8Сен

Схема вентилятора охлаждения: Схема подключения вентилятора охлаждения ВАЗ

Содержание

Схема подключения вентилятора охлаждения ВАЗ

Приводятся все основные электросхемы и модификации подключения вентилятора охлаждения (ВО) жидкости в автомобилях ВАЗ различных моделей. В чём суть работы ВО? Электрический двигатель с крыльчаткой на валу установлен внутри прямоугольной металлической рамы, при помощи которой он крепится к тыльной стороне радиатора. При подаче напряжения (12 В) на контакты привода он начинает работать, вращая лопасти и создавая направленную струю воздуха, которая, собственно, и охлаждает тосол или антифриз.

Если не работает вентилятор охлаждения, не спешите обращаться в автосервис. Установить причину неисправности можно и самостоятельно. Тем более что для этого совсем не обязательно иметь специальные навыки — просто изучите справочный материал от 2shemi.ru и следуйте инструкциям по его проверке/замене.

Схема включения кулера ВАЗ 2104, 2105 и 2107

  1. вентилятор радиатора
  2. датчик температуры (находится на радиаторе снизу)
  3. монтажный блок
  4. реле зажигания
  5. замок зажигания

А — к контакту «30» генератора.

Электровентилятор охлаждения ВАЗ 2106

  1.  датчик включения электродвигателя;
  2. электродвигатель вентилятора;
  3. реле включения электродвигателя;
  4. основной блок предохранителей;
  5. выключатель зажигания;
  6. дополнительный блок предохранителей;
  7. генератор;
  8. аккумуляторная батарея.

Подключение вентилятора 2108, 2109, 21099

До 1998 года выпуска на автомобилях со старым монтажным блоком предохранителей 17.3722 (пальчиковые предохранители) в цепь вентилятора было включено реле 113.3747. После 1998 года такое реле отсутствует.

Так же до 1998 года применялся датчик включения ТМ-108 (температура замыкания его контактов 99±3ºС, размыкания 94±3ºС), после 1998 года ТМ-108-10 с аналогичными температурными диапазонами или его аналоги разных производителей. Датчик ТМ-108 работает только в паре с реле, усиленный под большой ток ТМ-108-10 может работать как с реле, так и без него.

Схема включения вентилятора охлаждения двигателя на ВАЗ 2109 с монтажным блоком 17.3722

  1. Электродвигатель вентилятора
  2. Датчик включения электродвигателя
  3. Монтажный блок
  4. Выключатель зажигания

К9 — Реле включения электродвигателя вентилятора. А — К выводу “30” генератора

Схема включения вентилятора охлаждения двигателя на ВАЗ 2109 с монтажным блоком 2114-3722010-60

  1. Электродвигатель вентилятора
  2. Датчик 66.3710 включения электродвигателя
  3. Монтажный блок

А — К выводу “30” генератора

Схема включения ВО ВАЗ 2110

Схема включения вентилятора охлаждения ВАЗ 2110 на карбюраторных и инжекторных автомобилях отличается. На автомобилях с карбюраторным двигателем, для этого используется термобиметаллический датчик ТМ-108, а на автомобилях с инжекторным двигателем управление осуществляет контроллер.

Схема на 2113, 2114, 2115 инжектор и карбюратор

Где находится реле вентилятора

4 – реле электровентилятора;
5 – реле электробензонасоса;
6 – главное реле (реле зажигания).

Внимание: порядок следования реле и предохранителей может быть произвольным, ориентируемся по цвету проводов. Поэтому находим реле от которого отходят тонкий розовый с черной полосой провод, идущий от главного реле (контакт 85*)(не путать с тонким, красным с черной полосой проводом, идущим от контроллера) и толстый силовой белый с черной полосой провод (контакт 87) (белый и розовый нужные нам провода), это и есть реле вентилятора.

Если вентилятор охлаждения не работает

Для привода вентилятора устанавливается электродвигатель постоянного тока с возбуждением от постоянных магнитов МЭ-272 или аналогичные ему. Технические данные электровентилятора и датчика включения вентилятора:

  • Номинальная частота вращения вала электродвигателя с крыльчаткой, 2500 – 2800 об/мин.
  • Потребляемая сила тока электродвигателя, 14 А
  • Температура замыкания контактов датчика, 82±2 град.
  • Температура размыкания контактов датчика, 87±2 град.

Вентилятор системы охлаждения может не включаться из-за:

  • неисправности электропривода;
  • перегоревшего предохранителя;
  • неисправного термостата;
  • вышедшего из строя термодатчика включения кулера;
  • неисправного реле ВО;
  • обрыва электропроводки;
  • неисправной пробки расширительного бачка.

Для проверки самого электродвигателя вентилятора VAZ подаем на его выводы напряжение 12 В от аккумуляторной батареи – исправный мотор заработает. Если причина неполадки в вентиляторе, его можно попытаться отремонтировать. Проблема, обычно, заключается в щетках или подшипниках. Но случается что электродвигатель выходит из строя вследствие замыкания или обрыва в обмотках. В таких случаях лучше заменить весь привод.

Предохранитель ВО находится в монтажном блоке моторного отсека автомобиля и имеет обозначение F7 (20 А). Проверка производится с помощью автомобильного тестера, включенного в режиме пробника.

  1. В автомобиле с карбюраторным мотором необходимо проверить датчик — включить зажигание и замкнуть между собой два провода, идущие к датчику. Вентилятор должен включиться. Если этого не произошло, проблема точно не в датчике.
  2. Для инжекторных авто необходимо прогреть мотор до рабочей температуры, и рассоединить разъем датчика, отключив его от бортовой сети машины. В этом случае контроллер обязан запустить вентилятор в аварийном режиме. Электронный блок воспринимает это как сбой в системе охлаждения, и заставляет работать привод вентилятора в постоянном режиме. Если привод запустился – датчик неисправен.

Замена электровентилятора в авто

  1. Ставим автомобиль на ровной поверхности, обездвиживаем его стояночным тормозом.
  2. Открываем капот, отключаем минусовую клемму.
  3. Ключом на 10 откручиваем крепления корпуса воздушного фильтра.
  4. Отверткой ослабляем хомут воздуховода на датчике расхода воздуха и снимаем гофру.
  5. Откручиваем саморезы, фиксирующие крышку корпуса воздушного фильтра, извлекаем фильтрующий элемент.
  6. Ключом на 8 откручиваем крепление воздухозаборника и демонтируем его.
  7. Ключом на 10, потом на 8 откручиваем гайки крепления кожуха вентилятора по периметру (всего 6 штук).
  8. Отключаем колодку проводов на разъеме вентилятора.
  9. Аккуратно извлекаем кожух вентилятора вместе с приводом.
  10. Ключом на 10 откручиваем 3 болта, удерживающих электродвигатель на кожухе.
  11. Ставим на его место новый.
  12. Устанавливаем конструкцию на место, фиксируем, подключаем разъем.
  13. Дальнейший монтаж производим в обратном порядке.

Модернизация схемы управления

Вентилятор охлаждения на десятке включается при тепературе 100-105°C, тогда как нормальной рабочей

температурой двигателя является 85-90°С, получается вентилятор включается при перегреве двигателя, что естественно сказывается негативно.

Эту проблему можно решить двумя способами: настроить температуру включения в «мозгах» или сделать кнопку. Мы остановимся на втором. Включение вентилятора с кнопки очень удобно: попал в затор — включил, выехал — выключил, и никого перегрева.

В салоне была установлена кнопка выбора режима работы вентилятора (отключен постоянно, включен постоянно, включение автоматически посредством датчика) — этот «тюнинг» не является обязательным, но будет очень полезным дополнением.

На контактах реле 87, 30, на проводе от аккумулятора к предохранителю и массе вентилятора будет большой ток и по этому там обязательно используем провода, сечением не менее 2 мм иначе более тонкий провод не выдержит и сгорит.

Видео — подключение и проверка ВО

Ремонт ВАЗ 2106 (Жигули) : Электровентилятор системы охлаждения двигателя

  1. Руководства по ремонту
  2. Руководство по ремонту ВАЗ 2106 (Жигули) 1976-2005 г.в.
  3. Электровентилятор системы охлаждения двигателя

Схема включения электродвигателя вентилятора системы охлаждения двигателя

На части автомобилей для обдува радиатора системы охлаждения воздухом предусмотрен электровентилятор. Он включается при срабатывании датчика-выключателя 37101Б, установленного в нижней части правого бачка радиатора. Ранее питание на электродвигатель вентилятора подавалось через реле. В этом случае применялся датчик температуры ТМ-108. В настоящее время схема электровентилятора упрощена и питание электродвигателя производится непосредственно через контакты датчика-выключателя. Датчик неразборный – в случае неисправности подлежит замене.

Электродвигатель МЭ-272 (или ему подобный) – постоянного тока с возбуждением от постоянных магнитов. Установлен в кожухе, закрепленном на кронштейнах радиатора. При эксплуатации электродвигатель обслуживания не требует, неисправный подлежит замене.

Технические данные электровентилятора и датчика 37101Б (ТМ-108)

Номинальная частота вращения вала электродвигателя с крыльчаткой, мин–1

2500 – 2800

Потребляемая сила тока электродвигателя, А

14

Температура замыкания контактов датчика, °C

82±2 (82 ±2)

Температура размыкания контактов датчика, °C

87±2 (87±2)

Перегревается двигатель, электровентилятор не включается.

Для проверки электродвигателя вентилятора подаем на выводы электродвигателя напряжение 12В от аккумуляторной батареи – исправный двигатель заработает.

Для проверки датчика температуры электровентилятора, отсоединив провода от датчика температуры, соединяем их между собой при включенном зажигании. Если вентилятор заработает – неисправен датчик.

Подсоединив омметр к выводам датчика и опустив его на длину резьбы в воду, термометром измеряем температуру включения и выключения датчика. Для этого воду нагреваем почти до кипения, а затем контролируем остывание. У исправного датчика температурная характеристика не должна отличаться от приведенной выше.

Скачать информацию со страницы
↓ Комментарии ↓

 



1. Общие сведения
1.0 Общие сведения 1.1 Техника безопасности

2. Диагностика неисправностей
2.0 Диагностика неисправностей 2.1 агностика неисправностей двигателя и его систем 2.2 Диагностика неисправностей сцепления 2.3 агностика неисправностей коробки передач 2.4 Диагностика неисправностей карданной передачи, заднего моста, ходовой части, рулевого управления и тормозной системы 2.5 Диагностика неисправностей кузова 2.6. Диагностика неисправностей электрооборудования

3. Двигатель
3.0 Двигатель 3.1 Головка цилиндров и механизм газораспределения 3.2 Система смазки 3.3 Замена масла 3.4 Замена успокоителя цепи привода распределительного вала 3.5 Замена распределительного вала и рычагов клапанов 3.6 Замена маслоотражательных колпачков механизма газораспределения 3.7 Замена прокладок впускного и выпускного коллекторов 3.8 Замена прокладки головки блока цилиндров 3.9 Разборка головки блока цилиндров, притирка клапанов

4. Система питания двигателя
4.0 Система питания двигателя 4.1 Замена фильтрующего элемента воздушного фильтра 4.2 Замена топливного насоса 4.3 Ремонт топливного насоса 4.4 Замена топливного бака и крышки его лючка

5. Карбюратор
5.0 Общие сведения про карбюратор 5.1 Очистка топливного фильтра 5.2 Замена электромагнитного клапана системы холостого хода 5.3. Регулировка карбюратора 5.4 Замена карбюратора 5.5. Ремонт карбюратора

6. Система охлаждения двигателя
6.0 Система охлаждения двигателя 6.1 Замена охлаждающей жидкости 6.2 Замена насоса охлаждающей жидкости 6.3. Замена термостата 6.4 Замена радиатора двигателя

7. Система выпуска отработавших газов
7.0 Система выпуска отработавших газов 7.1 Замена деталей системы выпуска

8. Сцепление
8.0 Сцепление 8.1 Замена жидкости и прокачка гидропривода сцепления 8.2 Регулировка привода 8.3 Замена главного цилиндра сцепления 8.4 Ремонт главного цилиндра сцепления 8.5 Замена рабочего цилиндра сцепления 8.6 Замена нажимного диска в сборе и подшипника выключения сцепления

9. Коробка передач
9.0 Коробка передач 9.1 Проверка уровня и замена масла в коробке передач 9.2 Замена выключателя света заднего хода 9.3 Замена манжеты вторичного вала 9.4 Замена коробки передач 9.5 Ремонт коробки передач 9.6 Замена привода спидометра 9.7 Особенности ремонта пятиступенчатой коробки передач

10. Карданная передача
10.0 Карданная передача 10.1. Техническое обслуживание 10.2. Замена карданной передачи

11. Задний мост
11.0 Задний мост 11.1 Проверка исправности заднего моста 11.2 Замена масла 11.3 Замена полуоси и ее манжеты 11.4 Снятие и установка заднего моста 11.5 Замена манжеты ведущей шестерни 11.6 Замена редуктора 11.7 Ремонт редуктора

12. Передняя подвеска
12.0 Передняя подвеска 12.1. Техническое обслуживание 12.2 Замена подшипников и манжеты ступицы 12.3 Замена подушек и штанги стабилизатора 12.4 Замена шаровых опор 12.5 Замена амортизаторов 12.6 Замена пружин 12.7 Замена верхних рычагов и их резинометаллических шарниров 12.8 Замена резинометаллических шарниров нижних рычагов на автомобиле 12.9 Замена нижних рычагов 12.12. Регулировка углов установки колес

13. Задняя подвеска
13.0 Задняя подвеска 13.1 Проверка технического состояния 13.2. Замена деталей задней подвески

14. Рулевое управление
14.0 Рулевое управление 14.1 Доливка масла 14.2 Проверка состояния рулевого управления 14.3 Регулировка зацепления редуктора 14.4 Замена рулевых тяг 14.5 Замена и ремонт маятникового рычага 14.6 Снятие и установка рулевого колеса 14.7 Снятие и установка рулевого вала 14.8 Снятие и установка рулевого механизма 14.9 Снятие сошки

15. Тормозная система
15.0 Тормозная система 15.1 Проверка состояния гидропривода 15.2 Проверка вакуумного усилителя тормозов 15.3 Проверка работоспособности регулятора давления 15.4 Замена тормозной жидкости и прокачка тормозной системы 15.5 Замена тормозных колодок передних колес 15.6 Замена тормозных колодок задних колес 15.7 Замена суппорта тормоза переднего колеса 15.8 Замена тормозных цилиндров передних колес 15.9 Ремонт тормозных цилиндров передних колес

16. Общие сведения
16.0 Общие сведения 16.1. Проверка электрических цепей 16.2 Блоки предохранителей 16.3 Замена предохранителей 16.4 Замена основного и дополнительного блоков предохранителей 16.5. Замена реле 16.6 Замена выключателя зажигания 16.7 Замена контактной части выключателя зажигания 16.8 Аккумуляторная батарея 16.9. Генератор 16.10. Стартер 16.11. Система зажигания 16.12. Освещение, световая и звуковая сигнализации 16.13. Очиститель и омыватель ветрового стекла 16.14. Ремонт электродвигателя отопителя 16.15. Контрольные приборы

17. Кузов
17.0 Кузов 17.1 Замена переднего бампера 17.2 Замена решетки радиатора 17.3 Замена замка капота 17.4 Замена капота 17.5 Замена ветрового стекла 17.6 Замена внутреннего зеркала заднего вида 17.7 Замена солнцезащитного козырька 17.8 Замена накладки потолка 17.9 Замена потолочного поручня

18. Система отопления и вентиляции
18.0 Система отопления и вентиляции 18.1 Замена электровентилятора отопителя 18.2 Замена радиатора отопителя 18.3 Замена кожуха радиатора 18.4 Замена крана отопителя

19. Уход за кузовом автомобиля
19.0 Уход за кузовом автомобиля 19.1 Мойка автомобиля 19.2 Сохранение и защита лакокрасочного покрытия

20. Приложения
20.0 Приложения 20.1 Инструмент, применяемый помимо штатного набора 20.2 Схема электрооборудования автомобилей ВАЗ–2106, ВАЗ-21061, ВАЗ-21063 выпуска 1976–1987 гг. 20.4 Моменты затяжки резьбовых соединений 20.5 Основные данные для регулировок и контроля 20.6 Характеристики свечей зажигания 20.7 Применяемые топливо, смазочные материалы и эксплуатационные жидкости 20.8 Лампы, применяемые на автомобиле 20.9 Манжетные уплотнения (сальники)

Автоматическое термореле для охлаждения двигателя в автомобиле

У многих, даже у большинства, легковых автомобилей в системе охлаждения двигателя работает электрический вентилятор, периодически обдувающий воздухом радиатор системы охлаждения двигателя. В разных автомобилях, схема управления этим вентилятором решена по-разному, в одних на радиаторе установлен датчик-термовыключатель, который уже на заводе-изготовителе настроен на определенную температуру, и при её достижении, замыкает контакты, подающие ток на обмотку реле включения электромотора электровентилятора.

В других, используется общий датчик датчик температуры двигателя, представляющий собой терморезистор, а решение включать электроветилятор или не включать принимает ЭБУ (электронный блок управления)автомобиля.

И там и здесь, есть одна и та же проблема, - температурный порог включения вентилятора не регулируется ни в зависимости от погоды, времени года, режима эксплуатации, используемой охлаждающей жидкости, или просто, желания водителя. В результате, машина летом перегревается и может вскипеть, а зимой печка греет плохо. К тому, же возникают большие проблемы при замене одного типа охлаждающей жидкости на другой.

У современных автомобилей, у которых решение о включении вентилятора принимает ЭБУ на основе сопротивления датчика температуры, проблему можно решить внесением изменений в прошивку ЭБУ, но это дорого и не всегда возможно. У автомобилей с термовыключателем есть возможность один термовыключатель заменить другим, на другую температуру, но это процесс трудоемкий и не всегда можно найти подходящий датчик.

А ведь, хотелось бы, просто иметь возможность подкрутить отверткой некий подстречный винтик, и им отрегулировать необходимую (или желаемую) температуру включения вентилятора системы охлаждения. Понятно, что решить вопрос можно обыкновенной схемой терморегулятора, где информацию о температуре можно будет брать с датчика температуры. Это может быть тот самый датчик, который взаимодействует с ЭБУ, либо датчик на стрелочный индикатор температуры, все зависит от конкретного автомобиля, вернее, его схемы.

Схема термореле

Схем терморегуляторов в радиолюбительской литературе описано великое множество, поэтому, ни сколько не претендуя на оригинальность, привожу ту схему, которую собрал лично для своего автомобиля. Как уже сказал выше, схема практически типовая. Состоит она из компаратора на операционном усилителе и двух цепей, задающих напряжение на его входах.

Напряжение на неинвертирующем входе устанавливается подстроечным резистором R2, а напряжение на инвертирующем входе берется с датчика температуры двигателя, который представляет собой терморезистор, образующий, вместе с другими деталями схемы автомобиля, термозависимый делитель напряжения.

Рис. 1. Принципиальная схема термореле для включения охлаждения двигателя в авто.

На выходе схемы есть ключ на транзисторе VT1, его коллектор подключают к обмотке реле, управляющего электровентилятором. А питание на схему подают с выхода замка зажигания автомобиля, так, чтобы питание на схему поступало только при включенном зажигании. Это нужно потому, что при выключенном зажигании напряжение на цепь датчика температуры обычно не поступает, соответственно, напряжение на датчике температуры падает до нуля, независимо от величины температуры.

Работа схемы

Подстроечным резистором R2 устанавливается некоторое напряжение на выводе 3, которому соответствует температура включения вентилятора.

Когда температура охлаждающей жидкости ниже заданной, сопротивление датчика температуры высоко, и напряжение на нем существенно выше напряжения на выводе 3 А1. Поэтому, на выходе операционного усилителя А1, работающего как компаратор, будет низкое напряжение. Транзистор VT1 будет закрыт, и ток через него на обмотку реле включения вентилятора поступать не будет.

Так как в качестве компаратора здесь используется обычный операционный усилитель типаКР140УД608, минимальное напряжение на его выходе несколько отлично от нуля, поэтому, чтобы улучшить закрывание транзистора VT1 в цепь его эмиттера включены два диода типа 1N4004. Если при налаживании этого окажется недостаточно, количество этих диодов нужно увеличить.

Когда температура охлаждающей жидкости достигает и превышает заданную, сопротивление датчика температуры низко, и напряжение на нем ниже напряжения на выводе 3 А1. Поэтому, на выходе операционного усилителя А1 высокое напряжение. Транзистор VT1 открывается и пускает ток на обмотку реле включения вентилятора. Подстроечный резистор R2 - многооборотный.

Шеклев М. В. РК-2016-03.

Электрические схемы подключения вентиляторов Газель — A116.RU — Казань

Варианты подключения электрического вентилятора на Газель.

Внимание! Все электрические схемы предоставляются «Как есть». Мы не несем никакой ответственности за любой возможный ущерб, связанный с их использованием и применением. Применение нижеприведенных электрических схем вы осуществляете на свой страх и риск! Большая часть схем является теоретической разработкой и на практике не опробована!

 

Наличие нескольких каналов управления по температуре дает довольно широкие возможности для конструирования системы охлаждения.

Так как установка вентилятора на Газель не является стандартной процедурой — возможно множество вариантов ее реализации. Поэтому если у вас возникнет потребность в каком-либо другом, не описанном ниже, варианте — пишите мне на почту [email protected] — помогу разработать ваш собственный вариант подключения, учитывающий наличие у вас конкретных запчастей  и пожелания по функциональности. Схема этого варианта будет добавлена на эту страничку.

Так же присылайте отзывы по работе установленных и испытанных схем охлаждения — они будут опубликованы на специальной страничке для облегчения выбора и для  избежания ошибок теми, кто идет за нами.

Рекомендации по монтажу дополнительной проводки вентиляторов.

  • Присоединяйте силовые провода к АКБ проводами с сечением не меньше чем у проводов вентиляторов.
  • Предохранители силовых проводов размещайте как можно ближе к точке присоединения к АКБ.
  • Реле удобно разместить на боковой поверхности кузова за правой фарой, ближе к АКБ.
  • Если минусовой провод является общим для обоих вентиляторов — его сечение  должно быть не менее суммы сечений минусовых проводов обоих вентиляторов.
  • Для соединения проводов используйте клеммы и обжимные медные трубки, тщательно изолируйте соединения проводов.
  • Закрепите жгут проводов пластиковыми хомутами к кузову или существующим жгутам во избежание перетирания изоляции об острые кромки при вибрации.
  • Дополнительные контакты типа «Лира» в разъем ЭБУ для выводов 25 и 33 можно извлечь из большинства разъемов проводки ГАЗ — разъемов форсунок, датчиков скорости, фазы, ДПКВ, ДПДЗ, РХХ, температуры, детонации..) Очень сложно — но можно.

Схема 1. Один основной вентилятор.

Простейшая схема для подключения. В этом случае температура включения вентилятора определяется лягушкой или ЭБУ с 33 или 25 контакта. Вентилятор является основным и работает только на полную мощность.

Если вы установили на радиатор два вентилятора — то можно добавить аналогичную схему для обслуживания второго вентилятора, взяв сигнал управления со свободного вывода (лягушка, 33 или 25 контакт ЭБУ).

Этим будет обеспечена повышенная надежность системы охлаждения (при выходе из строя одного вентилятора другой оставшийся справится с охлаждением), а так же возможность включения вентиляторов при разных температурах (например с лягушки Вентилятор1 включается при 88 градусах, а с 33 контакта ЭБУ Вентилятор2 включается при 92 градусах). При одновременной работе двух вентиляторов будет двойная эффективность охлаждения — можно на Дакар ехать и смело буксовать.

 

Вариант 2. Последовательное подключение двух вентиляторов.

Так же простая схема на одном реле. В предыдущую схему последовательно первому добавляется еще один вентилятор. Именно такой вариант подключения на моей Газели. Вентиляторы включаются оба одновременно на пониженной скорости  и вращаются примерно в 3-4  раза медленней чем обычный вентилятор (зависит от добавочного вентилятора — чем меньше его мощность, тем медленнее будут вращаться оба вентилятора).

Данная схема испытана на протяжении всего лета 2015 — при вращении двух вентиляторов на малой скорости проблем с перегревом не возникло ни разу. Правда замечу, что в жаркую погоду они вообще не выключались.

Несомненным плюсом включения вентиляторов на малой скорости является малый скачок тока в цепи при пуске, а так же в 2 и более раз меньшее потребление тока при работе, что не приводит к перегреву и выходу из строя моторов вентиляторов. Низкий уровень шума тоже радует.

Два 8-лопастных вентилятора от ВАЗ — на мой взгляд лучший выбор для этой схемы. Почти уверен — при вращении на половине скорости (именно так они будут вращаться при подключении последовательно) для нормального охлаждения Газели их будет более чем достаточно.

 

Вариант 3. Двухскоростной вентилятор.

В этом случае используется схема с двумя последовательно включенными вентиляторами, которая обеспечивает плавное включение и охлаждение в мягком режиме с возможностью включения мощного режима. Первый уровень включения управляется реле 1 с контакта 33 ЭБУ. При необходимости включить систему охлаждения в мощном режиме на дополнительное реле 2 подается сигнал включения с контакта 25 ЭБУ (Управление реле кондиционера).

При этом основной вентилятор 2 из медленного вращения перейдет в быстрое вращение, а дополнительный вентилятор 1 перестанет вращаться.

При использовании двух аналогичных вентиляторов эта схема выигрыша по эффективности охлаждения не дает.

Правильней в этой схеме применить в качестве дополнительного вентилятор менее мощный, чем основной. Так же хороший результат даст применение вместо дополнительного вентилятора подходящего резистора (например типа резистора печки). Мощность можно оценить по сопротивлению обмотки вентилятора. Выбирайте дополнительный вентилятор или дополнительный резистор с сопротивлением 2-3 Ома на ток 5-7 Ампер.

В результате мы получаем плавный пуск вентилятора в режиме мягкого охлаждения на 30-50 процентах скорости вращения, а при необходимости будет включаться максимально мощный режим без резкого скачка тока в момент пуска, так как основной вентилятор уже вращается.

Данный  вариант мной не опробован, но при удобном случае именно его я его поставлю на свою машину.

 

Для включения управляющих выводов 25 и 33 возможно будет необходимо перепрограммировать ЭБУ. О подготовке ЭБУ здесь…

при какой температуре включается предохранитель, как работает реле охлаждения в Шеви Нива, где находится датчик

Охлаждающая вентиляционная система автомобилей марки Chevrolet NIVA предназначена для полноценной работоспособности муфты. При медленном движении теплоотвод уверенно повышается, а интенсивность держится на приличном уровне. На сегодня это единственный способ охлаждения двигателя в долгой тянущейся пробке.

Принцип работы и устройство системы

Инженер-конструкторы Нивы применили парный блок охладителей для повышения эффективности кондиционирования радиатора, хоть это и сделало схему подключения более сложной в дальнейшем обслуживании.

Чтобы вентиляторы активизировались, используется 12-вольтовый синхронный электродвигатель с индуктором на основе постоянных магнитов (СДПМ). Благодаря неразборной конструкции, электромоторы не требуют специального обслуживания. Мощь электромотора составляет 110 Вт, а сам вентиляционный блок в полной сборке использует 18 А.

Включение происходит в определенном порядке благодаря электромагнитному реле, управляемого бортовым компьютером. Запуск электровентилятора, который находится рядом с решеткой радиатора, производится, когда температура жидкости для охлаждения превышает 99°С. Вторая же крыльчатка включается, когда допустимые значения нагрева составят 101°С.

В состав системы питания охладителей входят три реле и резистор, который в свою очередь обеспечивает уменьшение скорости одного вентилятора. Предохранители оберегают проводку и АКБ от короткого замыкания, а питание к ним идет от аккумуляторов. Сигналы управления поступают с 29 и 68 выводов контроллера двигателя. Выключение происходит автоматически, когда температура антифриза достигает 95°С.

Благодаря последовательной работе, снижается нагрузка на бортовую систему электросети. Во многих случаях для нормализации допустимых значений температуры используется первый вентилятор. Ночью это особенно необходимо, потому что лампы фар и габаритные огни могут перегрузить генератор.

Специальная возможность принудительной активации вентилятора во время движения по бездорожью или в условиях сильной загруженности дорог помогла бы при интенсивных на мотор, однако инженеры-конструкторы не добавили эту полезную функцию в автомобиль.

Для самостоятельной реализации этой опции, в первую очередь, нужно подключить дублирующие реле параллельного включения, а затем пустить питание от специального контроллера, который расположен в салоне.

Важно! Использование принудительного включения повышает надежность системы, однако есть и риск сбоев, поэтому в экстренных ситуациях владелец автомобиля всегда может включить муфту вручную.

Работа предохранителей

Комплектации Chevrolet NIVA 2009 года выпуска и более поздних моделей довольно сильно разнятся в схемах подачи электричества. Однако в обоих случаях предохранители обеспечены специальными вставками, созданными для защиты цепи питания и расположенными в добавочном блоке, находящимся за бардачком. Сила электрического тока в схеме составляет 50 А.

Если цифровые значения тока превышены, цепь может разомкнуться или расплавиться. Оценка работоспособности детали производится по визуальной составляющей и мультиметра. Для оценки следует заранее аккуратно изъять предохранитель, находящийся в блоке.

Реле для запуска работы вентилятора

В запасном блоке могут находиться не только сами предохранители, там же могут располагаться электромагнитные реле. Они контролируют работу системы охлаждения двигателей, цепи которых питаются от замка зажигания бортового компьютера. Ток идет от АКБ через сами предохранители.

Работа реле производится следующим образом: в самом начале на вывод подается напряжение, в результате образуется электромагнитное поле путем прохождения тока через индуктивную катушку. В дальнейшем ток, проходящий через реле, запускает двигатель. Если напряжение убрать, то контакты разомкнутся из-за пружины, которая присутствует в механизме, а сам вентилятор остановится.

Есть несколько способов проверки работы реле. Самый простой метод — заменить реле на такое же рабочее и проверить состояние системы. Заглушить двигатель, затем отключить разъем датчика температуры, после этого послышится характерный щелчок реле. Затем нужно снять и прозвонить выходные контакты с помощью мультиметров, постоянно подавая напряжение на вывод. С термодатчика информация подается прибору включения блока.

Сам термодатчик — это резистор, показатели которого изменяются в вариативном диапазоне температуры: от 1,3-1,8 Ом при 30°C до 155-196 Ом при 90°C. Чтобы дать точную оценку его работы, используют термометр и омметр, высчитывая сопротивление при различных температурах. Для проверки снимают деталь, затем погружают в водную среду. Датчик можно найти вблизи магистральной выпускной системы. Демонтаж его производится с помощью накидного ключа.

Типичные поломки

Наиболее распространенные причины: неполадки в работе температурного датчика, повреждения системы питания, неисправность проводов, проходящих от аккумулятора к замку зажигания, неработоспособность второго вентилятора.

Основными причинами могут служить брак датчика, отказ в работе предохранителя или электромагнитного реле. Если работоспособность левого вентилятора, снижена, это может говорить о поломке «сопротивления», температурного датчика, повреждения предохранителя или реле.

При одновременном включении двух вентиляторов, стоит обратить особое внимание на еще один прибор в цепи первого электродвигателя. Отказ работы бывает при повреждении самого реле или повреждении температурного приемника охлаждения жидкости.

Ремонт всех вышеперечисленных деталей не выполняют. После каждого повреждения их заменяют на новые.

Замена вентиляторов

Если подключенные провода аккумуляторной батареи присоединены к специальным клеммам питания, а электродвигатель вентиляторов все равно не работает, то его придется заменить.

Для это необходимы следующие инструменты: гаечные ключи от 10 до 17 мм и крестообразная отвертка. Перед тем, как начать замену нужно воспользоваться подъемником либо смотровой ямой, также выключите полностью бортовую систему, сняв минусовую клемму аккумулятора.

Работу выполняют в следующем порядке:

  1. Убрать картера и кожух.
  2. Выкрутить саморезы и аккуратно снять плотную пластинку, которая имеет форму паука, также снять пару крышек, расположенных спереди под дном машины.
  3. Выкрутить крепления поперечной рамки радиатора и ослабить и снять ремень от гидроусилителя помпы, а также руля.
  4. Открутить 4 болта, которые удерживают насос ГУР.

Демонтаж ремня от привода кондиционера не так сложен. Достаточно выкрутить болт, который удерживал зубчатый шкив ГРМ, а затем снять шкив и сам ремень, открутив ровно 4 гайки, расположенные в углу электровентиляторов, а также два болта, которые фиксируются посередине.

На автомобилях более поздней версии необходимо сначала снять решетку радиатора и бампер — только после этого будет доступен электровентилятор. Саму работу выполнять аккуратно: если вы не мастер, то запишите ваши действия.

Особенно важно учитывать сроки службы электромоторов вентиляторов, потому что при поломке одного нужно будет заменить и второй, иначе вероятность ремонта автомобиля резко повыситься.

Заменить резистор тоже не так сложно, как кажется на первый взгляд. В самом начале нам следует взять ключи 10-13 мм, отвертки и новый резистор. Для снятия старого выкрутить болты для крепления, затем убрать защиту в виде картера и кожух от грязи, убрать планку, которая защищает сам резистор, а затем выкрутить деталь.

Заключение

Всегда внимательно читаете характеристики деталей. Если ваша ситуация имеет уникальный характер, придерживайтесь инструкции по замене и демонтажу.

Не рискуйте делать это самостоятельно, если вы плохо понимаете процесс замены.

инструкция по ремонту, диагностике и замене

Перегрев двигателя приводит к возникновению серьезных неполадок: поршня могут заклиниться, пробивается прокладка блока цилиндров, что приводит к необходимости проводить капитальный ремонт мотора. Чтобы защитить силовой агрегат от перегрева, важно поддерживать стабильную работу вентилятора охлаждения. В этой статье обсудим принцип работы устройства, схему его подключения, самостоятельную диагностику и ремонт, а также модернизацию схемы управления. Инструкция полностью подходит и для автомобилей Ваз 2115 и Ваз 2113.

Принцип действия

Вентилятор – это устройство, позволяющее повысить эффективность работы радиатора охлаждения. Радиатор забирает тепло от мотора и отдает его в воздух. Этот процесс ускоряется за счет обдува лопастями электровентилятора.

Охлаждающая жидкость течет по закрытой герметичной системе. Ее задача в том, чтобы забирать излишнее тепло от перегретых частей мотора. Горячий тосол течет в радиатор, подвергается здесь охлаждению и возвращается обратно. Находясь в радиаторе, ОЖ проходит через систему тонких трубок. Набегающий воздушный поток во время движения автомобиля способствует быстрому отводу излишнего тепла из подкапотного пространства.

Но когда автомобиль стоит в пробке или работает на холостом ходу, поток воздуха перестает его охлаждать. В этом случае система охлаждения может не справиться со своей задачей. Для создания потока воздуха искусственным путем и предназначен электровентилятор радиатора. Температура включения вентилятора на ВАЗ 2114 – 85 градусов Цельсия.

Получив сигнал о превышении допустимого значения температуры, датчик запускает механизм работы устройства. Создается искусственный воздушный поток, отводящий тепло от радиатора. Механизм действует до тех пор, пока уровень температуры не понизится до оптимального состояния.

Затем термовыключатель получает сигнал о достижении нормальной температуры и отключает работу вентилятора.

Устройство состоит из четырех пластмассовых лопастей, которые устанавливаются на вале ЭДГ. Специальный контроллер регулирует автоматический режим работы. Термостат снабжен твердым наполнителем, который чувствителен к изменениям температуры.

Имеется основной и дополнительный клапаны. Когда температура достигает 85 градусов Цельсия, открывается главный клапан.

Схема подключения

Где находится реле вентилятора

Оно располагается в дополнительном блоке.

4 – реле электровентилятора;

5 – электрического бензонасоса;

6 – реле зажигания.

Реле и предохранители могут иметь другой порядок следования. Поэтому нужно ориентироваться на цвет проводов. Главное реле всегда размещено снизу. Найдите реле, от которого тянется розовый тонкий провод с черной полоской. Он идет от главного реле через контакт 85. Будьте осторожны! Не перепутайте с красным тонким проводком, который тоже имеет черную полоску и тянется из контроллера. И найдите белый толстый провод с черной полоской (87 контакт). Здесь и находится реле вентилятора охлаждения. Рядом с ним всегда находится предохранитель. Он является элементом цепи.

Диагностика вентилятора охлаждения

Если на приборной панели появляются сигналы о превышении допустимого уровня температуры в системе охлаждения, это может свидетельствовать о том, что не работает вентилятор на ВАЗ 2114. Главный симптом неисправности – механизм не запускается даже при значительном увеличении температуры. Нужно срочно заглушить двигатель, чтобы не допустить перегрева его элементов.

Мотор не должен работать с неисправным электровентилятором охлаждения. Это может привести к повреждению головки блока цилиндров.

Если не срабатывает вентилятор охлаждения на Ваз 2114, причинами поломки могут быть следующие неисправности:

  • Отказал датчик включения вентилятора на ВАЗ 2114.
  • Отсутствие контакта у разъема датчика.
  • Оборвалась проводка.
  • Неисправность реле электровентилятора.
  • Сгорел предохранитель.
  • Поломка привода электродвигателя устройства.

Отключите разъем устройства. Подключите его к клемме аккумулятора. Сохраняя полярность. Если прямое подключение к источнику энергии запускает электромоторчик, значит привод исправен. Возможно, проблемы возникли в электропроводке, в предохранителе или в датчике температуры.

Теперь наступила очередь диагностики предохранителя. Для этого даже не обязательно вскрывать пластиковый бокс. При неисправности реле одновременно с вентилятором перестает работать и клаксон. Поэтому если вы заметили пропажу звукового сигнала, значит точно сгорел предохранитель. Найти его можно в подкапотном пространстве в пластиковом боксе небольшого размера. Освобождаем крышку, прижатую двумя защелками, щипчиками вынимаем сгоревший предохранитель и меняем его на новый.

А вот диагностировать реле довольно сложно. Особенно тем, кто с автоэлектрикой исключительно на «Вы». Для проверки работоспособности проще всего найти работающее реле и временно установить его. Если после установки нового устройства вентилятор начинает работать исправно, значит настало время для замены старого.

Чтобы диагностировать датчик температуры, подающий сигнал к радиатору, нужно отсоединить разъем от датчика и запустить зажигание. Запустится аварийный режим, в котором электровентилятор начнет обдув. Если при отключении т разъема вентилятор запускается поздно, скорее всего датчик вышел из строя. Его замена займет не больше пяти минут. Нужно просто открутить два болта с помощью крестовой отвертки и установить на его место новое устройство.

Даже если неисправность возникла в самом вентиляторе Ваз 2114, это еще не значит, что пришло время его менять. Иногда можно просто заменить поврежденный подшипник или щетки. А вот при неисправно электродвигателе, гораздо проще приобрести новый механизм.

Если вы убеждены, что причина неисправности кроется в электродвигателе вентилятора, то самый простой способ осуществить ремонт – это полностью заменить устройство. При этом нет смысла тратить деньги на новый кожух. Дешевле будет просто купить новый электромотор.

Необходимый инструмент

Особый инструмент не понадобится. Работа осуществляется элементарно просто с помощью торцевых ключей на 8 и 10 и отвертки крестового типа.

Пошаговый алгоритм работы

Заменить электродвигатель вентилятора охлаждения можно без демонтажа радиатора.

  1. Отсоедините колодку и жгут проводов устройства от кожуха.
  2. Отверните крепежные болты с помощью ключа на 10.
  3. Открутите нижнюю крепежную гайку.
  4. Торцевым ключом на 10 отверните крепежную гайку от радиатора.
  5. Торцевым ключом на 8 отверните две гайки прижимной пластины.
  6. Снимите пластину.
  7. Снимите электровентилятор вместе с кожухом.
  8. Приступаем к демонтажу электродвигателя. С помощью ключа на 10 сверните три крепежных гайки и выньте двигатель вместе с лопастями.
  9. С помощью отвертки подденьте стопорную шайбу.
  10. И снимите ее.
  11. Снимите крыльчатку.
  12. Наденьке крыльчатку на новый моторчик. Проследите, чтобы штифт вала попал в паз крыльчатки.
  13. Соберите сборку в обратном порядке.

Как заменить датчик температуры

Перед началом работ нужно частично слить охлаждающую жидкость из блока цилиндров.

  1. Снимите провод.
  2. С помощью ключа на 21 отверните термодатчик.
  3. Снимите его.
  4. Установите новый в обратном порядке.

Что делать, если электровентилятор работает постоянно?

Иногда возникает и другая проблема. Многих автолюбителей интересует, почему постоянно работает вентилятор на Ваз 2114?

Возможны четыре причины неисправности:

  1. возникло замыкание в электроцепи;
  2. произошла поломка реле электровентилятора;
  3. требует замены термодатчик;
  4. сломался электронный блок.

Чаще всего вентилятор начинает работать непрестанно в результате замыкания проводов. Электрическая цепь остается во включенном состоянии вне зависимости от сигналов термодатчика и реле.

Чтобы устранить неисправность, нужно прозвонить каждый провод и найти место сплавления. Иногда оно заметно даже при визуальном осмотре.

Если прозвон не помог выявить неисправность, нужно проверить и заменить реле вентилятора. Стоимость устройства невысока. Поэтому для диагностики проще купить новый реле и поставить его заместо старого.

Если не помогло и это, значит нужно проверить работу термодатчика. Ведь именно он отвечает за включение и отключение электромотора вентилятора Ваз 2114.

При исправной работе всех остальных элементов системы, нужно проверить электронный модуль. Он довольно редко выходит из строя. Если проблема возникла все же в нем, придется выполнить полный сброс ошибок. Иногда помогает только полная перепрошивка. Самостоятельно выполнить эту работу способен не каждый. Поэтому лучше обратиться за помощью в автосервис.

Также полезно было бы установить кнопку принудительного запуска и отключения вентилятора на Ваз 2114.

Это решение может оказаться весьма кстати, если поломка произошла где-нибудь на трассе вдали от города. В таком случае с помощью кнопки на панели приборов можно принудительно запустить работу вентилятора для охлаждения двигателя.

 

Устранение неисправностей электрического вентилятора охлаждения

Электрический вентилятор охлаждения, который не включается, когда должен, может вызвать перегрев двигателя и плохую охлаждающую способность кондиционера.

РАБОТА ВЕНТИЛЯТОРА ЭЛЕКТРИЧЕСКОГО ОХЛАЖДЕНИЯ

Электрический вентилятор охлаждения обычно устанавливается за радиатором. На некоторых автомобилях с большими и широкими радиаторами может быть два вентилятора охлаждения или отдельный вентилятор для конденсатора кондиционера.

Вентилятор работает только тогда, когда это необходимо для охлаждения двигателя. Датчик охлаждающей жидкости двигателя или отдельный датчик температуры двигателя используется для контроля температуры двигателя. При первом запуске холодного двигателя дополнительное охлаждение не требуется, поэтому вентилятор не включается, пока двигатель не достигнет нормальной рабочей температуры (от 195 до 215 градусов). Затем вентилятор будет включаться и выключаться по мере необходимости для поддержания температуры охлаждающей жидкости. Таким образом, вентилятор работает в основном на холостом ходу или на низких оборотах, когда двигатель имеет нормальную температуру.

На некоторых моделях автомобилей более поздних версий вентилятор охлаждения может изменять скорость для увеличения или уменьшения охлаждения по мере необходимости. Некоторые вентиляторы могут иметь диапазон низкой, средней и высокой скорости, в то время как другие имеют дополнительные настройки скорости.

ВНИМАНИЕ: Цепи вентилятора на многих транспортных средствах имеют проводку, поэтому вентилятор может включиться в любое время, независимо от того, работает двигатель или нет. Помните об этом, если вы работаете в моторном отсеке и двигатель горячий. Держите пальцы и инструменты подальше от лопастей вентилятора.

Вы можете услышать, как работает вентилятор, когда выключаете двигатель после поездки. Это нормально. Но вентилятор должен отключиться через несколько минут, пока двигатель остынет.

Вентилятор также включается при включении кондиционера, чтобы обеспечить дополнительный поток воздуха через конденсатор для обеспечения хорошего охлаждения. Это может произойти независимо от температуры двигателя или скорости автомобиля.

Вентилятор обычно не требуется, когда транспортное средство движется достаточно быстро, чтобы поток воздуха через решетку охлаждался (обычно на скорости выше 30 миль в час).

ПОЧЕМУ ИСПОЛЬЗУЮТСЯ ЭЛЕКТРИЧЕСКИЕ ВЕНТИЛЯТОРЫ

Одна из причин, по которой электрические вентиляторы охлаждения используются на многих транспортных средствах вместо механических вентиляторов с ременным приводом, заключается в улучшении экономии топлива и снижении шума вентилятора, особенно на скоростях шоссе. Вентилятор с ременным приводом может потреблять до 12 или более лошадиных сил в зависимости от частоты вращения двигателя и охлаждающей нагрузки.

ЦЕПЬ ЭЛЕКТРИЧЕСКОГО ВЕНТИЛЯТОРА

Схема питания вентилятора с датчиком температуры включает вентилятор только тогда, когда требуется дополнительное охлаждение.В старых приложениях работа вентилятора обычно контролируется температурным переключателем, расположенным в радиаторе или на двигателе. Когда температура охлаждающей жидкости превышает номинальное значение переключателя (обычно от 195 до 215 градусов по Фаренгейту), переключатель замыкается и активирует реле в моторном отсеке, которое подает напряжение на вентилятор. Затем вентилятор продолжает работать до тех пор, пока температура охлаждающей жидкости не упадет ниже точки размыкания переключателя. Отдельный контур включает вентилятор при включении муфты компрессора кондиционера.

В более новых автомобилях с компьютеризированным управлением двигателем работа вентилятора часто регулируется модулем управления трансмиссией (PCM) или модулем управления вентилятором. PCM может использовать входные данные датчика охлаждающей жидкости двигателя, температуры окружающего воздуха, датчика скорости автомобиля и других датчиков, чтобы определить, когда необходимо включить вентилятор. В приложениях с переменной скоростью вращения вентилятора PCM генерирует сигнал включения-выключения для двигателя вентилятора («широтно-импульсная модуляция»), который заставляет вентилятор работать быстрее или медленнее.

ПРОБЛЕМЫ ЭЛЕКТРИЧЕСКОГО ВЕНТИЛЯТОРА

Отказ вентилятора, выход из строя реле вентилятора или цепи управления - плохая новость, так как это может привести к перегреву двигателя. В приложениях с регулируемой скоростью вращения вентилятора двигатель также может перегреться, если скорость вращения вентилятора не увеличивается, когда требуется дополнительное охлаждение. Вентилятор может работать, но он работает только на низкой скорости, которая может быть недостаточно быстрой, чтобы предотвратить перегрев.

Шесть вещей могут помешать включению электрического вентилятора охлаждения:

  • Неисправность реле температуры, датчика охлаждающей жидкости или другого датчика
  • Термостат двигателя застрял в ОТКРЫТОМ состоянии (двигатель никогда не становится достаточно горячим, чтобы включить вентилятор)
  • Неисправность реле вентилятора
  • Проблема с проводкой (перегоревший предохранитель, ослабленный или корродированный разъем, короткое замыкание, обрыв и т. Д.)
  • Неисправный мотор вентилятора
  • Неисправен модуль управления вентилятором

БЫСТРАЯ ПРОВЕРКА ЭЛЕКТРИЧЕСКОГО ВЕНТИЛЯТОРА

Один из способов быстрой проверки цепи вентилятора - запустить двигатель и включить кондиционер на макс. Если вентилятор работает, двигатель вентилятора, реле, предохранитель и проводка в порядке. Но этот тест не говорит вам, включают ли переключатель температуры или датчик температуры и PCM питание вентилятора при высоких температурах охлаждающей жидкости.

В приложениях с переменной скоростью вращения вентилятора стратегия работы PCM, вероятно, учитывает входные данные от различных датчиков, чтобы определить, с какой скоростью вентилятор должен вращаться.Если какие-либо из этих входов неисправны из-за неисправного датчика или неисправности проводки, PCM может не запускать вентилятор достаточно быстро, чтобы двигатель оставался холодным. Если горит индикатор Check Engine и имеется один или несколько кодов неисправности датчика (особенно код датчика охлаждающей жидкости, код датчика температуры воздуха или код датчика скорости автомобиля), ошибочный входной сигнал от датчика может влиять на нормальную работу охлаждающего вентилятора. Диагностика и устранение неисправности датчика должны восстановить нормальную работу вентилятора.

Чтобы проверить температуру, при которой включается вентилятор, выключите кондиционер и оставьте двигатель работать, пока он не достигнет нормальной рабочей температуры.Большинство вентиляторов должны включаться, когда температура охлаждающей жидкости достигает примерно 200–230 градусов. Если вентилятор не включается, что-то в цепи управления неисправно. Затем следует проверить сопротивление на датчике температуры или переключателе, а также проверить напряжение на обеих сторонах реле (вам, вероятно, понадобится электрическая схема контура охлаждения вентилятора на вашем автомобиле, чтобы определить клеммы реле и электрические соединения).

Сам двигатель вентилятора можно проверить с помощью перемычек. Отсоедините разъем проводки от вентилятора и используйте перемычки от аккумулятора, чтобы направить питание непосредственно на вентилятор.Если двигатель вентилятора исправен, вентилятор должен вращаться с нормальной скоростью при напряжении 12 В. Шум в подшипниках или более низкая, чем обычно, скорость указывают на износ двигателя.






Другие статьи по системе охлаждения:

Проблемы с реле электрического вентилятора охлаждения

Перегрев: причины и способы устранения

Устранение неисправностей муфты охлаждающего вентилятора

Обслуживание системы охлаждения

Горит сигнальная лампа температуры. Что вы должны сделать?

Ремонт ремней и шлангов

Проверки и изменения охлаждающей жидкости в наши дни стали более сложными

Универсальная охлаждающая жидкость: один антифриз для всех?

Heater Service

Щелкните здесь, чтобы увидеть больше технических статей Carley Automotive

Нужна информация из руководства по техническому обслуживанию вашего автомобиля?

Mitchell 1 DIY eautorepair manuals

Cooling Fan Electronic Circuits

Повышающий преобразователь управляет вентилятором 12 В от источника 5 В - 12/12/97 Идеи EDN-Design Повышающий преобразователь PWM с регулируемой температурой позволяет управлять бесщеточным вентилятором постоянного тока 12 В от источника питания 5 В.__ Схема проектирования Джона Макнила, Вустерский политехнический институт, Вустер, Массачусетс

Регулятор скорости вентилятора автомобиля - с помощью этой схемы вы можете управлять скоростью вентиляторов 12 В постоянного тока, используемых в автомобилях. Схема построена на таймере 555, который работает как нестабильный мультивибратор. На выходе ...__ Проекты электроники для вас

Таймер потолочного вентилятора - он запускает вентилятор в вашей ванной или туалете на фиксированное время после его включения и имеет два режима работы__ SiliconChip

Цепь

генерирует аналоговое управление скоростью вентилятора - приложение Maxim-IC № 1125 Эта схема обеспечивает непрерывное и линейное управляющее напряжение вентилятора, которое пропорционально температуре.__ Максим Интегрированный

Цепь

защищает систему от перегрева - 11/08/01 Идеи дизайна EDN Схема с двумя микросхемами на Рисунке 1 обеспечивает управление вентилятором, а также предупреждения о перегреве и сигналы отключения для защиты систем от чрезмерного нагрева. Схема контролирует температуру печатной платы и температуру кристалла ЦП, ПЛИС или другой ИС со встроенным в кристалл транзистором, чувствительным к температуре __ Разработка схемы Керри Лаканетт, Maxim Integrated Products, Саннивейл, Калифорния

Схема

обеспечивает эффективное управление скоростью вращения вентиляторов - 4 марта 2004 г. Идеи дизайна EDN Поскольку закон Мура погружает нас в сферу мультигигагерцовых процессоров и ПК с гигабайтами оперативной памяти, перед инженерами стоит задача отвести тепло, которое это состояние - изготовление комплектующих по последнему слову техники.Охлаждение таких систем представляет собой дилемму. Если вы оптимизируете размер и скорость вентилятора для номинальных условий эксплуатации, система будет подвержена отказу при ухудшении условий __ Разработка схем Джона Гая, Maxim Integrated Products, Саннивейл, Калифорния

Контроллер охлаждающего вентилятора

- Когда мы начинаем наслаждаться ленивыми туманными летними днями, самое важное, о чем мы думаем, - как сохранять прохладу в эти жаркие дни. Для некоторых из нас это означает включить старый кондиционер и потягивать прохладный бокал нашего любимого безалкогольного напитка.Однако мы часто забываем о не менее важном __. Разработано радиолюбительским обществом Норвича

.

Dual Fan Controller - подарок на день рождения зашел слишком далеко. Усовершенствованный автоматический контроллер с двумя вентиляторами на основе температуры с латунной лицевой панелью для охлаждения кухонного ПК. __ Контактное лицо: Дэвид Кук

Контроллер вентилятора Composting Loo Эдди - На моей странице Dalek loo я написал о ряде вариантов повышения экономической эффективности вытяжного вентилятора на солнечной энергии для компостных туалетов.В конце диапазона роскошных был датчик, включающий ряд датчиков, включая температуру и влажность. __ Дизайн Эдди Матеёвски

Контроллер вентилятора стал эффективным с помощью аудиоусилителя - 11/09/00 Идеи дизайна EDN Вы можете использовать дискретные транзисторы, чтобы изменять мощность вентилятора для управления его скоростью. Однако с помощью простой модификации вы можете использовать интегральную схему усилителя звука для управления вентиляторным модулем (рисунок 1). Модель LM4872. PDF-файл содержит несколько схем, прокрутите, чтобы найти интересующую __ Схема проектирования Уоллеса Ли, National Semiconductor Corp, Санта-Клара, Калифорния

Управление включением / выключением вентилятора с помощью света - эта схема позволяет включать / выключать вентилятор, просто направляя свет факела или другой свет на его светозависимый резистор (LDR).Схема питается от блока питания 5 В. Предустановки VR1 и ...__ Проекты электроники для вас

Пульт дистанционного управления вентилятором - 9 ноября 2011 г. Новости дизайна: гаджет оснащен функциями выключения и включения, тремя скоростями вентилятора и разноцветными светодиодами для индикации скорости вращения вентиляторов. В качестве бонуса он издает звуковой сигнал, указывающий, что фанат получил ваше сообщение. __ Дизайн Эндрю Р. Морриса, Gadget Freak-Case № 198, Design News

Регулятор скорости вентилятора - Простая схема управления скоростью вентилятора на основе обратной связи по температуре.Для уменьшения шума продукта. Идея дизайна была отклонена! Спустя годы компании зарабатывают миллионы на таких схемах. __ Разработан Джимом Хаггерманом, Hagerman Technology LLC

Таймер вентилятора

на базе Motorola 68HC908QT2 - Мой сын получил свой вентилятор в спальне. Вентилятор имеет механический таймер на 0–180 минут. Однажды он сломался. Так у меня возникла идея использовать чип Nitron вместо механического таймера. Кто-то может спросить, почему такой сложный таймер сделан на микросхеме микроконтроллера? На самом деле мы можем построить таймер с 555 и 14-ступенчатой ​​CMOS. счетчик! 555 работает нестабильно с постоянной времени, управляемой RC, и для длительной синхронизации мы можем разделить выходную частоту 555 на CMOS. счетчик.__ Дизайн Wichit Sirichote

ИК цифровой термостат для ВЕНТИЛЯТОРА - Эта схема измеряет температуру по шкале Цельсия и отображает ее на буквенно-цифровом ЖК-экране. При повышении температуры до 40 C включается аварийный сигнал и одновременно срабатывает реле, которое приводит в движение вентилятор для поддержания температуры. на уровне __ Контакт: IQ Technologies

LTC1840: Управление вентилятором I2c обеспечивает непрерывное охлаждение системы - примечания к конструкции DN270__ Linear Technology / Analog Devices

Переключатель

MOSFET обеспечивает эффективное преобразование переменного / постоянного тока - 17.02.20000 Идеи проектирования EDN Иногда у вас есть доступ к трансформатору для питания цепи постоянного тока, но его выходное напряжение намного выше, чем требуется для постоянного напряжения.Двухполупериодный выпрямленный и отфильтрованный выход входного переменного напряжения V X равен V DC = 1,414 В X-2V F, где V F - прямое падение напряжения в выпрямителе (приблизительно 0,7 В). __ Разработка схем: Spehro Pephany, Trexon Inc, Торонто, Онтарио, Канада

Контроллер вентилятора без шума - Управление осуществляется с выхода обычного настенного переключателя. Сигнал фильтруется для получения уровня затемнения как аналогового напряжения низкого уровня C3 и его связанных компонентов. Микросхема LM3914 выбирает один из своих выходов в зависимости от амплитуды напряжения, который включает один из светодиодов, чтобы указать скорость, и включает одно из твердотельных реле для управления скоростью вентилятора.Светодиоды позволяют удобно отображать скорость. Верхний светодиод (зеленый) показывает полную мощность вентилятора __ Дизайн Эд Чунг

Защита системы от перегрева - 11/08/01 Идеи EDN-Design Двухчиповая схема на Рисунке 1 обеспечивает управление вентилятором и предупреждение о перегреве и сигналы выключения для защиты систем от чрезмерного нагрева. Схема контролирует температуру печатной платы и температуру кристалла процессора, __ Дизайн схемы Керри Лаканетт, Maxim Integrated Products, Саннивейл, Калифорния

Обеспечьте эффективное управление скоростью вращения вентиляторов - 03.04.04 Идеи дизайна EDN Поскольку закон Мура погружает нас в сферу мультигигагерцовых процессоров и ПК с гигабайтами оперативной памяти, перед инженерами стоит задача отвести тепло, которое вызывает это состояние. -художественные комплектующие производим.Охлаждение таких систем представляет собой дилемму. __ Разработка схем: Джон Гай, Maxim Integrated Products, Саннивейл, Калифорния

ШИМ-контроллер вентилятора в чувствительном к электромагнитным помехам - 16.02.06 Идеи дизайна EDN Управляйте им с помощью внешнего термистора с отрицательным температурным коэффициентом или микроконтроллера PIC и его шины последовательной передачи данных SMBus __ Схема схем Димитрия Данюка, Найлза Audio Corp

Дистанционное управление вентилятором

- 9 ноября 2011 г. Новости дизайна: гаджет поставляется с выключенным / включенным, тремя скоростями вентилятора и разноцветными светодиодами для индикации скорости вращения вентиляторов.В качестве бонуса он издает звуковой сигнал, указывающий, что фанат получил ваше сообщение. __ Дизайн Эндрю Р. Морриса, Gadget Freak-Case № 198, Design News

Простая схема контроллера скорости вентилятора с регулируемой температурой - в этом регуляторе используется P-FET для изменения положительного напряжения питания на вентилятор, резистор NTC, установленный на устройстве, которое нуждается в охлаждении, изменяет скорость вращения вентилятора, поэтому температура на радиаторе будет постоянная, в то время как скорость ВЕНТИЛЯТОРА будет изменяться в зависимости от рассеиваемой мощности Выходной сигнал оборотов от большинства типов ВЕНТИЛЯТОРОВ будет продолжать работать,

Единый переключатель управления вентилятором и кондиционером - Электронный переключатель, с помощью которого можно поочередно включать как кондиционер, так и вентилятор в вашей комнате.Схема состоит из блока питания и ...__ Проекты Электроники для Вас

Контроллер скорости вращения вентилятора SOT-23 Smbus продлевает срок службы батареи и снижает уровень шума - DN238 Примечания к конструкции__ Linear Technology / Analog Devices

Система

контролирует несколько температур, регулирует скорость вращения вентилятора - 10/12/00 Идеи проектирования EDN Блок-схема на рисунке 1 представляет собой полную систему дистанционного измерения температуры и управления вентиляторами. В системе используются ASIC для контроля температуры и управления вентиляторами компании Analog Devices и микросхема PIC16C84 C от Microchip Technology.ADM1022 позволяет вам измерять локальную температуру и две удаленные температуры в системе. Встроенный 8-битный ЦАП управляет скоростью охлаждающего вентилятора в зависимости от измеренной температуры. __ Дизайн схем Дэвид Ханрахан, Analog Devices Inc, Лимерик, Ирландия

Контроль и мониторинг скорости вентилятора на основе температуры с использованием Arduino - Этот проект представляет собой автономный автоматический контроллер скорости вентилятора, который контролирует скорость электрического вентилятора в соответствии с требованиями.Использование встроенных технологий делает эту замкнутую систему управления с обратной связью эффективной ...__ Electronics Projects for You

Монитор температуры

и контроллер вентилятора снижают шум вентилятора - 01-May-01 Идеи разработки EDN Схема на Рисунке 1 снижает акустический шум системы за счет запуска системных вентиляторов на их оптимальной скорости для данной температуры. IC1 сочетает в себе измерение трех температур с точностью до 1С с автоматическим регулированием скорости вращения вентилятора в двух каналах. Двухпроводной последовательный интерфейс позволяет контролировать критические данные о температуре и скорости вращения вентилятора. __ Разработка схемы Дэвидом Ханраханом, Analog Devices Inc, Лимерик, Ирландия

Вентилятор 12 В постоянного тока с регулируемой температурой - подходит для вентиляторов компьютера.Светодиодный индикатор скорости двигателя. __ Контактное лицо: Флавио Деллепиан, fladello @ tin.it

Вентилятор с регулируемой температурой - постепенно увеличивает скорость при повышении температуры; Широко регулируемый диапазон температур __ Контактное лицо: Флавио Деллепиан, fladello @ tin.it

Схема измерения температуры

с использованием ИК-датчика и сигма-дельта АЦП - 3 апреля 2003 г. Идеи конструкции EDN Во многих бесконтактных системах измерения температуры используются инфракрасные датчики, такие как термобатареи, которые могут обнаруживать небольшое количество теплового излучения.Биомедицинские термометры, которые измеряют температуру уха или виска, используют бесконтактное измерение температуры, как и автомобильные системы отопления, вентиляции и кондиционирования воздуха, которые регулируют температурные зоны в зависимости от температуры тела пассажиров. __ Дизайн схемы Альберта О'Грейди и Мэри Маккарти, Analog Devices, Лимерик , Ирландия

Контроллер теплового вентилятора охлаждения

- Когда мы начинаем наслаждаться ленивыми туманными летними днями, самое важное, о чем мы думаем, - как сохранять прохладу в эти жаркие дни.Для некоторых из нас это означает включить старый кондиционер и потягивать прохладный бокал нашего любимого безалкогольного напитка. Однако мы часто забываем о не менее важном __. Разработано радиолюбительским обществом Норвича

.

Thermofan для охлаждения усилителя - используйте компьютерный вентилятор на 12 В для охлаждения усилителя. Использует диодный датчик температуры f __ Разработан Rod Elliott ESP

Используйте ШИМ-контроллер вентилятора в чувствительной к электромагнитным помехам - 16.02.06 Идеи дизайна EDN Управляйте им с помощью внешнего термистора с отрицательным температурным коэффициентом или микроконтроллера PIC и его шины последовательной передачи данных SMBus __ Схема схем Димитрия Данюка , Niles Audio Corp

P0480 Цепь управления вентилятором охлаждения 1 DODGE

Уровень важности ремонта: 3/3

Ремонт Уровень сложности: 3/3

P0480 Возможные причины DODGE

  • Неисправность реле управления вентилятором
  • Жгут реле управления вентилятором обрыв или короткое замыкание
  • Цепь реле управления вентилятором плохое электрическое соединение
  • Неисправен вентилятор охлаждения 1
  • Жгут проводов вентилятора системы охлаждения обрыв или короткое замыкание
  • Вентилятор цепи вентилятора системы охлаждения плохое электрическое соединение

Как исправить код P0480 DODGE?

Проверьте "Возможные причины", перечисленные выше.Осмотрите соответствующий жгут проводов и разъемы. Проверьте наличие поврежденных компонентов и поищите сломанные, погнутые, выдвинутые или корродированные контакты разъема. Что вы знаете об автомобилях?

Пройдите автомобильные тесты AutoCodes.com и получите новые знания по ремонту автомобилей.

Играть сейчас

Стоимость диагностики P0480 DODGE, код

Трудозатраты: 1.0

Стоимость диагностики кода P0480 DODGE составляет 1,0 час труда.Стоимость ремонта автомобиля зависит от местоположения, марки и модели вашего автомобиля и даже от типа двигателя. Большинство автомастерских берут от 75 до 150 долларов в час.

Когда обнаруживается код?

Код P0480 обнаруживается, когда модуль управления двигателем (ECM) обнаруживает, что заданное состояние водителя и фактическое состояние цепи управления не совпадают.

Возможные симптомы

  • Горит индикатор двигателя (или предупреждающий сигнал о скором обслуживании двигателя)
  • Перегрев двигателя

P0480 DODGE Описание

Электрический вентилятор системы охлаждения управляется модулем управления двигателем ( ECM ) через реле вентилятора системы охлаждения на основе входных сигналов от следующих компонентов:
- Датчик температуры охлаждающей жидкости двигателя ( ECT )
- Датчик температуры воздуха на впуске (IAT)
- Селекторный переключатель кондиционера
- Датчик давления хладагента кондиционера
- Датчик скорости автомобиля (VSS)
ECM управляет охлаждающим вентилятором, заземляя цепь управления охлаждающим вентилятором, которая включает реле охлаждающего вентилятора.Реле вентилятора охлаждения будет активировано, если выполнены следующие условия:
- Температура охлаждающей жидкости двигателя достигает 106 ° C (223 ° F) или более.
- Требуется сцепление кондиционера.
- Скорость автомобиля менее 38 миль в час.
Реле вентилятора системы охлаждения будет включено независимо от скорости автомобиля при соблюдении следующих условий:
- Температура охлаждающей жидкости двигателя составляет 151 ° C (304 ° F) или выше.
- Давление хладагента A / C высокое.
Вентилятор охлаждения может быть включен, когда двигатель не работает в условиях выбега вентилятора, описанных в разделе общего описания электрического вентилятора охлаждения в руководстве по обслуживанию.

Зачем и как контролировать скорость вращения вентилятора для охлаждения электронного оборудования

Введение

Растет интерес к интегральным схемам для управления скоростью охлаждающих вентиляторов в персональных компьютерах и другом электронном оборудовании. Компактные электрические вентиляторы дешевы и используются для охлаждения электронного оборудования более полувека. Однако в последние годы технология использования этих вентиляторов значительно изменилась. В этой статье будет описано, как и почему произошла эта эволюция, и предложены некоторые полезные подходы для дизайнера.

Производство и отвод тепла

Тенденция в электронике, особенно в потребительской электронике, заключается в том, чтобы выпускать изделия меньшего размера с улучшенными комбинациями функций. Следовательно, многие электронные компоненты превращаются в очень маленькие форм-факторы. Наглядный пример - ноутбук. Тонкие и «облегченные» ноутбуки значительно сократились, но их вычислительная мощность сохранилась или увеличилась. Другие примеры этой тенденции включают проекционные системы и телевизионные приставки.Что общего у всех этих систем, помимо значительно меньшего - и все еще уменьшающегося - размера, так это то, что количество тепла, которое они должны рассеивать, не уменьшается; часто увеличивается! В ноутбуке большая часть тепла генерируется процессором; в проекторе большая часть тепла генерируется источником света. Это тепло нужно отводить тихо и эффективно.

Самый тихий способ отвода тепла - использование пассивных компонентов, таких как радиаторы и тепловые трубки. Однако во многих популярных продуктах бытовой электроники этого оказалось недостаточно - к тому же они довольно дороги.Хорошая альтернатива - активное охлаждение, введение вентилятора в систему для создания воздушного потока вокруг корпуса и тепловыделяющих компонентов, эффективного отвода тепла из системы. Однако вентилятор является источником шума. Это также дополнительный источник потребления энергии в системе - очень важное соображение, если питание должно подаваться от батареи. Вентилятор также является еще одним механическим компонентом системы, а не идеальным решением с точки зрения надежности.

Управление скоростью - один из способов ответить на некоторые из этих возражений против использования вентилятора - может иметь следующие преимущества:

  1. медленная работа вентилятора снижает излучаемый им шум,
  2. - медленная работа вентилятора может снизить потребляемую мощность,
  3. , если вентилятор работает медленнее, увеличивается его надежность и срок службы.

Существует множество различных типов вентиляторов и способов управления ими. Мы обсудим здесь различные типы вентиляторов, а также преимущества и недостатки используемых сегодня методов управления. Один из способов классифицировать поклонников:

  1. 2-проводные вентиляторы
  2. 3-проводные вентиляторы
  3. Вентиляторы 4-х проводные.

Здесь обсуждаются следующие методы управления вентиляторами:

  1. без управления вентилятором
  2. Включение / выключение
  3. линейное (постоянное) управление
  4. низкочастотная широтно-импульсная модуляция (ШИМ)
  5. высокочастотное управление вентилятором.

Типы вентиляторов

Двухпроводный вентилятор имеет клеммы питания и заземления. Трехпроводный вентилятор имеет питание, массу и тахометрический выход (тахометр) , который выдает сигнал с частотой, пропорциональной скорости. Четырехпроводной вентилятор имеет питание, массу, выход тахометра и вход привода ШИМ. Короче говоря, ШИМ использует относительную ширину импульсов в последовательности импульсов включения-выключения для регулировки уровня мощности, подаваемой на двигатель.

Управление двухпроводным вентилятором осуществляется путем регулировки напряжения постоянного тока или ширины импульса в низкочастотной ШИМ.Однако при наличии только двух проводов сигнал тахометра не всегда доступен. Это означает, что нет никаких указаний относительно того, насколько быстро вентилятор работает - или действительно, работает ли он вообще. Эта форма регулирования скорости - без обратной связи .

3-проводным вентилятором можно управлять с помощью такого же привода, что и для 2-проводных вентиляторов - регулируемого постоянного тока или низкочастотной ШИМ. Разница между 2-проводными вентиляторами и 3-проводными вентиляторами заключается в наличии обратной связи от вентилятора для регулирования скорости с обратной связью.Сигнал тахометра показывает, работает ли вентилятор, и его скорость.

Сигнал тахометра, управляемый постоянным напряжением, имеет прямоугольную форму на выходе, очень напоминающую «идеальный тахометр» на Рисунке 1. Он всегда действителен, так как питание постоянно подается на вентилятор. Однако при низкочастотной ШИМ сигнал тахометра действителен только тогда, когда на вентилятор подается питание, то есть во время фазы импульса на . Когда привод ШИМ переключается на фазу выключен , внутренняя схема генерации тахометрического сигнала вентилятора также отключается.Поскольку выходной сигнал тахометра обычно исходит от открытого стока, он будет иметь высокий уровень, когда привод ШИМ находится на и , как показано на рисунке 1. Таким образом, хотя идеальный тахометр отражает фактическую скорость вентилятора, ШИМ-привод в эффект «отбивает» выходной сигнал тахометра и может давать ошибочные показания.

Рис. 1. Форма выходного сигнала тахометра в 3-проводных вентиляторах - идеальный вариант и с ШИМ-управлением.

Чтобы быть уверенным в правильности считывания скорости вращения вентилятора при ШИМ-регулировании, необходимо периодически переключать вентилятор на на время, достаточное для полного цикла тахометра.Эта функция реализована в ряде контроллеров вентиляторов Analog Devices, таких как ADM1031 и ADT7460.

В дополнение к сигналам питания, заземления и тахометра, 4-проводные вентиляторы имеют вход ШИМ, который используется для управления скоростью вентилятора. Вместо того, чтобы переключать питание всего вентилятора на и на , переключается только питание катушек возбуждения, делая информацию тахометра доступной постоянно. Включение и выключение катушек создает некоторый коммутационный шум .При работе катушек с частотой более 20 кГц шум перемещается за пределы слышимого диапазона, поэтому типичные сигналы привода вентилятора с ШИМ используют довольно высокую частоту (> 20 кГц). Еще одно преимущество 4-проводных вентиляторов заключается в том, что скорость вращения вентилятора можно регулировать на уровне 10% от полной скорости вентилятора. На рисунке 2 показаны различия между 3-проводными и 4-проводными схемами вентилятора.

Рисунок 2. 3- и 4-проводные вентиляторы.

Управление вентилятором

Нет управления: Самый простой способ управления вентилятором - вообще не использовать его; просто запускайте вентилятор соответствующей мощности на полной скорости 100% времени.Основные преимущества этого - гарантированное безотказное охлаждение и очень простой внешний контур. Однако, поскольку вентилятор всегда включен, его срок службы сокращается, и он потребляет постоянное количество энергии, даже если охлаждение не требуется. Кроме того, его непрекращающийся шум может раздражать.

Включение / выключение: Следующим простейшим методом управления вентилятором является термостатический, или управление включением / выключением . Этот метод также очень легко реализовать. Вентилятор включается только тогда, когда необходимо охлаждение, и выключается на остальное время.Пользователь должен установить условия, при которых необходимо охлаждение - обычно, когда температура превышает предварительно установленный порог.

Analog Devices ADM1032 - идеальный датчик для включения / выключения вентилятора с использованием заданного значения температуры. У него есть компаратор, который выдает выходной сигнал THERM - тот, который обычно имеет высокий , но переключает низкий , когда температура превышает программируемый порог. Он автоматически переключается обратно на high , когда температура падает на заданное значение ниже предела THERM.Преимущество этого программируемого гистерезиса заключается в том, что вентилятор не включается / выключается постоянно, когда температура приближается к пороговому значению. На рисунке 3 показан пример схемы, использующей ADM1032.

Рисунок 3. Пример схемы включения / выключения.

Недостатком включения / выключения является то, что он очень ограничен. Когда вентилятор переключается с на , он сразу же начинает раскручиваться до полной скорости, что раздражает и слышно. Поскольку люди быстро привыкают к звуку вентилятора, его выключение также очень заметно.(Его можно сравнить с холодильником на вашей кухне. Вы не замечали шума, который он производил, пока он не выключился.) Таким образом, с акустической точки зрения управление включением / выключением далеко не оптимально.

Линейное управление: на следующем уровне управления вентилятором, линейное управление , напряжение, подаваемое на вентилятор, является переменным. Для более низкой скорости (меньше охлаждения и более тихая работа) напряжение уменьшается, а для более высокой скорости оно увеличивается. У отношений есть ограничения. Рассмотрим, например, вентилятор на 12 В (максимальное номинальное напряжение).Такому вентилятору для запуска может потребоваться минимум 7 В. Когда он действительно начнет вращаться, он, вероятно, будет вращаться примерно на половину своей полной скорости при подаче напряжения 7 В. Из-за необходимости преодоления инерции напряжение, необходимое для запуска вентилятора, выше, чем напряжение, необходимое для его вращения. Так как напряжение, подаваемое на вентилятор, уменьшается, он может вращаться с меньшей скоростью, скажем, до 4 В, после чего он остановится. Эти значения будут отличаться от производителя к производителю, от модели к модели и даже от вентилятора к вентилятору.

ИС линейного управления вентиляторами ADM1028 от Analog Devices имеет программируемый выход и практически все функции, которые могут потребоваться для управления вентиляторами, включая возможность точного взаимодействия с термочувствительным диодом, предусмотренным на микросхемах, таких как микропроцессоры, которые составляют большая часть рассеивания в системе. (Назначение диода - обеспечить быструю индикацию критических температур перехода, избегая всех тепловых задержек, присущих системе. Он позволяет немедленно инициировать охлаждение, основанное на повышении температуры кристалла.) Чтобы поддерживать потребление энергии ADM1028 на минимальном уровне, он работает при напряжении питания от 3,0 В до 5,5 В с выходным напряжением + 2,5 В.

Вентиляторы

на 5 В позволяют регулировать скорость только в ограниченном диапазоне, поскольку их пусковое напряжение близко к уровню полной скорости 5 В. Но ADM1028 можно использовать с 12-вольтовыми вентиляторами, используя простой повышающий усилитель со схемой, подобной показанной на рисунке 4.

Рис. 4. Схема наддува для управления вентилятором 12 В с использованием выходного сигнала ЦАП ADM1028 с линейным управлением вентилятором.

Основным преимуществом линейного управления является его бесшумность. Однако, как мы уже отметили, диапазон регулирования скорости ограничен. Например, вентилятор на 12 В с диапазоном управляющего напряжения от 7 В до 12 В может работать на половинной скорости при 7 В. Ситуация еще хуже с вентилятором на 5 В. Как правило, для запуска 5-вольтных вентиляторов требуется 3,5 В или 4 В, но при этом напряжении они будут работать почти на полной скорости с очень ограниченным диапазоном регулирования скорости. Но работа при 12 В с использованием схем, подобных показанной на рисунке 4, далека от оптимума с точки зрения эффективности.Это связано с тем, что повышающий транзистор рассеивает относительно большое количество энергии (когда вентилятор работает при 8 В, падение 4 В на транзисторе не очень эффективно). Требуемая внешняя цепь также относительно дорога.

ШИМ-управление : В настоящее время распространенным методом управления скоростью вращения вентилятора в ПК является низкочастотный ШИМ-контроль . При таком подходе напряжение, подаваемое на вентилятор, всегда либо нулевое, либо полное, что позволяет избежать проблем, возникающих при линейном управлении при более низких напряжениях.На рис. 5 показана типичная схема управления, используемая с выходом ШИМ терморегулятора ADT7460.

Рис. 5. Схема низкочастотного ШИМ-привода вентилятора.

Основным преимуществом этого метода привода является то, что он простой, недорогой и очень эффективный, поскольку вентилятор либо полностью на , либо полностью на .

Недостатком является то, что информация тахометра прерывается управляющим сигналом ШИМ, так как питание не всегда подается на вентилятор. Информация о тахометре может быть получена с помощью метода, называемого растягиванием импульсов - включения вентилятора на достаточно долгое время для сбора информации о тахометре (с возможным увеличением слышимого шума).На рис. 6 показан случай растяжения импульса.

Рисунок 6. Растяжение импульса для сбора тахометрической информации.

Еще одним недостатком низкочастотной ШИМ является шум коммутации. При постоянном включении и выключении фанкойлов может присутствовать слышимый шум. Чтобы справиться с этим шумом, новейшие контроллеры вентиляторов Analog Devices предназначены для управления вентилятором с частотой 22,5 кГц, что находится за пределами слышимого диапазона. Схема внешнего управления проще с высокочастотной ШИМ, но ее можно использовать только с 4-проводными вентиляторами.Хотя эти вентиляторы относительно новы на рынке, они быстро становятся все более популярными. На рисунке 7 изображена схема, используемая для высокочастотной ШИМ.

Рисунок 7. Схема управления вентилятором с высокочастотной ШИМ.

Сигнал ШИМ напрямую управляет вентилятором; приводной полевой транзистор встроен в вентилятор. Уменьшая количество внешних компонентов, этот подход значительно упрощает внешнюю схему. Поскольку управляющий сигнал ШИМ подается непосредственно на катушки вентилятора, электроника вентилятора всегда включена, а сигнал тахометра всегда доступен.Это устраняет необходимость в растягивании импульсов и шум, который он может производить. Коммутационный шум также устраняется или значительно снижается, так как катушки переключаются с частотой за пределами слышимого диапазона.

Резюме

С точки зрения акустического шума, надежности и энергоэффективности наиболее предпочтительным методом управления вентиляторами является использование высокочастотного (> 20 кГц) ШИМ-привода.

Помимо исключения необходимости зашумленного растяжения импульсов и коммутационного шума, связанного с низкочастотной ШИМ, он имеет гораздо более широкий диапазон регулирования, чем линейное управление.Благодаря высокочастотной ШИМ вентилятор может работать на скорости до 10% от полной скорости, в то время как тот же вентилятор может работать не менее чем на 50% от полной скорости при линейном управлении. Он более энергоэффективен, потому что вентилятор всегда либо полностью включен, либо полностью выключен. (Когда полевой транзистор выключен или находится в состоянии насыщения, его рассеивание очень мало, что устраняет значительные потери в транзисторе в линейном случае.) Это тише, чем при постоянном включении или включении / выключении, поскольку вентилятор может работать на более низких скоростях. - это можно постепенно менять.Наконец, более медленная работа вентилятора также увеличивает срок его службы, повышая надежность системы.

Метод управления
Преимущества
Недостатки
Вкл. / Выкл.
Недорого
Худшие акустические характеристики - вентилятор всегда работает.
Линейный
Самый тихий
Дорогая схема
Неэффективная - потеря мощности в цепи усилителя
Низкочастотный ШИМ
Эффективный
Широкий диапазон регулирования скорости при измерении скорости
Шум переключения вентилятора
Требуется растяжение импульса
Высокочастотный ШИМ
Эффективный
Хорошая акустика, почти как линейная.Недорогая внешняя цепь
Широкий диапазон регулирования частоты вращения
Необходимо использовать 4-проводные вентиляторы

Вентилятор постоянного тока с регулируемой температурой и термистором: проект со схемой

«Автоматизация - это хорошо, если вы точно знаете, где поставить машину», В этом руководстве мы делаем вентилятор постоянного тока с регулируемой температурой. с использованием термистора , поскольку он запускается выше заданного уровня температуры и останавливается, когда температура возвращается к нормальному состоянию.Весь этот процесс происходит автоматически. Ранее мы создали вентилятор с регулируемой температурой, используя Arduino, где скорость вентилятора также регулируется автоматически.

Необходимые компоненты

  • Микросхема операционного усилителя LM741
  • NPN транзистор MJE3055
  • Термистор NTC - 10к
  • Потенциометр - 10к
  • Резисторы - 47 Ом, 4,7к
  • Вентилятор постоянного тока (двигатель)
  • Блок питания-5в
  • Макетная плата и соединительные провода

Принципиальная схема

Ниже приведена принципиальная схема вентилятора постоянного тока с регулируемой температурой, использующего термистор в качестве датчика температуры:

Термистор

Ключевым компонентом схемы вентилятора с регулируемой температурой является термистор, который используется для определения повышения температуры. Термистор - это термочувствительный резистор , сопротивление которого изменяется в зависимости от температуры. Существует два типа термистора NTC (отрицательный температурный коэффициент) и PTC (положительный температурный коэффициент), мы используем термистор типа NTC. Термистор NTC - это резистор, сопротивление которого уменьшается при повышении температуры, в то время как в PTC оно будет увеличивать сопротивление при повышении температуры. Проверьте здесь цепь пожарной сигнализации с помощью термистора.

Микросхема ОУ LM741

Операционный усилитель - электронный усилитель напряжения с высоким коэффициентом усиления со связью по постоянному току.Это небольшая микросхема с 8 контактами. ИС операционного усилителя используется в качестве компаратора, который сравнивает два сигнала: инвертирующий и неинвертирующий. В микросхеме ОУ 741 PIN2 - это инвертирующая входная клемма, а PIN3 - неинвертирующая входная клемма. Выходной контакт этой ИС - PIN6. Основная функция этой ИС - выполнять математические операции в различных схемах.

Операционный усилитель

в основном имеет внутри компаратор напряжения , который имеет два входа, один - инвертирующий, а второй - неинвертирующий.Когда напряжение на неинвертирующем входе (+) выше, чем напряжение на инвертирующем входе (-), тогда выход компаратора высокий. И если напряжение инвертирующего входа (-) выше, чем неинвертирующего конца (+), то выходное напряжение НИЗКОЕ. Операционные усилители имеют большое усиление и обычно используются как усилитель напряжения . Некоторые операционные усилители имеют более одного компаратора внутри (операционный усилитель LM358 имеет два, LM324 имеет четыре), а некоторые имеют только один компаратор, например LM741 . Применение этой ИС в основном включает сумматор, вычитатель, повторитель напряжения, интегратор и дифференциатор.Выход операционного усилителя является произведением коэффициента усиления и входного напряжения. Проверьте здесь другие схемы операционного усилителя.

Схема выводов операционного усилителя IC741:

Конфигурация контактов

ПИН.

ПИН Описание

1

Нулевое смещение

2

Инвертирующий (-) входной терминал

3

неинвертирующий (+) входной терминал

4

Источник отрицательного напряжения (-VCC)

5

нулевое смещение

6

Вывод выходного напряжения

7

Источник положительного напряжения (+ VCC)

8

не подключен

Работа вентилятора постоянного тока с регулируемой температурой с использованием термистора

Работает по принципу термистора.В этой схеме контакт 3 (неинвертирующий контакт операционного усилителя 741) соединен с потенциометром, а контакт 2 (инвертирующий контакт) соединен между R2 и RT1 (термистор), которые образуют схему делителя напряжения. Первоначально в нормальных условиях выход операционного усилителя НИЗКИЙ, так как напряжение на неинвертирующем входе меньше, чем на инвертирующем входе, что заставляет NPN-транзистор оставаться в выключенном состоянии. Транзистор остается в выключенном состоянии, потому что на его базу не подается напряжение, и нам нужно некоторое напряжение на его базе, чтобы NPN-транзистор стал проводящим.Здесь мы использовали NPN-транзистор MJE3055, но здесь может работать любой сильноточный транзистор, как BD140.

Нет, когда температура повышается, сопротивление термистора уменьшается, а напряжение на неинвертирующем выводе операционного усилителя становится выше, чем на инвертирующем выводе, поэтому на выходе операционного усилителя PIN 6 станет ВЫСОКИМ, а транзистор будет включен (потому что, когда выход операционного усилителя ВЫСОКИЙ, напряжение будет течь через коллектор к эмиттеру). Теперь эта проводимость NPN-транзистора позволяет вентилятору запускаться.Когда термистор вернется в нормальное состояние, вентилятор автоматически выключится.

Преимущества

  • Простота в обращении и экономичность
  • Вентилятор запускается автоматически, поэтому он может контролировать температуру вручную.
  • Автоматическое переключение сэкономит энергию.
  • Для охлаждения теплоотводящих устройств установка проста.

Заявка

  • Вентиляторы охлаждения для ноутбуков и компьютеров.
  • Это устройство используется для охлаждения двигателя автомобиля.

СЕРВОМОТОР FANUC AC серии αi ОПИСАНИЕ

% PDF-1.6 % 1850 0 объект > endobj 968 0 объект > endobj 1847 0 объект > поток 2010-06-11T15: 21: 59 + 09: 002010-04-16T17: 49: 13 + 09: 002010-06-11T15: 21: 59 + 09: 00Adobe Acrobat 8.1 Combine Filesapplication / pdf

  • FANUC AC SERVO MOTOR αi series ОПИСАНИЕ
  • В-65262RU / 06
  • FANUC_ADEE
  • uuid: 8c5b0a8b-cbf7-454b-aec3-8a28f6c6adfbuuid: c9fb9883-d765-4b08-86c4-a798823f8d2a Acrobat Distiller 8.1.0 (Windows) конечный поток endobj 2816 0 объект > / Кодировка >>>>> endobj 1800 0 объект > endobj 2474 0 объект > endobj 1305 0 объект > endobj 2447 0 объект > endobj 2445 0 объект > endobj 2449 0 объект > endobj 2458 0 объект > endobj 2460 0 объект > endobj 2444 0 объект > endobj 3122 0 объект > endobj 3120 0 объект > endobj 1306 0 объект > endobj 1307 0 объект > endobj 1308 0 объект > endobj 1309 0 объект > endobj 1310 0 объект > endobj 1311 0 объект > endobj 1312 0 объект > endobj 1313 0 объект > endobj 1314 0 объект [1447 0 R] endobj 1315 0 объект [1448 0 R] endobj 1316 0 объект [1449 0 R] endobj 1317 0 объект [1450 0 р] endobj 1318 0 объект [1451 0 R] endobj 1319 0 объект [1452 0 R] endobj 1320 0 объект [1453 0 R] endobj 1321 0 объект [1454 0 R] endobj 1322 0 объект [1455 0 R] endobj 1323 0 объект [1456 0 R] endobj 1324 0 объект [1457 0 R] endobj 1325 0 объект [1458 0 R] endobj 1326 0 объект [1459 0 R] endobj 1327 0 объект [1460 0 R] endobj 1328 0 объект [1461 0 R] endobj 1329 0 объект [1462 0 R] endobj 1330 0 объект [1463 0 R] endobj 1331 0 объект [1464 0 R] endobj 1332 0 объект [1465 0 R] endobj 1333 0 объект [1424 0 R] endobj 1334 0 объект [1420 0 R] endobj 1335 0 объект [1421 0 R] endobj 1336 0 объект [1422 0 R] endobj 1337 0 объект [1423 0 R] endobj 1338 0 объект [1416 0 R] endobj 1339 0 объект [1411 0 R] endobj 1340 0 объект [1412 0 R] endobj 1341 0 объект [1413 0 R] endobj 1342 0 объект [1414 0 R] endobj 1343 0 объект [1415 0 R] endobj 1344 0 объект [1407 0 R] endobj 1407 0 объект > endobj 1408 0 объект > endobj 567 0 объект > / ColorSpace> / Font> / ProcSet [/ PDF / Text / ImageB] / ExtGState >>> / Type / Page >> endobj 1843 0 объект > endobj 568 0 объект > поток HWnH} hRf7 old @ XTL * ؙ SM "u = Uu} tӷ ח ^ _ ^ / g?}} ;;].