29Май

Турбина устройство: Устройство и неисправности турбокомпрессоров | Новости автомира

Устройство турбины от ТурбоМикрон

 


Перед походом в сервис, который производит ремонт турбин, необходимо разобраться с устройством турбины, чтобы при дефектации понимать какие детали действительно необходимо заменить, а какие можно оставить.

Несмотря на широкий модельный ряд турбокомпрессоров, они имеют незначительные конструктивные отличия, и все они работают по одному принципу и выполняют одинаковые функции.

Под термином «турбина» часто подразумевают турбокомпрессор. Это не совсем соответствует истине, так как турбина является всего лишь одной из составных частей турбокомпрессора.

Турбокомпрессор состоит из среднего корпуса, вала с крыльчатками, одного либо двух опорных и одного упорного подшипников скольжения, системы уплотнений (все в сборе называется картридж), двух улиток («горячей и холодной»), в которых вращаются крыльчатки. Опорные подшипники плавающего типа, т.е. имеют зазор со стороны корпуса и вала (тот самый радиальный люфт, который хорошо ощутим при нажатии на кончик вала турбины). Подшипники смазываются моторным маслом системы смазки двигателя. Масло подается по каналам в корпусе подшипников. Для герметизации масла на валу установлены уплотнительные кольца. В некоторых конструкциях бензиновых двигателей для улучшения охлаждения дополнительно к смазке применяется жидкостное охлаждение турбины. Где корпус подшипников турбонагнеталя включен в двухконтурную систему охлаждения двигателя.

На всё это устройство навешен пневмопривод, приводящий в действие байпасный (перепускной) клапан. Назначение байпасного клапана – регулировать обороты турбины и, соответственно, производительность компрессора. Сама турбина – это крыльчатка (колесо), неразъемно насаженная на вал и приводящая во вращение другую крыльчатку – компрессор. Колесо турбины изготовлено из жаростойкого сплава, компрессор – алюминиевый, вал – обычная среднелегированная сталь и в редких случаях сплавы/керамика. Отремонтировать эти детали невозможно, их можно только заменить.

Корпус турбокомпрессора представляет собой сплошную отливку из чугуна, в которой на подшипниках вращается вал.

Улитка турбины – чугунная деталь сложной формы. Именно она формирует газовый поток, вращающий колесо турбины. Улитка компрессора представляет собой алюминиевую отливку с механически обработанным местом под компрессор. Вращающийся компрессор засасывает воздух через центральное отверстие, сжимает его и по кольцевому каналу подаёт в двигатель.

В воздушном тракте высокого давления (после компрессора) может устанавливаться предохранительный клапан. Он защищает системы от скачка давления воздуха, который может произойти при резком закрытии дроссельной заслонки. Избыточное давление может стравливаться в атмосферу с помощью блоу-офф клапана (blow-off) или перепускаться на вход компрессора с помощью бай-пас клапана (by-pass).

В данной статье мы рассмотрели общее устройство турбокомпрессора, разобравшись с которым, Вы будете понимать о чем идет речь во время диагностики либо дефектации турбокомпрессора на сервисе. Если у Вас возникают сложности, обращайтесь в ТурбоМикрон, мы поможем решить любые вопросы, связанные с турбинами.

Устройство турбины | carakoom.com

Как устроена турбина Устройство системы турбонаддува очень простое. Турбина устанавливается на выпускной коллектор двигателя. Выхопные газы из…

Как устроена турбина

Устройство системы турбонаддува очень простое. Турбина устанавливается на выпускной коллектор двигателя. Выхопные газы из цилиндров вращают турбину. Турбина соединена валом с компрессором, который находится между воздушным фильтром и впускным коллектором. Компрессор сжимает воздух, который поступает в цилиндры.

Выхлопные газы из цилиндров проходят через крыльчатку турбины и вращают ее. Больше выхлопных газов – быстрее вращается крыльчатка турбины. На другом конце вала распологается крыльчатка компрессора, которая подает воздух к цилиндрам.

Для того, чтобы выдерживать скорости вращения в 150.000 оборотов в минуту, вал турбины должен поддерживаться особыми подшипниками. Большинство обычных подшипников на таких скоростях просто разваливаются, поэтому в турбинах используются особые гидроподшипники.

В таких подшипниках осуществлен постоянный подвод масла к валу. Масло выполняет две функции: охлаждает вал и другие детали турбины, а также снижает трение.

Одна из проблем турбонагнетателей заключается в том, что они не дают мгновенной реакции на газ. Турбине необходима секунда или две, чтобы раскрутиться до оптимальной скорости и создать нужное давление. Эта секундная задержка называется турбо-лагом, после которой автомобиль устремляется вперед.

Один из вариантов понизить турбо-лаг – уменьшить инерцию вращающихся деталей, уменьшив их вес. Это позволит турбине и компрессору раскручиваться быстрее и создавать давление раньше. Хотите меньше инерции, выбирайте турбину меньшего размера. Маленькие турбины создают давление быстрее и на более низких оборотах двигателя, но на высоких скоростях, когда необходимо очень много воздуха, маленькие турбины могут не справиться со сжатием воздуха. При больших скоростях двигателя, когда поток выхлопных газов возрастает, создается угроза для маленьких турбин, через которые проходит слишком большой поток и скорость возрастает до огромных показателей.


Кстати, есть такая система, как антилаг. Ее используют на драговых гоночных турбовых авто. Почитайте по ссылке.

У многих систем турбонаддува есть клапан вестгейта (wastegate valve), который позволяет выводить излишние выхлопные газы, дабы турбина не раскручивалась слишком быстро. Пружинка в клапане вестгейта определяет давление в системе, если давление становится выше определенного показателя, это значит, что турбина вращается слишком быстро, тогда излишнее давление сбрасывается через вестгейт, а скорость вращения турбины замедляется.

Некоторые турбины имеют шариковые подшипники, а не гидроподшипники. Но эти шариковые подшипники тоже специфичные – они изготовленные по передовым технологиям с использованием превосходных материалов. Такие подшипники позволяют вращаться валам с меньшим трением, чем при использовании гидроподшипников. Также такие подшипники позволяют использовать более легкие валы меньшего размера.

Также в турбинах используются керамические крыльчатки, которые легче стальных.

В следующий раз я расскажу вам как работают турбины в паре.

Первая часть
Вторая часть
Или все наоборот 😉

Подпишись на наш Telegram-канал

Турбина — Энергетическое образование

Энергетическое образование

Меню навигации

ИСТОЧНИКИ ЭНЕРГИИ

ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ

ИНДЕКС

Поиск

Рисунок 1. Турбины могут быть довольно большими, паровая турбина выше представлена ​​в масштабе с человеком. [1]

Турбина — это устройство, которое использует кинетическую энергию некоторой жидкости, такой как вода, пар, воздух или дымовые газы, и превращает ее во вращательное движение самого устройства. [2] Турбины обычно используются в производстве электроэнергии, двигателях и двигательных установках. Турбины — это машины (в частности, турбомашины), потому что турбины передают и изменяют энергию. Простая турбина состоит из ряда лопастей — в настоящее время сталь является одним из наиболее распространенных материалов — и позволяет жидкости поступать в турбину, толкая лопасти. Эти лопасти вращаются, пока жидкость проходит через них, захватывая часть энергии в виде вращательного движения. Жидкость, протекающая через турбину, теряет кинетическую энергию и выходит из турбины с меньшей энергией, чем в начале.

[2]

Турбины используются во многих различных областях, и каждый тип турбины имеет немного отличающуюся конструкцию для правильного выполнения своей работы. Турбины используются в ветроэнергетике, гидроэнергетике, в тепловых двигателях и для движения. Турбины чрезвычайно важны из-за того факта, что почти вся электроэнергия производится путем преобразования механической энергии турбины в электрическую энергию с помощью генератора. [2]

Тепловые двигатели

основной артикул

Тепловые двигатели используют турбины (а также поршни), поскольку они могут эффективно извлекать энергию из жидкостей. Кроме того, турбины требуют довольно небольшого обслуживания.

Газовые турбины часто используются в тепловых двигателях, поскольку они являются одним из наиболее гибких типов турбин. Одним из конкретных применений этих газовых турбин являются реактивные двигатели. [2] В этих газовых турбинах сжатый воздух нагревается и смешивается с некоторым количеством топлива. Когда эта смесь воспламеняется, она подвергается быстрому расширению. Расширяющийся воздух нагнетается в турбину, заставляя ее вращаться. Поскольку они используют сжатый воздух, большие высоты не влияют на эффективность турбин, что делает их идеальными для использования в самолетах. [3] . Схема газовой турбины показана на рисунке 2 ниже.

Рис. 2. Схема газотурбинного двигателя. [4]

Эти турбины используются не только в самолетах, но и для выработки электроэнергии на электростанциях, работающих на природном газе. Дымовые газы в этом случае возникают в результате сжигания природного газа.

[3]

Производство электроэнергии

Гидроэнергетика

основной артикул и | 3D модель

Рисунок 3. Схема гидроэлектростанции. [5]

На гидроэлектростанциях вода удерживается за плотиной и сбрасывается через водовод. Вода, обладающая кинетической и потенциальной энергией, попадает на турбину, которая вращает вал, соединенный с генератором, вырабатывая таким образом электричество. Эти турбины необходимы в области гидроэнергетики — процесса получения энергии из воды.

Конструкция гидротурбин одинакова для разных типов гидроэлектростанций (для получения дополнительной информации см. Русловые гидроэлектростанции и водохранилища). Ряд лопастей прикреплен к некоторому вращающемуся валу или пластине. Затем вода проходит через турбину по лопастям, заставляя внутренний вал вращаться. Затем это вращательное движение передается на генератор, где вырабатывается электричество.

Существует множество различных типов турбин, которые лучше всего использовать в различных ситуациях. Каждый тип турбин создан для обеспечения максимальной мощности в той ситуации, в которой он используется (примеры различных типов гидроэнергетических турбин включают турбины Фрэнсиса, турбины Каплана и турбины Пельтона). Есть много факторов, которые необходимо изучить, чтобы определить, какую турбину следует использовать. Эти факторы включают гидравлический напор, гидроэлектрический расход и стоимость. [6]

На этих сооружениях обычно используются два типа турбин, выбор которых зависит от характеристик гидроэлектростанции. Это реактивные турбины и импульсные турбины. Для получения дополнительной информации о том, как работают эти турбины, и более подробной информации о других турбинах, нажмите здесь.

Рисунок 4. Схема ветряной турбины. [7]

Ветер

основной артикул и | 3D-модель

Ветряные турбины работают путем преобразования кинетической энергии ветра в механическую энергию, которая используется для выработки электроэнергии путем вращения генератора. Эти турбины могут быть наземными или морскими ветряными турбинами. Эти турбины состоят из трех основных компонентов. Первыми из них являются лопасти несущего винта, которые имеют форму крыльев самолета, чтобы ловить воздух, заставляя лопасти вращаться. Второй компонент — гондола, набор шестерен и генератор, преобразующий вращение лопасти в электрическую энергию. Наконец, башня представляет собой большую подставку, на которой установлены лопасти и гондола. [8]

Для дальнейшего чтения

  • Генератор
  • Кинетическая энергия
  • Электричество
  • Ротор
  • Жидкость
  • Или просмотрите случайную страницу

Ссылки

  1. ↑ Wikimedia Commons. (2 сентября 2015 г.). Турбина Philippsburg [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/c/c2/Turbine_Philippsburg-1.jpg
  2. 2,0 2,1 2,2 2.3 Словарь энергии, под редакцией Катлера Дж. Кливленда и Кристофера Г. Морриса, Elsevier, 2014. ProQuest Ebook Central, https://ebookcentral-proquest-com.ezproxy.lib.ucalgary.ca/lib/ucalgary -электронные книги/detail.action?docID=1821967.
  3. 3.0
    3.1 Energy.gov. (2 сентября 2015 г.). Как работают газовые турбины [Онлайн]. Доступно: http://energy.gov/fe/how-gas-turbine-power-plants-work
  4. ↑ Wikimedia Commons [в сети], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  5. ↑ Викисклад. (2 сентября 2015 г.). Водяная турбина [Онлайн]. Доступно: http://commons.wikimedia.org/wiki/File:Water_turbine.svg.
  6. ↑ BrightHub Engineering. (2 сентября 2015 г.). Что такое гидравлические турбины? [Онлайн]. Доступно: http://www.brighthubengineering.com/fluid-mechanics-hydraulics/26551-hydraulic-turbines-definition-and-basics/
  7. ↑ Викисклад. Схема ветрогенератора [Онлайн]. Доступно: https://commons.wikimedia.org/wiki/File:Wind_turbine_diagram. svg
  8. ↑ Энергетический центр Висконсина. (2 сентября 2015 г.).
    Детали турбины
    [Онлайн]. Доступно: http://www.ecw.org/windpower/web/cat2a.html

Турбина | Определение, типы и факты

ветряные турбины

Смотреть все СМИ

Ключевые люди:
Жан-Виктор Понселе
Связанные темы:
газотурбинный двигатель ветряная мельница водяная турбина импульсная турбина реактивная турбина

См. весь связанный контент →

Последние новости

15 апреля 2023 г., 18:45 по восточному времени (AP)

Снова и снова: Германия отключает свои последние атомные электростанции

Германия отключила три оставшиеся атомные электростанции в рамках давно запланированного перехода на возобновляемые источники энергии

28 марта 2023 г., 11:44 по восточноевропейскому времени (AP)

В 2022 г. возобновляемая электроэнергия в США превзошла уголь

производство угольной электроэнергии в США впервые в 2022 г.

28 марта 2023 г., 11:43 по восточноевропейскому времени (AP)

Отчет: Рост использования возобновляемых источников энергии не соответствует климатической цели

Международное агентство по возобновляемым источникам энергии заявляет, что необходимо резко ускорить развертывание новых ветряных и солнечных электростанций к концу десятилетия для достижения мировых климатических целей

турбина , любое из различных устройств, преобразующих энергию потока жидкости в механическую энергию. Преобразование обычно осуществляется путем пропускания жидкости через систему стационарных каналов или лопастей, которые чередуются с каналами, состоящими из реберных лопастей, прикрепленных к ротору. Организовав поток таким образом, что тангенциальная сила или крутящий момент воздействует на лопасти ротора, ротор вращается и совершается работа.

Турбины можно разделить на четыре основных типа в зависимости от используемых жидкостей: вода, пар, газ и ветер. Хотя одни и те же принципы применимы ко всем турбинам, их конкретные конструкции достаточно различаются, чтобы заслуживать отдельного описания.

Водяная турбина использует потенциальную энергию, возникающую в результате разницы высот между водохранилищем вверх по течению и уровнем воды на выходе из турбины (отводящий канал), для преобразования этого так называемого напора в работу. Водяные турбины являются современными преемниками простых водяных колес, которым около 2000 лет. Сегодня гидротурбины в основном используются для производства электроэнергии.

Однако наибольшее количество электроэнергии вырабатывается паровыми турбинами, соединенными с электрическими генераторами. Турбины приводятся в движение паром, вырабатываемым либо в генераторе, работающем на ископаемом топливе, либо в атомном генераторе. Энергию, которую можно извлечь из пара, удобно выражать через изменение энтальпии на турбине. Энтальпия отражает как тепловую, так и механическую формы энергии в процессе течения и определяется как сумма внутренней тепловой энергии и произведения давления на объем. Доступное изменение энтальпии через паровую турбину увеличивается с температурой и давлением парогенератора и с пониженным давлением на выходе из турбины.

Britannica Quiz

Энергия и ископаемое топливо

Для газовых турбин энергия, извлекаемая из жидкости, также может быть выражена через изменение энтальпии, которое для газа почти пропорционально перепаду температуры на турбине. В газовых турбинах рабочим телом является воздух, смешанный с газообразными продуктами сгорания. Большинство газотурбинных двигателей включают как минимум компрессор, камеру сгорания и турбину. Обычно они монтируются как единое целое и работают как полный первичный двигатель в так называемом открытом цикле, когда воздух всасывается из атмосферы, а продукты сгорания, наконец, снова выбрасываются в атмосферу. Поскольку успешная работа зависит от интеграции всех компонентов, важно рассматривать все устройство, которое на самом деле является двигателем внутреннего сгорания, а не только турбину. По этой причине газовые турбины рассматриваются в статье как двигатели внутреннего сгорания.

Энергия ветра может быть извлечена с помощью ветряной турбины для производства электроэнергии или для откачивания воды из колодцев. Ветряные турбины являются преемниками ветряных мельниц, которые были важными источниками энергии с позднего средневековья до 19 века.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Fred Landis

Водяные турбины обычно делятся на две категории: (1) импульсные турбины, используемые для высокого напора воды и низкого расхода, и (2) реактивные турбины, обычно используемые для напора менее 450 метров и умеренного или высокого скорости потока. Эти два класса включают в себя основные широко используемые типы, а именно импульсную турбину Пелтона и реактивные турбины типа Фрэнсиса, пропеллерные, Каплана и Дериаза. Турбины могут быть расположены как с горизонтальным, так и, чаще, с вертикальным валом. Для каждого типа возможны широкие конструктивные изменения для соответствия конкретным местным гидравлическим условиям. Сегодня большинство гидравлических турбин используются для выработки электроэнергии на гидроэлектростанциях.

Импульсные турбины

В импульсных турбинах потенциальная энергия, или напор воды, сначала преобразуется в кинетическую энергию путем выпуска воды через сопло правильной формы. Струя, выбрасываемая в воздух, направляется на изогнутые ковши, закрепленные на периферии рабочего колеса, для извлечения энергии воды и преобразования ее в полезную работу.

Современные импульсные турбины основаны на конструкции, запатентованной в 1889 году американским инженером Лестером Алленом Пелтоном. Свободная струя воды ударяется о лопатки турбины по касательной. Каждый ковш имеет высокий центральный гребень, так что поток разделяется так, что желоб остается с обеих сторон. Колеса пелтона подходят для высокого напора, обычно более 450 метров, при относительно низком расходе воды. Для максимальной эффективности скорость кончика литника должна равняться примерно половине скорости ударной струи. КПД (работа, производимая турбиной, деленная на кинетическую энергию свободной струи) может превышать 91 процент при работе с 60–80 процентами полной нагрузки.

Мощность данного колеса можно увеличить, используя более одного жиклера. Двухструйные устройства являются общими для горизонтальных валов. Иногда на один вал монтируются два отдельных бегунка, приводящих в движение один электрогенератор. Агрегаты с вертикальным валом могут иметь четыре или более отдельных форсунок.

Если электрическая нагрузка на турбину изменяется, ее выходная мощность должна быть быстро отрегулирована в соответствии с потребностями. Это требует изменения расхода воды, чтобы поддерживать постоянную скорость генератора. Скорость потока через каждую форсунку регулируется расположенным в центре копьем или иглой тщательной формы, которая скользит вперед или назад под управлением гидравлического серводвигателя.

Надлежащая конструкция иглы гарантирует, что скорость воды, выходящей из форсунки, остается практически неизменной независимо от отверстия, обеспечивая почти постоянную эффективность в большей части рабочего диапазона. Нецелесообразно резко уменьшать расход воды, чтобы соответствовать уменьшению нагрузки. Это может привести к разрушительному скачку давления (гидравлическому удару) в подающем трубопроводе или затворе. Таких всплесков можно избежать, добавив временное разливное сопло, которое открывается, когда основное сопло закрывается, или, что чаще, частично вставляя дефлекторную пластину между струей и колесом, отводя и рассеивая часть энергии, пока игла медленно закрывается.

Еще один тип импульсной турбины — турботурбина. Струя падает под косым углом на бегунок с одной стороны и продолжает движение по единственному пути, выходя с другой стороны бегуна. Этот тип турбины использовался в агрегатах среднего размера с умеренно высоким напором.

Реакционные турбины

В реактивной турбине силы, приводящие в движение ротор, достигаются реакцией ускоряющегося потока воды в рабочем колесе при падении давления. Принцип реакции можно наблюдать в ротационном дождевателе для газонов, где выходящая струя вращает ротор в противоположном направлении. Из-за большого разнообразия возможных конструкций рабочих колес реактивные турбины могут использоваться в гораздо большем диапазоне напоров и скоростей потока, чем импульсные турбины. Реакционные турбины обычно имеют спиральный входной корпус с регулирующими заслонками для регулирования расхода воды. На входе часть потенциальной энергии воды может быть преобразована в кинетическую энергию по мере ускорения потока. Энергия воды впоследствии извлекается в роторе.

Как отмечалось выше, широко используются четыре основных типа реактивных турбин: Каплана, Фрэнсиса, Дериаза и пропеллерного типа. В турбинах Каплана с неподвижными лопастями и турбинах Каплана с регулируемыми лопастями (названных в честь австрийского изобретателя Виктора Каплана) через машину проходит осевой поток. Турбины типа Фрэнсиса и Дериаза (в честь американского изобретателя британского происхождения Джеймса Б.