12Май

Схема роторного двигателя: В поисках лучшей схемы-вечный тюнинг идеи | Роторные двигатели

Содержание

В поисках лучшей схемы-вечный тюнинг идеи | Роторные двигатели

НА ДАННОЙ СТРАНИЧКЕ Я ВЫКЛАДЫВАЮ МАТЕРИАЛЫ ТЕОРЕТИЧЕСКОЙ ЧАСТИ МОИХ ПОСЛЕДНИХ РАЗРАБОТОК — ВТОРАЯ ПОЛОВИНА 2011г.

это Схема «А», Схема «В» и Схема «С»
ТЮНИНГ ИДЕИ КАК ВЫСШАЯ ФОРМА ПОИСКА СОВЕРШЕННОЙ СХЕМЫ

Много лет прошло с тех пор, когда мне, тогда еще подростку, в 1973 году попался номер журнала «Техника-молодежи» с описанием роторного двигателя Ванкеля. Я за эти десятилетия то возвращался к идее роторного двигателя, то надолго оставлял ее. Надо было как-то жить, зарабатывать деньги,обеспечивать семью, особенно в смутное и непростое время 90-х, когда производство и новая техника были вообще никому не нужны… Какое там техническое творчество… Но более 10 лет назад я как-то все плотнее взялся за старые идеи уже не смог надолго отрываться от этих образов… Образов совершенного роторного двигателя. Помните, как у философа Платона 2300 лет назад сформулирован постулат: миры образов — эйдосов, миры первоидей стоят в начале всего на этом свете…
Со временем — когда я создал классификацию роторных двигателей и перерыл многие сотни патентов СССР, США, Англии и пр.

по роторным двигателям, начиная с первого патента 1859 года, я укрепился в понимании, что наиболее перспективной является схема «типа Тверской». Но эта схема работала хорошо 140 лет назад в варианте паровой расширительной машины, а идея и технологические циклы ДВС со сжатием- значительно сложнее. И вот я принялся создавать схемы и воплощать их в действующие модели и макеты. Итог этих более чем 5-ти лет постоянного экспериментирования и теоретизирования таков: накоплен немалый и весьма содержательный опыт, который позволяет определить пути дальнейшего поиска оптимальной схемы и выбрать наиболее интересные решения в этом направлении.

На этой страничке я буду вести рассуждения и выкладывать материалы о развитии идей совершенного роторного двигателя, т.е. о «тюнинге самой концепции» этой идеи, а вот о конкретных возможностях тюнинга двигателя — смотрите на соответствующей страничке этого сайта ТЮНИНГ ДВИГАТЕЛЯ

НА ЭТОЙ СТРАНИЧКЕ САЙТА Я КОРОТКО ИЗЛОЖУ РЕЗУЛЬТАТЫ СВОИХ ОПЫТОВ И ОПРЕДЕЛЮ ПУТИ РАЗВИТИЯ НАИБОЛЕЕ ПЕРСПЕКТИВНЫХ СХЕМ.

 

Итак, первой была схема наиболее близкая к компоновке паровой машины Н.Н. Тверского.

Именно ее я создал и испытал в 3-х вариантах опытных моделей. Одна из них- последняя как-то даже дым пускала и иногда пыталась тарахтеть.

 

 

 

 

 

 

 

 

 

 

 

 

Но по итогам работы над этой схемой и такими моделями я пришел к выводу, что в малых размерах такая схема практически не работоспособна. Для создания гармоничной схемы надо делить кольцевое рабочее пространство на 4 сегмента, из которых будет формироваться 2 технологических сектора с полным набором из 5-ти технологических тактов. Но, учитывая мертвые зоны кольцевого рабочего пространства, на протяжении которых лопасти будут проходить в проемах запорных барабанов, длина дуг рабочего хода сегментов «впуска-сжатия» и «расширения-выпуска» оказывалась незначительной. Т.е. невозможно было достичь заметных степеней сжатия и расширения. В рамках этой схемы можно было идти двумя путями- либо заметно уменьшать объемы камеры сгорания и высоту лопасти, чтобы при малом объеме камер сгорания сделать заметными степени сжатия и расширения.

Либо резко увеличивать диаметр поверхности ротора- чтобы при заметном объеме камер сгорания дать значительные степени «сжатия- расширения» и длину рабочего хода. Но тогда бы надо было делать диаметр корпуса более 600 мм., что сразу приводило к сложности изготовления и значительным габаритам двигателя. Что мне никак не подходило.
Т.е. тут прорисовывалась ситуация как с газовыми турбинами- при всех своих плюсах и значительной привлекательности, они после уменьшения размеров до определенного параметра, они начинают резко терять свои возможности и показатель их удельной мощности в малых массо-габаритных размерах резко снижается. При сохранении высокой прожерливости.
И я решил отказаться от этой компоновочной схемы.

 

Сразу оговорюсь, понимая скромность своих сил и трудность выхода на глобальный рынок с новой продукцией, я сразу нацелен со своими разработками на рыночных сегмент 2-х тактных двигателей. Т.е. малоразмерных моторов малого веса, которые сегодня имееют малый ресурс (около 500 моточасов), большой расход топлива и грязный выхлоп. Этот рынок давно жаждет появления новой продукции и с радостью будет восприниать ее, так как существующая продукция имеет высокую цену и очень низкие эксплуатационные характеристики. А пытаться «воевать» на рынке 4-х тактных автомобильных моторов, которые имеют очень солидные моторесурсы и сравнительно приемлемую экономичность- дело крайне трудное.
Итак — мой шанс создать маленький и мощный мотор с хорошим моторесурсом, на замену 2-тактных двигателей для мотороллеров, мотоциклов, мотоблоков, квадроциклов, подвесных лодочных моторов, всяких бензопил и пр. Т.е. мотор мой должен изначально проектироваться малым и легким.

А указанная выше схема могла быть хорошо рабочей только в большом диаметре ротора и корпуса. И это меня не устраивало.

После осмысления полученных на испытаниях результатов и их анализа я устроил мозговой штурм и сумел найти выход на новые решения. В итоге на сегодняшния день — октябрь 2011 г. я имею три очень разных схемы. Каждая из этих схем является хорошим, но весьма необычным выходом на новые вариации схемы «типа Тверской». Каждя из них имеет преимущества на для определенных габаритов.
На все эти схемы уже поданы патентные заявки на изобретения.
Я начинаю выкладывать новые схемы с самой большой и «громоздкой», а закончу- с самой маленькой и «компактной».

СХЕМА «А»

 

 

 

 

 

 

 

 

В данных эскизах несколько нарушены пропорции элементов мотора — поэтому прошу не придираться к недостаткам кажущегося нарушения этапов и геометрии схем газораспределения. . Выражаю благодарность одному из постоянных посетителей этого сайта Вячеславу Воронину — ник telekast, за помощь в создании GIF анимации.

В данной схеме очень легко делать различными соотношения рабочих объёмов компрессорной секции и роторной секции. Т.е. легко можно делать степени сжатия и расширения в любых соотношениях меж ними. Например: делать степень расширения больше на 30-50%, чем степень сжатия, и тем самым попытаться заметно поднять КПД. Это достигается изменением «толщины» роторов и корпусов роторной и компрессорной секций.

&nbsp Данная схема — «Схема №1» или «Схема «А», является самой сложной и самой «габаритной» из всех новых схем. Например — в ней 12 шестерен. Для не сильно разобравшихся в схеме персон поясняю — ни одна шестерня не передает основную мощность, все они «крутят» вспомогательные элементы с небольшими усилиями. Но вот самая маленькая компоновка — схема «С», будет иметь всего 3 шестерни.

&nbsp Зато схема схема «А» обещает быть самой мощной, так как при габаритах корпуса: D 620 мм.х 160 мм. она имеет плечо крутящего момента 125 мм. и дает 9 рабочих тактов за оборот вала. Я прикинул теоретический крутящий момент, но не хочу его тут обозначать, ибо получается что-то невероятное.
&nbsp Для сравнения — наиболее распространенный двигатель грузовика КаМАЗа при 8 цилиндрах имеет плечо крутящего момента 60 мм, при 2-х рабочих тактах за один оборот главного вала двигателя. При габаритах 1103х908х965, весе в 850-900 кг. и мощности в 240-260 л.с.


НЕСКОЛЬКО ПОЗЖЕ ВЫЛОЖУ НА ЭТОЙ СТРАНИЧКЕ САЙТА ИНФОРМАЦИЮ ПО ДРУГИМ КОМПОНОВОЧНЫМ СХЕМАМ
РАЗВИТИЯ ЭТОГО НАПРАВЛЕНИЯ РОТОРНЫХ ДВИГАТЕЛЙ — СХЕМАМ «В» и «С».

ВЫКЛАДЫВАЮ СХЕМУ «В»
Работаю на ноутбуке- поэтому качество не самое хорошее. 2 недели сижу в Москве, вдали от большого своего компа со всей основной информацией, посему- извиняйте за не самое лучшее качество.

 

 

Конструкция получилась «вывернутой наизнанку» — с центральным запорным барабаном(2) и вынесенными на его перефирию секторами «впуска- сжатия» и «расширения -выпуска». Между секторами размещены камеры сгорания (5). (3) — это роторы сеторов «впуска- сжатия», а (4) — это роторы силовых секторов, секторов «расширения-выпуска». Газораспределением — впуском и выпуском рабочих газов в и из камер сгорания будут управлять вращающиеся золотниковые клапана. Они на схемах пока не указаны- расположены на пересечении газоводов, рядом с Камерами Сгорания.


Особенность схемы — мощность с двух роторов силовых секторов передается через шестерни на главный вал. Вижу возражения- мощность передается через шестерни, это плохо, шестерни не выдержат нагрузок. Но — двигатель должен вращать роторы силовых секторов достаточно плавно, при этом крутящий момент будут передавать сразу две шестерни, симметрично относительно оси главного вала разнесенные по сторонам. Зато на главный вал сразу будет передаваться в два раза уменьшенные обороты, с увеличенным вдвое усилием крутящего момента. Полагаю, что для двигателей небольшой мощности в 60 — 80 КВт такая схема вполне будет дееспособной.
В этой схеме удается достигнуть значительной схемы компактности конструкции, так как при тех же габаритах корпуса ходы роторов в таким образом устроенных рабочих секторах оказываются заметно длиннее. Далее- в такой компоновке каналы газообмена между Камерой Сгорания и секторами «сжатия» и «расширения» можно сделать предельно короткими. А это важный элемент эффективности и вообще работоспособости двигателя.

Создаваемая сейчас модель имеет максим габарит корпса 420 мм, плечо крутящего момента 56 мм (у ЗИЛ-130 плечо крут момента 47 мм). Содержит 8 шестерен, для привода всех элементов- запорных барабанов и золотниковых клапанов.
В прорисованной компоновке данный двигатель будет давать 4 рабочих хода за один оборот главного вала.
Размышления по поводу системы охлаждения и КПД схемы читайте в моих постах на Форуме сайта ОХЛАЖДЕНИЕ


8 декабря 11 г. — НАЧИНАЮ ВЫКЛАДЫВАТЬ МАТЕРИАЛЫ ПО СХЕМЕ «С»

Это (3-я по счету из последних разработанных мною конструкций) самая малая и компактная из всех разработанных мною схем. Обошелся без длинных газоводов на роторе и обособленных золотниковых клапанов. Для этого пришлось делать камеры сгорания в роторах рабочих секций. Т.е. камеры сгорания вращаются с вращением роторов. В двигателе этой компоновки содержится две рабочих роторных секции (две силовых машины), а между ними — по центру- расположена компрессорная секция.
В моторе такой компоновки всего три шестерни.Двигатель дает 8 рабочих тактов за один оборот главного вала.
Максимальный габарит корпуса создаваемой сейчас модели будет 150 мм — т.е. модель делается весьма миниатюрной. При таком малом габарите двигателя плечо крутящего момента составляет — 40 мм, т.е. несколько больше чем у большинства моторов современных легковых машин, мощность которых составляет 100- 120 л.с.. Корпус двигателя сейчас делается из дюрали Д16Т, поэтому двигатель обещает быть очень легким.
В схему работы двигателя встроен паровой цикл, т.е. теоретически на выхлоп будут идти газы с температурой не более 200 градусов (у современных поршневых ДВС — 800-1000 град.). Т.е. таким «охлаждением изнутри» решается сразу две задачи — резкое увеличение КПД и исчезновение необходимости в специальной и громоздкой системе охлаждения.

 

 

В данной конструкции легко делать разными по объему сегменты сжатия и сегменты расширения. На выложенном ниже эскизе — схеме показано, что центральная секция (секция сжатия) меньше по толщине и по диаметру. За счет этого объем сегмента сжатия, меньше чем сегмент расширения. Т.е. степень сжатия меньше, чем степень расширения.

 

 

25 декабря 11г. Надо сказать, что схема «С» имеет несколько разных решений в плане своей компоновки. Т.е. это принципиальное объемное решение по типу размещения и взаимоотношения разных секций двигателя имеет несколько различных вариантов применения различных второстепенных элементов и систем двигателя. Вверху на чертеже представлено одно из таких решений. При этом различные варианты схемы «С» могут давать достаточно разные уровни решения главных задач- соотношения степени сжатия к степени расширения, разные типы встраивания в двигатель «паровой фазы», разные варианты размещения каналов газообмена и пр. На данный момент я экспериментирую с одним из таких вариантов, но уже готовятся рабочие чертежи для изготовления очередного компоновочного решения схемы «С».
13 января 12г.
Двигатель схемы «С» изготовлен. Начинаю собирать мотор — фотографии некоторых деталей ЗДЕСЬ.
05.07.13г.
Давно не обновлял этот раздел, хотя материала накопилось много. Это время активно занимался совершенствованием схемы компоновки «С», считая её самой эффективной и перспективной. Она оказалась возможной к многим вариациям. Подано несколько патентных заявок на изобретения на эти схемы. Выкладываю ГИФ анимацию киниматической схемы одной из таких компоновок. Эта анимация визуализирует только часть конструктивных (но основные -показаны) элементов для осуществления рабочих процессов двигателя. Делать элементы в движении со всеми их деталями- получится весьма громоздко и трудно воспринимаемо…

 

 

 

16.07.13г. Что-то ГИФ анимация туго работает, в смысле — тормозит работу сервера. Вынужден на её место поставить статичную картинки- всего один кадр из анимации. Не так наглядно, но — зато сайт лучше теперь работает.

Опубликовано в Без рубрики
Комментариев нет »

Двигатель Ванкеля

   Единственной на сегодняшний день выпускаемой в промышленных масштабах моделью роторного мотора является двигатель Ванкеля, который относится к типу роторных двигателей с планетарным круговым движением главного рабочего элемента. Такая конструктивная компоновка роторного двигателя является, несомненно, самойпростой по своему техническому устройству, но не самой оптимальной по способу организации рабочих процессов и поэтому имеет свои неотъемлемые и серьезные недостатки.

Роторных двигателей с планетарным движением главного рабочего элемента существует достаточно много разновидностей, но по существу они отличаются друг от друга лишь количеством граней ротора и соотвествующей формой внутренней поверхности корпуса . Приведенные схемы разных компоновок подобных моторов взяты из книги «Судовые роторные двигатели», издания 1967 года, авторов Е.Акатов, В.Бологов и др. и подготовлены к публикаци в электронном виде автором этого сайта.

Кратко рассмотрим саму конструкцию двигателя этого типа вместе с историей его появления и сферой применения.
    История создания роторных двигателей с планетарным вращательным движением главного рабочего элемента начинается в 1943 году, когда изобретатель Майлар предложил первую подобную схему. Потом в течение короткого времени было подано еще несколько патентов на двигатели подобной схемы. В том числе и разработчик германской фирмы NSU – В. Фреде. Но главным слабым местом этой схемы роторного двигателя были системы уплотнений между ребрами на стыке соседних граней вращающегося треугольного ротора и стенками неподвижного корпуса. Вот к решению к этой сложной инженерной задачи и был подключен Р.Ванкель как специалист по уплотнениям. Вскоре, благодаря своей энергичности и инженерному мышлению он стал лидером группы разработчиков. В 1957 году в лаборатории фирмы NSU построили прототип роторного двигателя типа «DKM», с треугольным ротором и рабочей камерой в форме капсулы, в которой ротор был неподвижным, а корпус вращался вокруг него. Гораздо более практичным был вариант компоновки типа «KKM» с нормальной схемой — рабочая камера в корпусе была неподвижной, а в ней вращался ротор. Этот мотор появился годом позже, в 1958-м. В ноябре 1959 года NSU официально объявила о создании работающего роторного двигателя. За короткое время около 100 компаний во всём мире приобрели лицензии на эту технологию, при этом 34 из них были японскими.

Мотор оказался очень небольшим, мощным и имел мало деталей. В Европе начались продажи машин с роторными двигателями, но как оказалось у них мал моторесурс, они потребляли много топлива и имели очень токсичный выхлоп. Нефтяной кризис 1973 года из-за очередной арабо-израильской войны, когда цены на бензин увеличились в несколько раз, резко поставил вопрос об экономичности автомобильных моторов. Из-за этого в Европе и Америке попытки довести роторный двигатель Ванкеля до нужной степени совершенства были прекращены. И только японская компания Mazda упорно продолжала работы в этом направлении. А еще советский завод ВАЗ – так как бензин в то время в СССР стоил копейки, а мощный, хотя и с малым ресурсом, мотор был нужен силовым ведомствам. Но в 2004 году малосерийное производство на ВАЗе было закрыто и на сегодняшний момент Mazda является единственным автопроизводителем, который серийно выпускает автомобили с роторным двигателем.

    В настоящее время в мире серийно выпускается лишь один автомобиль с роторным двигателем системы Ванкеля – это спортивное купе Mazda RX-8. На этой машине устанавливается мотор «RENESIS» с двумя роторными секциями общим объемом 1,3 литра. Двигатель исполняется в нескольких вариантах с мощностью от 200 до 250 л.с.

После краткого обзора истории роторного двигателя с планетарным движением ротора остановимся на рассмотрении его преимуществ и недостатков.

ПРЕИМУЩЕСТВА роторного двигателя Ванкеля по сравнению с традиционными поршневыми моторами:
1) Повышенная удельная мощность (л.с./кг), она практически в два раза превышает этот показатель поршневых 4-х тактных двигателей. Масса неравномерно движущихся частей в двигателе Ванкеля гораздо меньше, чем в аналогичных по мощности поршневых двигателях, и амплитуда таких неуравновешенных движений заметно меньше. Это происходит из-за того, что в «поршневике» осуществляются возвратно- поступательные движения, а в двигателе Ванкеля- вращательные, планетарной схемы. К тому же в двигателе Ванкеля отсутствуют коленчатый вал и шатуны.

На повышенную мощность Ванкеля играет и то, что такой двигатель однороторной конструкции выдаёт мощность в течение трёх четвертей каждого оборота выходного вала. В отличие от одноцилиндрового 4-х тактного поршневого двигателя, который выдаёт мощность только в течение одной четверти каждого оборота выходного вала.

Именно по этим причинам с единицы объема камеры сгорания в серийном роторном моторе Ванкеля снимается гораздо большая мощность. При объёме рабочей камеры 1300 см Mazda RX-8 имеет мощность 200 л.с – 250 л.с., а прежняя модель Mazda RX-7, с мотором такого же объема, но с турбокомпрессором выдавала 350 л.с. Именно поэтому особым признаком Mazda RX являются отличные динамические характеристики: на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более).

2) Двигатель Ванкеля гораздо легче механически уравновесить и избавиться от вибрации, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей;

 3) Габаритные размеры роторно-поршневого двигателя меньше в 1,5—2 раза в соотношении со сравнимым по мощности поршневым мотором. В двигателе Ванкеля на 35 — 40 % меньшее количество деталей.

Недостатки

1) Малая длина рабочего хода грани треугольного ротора, Хотя эти показатели напрямую с поршневым мотором сравнивать сложно – слишком различны типы движений поршня и ротора, но у двигателя Ванкеля примерно на пятую часть меньше длина рабочего хода. Тут есть одно коренное отличие Ванкеля от поршневого мотора- у «поршневика» идет увеличение объема в направлении одного линейного направления, которое совпадает с направлением рабочего хода. А у Ванкеля – это движение сложное и только часть траектории перемещения треугольного ротора с планетарным движением становится собственно линией рабочего хода. (РИС.) Именно поэтому у двигателя Ванкеля топливная эффективность хуже, чем у поршневых моторов. Поэтому из-за малой длины рабочего хода очень высока температура выхлопных газов – рабочие газы не успевают передать основное свое давление на ротор, как уже открывается выхлопное окно и горячие газы высокого давления с еще не прекратившими горение объемными фрагментами рабочей смеси выходят в выхлопную трубу. Поэтому температура выхлопных газов у двигателя Ванкеля очень высока.

2) Сложная форма камеры сгорания «серповидной» формы. У такой камеры сгорания большая поверхность контакта газов со стенками корпуса и ротором. Поэтому значительная честь тепла уходит на нагрев деталей мотора, а это снижает тепловой КПД и усиливает нагрев мотора. Кроме того, такая форма камеры сгорания приводит к ухудшению смесеобразования и замедлению скорости горения рабочей смеси. Поэтому на моторе Mazda RX-8 стоят 2 свечи зажигания на одной роторной секции. Эти особенности так же отрицательно влияют на уровень термодинамического КПД.

3) Потенциально невысокий для роторного мотора крутящий момент. Для того чтобы снять вращение с движущегося ротора, центр вращения которого сам непрерывно осуществляет планетарное вращение по круговой траектории вокруг геометрического центра рабочей камеры, в этом двигателе применяется эксцентрично расположенные на главном валу диски. По сути дела – это элементы кривошипного устройства. То есть двигатель Ванкеля так и не смог полностью избавиться от главного недостатка классических поршневых ДВС – кривошипно – шатунного механизма. Хоть он и представлен в моторе Ванкеля в своем облегченном варианте – в виде эксцентрикового вала, но самые главные пороки этого механизма: рваный, пульсирующий режим крутящего момента и малое плечо главного элемента, воспринимающего крутящий момент – так и остались «не излеченными». (РИС.) Именно поэтому односекционный Ванкель малоработоспособен и нужно делать 2 или 3 роторные секции для получений нормальных рабочих характеристик, еще желательно ставить на вал дополнительно и маховик.

Кроме наличия в двигателе Ванкеля кривошипного механизма, на малый для роторного двигателя крутящий момент еще влияет и то, что кинематическая схема такого мотора устроена очень нерационально с точки зрения восприятия поверхностью ротора давления рабочих газов расширения. Поэтому лишь некоторая часть давления – около трети – переводится в рабочее вращение ротора и создает крутящий момент. Подробнее крутящем моменте поговорим в специальном разделе сайта.

Подробно о принципе возникновения крутящего момента в роторном двигателе Ванкеля Смотри на страничке сайта КРУТЯЩИЙ МОМЕНТ

4) Присутствие в корпусе вибраций. Дело в том, что система роторного мотора с планетарным движением рабочего элемента предполагает неравновесное движение этого органа. Т.е. при вращении центр масс ротора совершает непрерывное вращательное движение вокруг центра масс корпуса и радиус этого вращения равен плечу эксцентрика главного вала мотора. Именно поэтому на корпус мотора действует изнутри постоянно вращающийся вектор силы, равный центробежной силе, возникающей на роторе. То есть ротор при вращении на вращающемся в свою очередь эксцентриковом валу имеет в характере своего движения неизбежные и выраженные элементы колебательного движения. Что и приводит к неизбежности вибраций. (РИС.)

5) Быстрый износ торцевых радиальных уплотнений на углах треугольника ротора, так как на них идет сильная радиальная нагрузка, неизбежная в двигателе Ванкеля по самому его принципу работы. (РИС.)

6) Постоянная угроза прорыва газов высокого давления из полости одного рабочего такта в полость другого такта. Это происходит потому, что контакт радиального уплотнения ребра ротора и стенки камеры сгорания происходит по одной тонкой линии. При этом еще существует проблема прорыва газов через гнезда установки свечей, когда над ними проходит ребро ротора.

7) Сложная система смазки вращающегося ротора. В моторе Mazda RX-8 специальные форсунки впрыскивают масло в камеры сгорания для смазки трущихся при вращении о стенки камеры сгорания ребер ротора. Это усиливает токсичность выхлопа и одновременно делает мотор очень требовательным к качеству масла. Кроме того, при высоких оборотах возникает повышенные требования к смазке цилиндрической поверхности эксцентриковой части главного вала, вокруг которой вращается ротор, и которая снимает главное усилие с ротора и переводит во вращение вала. Именно эти две технические трудности, решить которые весьма непросто, приводили к недостаточной смазке на высоких оборотах наиболее нагруженных трением деталей такого мотора, а это, соответственно, резко уменьшало моторесурс двигателя. Именно недостаточное решение таких технических задач приводило к очень малому ресурсу моторов Ванкеля, которые выпускал отечественный АвтоВАЗ. (РИС.- указать цилиндрическую поверхность контакта внутреннего гнеда ротора и эксцентр диска вала)

8) Высокие требования к точности исполнения деталей сложной формы делают такой мотор сложным в производстве. Такое производство требует высокоточного и дорогого оборудования — станков, способных создавать сложные объемы рабочей камеры с криволинейной эпитрохоидальной поверхностью. Сам ротор так же имеет форму сложного треугольника с выпуклыми поверхностями.

***

Как видно из содержания этого раздела сайта, роторный двигатель Ванкеля имеет выраженные преимущества, так и большое количество практически непреодолимых недостатков, которые так и не позволили этому типу двигателей вытеснить поршневые моторы из арсенала современной техники. Хотя такие перспективы всерьез обсуждались в конце 60-х и начале 70-х годов прошлого века, и в аналитических обзорах высказывались мнения, что к концу 80-х годов 20-го века более половины автомобилей планеты будут уже иметь роторные двигатели разных типов.

И, несмотря на массу отрицательных черт и технических трудностей, двигатель Ванкеля смог появиться и состоятся как коммерчески дееспособный вид техники, потому что недостатки его главных конкурентов – поршневых моторов с кривошипно – шатунными механизмами еще серьезнее и многочисленнее.

Игорь Исаев.»Роторные двигатели. Прошлое,настоящее,будущее….»

Как работают роторные двигатели Ванкеля

 

Содержание

Как работают роторные двигатели Ванкеля

Как работает роторный двигатель Ванкеля? Двигатель Ванкеля использует процесс кругового сгорания и имеет высокое отношение мощности к весу с небольшим количеством движущихся частей.

Цикл сгорания: как работает Ванкеля

Роторные двигатели срабатывают 3 раза за каждый оборот ротора. Функции впуска, сжатия, сгорания и выпуска происходят одновременно.

Топливные форсунки

Масляный инжектор
Сжатие

При герметичной камере топливно-воздушная смесь сжимается, увеличивая мощность и эффективность взрыва.

Впуск

При вращении ротора создается вакуум и впускные отверстия открываются, втягивая топливно-воздушную смесь в корпус.

Впускные каналы

Выпускное отверстие
Выхлоп

Когда ротор вращается, выпускные отверстия открываются, выталкивая выхлоп и любое несгоревшее топливо из корпуса.

Зажигание

Искры воспламеняют топливо, толкая ротор по часовой стрелке. Каждая сторона ротора имеет камеру сгорания, которая обеспечивает большее пространство для расширения топлива, позволяя сжечь как можно больше топлива.

Свечи зажигания

Нижняя свеча зажигания имеет большее отверстие и воспламеняет большую часть топлива, а верхняя свеча зажигания воспламеняет топливо в меньшем конце камеры сгорания.

Ротор и эксцентриковый вал

Из-за постоянного сгорания большинство серийных автомобилей имеют только один или два ротора (мощность сравнима с 3 или 6 цилиндрами в поршневых двигателях).

 

Верхние уплотнения

Каждый угол ротора имеет верхнее уплотнение, которое прижимается к корпусу.

Торцевые и угловые уплотнения

удерживают масло вокруг эксцентрикового вала и удерживают топливно-воздушную смесь в камере сгорания.

Эксцентриковый вал

Эксцентриковый вал вращается 3 раза при каждом обороте ротора и проходит через центр двигателя, передавая энергию сгорания приводному валу. Кулачки смещены и расположены напротив друг друга на валу 9.0003

Зубчатый венец
Противовес

Противовес компенсирует любой дисбаланс роторов и эксцентрикового вала, снижая шум и вибрацию двигателя.

Стационарная шестерня

Стационарная шестерня размещается в боковой пластине корпуса и привинчивается снаружи. Зубья входят в зацепление с зубчатым венцом ротора и заставляют ротор вращаться вокруг эксцентрикового вала.

об/мин

об/мин (оборотов в минуту) указывает, сколько раз эксцентриковый вал поворачивается на 360°. Поскольку эксцентриковый вал вращается 3 раза за каждый оборот ротора, при 3000 об/мин ротор будет вращаться 1000 раз.

Охлаждение

Поток

Поток охлаждающей жидкости направляется сначала через сторону сгорания корпуса (самая горячая поверхность), а затем через сторону впуска, чтобы поддерживать постоянную температуру во всем двигателе.

Водяной насос

Крыльчатка водяного насоса проталкивает охлаждающую жидкость внутрь корпуса и наружу.

Радиатор

Радиатор представляет собой набор металлических трубок и ребер. Горячий теплоноситель поступает и проходит по трубкам. Воздух, проходящий через радиатор (через ребра), охлаждает охлаждающую жидкость, прежде чем она будет закачана обратно в корпус.

Термостат

Термостат закрыт до тех пор, пока двигатель не достигнет оптимальной рабочей температуры, а затем периодически открывается, пропуская охлаждающую жидкость через радиатор для поддержания постоянной температуры.

Масляная система

Моторное масло помогает смазывать, очищать, защищать и охлаждать детали двигателя.

Эксцентриковый вал

Масло прокачивается через полый центр эксцентрикового вала для охлаждения и смазки подшипников. Отверстия в валу позволяют маслу разбрызгиваться на ротор и стационарные шестерни, а также на подшипники внутри боковых пластин.

Масляный инжектор

Инжекторы впрыскивают масло в корпус ротора для смазки верхних уплотнений и корпуса.

Масляный фильтр

Масляный фильтр удаляет из масла нежелательные примеси.

Дозирующий насос

Отдельно от масляного насоса дозирующий насос регулирует количество масла, впрыскиваемого в корпус ротора; чем выше обороты двигателя, тем больше масла впрыскивается.

Масляный радиатор

Перед циркуляцией масла через эксцентриковый вал.

Масляный поддон

Масляный поддон крепится непосредственно к нижней части корпуса. В этом месте масло может помочь охладить корпус.

Масляный насос

Масляный насос всасывает масло из поддона и проталкивает его через систему.

Схема роторного двигателя Ванкеля

Каталожные номера
  • Как работают роторные двигатели — Mazda RX-7 Wankel — Подробное объяснение. (2016). YouTube. Получено 14 декабря 2016 г. с https://youtu.be/sd6pJtR4PaY 9.0012
  • Как построить роторный двигатель. (2016). YouTube. Получено 14 декабря 2016 г. с https://youtu.be/LSEs8VXzVPU
  • .
  • Сборка роторного двигателя (НОВИНКА!) Пользовательский трехроторный турбодвигатель Bridgeport Race Engine. (2016). YouTube. Получено 14 декабря 2016 г. с https://youtu.be/AQ4SLg5tXVE
  • .
  • Система смазки роторного двигателя. (2016). YouTube. Получено 14 декабря 2016 г. с https://youtu.be/ESVouiAVyXg
  • .
  • Письмо с новостями об авиационных роторных двигателях. (2017). Rotaryeng.net. Получено 31 марта 2017 г. с http://www. rotaryeng.net/ 9.0012
  • Как работает роторный двигатель Ванкеля. (2016). Как работает автомобиль. Получено 14 декабря 2016 г. с https://www.howacarworks.com/technology/how-a-rotary-wankel-engine-works
  • .
  • Термическое изображение нового дизельного роторного двигателя Liquid Piston по сравнению с традиционным роторным двигателем Ванкеля.. (2016). Имгур. Получено 14 декабря 2016 г. с http://i.imgur.com/jGsHqoS.gifv
  • .
  • RX-8 Справка. (2017). Rx8help.com. Получено 31 марта 2017 г. с http://www.rx8help.com/home/overview.html
  • .

Совместное использование

Обмен изображениями

(щелкните для увеличения)






Используйте следующий код для встраивания и публикации на своем веб-сайте.

  

Введите ниже свой почтовый индекс, чтобы просмотреть компании с низкими тарифами на страхование.

AutoHomeЗдоровьеЖизньБизнесМотоциклPetMedicareАренда

 Защищено шифрованием SHA-256

Редакционные правила: Мы являемся бесплатным онлайн-ресурсом для всех, кто хочет узнать больше о страховании. Наша цель — быть объективным сторонним ресурсом по всем юридическим и страховым вопросам. Мы регулярно обновляем наш сайт, и весь контент проверяется экспертами.

Дэн Уэсли — американский предприниматель и руководитель. Он является экспертом в области страхования и личных финансов, известен созданием веб-порталов, которые соединяют людей с ресурсами, помогающими им достигать своих целей. Будучи наставником и лидером для многих, Дэн стремится настроить себя и окружающих на успех. Опыт Дэн получил высшее образование в 2000 году по специальности «Ядерная медицина». Дэн ушел из медицины, но продолжает…

Полная биография →

Автор Дэниел Уэсли

Как все устроено: двигатель Ванкеля

DeLorean из Назад в будущее установил стандарт для автомобилей будущего — автомобилей 2015 года, согласно фильму. В 1985 году, когда вышел фильм, в большинстве автомобилей все еще использовались колеса, приводимые в движение поршневыми двигателями. Примерно в то же время менее известный двигатель только совершенствовался и за ним полагалось настоящее будущее автомобилей. Двигатель Ванкеля был тем малоизвестным двигателем, который обещал так много.

Двигатель Ванкеля — это тип роторного двигателя. Роторные двигатели существуют со времен Первой мировой войны и с тех пор используются в некоторых самолетах, мотоциклах и автомобилях. Двигатель Ванкеля был изобретен Феликсом Ванкелем, инженером NSU Motorenwerke AG. В 1964 году NSU представила свой первый автомобиль с этим двигателем — NSU Spider. Журнал Time объяснил, что NSU потребовалось 10 лет разработки, прежде чем этот новый двигатель можно было начать серийное производство с удовлетворительными результатами. Этот новый двигатель, весивший примерно вдвое меньше, чем обычный поршневой двигатель той же мощности, в то время казался многообещающим. Известные компании, такие как Curtiss-Wright Corp., Outboard Marine Corp. и Rolls-Royce, заплатили лицензии NSU на двигатель Ванкеля, поскольку в то время считалось, что двигатели Ванкеля заменят поршневые двигатели.

На протяжении многих лет двигатель Ванкеля использовался в различных целях, в том числе в двигателях самолетов, мотоциклов и гоночных автомобилей. Однако очень немногие автомобильные компании приняли этот двигатель. Японский производитель автомобилей Mazda Motor Corp., в частности, является крупнейшим пользователем двигателей Ванкеля в своих автомобилях. Двигатель Ванкеля производит энергию, вращая ротор внутри корпуса. Ротор треугольный, с выпуклыми сторонами и карманами на трех гранях. Эти карманы содержат топливо и обеспечивают камеру для воспламенения топлива. Корпус имеет примерно овальную форму, напоминающую восьмерку с более широким средним сечением (эта фигура называется эпитрохоидой).

Внутри корпуса ротор вращается вокруг центральной шестерни и выходного вала. Впускные и выпускные отверстия для топлива, а также свечи зажигания находятся на стенках корпуса. Эти порты не требуют клапанов, как в стандартных поршневых двигателях, и напрямую связаны с дросселем и выхлопом соответственно. Это помогает уменьшить сложность двигателя за счет уменьшения количества задействованных деталей.

Роторный двигатель сохраняет часть энергии, которая в противном случае была бы потеряна при изменении направления движения поршней за счет использования энергии для вращения ротора. В двигателях внутреннего сгорания поршни — или ротор, как в случае роторного двигателя — приводятся в движение за счет воспламенения топлива. В случае поршневых двигателей этим поршням разрешена только одна степень свободы. Поршни должны двигаться вверх по оси, прежде чем изменить направление своего движения и двигаться вниз по той же оси. В роторном двигателе ротору снова разрешена только одна степень свободы: вращательная. Это позволяет вращать ротор непрерывно в одном и том же направлении. Когда ротор вращается, двигатель совершает те же четыре такта, что и обычный поршневой двигатель. Топливо поступает в корпус через впускное отверстие во время такта впуска до того, как ротор сжимает топливо во время второго такта. Свечи зажигания воспламеняют топливо на третьем такте, вызывая быстрое расширение газов, что приводит к дальнейшему вращению ротора и выталкиванию отработавших газов к выпускному отверстию на четвертом такте.

Двигатель Ванкеля также состоит из меньшего количества и менее сложных деталей, чем поршневые двигатели. Это позволило построить очень маленькие такие двигатели. В 2001 году Карлос Фернандес-Пелло из Калифорнийского университета в Беркли успешно испытал двигатель Ванкеля размером с пенни. Идея микродвигателей заключается в том, что они производят больше энергии, чем современные силовые элементы того же размера. Их также можно заправлять, а не выбрасывать, что снижает затраты, связанные с отходами и утилизацией. Хотя двигатель Ванкеля имеет инновационную конструкцию и удовлетворительно высокое для двигателя отношение мощности к весу, он не получил широкого распространения, и это в первую очередь связано со сравнительно высокими выбросами.