общее устройство наиболее простого карбюратора заключает в себе поплавковую камеру с поплавком, жиклёр с распылителем, диффузор и дроссельную заслонку.

Если рассмотреть строение двигателя Л-12/4, то в блоке имеется четыре цилиндра. Вращение коленвала происходит на трех подшипниках. Центральный подшипник прикреплен к валу втулкой. На передней части вала прикрепляется маховик, который приводит в действие детали механизма и скапливает кинетическую энергию, она нужна для движения коленвала в период подготовительных тактов.

Смазка деталей происходит благодаря разбрызгиванию, шестеренчатый насос помогает началу движения распредвала и подает масло, которое разбрызгивается черпаками, происходит зажигание. Радиатор оснащен вентилятором, который служит для охлаждения воды.

На картере установлен сапун, который снижает давление благодаря выпуску газов.

Также имеется глушитель, который уменьшает шум от выхода отработанных газов. Количество оборотов коленчатого вала в автоматическом режиме устанавливает регулятор.

У двигателей ГАЗ-МК верхний отдел картера сделан из чугуна вместе с устройством цилиндров, которые охвачены водяной рубашкой и перекрыты головкой из чугуна, где и расположены камеры сгорания. Также имеются разъемы для свечей зажигания.

Водяная рубашка подсоединена к системе охлаждения. Низ двигателя затянут стальным поддоном, который выполняет функцию емкости для масла. Также там закреплен масляный насос, который приводит в движение распредвал.

Вращение коленчатого вала происходит также на трех подшипниках. Их вкладыши заполнены баббитом, где имеются смазочные канавки.

Чугунные крышки подшипников прикрепляются к блоку двумя болтами.

Передний сальник коленвала сделан из двух частей и представляет сердечник, который окружен платиной асбеста. Поршни сделаны из алюминия и скреплены шатуном полым стальным пальцем. Маховик прикреплен к коленвалу. Распредвал вращается на трех подшипниках и приводится в движение двумя шестернями.

Клапаны двигателя находятся справа. Система питания включает в себя бензобак, бензопроводы, отстойник, карбюратор и воздушный фильтр.

Бензобак находится выше карбюратора, поэтому топливо поступает самотеком.

Уровень масла в картере определяется специальным щупом. Охлаждение двигателя водяное. Радиатор размещен с задней стороны двигателя, водяной насос — с передней стороны. Вода, которая двигается по трубкам радиатора, остывает при помощи воздушного потока от вентилятора.

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

Выше указан принцип работы одноцилиндрового двигателя, но он не способен создать условия непрерывного вращения с одинаковой скоростью. Расширенные газы оказывают действие на коленвал для его 1/4 части оборота, оставшиеся ¾ оборота движения поршня происходят по инерции.

Для ликвидации такой недоработки двигатели делают многоцилиндровыми, что способствует наиболее равномерному вращению и неизменному крутящему моменту.

Характеристики карбюраторного двигателя

Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.

Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.

Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.

При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.

Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.

Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.

При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.

Управление карбюратором

Как правило, действиями карбюратора руководит водитель автомобиля. На отдельных моделях карбюраторов применялись вспомогательные системы, которые немного автоматизировали управление карбюратором.

Для того чтобы управлять дроссельной заслонкой наиболее часто пользуются педалью газа, которая обуславливает ее подвижность при содействии системы тяг либо тросового привода. Тяга, как правило, лучше, однако механизм привода куда сложнее и сдерживает способность механизма по компоновке подкапотной площади. Привод тягами был популярен до 1970 года, потом стали чаще использоваться тросики из металла.

На старых машинах чаще предполагалась двойная система привода дроссельной заслонки карбюратора: вручную рычагом либо от ноги, при помощи педали. Если надавливать на педаль, то рычаг не двигается, а если перемещать рычаг, то педаль опускается.

Последующее открытие дросселя можно совершать педалью. Когда педаль опускается — дроссель остается в таком же положении, в котором зафиксировался при управлении рукой. К примеру, на «Волге» ГАЗ-21 на панели приборов был размещен рычаг для управления рукой, при его движении можно достичь постоянного функционирования холодного двигателя без действия воздушной заслонки либо применять «постоянный газ». На грузовиках «постоянный газ» применялся для облегчения передвижения задним ходом.

Воздушная заслонка может быть оснащена механическим либо автоматическим приводом. Если привод механический, то водитель закрывает ее при участии рычага. Автоматический привод очень популярен в других странах, а в России не «прижился» из-за своей ненадежности и недолгим сроком службы.

Регулировки карбюратора

Карбюратор — устройство, которое имеет наименьшее количество регулировок, но нуждается в хорошо отлаженной системе. Неорганизованная эксплуатация карбюратора сильно действует на функциональность двигателя в целом. При плохой регулировке карбюратора снижается экономичность двигателя и повышается токсичность отработанного газа.

Подходящие виды регулирования карбюратора:

В период использования нужно прослеживать дееспособность нижеуказанных узлов:

На работоспособность карбюратора воздействуют:

Источник

Виды и особенности работы систем впрыска бензиновых двигателей

Система впрыска топлива применяется для дозированной подачи топлива в двигатель внутреннего сгорания в строго определенный момент времени. От характеристик данной системы зависит мощность, экономичность и экологический класс двигателя автомобиля. Системы впрыска могут иметь различную конструкцию и варианты исполнения, что характеризует их эффективность и сферу применения.

Краткая история появления

Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.

Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.

Виды систем впрыска бензиновых двигателей

Существует несколько основных видов систем впрыска топлива, которые отличаются способом образования топливовоздушной смеси.

Моновпрыск, или центральный впрыск

Схема с центральным впрыском предусматривает наличие одной форсунки, которая расположена во впускном коллекторе. Такие системы впрыска можно найти только на старых легковых автомобилях. Она состоит из следующих элементов:

Системы впрыска бензина с одной форсункой работают по следующей схеме:

Распределенный впрыск (MPI)

Система с распределенным впрыском состоит из аналогичных элементов, но в такой конструкции предусмотрены отдельные форсунки для каждого цилиндра, которые могут открываться одновременно, попарно или по одной. Смешение воздуха и бензина происходит также во впускном коллекторе, но, в отличие от моновпрыска, подача топлива осуществляется только во впускные тракты соответствующих цилиндров.

Управление осуществляется электроникой (KE-Jetronic, L-Jetronic). Это универсальные системы впрыска топлива Bosch, получившие широкое распространение.

Принцип действия распределенного впрыска:

Непосредственный впрыск топлива (GDI)

Система предусматривает подачу бензина отдельными форсунками напрямую в камеры сгорания каждого цилиндра под высоким давлением, куда одновременно подается воздух. Эта система впрыска обеспечивает наиболее точную концентрацию топливовоздушной смеси, независимо от режима работы мотора. При этом смесь сгорает практически полностью, благодаря чему уменьшается объем вредных выбросов в атмосферу.

Такая система впрыска имеет сложную конструкцию и восприимчива к качеству топлива, что делает ее дорогостоящей в производстве и эксплуатации. Поскольку форсунки работают в более агрессивных условиях, для корректной работы такой системы необходимо обеспечение высокого давления топлива, которое должно быть не менее 5 МПа.

Конструктивно система непосредственного впрыска включает в себя:

Электронная система впрыска такого типа от компании Bosch получила наименование MED-Motronic. Принцип ее действия зависит от вида смесеобразования:

Непосредственный впрыск топлива в бензиновом двигателе – наиболее перспективное направление в эволюции систем впрыска. Впервые он был реализован в 1996 году на легковых автомобилях Mitsubishi Galant, и сегодня его устанавливают на свои автомобили большинство крупнейших автопроизводителей.

Источник

Как работает карбюраторный двигатель — принцип работы

Карбюратор — это энергия, отвечающая за подпитку цилиндров топливно-воздушной смесью. Он расположен у впускного коллектора, и его основным источником является подача топливно-воздушной смеси в цилиндры двигателя. Воздушный фильтр расположен непосредственно над карбюратором, который отвечает за очистку воздуха, который затем поступает в цилиндры автомобиля.

Карбюратор работает совершенно иначе, чем нынешние форсунки в двигателях. Топливо доставляется им через горло. Впрыск топлива во впускную систему за счет работы воздухозаборников, которые открываются на несколько миллисекунд.

Под карбюраторным двигателем подразумевают систему внутреннего сгорания,. Как работает карбюраторный двигатель? В такой системе происходит смешивание воздуха с бензином, смесь сгорает, есть возможность регулировать ее расход. На практике. Машины с карбюраторами выходят из моды, на замену им приходят инжекторные двигателя.

Карбюраторы практически больше не используются в автомобильной промышленности из-за экологических ограничений (чистый выхлопной газ), и такие решения по-прежнему распространены в мотоциклах. Идея системы подачи топлива в карбюратор заключается в том, что необходимое количество топлива для создания топливно-воздушной смеси не впрыскивается через форсунку (как в случае системы впрыска топлива), а всасывается из распылителя, расположенного по центру в горловине карбюратора, воздухом, протекающим через него на высокой скорости.

В системе впрыска компьютер, анализируя сигналы, поступающие от различных датчиков (лямбда-зонд, расходомер), выбирает оптимальную дозу топлива, которая затем будет использоваться для создания топливно-воздушной смеси. В системе подачи карбюратора количество всасываемого топлива определяется только импульсом воздуха в горловине и статическими элементами управления (редукторами, форсунками, эмульсионными трубками — изменение их настроек требует разборки карбюратора и их ручной регулировки).

Карбюратор представляет собой систему, которая состоит из:

Карбюратор автомобиля по словам сайта prokarbyrator.ru установлен на впускном коллекторе и отвечает за подачу бензина в двигатель после его смешивания с воздухом. Также прямо над ним находится источник воздуха.

Топливо в карбюратор подается (всасывается) за счет отрицательного давления в горловине, в то время как впрыск впрыскивает топливо во впускной коллектор, открывающийся на несколько миллисекунд.

Карбюратор можно разделить на поплавковую камеру и горловину с проходом. Поплавковая камера и одноименное название от поплавка, который плавает на скопившемся в нем топливе. На рычаге поплавка установлен игольчатый клапан, который перекрывает поток бензина из топливного бака, предотвращает самопроизвольное перетекание топлива из сопла в горловину. Верхний конец местных форсунок находится в горловине выше максимального уровня топлива в поплавковой камере. Бензин просто необходимо всасывать из сопла для воздействия вакуума в самом узком месте.

Потому, когда нажимается педаль акселератора, открывается дроссельная заслонка, двигатель всасывает больше воздуха и больше топлива всасывается из форсунки. Именно в горле всасываемая доза бензина смешивается с воздухом и перемещается во впускной коллектор, а затем в цилиндр, который в данный момент всасывает.

Карбюратор — это не только горловина, дроссельная заслонка и поплавковая камера.

Карбюраторы имеют множество компонентов, обеспечивающих правильное питание двигателя. Оказывается, использование вакуума для всасывания топлива в двигатель не может гарантировать оптимальный состав смеси при всех режимах работы двигателя (холодный запуск двигателя, холостой ход, динамическое ускорение, торможение двигателем). Поэтому карбюраторы оснащены бустерными устройствами, а некоторые из них имеют большее количество проходов.

В каждом горле (проходе) есть дроссель. Однако каждая из этих заслонок может открываться в разной степени. Например, с двухкамерным карбюратором, если нажимается педаль акселератора наполовину, первый дроссель будет наполовину открыт, а второй дроссель будет закрыт. Однако, когда при нажатии на газ сильнее, первый дроссель откроется на 100%, а связанный механизм откроет второй дроссель до соответствующего диапазона. Некоторые конструкции, например, в старых спортивных автомобилях, имели карбюраторы, в которых каждый проход отвечал за питание одного цилиндра.

Обогащение смеси в карбюраторе

При запуске холодного двигателя смесь необходимо обогатить. В старых машинах был так называемый дроссель, который приходилось включать вручную в кабине водителя. С другой стороны, многие карбюраторы на автомобилях, выпущенных в 1990-х годах, также имели электронный контроль обогащения.

Без всасывания из-за небольшого потока воздуха через горловину всасывание достаточного количества бензина невозможно.

Другие типы карбюраторов снабжены дополнительным каналом подачи топлива возле дроссельной заслонки непосредственно из поплавковой камеры, с клапаном, перекрывающим канал после прогрева двигателя. Форсунка холостого хода также используется для обогащения смеси, что за счет подачи дополнительного топлива позволяет поддерживать соответствующие обороты двигателя.

Дополнительный впрыск даже при резком ускорении

Когда нужно быстро ускориться, педаль газа нажимается до пола. Чтобы удовлетворить повышенные потребности в топливе и обеспечить плавное и быстрое ускорение, карбюратор также имеет устройство, называемое ускорительным насосом. Когда газ резко снижается, топливо поступает в горловину карбюратора. В этом случае можно говорить о впрыскивании бензина в проход, а не о его всасывании.

Другая система обогащения — это та, которая увеличивает дозу топлива при работе с полной нагрузкой. При этом карбюратор имеет дополнительную скоростную форсунку, которую можно закрыть игольчатым клапаном. Другое решение — так называемый эмульсионные трубки. Топливо вытекает из них через отверстия в стенках. С другой стороны, отверстия расположены таким образом, что при более низких скоростях вращения бензин проходит через меньшее количество отверстий, а при высоких нагрузках — через гораздо большее количество отверстий.

Источник

Система питания топливом бензинового (карбюраторного) двигателя

Система питания топливом бензинового двигателя ⭐ предназначена для размещения и очистки топлива, а также приготовления горючей смеси определенного состава и подачи ее в цилиндры в необходимом количестве в соответствии с режимом работы двигателя (за исключением двигателей с непосредственным впрыском, система питания которых обеспечивает поступление бензина в камеру сгорания в необходимом количестве и под достаточным давлением).

Бензин, как и дизельное топливо, является продуктом перегонки нефти и состоит из различных углеводородов. Число атомов углерода, входящих в молекулы бензина, составляет 5 — 12. В отличие от дизелей в бензиновых двигателях топливо не должно интенсивно окисляться в процессе сжатия, так как это может привести к детонации (взрыву), что отрицательно скажется на работоспособности, экономичности и мощности двигателя. Детонационная стойкость бензина оценивается октановым числом. Чем больше оно, тем выше детонационная стойкость топлива и допустимая степень сжатия. У современных бензинов октановое число составляет 72—98. Кроме антидетонационной стойкости бензин должен также обладать низкой коррозионной активностью, малой токсичностью и стабильностью.

Поиск (исходя из экологических соображений) альтернатив бензину как основному топливу для ДВС привел к созданию этанолового топлива, состоящего в основном из этилового спирта, который может быть получен из биомассы растительного происхождения. Различают чистый этанол (международное обозначение — Е100), содержащий исключительно этиловый спирт; и смесь этанола с бензином (чаще всего 85 % этанола с 15 % бензина; обозначение — Е85). По своим свойствам этаноловое топливо приближается к высокооктановому бензину и даже превосходит его по октановому числу (более 100) и теплотворной способности. Поэтому данный вид топлива может с успехом применяться вместо бензина. Единственный недостаток чистого этанола — его высокая коррозионная активность, требующая дополнительной защиты от коррозии топливной аппаратуры.

К агрегатам и узлам системы питания топливом бензинового двигателя предъявляются высокие требования, основные из которых:

В настоящее время существуют два основных способа приготовления горючей смеси. Первый из них связан с использованием специального устройства — карбюратора, в котором воздух смешивается с бензином в определенной пропорции. В основу второго способа положен принудительный впрыск бензина во впускной коллектор двигателя через специальные форсунки (инжекторы). Такие двигатели часто называют инжекторными.

Независимо от способа приготовления горючей смеси ее основным показателем является соотношение между массой топлива и воздуха. Смесь при ее воспламенении должна сгорать очень быстро и полностью. Этого можно достичь лишь при хорошем смешении в определенной пропорции воздуха и паров бензина. Качество горючей смеси характеризуется коэффициентом избытка воздуха а, который представляет собой отношение действительной массы воздуха, приходящейся на 1 кг топлива в данной смеси, к теоретически необходимой, обеспечивающей полное сгорание 1 кг топлива. Если на 1 кг топлива приходится 14,8 кг воздуха, то такая смесь называется нормальной (а = 1). Если воздуха несколько больше (до 17,0 кг), смесь обедненная, и а = 1,10… 1,15. Когда воздуха больше 18 кг и а > 1,2, смесь называют бедной. Уменьшение доли воздуха в смеси (или увеличение доли топлива) называют ее обогащением. При а = 0,85… 0,90 смесь обогащенная, а при а Карбюраторные системы питания

Рассмотрим сначала карбюраторные системы питания, которые еще недавно были широко распространены. Они более просты и дешевы по сравнению с инжекторными, не требуют высококвалифицированного обслуживания в процессе эксплуатации и в ряде случаев более надежны.

Система питания топливом карбюраторного двигателя включает в себя топливный бак 1, фильтры грубой 2 и тонкой 4 очистки топлива, топливоподкачивающий насос 3, карбюратор 5, впускной трубопровод 7 и топливопроводы. При работе двигателя топливо из бака 1 с помощью насоса 3 подается через фильтры 2 и 4 к карбюратору. Там оно в определенной пропорции смешивается с воздухом, поступающим из атмосферы через воздухоочиститель 6. Образовавшаяся в карбюраторе горючая смесь по впускному коллектору 7 попадает в цилиндры двигателя.

Топливные баки в силовых установках с карбюраторными двигателями аналогичны бакам систем питания дизелей. Отличием баков для бензина является лишь их лучшая герметичность, не позволяющая бензину вытечь даже при опрокидывании ТС. Для сообщения с атмосферой в крышке наливной горловины бака обычно устанавливают два клапана — впускной и выпускной. Первый из них обеспечивает поступление в бак воздуха по мере расходования топлива, а второй, нагруженный более сильной пружиной, предназначен для сообщения бака с атмосферой, когда давление в нем выше атмосферного (например, при высокой температуре окружающего воздуха).

Фильтры карбюраторных двигателей аналогичны фильтрам, применяемым в системах питания дизелей. На грузовых автомобилях устанавливаются пластинчато-щелевые и сетчатые фильтры. Для тонкой очистки используют картон и пористые керамические элементы. Кроме специальных фильтров в отдельных агрегатах системы имеются дополнительные фильтрующие сетки.

Топливоподкачивающий насос служит для принудительной подачи бензина из бака в поплавковую камеру карбюратора. На карбюраторных двигателях обычно применяют насос диафрагменного типа с приводом от эксцентрика распределительного вала.

В зависимости от режима работы двигателя карбюратор позволяет готовить смесь нормального состава (а = 1), а также обедненную и обогащенную смеси. При малых и средних нагрузках, когда не требуется развивать максимальную мощность, следует готовить в карбюраторе и подавать в цилиндры обедненную смесь. При больших нагрузках (продолжительность их действия, как правило, невелика) необходимо готовить обогащенную смесь.

Рис. Схема системы питания топливом карбюраторного двигателя:
1 — топливный бак; 2 — фильтр трубой очистки топлива; 3 — топливоподкачивающий насос; 4 — фильтр тонкой очистки; 5 — карбюратор; 6 — воздухоочиститель; 7 — впускной коллектор

В общем случае в состав карбюратора входят главное дозирующее и пусковое устройства, системы холостого хода и принудительного холостого хода, экономайзер, ускорительный насос, балансировочное устройство и ограничитель максимальной частоты вращения коленчатого вала (у грузовых автомобилей). Карбюратор может содержать также эконостат и высотный корректор.

Главное дозирующее устройство функционирует на всех основных режимах работы двигателя при наличии разрежения в диффузоре смесительной камеры. Основными составными частями устройства являются смесительная камера с диффузором, дроссельная заслонка, поплавковая камера, топливный жиклер и трубки распылителя.

Пусковое устройство предназначено для обеспечения пуска холодного двигателя, когда частота вращения проворачиваемого стартером коленчатого вала невелика и разрежение в диффузоре мало. В этом случае для надежного пуска необходимо подать в цилиндры сильно обогащенную смесь. Наиболее распространенным пусковым устройством является воздушная заслонка, устанавливаемая в приемном патрубке карбюратора.

Система холостого хода служит для обеспечения работы двигателя без нагрузки с малой частотой вращения коленчатого вала.

Система принудительного холостого хода позволяет экономить топливо во время движения в режиме торможения двигателем, т. е. тогда, когда водитель при включенной передаче отпускает педаль акселератора, связанную с дроссельной заслонкой карбюратора.

Экономайзер предназначен для автоматического обогащения смеси при работе двигателя с полной нагрузкой. В некоторых типах карбюраторов кроме экономайзера для обогащения смеси используют эконостат. Это устройство подает дополнительное количество топлива из поплавковой камеры в смесительную только при значительном разрежении в верхней части диффузора, что возможно лишь при полном открытии дроссельной заслонки.

Ускорительный насос обеспечивает принудительный впрыск в смесительную камеру дополнительных порций топлива при резком открытии дроссельной заслонки. Это улучшает приемистость двигателя и соответственно ТС. Если бы ускорительного насоса в карбюраторе не было, то при резком открытии заслонки, когда расход воздуха быстро растет, из-за инерционности топлива смесь в первый момент сильно обеднялась бы.

Балансировочное устройство служит для обеспечения стабильности работы карбюратора. Оно представляет собой трубку, соединяющую приемный патрубок карбюратора с воздушной полостью герметизированной (не сообщающейся с атмосферой) поплавковой камеры.

Ограничитель максимальной частоты вращения коленчатого вала двигателя устанавливается на карбюраторах грузовых автомобилей. Наиболее широко распространен ограничитель пневмоцентробежного типа.

Инжекторные топливные системы

Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.

Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.

В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.

Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.

Рис. Схема системы питания топливом бензинового двигателя с многоточечным впрыском:
1 — топливная рампа; 2 — форсунки; 3 — регулятор давления; 4 — впускной патрубок двигателя; 5 — фильтр; 6 — замок зажигания; 7 — топливный насос; 8 — топливный бак

Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:

Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:

Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.

Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.

Источник

Видео

Управление системой впрыска топлива

Системы впрыска топлива : Карбюратор

Какие бывают виды впрыска в бензиновом и дизельном двигателе, чем отличаются и какой впрыск лучше

Карбюратор. Принцип работы карбюратора / Carburetor. How a CV carburetor works | IzoFox Video

Впрыск топлива в двигателе. Как работает система впрыска? На чём работает двигатель?

Распределённый, прямой, комбинированный впрыск топлива. Детальное сравнение.

Подсос воздуха в двигателе ВАЗ 2101-2107

Прямой впрыск топлива на бензиновом ДВС.

Чебоксары. 2109 на ремонт. Опять РАСХОД ТОПЛИВА!

ПЛАВАЮТ холостые обороты, ДОЛГО заводится — ПОДКАПЫВАЕТ во вторую камеру!

Понимание системы впрыска топлива вашего автомобиля

Вы здесь

Главная | Понимание системы впрыска топлива вашего автомобиля

Дэн — опытный автожурналист с более чем 20-летним стажем. Он был редактором таких изданий, как Fast Ford и Redline, а его последним проектом было превращение старого Renault Trafic в семейный дом на колесах.

Способ подачи топлива в камеры сгорания двигателя сильно изменился за последние годы. Раньше он поступал через так называемый карбюратор, относительно простой, но неэффективный и капризный компонент.

В 1990-х годах ее быстро заменили системой впрыска топлива, которая соответствовала новым жестким стандартам выбросов, введенным в то время, и при этом повышала производительность двигателя.

В первые дни впрыск топлива был дорогим и ассоциировался с автомобилями премиум-класса, но теперь каждый автомобиль оснащен впрыском топлива.

В целом это надежно, но все же стоит знать, как работает система, где она находится и как определить, когда она работает. Здесь мы отвечаем на эти и другие вопросы…

Что такое система впрыска топлива?

Заманчиво сказать, что это именно то, что следует из названия, за исключением того, что существуют различные типы систем, включая прямые и непрямые.

В конечном счете, они делают то же самое: впрыскивают точно откалиброванную топливную струю в камеру сгорания двигателя или рядом с ней именно тогда, когда это необходимо. В бензиновых и дизельных двигателях используются системы впрыска топлива.

Зачем он нужен двигателю?

Без какой-либо системы подачи топлива, будь то карбюратор или система впрыска, двигатель работать не будет.

Прелесть системы впрыска топлива в том, что она гораздо более управляема, чем старомодный карбюратор. Отчасти поэтому современные двигатели намного эффективнее (чистее, экономичнее и мощнее), чем когда-то.

Как выглядит система впрыска?

Чтобы увидеть его, вам придется разобрать большую часть двигателя, потому что он состоит из нескольких отдельных компонентов:

  • Модуль подачи топлива, содержащий такие элементы, как электрический топливный насос высокого давления и топливный фильтр.
  • Регулятор впускного воздуха, чтобы убедиться, что количество воздуха точно соответствует двигателю.
  • Электронный блок управления и датчики для обеспечения точного впрыска нужного количества топлива в поток всасываемого воздуха.
  • Топливные форсунки, установленные на топливной рампе для подачи топлива в двигатель.

Как работает система впрыска?

Модуль подачи топлива подает топливо под давлением к форсункам, по одной на цилиндр. Количество топлива, поступающего в форсунку, точно контролируется ЭБУ, который учитывает температуру воздуха, положение дроссельной заслонки, частоту вращения двигателя, крутящий момент двигателя и данные о выхлопе, полученные от датчиков внутри и вокруг двигателя, чтобы регулировать подачу при каждом такте впуска.

Воздух поступает через впускной коллектор и всасывается в двигатель через впускной клапан или клапаны.

Однако способы подачи и смешивания топлива и воздуха различаются в зависимости от используемой системы впрыска топлива.

В большинстве бензиновых двигателей используется так называемая система непрямого впрыска топлива, при которой топливо впрыскивается во впускной коллектор, т. е. расположение трубок, направляющих поступающий воздух к двигателю. Здесь и топливо, и воздух смешиваются перед подачей в камеру сгорания.

В системе прямого впрыска топлива, например, в дизельных двигателях и все чаще в бензиновых двигателях, топливо впрыскивается непосредственно в камеру сгорания под чрезвычайно высоким давлением и непосредственно в поток входящего воздуха.

Это гораздо более эффективная технология, чем непрямой впрыск топлива, которая повышает мощность и экономичность, а также снижает выбросы.

Ранние системы впрыска имели механическое управление, но современные системы полностью электронные, в результате чего они более надежны и эффективны.

Почему выходит из строя инжектор?

Форсунка — это прецизионный прибор, который работает в экстремальных условиях и должен подавать топливо под высоким давлением через крошечную форсунку или форсунки во впускной коллектор или непосредственно в камеру сгорания.

Учтите: за 12 000 миль форсунка сработает 18 миллионов раз. Поэтому неудивительно, что он может потерпеть неудачу.

Тем не менее, часто выходит из строя не сама форсунка, а качество поступающего в нее топлива, которое наносит ущерб.

Он может быть загрязнен из-за низкого качества или из-за загрязнения топливного фильтра. Присадки в топливе также могут образовывать отложения на форсунке.

Как диагностировать неисправную форсунку?

  • Изношенная форсунка может стать причиной пропусков зажигания, неравномерной работы на холостом ходу, преждевременного зажигания, когда топливо и воздух сгорают до зажигания свечи зажигания, или детонации, когда воспламеняется избыточное топливо, оставшееся после сгорания. Это может привести к повреждению двигателя, поэтому не следует игнорировать его.
  • Негерметичная форсунка с заклинивающим внутренним клапаном может затопиться и вызвать проблемы с запуском. Если вы чувствуете запах топлива, это может исходить от форсунки.
  • Поскольку неисправная форсунка вызывает неравномерную температуру сгорания, используйте лазерный термометр для проверки температуры выпускного коллектора. Нормальное показание должно быть около 230°C, но неисправная форсунка, подающая слишком много топлива, может показывать 320°C.
  • Увеличение расхода топлива может быть вызвано тем, что форсунка больше не подает мелкодисперсный распыл, а вместо этого подает большие капли топлива, которые не распыляются должным образом во впускном коллекторе или камере сгорания. Опять подозреваю залипание клапана.
  • Снимите форсунку (будьте осторожны – топливо вытечет, поэтому отсоедините аккумулятор и работайте в хорошо проветриваемом помещении) и осмотрите ее на наличие трещин и утечек. Вы мало что сможете с ними сделать, но, по крайней мере, у вас будет точное объяснение.
  • Проверьте электрическое сопротивление каждой форсунки с помощью мультиметра. Неисправная форсунка будет означать, что остальные форсунки получают слишком большой электрический ток, который зарегистрирует мультиметр.
  • Используйте машинный стетоскоп, чтобы прослушать шум от форсунки. Если вы не слышите обычного тикающего звука, скорее всего, он неисправен.

Как ремонтировать форсунку?

Вы не можете; вместо этого, если проблемы с работой не кажутся слишком серьезными, попробуйте заменить топливный фильтр или продуть топливную систему, чтобы удалить мусор. Кроме того, добавьте в топливный бак жидкость для очистки форсунок.

Метки: 

Автотехобслуживание

Рекомендуется для вас

Последние советы и руководства

Общие проблемы BMW 5-Series (2010-2017)

22 сентября 2022 г.

Общие проблемы BMW X3 Mk1 (2004-2010)

20 сентября 2022 г.

Общие проблемы Ford Transit Custom

15 сентября 2022 г.

Общие проблемы BMW 1-Series (2004-2013 гг.)

8 сентября 2022 г.

Что такое топливная система?

Содержание

  • 1 Что такое топливная система?
  • 2 Работа топливной системы
  • 3 Типы топливных систем
    • 3.1 1) Одноточечный или дроссельный впрыск
    • 3.2 2) Система многоточечного впрыска
    • 3.3 3) Система последовательного впрыска топлива (SPFI)
    • 3,4 4) Система прямого впрыска
  • 4 Компоненты топливной системы
      • 4.0.1 1) Топливный бак
      • 4.0,2 2) Топливный насос
      • 4.0.3 3) Топливный вход
      • . 4.0. 4 4) Карбюратор
      • 4.0.5 5) Топливный фильтр
      • 4.0.6 6) Топливопроводы
      • 4.0.7 7) Указатель уровня топлива
      • 4.0.8 8) Передающий блок датчика уровня топлива
      • 9) Выбросы 4. 0.9 4.0.9 Контроль паров
      • 4.0.10 10) Регулятор давления топлива
  • 5 Признаки неисправности топливной системы
  • 6 Преимущества и недостатки системы впрыска топлива
    • 6.1 Преимущества системы впрыска топлива
    • 6.2 Недостатки системы впрыска топлива Система?
    • 7.2 Какова функция топливной системы?
    • 7.3 Какие существуют типы систем впрыска топлива?
    • 7.4 Что такое двухтопливная система?
    • 7.5 Каковы части и функции топливной системы?

Топливная система или система впрыска топлива — это механическая система, которая подает в двигатель необходимое количество топлива. Топливная система включает карбюратор, топливные фильтры, топливный насос, топливопроводы и топливный бак . Топливная система должна работать правильно для правильной эксплуатации автомобиля. Таким образом, вы должны очистить систему должным образом. В предыдущей статье мы обсуждали, как использовать очиститель топливной системы. В этой статье в основном объясняется работа топливной системы, ее типы, детали и функции.

Что такое топливная система?

Топливная система — это часть автомобиля, которая забирает топливо из топливного бака и подает его в двигатель . Эта система отвечает за подачу топлива в соответствии с требованиями двигателя. Каждая часть топливной системы должна работать должным образом для достижения желаемой производительности двигателя.

Основной функцией топливной системы является забор топлива из бака для хранения и подача его в камеру сгорания двигателя, где оно смешивается с воздухом, испаряется, сгорает и вырабатывает механическую энергию.

Топливная система состоит из форсунки, насоса, фильтра, топливного бака и карбюратора. Правильная работа всех этих частей очень важна для достижения желаемой производительности автомобиля.

Резервуар для хранения топлива используется для хранения топлива, которое может быть газом, дизельным топливом или бензином. Когда двигателю требуется топливо, топливный насос забирает топливо из топливного бака, проходит по топливопроводам и подает его в карбюратор.

Карбюратор забирает воздух из окружающей среды и производит топливовоздушную смесь. По мере образования воздушно-топливной смеси топливо подается в камеру сгорания, где и происходит процесс сгорания.

Работа топливной системы

Система впрыска топлива — это часть автомобиля, отвечающая за правильную подачу топлива в двигатель. Топливная система работает следующим образом:

  • Прежде всего топливный насос забирает топливо из топливного бака и пропускает это топливо через топливный фильтр.
  • Этот фильтр удаляет мусор из топлива. Предотвращает засорение топливной форсунки, топливопроводов и карбюратора.
  • По мере фильтрации топливо направляется в топливную форсунку по топливопроводам. Пластиковый материал или прочный металл используется для строительства топливопроводов. Эти линии находятся под полом автомобиля и находятся в уязвимых местах. Они устанавливаются в местах, которые не могут быть повреждены выхлопными газами двигателя, погодными условиями, дорожными условиями или другими компонентами.
  • Работа топливной форсунки зависит от конструкции двигателя. В случае дизельного двигателя топливная форсунка впрыскивает топливо непосредственно в камеру сгорания. Однако в случае двигателя SI форсунка сначала впрыскивает топливо в карбюратор, который сначала делает воздушно-топливную смесь, а затем направляет эту смесь в камеру сгорания.
  • Регулятор давления используется для контроля давления топлива в топливной форсунке.
  • По мере поступления топлива в карбюратор, карбюратор забирает воздух из окружающей среды, смешивает воздух с топливом и производит воздушно-топливную смесь. Поскольку топливовоздушная смесь составляется в соответствии с требованиями двигателя, она подается в камеру сгорания.
  • Камера сгорания сжимает топливно-воздушную смесь, воспламеняет смесь и генерирует механическую энергию.

Watch the below given video for better understanding:

Read Also: Different types of Engines

Types of Fuel Systems

The fuel system has the following major types:

  1. Single -Точка
  2.  Многоточечная система
  3. Система SPFI
  4. Система прямого впрыска

1) Одноточечный или дроссельный впрыск

Система одноточечного впрыска является одним из самых известных типов системы впрыска топлива. Она также известна как система впрыска в корпус дроссельной заслонки.

В этой системе карбюратор заменяет до двух топливных форсунок в корпусе дроссельной заслонки. Для стартера корпус дроссельной заслонки работает как отправная точка для системы вентиляции двигателя автомобиля, так же как отправная точка для впускного коллектора.

До появления системы многоточечного впрыска системы впрыска через корпус дроссельной заслонки были хорошей альтернативой простым карбюраторам. Они не такие точные, как системы многоточечного впрыска, но обеспечивают превосходную эффективность по сравнению с карбюраторами.

Кроме того, система одноточечного впрыска топлива требует минимального обслуживания и ремонта. Он имеет более легкую конструкцию, чем система многоточечного впрыска. Имеет низкие затраты на техническое обслуживание и ремонт.

Основным недостатком этой системы является то, что она менее эффективна и менее точна, чем многоточечный блок.

Преимущества и недостатки системы одноточечного впрыска
Преимущества Недостатки
Требует минимального технического обслуживания и обслуживания. менее эффективна, чем система многоточечного впрыска.
Эта система обеспечивает более высокую эффективность, чем карбюраторная система. Менее точный, чем многоточечный блок.
Простой дизайн.  
Низкие затраты на обслуживание и ремонт.  

2) Система многоточечного впрыска

Система многоточечного впрыска топлива является наиболее часто используемой системой впрыска. Он обеспечивает отдельную форсунку для каждого цилиндра. Этот тип системы впрыска топлива устанавливается снаружи каждого воздухозаборника. Поэтому она также известна как система впрыска через порт.

Приближение паров топлива к воздухозаборнику обеспечивает полное всасывание паров топлива в цилиндр и повышает эффективность процесса сгорания.

Система многоточечного впрыска топлива

Одним из основных преимуществ системы многоточечного впрыска является то, что она регулирует подачу топлива более эффективно, чем система одноточечного впрыска топлива или карбюратор. Кроме того, эта система снижает вероятность укорочения топлива во впускном коллекторе. Эта система является более точной, чем система одноточечного впрыска.

Преимущества и недостатки системы одноточечного впрыска

Преимущества Недостатки
Более точная и эффективная система одноточечного впрыска. требуется больше обслуживания.
Снижает вероятность угара топлива во впускном коллекторе. Затраты на техническое обслуживание и ремонт выше, чем у системы одноточечного впрыска топлива
Он регулирует подачу топлива более эффективно, чем одноточечный впрыск топлива или карбюратор. Имеет сложную конструкцию.

3) Система последовательного впрыска топлива (SPFI)

Система SPFI также называется системой синхронизированного впрыска топлива или системой последовательного впрыска топлива.

Основное различие между системой последовательного впрыска и системой многоточечного впрыска заключается в том, что в случае многоточечного впрыска топлива все форсунки впрыскивают топливо одновременно. Это означает, что когда двигатель работает на холостом ходу, топливо обычно остается в отверстии более 148 миллисекунд. Может показаться, что это не так уж и много, но на самом деле этого времени достаточно, чтобы снизить эффективность.

В то время как в случае системы SPFI все форсунки не впрыскивают топливо одновременно, и каждая форсунка впрыскивает топливо в соответствии с требованиями соответствующего цилиндра. Эти форсунки впрыскивают топливо непосредственно перед открытием впускного клапана. Это означает, что топливо не должно оставаться надолго. Таким образом, эта система повышает эффективность и снижает уровень выбросов.

Одним из основных преимуществ системы последовательного впрыска является то, что она более точна, чем система многоточечного впрыска. Это также увеличивает КПД двигателя.

Читайте также: Типы и работа двигателей внутреннего сгорания

4) Система прямого впрыска

Это один из самых простых и инновационных типов систем впрыска. Эта система впрыскивает топливо непосредственно в камеру сгорания после открытия клапанов.

Системы непосредственного впрыска топлива чаще всего используются в дизельных двигателях, но недавно стали популярны и в бензиновых двигателях.

Например, 1,0-литровый турбированный бензиновый двигатель Hyundai Venue использует систему прямого впрыска, продаваемую как « GDI». ” В этой конфигурации подготовка топлива и синхронизация впрыска лучше, чем в любой другой системе впрыска.

Читать также: работа по системе прямого впрыска

Компоненты топливной системы

Топливная система имеет следующие основные детали:

  1. Топливный бак
  2. Топливный насос
  3. 33333333. Топливный бак
  4. .0034
  5. Карбюратор
  6. Топливный фильтр
  7. Топливные линии
  8. где хранится топливо (например, газ, дизельное топливо или бензин). Если топливный бак засорен или протекает, топливо не может правильно поступать в камеру сгорания двигателя. Правильная эксплуатация этого бака играет большую роль в правильной работе автомобиля. Топливный насос используется для подачи топлива из топливного бака в карбюратор или камеру сгорания.

    2) Топливный насос

    Топливный насос забирает топливо из топливного бака и подает его к топливной форсунке по топливопроводам. В случае бензинового двигателя топливная форсунка впрыскивает топливо в карбюратор. Напротив, в дизельном двигателе топливная форсунка впрыскивает топливо непосредственно в камеру сгорания.

    Топливный насос бывает двух основных типов:

    1. Механический топливный насос: Для привода этого насоса используется двигатель. Цепь или ремень используются для соединения двигателя с топливным насосом.
    2. Электрический топливный насос: Для управления этим насосом используется электрическая система впрыска топлива. Он более надежен, чем механический насос. У него очень низкие проблемы с надежностью.

    Читайте также: Работа и типы топливных насосов

    3) Топливная форсунка

    Топливная форсунка используется для впрыска топлива в камеру сгорания каждого корпуса дроссельной заслонки или каждого цилиндра. Собственно, топливная форсунка представляет собой форсунку с клапаном, создающим распыл топлива и капельки воздуха.

    Топливная форсунка приводится в действие топливным насосом. Забирает топливо топливным насосом. Процесс впрыска топливной форсунки зависит от типа двигателя.

    В дизельном двигателе топливная форсунка впрыскивает топливо непосредственно в камеру сгорания. Напротив, в бензиновом двигателе топливная форсунка сначала впрыскивает топливо в карбюратор, где топливо смешивается с воздухом, а затем карбюратор передает воздушно-топливную смесь в двигатель внутреннего сгорания.

    4) Карбюратор

    Карбюратор чаще всего используется в бензиновых двигателях. Основной функцией этой части топливной системы является приготовление воздушно-топливной смеси.

    Когда топливная форсунка впрыскивает топливо в карбюратор, она всасывает воздух из окружающей среды, смешивает его с впрыскиваемым топливом и образует топливно-воздушную смесь. После надлежащего перемешивания карбюратор подает топливно-воздушную смесь в камеру сгорания двигателя для процесса сгорания.

    Читайте также: Работа и типы карбюраторов

    5) Топливный фильтр

    Топливный фильтр играет большую роль в правильной работе системы подачи топлива. Из-за жестких допусков топливных форсунок их очень легко повредить мусором, а в автомобилях с впрыском топлива также используются электрические топливные насосы.

    Топливный фильтр устанавливается между топливным насосом и топливным баком. Поскольку топливный бак всасывает топливо из топливного бака, топливо сначала проходит через фильтры. Фильтры удаляют твердые частицы топлива, а затем подают отфильтрованное топливо к топливному насосу.

    6) Топливопроводы

    Топливопроводы соединяют все различные части топливной системы. Эти магистрали подают топливо из топливного бака к топливной форсунке. Гибкие шланги и стальные трубопроводы транспортируют топливо от бака к двигателю.

    Не используйте медь или алюминий при ремонте или замене стальных топливопроводов. Вы должны заменить стальные линии стальными. Точно так же при замене гибкого резинового шланга необходимо использовать правильный шланг. При замене аккуратно отсоедините все шланги от выхлопной системы.

    7) Указатель уровня топлива

    Указатель уровня топлива находится на приборной панели вашего автомобиля. Он соединен с топливным баком. Он показывает водителю фактическое количество топлива в баке.

    В традиционных автомобилях указатель уровня топлива не мог показывать точное количество топлива в топливном баке. Если вы впервые водите классический автомобиль, найдите время, чтобы понять точность системы. Эта часть топливной системы избавляет от необходимости бежать на заправку, когда в баке заканчивается бензин!

    8) Блок отправки показаний указателя уровня топлива

    В случае топливной системы это, вероятно, самая большая проблема. Передающий блок имеет в лучшем случае несовершенный дизайн. Эта единица наиболее точна между 1/4 и 3/4 газа в баке. Даже если достигнут предел бака (полный или пустой), отображение становится менее точным.

    9) Регуляторы выбросов паров

    Эти регуляторы используются в сочетании с возвратными топливопроводами. Эта часть общей системы используется для предотвращения выброса паров бензина в окружающий воздух. Когда это происходит, могут произойти следующие плохие вещи: 9

  9. вредно для окружающей среды что система должным образом поддерживает надлежащее количество давления. Блок регулятора давления топлива чаще всего используется в автомобилях с впрыском топлива, потому что топливные форсунки создают большее давление, чем карбюраторы.

    Признаки неисправности топливной системы

    Неисправность топливной системы влияет на работу двигателя. A bad fuel system has the following major signs:

    • Difficult Engine Starting
    • Engine stalling issues
    • Irregular power loss
    • Engine idling issues
    • Extreme Engine Smoke
    • Unpleasant fuel odors
    • A reduction in fuel economy

    Преимущества и недостатки системы впрыска топлива

    Преимущества системы впрыска топлива
    1. Повышает мощность двигателя и автомобиля.
    2. Предотвращает повреждение двигателя.
    3. Система впрыска топлива увеличивает срок службы двигателя.
    4. Повышает КПД двигателя.
    5. Обеспечивает лучшую топливную экономичность.

    Недостатки системы впрыска топлива
    • Система впрыска топлива состоит из множества частей, включая топливный бак, топливный насос, топливопроводы и топливную форсунку. Таким образом, эта система увеличивает вес автомобиля.
    • Детали этой системы имеют высокую стоимость.
    • Высокие затраты на ремонт и техническое обслуживание.

    FAQ Раздел

    Что такое система впрыска топлива?

    Система впрыска топлива — это деталь автомобиля, которая подает топливо из топливного бака в камеру сгорания двигателя.

    Какова функция топливной системы?

    Основной функцией топливной системы является  хранение топлива в топливном баке и подача топлива в камеру сгорания двигателя, где оно смешивается с воздухом, сжимается, испаряется , и сжигает для получения желаемой механической энергии.

    Какие существуют типы систем впрыска топлива?

    Система впрыска топлива бывает следующих основных типов:

    • Дроссельный впрыск
    • Система последовательного впрыска топлива
    • Система многоточечного впрыска
    • Система прямого впрыска

    Что такое двухтопливная система?

    Двухтопливная система представляет собой систему домашнего комфорта, которая сочетает в себе электрический тепловой насос и печь, чередуя два источника топлива для максимального комфорта и эффективности.

    Каковы части и функции топливной системы?

    Топливная система состоит из следующих основных частей и функций:

    1. Топливный бак: Используется для хранения топлива.
    2. Топливный насос: Используется для подачи топлива из бака в топливную форсунку.
    3. Фильтры: Фильтры используются для удаления твердых примесей из топлива.
    4. Топливная форсунка: Топливная форсунка используется для впрыска топлива в камеру сгорания.
    5. Регулятор давления: Используется для регулировки и поддержания давления внутри системы.
    6. Указатель уровня топлива: Показывает количество топлива в топливном баке.
    7. Топливопроводы: Эти трубопроводы используются для подачи топлива к различным частям топливной системы.
    Читайте также
    1. Различные типы двигателей
    2. Типы двигателей внутреннего сгорания
    3. Типы двигателей ЕС
    4. Работа и типы гибридных транспортных средств
    5. Типы и работа бензинового двигателя
    6. Типы и работа дизельного двигателя
    7. Типы и работа карбюратора 

    Что такое впрыск топлива? Как работает впрыск топлива?

    Что делают топливные форсунки

    Дроссельная заслонка дроссельной заслонки регулирует подачу воздуха в двигатель Что происходит, когда вы наступаете на педаль газа? Двигатель набирает обороты, и ваша машина едет быстрее. Вы можете подумать, что это красиво простые вещи, но на самом деле требуется много сложной инженерии, чтобы получить этот процесс работает так гладко. Большая часть этого — топливо для двигатель, где он может сжигаться для выработки энергии. Ваш топливные форсунки распыляйте бензин во впуск или непосредственно в цилиндры двигателя, чтобы его можно быстро зажечь. Есть много шагов, связанных с получением газа к этому моменту, и много шагов, которые принесли технологии впрыска топлива к этому моменту. Мы собираемся рассказать вам, как газ попадает туда, где он есть. собирается и доставит вас туда, куда вы идете, и мы собираемся узнать о различных разработки в области впрыска топлива по пути.

    Как топливный насос перекачивает газ

    Прежде чем бензин вырвется из топливных форсунок, это должно дойти до них. Это то что топливный насос или насосы для. Топливо начинается в топливный бак, пока вы не запустите двигатель. Затем насос начинает перекачивать топливо по топливопроводам под очень высоким давлением.

    В более старых моделях использовались механические насосы с приводом от коленчатого или распределительного вала. Чем быстрее работал двигатель, тем быстрее работал насос, чтобы удовлетворить возросшую потребность двигателя в топливе. Большинство газовых автомобилей и грузовиков сегодня используют электрические топливные насосы. Однако дизельные двигатели по-прежнему используют механические насосы. Электрические топливные насосы работают от электричества и контролируются ЭБУ. Это позволяет более точно контролировать и делает их более эффективными. Некоторые устанавливаются внутри вашего бензобака (где топливо охлаждает их), а некоторые устанавливаются снаружи бака на раме автомобиля. В некоторых случаях внутренний насос используется для подачи топлива к внешнему насосу.

    Независимо от того, где именно он находится и как работает, работа топливного насоса состоит в том, чтобы прокачивать топливо по топливопроводам, откуда оно может быть передано двигателю. Подача газа в двигатель осуществляется через ряд различных средств, но первым из них был карбюратор.

    Как двигатель получает газ: когда карбюраторы бродили по земле

    Карбюратор был простой системой подачи топлива в двигатель, существовавшей до впрыска топлива. В то время как системы впрыска топлива полагаются на электронику, карбюратор был чисто механическим. Поток топлива увеличился в ответ на поток воздуха во впускном коллекторе.

    Когда вы нажимаете на педаль акселератора, открывается дроссельная заслонка в воздухозаборнике, называемая дроссельной заслонкой. Чем больше открыта дроссельная заслонка, тем больше воздуха может попасть во впускной коллектор. Вот почему дожимать педаль до упора известный как «широко открытый». Потребление имеет суженную область, называемую предприятием. Сужение заставляет воздух двигаться быстрее, что создает область низкого давления. Карбюратор имеет выпускное отверстие для топлива, называемое жиклером, которое открыто к трубке Вентури. Чем быстрее воздух проходит через трубку Вентури, тем ниже давление и тем больше газа всасывается. Так что технически педаль газа не дает двигателю больше газа; это дает двигателю больше воздуха. Увеличенный поток воздуха всасывает больше газа. Так в следующий раз, когда вы хотите, чтобы кто-то ехал быстрее, скажите «топать в воздухе!»

    Карбюратор — простая система, но со временем она устарела и ушла в прошлое, как динозавр. 1991 год Jeep Grand Wagoneer был последним дорожным автомобилем, предлагаемым в Соединенных Штатах с карбюратором. Двумя самыми большими проблемами карбюратора были его неэффективность и негибкость. А карбюратор можно настроить так, чтобы обеспечить идеальное соотношение воздух/топливо при определенной частоте вращения двигателя, но чем дальше вы отклоняетесь от этой скорости, тем дальше вы можете уйти от идеального соотношения. Простота карбюратора в некотором смысле является его недостатком, поскольку его невозможно настроить или приспособить к немного другим сценариям.

    Разработка системы впрыска топлива

    Хотя впрыск топлива стал нормой только в последние пару десятилетий, эта технология существует уже давно. Раннее топливо системы впрыска использовались в двигателях самолетов в начале двадцатого века. Дизельные двигатели используют непосредственный впрыск топлива с 1920-х годов (о типах дизельного топлива и непосредственном впрыске мы поговорим позже). После Второй мировой войны, хот-роддеры начали заменять карбюраторы топливными форсунками, чтобы дать им автомобили добавили мощности. Компания Mercedes-Benz использовала непосредственный впрыск бензина по образцу дизельного двигателя в гонщиках Формулы-1 в 1919 году.50-е годы. Он адаптировал технологию к серийный спортивный автомобиль 300SL в 1955 году. Более эффективное сгорание дало в 300SL с большой мощностью и скоростью, которые привели его к успеху в гонках.

    Впрыск топлива был сложнее и дороже, чем карбюраторы, поэтому он, как правило, использовался только в некоторых спортивных автомобилях 1950-х годов. через 1970-е годы. Многие из этих ранних систем впрыска топлива обычно были системами непрерывного впрыска с механическим приводом. Топливо не подавалось в двигатель импульсами, как в современных электронных системах, а поступало непрерывно со скоростью, которая менялась в зависимости от положения дроссельной заслонки или измеряемого потока воздуха в воздухозаборнике. Крайслер предложил раннее аналоговая электронная система в Chrysler 300D и Plymouth Fury. Однако система была подвержена сбоям и использовалась недолго. С этими осложнениями привлекательности мощности было недостаточно, чтобы довести впрыск топлива до передний план.

    Потребовалось ужесточение норм выбросов двигателей 1970-х и 1980-х годов, а также нефтяной кризис 1970-х годов, чтобы вывести впрыск топлива на передний план. Поскольку автопроизводители стремились снизить выбросы и увеличить расход топлива, они поняли, что впрыск топлива приводит к тому, что двигатель сжигает газ более эффективно. То же самое преимущество, которое может обеспечить мощность, может также сделать автомобили более дружественными к окружающей среде и кошелькам водителей.


    Типы впрыска топлива

    Корпус дроссельной заслонки впрыска

    Сначала автопроизводители пробовали простые системы впрыска в корпус дроссельной заслонки с одной или двумя топливными форсунками, прикрепленными к корпусу дроссельной заслонки. Впрыск корпуса дроссельной заслонки работал очень похоже на карбюратор. Топливо было добавлено во впускной коллектор. Это было не так эффективно, как более поздние системы впрыска топлива, но имело определенные преимущества перед карбюраторами. А именно топливо дроссельной заслонки инжектор может лучше приспосабливаться к различным ситуациям. Как упоминалось ранее, карбюратор может быть настроен на подачу идеального количества топлива при определенной частоте вращения двигателя, но может быть немного слишком обедненным или слишком богатым при разных оборотах двигателя. Поскольку топливная форсунка корпуса дроссельной заслонки имеет электронное управление, она может обеспечить лучшее соотношение воздух/топливо во всем диапазоне оборотов двигателя.

    Многоточечные системы впрыска топлива

    Однако впереди было еще больше улучшений. Следующими были многоточечные системы впрыска. Они впрыскивают топливо над каждым впускным клапаном. Это приводит к тому, что в камере сгорания сжигается больше топлива и меньше расходуется впустую, чем в системах впрыска с корпусом дроссельной заслонки. Впрыск через порт требует наличия одной форсунки на каждый цилиндр двигателя.

    Знаменитый инжектор GM «Паук»

    Более ранние системы впрыска через порт подавали топливо во все цилиндры одновременно. Топливо будет собираться на каждом впускном клапане в течение доли секунды до входа в камеру сгорания. Дженерал Моторс использовал одну такую ​​систему под названием Central Port Injection, но иногда называемую Инъектор «паук» из-за его сходства с паукообразным. Топливо будет распределяться из центральной точки вниз по «ногам» к тарельчатым клапанам на каждом впускном клапане. Тарельчатые клапаны открывались под давлением и одновременно выпускали топливо на каждой ноге. В конечном итоге паук был снят с производства, потому что тарельчатые клапаны имели тенденцию забиваться углеродом, образующимся в результате побочных продуктов сгорания.

    Электронный многоточечный впрыск топлива

    Со временем появились более совершенные системы последовательного впрыска через порт. В этих системах ECU сигнализирует о срабатывании каждой форсунки отдельно, так что каждый цилиндр получает топливо сразу после открытия впускного клапана. Это приводит к более эффективному прожигу, чем в старых многопортовых системах.

    В этих современных системах топливные форсунки представляют собой клапаны с электронным управлением, которые впрыскивают чрезвычайно мелкий туман топлива во впускные клапаны цилиндров под высоким давлением. Они установлены в головке двигателя. Форсунки получают топливо либо из топливопроводов, либо из топливной рампы. в свою очередь, получить топливо от топливного насоса. Открытие и закрытие форсунок контролируется модулем управления двигателем (ECU), бортовым компьютером автомобиля. ЭБУ использует данные от датчик массового расхода воздуха, датчики кислорода и другие датчики для определения времени работы топливных форсунок. Помните, что целью карбюратора было изменение потока топлива в ответ на поток воздуха. ЭБУ использует информацию от датчика массового расхода воздуха для того же эффекта.

    Топливная рампа и форсунки

    Прямой впрыск бензина

    На сегодняшний день самой передовой системой впрыска топлива является непосредственный впрыск бензина. Непрямой впрыск, газ распыляется не во впуск, а прямо в цилиндр. Газ не смешивается с воздухом, пока не окажется в цилиндре. что предотвращает его конденсацию. Это дает еще более прямой ожог. Прямой впрыск уже давно используется в дизельных двигателях, но становится все более распространенным в бензиновых двигателях. Возможно, вы помните, что эта система использовалась еще на Mercedes 300SL. Хотя тогда эта технология была настолько дорогой, что она была доступна только на том, что было по существу дорожный гоночный автомобиль, сегодня непосредственный впрыск может использоваться во многих газовых двигателях. Современные системы прямого впрыска также имеют электронное управление. в то время как более ранние версии имели механическое управление.

    Системы прямого впрыска находятся на переднем крае технологий впрыска топлива, но системы с непрямым последовательным впрыском остаются более распространенными. Одним из недостатков прямого впрыска является то, что форсунки должны быть сконструированы так, чтобы выдерживать высокие силы и температуры сгорания. Так как запчасти нужны чтобы быть более долговечными, они обязательно дороже.

    Системы впрыска дизельного топлива

    Дизельные двигатели работают иначе, чем бензиновые двигатели, хотя роль топливных форсунок остается в основном той же. Дизельные двигатели не используют дроссельную заслонку. Вместо этого, когда вы нажимаете на педаль акселератора, в форсунки подается больше топлива, и именно это увеличивает скорость двигателя. В дизельных двигателях с самого начала используется непосредственный впрыск. Они работают в основном так же, как системы прямого впрыска, описанные выше.

    Одно большое различие заключается в давлении топлива на топливных форсунках. Дизельные двигатели не воспламеняют топливо от свечей зажигания. но через сжатие, и дизельное топливо менее летучее (менее охотно сгорает) чем бензин. Поэтому дизель нужно распылять еще более тонким туманом. Газовое топливо Форсунки обычно имеют давление от 40 до 60 фунтов на квадратный дюйм. (PSI) или от трех до четырех бар (это в три-четыре раза больше атмосферного давления на уровне моря). Дизельные форсунки имеют от 14 500 до 29,000 фунтов на квадратный дюйм или от 1000 до 2000 бар.

    Признаки неисправности системы впрыска топлива

    Медленный запуск и ускорение, остановка двигателя, пропуски зажигания или запах бензина

    Проблемы с системой впрыска топлива могут принимать самые разные формы, но результат, как правило, один и тот же: недостаточное количество топлива попадает в цилиндры. Это может снизить мощность и эффективность двигателя. Вы можете обнаружить, что автомобиль с трудом заводится и разгоняется. Также возможны остановки и пропуски зажигания. Из-за неэффективного сгорания из-за неисправного топлива впрыска, в моторном отсеке может быть сильный запах бензина после запуска автомобиля.

    Что вызывает неисправность системы впрыска топлива?

    Засорение топливных форсунок

    Сами топливные форсунки должны быть первым подозреваемым, когда возникают такие проблемы. У них могут возникнуть проблемы с электричеством или, чаще они могут забиваться. Электрическая проблема может помешать открытию и закрытию форсунки в правильное время. Засор будет, очевидно, чтобы топливная форсунка не распыляла топливо должным образом. Засоры могут возникать из-за мусора в топливе, что может указывать на проблему в топливной системе. топливный фильтр, обнаруженный в топливном баке или топливопроводе, является наиболее вероятным виновником, и его следует проверить, если вы заменяете топливную форсунку.

    В вашем местном гараже может быть оборудование для проверки топливных форсунок. С помощью этого оборудования можно определить выходное давление каждой форсунки. Любая форсунка, которая слишком сильно отклоняется от надлежащего давления для вашего автомобиля, должна быть заменена. Поскольку топливные форсунки со временем изнашиваются, вы можете заменить все топливные форсунки комплектом.

    Износ топливного насоса или негерметичность топливопроводов

    Топливные насосы тоже могут выйти из строя. Внутренние механические детали могут изнашиваться, или, в случае электрических топливных насосов, может выйти из строя электродвигатель. Если топливный насос не качает, бензин не попадет в ваш двигатель, и вы машину вообще не заведешь. Топливопроводы, топливные баки и горловина топливного бака, конечно, могут дать течь, что приведет к потере газ, который может быть дорогостоящим с течением времени.

    Можно ли отремонтировать систему впрыска топлива самостоятельно?

    Вы определенно можете работать над собственной системой впрыска топлива, хотя сложность этого будет варьироваться от одной модели к другой, в зависимости от точного расположения всех частей. Поскольку система может быть довольно сложной, было бы неплохо сделать фотографии или чертежи, прежде чем что-либо разбирать. Вы можете использовать эти изображения в качестве справки на этапе переустановки ремонта.

    При работе с топливной системой необходимо соблюдать определенные меры предосторожности. Горючесть топлива делает его опасным, а высокое давление в системе представляет потенциальную опасность. В принципе, вы не хотите распылять газ повсюду, и особенно на себя. Прежде чем приступить к работе с топливной системой, особенно перед снятием топливных форсунок, вам нужно сбросить давление в системе. Вы можете сделать это, отключив питание от топливного насоса, а затем запустив двигатель на холостом ходу. Это понизит давление в топливопроводах.

    Имея в виду эти советы, вы сможете пройти ремонт топливной системы без происшествий. Для получения дополнительной информации о конкретных ремонта, вы можете перейти на страницу соответствующей детали или на наш видео по ремонту авто.

    Имея Проблемы с вашей системой впрыска топлива?

    Если у вас возникли проблемы с системой впрыска топлива, то вы обратились по адресу. 1A Auto — ваш поставщик запасных частей, чтобы ваша система впрыска топлива снова вернулась в рабочее состояние! Ниже приведен список общих деталей системы впрыска топлива, которые вам, возможно, придется заменить.

    Сопутствующие товары:

    Топливные форсунки

    Топливный насос

    Блок подачи топлива

    Топливный бак

    Заливная горловина топливного бака

    Газовая крышка

    Дверь топливного бака

    Топливный фильтр

    Топливопроводы и шланги

    Регулятор давления топлива

    Как работает впрыск топлива? Работа системы впрыска топлива (FIS)

    Карбюратор долгое время был предпочтительным методом смешивания воздуха и топлива и подачи его во впускную систему двигателей внутреннего сгорания. Впрыск топлива, гораздо более эффективная система, создающая большую мощность, изначально была разработана для дизельных двигателей. В пятидесятых годах Chevrolet представила впрыск топлива на своей высокопроизводительной модели Corvette. С тех пор эта система становится все более популярной, и ниже сначала описывается ее основная работа. В следующем списке вам будут представлены основные части большинства систем впрыска топлива, а также их функции. После знакомства с основами и функциями будут описаны два основных типа используемых систем впрыска.

    Работа системы впрыска топлива

    Первоначальные системы впрыска топлива использовали распределитель топлива для впрыска топлива в каждый цилиндр отдельно, в порядке запуска цилиндра. Эта система распределения топлива до сих пор используется на более крупных двигателях. В большинстве систем впрыска топлива датчики измеряют объем воздуха, поступающего в двигатель, и температуру потока выхлопных газов, а компьютер дает команду инжектору (форсункам) работать в течение определенного периода времени. Длина импульса и давление топлива определяют объем подаваемого топлива. Воздух дозируется дроссельной заслонкой, которая движется вместе с педалью акселератора. Впрыск топлива распыляет топливо намного лучше, чем карбюратор, что повышает эффективность и мощность впрыска.

    Части системы впрыска топлива

    Части системы впрыска топлива существуют либо для подачи топлива к форсункам, либо для предоставления информации, которая требуется блоку управления для обеспечения наиболее возможна эффективная работа двигателя.

    Компоненты для хранения и подачи топлива включают топливный бак, насос и трубопроводы. Топливный насос способен обеспечивать давление топлива до шестидесяти фунтов на квадратный дюйм, поэтому топливопроводы и соединения рассчитаны на то, чтобы выдерживать почти вдвое большее давление.

    В вашем автомобиле либо две форсунки, либо одна на цилиндр, а иногда и одна дополнительная. В автомобилях с впрыском через корпус дроссельной заслонки будет две форсунки, а в системах с распределенным впрыском будет одна форсунка для каждого цилиндра, а иногда и форсунка акселератора / холодного пуска.

    Одним из способов управления объемом впрыскиваемого топлива является ограничение продолжительности подачи импульсов на форсунку. Измерение давления топлива в форсунке является другим и осуществляется с помощью регулятора давления топлива, который может быть предварительно откалиброван, управляться вакуумом или электрически.

    Большинство систем впрыска топлива имеют как минимум четыре датчика: датчик положения дроссельной заслонки использует реостат для определения желаемого ускорения. Датчик массового расхода воздуха определяет, сколько воздуха поступает во впускную систему. Кислородные датчики измеряют температуру выхлопных газов, которая интерпретируется, чтобы определить, работает ли двигатель на бедной или богатой смеси. Датчик, определяющий положение коленчатого вала, сообщает системе, какой из цилиндров сработает следующим. Этот датчик также необходим системе зажигания; на большинстве автомобилей это датчик положения коленчатого вала, датчик положения распредвала, а на некоторых автомобилях и то, и другое.

    Различные схемы впрыска

    Существует несколько вариантов конструкции впрыска топлива. Система впрыска в корпус дроссельной заслонки, или TBI, или система одноточечного впрыска впрыскивает топливо в корпус дроссельной заслонки,

    аналогично карбюратору. Впускная смесь проходит через направляющие впускного коллектора. Затем постоянное распыление топлива было достигнуто с помощью системы непрерывного струйного впрыска, представленной в 1974 году, когда бензин перекачивается из топливного бака к большому регулирующему клапану, называемому распределителем топлива, который распределяет топливо по ряду более мелких трубок каждой форсунки. Затем General Motors внедрила впрыск через центральный порт, или CPI, или впрыск топлива через центральный порт, в котором используется трубка с тарельчатыми клапанами от центрального инжектора для распыления топлива на каждое впускное отверстие, а не на центральный корпус дроссельной заслонки. Существует также система многоточечного впрыска топлива, которая впрыскивает топливо во впускные каналы, а не в центральную точку в коллекторе двигателя. Другим примером является непосредственный впрыск, используемый в дизельных двигателях, где форсунка размещается внутри камеры сгорания.

    Ссылки

    • Изображение: Fuelinjector.png из wikimedia commons by Wikipedian Prolific под лицензией GNU Free Documentation License.
    • Изображение: дроссельная заслонка Jaguar AJ16 из Викисклада Магнуса Бэка и является общественным достоянием.
    • Изображение: Насосный инжектор Delphi E 1 из Викисклада от Pahona под лицензией Creative Commons Share Alike 3.0.
    • Майк Агилар имеет более чем 30-летний опыт работы в автомобильной промышленности и прошел множество курсов по впрыску топлива.
    • Изображение: инжектор Common Rail Bosch из Викисклада от Panoha в соответствии с лицензией Creative Commons Share Alike Unported.

    Различные типы систем впрыска топлива и как они работают?