24Июн

Коэффициент сопротивления движения формула: Силы сопротивления

что это такое, как уменьшить трение колеса

Чтобы колесо автомобиля катилось, ему надо преодолевать четыре силы: силу тяжести, трение о дорожное полотно, сопротивление воздуху и качению. На преодоление этих сил может приходиться до 30% мощности двигателя грузового автомобиля. У легковых авто такие потери меньше, но даже относительно небольшое снижение этого показателя приводит к уменьшению расхода топлива и увеличению пробега на одном баке.

Содержание

  • Что такое сопротивление шин качению
  • От чего зависит сопротивление качению
  • Расчет коэффициента сопротивления качению
  • Особенности шин с пониженным сопротивлением качению
  • Заключение
  • Полезное видео

Что такое сопротивление шин качению

При вращении шина деформируется в пятне контакта с дорожным покрытием, а это приводит к следующим последствиям:

  • деформируясь материалы нагреваются, и часть энергии качения рассеивается в виде тепла;
  • на восстановление деформации боковин и блоков протектора также расходуется энергия, которая могла бы идти на полезную работу — движение автомобиля;
  • увеличивается площадь контакта с покрытием — растет сила трения.


С 2012 г. все шины, продаваемые на территории Евросоюза, обязаны были иметь стикер, на котором цветовой шкалой и буквенной символикой от A (зеленый цвет) до G (красный цвет) указывалась маркировка топливной экономичности. А топливная экономичность каждого класса измерялась коэффициентом сопротивления качению: у шин с маркировкой A он минимальный (RR6.5), у шин с маркировкой G – максимальный (RR12.1).

С мая 2021 года стикер немного изменился, и теперь он содержит не 7, а 5 классов от A до E. И расход топлива между соседними классами по сравнению с предыдущей версией увеличился приблизительно на 0.1 л/100 км.

Справка. Разница расхода топлива легковым автомобилем с шинами первого и последнего класса может составлять до 0.5л/100 км (или 7.5% от общего объема).

Может быть интересно: Слежка за давлением в шинах

От чего зависит сопротивление качению

На качение влияют разные факторы. Значительная часть относится к особенностям самой шины и ее состоянию:

  1. Конструкция и материалы. Влияют на степень деформации в пятне контакта и трение с дорожным покрытием.
  2. Индекс скорости. Некоторые решения, направленные на повышение курсовой устойчивости, негативно сказываются на экономичности.
  3. Сезонность. Зимние шины («липучки») должны обеспечивать максимальное сцепление с мокрой и скользкой дорогой, и они априори не могут быть более экономичными чем летние.
  4. Посадочный диаметр и высота профиля. Чем больше общий диаметр колеса, тем ниже сопротивление качению.
  5. Рисунок протектора. Мелкий и глубокий рисунок увеличивает аэродинамическое сопротивление покрышки. «Лысые» старые шины катятся лучше, чем новые.
  6. Давление. Чем ниже давление в шине, тем выше сопротивление качению.

На качение влияют и внешние факторы. К ним относятся:

  1. Тип дорожного покрытия. У бетонки и брусчатки сопротивление больше, чем у асфальта. Мягкая грунтовка немного продавливается и «пылит» под тяжестью автомобиля, что увеличивает расход топлива. На щебенке без битумной пропитки колеса пробуксовывают.
  2. Качество дорожного покрытия. Шероховатая структура, ухабы, ямы, колея — все это мешает движению.
  3. Температура покрытия. От 10°C до 40°C сопротивление качению снижается, а затем — растет.

Расчет коэффициента сопротивления качению

Сопротивление качению зависит от массы транспортного средства и коэффициента трения с дорожным покрытием. Силу сопротивления в общем виде рассчитывают по простой формуле:
P = Q*f,
где f – коэффициент трения.

Естественно, что коэффициент трения зависит от типа дорожного покрытия и вида движителя. И у машин с эластичными шинами он ниже, чем у тракторов и вездеходов на гусеничном ходу, но выше, чем у рельсового транспорта.

Внимание! Коэффициент сопротивления качению шин можно назвать комплексной условной характеристикой. Он определяется по результатам испытаний в определенных условиях, и его значение указывает какое усилие надо приложить к автомобилю определенной массы, чтобы он продолжал прямолинейное равномерное движение.

Размерность этого коэффициента выражается как enkg/t (кг/т). И если RR=12, то это означает, что на каждую тонну автомобиля надо приложить усилие в 12 кг (приблизительно 120 Н), чтобы преодолеть сопротивление качению.

Полезно почитать: Подбор шин по типоразмеру

Особенности шин с пониженным сопротивлением качению

Для повышения топливной эффективности производители применяют следующие решения:

  • увеличивают жесткость конструкции шины, чтобы лучше противостоять деформации боковин;
  • уменьшают высоту протектора для снижения сминаемости блоков;
  • делают протектор более жестким;
  • вводят в состав добавки, повышающие плотность и стабильность резинотехнической смеси;
  • облегчают массу покрышки;
  • оптимизируют рисунок протектора для уменьшения аэродинамического сопротивления.

Но снижение сопротивления качению не является самоцелью — тестовые испытания «зеленых» шин показывают, что путь торможения у них, как правило, больше, чем у «красных» покрышек. Поэтому важна сбалансированность топливной эффективности и сцепных свойств, экономичности и функциональности.

Осторожно! У большегрузых автомобилей этот вопрос решается проще, чем у легковых авто. Для них, помимо универсальных (U), на каждую ось выпускают свой тип покрышек: рулевые (S —steer), ведущие (D — drive), свободного качения (T —trailer).

Рулевые шины имеют четкие реакции при проведении маневра, ведущие — отвечают за сцепление с дорогой и тормозной путь, свободного качения — имеют минимальный коэффициент сопротивления качению и отвечают за экономию топлива.

Таблица сопротивления качению разных видов шин:

Заключение

Шины с низким коэффициентом сопротивления качению не только экономят для владельца топливо, они имеют больший пробег и уменьшают выброс выхлопных газов. А это в итоге снижает вредное влияние на экологию.

Полезное видео

3.11. Силы сопротивления движению и мощности, затрачиваемые на их преодоление

Силами сопротивления называются силы, препятствующие движению автомобиля. Эти силы направлены против его движе­ния.

При движении на подъеме, характеризуемом высотой Hп, длиной проекции Вп на гори­зонтальную плоскость и углом подъема дороги α, на автомобиль действуют следующие силы со­противления (рис. 3.12): сила со­противления качению Рк, равная сумме сил сопротивления каче­нию передних (РК|) и задних (РК2) колес, сила сопротивления подъе­му Рп, сила сопротивления воз­духа Д и сила сопротивления раз­гону РИ. Силы сопротивления ка­чению и подъему связаны с особенностями дороги. Сумма этих сил называется силой сопротивления дороги

РД.

Рис. 3.13. Потери энергии на внутреннее трение в шине:

а — точка, соответствующая мак­симальным значениям нагрузки и прогиба шины

Сила сопротивления качению

Возникновение силы сопротивления качению при движении обусловлено потерями энергии на внутреннее трение в шинах, поверхностное трение шин о дорогу и образование колеи (на деформируемых дорогах).О потерях энергии на внутреннее трение в шине можно судить по рис. 3.13, на котором приведена зависимость между вертикаль­ной нагрузкой на колесо и деформацией шины — ее прогибом fш.

При движении колеса по неровной поверхности шина, испы­тывая действие переменной нагрузки, деформируется. Линия αО, которая соответствует возрастанию нагрузки, деформирующей шину, не совпадает с линией аО, отвечающей снятию нагрузки.

Площадь области, заключенной между указанными кривыми, ха­рактеризует потери энергии на внутреннее трение между отдель­ными частями шины (протектор, каркас, слои корда и др.).

Потери энергии на трение в шине называются гистерезисом, а линия ОαО — петлей гистерезиса.

Потери на трение в шине необратимы, так как при деформа­ции она нагревается и из нее выделяется теплота, которая рассе­ивается в окружающую среду. Энергия, затрачиваемая на дефор­мацию шины, не возвращается полностью при последующем вос­становлении ее формы.

Сила сопротивления качению Рк достигает наибольшего зна­чения при движении по горизонтальной дороге. В этом случае

где Gвес автомобиля, Н; f — коэффициент сопротивления качению.

При движении на подъеме и спуске сила сопротивления каче­нию уменьшается по сравнению с

Рк на горизонтальной дороге, и тем значительнее, чем они круче. Для этого случая движения сила сопротивления качению

где α — угол подъема, °.

Зная силу сопротивления качению, можно определить мощ­ность, кВт,

затрачиваемую на преодоление этого сопротивления:

где v —скорости автомобиля,м/c2

Для горизонтальной дороги соs0°=1 и

Зависимости силы сопротивления качениюРк и мощности NК от скорости автомобиля v показаны на рис. 3.14

Коэффициент сопротивления качению

Коэффициент сопротивления качению существенно влияет на потери энергии при движении автомобиля. Он зависит от многих конструктивных и эксплуатационных

Рис 3.15. Зависимости коэффициента сопротивления качению от

Скорости движения (а), давления воздуха в шине (б) и момента, передаваемого через колесо (в)

факторов и определяется экспериментально. Его средние значения для различных дорог при нормальном давлении воздуха в шине составляют 0,01 …0,1.Рассмотрим влияние различных факторов на коэффициент сопротивления качению.

Скорость движения. При изменении скорости движения в ин­тервале 0…50 км/ч коэффициент сопротивления качению изме­няется незначительно и его можно считать постоянным в указан­ном диапазоне скоростей.

При повышении скорости движения за пределами указанного интервала коэффициент сопротивления качению существенно уве­личивается (рис. 3.15, а) вследствие возрастания потерь энергии в шине на трение.

Коэффициент сопротивления качению в зависимости от ско­рости движения можно приближенно рассчитать по формуле

где скорость автомобиля, км/ч.

Тип и состояние покрытия дороги. На дорогах с твердым по­крытием сопротивление качению обусловлено главным образом деформациями шины.

При увеличении числа дорожных неровностей коэффициент сопротивления качению возрастает.

На деформируемых дорогах коэффициент сопротивления ка­чению определяется деформациями шины и дороги. В этом случае он зависит не только от типа шины, но и от глубины образую­щейся колеи и состояния грунта.

Значения коэффициента сопротивления качению при рекомен­дуемых уровнях давления воздуха и нагрузки на шину и средней скорости движения на различных дорогах приведены ниже:

Асфальто- и цементобетонное шоссе:

в хорошем состоянии ………………………………. 0,007…0,015

в удовлетворительном состоянии …………… 0,015…0,02

Гравийная дорога в хорошем состоянии …. 0,02…0,025

Булыжная дорога в хорошем состоянии…… 0,025…0,03

Грунтовая дорога сухая, укатанная ………….. 0,025…0,03

Песок………………………………………………………. …. 0,1…0,3

Обледенелая дорога, лед …………………………. 0,015…0,03

Укатанная снежная дорога ……………………….. 0,03…0,05

Тип шины. Коэффициент сопротивления качению во многом зависит от рисунка протектора, его износа, конструкции каркаса и качества материала шины. Изношенность протектора, уменьше­ние числа слоев корда и улучшение качества материала приводят к падению коэффициента сопротивления качению вследствие снижения потерь энергии в шине.

Давление воздуха в шине. На дорогах с твердым покрытием при уменьшении давления воздуха в шине коэффициент сопро­тивления качению повышается (рис. 3.15, б). На деформируемых дорогах при снижении давления воздуха в шине уменьшается глу­бина колеи, но возрастают потери на внутреннее трение в шине. Поэтому для каждого типа дороги рекомендуется определенное давление воздуха в шине, при котором коэффициент сопротивле­ния качению имеет минимальное значение.

Нагрузка на колесо. При увеличении вертикальной нагрузки на колесо коэффициент сопротивления качению существенно возрастает на деформируемых дорогах и незначительно — на до­рогах с твердым покрытием.

Момент, передаваемый через колесо. При передаче момента через колесо коэффициент сопротивления качению возрастает (рис. 3.15,

в) вследствие потерь на проскальзывание шины в месте ее контакта с дорогой. Для ведущих колес значение коэффициента сопротивления качению на 10… 15 % больше, чем для ведомых.

Коэффициент сопротивления качению оказывает существен­ное влияние на расход топлива и, следовательно, на топливную экономичность автомобиля. Исследования показали, что даже не­большое уменьшение этого коэффициента обеспечивает ощути­мую экономию топлива. Поэтому неслучайно стремление конст­рукторов и исследователей создать такие шины, при использова­нии которых коэффициент сопротивления качению будет незна­чительным, но это весьма сложная проблема.

Коэффициент аэродинамического сопротивления

Коэффициент аэродинамического сопротивления — это число, которое инженеры используют для моделирования все сложные зависимости формы и условия течения на ракете тащить. Это уравнение представляет собой просто перестановка уравнения сопротивления, где мы решить для коэффициента лобового сопротивления с точки зрения других переменных. Коэффициент аэродинамического сопротивления

Cd равно сопротивлению 92)

Величина, равная половине плотности, умноженной на квадрат скорости, называется динамическое давление q . Так

Cd = D / (q * А)

Тогда коэффициент аэродинамического сопротивления выражает соотношение силы сопротивления к силе, создаваемой динамическим давлением, умноженной на площадь.

Это уравнение дает нам способ определить значение сопротивления коэффициент. В контролируемой среде, такой как аэродинамическая труба мы можем установить скорость, плотность и площадь и измерить производимое сопротивление. Путем деления получаем значение сопротивления коэффициент. Как указано на перетаскивании слайд с уравнениями, выбор эталона площадь (лобовая площадь или площадь поверхности) повлияет на числовое значение коэффициента лобового сопротивления, которое рассчитывается. При сообщении значений коэффициента лобового сопротивления важно указать эталонная площадь, которая используется для определения коэффициента. Мы можем предсказать сопротивление, которое будет производиться при другом наборе скорость, плотность (высота) и условия местности с использованием уравнения сопротивления.

Коэффициент аэродинамического сопротивления содержит не только сложные зависимости форма объекта, но и влияние воздуха вязкость и сжимаемость. Чтобы правильно использовать перетаскивание коэффициент, мы должны быть уверены, что вязкость и сжимаемость эффекты одинаковы между нашим измеренным случаем и предсказанным случай.

В противном случае прогноз будет неточным. Для очень низких скоростях (< 200 миль в час) эффекты сжимаемости незначительны. В при более высоких скоростях становится важным согласовать числа Маха между два случая. число Маха есть отношение скорости к скорость звука. На сверхзвуковых скоростях, ударные волны будет присутствовать в поле течения, и мы должны обязательно учитывать волновое сопротивление в коэффициент лобового сопротивления. Так что совершенно некорректно мерить лобовое сопротивление коэффициент на некоторой низкой скорости (скажем, 200 миль в час) и примените это сопротивление коэффициент при удвоенной скорости звука (примерно 1400 миль в час, Маха = 2,0). Еще важнее соответствие вязкости воздуха последствия. Важным параметром согласования вязкости является Число Рейнольдса которая выражает отношение сил инерции к вязкие силы. В наших дискуссиях об источниках сопротивления напомним, что сопротивление поверхностного трения напрямую зависит от вязкости Взаимодействие объекта и потока. Если число Рейнольдса эксперимент и полет близки, то правильно моделируем эффекты вязких сил по отношению к силам инерции. Если они совсем другое, мы не правильно моделируем физику реального проблема и будет предсказывать неправильное сопротивление.


Экскурсии с гидом
  • Вязкостная аэродинамика:
  • Скаляры:

Деятельность:

Связанные сайты:
Rocket Index
Rocket Home
Руководство для начинающих Home

Коэффициент аэродинамического сопротивления

Коэффициент лобового сопротивления — безразмерный коэффициент пропорциональности вектора суммарной гидродинамической силы на тело в потоке жидкости или газа и произведение площади отсчета S тела (обычно в миделе) и скоростного напора q

где , v s – векторы скорости жидкости и тела, – относительная скорость тела, ρ – плотность жидкости (газа), S – площадь мидель- ного сечения тела, C d – коэффициент сопротивления.

Это соотношение следует из теории подобия и широко используется в технике для упрощенного расчета силы, действующей на тело или частицу в жидкости или газе, в которой оно движется.

На практике коэффициент лобового сопротивления в большинстве случаев рассчитывается с использованием эмпирических соотношений, обобщающих экспериментальные данные. Наиболее широко изучаемым случаем является сфера. На рис. 1 представлена ​​зависимость коэффициента сопротивления шара и цилиндра в поперечном течении от числа Рейнольдса Re = ρuD/η, где D — диаметр шара (цилиндра), η — вязкость жидкости, . Коэффициент лобового сопротивления резко снижается от чрезвычайно высоких значений при малых числах Re до единицы и ниже при Re > 10 3 . Для Re < 0,2 Стокс вывел теоретическую формулу коэффициента лобового сопротивления для сферы:

Здесь имеет место чисто вязкое безотрывное течение. Сопротивление определяется высоким молекулярным трением жидкости, действие которого распространяется далеко вверх по течению. С увеличением числа Re силы инерции начинают преобладать над силами вязкости и возникает ламинарный пограничный слой. Теперь силы вязкости проявляются только в этом достаточно тонком слое. Течение за пределами пограничного слоя практически не зависит от вязкости. Также происходит отрыв потока в корме (точка S на рис. 1). С ростом Re площадь отрыва увеличивается и достигает наибольших значений при Re ~ 10 3 ; коэффициент лобового сопротивления при этом уже не уменьшается и даже несколько увеличивается, оставаясь близким к 0,4 для диапазона 2 · 10 3 < Re < 2 · 10 5 .

Рис. 1. Коэффициент лобового сопротивления цилиндров (1) и сфер (2) в зависимости от числа Рейнольдса (Re).

В диапазоне 0,2 < Re < 2 × 10 3 приближенная формула для расчета коэффициента сопротивления для сферы имеет вид:

Если Re продолжает расти, возникает ситуация (при Re ~ 2 × 10 5 ), когда ламинарный пограничный слой становится частично турбулентным в безотрывной области течения сферы. Профиль скорости в турбулентном пограничном слое более полный и лучше сопротивляется положительному градиенту давления. Зона отрыва резко смещена к корме, что резко снижает коэффициент лобового сопротивления. Наступает режим автомодельности, и при дальнейшем увеличении числа Re коэффициент лобового сопротивления остается неизменным.

При больших скоростях газа коэффициент сопротивления также зависит от числа Маха Ma = u/a, где a — скорость акустических волн в газе. При Ma < 1 формула, аппроксимирующая обширный массив экспериментальных данных, выглядит следующим образом:

где C d 0 рассчитывается по формуле (1), получил признание.

На коэффициент аэродинамического сопротивления сильно влияет форма кузова. Он учитывается через коэффициент сферичности, который представляет собой отношение площади поверхности шара того же объема, что и тело, к площади поверхности тела. Для тетраэдра это 0,67; для куба 0,806; а для октаэдра 0,85. Введение коэффициента сферичности фактически означает переход от неправильной формы корпуса к некоторой эквивалентной сферической форме, при этом диаметр сферы принимается за исходную величину для определения числа Re и площади мидель-шпинделя.