19Май

Перечислите основные детали двс: Основные детали двигателя внутреннего сгорания

Содержание

Тесты по устройству автомобиля

Вопросы с ответами по курсу «Автоподготовка» к тестовому контролю

Правильные ответы в тесты обозначены » + «

1. Из каких основных частей состоит автомобиль

+1. Двигатель, кузов, шасси.

2. Двигатель, трансмиссия, кузов.

3. Двигатель, шасси, рама.

4. Ходовая часть, двигатель, кузов.

5. Шасси, тормозная система, кузов.

2 Тест. Как расшифровывается ВАЗ 21011

1. Волынский автозавод, объем двигателя 1.8л, седан, 11 модель.

+2. Волжский автомобильный завод, легковой, объем двигателя до 1.8л, 11 модель.

3. Волжский автомобильный завод, фургон, объем двигателя 1.4л, 11 модель.

4. . Волжский автомобильный завод, модель 21, объем двигателя 1.1 л.

5. Волжский автомобильный завод, фургон.

3. Виды двигателей внутреннего сгорания в зависимости от типа топлива.

1. Бензин, дизельное топливо, газ.

2. Бензин, сжиженный газ, дизельное топливо.

+3. Жидкое, газообразное, комбинированное.

4. Комбинированное, бензин, газ.

5. Дизельное топливо, твердое топливо, бензин.

4. Перечислите основные детали ДВС.

1. Коленчатый вал, задний мост, поршень, блок цилиндров.

+2. Шатун, коленчатый вал, поршень, цилиндр.

3.Трансмиссия, поршень, головка блока, распределительный вал.

4. Поршень, головка блока, распределительный вал.

5. Трансмиссия, головка блока, распределительный вал.

5. Что называется рабочим объемом цилиндра.

+1. Объем цилиндра освобождаемый поршнем при движении от ВМТ к НМТ.

2. Объем цилиндра над поршнем в ВМТ.

3. Объем цилиндра над поршнем в НМТ.

4. Сумма рабочих объемов двигателя.

5. Количество цилиндров в двигателе.

6. Что называется литражом двигателя.

1. Сумма полных объемов всех цилиндров двигателя.

+2. Сумма рабочих объемов всех цилиндров двигателя.

3. Сумма объемов камер сгорания всех цилиндров двигателя.

4. Количество цилиндров в двигателе.

5. Размер головки блока.

7. Что показывает степень сжатия.

1. Отношение объема камеры сгорания к полному объему цилиндра.

2. Разницу между рабочим и полным объемом цилиндра.

3. Отношение объема камеры сгорания к рабочему объему.

+4. Во сколько раз полный объем больше объема камеры сгорания.

5. Расстояние от поршня до коленчатого вала.

8. Что поступает в цилиндр карбюраторного двигателя при такте «впуск»

1. Сжатый, очищенный воздух.

2. Смесь дизельного топлива и воздуха.

3. Очищенный и мелко распыленный бензин.

+4. Смесь бензина и воздуха.

5. Очищенный газ.

9. За счет чего воспламеняется горючая смесь в дизельном двигателе.

1. За счет форсунки.

+2. За счет самовоспламенения.

3. С помощью искры которая образуется на свече.

4. За счет свечи накаливания.

5. За счет давления сжатия

10. В какой последовательности происходят такты в 4-х тактном ДВС.

1. Выпуск, рабочий ход, сжатие, впуск.

2. Выпуск, сжатие, рабочий ход, впуск.

+3. Впуск, сжатие, рабочий ход, выпуск.

4. Впуск, рабочий ход, сжатие, выпуск.

5. Выпуск, рабочий ход, впуск.

11. Перечислите детали которые входят в КШМ.

1. Блок цилиндров, коленчатый вал, шатун, клапан, маховик.

+2. Головка блока, коленчатый вал, шатун, поршень, блок цилиндров.

3. Головка блока, коленчатый вал, поршневой палец, распред. вал.

4. Блок цилиндров, коленчатый вал, шатун, термостат, поршневой палец, поршень.

5. Коленчатый вал, шатун, термостат, поршневой палец, поршень.

12. К чему крепиться поршень.

1. К коленчатому валу при помощи поршневого пальца.

2. К шатуну при помощи болтов крепления.

3. К маховику при помощи цилиндров.

+4. К шатуну при помощи поршневого пальца.

5. К головке блока.

13. Назначение маховика.

1. Отдавать кинетическую энергию при запуске двигателя.

+2. Накапливать кинетическую энергию во время рабочего хода.

3. Соединять двигатель и стартер.

4. Преобразовывать возвратно-поступательное движение во вращательное.

5. Обеспечивать подачу горючей смеси.

14. Какие детали соединяет шатун.

+1. Поршень и коленчатый вал.

2. Коленчатый вал и маховик.

3. Поршень и распределительный вал.

4. Распределительный вал и маховик.

5. Блок цилиндров и поршень

15. Как подается масло к шатунным вкладышам коленчатого вала.

1. Под давлением по каналам в головке блока цилиндров.

2. Под давлением по каналам в коленчатом и распределительном валах.

3. Разбрызгиванием от масляного насоса.

+4. Под давлением от масляного насоса по каналам в блоке цилиндров и коленчатом валу.

5. Через масляный насос.

16.Какое давление создает масленый насос.

+1. 0.2-0.5 МПа.

2. 2-5 МПа.

3. 20-50 МПа.

4. 10-20 МПа.

5. 1-9 МПА.

17. Назначение редукционного клапана масленого насоса.

1. Ограничивает температуру масла, что бы двигатель не перегрелся.

+2. Предохраняет масленый насос от разрушения при повышении давления масла.

3. Предохраняет масленый насос от разрушения при повышении температуры масла в двигателе.

4. Подает масло к шатунным вкладышам.

5. Подает масло в радиатор.

18.Тест. Через сколько километров пробега автомобиля, необходимо производить замену масла.

1. Через 5 000км.

2. Через 12 000-14 000км.

3. Через 20 000км.

+4. Через 10 000 км.

19. За счет чего производится очистка масла в центробежном фильтре тонкой очистки.

1. За счет фильтрования масла через бумажный фильтр.

+2. За счет центробежных сил действующих на частички грязи.

3. За счет центробежных сил действующих на вращающийся ротор.

4. За счет прохождения масла через фильтр.

5. За счет центробежных сил действующих на вращающийся вал.

20. Перечислите способы подачи масла к трущимся частям ДВС. Тесты на знание устройства автомобиля.

+1. Разбрызгиванием, под давлением, комбинированно.

2. Разбрызгиванием, под давлением, совмещенная.

3. Комбинированный, термосифонный, принудительный.

4. Масленым насосом и разбрызгиванием.

5. Разбрызгиванием, под давлением.

21. Каким способом смазываются наиболее нагруженные детали ДВС.

+1. Под давлением.

2. Разбрызгиванием.

3. Комбинированным.

4. Под давлением и разбрызгиванием.

5. Через масляный фильтр.

22. Назначение термостата.

1. Ограничивает подачу жидкости в радиатор.

2. Служит для сообщения картера двигателя с атмосферой.

+3. Ускоряет прогрев двигателя и поддерживает оптимальную температуру.

4. Снижает давление в системе охлаждения и предохраняет детали от разрушения при повышении давления.

5. Служит для сообщения картера двигателя с камерой сгорания.

23. За счет чего циркулирует жидкость в принудительной системе охлаждения.

1. За счет разности плотностей нагретой и охлажденной жидкости.

2. За счет давления создаваемого масленым насосом.

+3. За счет напора создаваемого водяным насосом.

4. За счет давления в цилиндрах при сжатии.

5. За счет давления создаваемого насосом.

24. Перечислите наиболее вероятные причины перегрева двигателя.

+1. Поломка термостата или водяного насоса.

2. Применение воды вместо антифриза.

3. Недостаточное количество масла в картере двигателя.

4. Поломка поршня или шатуна.

25. Назначение парового клапана в пробке радиатора.

1. Для выпуска отработавших газов.

2. Для сообщения картера двигателя с атмосферой.

3. Для предохранения радиатора от разрушения.

+4. Для повышения температуры кипения воды.

5. Для сообщения картера двигателя с цилиндром.

26. К чему может привести поломка термостата.

+1. К перегреву или медленному прогреву двигателя.

2. К повышенному расходу охлаждающей жидкости.

3. К повышению давления в системе охлаждения.

4. К внезапной остановке двигателя.

27. Что входит в большой круг циркуляции жидкости в системе охлаждения.

1. Радиатор, термостат, рубашка охлаждения, масленый насос.

+2. Рубашка охлаждения, термостат, радиатор, водяной насос.

3. Рубашка охлаждения, термостат, радиатор.

4. Радиатор, термостат, рубашка охлаждения, расширительный бачок, водяной насос.

5. Термостат, рубашка охлаждения, расширительный бачок, водяной насос.

28. Что входит в малый круг циркуляции жидкости в системе охлаждения.

1. Радиатор, водяной насос, рубашка охлаждения.

2. Рубашка охлаждения, термостат, радиатор.

+3. Рубашка охлаждения, термостат, водяной насос.

4. Шатун, поршень и радиатор.

5. Радиатор, водяной насос, рубашка охлаждения, поршень.

29. Назначение карбюратора.

1. Поддерживает оптимальный тепловой режим двигателя в пределах 80-95 град С.

+2. Приготовление и подача горючей смеси в цилиндры.

3. Предназначен для впрыскивания бензина в цилиндры под давлением 18МПа.

4. Создание давления впрыска в пределах 15-18 МПа за счет плунжерной пары.

30. Какая горючая смесь называется нормальной.

+1. В которой соотношение воздуха и бензина в пределах 15 к 1.

2. В которой соотношение воздуха и бензина в пределах 17 к 1.

3. В которой соотношение воздуха и бензина в пределах 13 к 1.

4. В которой воздуха больше чем бензина.

5. В которой бензин находится в жидком состоянии.

31. Назначение системы холостого хода в карбюраторе.

1. Подача дополнительной порции топлива при пуске двигателя. Воздушная заслонка закрыта.

+2. Обеспечение устойчивой работы двигателя без нагрузки при малых оборотах коленчатого вала. Дроссельная заслонка закрыта.

3. Подача дополнительной порции топлива при резком открытии дроссельной заслонки.

4. Приготовление обедненной смеси на всех режимах работы двигателя.

32. Назначение экономайзера в карбюраторе.

1. Приготовление нормальной смеси при прогреве двигателя.

2. Приготовление обедненной смеси при плавном увеличении нагрузки двигателя.

3. Приготовление обогащенной смеси при резком открытии дроссельной заслонки.

+4. Приготовление обогащенной смеси при плавном увеличении нагрузки двигателя.

5. Приготовление нормальной смеси при запуске двигателя.

33. Какой заслонкой в карбюраторном двигателе управляет водитель при нажатии на педаль «газа».

1. Воздушной.

+2. Дроссельной.

3. Вначале открывается дроссельная затем воздушная заслонки.

4. Дополнительной заслонкой.

5. Заслонкой расположенной на блоке цилиндров.

34. Назначение инжектора в инжекторном ДВС.

+1. Впрыск топлива во впускной трубопровод на впускной клапан.

2. Впрыск топлива в выпускной трубопровод на впускной клапан.

3. Приготовление горючей смеси определенного состава в зависимости от режима работы двигателя.

4. Впуск топлива в выпускной трубопровод на впускной клапан.

5. Впрыск топлива в выпускной трубопровод на выпускной клапан.

35. Где расположен топливный насос в инжекторном двигателе.

1. Между баком и карбюратором.

+2. В топливном баке.

3. Между фильтрами «тонкой» и «грубой» очистки.

4. Во впускном трубопроводе.

5. В головке блока.

36. Под каким давлением впрыскивается топливо инжектором.

1. 2,8-3,5 МПа.

2. 14-18 МПа.

+3. 0.28-0.35МПа.

4. 10-20 МПа.

5. 100-200 МПа.

37. Что управляет впрыском топлива в инжекторе.

+1. Электронный блок управления.

2. Топливный насос высокого давления.

3. Регулятор давления установленный на топливной рампе.

4. Специальный топливный насос.

5. Распределитель зажигания.

38. За счет чего происходит впрыск топлива в инжекторе.

1. За счет сжатия пружины удерживающей иглу инжектора.

+2. За счет открытия электромагнитного клапана инжектора.

3. За счет давления создаваемого ТНВД.

4. За счет расхода воздуха.

5. За счет давления газов.

39. Где образуется рабочая смесь в дизельном двигателе.

+1. В цилиндре двигателя.

2. Во впускном трубопроводе при подаче топлива форсункой.

3. В карбюраторе при открытой воздушной заслонке.

4. В камере сгорания.

5. В блоке цилиндров.

40. Назначение форсунки в дизельном двигателе.

1 Для впрыска мелкораспыленного топлива в камеру сгорания при впуске.

2. Приготовление горючей смеси оптимального состава и подачу ее в цилиндры.

+3. Для впрыска мелкораспыленного топлива в камеру сгорания при сжатии.

4. . Подача топлива во впускной трубопровод.

41. Какое значение имеет давление открытия форсунки в дизельном двигателе.

+1. 17.5-18 МПа.

2. 10-12 МПа.

3. 1.75-1. 80 МПа.

4. 2.5-3.5 МПа.

5. 130 Мпа.

42. Назначение ТНВД.

1. Приготовление горючей смеси определенного состава в зависимости от нагрузки на двигатель и частоты вращения коленчатого вала.

+2. Для подачи в форсунки двигателя определенной дозы топлива в определенный момент и под требуемым давлением.

3. Для смешивания воздуха и дизельного топлива в камере сгорания цилиндра.

4. Для подачи горючей смеси в двигатель.

5. Для смешивания бензина и воздуха.

43. Тесты по устройству автомобиля.  Что является основными деталями ТНВД.

1. Игла форсунки которая тщательно обрабатывается и притирается к корпусу.

+2. Плунжерная пара состоящая из притертых между собой плунжера и гильзы.

3. Гильза цилиндра и поршень с поршневыми кольцами.

4. Поршень и цилиндр.

5. Гильза и блок цилиндров.

44. Какой зазор между плунжером и гильзой в топливном насосе высокого давления.

+1. 0.001-0.002 мм

2. 0.1-0.2 мм.

3. 1-2 мм

4. 0.15-0.25 мм

5. 1-2 мм.

45. Какое движение совершает плунжер в топливном насосе высокого давления.

1. Вращательное.

+2. Возвратно-поступательное.

3. Круговое под действием кулачкового вала.

4. Сложное.

5. Центробежное.

46. Что зажигает газ в дизельном двигателе при переводе его на газ.

1. Свеча накаливания.

2. Искровая свеча зажигания.

+3. Самовоспламенение небольшой дозы дизельного топлива.

4. Искра возникающая между электродами свечи.

5. Специальный факел.

47. Что входит в систему питания дизельного двигателя.

+1. Топливный бак, топливоподкачивающий насос, топливный фильтр, ТНВД, форсунки, воздушный фильтр.

2. Топливный бак, топливоподкачивающий насос, топливный фильтр, карбюратор, форсунки, воздушный фильтр, глушитель.

3. Топливоподкачивающий насос, топливный фильтр, форсунки, воздушный фильтр, топливный бак.

4. Топливный фильтр, форсунки, воздушный фильтр, топливный бак.

48. Чему равняется степень сжатия в дизельном двигателе.

1. 7-10.

2. 20-25.

+3. 15-16.

4. 4-5.

5. 35.

49. Назначение аккумуляторной батареи в автомобиле.

1.Для накопления электрической энергии во время работы двигателя.

+2. Для питания бортовой сети автомобиля при неработающем двигателе и запуска двигателя.

3. Для создания необходимого крутящего момента при запуске двигателя.

4. Для поддержания необходимого напряжения.

5. Для увеличения силы тока.

50. От чего получает вращение генератор переменного тока в ДВС.

1. От распределительного вала ДВС.

+2. От коленчатого вала ДВС.

3. От специального эл. двигателя получающего эл. энергию от аккумулятора.

4. От распределительного вала.

5. От заднего привода.

51. От чего зависит напряжение вырабатываемое генератором.

+1. От частоты вращения ротора и силы тока в обмотке возбуждения.

2. От скорости движения автомобиля и напряжения аккумулятора.

3. От силы тока в силовой обмотке и плотности электролита.

4. От уровня электролита и степени заряженности АКБ.

5. От скорости движения автомобиля.

52. Назначение реле-регулятора.

1. Изменять силу тока в идущего на зарядку АКБ.

2. Ограничивать напряжение поступающее на зарядку аккумулятора.

+3. Ограничивать напряжение выдаваемое генератором.

4. Увеличивать ток.

5. Увеличивать напряжение.

53. Для чего предназначен транзистор в контактно-транзисторном реле.

1. Для выпрямления переменного тока, вырабатываемого генератором.

2. Для усиления силы тока в обмотке возбуждения генератора.

+ 3. Для уменьшения силы тока проходящего через контакты реле.

4. Для поддержки напряжения в пределах 13-14 В.

5. Для усиления силы тока в обмотке возбуждения стартера.

54. Назначение катушки зажигания в контактно — транзисторной системе зажигания.

1. Разрывать цепь низкого напряжения и распределять высокое напряжение по свечам.

+2. Трансформировать низкое напряжение (12в) в высокое (20 000в)

3. Изменять по величине и направлению напряжение выдаваемое аккумуляторной батареей.

4. Снижать силу тока проходящего через контакты прерывателя-распределителя.

5. Снижать напряжение в сети.

55 Назначение контактов в прерывателе-распределителе контактной системы зажигания.

+1. Прерывать цепь низкого напряжения.

2. Прерывать цепь высокого напряжения.

3. Распределять высокое напряжение по свечам.

4. Запускать двигатель.

5. Выключать подачу тока в цепь.

56. Назначение прерывателя-распределителя в контактно — транзисторной системе зажигания.

1. Разрывать цепь низкого напряжения и распределять высокое напряжение по свечам.

2. Трансформировать низкое напряжение (12в) в высокое (20 000в)

+3. Управлять током идущим на базу транзистора и распределять высокое напряжение по свечам.

4 Разрывать цепь высокого напряжения и распределять высокое напряжение по свечам.

5. Разрывать цепь и распределять высокое напряжение по свечам.

57. Какой угол называют углом опережения зажигания.

1. Угол поворота коленчатого вала от ВМТ до НМТ.

2. Угол поворота коленчатого вала от момента появления искры до прихода поршня в НМТ.

+3. Угол поворота коленчатого вала от момента появления искры до прихода поршня в ВМТ.

4. Угол наклона поршня в цилиндре.

5. Угол между коленчатым валом и поршнем.

58. Как меняется угол опережения зажигания при повышении частоты вращения коленчатого вала.

+1. Увеличивается.

2. Остается без изменения.

3. Уменьшается на 5 градусов.

4. Не изменяется.

5. Резко уменьшается.

59. Какой регулятор меняет угол опережения зажигания при повышении частоты вращения коленчатого вала.

1. Вакуумный.

+2. Центробежный.

3. Октан –корректор.

4. Всережимный.

5. Регулировочный.

60. Что входит в цепь высокого напряжения в бесконтактно — транзисторной системе зажигания.

+1. Вторичная обмотка катушки зажигания, прерыватель-распределитель провода высокого напряжения, свеча.

2. Вторичная обмотка катушки зажигания, прерыватель-распределитель, датчик Холла, свечи.

3. Первичная обмотка катушки зажигания, прерыватель-распределитель провода высокого напряжения, свеча.

4. Катушки зажигания, прерыватель-распределитель провода высокого напряжения, свеча.

5. Первичная обмотка, прерыватель-распределитель провода высокого напряжения, свеча.

конструкция, отличия и применяемость на двигатели Ваз.. Статьи компании «АвтоКлюч-63»

 

   Поршневая группа двигателя включает в себя: поршень, поршневые кольца и поршневой палец.

Общая конструкция поршневой группы сложилась еще в период появления первых двигателей внутреннего сгорания. С тех пор ни один из элементов поршневой группы не утратил своего функционального назначения.

Поршень, является наиболее важным элементом любого двигателя внутреннего сгорания.

Именно на эту деталь, выпадает основная нагрузка по преобразованию энергии расширяющихся газов в энергию вращения коленчатого вала. Свойства, которыми должен обладать поршень, трудно совместимы и технически тяжело реализуются.

Требования, которым должна соответствовать эта деталь:
  • температура в камере сгорания может достигать более 2000°С а температура поршня, без риска потери прочности материала, не должна превышать 350°С
  • после сгорания бензино-воздушной смеси, давление в камере сгорания может достигать 80 атмосфер.

 При таком давлении, оказываемое на днище усилие, будет составлять свыше 4-х тонн. Толщина стенок и днища поршня должна обеспечивать возможность выдерживать значительные нагрузки. Но любое увеличение массы изделия приводит к увеличению динамических нагрузок на элементы двигателя, что в свою очередь, ведет к усилению конструкции и росту массы двигателя;

  • зазор между поршнем и поверхностью цилиндра должен обеспечивать эффективную смазку и возможность перемещения с минимальными потерями на трение. Но в тоже время зазор должен учитывать тепловое расширение и исключить возможность заклинивания.
  • изготовление должно быть достаточно дешевым и отвечать условиям массового производства.

Очертания поршня за более сто пятидесятилетнюю историю двигателя внутреннего сгорания мало изменились.

   

В конструкции поршня можно выделить несколько зон, каждая из которых, имеет свое функциональное назначение:

1)   Днище поршня – поверхность, обращенная к камере сгорания. Днище, своим профилем, определяет нижнюю поверхность камеры сгорания.

Форма днища зависит от формы камеры сгорания, расположения клапанов, от особенности подачи топливо-воздушной смеси в камеру сгорания и объема самой камеры.

Днища разных моделей применяемых на двигателях ВАЗ приведены на рисунке:

Поршни ВАЗ 21213 и ВАЗ 21230 отличаются нанесенной маркировкой. Маркировка наносится на поверхность рядом с отверстием под поршневой палец. На поршне ВАЗ 21213 нанесены цифры -«213», на модели ВАЗ 2123 — «23».

На модели ВАЗ 21080, ВАЗ 21083, ВАЗ 21100 нанесена соответствующая маркировка — «08»,»083″, «10». Поршень 2108 имеет диаметр 76 мм , модели 21083 и 2110 — 82 мм.

Поршни ВАЗ 2112 и ВАЗ 21124, имеют соответствующую маркировку — «12»и «24» и отличаются глубиной выборки под клапана. Модели 21126 и 11194 отличаются диаметром.

2)   Если углубления на днище увеличивают объем камеры сгорания, то для уменьшения объема применяют вытеснители.  Вытеснителем называют объем металла, который находится выше плоскости днища.

3)  «Жаровым поясом» (огневым) называют расстояние от днища до канавки первого поршневого кольца. Чем ближе располагаются поршневые кольца к днищу, тем более высокой тепловой нагрузке они подвергаются, тем больше сокращается их ресурс.

4)  Уплотняющий участок — это участок канавок, расположенных на боковой цилиндрической поверхности поршня. Канавки предназначены для установки поршневых колец. Поршневые кольца обеспечивают подвижное уплотнение. На всех моделях для двигателей ВАЗ, выполнены две канавки под компрессионные кольца и одна канавка под маслосъемное кольцо.

В канавке под маслосъемное кольцо есть отверстия, через которые отводится излишек масла во внутреннюю полость поршня. Уплотняющий участок выполняет еще одну очень важную функцию — через установленные поршневые кольца, осуществляется отвод значительной части тепла от поршня к цилиндру.

Если конструкция изделия не будет предусматривать эффективный отвод тепла от днища, то это приведет к его прогоранию.

По расчетам, через компрессионные кольца, передается до 60-70% выделенного тепла. Однако это требует плотного прилегания поршневых колец к цилиндру и к поверхностям канавок.

Для обеспечения работоспособности, торцевой зазор первого компрессионного кольца в канавке должен составлять 0,045-0,070 мм. Для второго компрессионного кольца зазор — 0,035-0,060 мм, для маслосъемного – 0,025-,0050 мм. Между внутренней поверхностью кольца и канавки должен быть радиальный зазор — 0,2-0,3 мм.

5)  Головку поршня образуют днище и уплотняющая часть.

Расстояние от оси поршневого пальца до днища, называют компрессионной высотой поршня.

6)  «Юбкой», называют нижнюю часть поршня. На этом участке находятся бобышки с отверстиями – место, куда устанавливается поршневой палец. Внешняя поверхность юбки, исполняет роль опорной и направляющей поверхности.

Юбка обеспечивает соосность положения детали к оси цилиндра блока. Кроме того, боковая поверхность юбки участвует в передаче к цилиндру возникающих поперечных усилий.

На поверхность юбки (или на все изделие) могут наноситься защитные покрытия улучающие прирабатываемость и снижающих трение.

Покрытие слоем олова позволяет сгладить неточности профиля и предотвратить наволакивание алюминия на поверхности цилиндра. Могут применяться покрытия созданные на основе графита и дисульфида молибдена.

Другой способ, снижающий потери на трение – нанесение на юбке канавок специального профиля. Глубина канавок составляет 0,01-0,015 мм. При движении, канавки не только удерживают масло, но и создают гидродинамическую силу, которая препятствует контакту со стенками цилиндра.

    Одним из факторов определяющих геометрию поршня, является необходимость снижения сил трения.

   Для этого требуется обеспечение определенной толщины масляного слоя в зазоре между поршнем и стенками цилиндра. Причем маленький зазор повлечет за собой увеличение сил трения и как следствие повышение нагрева деталей и их ускоренный износ а возможно и заклинивание.

Слишком большой зазор, увеличит шумность двигателя, приведет к росту динамических нагрузок на сопрягаемые детали и будет способствовать их ускоренному износу. Поэтому величина зазора подбирается в соответствии с рекомендациями для конкретного типа двигателя.

   В истории применения конструкций поршней для двигателей ВАЗ, просматриваются этапы влияния нескольких европейских конструкторских школ.

На первых моделях двигателей ВАЗ применяется «итальянская» конструкция. Поршни отличаются большой компрессионной высотой, широкой опорной поверхностью юбки. Поверхность изделия покрыта слоем олова.

  В разработке последующих конструкций принимают участие немецкие компании. У поршней уменьшается компрессионная высота. На юбке применяется микропрофиль – специальный профиль канавок, для удержания смазки в зоне трения. Поршни моделей ВАЗ 21126 и ВАЗ 11194 получают Т-образный профиль и рассчитаны на установку «тонких» поршневых колец. Так внешне сравнивая модели от 2101 до 21126, можно получить представление об общих тенденциях совершенствования конструкции , основанных на новых научных разработках.

  В процессе работы, различные участки поршня нагреваются не равномерно, следовательно, и тепловое расширение будет больше там, где выше температура и больше объем металла. В связи с этим, на уровне днища размер выполняют меньшим, чем диаметр в средней части. Таким образом, в продольном сечении профиль будет коническим. Нижняя часть юбки тоже может иметь меньший диаметр. Это позволяет, при движении вниз, в пространстве между юбкой и цилиндром, создавать масляный клин, который улучшает центрирование в цилиндре.

   Для компенсации тепловых деформаций, в поперечном сечении поршень выполнен виде овала. Это связано с тем, что в районе бобышек под поршневой палец сосредоточен значительный объем металла.

При нагреве, в плоскости поршневого пальца, расширение будет осуществляться в большей степени. Овальность и бочкообразность детали в холодном состоянии, позволяет иметь поршень, приближающийся к цилиндрической форме, при работающем двигателе.

Такая форма изделия создает сложности при контроле его диаметра. Фактический диаметр можно определить, только замеряя его в плоскости перпендикулярной оси отверстия под поршневой палец на определенном расстоянии от днища. При этом, для разных моделей это расстояние будет отличаться.

   Тепловые нагрузки порождают еще одну проблему. Поршни изготавливают из алюминиевого кремнесодержащего сплава, а для блока цилиндров используют чугун. У этих материалов разная теплопроводность и разный коэффициент теплового расширения.

   Это приводит к тому, что в начале работы двигателя, поршень нагревается и увеличивается в диаметре быстрее, чем увеличивается внутренний диаметр цилиндра. При и без того малых зазорах, это может приводить к повышенному износу цилиндров, а в худшем случае, к заклиниванию поршня.

  Для решения этой проблемы, во время отливки поршня, в тело заготовки внедряют специальные стальные или чугунные элементы, которые сдерживают резкое изменение диаметра. Для уменьшения теплового расширения и отвода тепла, на некоторых типах двигателя, используются системы подачи масла во внутреннюю полость поршня.

  Поршневой палец обеспечивает шарнирное соединение поршня и верхней головки шатуна. Во время работы двигателя, на поршневой палец воздействуют значительные переменные силы. Палец и отверстия под палец должны сопрягаться с минимальным зазором, обеспечивающим смазку.

  На двигателях ВАЗ используется два типа шарнирного соединения «поршень-палец-шатун». На поршнях моделей 2101, 21011, 2105, 2108, 21083 – палец устанавливается в верхней головке шатуна по плотной посадке, исключающей его вращение. Отверстие в поршне под поршневой палец выполнено с зазором, обеспечивая свободное вращение.

  В дальнейшем от этой схемы отказались и перешли на схему с «плавающим» пальцем. На поршнях моделей 21213, 2110, 2112, 21124, 21126, 11194, 21128 – палец устанавливается с минимальным зазором и в головке шатуна, и в отверстиях поршня. Для исключения осевого смещения пальца, в поршне, в отверстиях под поршневой палец устанавливаются стопорные кольца. Во время работы, у пальца есть возможность проворачиваться, обеспечивая равномерный износ поверхностей.

  Для обеспечения надежной смазки пальцев, в бобышках предусмотрены специальные отверстия.

По результатам фактического замера отверстия под поршневой палец, поршням присваивается одна из трех категорий(1-я, 2-я, 3-я). Разница в размерах для категорий составляет — 0,004мм. Номер категории клеймится на днище.

Для обеспечения необходимого зазора, поршневые пальцы, по наружному диаметру подразделяются на три класса. Отличие в размерах составляет — 0,004 мм. Маркировка класса производится краской по торцу пальца: синий цвет — первый класс, зеленый — второй, красный — третий класс. При сборке, поршню первой категории должен подбираться палец первого класса и т.д.

  Особенностью работы шатунного механизма, является то, что до достижения верхней мертвой точки, поршень прижат к одной стороне цилиндра, а после прохождения ВМТ – к другой стороне цилиндра. При приближении к верхней мертвой точке, на поршень действует максимальная нагрузка, следовательно растет сила давления на палец. Возрастающие силы трения препятствуют повороту поршня на пальце. При таких условиях поворот может происходит скачкообразно, со стуком о стенку цилиндра.

 

  Для того, чтобы снизить динамические нагрузки и шум, применяют поршни со смещенным отверстием под поршневой палец. Ось отверстия смещена в горизонтальной плоскости от оси поршня. В работающем двигателе это приводит к возникновению момента силы, который облегчает преодоление сил трения.

Такое конструктивное решение позволяет добиться плавности, при смене точек контакта поршня с цилиндром. На такие изделия обязательно наносится метка для правильной ориентации при его установке. Однако, чем больше будет износ цилиндров и юбки, тем в большей степени будет проявляться стук в цилиндре.

  Существуют поршни, в которых применяется не только горизонтальное смещение оси пальца, но и вертикальное. Такое смещение ведет к уменьшению компрессионной высоты. Поршни, с дополнительным смещением оси отверстия под палец вверх, применяются для тюнинговой доработки двигателя. В качестве основной характеристики для таких поршней используется величина смещения, указывающая на сколько смещен центр отверстия под палец, по сравнению со стандартным изделием.

  На рынке продаж, поршень представлен значительным количеством отечественных и иностранных производителей. Независимо от производителя, они должны соответствовать требованиям, рассчитанным для конкретной модели двигателя. Поршни, входящие в комплект, не должны отличаться по массе более чем на ±2,5 грамм. Это позволит снизить вибрации работающего двигателя. Для розничной сети, в комплекты подбираются поршни одной весовой группы. В случае необходимости можно осуществить подгонку поршня по массе.

  Зазор между цилиндром и поверхностью поршня должен соответствовать величине установленной для данной модели двигателя. Поршни номинального размера по своему диаметру относят к одному из пяти классов. Различие между классами составляет 0,01 мм.

  Классы маркируются на днище буквами — (А, В, С, D, Е). В качестве запасных частей поставляются поршни классов — А, С, Е. Этих размеров достаточно, чтобы осуществить подбор деталей для любого блока цилиндров и обеспечить необходимый зазор.

  Поршни ВАЗ 11194 и ВАЗ 21126 имеют только три класса (A, B, C) с размерным шагом — 0,01 мм.

  Кроме номинальных размеров, изготавливаются поршни 2-х ремонтных размеров, с увеличенным наружным диаметром на 0,4 и 0,8 мм. Для распознавания, на днищах ремонтных изделий ставится маркировка: символ «треугольник» соответствует первому ремонтному размеру(с увеличением наружного диаметра на 0,4 мм), символ «квадрат» — увеличение диаметра на 0,8 мм. До 1986 г. ремонтные размеры отличались от современных. Так для двигателя 2101 существовало три ремонтных размера: на 0,2 мм., 0,4 мм., 0,6 мм; для двигателя 21011 два размера: 0,4 мм. и 0,7 мм.

 

Применяемость моделей поршней на различных двигателях Ваз:

  В качестве материала для изготовления поршней применяются сплавы алюминия. Использование кремния в составе сплава, позволило снизить коэффициент теплового расширения и увеличить износостойкость. Сплавы, где содержание кремния может достигать 13%, называют – эвтектическими. Сплавы с более высоким содержанием кремния относят к заэвтектическим сплавам. Повышение процента содержания кремния улучшает теплопроводные характеристики, однако приводит к тому, что при охлаждении в сплаве происходит выделение кремния в виде зерен размером 0. 5-1.0 мм. Это приводит к ухудшению литейных и механических свойств. Для улучшения физико-механических свойств, в сплавы вводят легирующие добавки меди, марганца, никеля, хрома.

 

Существует два основных способа получения заготовки поршня.

Отливка в кокиль – специальную форму, является более распространенным способом. Другой способ — горячая штамповка (ковка). После этапов механической обработки, изделие подвергают термической обработке для повышения твердости, прочности и износостойкости, а также для снятия остаточных напряжений в металле.

  Структура кованого металла позволяет повысить прочностные характеристики изделия. Но есть существенные недостатки кованых изделий классической конструкции( с высокой юбкой)– они получаются более тяжелыми. Кроме того, в кованных деталях, невозможно использовать термокомпенсирующие кольца или пластины. Увеличенный объем металла ведет к увеличенной тепловой деформации и необходимости увеличивать зазор между поршнем и цилиндром. И как следствие – повышенный шум, износ цилиндров, расход масла. Применение кованых поршней оправдано в тех случаях, когда большую часть времени двигатель автомобиля эксплуатируется на предельных режимах.

  В современном конструировании поршней, наблюдаются следующие тенденции: уменьшение веса, использования «тонких» поршневых колец, уменьшение компрессионной высоты, использование коротких поршневых пальцев, применение защитных покрытий. Все это, нашло свое применение, в конструкции Т-образных поршней. Наименование конструкции обусловлено схожестью профиля детали с буквой «Т». На этих изделиях, юбка уменьшена и по высоте и по площади направляющей части. В качестве материала для изготовления таких поршней используется заэвтектический сплав, с большим содержанием кремния. Поршни Т-образной конструкции практически всегда изготавливаются горячей штамповкой.

  Принятие разработчиками решения о применении той или иной конструкции поршня всегда предшествует расчет и глубокий анализ поведения всех узлов шатунно-поршневой группы. Детали современных двигателей рассчитаны на пределе возможностей конструкции и материалов. В таких расчетах предпочтение отдается конструкциям с минимальной стоимостью обеспечивающих утвержденный ресурс и не более. Поэтому любое отклонение от штатных режимов работы двигателя ведет к сокращению ресурса тех или иных деталей и узлов.

Из чего состоит поршневой двигатель внутреннего сгорания

Большинство автомобилей заставляет перемещаться поршневой двигатель внутреннего сгорания (сокращённо ДВС) с кривошипно-шатунным механизмом. Такая конструкция получила массовое распространение в силу малой стоимости и технологичности производства, сравнительно небольших габаритов и веса.

По виду применяемого топлива ДВС можно разделить на бензиновые и дизельные. Надо сказать, что бензиновые двигатели великолепно работают на газе. Такое деление непосредственно сказывается на конструкции двигателя.

Как устроен поршневой двигатель внутреннего сгорания

Основа его конструкции — блок цилиндров. Это корпус, отлитый из чугуна, алюминиевого или иногда магниевого сплава. Большинство механизмов и деталей других систем двигателя крепятся именно к блоку цилиндров, или располагаются внутри его.

Другая крупная деталь двигателя, это его головка. Она находится в верхней части блока цилиндров. В головке также располагаются детали систем двигателя.

Снизу к блоку цилиндра крепится поддон. Если эта деталь воспринимает нагрузки при работе двигателя, её часто называют поддоном картера, или картером.

Все системы двигателя

  1. кривошипно-шатунный механизм;
  2. механизм газораспределения;
  3. система питания;
  4. система охлаждения;
  5. система смазки;
  6. система зажигания;
  7. система управления двигателем.

Кривошипно-шатунный механизм состоит из поршня, гильзы цилиндра, шатуна и коленчатого вала.

Кривошипно-шатунный механизм:
1. Расширитель маслосъёмного кольца. 2. Кольцо поршневое маслосъёмное. 3. Кольцо компрессионное, третье. 4. Кольцо компрессионное, второе. 5. Кольцо компрессионное, верхнее. 6. Поршень. 7. Кольцо стопорное. 8. Палец поршневой. 9. Втулка шатуна. 10. Шатун. 11. Крышка шатуна. 12. Вкладыш нижней головки шатуна. 13. Болт крышки шатуна, короткий. 14. Болт крышки шатуна, длинный. 15. Шестерня ведущая. 16. Заглушка масляного канала шатунной шейки. 17. Вкладыш подшипника коленчатого вала, верхний. 18. Венец зубчатый. 19. Болты. 20. Маховик. 21. Штифты. 22. Болты. 23. Маслоотражатель, задний. 24. Крышка заднего подшипника коленчатого вала. 25. Штифты. 26. Полукольцо упорного подшипника. 27. Вкладыш подшипника коленчатого вала, нижний. 28. Противовес коленчатого вала. 29. Винт. 30. Крышка подшипника коленчатого вала. 31. Болт стяжной. 32. Болт крепления крышки подшипника. 33. Вал коленчатый. 34. Противовес, передний. 35. Маслоотрожатель, передний. 36. Гайка замковая. 37. Шкив. 38. Болты.

Поршень расположен внутри гильзы цилиндра. При помощи поршневого пальца он соединен с шатуном, нижняя головка которого крепится к шатунной шейке коленчатого вала. Гильза цилиндра представляет собой отверстие в блоке, или чугунную втулку, вставляемую в блок.

Гильза цилиндров с блоком

Гильза цилиндра сверху закрыта головкой. Коленчатый вал также крепится к блоку в нижней его части. Механизм преобразует прямолинейное движение поршня во вращательное движение коленчатого вала. То самое вращение, которое, в конечном счете, заставляет крутиться колеса автомобиля.

Газораспределительный механизм отвечает за подачу смеси паров топлива и воздуха в пространство над поршнем и удаление продуктов горения через клапаны, открываемые строго в определенный момент времени.

Система питания отвечает в первую очередь за приготовление горючей смеси нужного состава. Устройства системы хранят топливо, очищают его, смешивают с воздухом так, чтобы обеспечить приготовление смеси нужного состава и количества. Также система отвечает за удаление из двигателя продуктов горения топлива.

При работе двигателя образуется тепловая энергия в количестве большем, чем двигатель способен преобразовать в механическую энергию. К сожалению, так называемый термический коэффициент полезного действия, даже лучших образцов современных двигателей не превышает 40%. Поэтому приходится большое количество «лишней» теплоты рассеивать в окружающем пространстве. Именно этим и занимается система охлаждения, отводит тепло и поддерживает стабильную рабочую температуру двигателя.

Система смазки. Это как раз тот случай: «Не подмажешь, не поедешь». В двигателях внутреннего сгорания большое количество узлов трения и так называемых подшипников скольжения: есть отверстие, в нем вращается вал. Не будет смазки, от трения и перегрева узел выйдет из строя.

Система зажигания призвана поджечь, строго в определенный момент времени, смесь топлива и воздуха в пространстве над поршнем. У дизелей такой системы нет. Там топливо самовоспламеняется при определенных условиях.

Видео:

Система управления двигателем при помощи электронного блока управлении (ЭБУ) управляет системами двигателя и координирует их работу. В первую очередь это приготовление смеси нужного состава и своевременное поджигание её в цилиндрах двигателя.

Загрузка…

Основные эксплуатационные дефекты гильз цилиндров двигателей внутреннего сгорания автомобилей

Техническое состояние гильз цилиндров во много определяет тягово-экономические показатели двигателя и его ресурс. Различают несколько основных эксплуатационных дефектов гильз ДВС, классификация и причины возникновения, которых, а также способы устранения рассмотрены в данной статье.

Ключевые слова: гильза цилиндра, двигатель внутреннего сгорания, эксплуатационный дефект, расход топлива, компрессия, износ, трещины.

 

Гильза цилиндра двигателя внутреннего сгорания представляет собой цилиндрическую вставку, формирующую рабочий объем двигателя и определяющая положение поршня при его движении. От технического состояния гильз цилиндра ДВС зависят такие параметры как мощность, расход топлива, компрессия, расход масла и так далее [1–3].

Основные дефекты гильз цилиндров ДВС, образующиеся при эксплуатации: трещины, износ наружной поверхности, излом бурта, износ посадочных поясков, износ внутренней (рабочей) поверхности.

1.                  Трещины.

Трещины на поверхности гильз цилиндров могут возникать от перегрева ввиду превышения предельно допустимой нагрузки на двигатель, неполноценной работы системы охлаждения, под воздействием ударных нагрузок, из-за «размораживания» охлаждающей жидкости двигателя или при нарушении технологии ремонта (перетяжка болтов, перекосы при запрессовке и так далее) [4–6].

В результате чрезмерного нагрева, а иногда и от резкого охлаждения в гильзах появляться микротрещины, которые под действием температуры и ударных нагрузок могут привести к физическому разрушению гильзы, что в конечном итоге вызовет потерю работоспособности цилиндропоршневой группы и двигателя в целом.

При дефектации трещины в гильзах можно обнаружить с помощью рентгенографического исследования, с помощью ориентирования металлических опилок вдоль трещины под воздействием магнитных полей или путем применения смазок и жидкостей, имеющих высокую проникающую способность. При обнаружении трещин гильзы не подлежат ремонту или восстановлению и выбраковываются [4, 7].

2.                  Износ наружной поверхности.

Как правило, большая часть наружной поверхности находиться в непосредственном контакте с охлаждающей жидкостью, в связи с этим, основными причинами повреждения этой поверхности гильз является квитанционное изнашивание и коррозионные процессы. Величина повреждений наружной поверхности может быть значительно снижена путем применения специализированных охлаждающих жидкостей (антифризов), имеющих в своем составе антикоррозионные, противопенные и другие присадки [2, 5–8].

Наличие дефектов наружной поверхности гильз может приводить к протечкам охлаждающей жидкости в картер двигателя и взаимодействия с моторным маслом, в результате чего образуется масляная эмульсия, не способная полноценно выполнять свою работу. Либо возможно загрязнение охлаждающей жидкости моторным маслом.

Устранение таких дефектов возможно путем нанесения полимерных композиций на изношенные поверхности [1–3, 7–8].

3.                  Излом бурта.

Основными причинами излома бурта гильзы являются: наличие посторонних частиц при запрессовке; неровности и перекосы в области седла буртика в блоке цилиндров; неподходящая по высоте и размерам прокладка головки блока цилиндров; нарушения технологии обработки при ремонте и восстановлении.

Иногда головка блока цилиндров имеет канавку по всему периметру, в которую входит противопожарный борт, причем головка и гильза цилиндра не должны соприкасаться. Если вследствие перекоса или повреждения головка блока требует выравнивания, канавка должна быть пропорционально увеличена. В противном случае есть опасность того, что усилие будет направлены не на прокладку, как должно быть, а на противопожарный борт гильзы цилиндра.

Если данный дефект гильзы не будет вовремя обнаружен, то после пуска двигателя сломанная гильза сдвинется в направлении коленчатого вала, и как только место излома окажется на высоте первого поршневого кольца, поршневое кольцо выскочит выше места излома. При обратном ходе поршня он вдавит гильзу цилиндра. Вращающийся коленчатый вал разобьет гильзу, поршень и шатун также будут повреждены.

Устранить такой дефект можно с помощью пластической деформации, наплавки или приварки стальной ленты с последующей механической обработкой.

4.                  Износ посадочных поясков гильзы.

Износ посадочных поясков частично связан с кавитационным изнашиванием. Признаком дефекта гильз являются глубокие раковины на поверхности поясков, что является следствием явления кавитации или коррозии.

В процессе работы возникает вибрация гильзы, что также вызывает износ посадочных поясков гильзы.

В реальных условиях эксплуатации двигателей возможно появление овальности посадочных поясков гильзы, вызванное кавитационным разрушением или отложением накипи в зазорах посадочных поясков гильзы в блоке.

Устранить подобный дефект можно также с помощью пластической деформации, наплавки или приварки стальной ленты с последующей механической обработкой.

5.                  Износ внутренней поверхности цилиндров.

Во время работы двигателя зеркало цилиндров подвергается абразивному и механическому изнашиванию вследствие проникновения в двигатель пыли. Много пыли попадает в цилиндры с воздухом через впускной трубопровод, если имеются неплотности в месте его крепления, или с топливом и маслом при их небрежном хранении.

Механическое изнашивание зеркала гильзы цилиндра больше в верхней части, чем в нижней, так как в верхней части давление значительно выше. Когда в конце такта сжатия в цилиндре сгорает рабочая смесь, то резко повышается давление образовавшихся горячих газов, и первое компрессионное кольцо сильно прижимается к зеркалу цилиндра.

В ВМТ скорость поршня снижается до нуля, масляная пленка выгорает, и первое поршневое кольцо вступает непосредственно в контакт с зеркалом цилиндра. При движении поршня вниз (в первый момент) происходит интенсивное изнашивание зеркала цилиндра и поршневого кольца.

Кроме износа по длине также наблюдается износ в направлении, перпендикулярном оси коленчатого вала, т. е. овализация гильз. Овализация гильз цилиндров вызывается как неравномерностью изнашивания, так и остаточными деформациями, возникающими от сил давления газов и бокового усилия поршня. Наибольшая овальность гильзы происходит в верхнем поясе в зоне расположения верхнего поршневого кольца при положении поршня в верхней мертвой точке.

Устранить износ внутренней поверхности гильзы можно с помощью растачивания, хонингования, шлифования, наплавки, осаждением гальванопокрытий, металлизацией [8].

Таким образом, гильзы цилиндров двигателей внутреннего сгорания при работе испытывают большие нагрузки, они подвержены пяти основным эксплуатационным дефектам, каждый из которых имеет свои причины для появления и может быть устранён тем или иным способом, применяемым в авторемонтном производстве.

 

Литература:

 

1.         Захаров, Ю. А. Анализ способов восстановления корпусных деталей транспортно-технологических машин и комплексов [Текст] / Ю. А. Захаров, Е. В. Ремизов, Г. А. Мусатов // Молодой ученый. — 2014. — № 19. — С. 202–204.

2.         Захаров, Ю. А. Основные дефекты корпусных деталей автомобилей и способы их устранения, применяемые в авторемонтном производстве [Электронный ресурс] / Ю. А. Захаров, Е. В. Ремзин, Г. А. Мусатов // Инженерный вестник Дона: электронный научный журнал. № 4, 2014. URL: www.ivdon.ru/uploads/article/pdf/IVD_48_Zaharov.pdf_b512b82f57.pdf

3.         Захаров, Ю. А. Упрочнение деталей автомобилей типа «вал» и «ось» [Текст] / Ю. А. Захаров, Е. В. Ремизов, Г. А. Мусатов // Молодой ученый. — 2014. — № 20. — С. 141–143.

4.         Захаров, Ю. А. Основные способы упрочнения рабочей поверхности гильз цилиндров двигателей автомобилей [Текст] / Ю. А. Захаров, Л. А. Рыбакова // Молодой ученый. — 2015. — № 2. — С. 157–160.

5.         Голубев, И. Г. Мониторинг технологических процессов восстановления деталей [Текст] / И. Г. Голубев, В. В. Быков, А. Н. Батищев, В. В. Серебровский, И. А. Спицын, Ю. А. Захаров // Технический сервис в лесном комплексе / Сб. материалов. науч.-практ. конф. — Москва: МГУЛ, 2000.– С.31.

6.         Обеспечение работы мобильных машин в условиях отрицательных температур [Текст] / Ю. А. Захаров, Е. Г. Рылякин, И. Н. Семов [и др.] // Молодой ученый. — 2014. — № 17. — С. 56–58.

7.         Захаров, Ю. А. Устройство для гальваномеханического осаждения покрытий на внутренние цилиндрические поверхности деталей автомобилей [Электронный ресурс] / Ю. А. Захаров, И. А. Спицын, Е. В. Ремизов, Г. А. Мусатов // Инженерный вестник Дона: электронный научный журнал. № 4, 2014. URL: ivdon.ru/ru/magazine/archive/N4y2014/2676 (дата обращения 12.01.2015).

8.         Захаров, Ю. А. Устройство для восстановления внутренних цилиндрических поверхностей деталей мобильной техники гальваномеханическим осаждением покрытий [Электронный ресурс] / Ю.  А. Захаров, И. А. Спицын, Г. А. Мусатов // Инженерный вестник Дона: электронный научный журнал. № 1, 2015. URL: ivdon.ru/ru/magazine/archive/n1y2015/2752 (дата обращения 04.02.2015).

Основные детали двигателя внутреннего сгорания

Сегодня мы узнаем об основных частях двигателя или, точнее, двигателя внутреннего сгорания. Двигатель внутреннего сгорания — это тепловой двигатель, в котором сгорание (сжигание топлива) происходит внутри цилиндра двигателя. После сжигания топлива возникает высокая температура и сила давления. Эта сила давления используется для перемещения транспортного средства или вращения колес с помощью какого-либо механизма. В двигателе многие части работают вместе для достижения цели преобразования химической энергии топлива в механическую.Эти части скреплены болтами, и комбинация всех этих частей известна как двигатель. Сегодня я собираюсь рассказать вам об этих частях и о том, как они работают, чтобы вы могли узнать основы автомобильного двигателя.

1. Блок цилиндров

Цилиндр — это основной корпус двигателя внутреннего сгорания. Цилиндр — это часть, в которой происходит забор топлива, сжатие топлива и сжигание топлива. Основная функция цилиндра — направлять поршень. Он находится в прямом контакте с продуктами сгорания, поэтому его необходимо охлаждать.Для охлаждения цилиндра на внешней стороне цилиндра расположена водяная рубашка (для жидкостного охлаждения, используемого в большинстве автомобилей) или ребро (для охлаждения воздуха, используемого в большинстве мотоциклов). На верхнем конце цилиндра, головка цилиндра и на нижнем конце картера закреплены болтами. В верхней части цилиндра находится камера сгорания, в которой горит топливо. Чтобы справиться со всем этим давлением и температурой, возникающими при сгорании топлива, материал цилиндра должен иметь высокую прочность на сжатие. Таким образом, он сделан из высококачественного чугуна.Его изготавливают методом литья и обычно отливают цельным.

2. Головка блока цилиндров

Верхний торец цилиндра двигателя закрыт съемной головкой блока цилиндров. На головке блока цилиндров есть два отверстия, одно для впуска топлива, а другое для выпуска. Как впускной, так и выпускной порты закрыты двумя клапанами, известными как впускной и выпускной клапан. Впускной клапан, выпускной клапан, свеча зажигания, форсунка и т. Д. Прикручены к головке блока цилиндров.Основная функция головки блока цилиндров — герметизировать блок цилиндров и не допускать попадания и выхода газов на двигатель с клапаном крышки головки блока цилиндров. Головка блока цилиндров обычно изготавливается из чугуна или алюминия. Его изготавливают методом литья или ковки и, как правило, цельным.

3. Поршень

Поршень установлен на каждом цилиндре как поверхность для приема давления газа и передачи усилия на шатун. Это главный двигатель в двигателе. Основная функция поршня — плотно прилегать к цилиндру через отверстие и свободно скользить внутри цилиндра.Поршень должен быть легким и достаточно прочным, чтобы выдерживать давление газа, возникающее при сгорании топлива. Таким образом, поршень изготовлен из алюминиевого сплава, а иногда и из чугуна, потому что поршень из легкого сплава расширяется больше, чем чугун, поэтому им требуется больше зазоров к отверстию.



4. Кольца поршневые

Поршень должен свободно входить в цилиндр, чтобы он мог свободно перемещаться внутри цилиндра. Если поршень установлен слишком плотно, он будет расширяться при нагревании и может плотно прилипать к цилиндру, а если он слишком ослаблен, это приведет к утечке давления пара.Чтобы обеспечить хорошее уплотнение и меньшее сопротивление трению между поршнем и цилиндром, поршни оснащены поршневыми кольцами. Эти кольца вставляются в пазы, прорезанные в поршне. Они разделены на одном конце, поэтому они могут расширяться или скользить по концу поршня. Небольшой двухтактный двигатель имеет два поршневых кольца для обеспечения хорошего уплотнения, но четырехтактный двигатель имеет дополнительное кольцо, известное как масляное кольцо. Поршневые кольца изготовлены из мелкозернистого чугуна и высокоэластичного материала, на который не влияет рабочая температура.Иногда его делают из легированной пружинной стали.

5. Шатун

Шатун соединяет поршень с коленчатым валом и передает движение и усилие поршня на коленчатый вал. Он преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Есть два конца шатуна; один известен как большой конец, а другой как малый конец. Большой конец соединен с коленчатым валом, а малый конец соединен с поршнем с помощью поршневого пальца.Шатуны изготовлены из никелевых, хромовых и хромованадиевых сталей. Для небольших двигателей материалом может быть алюминий.

6. Коленчатый вал

Коленчатый вал двигателя внутреннего сгорания воспринимает усилие или тягу, прилагаемую поршнем к шатуну, и преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Коленчатый вал устанавливается в подшипник, поэтому он может свободно вращаться. Форма и размер коленчатого вала зависят от количества и расположения цилиндров.Обычно его изготавливают путем ковки стали, но некоторые производители используют специальные типы чугуна, такие как отливки из шаровидного графита или никелевых сплавов, которые дешевле в производстве и имеют хороший срок службы.

7. Подшипник двигателя

Везде, где в двигателе есть вращательное действие, нужны подшипники. Подшипники используются для поддержки движущихся частей. Коленчатый вал опирается на подшипник. Шатун шатуна прикреплен к шатуну на кривошипе коленчатого вала подшипником.Поршневой палец на малом конце используется для прикрепления штока к поршню и также находится в подшипниках. Основная функция подшипников — уменьшить трение между этими движущимися частями. В двигателе внутреннего сгорания используются подшипники скольжения и качения. Подшипник скольжения, который иногда называют втулкой, используется для крепления шатуна к поршню и коленчатому валу. Они разделены, чтобы их можно было установить в двигатель. Подшипник качения и шарикоподшипник
используется для поддержки коленчатого вала, поэтому он может свободно вращаться.Типичная половина подшипника
изготовлена ​​из стали или бронзы, на которую нанесена футеровка из относительно мягкого материала подшипника
.

8. Картер двигателя

Основной корпус двигателя, к которому прикреплен цилиндр и который содержит коленчатый вал и подшипник коленчатого вала, называется картером. Он также служит системой смазки и иногда его называют масляным картером. В него помещается все масло для смазки.

9.Клапаны

Для управления впуском и выпуском двигателя внутреннего сгорания используются клапаны. Количество клапанов в двигателе зависит от количества цилиндров. Для каждого цилиндра используются два клапана: один для впуска топливовоздушной смеси внутрь цилиндра, а другой — для выпуска дымовых газов. Клапаны устанавливаются в порт на головке блока цилиндров с помощью сильной пружины. Этой весной держите их закрытыми. Оба клапана обычно открываются внутрь.

10.Свеча зажигания

Применяется в двигателях с искровым зажиганием. Основная функция свечи зажигания — проводить высокий потенциал от системы зажигания в камеру сгорания для воспламенения топливной смеси сжатого воздуха. Он установлен на головке блока цилиндров. Свеча зажигания состоит из металлической оболочки с двумя электродами, изолированными друг от друга воздушным зазором. При подаче высокого потенциала тока на свечу зажигания она отскакивает от питающего электрода и дает необходимую искру.

11.Инжектор

Форсунка обычно используется в двигателях с воспламенением от сжатия. Он распыляет топливо в камеру сгорания в конце такта сжатия. Он установлен на головке блока цилиндров.

12. Коллектор

Основная функция коллектора — подавать топливовоздушную смесь и собирать выхлопные газы в равной степени со всех цилиндров. В двигателе внутреннего сгорания используются два коллектора: один для впуска, а другой для выпуска.Обычно они изготавливаются из алюминиевого сплава.

13. Распредвал

Распределительный вал используется в двигателе внутреннего сгорания для управления открытием и закрытием клапанов в нужное время. Для обеспечения надлежащей выходной мощности двигателя впускной клапан должен открываться в конце такта выпуска и закрываться в конце такта впуска. Таким образом, для регулирования времени используется кулачок овальной формы, который оказывает давление на клапан для открытия и отпускания для закрытия. Он приводится в движение зубчатым ремнем, который приводится в движение коленчатым валом.Он размещается вверху или внизу цилиндра.

14. Поршневой палец или поршневой палец

Это параллельные шпиндели из закаленной стали, проходящие через бобышки поршня и маленькие концевые втулки или проушины, позволяющие шатунам поворачиваться. Он соединяет поршень с шатуном. Он сделан полым для легкости.

15. Толкатель

Толкатель используется, когда распределительный вал расположен в нижнем конце цилиндра.
Он передает движение распределительного вала к клапанам, расположенным на головке блока цилиндров.

16. Маховик

На коленчатом валу закреплен маховик. Основная функция маховика — вращать вал во время подготовительного хода. Это также делает вращение коленчатого вала более равномерным.

Это все об основных частях двигателя. Если у вас есть какие-либо вопросы относительно этой статьи, задавайте их в комментариях. Если вам понравилась эта статья, не забудьте поделиться ею в социальной сети.Подпишитесь на наш сайт, чтобы получить более информативную статью.

ДВИГАТЕЛЬ

IC: КОМПОНЕНТЫ И ИХ ФУНКЦИИ, ВИДЫ И ТЕРМИНОЛОГИЯ

Это двигатель, в котором сгорание топлива происходит внутри двигателя. Когда топливо сгорает внутри цилиндра двигателя, оно создает высокую температуру и давление. Эта сила высокого давления действует на поршень (устройство, которое свободно перемещается внутри цилиндра и передает силу давления на кривошип с помощью шатуна), который используется для вращения колес транспортного средства.В этих двигателях мы можем использовать только газы и топливо с высокой летучестью, такое как бензин, дизельное топливо. Эти двигатели обычно используются в автомобильной промышленности, производстве электроэнергии и т. Д.

Преимущества I.C. двигатель

 В целом имеет высокий КПД по сравнению с двигателем E.C.
 Эти двигатели компактны и занимают меньше места.
 Начальная стоимость I.C. двигатель ниже, чем двигатель E.C.
 Этот двигатель легко запускается в холодную погоду, так как в нем используется высоколетучее топливо.

КОМПОНЕНТЫ ДВИГАТЕЛЯ IC

1.Блок цилиндров
Цилиндр является основным корпусом двигателя внутреннего сгорания. Цилиндр — это часть, в которой происходит забор топлива, сжатие топлива и сжигание топлива. Основная функция цилиндра — направлять поршень. Он находится в прямом контакте с продуктами сгорания, поэтому его необходимо охлаждать. Для охлаждения цилиндра на внешней стороне цилиндра расположена водяная рубашка (для жидкостного охлаждения, используемого в большинстве автомобилей) или ребро (для охлаждения воздуха, используемого в большинстве мотоциклов). На верхнем конце цилиндра, головка цилиндра и на нижнем конце картера закреплены болтами. Верхняя часть цилиндра представляет собой камеру сгорания, в которой горит топливо. Чтобы справиться со всем этим давлением и температурой, возникающими при сгорании топлива, материал цилиндра должен иметь высокую прочность на сжатие. Таким образом, он сделан из высококачественного чугуна. Его изготавливают методом литья и обычно отливают цельным.

2. Головка блока цилиндров
Верхний торец цилиндра двигателя закрыт съемной головкой блока цилиндров. На головке блока цилиндров есть два отверстия, одно для впуска топлива, а другое для выпуска.Как впускной, так и выпускной порты закрыты двумя клапанами, известными как впускной и выпускной клапан. Впускной клапан, выпускной клапан, свеча зажигания, форсунка и т. Д. Прикручены к головке блока цилиндров. Основная функция головки блока цилиндров — герметизировать блок цилиндров и не допускать попадания и выхода газов на двигатель с клапаном крышки головки блока цилиндров. Головка блока цилиндров обычно изготавливается из чугуна или алюминия. Его изготавливают методом литья или ковки и, как правило, цельным.

3. Поршень
Поршень установлен на каждом цилиндре как поверхность для приема давления газа и передачи усилия на шатун.Это главный двигатель в двигателе. Основная функция поршня — плотно прилегать к цилиндру через отверстие и свободно скользить внутри цилиндра. Поршень должен быть легким и достаточно прочным, чтобы выдерживать давление газа, возникающее при сгорании топлива. Таким образом, поршень изготовлен из алюминиевого сплава, а иногда и из чугуна, потому что поршень из легкого сплава расширяется больше, чем чугун, поэтому им требуется больше зазоров к отверстию.

4. Поршневые кольца
Поршень должен свободно входить в цилиндр, чтобы он мог свободно перемещаться внутри цилиндра.Если поршень установлен слишком плотно, он будет расширяться при нагревании и может плотно прилипать к цилиндру, а если он слишком ослаблен, это приведет к утечке давления пара. Чтобы обеспечить хорошее уплотнение и меньшее сопротивление трению между поршнем и цилиндром, поршни оснащены поршневыми кольцами. Эти кольца вставляются в пазы, прорезанные в поршне. Они разделены на одном конце, поэтому они могут расширяться или скользить по концу поршня. Небольшой двухтактный двигатель имеет два поршневых кольца для обеспечения хорошего уплотнения, но четырехтактный двигатель имеет дополнительное кольцо, известное как масляное кольцо.Поршневые кольца изготовлены из мелкозернистого чугуна и высокоэластичного материала, на который не влияет рабочая температура. Иногда его делают из легированной пружинной стали.

5. Шатун
Шатун соединяет поршень с коленчатым валом и передает движение и усилие поршня на коленчатый вал. Он преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Есть два конца шатуна; один известен как большой конец, а другой как малый конец. Большой конец соединен с коленчатым валом, а малый конец соединен с поршнем с помощью поршневого пальца.Шатуны изготовлены из никелевых, хромовых и хромованадиевых сталей. Для небольших двигателей материалом может быть алюминий.

6. Коленчатый вал
Коленчатый вал двигателя внутреннего сгорания воспринимает усилие или тягу, прилагаемую поршнем к шатуну, и преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Коленчатый вал устанавливается в подшипник, поэтому он может свободно вращаться. Форма и размер коленчатого вала зависят от количества и расположения цилиндров.Обычно его изготавливают путем ковки стали, но некоторые производители используют специальные типы чугуна, такие как отливки из шаровидного графита или никелевых сплавов, которые дешевле в производстве и имеют хороший срок службы.

7. Подшипник двигателя
Везде, где в двигателе есть вращательное действие, нужны подшипники. Подшипники используются для поддержки движущихся частей. Коленчатый вал опирается на подшипник. Шатун шатуна прикреплен к шатуну на кривошипе коленчатого вала подшипником. Поршневой палец на малом конце используется для прикрепления штока к поршню и также находится в подшипниках. Основная функция подшипников — уменьшить трение между этими движущимися частями. В двигателе внутреннего сгорания используются подшипники скольжения и качения. Подшипник скольжения, который иногда называют втулкой, используется для крепления шатуна к поршню и коленчатому валу. Они разделены, чтобы их можно было установить в двигатель. Подшипник качения и шарикоподшипник используются для поддержки коленчатого вала, поэтому он может свободно вращаться. Типичная половина подшипника изготовлена ​​из стали или бронзы, на которую нанесена футеровка из относительно мягкого материала подшипника.

8. Картер двигателя
Главный корпус двигателя, к которому прикреплен цилиндр и который содержит коленчатый вал и подшипник коленчатого вала, называется картером. Он также служит системой смазки и иногда его называют масляным картером. В него помещается все масло для смазки.

9. Клапаны
Для управления впуском и выпуском двигателя внутреннего сгорания используются клапаны. Количество клапанов в двигателе зависит от количества цилиндров. Для каждого цилиндра используются два клапана: один для впуска топливовоздушной смеси внутрь цилиндра, а другой — для выпуска дымовых газов.Клапаны устанавливаются в порт на головке блока цилиндров с помощью сильной пружины. Этой весной держите их закрытыми. Оба клапана обычно открываются внутрь.

10. Свеча зажигания
Применяется в двигателях с искровым зажиганием. Основная функция свечи зажигания — проводить высокий потенциал от системы зажигания в камеру сгорания для воспламенения топливной смеси сжатого воздуха. Он установлен на головке блока цилиндров. Свеча зажигания состоит из металлической оболочки с двумя электродами, изолированными друг от друга воздушным зазором.При подаче высокого потенциала тока на свечу зажигания она отскакивает от питающего электрода и дает необходимую искру.

11. Инжектор
Инжектор обычно используется в двигателях с воспламенением от сжатия. Он распыляет топливо в камеру сгорания в конце такта сжатия. Он установлен на головке блока цилиндров.

12. Коллектор
Основная функция коллектора — подавать топливовоздушную смесь и собирать выхлопные газы в равной степени со всех цилиндров. В двигателе внутреннего сгорания используются два коллектора: один для впуска, а другой для выпуска.Обычно они изготавливаются из алюминиевого сплава.

13. Распределительный вал
Распределительный вал используется в двигателе внутреннего сгорания для управления открытием и закрытием клапанов в нужное время. Для обеспечения надлежащей выходной мощности двигателя впускной клапан должен открываться в конце такта выпуска и закрываться в конце такта впуска. Таким образом, для регулирования времени используется кулачок овальной формы, который оказывает давление на клапан для открытия и отпускания для закрытия. Он приводится в движение зубчатым ремнем, который приводится в движение коленчатым валом. Он размещается вверху или внизу цилиндра.

14. Поршневой палец или поршневой палец
Это параллельные шпиндели из закаленной стали, проходящие через бобышки поршня и малые концевые втулки или проушины, позволяющие шатунам поворачиваться. Он соединяет поршень с шатуном. Он сделан полым для легкости.

15. Толкатель
Толкатель используется, когда распределительный вал расположен в нижнем конце цилиндра. Он передает движение распределительного вала к клапанам, расположенным на головке блока цилиндров.

16. Маховик
Маховик закреплен на коленчатом валу.Основная функция маховика — вращать вал во время подготовительного хода. Это также делает вращение коленчатого вала более равномерным.

ВИДЫ ДВИГАТЕЛЕЙ I.C

I.C. Двигатель широко используется в автомобильной промышленности, поэтому он также известен как автомобильный двигатель. Автомобильный двигатель можно классифицировать по-разному.

По количеству ходов:

1. Двухтактный двигатель
В двухтактном двигателе поршень перемещается один раз вверх и вниз внутри цилиндра и совершает один оборот коленчатого вала во время однократного впрыска топлива. Этот тип двигателя имеет более высокий крутящий момент по сравнению с четырехтактным двигателем. Обычно они используются в мотороллерах, насосных агрегатах и ​​т. Д.

2. Четырехтактный двигатель
В четырехтактном двигателе поршень перемещается два раза вверх и вниз внутри цилиндра и совершает два оборота коленчатого вала за одно время сжигания топлива. Этот тип двигателей имеет высокий средний показатель по сравнению с двухтактным двигателем. Обычно они используются в мотоциклах, автомобилях, грузовиках и т. Д.

Согласно конструкции двигателя:

1.Поршневой двигатель (поршневой двигатель)
В поршневом двигателе сила давления создается за счет сгорания топлива, действующего на поршень (устройство, которое может совершать возвратно-поступательное движение внутри цилиндра). Поршень начинает возвратно-поступательное движение (как и движение). Это возвратно-поступательное движение преобразуется во вращательное движение за счет использования коленчатого вала. Таким образом, коленчатый вал начинает вращаться и заставляет вращаться колеса автомобиля. Обычно они используются во всех автомобилях.

2. Роторный двигатель (двигатель Ванкеля)
В роторном двигателе есть ротор, который свободно вращается.Сила давления, создаваемая сгоранием топлива, действует на этот ротор, поэтому ротор вращается и начинает вращать колеса транспортного средства. Этот двигатель разработан Ванкелем в 1957 году. В настоящее время этот двигатель не используется в автомобилях.

В зависимости от используемого топлива:

1. Дизельный двигатель
В этих двигателях в качестве топлива используется дизельное топливо. Они используются в грузовиках, автобусах, легковых автомобилях и т. Д.

2. Бензиновый двигатель
В этих двигателях в качестве топлива используется бензин. Они используются в мотоциклах, спортивных автомобилях, роскошных автомобилях и т. Д.

3. Газовый двигатель
В этих двигателях в качестве топлива используется КПГ и СНГ. Они используются в некоторых легковых автомобилях.

По способу воспламенения:

1. Двигатель с воспламенением от сжатия
В двигателях этого типа нет дополнительного оборудования для воспламенения топлива. В этих двигателях горение топлива начинается из-за повышения температуры при сжатии воздуха. Так он известен как двигатель с воспламенением от сжатия.

2. Двигатель с искровым зажиганием
В этих типах двигателей зажигание топлива начинается с искры, генерируемой внутри цилиндра каким-либо дополнительным оборудованием (свечой зажигания).Так он известен как двигатель с искровым зажиганием.

По количеству цилиндров:

1. Одноцилиндровый двигатель
В двигателях этого типа только один цилиндр и один поршень соединены с коленчатым валом.

2. Многоцилиндровый двигатель
В двигателях этого типа имеется более одного цилиндра и поршень, соединенный с коленчатым валом

По расположению цилиндра:

1. Рядный двигатель
В двигателях этого типа цилиндры расположены по прямой линии один за другим по длине коленчатого вала.

2. V-образный двигатель
Двигатель с двумя рядами цилиндров, наклоненными под углом друг к другу, и с одним коленчатым валом, известный как V-образный двигатель.

3. Двигатель с противоположными цилиндрами
Двигатель с двумя рядами цилиндров, расположенными напротив друг друга на одном коленчатом валу (двигатель V-образного типа с углом между рядами 180 °).

4. Двигатель W-типа
Двигатель такой же, как двигатель V-типа, за исключением трех рядов цилиндров на одном коленчатом валу, известный как двигатель W-типа.

5.Двигатель с противоположным поршнем
В двигателе этого типа в каждом цилиндре имеется два поршня, а камера сгорания находится в центре между поршнями. В этом двигателе один процесс сгорания вызывает одновременно два рабочих хода.

6. Радиальный двигатель
Это двигатель с поршнями, расположенными в круговой плоскости вокруг центрального коленчатого вала. Шатуны поршней соединены с ведущим штоком, который, в свою очередь, соединен с коленчатым валом.

По воздухозаборному процессу:

1.Безнаддувный
В этом типе двигателей забор воздуха в цилиндр происходит за счет атмосферного давления.

2. Двигатель с наддувом
В этом типе двигателя давление всасываемого воздуха повышается компрессором, приводимым в действие коленчатым валом двигателя.

3. Двигатель с турбонаддувом
В этом типе двигателей давление всасываемого воздуха увеличивается за счет использования турбинного компрессора, приводимого в действие выхлопными газами горящего топлива.

ТЕРМИНОЛОГИЯ ДВИГАТЕЛЯ

1. Верхняя мертвая точка (Т.D.C.)
В поршневом двигателе поршень движется вперед и назад в цилиндре. Когда поршень движется в верхнем направлении в цилиндре, точка, в которой поршень останавливается или меняет свое направление, известна как верхняя мертвая точка. Он расположен в верхнем конце цилиндра.

2. Нижняя мертвая точка (B.D.C.)
Когда поршень движется в направлении вниз, точка, в которой поршень останавливается или меняет свое направление, известная как нижняя мертвая точка. Он расположен в нижней части цилиндра.

3. Ход (L)
Максимальное расстояние, на которое перемещается поршень в одном направлении, называется ходом. Это расстояние между верхней мертвой точкой и нижней мертвой точкой.

4. Отверстие (b)
Внутренний диаметр цилиндра, известный как отверстие цилиндра.

5. Максимальный или общий объем цилиндра (Vtotal)
Это объем цилиндра, когда поршень находится в нижней мертвой точке. Как правило, он измеряется в кубических сантиметрах (куб. См).

6. Минимальный или зазорный объем цилиндра (Vclearance)
Это объем цилиндра, когда поршень находится в верхней мертвой точке.

7. Рабочий объем или объем вытеснения (Vswept)
Это объем, который перемещается поршнем. Разница между общим объемом и зазором называется рабочим объемом.

Рабочий объем = Общий объем — Чистый объем

8. Степень сжатия
Отношение максимального объема цилиндра к минимальному называется степенью сжатия. Оно составляет от 8 до 12 для двигателя с искровым зажиганием и от 12 до 24 для двигателя с воспламенением от сжатия.

Степень сжатия = Общий объем / Свободный объем

9.Задержка зажигания
Это временной интервал между запуском зажигания (запуск свечи зажигания в двигателе S.I. и впрыск топлива в двигателе C.I.) и фактическим началом горения.

10. Передаточное число рабочего диаметра
Передаточное число рабочего диаметра — это отношение внутреннего диаметра (диаметра цилиндра) к длине хода. Обычно он равен единице для маленького двигателя и меньше единицы для большого двигателя.

Отношение внутреннего диаметра цилиндра к длине хода

11. Среднее эффективное давление
Среднее давление, действующее на поршень, называется средним эффективным давлением.Он определяется отношением работы, проделанной двигателем, к общему объему двигателя.

Среднее эффективное давление = Работа, проделанная двигателем / Общий объем цилиндра

Автозапчасть | Какие детали входят в состав автомобильного двигателя? И как они используются?

Двигатели внутреннего сгорания — это силовые агрегаты, отвечающие за вращение колес в автомобилях, и они делают это путем преобразования химической энергии в механическую. Проще говоря, двигатель внутреннего сгорания позволяет сжигать топливо (химическое), которое, в свою очередь, заставляет колеса автомобиля двигаться (механически).Сгорание в этом случае называется «внутренним», потому что процесс сгорания топлива происходит внутри двигателя.

Чтобы понять, как работает двигатель, в этой статье обсуждаются все его основные части и роль, которую каждая часть выполняет в общей работе двигателя автомобиля.

Блок двигателя — также известный как «блок цилиндров» или просто «блок» — это металлическая конструкция, которая содержит основные части двигателя внутреннего сгорания. Он отлит с цилиндрическими полостями (называемыми цилиндрами), масляными каналами и каналами для охлаждающей жидкости.В большинстве современных автомобилей блоки цилиндров изготавливаются из алюминиевых сплавов, в то время как в грузовиках и старых моделях автомобилей блоки двигателей изготавливаются из чугуна.

Общие причины отказов блока цилиндров

Блоки двигателя рассчитаны на длительный срок службы, но некоторые причины могут сократить их срок службы.

1. Утечка — если вы заметили лужу жидкости под двигателем, это признак возможной утечки. Утечки могут происходить из радиатора, сердечника нагревателя, водяного насоса, ослабленных шлангов или замерзших пробок или даже из трещины в самом блоке.

2. Изношенный цилиндр — стенки цилиндра могут изнашиваться и треснуть. Серьезно поврежденные цилиндры или блоки цилиндров придется отремонтировать.

3. Пористый блок — плохо отлитые материалы могут вызвать пористость в блоке цилиндров. Никакой ремонт не может решить проблему пористости в блоке цилиндров. Если вы обнаружите это состояние, но срок гарантии производителя еще не истек, вы можете полностью заменить блок двигателя.

Цилиндры, головка цилиндров и поршни вместе составляют камеру сгорания, которая является частью двигателя, в которой происходит все взрывное действие.Вы можете думать о цилиндрах как о боковых сторонах, головке цилиндров как о верхней части, а о поршнях как о нижней части камеры сгорания.

Поршни

Поршни представляют собой небольшие цилиндрические движущиеся части внутри камеры сгорания. Эти маленькие цилиндрические детали (поршни) скользят вверх и вниз внутри цилиндрических полостей (цилиндров) и стягиваются поршневыми кольцами. Когда происходит горение, взрывная сила толкает поршни вниз. Движение поршней заставляет коленчатый вал выполнять свою работу.

Поршень ствола

Этот тип поршня — одна из самых старых конструкций, используемых для двигателей внутреннего сгорания. Он действует не только как поршень, но и как цилиндрическая траверса. Он длиннее, чем ширина, и имеет канавку для масляного кольца под поршневым пальцем. В свое время поршни ствола использовались в основном для дизельных и бензиновых двигателей.

Поршень крейцкопфа

В низкооборотных двигателях обычно используются поршни крейцкопфа для уменьшения боковых сил, действующих на поршень.

Общие проблемы, связанные с поршнями

Ниже перечислены общие проблемы, связанные с поршнями:

1. Перегрев — изгиб или блокировка впрыскиваемого масла, неправильная установка поршня, неисправности в системе охлаждения и ограничения линейной поверхности область может вызвать перегрев. Перегрев может повредить отверстие в головке блока цилиндров, что повлияет на работу поршня.

2. Поломка днища поршня — неисправные форсунки и неэффективные системы охлаждения могут привести к растрескиванию днища поршня.

3. Следы ударов — выступ поршня, чрезмерная обработка, нагар, недостаточный зазор клапана и неправильная выемка клапана могут вызвать следы ударов.

Поршневые кольца

Поршневые кольца помогают герметизировать камеру, в которой движутся поршни. Для различных двигателей используется ряд типов поршневых колец:

1. Компрессионные поршневые кольца — этот тип был разработан для уплотнения газов сгорания и передачи тепла от поршня к стенкам поршня.

2. Грязесъемные поршневые кольца — этот тип часто называют резервным компрессионным кольцом или кольцами Напье, и он был разработан в качестве резервного для предотвращения утечки и обеспечения чистоты линейной поверхности от излишков масла. Он имеет наклонную поверхность, которая очищает или удаляет излишки масла с поверхности для обеспечения оптимальной работы двигателя.

3. Поршневые кольца скребка — также называемые маслосъемными кольцами, скребковые кольца отвечают за регулирование количества масла, проходящего между стенками цилиндра.Они равномерно распределяют масло по окружности линейной поверхности. У них есть отверстия в их радиальном центре, что позволяет отработанному маслу стекать обратно к коленчатому валу, а не к другим частям двигателя.

Под блоком двигателя находится картер. В нем находится коленчатый вал, который является частью двигателя, преобразующей линейное движение поршня в круговое движение, которое приводит в движение колеса. Коленчатые валы спроектированы таким образом, чтобы выдерживать высокую степень износа и постоянные крутильные колебания от резких ускорений и замедлений.По этой причине их выковывают из нитридной или легированной стали с термической обработкой.

Основные компоненты коленчатого вала

1. Цепочки — это части коленчатого вала, которые вращаются внутри подшипника. Существует два типа шейки, а именно:

  • коренная шейка подшипника — также известная как главный журнал; определяет ось вращения коленчатого вала
  • шейка шатуна — шейка шатуна, шатунные шейки, шатунные шейки; соединяется с головкой шатуна

2.Шатуны — детали, соединяющие шейку подшипника с шейкой шатуна.

3. Противовесы — это выступы, которые уравновешивают сильные силы, действующие на коленчатый вал.

Внизу картера находится масляный поддон, в котором расположен масляный насос. Масляный насос часто называют сердцем системы смазки двигателя автомобиля. Он предназначен для забора масла и его циркуляции. Он помогает стабилизировать давление масла и регулировать температуру в автомобиле.Прекращение работы масляного насоса практически всегда приводит к полному выходу из строя двигателя.

Как работает масляный насос

Через трубу, называемую всасывающей трубкой, масляный насос может всасывать масло. Сопло этой трубы расположено ниже уровня масла и оснащено фильтром, который предотвращает попадание частиц в насос. Масляные насосы также называют «поршневыми насосами прямого вытеснения», потому что количество поступающего масла равно количеству выходящего.Количество масла, перекачиваемого от одной части двигателя к другой, полностью зависит от скорости, размера и конструкции насоса.

Зачем смазывать двигатели

Двигатель следует смазывать по следующим причинам:

  • Для предотвращения трения или любой формы износа всех скользящих компонентов двигателя
  • Для обеспечения исправности компонентов двигателя должным образом охлажден для предотвращения перегрева
  • Для защиты двигателя от коррозии
  • Для уменьшения вибрации и шума
  • Для герметизации поверхности контакта между стенками цилиндра и поршнем

Распределительный вал часто называют мозгом двигателя, потому что это часть, которая контролирует количество горючей смеси, которую двигатель принимает и выталкивает.Он работает с коленчатым валом и ремнем газораспределительного механизма, чтобы гарантировать, что клапаны закрываются и открываются с точной синхронизацией. Распределительные валы обычно изготавливаются из чугуна, термообработанной или азотированной стали.

Шатун — это жесткая деталь, которая соединяет поршень с коленчатым валом, но помимо этой соединительной функции, он также передает мощность от поршня к коленчатому валу.

Стержни обычно изготавливаются из микролегированной стали для обеспечения высокой прочности. Они также могут быть изготовлены из высококачественного алюминия (легкий и способный поглощать сильные удары) или титана (легкий и невероятно прочный для высокопроизводительных двигателей).

Проблемы с шатунами

Шатуны постоянно находятся под напряжением, которое продолжает увеличиваться по мере увеличения скорости двигателя. Они подвержены растяжению и сжатию. Обычный выход из строя стержня, называемый «выбросом стержня», может даже привести к отказу двигателя.

Клапаны — это части двигателя, которые позволяют горючей смеси поступать в систему и выходить из нее. Впускные клапаны открываются, чтобы впустить топливно-воздушную смесь, а выпускные клапаны позволяют сгоревшему газу уйти.Клапаны должны открываться и закрываться с точной синхронизацией, чтобы обеспечить оптимальную работу двигателя.

Цилиндр обычно имеет один впускной и один выпускной клапан, но нередки случаи, когда в некоторых автомобилях есть многоклапанные цилиндры, особенно для высокопроизводительных автомобилей. Использование многоклапанных систем позволяет двигателям «дышать» и работать лучше.

Головка блока цилиндров — это металлическая деталь, расположенная в верхней части цилиндров с отлитыми на ней круглыми выемками. Здесь устанавливаются клапаны, топливные форсунки и свечи зажигания.При производстве головок цилиндров обычно используется чугун, потому что он прочный и недорогой. Обратной стороной является низкая эффективность рассеивания тепла. По этой причине большинство производителей автомобильных двигателей предпочитают использовать алюминиевые головки блока цилиндров, которые легче и эффективнее рассеивают тепло, особенно для высокопроизводительных автомобилей, таких как гоночные автомобили и другие быстрые автомобили.

Функции головки блока цилиндров

Некоторые из основных функций головки блока цилиндров включают следующее:

  • уплотняет камеру сгорания
  • действует как канал, позволяющий смеси жидкостей достигать камеры сгорания. охлаждающая жидкость для отвода тепла

Проблемы с головками цилиндров

Перегрев двигателя вызывает множество проблем.Это может привести к растрескиванию или повреждению головки блока цилиндров. Трещина может вызвать просачивание масла в камеру сгорания и повлиять на работу двигателя. Когда это произойдет, возникнет необходимость заменить или заменить двигатель, что обойдется дорого.

По мере того, как вы знакомитесь с каждой частью, обсуждаемой в этой статье и других ссылках, было бы неплохо вспомнить, что сказал Аристотель. Целое — это, так сказать, больше, чем сумма его частей. Найдите время, чтобы узнать, как один компонент, независимо от того, насколько он кажется маленьким или неважным, влияет на весь двигатель.

Спасибо, что нашли время прочитать эту статью. Если вы нашли это полезным или у вас есть вопросы, сообщите мне об этом по электронной почте [email protected]. Вы также можете прочитать мою другую статью о том, как автомобиль работает от А до Я!

Обзор трансмиссии: Двигатель внутреннего сгорания

С момента создания первого современного автомобиля почти полтора века назад на рынке преобладал один вариант двигателя — бензиновый двигатель внутреннего сгорания.Теперь у бензинового двигателя внутреннего сгорания есть претенденты, пытающиеся украсть корону. В прошлом было много различных типов двигателей, но многие из них работали исключительно на ископаемом топливе.

В последнее время из-за повышения стандартов экономии топлива и осведомленности о выбросах появляется новое поколение двигателей. Многие полагаются на электричество в качестве источника энергии для автомобиля. С этими новыми электростанциями добавлен новый набор правил и предупреждений о том, как их ремонтировать. Многие специалисты по столкновениям имеют представление о том, как работают некоторые из новых силовых агрегатов, но не полностью понимают, что происходит под капотом.Важно понимать внутреннюю работу двигателя, чтобы безопасно и правильно диагностировать и отремонтировать его после столкновения. В этой серии мы расскажем вам о многих текущих вариантах двигателей и о том, как они преобразуют потребляемое топливо в полезную мощность. Давайте рассмотрим бензиновый двигатель внутреннего сгорания.

В двигателях внутреннего сгорания топливо используется для создания взрыва (мощности), который перемещает поршень вниз. Несмотря на то, что существует множество различных конструкций двигателя внутреннего сгорания, для его запуска необходимы три важных компонента: топливо для сжигания, кислород для поддержки горения и источник воспламенения для начала горения.В этих трансмиссиях используется система аккумуляторных батарей на 12 В для запуска автомобиля и питания аксессуаров. Аккумулятор заряжается генератором переменного тока, приводимым в действие двигателем.

Поршень прикреплен к коленчатому валу через шатун, который преобразует движение поршня вверх и вниз во вращательную силу. Затем это вращение используется для включения трансмиссии, заставляя автомобиль двигаться. Во время работы двигателя он также заряжает аксессуары автомобиля и заряжает аккумулятор. Для ремонта при столкновении это стандартный двигатель, который использовался десятилетиями.

Современные двигатели внутреннего сгорания содержат значительное количество чувствительных электрических компонентов. В связи с этим крайне важно отключить и изолировать аккумулятор и электрическую систему при ремонте и сварке автомобиля. Дополнительный электрический ток от сварки может повредить важные электрические компоненты двигателя. Наконец, охлаждение и смазка двигателя — основная часть двигателя внутреннего сгорания. Тепло, образующееся при сгорании, необходимо отводить, а масло может нуждаться в охлаждении.Это делает передний радиатор критически важным для работы двигателя, и при его замене следует соблюдать соответствующие процедуры.

Дополнительные новости о ремонте при столкновении I-CAR, которые могут оказаться полезными:
Обзор трансмиссии


Связанные курсы I-CAR

Курс «Трансмиссия и система трансмиссии, анализ работы и повреждений»

Курс Устранение неисправностей и обслуживание силового агрегата и систем трансмиссии

Энциклопедия

— saVRee

Введение

Четырехтактные двигатели внутреннего сгорания (IC) используются более 100 лет, и их конструкция с тех пор существенно не изменилась.Каждый из четырехтактных двигателей тактов используется для одной стадии цикла сгорания , то есть есть один ход для каждой из стадий всасывания, сжатия, мощности и выпуска.

Анимация четырехтактного двигателя

По сравнению с двухтактными двигателями четырехтактные двигатели имеют больше компонентов и больше весят, но более эффективны. Четырехтактные двигатели могут работать на различных видах топлива, включая бензин / бензин , дизельное топливо , газ ( метан ) и биомасло (чтобы назвать несколько типов топлива).

Компоненты четырехтактного двигателя

Конструкции четырехтактных двигателей различаются, поэтому количество и типы компонентов, используемых в каждой конструкции, также различаются. Например, в двигателях с общей топливной магистралью используются другие детали двигателя по сравнению с двигателями без системы Common Rail.

Компоненты четырехтактного двигателя

Общие четыре -тактных компонента двигателя включают:

  1. Поршень
  2. Шатун (Шатун)
  3. Подшипники скольжения
  4. Коленчатый вал
  5. Распредвал
  6. Камера сгорания (гильза цилиндра)
  7. Впускные клапаны и Выпускные клапаны
  8. Толкатели
  9. Коромысла
  10. Топливные форсунки

Получите доступ к приведенной ниже 3D-модели, если вы хотите изучить все основные компоненты двигателя и некоторую терминологию двигателя.

Компоненты двигателя и терминология

Примечание: Тип двигателя, показанный на этой 3D-модели, использует непосредственный впрыск топлива с топливными форсунками common rail .

Видео ниже представляет собой отрывок из нашего онлайн-видеокурса «Основы двигателя внутреннего сгорания» .

Как работают четырехтактные двигатели

Четырехтактному двигателю требуется четырехтактных двигателей для завершения одного цикла сгорания .Штрихи:

  1. Всасывание (Впуск)
  2. Компрессия
  3. Мощность (зажигание)
  4. Выхлоп

Другой способ запомнить штрихи и их порядок — изменить формулировку на:

Ход 1 = Всасывание (всасывание) Ход 2 = Сжатие (сжатие) Ход 3 = Мощность (удар!) Ход 4 = Выпуск (удар)

Ход всасывания

Ход всасывания втягивает воздух в гильзу цилиндра (пространство сгорания), когда поршень движется вниз к нижней мертвой точке (НМТ) .Когда поршень достигает НМТ , впускные клапаны закрываются, и поршень перемещается обратно вверх к верхней мертвой точке (ВМТ) ; это ход сжатия .

Четырехтактный двигатель с указанием ВМТ и НМТ

Ход сжатия

По мере того, как поршень движется к ВМТ , воздух в цилиндре сжимается ( объем уменьшается), и его температура и давление повышаются.Незадолго до ВМТ в камеру сгорания впрыскивается топливо. Топливо воспламеняется, и происходит управляемый взрыв .

График давления и объема

Рабочий ход

После зажигания начинается рабочий ход . Повышение давления и температуры, создаваемое сгоранием, толкает поршень в направлении НМТ. После достижения НМТ все топливо в камере сгорания сгорело, и последний такт двигателя готов к началу.

Ход выхлопа

Такт выпуска — четвертый и последний ход. Поршень перемещается из НМТ в ВМТ и вытесняет выхлопные газы из камеры сгорания через клапаны выхлопных газов. Как только поршень достигает ВМТ, впускные воздушные клапаны открываются, а выпускные клапаны закрываются через короткое время (примерно клапанов перекрывают , чтобы гарантировать удаление всего выхлопного газа из пространства сгорания). Цикл сгорания теперь завершен, так как все четыре такта выполнены.

Двигатели с искровым и компрессионным зажиганием

Бензиновые / бензиновые двигатели используют свечи зажигания для зажигания, в то время как дизельные двигатели используют только тепло, выделяемое за счет сжатия. По этой причине бензиновые двигатели известны как двигатели с искровым зажиганием , а дизельные двигатели — как двигатели с воспламенением от сжатия .

Детали 3D-модели

Эта 3D-модель показывает каждую стадию цикла четырехтактного двигателя . Синий указывает на всасывание и сжатие, а красный указывает на расширение (мощность) и выпуск. Все клапаны и другие компоненты правильно рассчитаны, чтобы показать весь четырехтактный процесс.

Дополнительные ресурсы

http://www.animatedengines.com/otto.html

https://en.wikipedia.org/wiki/Four-stroke_engine

Operando Измерение деформации решетки в компонентах двигателя внутреннего сгорания с помощью дифракции нейтронов

Значение

Компоненты двигателя внутреннего сгорания испытывают экстремальные термомеханические циклы во время работы, и постоянная потребность в повышении эффективности двигателя при сохранении или повышении надежности стимулирует разработку легких материалов с улучшенная термическая и механическая целостность.Понимание поведения новых материалов в динамической работе требует инструментов для определения характеристик, но обычные измерения поведения материалов на месте во время реальной работы двигателя очень ограничены, и не существует никаких практических средств для воспроизведения такой экстремальной динамики для исследования ex situ. В этой работе мы демонстрируем, что проникающая способность нейтронов может обеспечить неинвазивное измерение деформаций решетки внутри компонентов горящего двигателя, что позволяет оперативно изучать сложные состояния нагрузки и температурные градиенты в твердых материалах.

Abstract

Инженерная нейтронная дифракция может неразрушающим и неинвазивным образом исследовать эволюцию напряжений, деформаций, температуры и фаз глубоко внутри объемных материалов. В этой работе мы демонстрируем операндное измерение деформации решетки компонентов двигателя внутреннего сгорания с помощью дифракции нейтронов. Модифицированный промышленный генераторный двигатель был установлен в дифрактометре VULCAN в источнике нейтронов расщепления, и деформации решетки как в блоке цилиндров, так и в головке были измерены в статических условиях без воспламенения, а также в установившемся режиме и в циклических переходных режимах.Динамический временной отклик изменения деформации решетки во время переходного режима был определен в двух местах с помощью асинхронной стробоскопической дифракции нейтронов. Мы продемонстрировали, что операндно-нейтронные измерения могут позволить понять, как материалы ведут себя во всех эксплуатационных инженерных устройствах. Это исследование открывает путь для промышленных и академических сообществ, чтобы лучше понять сложность поведения материалов во время работы двигателей внутреннего сгорания и других реальных устройств и систем, а также использовать разработанные здесь методы для будущих исследований многочисленных новых платформ и сплавов.

Двигатель внутреннего сгорания (ДВС) преобразует химическую энергию, хранящуюся в топливе, в механическую энергию за счет прямой силы, действующей на компоненты двигателя в результате расширения газов с высокой температурой и высоким давлением, образующихся при сгорании (1). Этот процесс представляет собой множество проблем с материалами, поскольку извлечение материала выполняется в высокодинамичной, реактивной и агрессивной среде, создавая экстремальные абсолютные значения и временн-пространственные градиенты температуры и давления. В поршневом двигателе оба неподвижных компонента (например,g., головка цилиндра, гильза и коллекторы) и движущиеся компоненты (например, поршни и клапаны) подвергаются сложным термомеханическим циклам с частотами от менее 1000 об / мин на холостом ходу до почти 20000 об / мин в гоночных приложениях. И двигатели с искровым зажиганием (бензин), и двигатели с воспламенением от сжатия (дизельные) подвергаются быстрому высвобождению химической энергии, вызывая чрезвычайно переходные состояния нагрузки и температурные градиенты внутри камеры сгорания. Обычно двигатели работают при пиковой температуре газа, превышающей 2200 ° C, и пиковом давлении в диапазоне от 0.От 5 до 2,5 МПа при скорости повышения давления от 10 до 50 МПа / мс (2), а во время аномальных событий горения, таких как преждевременное зажигание и детонация, скорость повышения давления может превышать 100 МПа / мс (3). Тепловые потоки через различные поверхности в камере сгорания могут сильно различаться в разных местах из-за неоднородности дымовых газов (4) и могут локально превышать 10 МВт / м 2 в течение нескольких мсек, когда горящие топливные струи сталкиваются с поверхностями ( 5). Разработка и внедрение новых материалов с улучшенной механической и термической целостностью может повысить надежность и повысить эффективность, а также освободить место для повышенных рабочих температур и использования технологий принудительной подачи воздуха, что еще больше повысит эффективность.Кроме того, если будут приняты новые материалы, которые обладают более высокой удельной прочностью, есть потенциал для улучшения времени реакции на переходную нагрузку и для повышения экономии топлива транспортного средства за счет облегчения. Лабораторные исследования технических материалов с помощью физического моделирования часто проводятся в попытке удовлетворить требования строгой эксплуатации. Понимание динамического поведения, такого как температура, напряжение и деформация во время работы, ценно для разработки новых материалов и для инженеров, стремящихся улучшить эффективность, долговечность и безопасность.Однако из-за отсутствия инструмента неразрушающей оценки, который может имитировать реальные рабочие условия внутри ДВС, истинное понимание динамического термомеханического поведения и реакции компонентов двигателя ограничено.

Последние достижения в области источников нейтронов и нейтронной аппаратуры позволяют исследовать поведение материалов в сложных средах проб на месте как в сокращенных масштабах длины, так и времени (6 (– 8). Источник нейтронов расщепления (SNS) в Окриджской национальной лаборатории (ORNL) — это самая интенсивная в мире установка для времяпролетных нейтронов (TOF), а высокий поток нейтронов дает возможность выполнять измерения дифракции нейтронов с высоким разрешением в диапазоне временные и пространственные масштабы в инженерных приложениях (6, 7, 9).Нейтронная дифракция часто используется для измерения деформации решетки (10, 11) из-за температуры или напряжения, текстуры микроструктуры и ее эволюции, а также фазовых фракций глубоко внутри инженерных компонентов, которые не могут проникнуть даже высокоэнергетические рентгеновские лучи, что делает нейтроны уникальными для изучения поведение материалов в крупных конструкциях (12). Дифрактометр для инженерных материалов VULCAN (13, 14) в SNS предназначен для исследования деформации, фазового превращения, остаточных напряжений и текстуры в технических материалах, которые обычно проходят физическое моделирование в лабораторном масштабе с приложенной нагрузкой и температурами.Падающие щели и коллимация перед блоками дифракционных детекторов ± 90 ° (14) позволяют зондировать небольшой воксельный или измерительный объем внутри конструкции или устройства даже в рабочих условиях. Система сбора нейтронных данных по времени и событию регистрирует полную картину дифрагированных нейтронов с отметками времени и обеспечивает прямые измерения с временным разрешением (7, 15). Эти преимущества инженерной дифракции нейтронов в режиме TOF открывают прекрасную возможность исследовать динамический отклик материала в реальном времени в реальных условиях эксплуатации.Воспользовавшись этими уникальными возможностями в VULCAN, мы демонстрируем измерение изменений шага решетки из-за температуры и напряжения в головке цилиндров ДВС во время переходных режимов. Асинхронная накачка-зонд или стробоскопическое измерение нейтронов (7, 16⇓ – 18) использовалось для определения быстрых зависимостей от времени. Эта работа показывает будущий потенциал измерения быстрой динамики работы конкретных компонентов двигателя с использованием мощной проникающей способности нейтронов с большим потоком в SNS.

Экспериментальная установка

Экспериментальная платформа Operando Engine.

Чтобы продемонстрировать возможность безопасной эксплуатации работающего двигателя в качестве экспериментальной платформы для работы на VULCAN, коммерчески доступный электрический генератор, работающий от карбюраторного одноцилиндрового малокалиберного ДВС, был модифицирован и введен в эксплуатацию в испытательной камере двигателя в Национальных транспортных исследованиях. Центр (НТРК). NTRC — это пользовательский объект DOE, расположенный в ORNL и оборудованный для исследований инновационных технологий ICE и систем управления.Технические характеристики модифицированного ДВС приведены в таблице 1. Схема, иллюстрирующая конфигурацию двигателя и относительное расположение измерительных объемов, представлена ​​на рис. 1 A .

Таблица 1.

Характеристики генератора и двигателя

Рис. 1.

Детали эксперимента. ( A ) Схема в разрезе одноцилиндрового двигателя с воздушным охлаждением с репрезентативными положениями измерительных объемов, выделенными как в головке, так и в блоке цилиндров. ( B ) Фотография модифицированного двигателя, установленного на канале связи VULCAN с приборами.( C ) Схема экспериментальной конфигурации (вид сверху), показывающая двигатель, установленный вдоль плоскости 45 °, разделяющей пополам падающий луч, и детекторы (B1 и B2) с измерительным объемом, расположенным в головке блока цилиндров. Камера расположена вдоль ортогональной плоскости под углом 45 ° с видом, показанным на рис. 4.

Для этого эксперимента было несколько уникальных ограничений, связанных с ограниченным физическим пространством образца в дифрактометре, отсутствием специализированных средств тестирования двигателя, таких как динамометр внутри дифрактометра, и тот факт, что нейтроны сильно ослабляются 1 H из-за его большого сечения некогерентного рассеяния.Эта экспериментальная платформа была выбрана и разработана с учетом следующих соображений безопасности и сбора данных: 1) экспериментальная установка обеспечивала автономную практическую работу работающего двигателя, 2) компактные габаритные размеры, не превышающие ограничений по площади на VULCAN, 3) интегрированный генератор устранил необходимость в автономном динамометре для приема нагрузки от двигателя, 4) двигатель имел воздушное охлаждение и, таким образом, не сталкивался с проблемами сильного ослабления нейтронов или рассеяния водородосодержащим хладагентом, 5) двухклапанная конструкция толкателя сводила к минимуму количество стальных компонентов в головке блока цилиндров, которые могли бы ослабить рассеянные нейтроны из измерительного объема (ов); 6) относительно простая конструкция системы смазки не имела масляных каналов вдоль верхней или передней части двигателя, которые могли бы ослабить падающие или рассеянные нейтроны, и 7) электростартер позволял запускать двигатель дистанционно.

Помимо соответствующих экспериментальных соображений, связанных с VULCAN, которые были решены при использовании двигателя с воздушным охлаждением, геометрическая сложность, представленная охлаждающими ребрами и внутренней геометрией детали, сделала его хорошим испытательным стендом для проверки литейных свойств алюминиево-цериевого (AlCe) сплава. совместная разработка ORNL и Eck Industries. Геометрия головки блока цилиндров Honda GX200 была измерена с помощью рентгеновской компьютерной томографии и импортирована в модель CAD с помощью программного обеспечения для сканирования. После импорта формы для литья в песчаные формы были напечатаны с использованием системы аддитивного производства связующего (19).Этот метод устранил длительное время изготовления традиционной оснастки и снизил стоимость запуска опытного образца небольшой партии, и получившаяся головка блока цилиндров из AlCe показана рядом с исходной головкой блока цилиндров на рис. 2. Преимущества этой технологии могут быть использованы в будущем. экспериментаторам, чтобы быстро проверить новые материалы или влияние геометрии системы на охлаждение и внутреннюю деформацию во время работы. Сплав AlCe, из которого изготовлена ​​головка, был разработан в рамках проекта Института критических материалов и предназначен для высокотемпературных применений, в которых алюминиевые сплавы долгое время изо всех сил пытались найти применение.Сплав использует в качестве первичной добавки элемент церий и имеет состав Al-12 мас.% Ce-0,4 мас.% Mg. Этот состав был выбран, поскольку он находится рядом с эвтектикой Al-Ce, создающей литейный материал, и предыдущие нейтронные исследования, проведенные с этим сплавом, показали, что незначительные добавки Mg оказывают большое положительное влияние на способность распределения нагрузки большей части Al 11 Ce 3 интерметаллид (20). Высокая термическая стабильность упрочняющих интерметаллидов алюминия-церия, которые образуются во время затвердевания при традиционных скоростях литья, в отличие от осаждения во время дорогостоящих длительных термообработок, делает этот материал хорошим кандидатом для ДВС следующего поколения.Термическая стабильность сплавов является следствием почти нулевой растворимости и сопутствующего низкого коэффициента диффузии Ce в алюминиевой матрице, что означает, что упрочняющие богатые церием интерметаллические фазы блокируются при затвердевании и видят лишь незначительные недетериальные морфологические изменения во время длительного воздействия повышенных температур ( 20).

Рис. 2.

Литая головка блока цилиндров OEM-производства ( Левая ), изображенная рядом с головкой блока цилиндров из AlCe ( Правая ), изготовленная из форм, напечатанных на 3D-принтере. Оборудование головки цилиндров, включая монтажные шпильки, клапаны и свечу зажигания, было перенесено с головки OEM на головку AlCe.

Платформа двигателя / генератора была подготовлена ​​для использования в нейтронном дифрактометре путем снятия сначала монтажной рамы, внешнего кожуха и всех посторонних крышек и пластиковых компонентов, чтобы минимизировать ослабление нейтронов. Стальной топливный бак был удален и заменен удаленным топливным баком, соединенным гибким шлангом. Стальной глушитель был удален и заменен секцией выхлопной трубы, которая была оснащена термопарой типа K для измерения температуры выхлопных газов.Чтобы получить значимые результаты нейтронной дифракции во время работы двигателя, важно, чтобы целевой измерительный объем оставался постоянным во время каждого измерения. С этой целью разобранный узел был жестко закреплен на алюминиевой макетной плате, чтобы свести к минимуму колебательное смещение двигателя во время работы, и окончательный инструментальный узел показан установленным на VULCAN на рис. 1 B . Обратите внимание, что термин «смещение» используется здесь для обозначения амплитуды колебательного движения внутри конструкции двигателя, а не рабочего объема двигателя.

Автономные испытания были проведены в NTRC для обеспечения безопасной и надежной работы модифицированного двигателя до проведения нейтронографических экспериментов на VULCAN. Вибрационное смещение измерялось трехосевым акселерометром (PCB Piezotronics Model 356B21), установленным на картере двигателя, а также лазерным триангуляционным датчиком (Microtrak 3), направленным на интересующее место на головке блока цилиндров. Двигатель работал при трех режимах нагрузки, подавая электрическую нагрузку на генератор с программируемым набором нагрузок.Эти условия составляли 0 (двигатель на холостом ходу), 1530 и 2586 Вт, что соответствует 0, 55 и 92% номинальной нагрузки генератора соответственно. Генератор также имеет настройку Eco-Throttle, которая снижает частоту вращения двигателя на холостом ходу для снижения расхода топлива и шума, и этот режим также был протестирован. Среднеквадратичные значения вибрационного смещения (среднеквадратичное смещение), измеренные акселерометром и лазером, показаны на рис. 3. Самые низкие уровни среднеквадратичного смещения наблюдались на холостом ходу с включенным Eco-Throttle, тогда как среднеквадратичное смещение было относительно нечувствительным к нагрузке с настройка отключена.Согласие между всеми измерениями было хорошим, и общая величина лазерного луча и оси акселерометра z находилась в хорошем соответствии. Все измеренные значения среднеквадратичного смещения были ниже 0,5 мм, что представляет собой 10% -ный порог для измерительной длины 5 мм, используемой в этом исследовании.

Рис. 3.

Вибрационное смещение внешней конструкции двигателя в четырех рабочих условиях, измеренное трехосевым акселерометром и лазерным датчиком смещения. Все измерения показывают среднеквадратичное значение <0.5 мм или менее 10% от размера измерительного объема.

После успешного ввода в эксплуатацию на НТРК, обеспечивающего безопасную работу и приемлемые колебательные смещения при работе в модифицированной конфигурации, двигатель и вспомогательные системы были установлены на VULCAN. Схема на рис. 1 C показывает схему операндо эксперимента. Узел двигателя и генератора был установлен наверху ступени поступательного / вращательного движения на пересечении падающего луча и коллиматоров (14).Дистанционная подача топлива была расположена рядом с двигателем, но вне прямого пути луча и на большей высоте, так что топливо могло подавать самотеком в карбюратор без необходимости в топливном насосе. Сигналы от акселерометра и термопары температуры выхлопных газов направлялись в систему сбора данных для мониторинга состояния двигателя в реальном времени. Управление двигателем осуществлялось дистанционным стартером и выключателем, расположенным в диспетчерской VULCAN. Выходная мощность генератора измерялась программируемым блоком нагрузки, расположенным за пределами экспериментального корпуса VULCAN и рядом с диспетчерской.Вся проводка и шланги, подключенные к двигателю и генератору, были расположены вне путей пучка и закреплены с помощью устройства снятия натяжения, чтобы обеспечить перемещение и вращение узла двигателя во время работы. Выхлопные газы из двигателя по гибкому воздуховоду направлялись в вытяжную систему установки.

Внешнее инфракрасное измерение температуры.

В дополнение к измерению выхлопных газов термопарой, для контроля температуры внешних поверхностей использовалась инфракрасная (ИК) камера (FLIR T450sc), записывающая со скоростью 30 кадров в секунду.Точка обзора ИК-камеры была аналогична точке обзора камеры позиционирования образца, показанной на рис. 1 C . Излучательная способность была откалибрована с помощью термопары для поверхностного монтажа, размещенной на головке блока цилиндров; поэтому значения ИК-температуры и изображения, такие как рис. 4, являются количественными только для головки блока цилиндров из AlCe и являются качественными в других местах.

Рис. 4.

( Слева ) Инфракрасное изображение температуры двигателя через 1 мин после запуска. ( Средний ) Фотография двигателя с камеры центрирования образца.( Правый ) Расположение пространственного картирования 11 × 15 (белые кружки) и выбранные точки в блоке цилиндров (залитый желтым ромб) и головке цилиндра (залитый желтым кругом) для измерений деформации с временным разрешением. Места с красными кружками имели плохую статистику соответствия в одном или нескольких пространственных сопоставлениях, в первую очередь из-за открытой внутренней области в выпускном отверстии (верхний кластер) и утопленных областей отливки, которые могли частично похоронить измерительный объем (средний кластер).

Нейтронографическое измерение статических и динамических деформаций решетки.

Схема операндного измерения дифракции нейтронов проиллюстрирована на рис. 1 C . Падающий луч в SNS является импульсным и работает на частоте 60 Гц. Энергия и длина волны нейтронов разрешаются и количественно оцениваются с помощью записанного времени пролета нейтронов с каждым временем излучения импульса и временем прохождения по фиксированной траектории полета прибора. Настройка прерывателя 30 Гц использовалась для обеспечения широкого диапазона измерения межплоскостного расстояния решетки (d-шаг) от 0.От 5 до 2,5 Å. Падающий луч коллимировался до размера 5 × 5 мм 2 с помощью моторизованных падающих щелей перед образцом. Хотя падающий луч рассеивается по всей длине своего пути через образец, радиальные приемные коллиматоры, прикрепленные к двум противоположным блокам детекторов B1 и B2, расположенным перпендикулярно падающему лучу (± 90 °), ограничивают угловой диапазон, в котором рассеянные нейтроны могут достигают детекторов, в результате чего получается измерительный объем 5 × 5 × 5 мм 3 , как показано на рис.1 С . Каждый блок детекторов измеряет изменения шага решетки вдоль биссектрис углов между падающим лучом и дифрагированным лучом (± 45 °). Благодаря импульсной конфигурации пучка TOF, индивидуальные зависящие от местоположения d-интервалы решетки в измерительном объеме могут быть измерены сразу без необходимости вращения образца или детекторов. Подробнее об инженерной дифракционной установке можно прочитать в предыдущей работе (14). Поскольку положения пучков падающих лучей и детекторов фиксированы, расположение измерительного объема в двигателе было изменено путем изменения положения всей установки двигателя с помощью предметного столика прибора.

Результаты и обсуждение

Пространственное отображение распределения деформации решетки.

Чтобы продемонстрировать возможность пространственно разрешенной операндной дифракции нейтронов в ICE, дифракционные картины были собраны на двумерной (2D) сетке размером 55 мм × 75 мм с интервалами 5 мм (11 × 15 точек измерения), как показано на рис. 4. Эта сетка была расположена ниже внешней поверхности двигателя в области, охватывающей границу раздела между блоком цилиндров, который состоит из литого сплава алюминия, поставляемого производителем оригинального оборудования (OEM), и цилиндром. головка, которая состоит из литого сплава AlCe.Поскольку оба сплава основаны на Al, они оба содержат матричную фазу с гранецентрированной кубической (ГЦК) фазой с пиками Брэгга от плоскостей (222) и (311). В общем, расстояние d данного набора плоскостей решетки (hkl) может быть связано с параметром решетки a , который определяет размер элементарной ячейки FCC, bydhkl = ah3 + k2 + l2. [1] Затем можно определить деформацию решетки в заданном месте (x, y, z) путем сравнения измеренного значения dhkl (x, y, z) с эталонным значением dhkl0 (x, y, z): ϵhklx, y, z = dhklx, y, z − dhkl0x, y, zdhkl0x, y, z.[2] При отображении остаточной деформации в образце часто используется одно значение dhkl0, полученное из хорошо охарактеризованного эталона без напряжений. Однако для измерения динамической деформации в крупных инженерных компонентах нецелесообразно использовать одно значение dhkl0 из-за пространственных изменений в составе. Остаточные напряжения от литья, изготовления, сборки и предыдущей операции затрудняют неразрушающее измерение истинных без напряжений d-зазоров во всей системе.Во многих случаях знание того, какое значение использовать для dhkl0, также может быть недоступно из-за неизвестного происхождения, состава и истории рассматриваемого образца. Кроме того, сложность геометрии образца может неизбежно привести к появлению артефактов из-за того, что объем нейтронного датчика только частично заполнен материалом в некоторых местах измерения (частичное захоронение) (10), например, вблизи поверхности.

Здесь мы выбрали опорные значения решетки d3110 (y, z) на основе сопоставления с пространственным разрешением в начальном состоянии двигателя, что позволяет рассчитать эволюцию относительной деформации во время работы двигателя.Это эталонное картирование было проведено при выключенном двигателе и в условиях комнатной температуры (~ 25 ° C) по ранее описанной 2D-сетке, и каждое местоположение измерялось в течение примерно 1 мин. Пик Брэгга FCC (311) был выбран в качестве репрезентативного для расчета деформаций решетки, поскольку на него меньше всего влияют межзеренные деформации, возникающие из-за анизотропии материала (10) и другой локальной информации, такой как текстура отливки. Расстояние между пиками (311) d определяли с помощью аппроксимации одного пика с использованием программного обеспечения Data Reduction и Interactive Visualization для режима нейтронной дифракции в режиме событий (VDRIVE) (21).Результирующее эталонное сопоставление визуализировано на рис. 5 A в виде графика псевдоцвета. Граница раздела между головкой блока цилиндров и блоком хорошо видна, причем головка имеет тенденцию иметь более высокие измеренные значения d311 из-за другого состава сплава. Также существует изменение d311 внутри каждого компонента, что может быть результатом сборочных напряжений и пространственного изменения скорости охлаждения отливки и твердых растворов сплава. Рис. 5 A показывает, что зависящий от местоположения d3110 (y, z) важен для точного расчета отклика на деформацию при работе двигателя.

Рис. 5.

( A ) Пространственное отображение (311) местоположения пика Брэгга ( d 311 ) в двигателе при комнатной температуре в статических эталонных условиях, как показано на псевдоцветной карте. Места, отмеченные красным крестиком, были исключены из визуализации из-за плохой статистики подгонки пиков, а примеры спектров хорошего и плохого качества выделены белыми заполненными кружками и показаны в B . Граница между головкой блока цилиндров и блоком хорошо видна на карте d 311 и соответствует областям, выделенным на рис.4. ( B ) Местоположение с хорошей статистикой соответствия пика имеет четко видимые (222) и (311) пики, в то время как местоположение с плохой статистикой не имеет заметных пиков относительно фона. ( C ) Пространственное сопоставление d 311 при горячей стационарной работе двигателя — выполнено только частично из-за ограничений по времени. Обратите внимание, что масштабирование отличается от масштабирования в A . ( D ) Карта деформации решетки ( ϵ 311 ), рассчитанная путем сравнения d 311 во время стационарной работы двигателя ( C ) и статического эталонного состояния ( A ).Исключенные точки в D представляют собой объединение исключений из A и C . Напряжение монотонно увеличивается к правому верхнему углу рисунка, который находится рядом с отверстием для горячего выхлопа (рис. 4). ( E ) Примерные спектры из одного места, используемые для расчета деформации, имеют четко видимые сдвиги в положениях пиков (222) и (311) из-за термически индуцированной деформации.

Обратите внимание, что не все точки измерения использовались при создании визуализации эталонного картирования — некоторые были исключены из-за плохой статистики подгонки пиков.Эти местоположения также отмечены на рис. 4 и делятся на два основных кластера. Группа в верхней части карты совпадает с выпускным отверстием, которое представляет собой открытую область (как показано на рис. 2), где мало или совсем не материал занимает измерительный объем. Группа около середины карты совпадает с углублениями отливки, которые также могли иметь частичное захоронение измерительного объема. Два примера дифракционных картин от эталонного отображения показаны на рис. 5 B . Один взят из места с хорошей статистикой подгонки пиков, в котором есть четко различимые пики (222) и (311).Другой узор взят из места в выпускном отверстии, не имеет заметных пиков относительно фона и был исключен из визуализации карты.

В соответствии с эталонным картированием, расширение решетки из-за повышения температуры при работе двигателя в установившемся режиме при нагрузке генератора 2 кВт было нанесено на карту путем измерения в течение примерно 2 минут для каждого местоположения. В то время как некоторые компоненты двигателей, в частности выпускные клапаны (22), любые области, на которые попадают брызги топлива (5, 23, 24) и другие внутренние поверхности камеры сгорания, такие как гильза и поршневые кольца (25), являются подверженные быстрым колебаниям температуры во время цикла сгорания, они обычно происходят в течение времени порядка миллисекунд, а проникновение тепловой волны в конструкцию двигателя составляет порядка сотен мкм из-за высокой теплоемкости металлов. .Для наших измерений, проведенных вблизи внешней поверхности конструкции двигателя, температура внутри измерительного объема будет фактически постоянной при условии, что двигатель работает с постоянной выходной мощностью и достиг установившегося теплового режима.

Карта операнда d311 (y, z) показана на рис. 5 C и была подготовлена ​​аналогично справочной карте на рис. 5 A . Карта действия была измерена ближе к концу выделенного времени луча, и утечка выхлопных газов привела к преждевременному завершению эксперимента и неполной карте из-за ограниченного оставшегося времени луча, доступного для поиска неисправностей и ремонта.Тем не менее, этот набор измеренных данных демонстрирует доказательство принципа. Две карты имеют в целом похожий вид, но обратите внимание, что цветовая шкала для карты операндов на рис. 5 C была сдвинута в сторону больших значений d-интервала из-за теплового расширения материалов. Используя эти две карты, пространственно разрешенная деформация операндной решетки ϵ311y, z была рассчитана по формуле. 2 и показан на рис. 5 D . Поскольку для расчета деформации требуются значения из обеих входных карт, исключенные точки на карте ϵ311y, z представляют собой объединение исключений во входных картах.Измеренная деформация решетки варьировалась от низкого (2365 ± 112) микродеформаций (µϵ) в блоке цилиндров до высокого (4096 ± 86 µϵ) в головке цилиндров и монотонно увеличивалась к правому верхнему углу карты, ближайшему к горячему. выхлопное отверстие, как показано на рис. 4. Используя измеренный коэффициент теплового расширения (CTE) 23,5 × 10 −6 ° C −1 для сплава головки блока цилиндров AlCe и предполагая, что деформация полностью вызвана тепловым расширением приводит к предполагаемому повышению температуры на 174 градуса.3 ± 5,2 ° C, или абсолютная температура ∼200 ° C в месте наивысшей деформации на карте. Типичные сплавы, используемые для литых алюминиевых блоков цилиндров, имеют КТР в диапазоне от 21 до 24 × 10 −6 ° C −1 (26). Использование КТР 21,8 × 10 −6 ° C −1 для A380, который является наиболее распространенным алюминиевым сплавом для литья под давлением, приводит к предполагаемому увеличению температуры на 108,5 ± 5,7 ° C или к абсолютной температуре ∼133. ° C в месте с наименьшей деформацией на карте. Видно хорошее качественное согласие между подповерхностной деформацией решетки (и предполагаемой температурой) на рис.5 D и ИК-измерения температуры поверхности, показанные на рис. 4.

После того, как двигатель был остановлен и полностью остыл, та же область была перенесена на ту же сетку измерений, и полученная карта d311 (y, z) Показано на рис.6 A . Используя справочную карту на рис. 5 A как d3110 (y, z), деформация решетки ϵ311y, z была рассчитана для каждого местоположения с использованием уравнения. 2 . Результирующая карта микродеформации на рис. 6 B довольно плоская, с большинством местоположений в пределах ± 100 με, что приближается к пределу разрешения дифракционной техники.Примеры дифракционных картин до и после от места в головке блока цилиндров показаны на рис. 6 C и демонстрируют, что пики вернулись в почти идентичные положения. Это отображение до и после показывает, что головка двигателя из литого сплава AlCe вряд ли претерпит морфологические или фазовые изменения во время работы двигателя (20). Это также подтверждает, что наш подход к измерению отдельных эталонов, зависящих от местоположения, эффективен для устранения вклада вариаций d-шага эталонной решетки и позволяет количественно оценить деформации, которые сопоставимы во всей измеряемой области двигателя.

Рис. 6.

( A ) Пространственное отображение d 311 после того, как двигатель был выключен и ему дали остыть до комнатной температуры, с тем же масштабированием, что и на рис. 5 A и в целом похожим внешним видом. ( B ) Карта деформации решетки после охлаждения показывает, что большинство областей имеют остаточную деформацию <100 мкМ. Исключенные точки представляют собой совокупность исключений из рис. 5 A и 6 A . ( C ) Примеры дифракционных картин в одном месте до и после работы двигателя показывают, что пики вернулись в почти идентичные положения.

Отклик на деформацию решетки с временным разрешением во время работы двигателя.

Для изучения реакции динамической деформации решетки во время работы двигателя было выбрано одно место в блоке цилиндров и одно место в головке блока цилиндров из AlCe, как показано на рис. 4, справа. Двигатель работал вручную в трех переходных циклах нагрузки, состоящих из запуска двигателя и холостого хода (нагрузка генератора 0 кВт) в течение 2 минут, ступенчатого переключения на нагрузку генератора 2 кВт (~ 50% номинальной мощности), удерживаемого в течение 5 минут, и остановка двигателя с периодом охлаждения 6 мин.Поскольку нейтронный поток недостаточен для захвата дифракционных картин в реальном времени в этих временных масштабах, для определения изменяющейся во времени реакции системы использовалось непрерывное асинхронное стробоскопическое измерение нескольких переходных циклов нагрузки. Цикл переходной нагрузки повторялся 21 раз, в то время как данные нейтронной дифракции во времени и данные термопары выхлопных газов непрерывно собирались с высоким временным разрешением. Срез стробоскопических данных и синхронизация нейтронных данных и журналов выборки выполнялись с помощью программы VDRIVE (21), которая позволяла создавать ансамблевые дифракционные картины в 20-секундных временных интервалах.Эта комбинация циклических повторений (21 цикл) и размера временного интервала (20 с) была основана на оценках из предыдущих статических измерений накопленного времени луча, необходимого для получения пригодного для использования статистического ансамбля в пределах данного временного интервала. Как правило, для достижения меньшего размера временного интервала потребуется пропорционально большее количество повторений. Дифракционные данные объединенного ансамбля показаны на фиг. 7 A ; Сдвиги пиков FCC (311) и FCC (222) в первую очередь являются результатом теплового расширения сплава, вызванного термоциклированием двигателя, и этот рисунок демонстрирует осуществимость стробоскопического подхода.

Рис. 7.

( A ) Решетки Al (222) и Al (311) головки блока цилиндров эволюционируют в течение цикла нагрузки двигателя. Данные показаны в виде 20-секундных интервалов времени, суммированных по ансамблю из 21 цикла нагрузки, со сдвигами решетки относительно значений температуры в помещении, соответствующих изменению температуры внутри двигателя во время цикла нагрузки. Контрольные значения d2220 и d3110 были рассчитаны из измеренного a0 = 4,0485 (3) Å с использованием уравнения. 1 . ( B ) Типичная картина TOF-дифракции от блока цилиндров с уточнением Ритвельда.Наблюдаются и подходят как фаза Al, так и интерметаллическая фаза, содержащая Si.

Принимая во внимание, что при пространственном картировании в статических или установившихся условиях, показанных на рис. 5 и 6, размер статистического ансамбля значительно меньше для каждой дифракционной картины в измерениях с временным разрешением, что делает этот подход менее практичным. Чтобы получить изменение параметра решетки с временным разрешением с наименьшей статистической ошибкой аппроксимации, было использовано уточнение Ритвельда полной картины, которое использует метод регрессии наименьших квадратов для подгонки многопараметрического профиля линии ко всем измеренным дифракционным спектрам, а не к отдельным пикам (27 ), как показано на рис.7 В . Это было реализовано на каждой из дифрактограмм срезов с использованием General Structure Analysis System (28) и программного обеспечения EXPGUI (29), и параметры решетки сплавов Al были извлечены как (t, y, z) для каждого местоположения. Затем была рассчитана деформация решетки с временным разрешением аналогично уравнению. 2 , где параметр решетки a использовался вместо d311: ϵt, y, z = at, y, z − a0y, za0y, z. [3] Деформация решетки ансамбля с временным разрешением в двух местах изображены на рис.8 вместе с репрезентативными одноцикловыми измерениями температуры выхлопных газов и инфракрасной температуры поверхности, измеренной на головке цилиндров. Когда двигатель запускался на холостом ходу, температура сначала быстро повышалась и асимптотически приближалась к установившемуся состоянию. Аналогичная картина роста температуры и асимптотического подхода наблюдалась при увеличении нагрузки генератора до 2 кВт. Когда двигатель был выключен на 7 мин, температура выхлопных газов быстро падала, поскольку термопара находилась в центре, или в самой горячей части газового потока, который прекращался сразу после выключения.Напротив, температура инфракрасной поверхности показала кратковременное, но немедленное повышение, поскольку при выключении двигателя также отключался охлаждающий вентилятор, установленный на генераторе. Это привело к уменьшению поверхностной конвективной теплопередачи, а продолжающаяся теплопроводная теплопередача из более горячей внутренней части головки цилиндров вызвала временное повышение температуры поверхности перед изменением тенденции и уменьшением со значительно более медленной скоростью, чем температура выхлопных газов. Данные о совокупной деформации наносятся на график с временными интервалами по 20 с, как описано выше, и кривые деформации решетки в обоих местах очень похожи на температурные кривые с тремя отдельными фазами, соответствующими изменениям нагрузки двигателя.Место измерения в блоке цилиндров имело более низкую деформацию, что указывает на более низкую температуру, чем точка в головке цилиндров, и согласуется с ИК-изображениями на рис. 8 и картированием деформации в установившемся режиме, показанным на рис. 5 D .

Рис. 8.

( Вверху ) Последовательность ИК-изображений, показывающих изменение температуры поверхности во время переходного цикла нагрузки. ( Bottom ) Реакция ансамбля на деформацию решетки из выбранных мест, измеренная в блоке цилиндров и головке цилиндров путем дифракции нейтронов во время переходных циклов нагрузки, по сравнению с одноцикловыми измерениями температуры выхлопных газов и температуры ИК-поверхности головки цилиндров.

Деформация решетки, измеренная внутри головки цилиндров, нанесена на график зависимости от ИК-температуры, измеренной на поверхности головки цилиндров на рис. 9. Следует отметить несколько предостережений относительно этого сравнения: деформация решетки может быть вызвана механической нагрузкой в ​​дополнение к тепловое расширение; измерительный объем, измеренный методом дифракции нейтронов, находится ниже поверхности на неизвестное расстояние порядка измерительной длины (5 мм), тогда как ИК-камера измеряет излучение с поверхности; излучательная способность для ИК-измерения была откалибрована поверхностной термопарой в одной точке на головке цилиндров и предполагается, что она одинакова для всей головки цилиндров; ИК-измерение берется из одного переходного цикла нагрузки из серии циклов, которые были выполнены в автономном режиме (не одновременно с измерением дифракции нейтронов) и извлечены из ИК-фильма путем усреднения по области 3 × 3 пикселей, которая была выбрана вручную как место на поверхности, наиболее близкое к объему нейтронного датчика, как это видно камерой позиционирования образца; а головка блока цилиндров имеет сложную геометрию охлаждающих ребер, что приводит к значительным локальным колебаниям температуры поверхности.После того, как эти квалификации установлены, рис. 9 действительно показывает сильную корреляцию между температурой поверхности и подповерхностной деформацией решетки ( R 2 = 0,95). Данные были подогнаны с использованием линейной регрессии наименьших квадратов с масштабированной ошибкой, связанной с каждой точкой, использованной для взвешивания данных, как ωi = (max (σx) / σx, i) 2+ (max (σy) / σy, i) 2 в дополнение к использованию двухквадратных весов при минимизации остатков, чтобы уменьшить влияние выбросов. Результирующий наклон (25,78 ± 2,01) × 10 -6 ° C -1 примерно на 10% больше, чем заявленный КТР материала, но находится в очень разумном согласии с учетом оговорок, упомянутых выше, и указывает на то, что деформация решетки вызвано преимущественно тепловым расширением.Сильная корреляция между нейтронографическими данными и другими показателями динамического поведения системы, показанными на рис. 8 и 9 демонстрирует, что стробоскопическая дифракция нейтронов способна неразрушающим образом исследовать динамическую эволюцию деформации решетки во время переходной работы в работающем двигателе.

Рис. 9.

Деформация решетки, измеренная под поверхностью головки цилиндров с помощью нейтронографии, показывает сильную корреляцию с температурой, измеренной на поверхности головки с помощью инфракрасной камеры.

Проблемы и ограничения.

В отличие от хорошо охарактеризованных и специально разработанных образцов, которые обычно используются для нейтронных исследований, исследования реальных инженерных устройств и систем на месте сопряжены с рядом проблем.

Геометрическая сложность.

Реальные устройства часто имеют сложные геометрические элементы, такие как ребра охлаждения на рассматриваемом здесь двигателе. Даже если номинальная геометрия известна априори, что не всегда так, вариации, возникающие в результате литья или других процессов изготовления, могут вносить неопределенность в отношении фактических размеров образца.Это может создать трудности при выравнивании образца и размещении измерительного объема. Использование реперных маркеров с системой лазерного сканирования и юстировки важно для многократного определения местоположения образца в пространстве, но, как правило, не дает информации о внутренних характеристиках образца.

Вибрация и движение.

Для извлечения значимых результатов из данных дифракции требуется некоторая информация о том, какая часть материала генерирует измеряемый сигнал рассеяния.В случае статического образца это просто, поскольку в измерительном объеме всегда присутствует один и тот же материал. В случае вибрирующего образца со случайными или асинхронными колебаниями относительно нейтронного импульса размер измерительного объема эффективно увеличивается, но с неравномерным отбором образца из объема. Поэтому обычно рекомендуется поддерживать смещение измерительного объема ниже 10% расчетной длины. Аналогичная проблема возникает при перемещении или вращении компонентов, хотя это можно преодолеть, если движение может быть синхронизировано с нейтронным импульсом или если положение может быть измерено в реальном времени, чтобы обеспечить сокращение данных при постобработке.

Размер зерна.

Размер и ориентация зерен могут быть важными факторами в практике использования дифракции для измерения деформации решетки в объемных материалах. Если отдельное зерно занимает значительную часть измерительного объема, реакция рассеяния становится анизотропной, что приводит к неравномерным дифракционным картинам и ошибочным результатам. Это не было проблемой в настоящей работе, так как размер зерна сплава AlCe (от 10 до 100 мкм) (20) был мал по сравнению с измерительным объемом (5 × 5 × 5 мм 3 ).Это подчеркивает силу нейтронов по сравнению с другими методами, такими как синхротронное рентгеновское излучение, которые обычно используют гораздо меньшие калибровочные объемы.

Затухание и рассеяние.

Большие образцы могут представлять проблемы из-за ослабления как падающих, так и дифрагированных нейтронов, причем каждый материал имеет макроскопические коэффициенты ослабления из-за поглощения, когерентного рассеяния и некогерентного рассеяния. В то время как Al является очень прозрачным с комбинированной глубиной проникновения 1 / e 102 мм (нейтроны 1 Å), Fe вызывает значительно большее затухание с глубиной проникновения 1 / e 9 мм.Большое сечение некогерентного рассеяния 1 H означает, что водородосодержащие материалы, такие как пластмасса, охлаждающая жидкость, смазка и топливо, могут представлять более серьезные проблемы с глубиной проникновения 1 / e для воды всего 1,8 мм (30). Ослабление падающего луча снижает скорость, с которой нейтроны достигают измерительного объема, увеличивая время, необходимое для проведения статистически значимых измерений. То же самое верно и для нейтронов, рассеянных от измерительного объема к детектору, с дополнительным усложнением, заключающимся в том, что неоднородный состав или геометрия материала между измерительным объемом и детектором может вызвать затенение на детекторе.Сильно рассеивающие материалы могут также увеличить скорость счета фона, дополнительно увеличивая необходимое время счета. Обычно рекомендуемые подходы состоят в том, чтобы удалить или заменить твердые компоненты, такие как сталь, пластик или другие ослабляющие материалы, алюминием, где это возможно. В высокотемпературных системах, где прочность Al является ограничением, также можно использовать Ti. Точно так же водородсодержащие жидкости могут быть заменены фторированными эквивалентами, где это возможно. В случаях, когда замена ослабляющих компонентов нежелательна или нецелесообразна, можно также использовать особую ориентацию образца, чтобы избежать помех.

Активация.

Хотя нейтронная диагностика, как правило, неразрушающая с точки зрения механического или химического изменения образцов, нейтронно-индуцированная радиоактивность (активация) действительно вызывает беспокойство для определенных материалов. Активация зависит от изотопного состава и количества материала, а также от нейтронного потока и совокупного времени воздействия. Например, природный Al полностью состоит из стабильного изотопа 27 Al, который имеет малое сечение поглощения нейтронов, равное 1.495 сарай. Его продукт активации 28 Al имеет относительно короткий период полураспада 2,245 мкм, что означает, что даже высокоактивированные образцы могут распадаться ниже высвобождаемых пределов радиоактивности в течение нескольких часов или дней. Напротив, многие стальные сплавы содержат Co в концентрациях от следовых количеств до 8% в быстрорежущей инструментальной стали M42. Единственный стабильный изотоп, 59 Co, имеет относительно большое сечение поглощения нейтронов 37,18 барн, а его продукт активации, 60 Co, имеет период полураспада 5.275 л (30). В зависимости от концентрации Co и общего нейтронного облучения стальным образцам могут потребоваться дни или десятилетия для разложения ниже допустимых пределов радиоактивности. Поэтому важно, чтобы у пользователей было как можно больше информации о составе их образцов заранее, и пользователи всегда должны быть готовы к тому, что образцы не могут быть выпущены немедленно.

Резюме и перспективы

Мы продемонстрировали операндное измерение деформации решетки компонентов ДВС с помощью дифракции нейтронов.Пространственное изменение деформаций решетки, вызванное тепловыми градиентами в блоке цилиндров и головке цилиндров, было нанесено на карту в установившемся состоянии нагрузки, и тенденции согласовывались с внешними инфракрасными измерениями температуры поверхности. Разрешенный во времени динамический отклик деформации решетки во время циклической нагрузки двигателя был определен в двух местах в 20-секундных временных интервалах с помощью асинхронной стробоскопической нейтронной дифракции, демонстрируя, что измерение операндных нейтронов может позволить понять поведение материалов в эксплуатации в сложные инженерные устройства.Динамический отклик деформации решетки отражал измерения температуры, а деформация решетки, измеренная в головке блока цилиндров, сильно коррелировала с измерением температуры в инфракрасном диапазоне на поверхности головки цилиндров.

Развитие этого метода измерения рабочих деформаций, испытываемых ДВС, позволит изучать сложные состояния нагрузки и температурные градиенты по всему объему твердых компонентов. Понимание этих систем с пространственным и временным разрешением ранее было доступно только с помощью моделей, поддерживаемых точечными измерениями, такими как термопары с быстрым откликом.Возможность предоставления экспериментальных данных о проверке и граничных условиях в аналогичных масштабах и пространственной протяженности для областей, исследуемых в экзадачных моделях следующего поколения, расширит влияние инженерной нейтронной дифракции за счет увеличения пользовательской базы, а также расширения наших знаний о поведении материалов в сложных и сложных условиях. экстремальные условия эксплуатации.

Это исследование также служит отправной точкой для разработки специализированной нейтронографической исследовательской машины, которая ведется в ORNL.В то время как небольшой двигатель с воздушным охлаждением, использованный в этом исследовании, был выбран в основном из-за простоты реализации и управлялся вручную для достижения временного разрешения 20 с, разрабатываемая платформа будет представлять современные автомобильные двигатели и будет иметь тесную интеграцию между двигателями. контроллер и система сбора данных нейтронного дифрактометра для достижения временного разрешения субмсек в стробоскопическом режиме. Этот двигатель также будет служить модульной исследовательской платформой, чтобы предоставить доступ другим пользователям, которые могут пожелать изучить характеристики новых материалов в реальных условиях работы двигателя.Подход, принятый в этом исследовании для быстрого прототипирования пресс-форм для изготовления головки блока цилиндров из сплава AlCe и выполнения измерений деформации решетки в этом компоненте при использовании в реальном двигателе, служит примером того, как пользователи могут использовать производство и транспортировку. , а также установки пользователей нейтронов в ORNL для исследования поведения материалов в процессе эксплуатации без необходимости проектирования всей экспериментальной установки с нуля.

Выражение признательности

Эта работа была поддержана Министерством энергетики США (DOE), Управлением энергоэффективности и возобновляемых источников энергии, Управлением автомобильных технологий через программу Advanced Combustion Engine Systems.В этом исследовании использовались ресурсы SNS, Управления науки Министерства энергетики США, и NTRC, Управления по энергоэффективности и возобновляемой энергии Министерства энергетики США, которые находятся в ведении ORNL. Исследование сплавов AlCe спонсировалось Институтом критических материалов, центром энергетических инноваций, финансируемым Министерством энергетики, Управлением энергоэффективности и возобновляемых источников энергии, Управлением перспективного производства и Eck Industries. Эти работы выполнялись под эгидой Министерства энергетики и ORNL по контракту DE-AC05-00OR22725.Мы благодарим Стивена Уиттеда из ORNL за его вклад, который выполнил модификацию и упаковку двигателя для работы в дифрактометре. Автором этой рукописи является UT-Battelle, LLC по контракту DE-AC05-00OR22725 с Министерством энергетики США. Правительство США сохраняет за собой, а издатель, принимая статью к публикации, подтверждает, что правительство США сохраняет за собой неисключительную, оплаченную, безотзывную, всемирную лицензию на публикацию или воспроизведение опубликованной формы этой рукописи или на разрешение другим делать это. для целей правительства США.DOE предоставит публичный доступ к этим результатам исследований, спонсируемых на федеральном уровне, в соответствии с Планом публичного доступа DOE (energy.gov/downloads/doe-public-access-plan). Поддержка набора данных DOI 10.13139 / ORNLNCCS / 1728670 обеспечивается Министерством энергетики США, проект IPTS-18431 по контракту DE-AC05-00OR22725. В рамках проекта IPTS-18431 использовались ресурсы вычислительного центра Oak Ridge Leadership Computing Facility в Oak Ridge National Laboratory, который поддерживается Управлением науки Министерства энергетики США в соответствии с Контрактом No.DE-AC05-00OR22725.

Сноски

  • Авторы: Y.C., M.J.F., O.R., Z.C.S., D.W., E.T.S. и K.A. спланированное исследование; M.L.W., Y.C., M.J.F., S.J.C., O.R., Z.C.S., E.T.S. и K.A. проведенное исследование; M.L.W., Y.C. и К.А. проанализированные данные; и M.L.W., Y.C., S.J.C., O.R., Z.C.S. и K.A. написал газету.

  • Авторы заявляют об отсутствии конкурирующей заинтересованности.

  • Эта статья представляет собой прямое представление PNAS.

  • Copyright © 2020 Автор (ы).Опубликовано PNAS.

Контроль загрязнения воздуха от автотранспортных средств

Доступна информация о мировом соглашении VW и о том, как прокомментировать разработку Плана смягчения последствий для бенефициаров и инвестиций в транспортные средства с нулевым уровнем выбросов.

Легковые и грузовые автомобили, автобусы, внедорожники и самолеты считаются мобильными источниками загрязнения воздуха. Чтобы уменьшить загрязнение воздуха из этих значительных источников, как того требует федеральный закон о чистом воздухе 1990 г., DEC:

Как загрязнение двигателя вредит окружающей среде и здоровью

Окись углерода, оксиды азота и углеводороды выделяются при сгорании топлива в двигателе внутреннего сгорания.Они также могут выделяться, когда выхлопные трубы автомобиля выбрасывают воздух и остатки топлива. Пары бензина также выходят в атмосферу при заправке и при испарении топлива из двигателей и топливных систем в результате эксплуатации автомобиля или жаркой погоды.

Загрязняющие вещества в выбросах двигателей транспортных средств или газонного оборудования вызывают повреждение ткани легких и могут вызывать и усугублять респираторные заболевания, такие как астма. Загрязнение от автотранспорта также способствует образованию кислотных дождей. Загрязнение также выделяет парниковые газы, вызывающие изменение климата.

Дизельные двигатели долговечны и эффективны. Однако, поскольку они потребляют дизельное топливо, сложную смесь компонентов нефти, они производят некоторые загрязнители. Небольшое количество топлива выходит из двигателя несгоревшим. Эти находящиеся в воздухе углеводороды могут образовывать более крупные частицы в атмосфере при контакте с переносимой по воздуху пылью и другими частицами.

В отличие от бензиновых двигателей, которые могут не получать достаточно воздуха в цилиндр для сгорания, дизельные двигатели работают с избытком воздуха, поэтому выбросы окиси углерода очень низкие, хотя их можно измерить.Окись углерода — это бесцветный газ без запаха, который соединяется с кровью и ограничивает ее способность переносить кислород. Поскольку двигатели потребляют топливо и воздух и выделяют тепло в процессе сгорания, азот из воздуха может превращаться в оксиды азота, которые представляют собой красновато-коричневые газы, раздражающие легкие и глаза.

Выбросы загрязняющих веществ непосредственно от транспортных средств — не единственная причина для беспокойства. В теплые солнечные дни углеводороды реагируют с оксидами азота с образованием вторичного загрязнителя — озона.Во многих городских районах автомобили вносят наибольший вклад в приземный озон, который является обычным компонентом смога. Озон вызывает кашель, хрипы и одышку. Он также может вызвать необратимое повреждение легких, что делает его причиной серьезных проблем со здоровьем.

Автомобили с нулевым уровнем выбросов (ZEV)

ZEV включают электромобили на батареях, гибридные электромобили с подзарядкой от электросети и электромобили на водородных топливных элементах. Эти технологии могут использоваться в легковых, грузовых и транзитных автобусах.Федеральный закон о чистом воздухе позволяет Нью-Йорку принять стандарты Калифорнии для транспортных средств с нулевым уровнем выбросов (ZEV).

Нью-Йорк и семь других штатов объединились в инициативе по вводу в эксплуатацию 3,3 миллиона ZEV к 2025 году. Меморандум о взаимопонимании описывает шаги, которые эти штаты предпримут для повышения осведомленности потребителей и спроса на ZEV. Многогосударственный план действий по автомобилям с нулевым уровнем выбросов на 2018-2021 годы (покидает веб-сайт DEC) описывает следующие шаги, которые эти государства предпримут для повышения осведомленности потребителей и спроса на ZEV.

Снижение загрязнения окружающей среды от транспортных средств

Надлежащее обслуживание систем контроля выбросов легковых и грузовых автомобилей не только ограничивает вредные выбросы. Это также может улучшить топливную экономичность и производительность автомобиля. Это может даже продлить срок службы автомобиля. Забота о хранении и обращении с бензином и другими растворителями также снижает потери от испарения в атмосферу.

Программы технического осмотра и обслуживания автотранспортных средств (I / M) находятся в ведении DEC и Департамента автотранспортных средств штата Нью-Йорк.Программы I / M требуют ежегодных проверок выбросов и, при необходимости, требуют ремонта неисправных систем выбросов. Программа технического осмотра транспортных средств штата Нью-Йорк (NYVIP) является важным компонентом плана реализации штата Нью-Йорк по обеспечению соответствия национальным стандартам качества окружающего воздуха по озону.

Подробнее о контроле за загрязнением воздуха от автомобилей:

  • VW Settlement Information — Нью-Йорк рассчитывает получить финансирование от VW Settlement для поддержки сокращения выбросов NOx, основной причины смога и загрязнения воздуха.
  • Средне- и сверхмощные автомобили с нулевым уровнем выбросов — 14 июля 2020 года губернатор Куомо вместе с губернаторами 14 штатов и мэром Вашингтона подписали совместный меморандум о взаимопонимании, обязуясь совместно работать над продвижением и ускорением рынка электроэнергии автомобили средней и большой грузоподъемности.
  • Легкие автомобили с низким уровнем выбросов и нулевым уровнем выбросов — программа LEV штата Нью-Йорк смоделирована по образцу программы California CAL-LEV
  • Программа грантов штата Нью-Йорк на чистое дизельное топливо — доступно финансирование для приемлемых решений по сокращению выбросов дизельного топлива, начиная от проверенных технологий контроля выбросов и снижения холостого хода до сертифицированных замен двигателей и транспортных средств.
  • Каталитические преобразователи
  • — Департамент принял требования Калифорнии к каталитическим нейтрализаторам: a) запрет на установку использованных каталитических нейтрализаторов; и б) стандарты для новых преобразователей вторичного рынка.
  • Преобразование альтернативной топливной системы
  • — Новые дорожные автомобили, подпадающие под действие Части 218, должны быть сертифицированы либо по стандартам выбросов Калифорнии, либо по стандартам выбросов для транспортных средств штата 50, когда они предлагаются для продажи в Нью-Йорке.
  • Продажа новых автомобилей — Департамент внедрил Часть 218, которая применяется к новым дорожным транспортным средствам, поставляемым для продажи в штате Нью-Йорк.