13Ноя

Как работает термореле: принцип работы, виды, схема подключения + регулировка и маркировка

Содержание

принцип работы, виды, схема подключения + регулировка и маркировка


Долговечность и надежность в эксплуатации любой установки с электрическим двигателем зависит от различных факторов. Однако в значительной мере на срок службы мотора влияют токовые перегрузки. Чтобы их предупредить подключают тепловое реле, защищающее основной рабочий орган электромашины.

Мы расскажем, как подобрать устройство, предсказывающее назревание аварийных ситуаций с превышением максимально допустимых показателей тока. В представленной нами статье описан принцип действия, приведены разновидности и их характеристики. Даны советы по подключению и грамотной настройке.

Содержание статьи:

Зачем нужны защитные аппараты?

Даже если электропривод грамотно спроектирован и используется без нарушения базовых правил эксплуатации, всегда остается вероятность возникновения неисправностей.

К аварийным режимам работы относят однофазные и многофазные КЗ, тепловые перегрузки электрооборудования, заклинивание ротора и разрушение подшипникового узла, обрыв фазы.

Функционируя в режиме повышенных нагрузок, электрический двигатель расходует огромное количество электроэнергии. А при регулярном превышении показателей номинального напряжения оборудование интенсивно нагревается.

В результате быстро изнашивается изоляция, что приводит к значительному снижению эксплуатационного срока электромеханических установок. Чтобы исключить подобные ситуации, в цепи электрического тока подключают реле тепловой защиты. Их основная функция – обеспечить нормальный режим работы потребителей.

Они отключают мотор с определенной выдержкой времени, а в некоторых случаях – мгновенно, чтобы предотвратить разрушение изоляции или повреждение отдельных частей электроустановки.

Токовое реле постоянно защищает электрический двигатель от обрыва фазы и технологических перегрузок, а также торможения ротора. Это главные причины, из-за которых возникают аварийные режимы

С целью не допустить понижение сопротивления изоляции задействуют устройства защитного отключения, ну а если поставлена задача предотвратить нарушение охлаждения, подключают специальные аппараты встроенной тепловой защиты.

Устройство и принцип работы ТР

Конструктивно стандартное электротепловое реле представляет собой небольшой аппарат, который состоит из чувствительной биметаллической пластины, нагревательной спирали, рычажно-пружинной системы и электрических контактов.

Биметаллическую пластину изготовляют из двух разнородных металлов, как правило, инвара и хромоникелевой стали, прочно соединенных вместе в процессе сварки. Один металл обладает большим температурным коэффициентом расширения, чем другой, поэтому нагреваются они с разной скоростью.

При токовой перегрузке незафиксированная часть пластины прогибается к материалу с меньшим значением коэффициента теплового расширения. Это оказывает силовое воздействие на систему контактов в защитном устройстве и активирует отключение электроустановки при перегреве.

В большинстве моделей механических тепловых реле есть две группы контактов. Одна пара – нормально разомкнутые, другая – замкнутые постоянно. Когда срабатывает защитное устройство, в контактах меняется состояние.

Первые замыкаются, а вторые становятся разомкнутыми.

В электронных ТР задействуют специальные датчики и чувствительные зонды, реагирующие на повышение тока. В микропроцессоре таких защитных устройств запрограммированы параметры, определяющие ситуации, когда необходимо отключать подачу электропитания

Ток детектирует интегрированный трансформатор, после чего электроника обрабатывает полученные данные. Если значение тока в настоящий момент времени больше, чем уставка, импульс мгновенно передается прямо на выключатель.

Размыкая внешний контактор, реле с электронным механизмом блокирует нагрузку. Само устанавливается на контактор.

Биметаллическая пластина может быть нагрета непосредственно – за счет воздействия пикового тока нагрузки на металлическую полосу или косвенно, при помощи отдельного термоэлемента. Нередко эти принципы объединяют в одном аппарате тепловой защиты. При комбинированном нагреве прибор имеет лучшие рабочие характеристики.

После остывания пластина возвращается в исходное состояние. Коммутирующие контакты автоматически замыкаются либо нужно принудительно приводить их в замкнутое состояние

Базовые характеристики токового реле

Основной характеристикой коммутатора тепловой защиты является выраженная зависимость времени срабатывания от протекающего по нему тока — чем больше величина, тем быстрее он сработает. Это свидетельствует об определенной инерционности релейного элемента.

Направленное перемещение частиц-носителей заряда через любой электроприбор, и электрокотел, генерирует тепло. При номинальном токе его допустимая длительность стремится к бесконечности.

А при значениях, превышающих номинальные показатели, в оборудовании повышается температура, что приводит к преждевременному износу изоляции.

Обрыв цепи мгновенно блокирует дальнейший рост температурных показателей. Это дает возможность предупредить перегрев двигателя и предотвратить аварийный выход из строя электрической установки

Номинальная нагрузка самого мотора – ключевой фактор, определяющий выбор прибора. Показатель в интервале 1,2-1,3 обозначает успешное срабатывание при токовой перегрузке в 30% на временном отрезке в 1200 секунд.

Продолжительность перегрузки может негативно сказаться на состоянии электрооборудования — при кратковременном воздействии в 5-10 минут нагревается только обмотка мотора, которая имеет небольшую массу. А при длительных нагревается весь двигатель, что чревато серьезными поломками. Или вовсе может потребоваться замена сгоревшего оборудования новым.

Чтобы максимально уберечь объект от перегрузки, следует конкретно под него использовать реле тепловой защиты, время срабатывания которого будет соответствовать максимально допустимым показателям перегрузки конкретного электродвигателя.

На практике собирать под каждый тип мотора нецелесообразно. Один релейный элемент задействуют для защиты двигателей различного конструктивного исполнения. При этом гарантировать надежную защиту в полном рабочем интервале, ограниченном минимальной и максимальной нагрузкой, невозможно.

Повышение показателей тока не сразу приводит к опасному аварийному состоянию оборудования. Прежде чем ротор и статор нагреются до предельной температуры, пройдет некоторое время

Поэтому нет крайней необходимости в том, чтобы защитное устройство реагировало на каждое, даже незначительное повышение тока. Реле должно отключать электродвигатель только в тех случаях, когда есть опасность быстрого износа изоляционного слоя.

Виды реле тепловой защиты

Существует несколько видов реле для защиты электрических двигателей от обрыва фаз и токовых перегрузок. Все они отличаются конструкционными особенностями, типом используемых МП и применением в разных моторах.

ТРП. Однополюсный коммутационный аппарат с комбинированной системой нагрева. Предназначен для защиты асинхронных трехфазных электромоторов от токовых перегрузок. Применяется ТРП в электросетях постоянного тока с базисным напряжением в условиях нормальной работы не больше 440 В. Отличается устойчивостью к вибрациям и ударам.

РТЛ. Обеспечивают двигателям защиту в таких случаях:

  • при выпадении одной из трех фаз;
  • асимметрии токов и перегрузок;
  • затянутого пуска;
  • заклинивания исполнительного механизма.

Их можно устанавливать с клеммами КРЛ отдельно от магнитных пускателей или монтировать непосредственно на ПМЛ. Устанавливаются на рейках стандартного типа, класс защиты – IP20.

РТТ. Защищают асинхронные трехфазные машины с короткозамкнутым ротором от затянутого старта механизма, длительных перегрузок и асимметрии, то есть перекоса фаз.

РТТ могут быть использованы в качестве комплектующих частей в различных схемах управления электроприводами, а также для интеграции в пускатели серии ПМА

ТРН. Двухфазные коммутаторы, которые контролируют пуск электроустановки и режим работы мотора. Практически не зависят от температуры внешней среды, имеют только систему ручного возврата контактов в начальное состояние. Их можно использовать в сетях постоянного тока.

РТИ. Электрические переключающие аппараты с постоянным, хоть и небольшим потреблением электроэнергии. Монтируются на контакторах серии КМИ. Работают вместе с предохранителями/.

Твердотельные токовые реле. Представляют собой небольшие электронные устройства на три фазы, в конструкции которых нет подвижных частей.

Функционируют по принципу вычисления средних значений температур двигателя, осуществляя для этого постоянный мониторинг рабочего и пускового тока. Отличаются невосприимчивостью к изменениям в окружающей среде, а потому используются во взрывоопасных зонах.

РТК. Пусковые коммутаторы для контроля температуры в корпусе электрооборудования. Используются в схемах автоматики, где тепловые реле выступают в качестве комплектующих деталей.

Чтобы обеспечить надежную работу электрооборудования, релейный элемент должен обладать такими качествами, как чувствительность и быстродействие, а также селективность

Важно помнить, что ни один вид из выше рассмотренных приборов не является пригодным для защиты цепей от короткого замыкания.

Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке.

Электрооборудование может перегореть еще до начала срабатывания реле. Для комплексной защиты их нужно дополнять предохранителями или компактными автоматическими выключателями модульной конструкции.

Подключение, регулировка и маркировка

Коммутационный прибор перегрузки, в отличие от электрического автомата, не разрывает силовую цепь непосредственно, а лишь подает сигнал на временное отключение объекта при аварийном режиме. Нормально включенный контакт у него работает как кнопка «стоп» контактора и подсоединяется по последовательной схеме.

Схема подключения устройств

В конструкции реле не нужно повторять абсолютно все функции силовых контактов при успешном срабатывании, поскольку оно подключается непосредственно к МП. Такое исполнение позволяет существенно сэкономить материалы для силовых контактов. Намного легче в управляющей цепи подключить малый ток, чем сразу отключать три фазы с большим.

Во многих схемах подключения теплового реле к объекту используют постоянно замкнутый контакт. Его последовательно соединяют с клавишей «стоп» пульта управления и обозначают НЗ – нормально замкнутый, или NC – normal connected.

Разомкнутый контакт при такой схеме может быть использован для инициализации срабатывания тепловой защиты. Схемы подсоединения электромоторов, в которых подключено реле тепловой защиты, могут значительно отличаться в зависимости от наличия дополнительных устройств или технических особенностей.

В стандартной простой схеме ТР подключают к выходу низковольтного пускателя на электрический двигатель. Дополнительные контакты прибора в обязательном порядке соединяют последовательно с катушкой пускателя

Это обеспечит надежную защиту от перегрузок электрооборудования. В случае недопустимого превышения предельных значений тока релейный элемент разомкнет цепь, моментально отключая МП и двигатель от электропитания.

Подключение и установку теплового реле, как правило, производят вместе с магнитным пускателем, предназначенным для коммутации и запуска электрического привода. Однако есть виды, которые монтируют на DIN-рейку или специальную панель.

Тонкости регулировки релейных элементов

Одним из главных требований к устройствам защиты электродвигателей является четкое действие аппаратов при возникновении аварийных режимов работы мотора. Очень важно правильно его подобрать и отрегулировать настройки, поскольку ложные срабатывания абсолютно недопустимы.

Электротепловое реле, которое оптимально подходит к конкретному типу двигателя по всем техническим параметрам, способно обеспечить надежную защиту от перегрузок по каждой фазе, предотвратить затяжной старт установки, не допустить аварийных ситуаций с заклиниванием ротора

Среди преимуществ использования токовых элементов защиты также следует отметить довольно высокую скорость и широкий диапазон срабатывания, удобство монтажа. Чтобы обеспечить своевременное отключение электромотора при перегрузке, реле тепловой защиты необходимо настраивать на специальной платформе/стенде.

В таком случае исключается неточность из-за естественного неравномерного разброса номинальных токов в НЭ. Для проверки защитного устройства на стенде применяется метод фиктивных нагрузок.

Через термоэлемент пропускают электрический ток пониженного напряжения, чтобы смоделировать реальную тепловую нагрузку. После этого по таймеру безошибочно определяют точное время срабатывания.

Настраивая базовые параметры, следует стремиться к таким показателям:

  • при 1,5-кратном токе устройство должно отключать двигатель через 150 с;
  • при 5…6-кратном токе оно должно отключать мотор через 10 с.

Если время срабатывания не соответствует норме, релейный элемент необходимо отрегулировать посредством контрольного винта.

Для корректной работы обязательно нужно настроить прибор на наибольший допустимый электрический ток двигателя и температуру воздуха

Это делают в тех случаях, когда значения номинального тока НЭ и мотора отличаются, а также если температура окружающей среды ниже номинальной (+40 ºC) более, чем на 10 градусов по шкале Цельсия.

Ток срабатывания электротеплового коммутатора уменьшается с повышением температуры вокруг рассматриваемого объекта, так как нагрев биметаллической полосы зависит от этого параметра. При существенных отличиях необходимо дополнительно отрегулировать ТР или подобрать более подходящий термоэлемент.

Резкие колебания температурных показателей сильно влияют на работоспособность токового реле. Поэтому очень важно выбирать НЭ, способный эффективно выполнять основные функции с учетом реальных значений.

ТР рекомендовано размещать в одном помещении с защищаемой электроустановкой. Их нельзя монтировать близко к теплогенераторам, нагревательным печам и другим источникам тепла

К реле с температурной компенсацией эти ограничения не относятся. Токовую уставку защитного аппарата можно регулировать в диапазоне 0,75-1,25х от значений номинального тока термоэлемента. Настройку выполняют поэтапно.

В первую очередь вычисляют поправку E1 без температурной компенсации:

E1=(Iном-Iнэ)/c×Iнэ,

Где

  • Iном – номинальный ток нагрузки двигателя,
  • Iнэ – номинальный ток рабочего нагревательного элемента в реле,
  • c – цена деления шкалы, то есть эксцентрика (c=0,055 для защищенных пускателей, c=0,05 для открытых).

Следующий шаг – определение поправки E2 на температуру окружающего воздуха:

E2=(ta-30)/10,

Где ta (ambient temperature) – температура внешней среды в градусах Цельсия.

Последний этап – нахождение суммарной поправки:

E=E1+E2.

Суммарная поправка E может быть со знаком «+» или «-». Если в результате получается дробная величина, ее обязательно нужно округлить до целого в меньшую/большую по модулю сторону, в зависимости от характера токовой нагрузки.

Чтобы настроить реле, эксцентрик переводят на полученное значение суммарной поправки. Высокая температура срабатывания уменьшает зависимость работы защитного аппарата от внешних показателей.

Реле тепловой защиты допускает ручную плавную регулировку величины тока срабатывания устройства в пределах ±25% от значения номинального тока электромеханической установки

Регулировка этих показателей осуществляется специальным рычагом, перемещение которого изменяет первоначальный изгиб биметаллической пластины. Настройка тока срабатывания в более широком диапазоне осуществляется заменой термоэлементов.

В современных коммутационных аппаратах защиты от перегрузки есть тестовая кнопка, которая позволяет проверить исправность устройства без специального стенда. Также есть клавиша для сброса всех настроек. Обнулить их можно автоматически или вручную. Кроме того, изделие комплектуют индикатором текущего состояния электроприбора.

Маркировка электротепловых реле

Защитные аппараты подбирают в зависимости от величины мощности электрического двигателя. Основная часть ключевых характеристик скрыта в условном обозначении.

Так выглядит маркировка тепловых реле завода КЭАЗ. Важно при выборе обратить внимание на значение номинального тока рассматриваемой модели, чтобы оно было достаточным

Акцентировать внимание следует на отдельных моментах:

  1. Диапазон значений токов уставки (указан в скобках) у разных производителей отличается минимально.
  2. Буквенные обозначения конкретного типа исполнения могут различаться.
  3. Климатическое исполнение нередко подается в виде диапазона. К примеру, УХЛ3О4 нужно читать так: УХЛ3-О4.

Сегодня можно купить самые разные вариации прибора: реле для переменного и постоянного тока, моностабильные и бистабильные, аппараты с замедлением при включении/отключении, реле тепловой защиты с ускоряющими элементами, ТР без удерживающей обмотки, с одной обмоткой или несколькими.

Эти параметры не всегда отображены в маркировке устройств, но обязательно должны быть указаны в техпаспорте электротехнических изделий.

С устройством, разновидностями и маркировкой электромагнитного реле ознакомит , с которой мы рекомендуем ознакомиться.

Выводы и полезное видео по теме

Устройство и принцип функционирования токового реле для эффективной защиты электродвигателя на примере устройства РТТ 32П:

Правильная защита от перегрузки и обрыва фаз – залог длительной безотказной работы электрического мотора. Видео о том, как реагирует релейный элемент в случае нештатной работы механизма:

Как подсоединить устройство тепловой защиты к МП, принципиальные схемы электротеплового реле:

Реле тепловой защиты от перегрузок – обязательный функциональный элемент любой системы управления электроприводом. Оно реагирует на ток, который проходит на двигатель, и активируется, когда температура электромеханической установки достигает предельных значений. Это дает возможность максимально продлить срок эксплуатации экологически безопасных электродвигателей.

Пишите, пожалуйста, комментарии в находящемся ниже блоке. Расскажите, как вы выбирали и настраивали тепловое реле для собственного электромотора. Делитесь полезными сведениями, задавайте вопросы, размещайте фотоснимки по теме статьи.

Термореле (модульное реле температуры): установка

Что такое модульное реле температуры?

Термореле (модульное реле температуры) – это электромеханическое устройство, которое с помощью контактных систем при изменении контролируемых параметров сверх допустимых параметров изменяет свое положение. Таким образом, успешно регламентируется заданная температура.

модульное реле температуры (термореле).

Принцип работы термореле

Модульное температурное реле предназначено для контроля температуры не агрессивной среды. Температурное реле осуществляет контроль и поддержание заданного температурного режима, может управлять оборудованием для нагрева или охлаждения температуры в шкафах, помещениях, управления в системах отопления и охлаждения в системах.

реле температуры на динрейке

Модульное устройство в основном устанавливается на DIN-рейку с присоединением проводов питания и коммутируемых электрических цепей оборудования для обеспечения заданных параметров.

На лицевой панели, как правило, находится цифровой индикатор температуры, либо жидко-кристалический дисплей в зависимости от модели, кнопка программирования, светодиодный индикатор, указывающий рабочее состояния устройства.

Температурное реле включает прибор охлаждения (вентилятор) или обогреватель.

Где устанавливают термореле (модульное реле температуры)?

реле температуры (термореле)

Практически каждый из домовладельцев выращивает на своём участке какие-либо сельскохозяйственные культуры. Зачастую неблагоприятные погодные условия (слишком жаркое или слишком холодное лето, неожиданные заморозки в начале осени) приводят к гибели многих посадок. Сталкиваются с подобными проблемами и любители зимних садов. Можно потратить много средств, сил и времени, чтобы организовать помещение, высадить красивые растения, а они, неожиданно для вас, окажутся слишком капризными и привередливыми, и погибнут, как только придут первые же незначительные колебания температуры.

колебания температуры

Однако, остановив свой выбор на современном модульном электрооборудовании, можно легко решить и эти проблемы.
На рынке сегодня доступны специальные приборы, задача которых заключается в поддержании постоянной температуры. Речь идет о модульных реле температуры.

Модульное реле температуры монтируется непосредственно в электрический щиток в доме на динрейку. В подвале или теплице устанавливается небольшой датчик, определяющий, когда температура воздуха выходит за установленные хозяином границы, датчик, подающий на реле температуры сигнал, корректирует режим температуры.

Термореле RT-12-32

терморегулятор

Оцените качество статьи:

Тепловое реле - принцип работы, назначение, характеристики, схема

Тепловое реле предназначено для контроля за температурой различных устройств и оборудования, управления режимами их работы.

По принципу действия, назначению, устройству этот тип реле можно разделить на несколько групп.

Одна из функций теплового реле - отключение электрической цепи при превышении номинального значения протекающего по ней тока (In) (схема рис.1). Она реализована, например, в автоматических выключателях.

Давайте рассмотрим как работает такое тепловое реле.

Тепловое реле - схема, характеристики

Термочувствительным элементом здесь является биметаллическая пластина, то есть две, механически соединенных между собой полоски металлов, имеющих разный температурный коэффициент расширения. За счет этого при нагревании она деформируется, тем или иным способом воздействуя на электрические контакты S.

Нагрев пластин может осуществляться специальным термоподогревателем, по которому протекает контролируемый ток I (рисунок 3).

Основными характеристиками такого реле являются номинальный рабочий ток In (при котором контакты реле будут замкнуты бесконечно долго) и время срабатывания t, которое зависит от величины тока I, причем чем он больше, тем срабатывание произойдет быстрее (рисунок 4).

Таким образом, можно говорить об определенной инерционности этого устройства.

После остывания термоэлемент возвращается в исходное состояние. Далее возможны два варианта:

  1. требуется принудительное приведение коммутирующих контактов S в замкнутое состояние,
  2. они замыкаются автоматически.

Первый вариант характерен для тепловых реле защиты (автоматические выключатели, электромагнитные пускатели и т.д.).

Второй же используется в устройствах, обеспечивающих регулировку (поддержание) температуры какого либо объекта в заданном диапазоне. При этом термочувствительные элементы могут иметь другую конструкцию, требующую механического контакта с контролируемым объектом или средой (рис.2).

Пример тому - такие электробытовые приборы как утюги, холодильники, стиральные машины.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Тепловые реле - Безопасность электроустановок

Схема подключения теплового реле

Схемы подключения электродвигателей, в которые включено тепловое реле, могут существенно отличаться между собой, в зависимости от технической необходимости и наличия различных устройств. Тем не менее, в каждой из схем тепловое реле обязательно должно подключаться последовательно с катушкой пускателя. Это обеспечивает надежную защиту от перегрузок оборудования. Так, при превышении определенного уровня потребляемого двигателем тока тепловое реле размыкает цепь, тем самым отключая магнитный пускатель и сам двигатель от источника электропитания.

Принцип работы теплового реле

На сегодняшний день наибольшую популярность приобрели тепловые реле, чье действие основано на использовании свойств биметаллических пластин. Для изготовления биметаллических пластин в таких реле используют, как правило, инвар и хромоникелевую сталь. Сами пластины между собой крепко соединяются посредством сварки или же проката. Поскольку одна из пластин обладает большим коэффициентом расширения при нагревании, а другая меньшим, то в случае воздействия на них высокой температуры (например, при прохождении тока через металл), происходит изгиб пластины в ту сторону, где располагается материал с меньшим коэффициентом расширения.

Таким образом, при определенном уровне нагревания биметаллическая пластина прогибается и оказывает воздействие на систему контактов реле, что приводит к его срабатыванию и размыканию электрической цепи. Также необходимо отметить, что в результате низкой скорости процесса прогиба пластины она не может эффективно гасить дугу, которая возникает в случае размыкания электрической цепи. Для того чтобы решить данную проблему, необходимо ускорить воздействие пластины на контакт. Именно поэтому на большинстве современных реле предусмотрены также ускоряющие устройства, которые позволяют эффективно разорвать цепь в минимальные сроки.

  Виды тепловых реле (РТТ, РТЛ, ТРН, РТИ)

Тепловые реле РТТ применяются в тех случаях, когда требуется обеспечить эффективную защиту трехфазных асинхронных двигателей от перегрузок, длительность которых превышает допустимую (которые могут возникнуть, например, при выпадении одной из фаз). Как правило, они являются комплектующими частями в управляющих схемах электроприводов и в магнитных пускателях.

Тепловые реле РТЛ используются в тех случаях, когда требуется защитить от перегрузок по продолжительности, а также о несимметричности тока, например, при выпадении одной из фаз. Этот тип реле может устанавливаться как на пускателях, так и отдельно, при наличии клеммников.

Двухфазное тепловое реле ТРН используется, как правило, на магнитных пускателях в асинхронных двигателях. Его особенностью является возможность использования в сетях постоянного тока.

Тепловое реле РТИ выполняет те же функции, что и описанные выше, а также обеспечивает защиту от затянутого пуска. Данный тип реле обладает собственным потреблением энергии, поэтому дополнительно при его использовании рекомендуется устанавливать предохранители.

 

Видеоролик

Тепловые реле

К тепловым реле можно отнести большую группу электроприборов, предназначенных для регулировки температуры различных нагревательных приборов, контроля технологических процессов, защиты электродвигателей, аккумуляторов и других устройств с использованием различных датчиков температуры. В этой статье рассматриваем конструкции и возможности тепловых реле с биметаллическими пластинами, используемых в основном для защиты электродвигателей промышленных установок.

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух соединённых плоскими поверхностями металлических полосок с разными коэффициентами линейного расширения. При изменении температуры из-за различного линейного расширения частей, пластина изгибается. При нагревании до определённой температуры, пластина нажимает на защёлку расцепителя и под действием пружины происходит быстрое электрическое разъединение контактов.

В отличие от предохранителей и электромагнитных расцепителей, которые применяются для защиты электрооборудования от коротких замыканий, тепловые реле предназначены для защиты от перегрузки, в основном электродвигателей. Это объясняется тем, что для нагрева биметаллической пластины до температуры, при которой происходит отключение нужно значительно больше времени, чем для срабатывания предохранителя и защищаемое оборудование может выйти из строя.

По конструкции тепловые реле защиты двигателя различаются в зависимости от назначения, способа установки, рабочего тока. Реле изготавливаются и применяются как отдельные электроустановочные изделия, так и в составе пускателей или автоматических выключателей в качестве конструктивных элементов. Чаще всего это двухфазные или однофазные реле с регулировкой тока срабатывания. Изготавливаются варианты с самовозвратом после срабатывания и с ручным возвратом в исходное положе.

Биметаллическая пластинка нагревается за счёт прохождения тока по токонагревающей спирали, которая наматывается на пластину через теплостойкую изоляцию. Количество витков спирали, а также сечение провода выбирается в зависимости от величины тока, на который рассчитано тепловое реле. При больших значениях тока в качестве нагревательного элемента может использоваться и сама биметаллическая пластина, изготовленная в вида буквы U, прикреплённой концами к контактам токоведущих поверхностей. У однофазных тепловых реле ТРП-60 и ТРП-150 одна часть тока проходит через нагревательный элемент, а вторая через биметаллическую пластину. Система рычагов и пружин по конструкции, отключающих контакты тепловых реле, различается в зависимости от типа и назначения реле.

Выбор теплового реле зависит от тока, потребляемого электродвигателем. Величина изменения тока срабатывания реле с помощью регулировки небольшая, поэтому для разных электродвигателей нужно подбирать тепловые реле с подходящими термоэлементами.

При пуске электродвигателя пусковой ток примерно в 5-7 раз превышает номинальный рабочий. Но, тепловое реле не срабатывает из-за замедления на нагрев биметаллической пластинки. Поэтому тепловое реле выбирается по номинальному току нагрузки или немного больше. Рекомендуемое превышение тока срабатывания защиты составляет 5% - 20% от номинального тока электродвигателя. Лучше всего сразу выбирать комплект для конкретного электродвигателя из пускателя и теплового реле, например, по готовой таблице.

Данные тепловых реле встроенных в пускатели ПМЕ и ПАЕ
Тип пускателяТип теплового релеНоминальный ток теплового элемента
или маркировка сменного нагревателя, А
МПЕ-000ТРН-10А0,32
0,4
0,5
0,63
8,0
1,0
1,25
1,6
2,0
2,5
3,2
ПМЕ-100ТРН-100,5
0,63
0,8
1,0
1,25
1,6
2,0
2,6
3,2
4,0
5,0
6,3
8,0
10
ПМЕ-200ТРН-255,0
6,3
8,0
10
12,5
16
20
25
ПАЕ-300ТРН-4012,5
16
20
25
32
40
ПАЕ-400ТРП-6020
25
30
40
50
60
ПАЕ-500ТРП-15050
60
80
100
120
ПАЕ-600ТРП-150100
120
160

Примечания: 
1. Номинальные токи указаны для случая, когда регулятор уставки тока находится в положении 0 и реле установлено открыто на панели при температуре окружающего воздуха 20 С - для реле ТРН и 40 С - для реле ТРП

2. При встройке реле ТРН в пускатель с оболочкой любого исполнения и температуре окружающего воздуха 20 С снижение номинальных токов не требуется. То же не требуется для ТРП 20-60А включительно. требуется снижение номинальных токов при температуре воздуха до 40 С для ТРП.

Настройка теплового реле необходима при изменении температурных условий эксплуатации электрооборудования, подстройки тепловой защиты для конкретного электрооборудования, а также для компенсации разброса характеристик у различных образцов изделий даже одного типа.

Большинство тепловых реле имеют два вида регулировки для установки тока срабатывания. Ближе к концу подвижной части биметаллической пластины находится регулировочный винт, который служит для того, чтобы регулировать расстояние от пластины до поверхности расцепителя, на которую этот винт нажимает для срабатывания реле. Эта регулировка недоступна пользователям без разборки. Вторая регулировка предназначена для подстройки тока срабатывания обслуживающим персоналом. Для этого используют выведенный на лицевую сторону как у реле ТРН регулировочный винт под отвёртку с эксцентриком для механического изменения изгиба. В другом варианте, как у автоматического выключателя АП-50, регулировка выполняется специальным рычажком. Возле регуляторов имеются деления для определения в процентах изменения величины тока. Величина регулировки тока срабатывания теплового реле ограничена и обычно составляет по 25% в одну или другую сторону.

Реле тепловые и токовые
№ п/пТипТок уставки А№ п/пТипТок уставки
1.РТТ-111до 2514. РТЛ-10103,6-6,0
2.РТТ-141до 2515.РТЛ-10125,9-8,0
3.РТТ-211до 4016.РТЛ-10147,0-10
4.РТТ-311до 10017.РТЛ-10169,5-14
5.РТТ-321до 16018.РТЛ-102113-19
6.РТЛ-1001от 0,1 до 0,1719.РТЛ-102218-25
7.РТЛ-10020,16-0,2620.РТЛ-205323-32
8.РТЛ-10030,24-0,421.РТЛ-205530-41
9.РТЛ-10040,38-0,6522.РТЛ-205738-52
10.РТЛ-10050,61-1,023.РТЛ-205947-64
11.РТЛ-10060,95-1,624.РТЛ-206154-74
12. РТЛ-10071,5-2,625РТЛ-206363-86
13.РТЛ-10082,4-4,0

При правильной настройке тока срабатывания обеспечивается защита электродвигателя трёхфазного тока от перегрузки при остановке двигателя от заклинивания ротора, при чрезмерном увеличении механической нагрузки на приводимый в движение механизм, при затяжном пуске электродвигателя. Тепловым реле обеспечивается также защита электродвигателя от перекоса или обрыва фазы по увеличению тока в оставшихся фазах. Для срабатывания тепловой защиты вполне достаточно повышения тока даже в одной из фаз, если ток проходит через нагреватель теплового реле. Поэтому достаточно надёжная защита электродвигателя от перегрузки обеспечивается одним двухфазным реле или двумя однофазными.

Настройка тока срабатывания теплового реле проводится на несложном стенде. Реле подключается через понижающий трансформатор и регулятор тока ЛАТР. Потребляемый ток измеряется амперметром. Правильно настроенное тепловое реле не должно срабатывать при значении тока Iн = 1,05, но должно срабатывать за время не больше 20 минут при токе Iн = 1,2 от номинального значения.

Время срабатывания теплового реле зависит от величины тока и температуры окружающей среды для каждого типа реле. Их значения, с учётом разброса характеристик, приводятся в специальных таблицах. Предварительно проверяемое реле прогревают номинальным током в течение 2-х часов.

Настройку и проверку реле при значительном из количестве можно производить в форсированном режиме сравнением реле, испытанным по вышеизложенному методу и принятым в качестве образца-эталона. На соединенные последовательно с образцовыми 8-10 тепловых элементов с одинаковым номинальным током подаётся 2,5-3 кратный ток уставки, и отчитывается время их срабатывания (обычно 5-8 минут). Тепловые элементы сработавшие с большим отклонением от образцового, подвергаются регулировке изменением положения регулировочного рычага до отключения реле. Эту операцию необходимо выполнить за время не более 25-30 секунд.

При особой требовательности к реле после его охлаждения (через 10-15 минут) испытание повторяют для контроля полученных результатов. Настройку реле можно считать удовлетворительной, если время срабатывания испытуемого реле будет отличаться от образцового не более чем на 10%.

Применение тепловых реле, а также их обслуживание имеет свои особенности. Схема защиты двигателя построена так, что ток электродвигателя проходит через нагреватели теплового реле, а его размыкающий контакт отключает цепь управления пускателем электродвигателя. Поэтому нужно иметь в виду, что при залипании двух или больше контактов на пускателе, реле не обеспечит отключение электродвигателя.

Тепловые реле имеют разброс по отключению, прежде всего это связано с сезонными и суточными изменениями температуры окружающего воздуха. Время срабатывания зависит от того, было ли до этого токовое реле под нагрузкой. Если реле было под нагрузкой и прогретое, то время срабатывания теплового реле уменьшается.

Срабатывание теплового реле обычно сигнализирует о наличии плохо заметной неисправности. Даже непродолжительный осмотр оборудования поможет своевременно выявить скрытые неисправности электрооборудования и предотвратит его выход из строя.

При плохом контакте происходит нагрев места соединения, и тепловое реле преждевременно срабатывает и при нормальном режиме работы защищаемого электрооборудования. Если сильно загрубить уставку теплового реле, то контакт подгорит, а тепловое реле может не сработать при увеличении тока в двух оставшихся фазах.

После срабатывания теплового реле необходимо некоторое время для остывания термоэлемента, только после этого возможно его повторное включение. Перед повторным включением очень желательно проверить на ощупь температуру электродвигателя. Если температура повышена, то нужно дать время для его остывания и проверить двигатель. Время остывания электродвигателя существенно больше, чем время необходимое для остывания и повторного включения теплового реле.

Частые включения электродвигателей не рекомендуются, если двигатель специально не предназначен для работы в таких режимах. Перед повторным включением желательно осмотреть и проверить вал электродвигателя на отсутствие заклинивания, люфтов в подшипниках. Отключив автомат электродвигателя проверить контакты пускателя на отсутствие залипания, состояние подвижной системы, затяжку электрических контактов. После включения автоматического выключателя проверить наличие напряжения на верхних контактах пускателя. При запуске электродвигателя нужно обратить внимание на отсутствие чрезмерного искрения в пусковой аппаратуре, на шумы в двигателе и приводимых в движение механизмах. Нужно проверить потребление тока в каждой фазе защищаемого двигателя по стационарным приборам или токовыми клещами.

Не редки случаи, когда из-за невнимательного осмотра оборудования или закорачивании отключающего контакта теплового реле, за короткое время на одном месте один за другим палят несколько электродвигателей.

Правила устройства электроустановок (3.1.19.) вводят ограничения на применение защиты электродвигателей, отключение которых может привести к серьёзным последствиям. Это некоторые виды сигнализации, средства пожаротушения, вентиляторы, предотвращающие образование взрывоопасных смесей и другие ответственные устройства.

Видеоролик


Как правильно подключить тепловое реле

В течение длительного рабочего процесса у любых электродвигателей перегреваются обмотки, портится изоляционное покрытие. Подобные ситуации нередко приводят к межвитковым замыканиям, выгоранию полюсов и другим негативным последствиям, требующим срочного дорогостоящего ремонта. Избежать этого помогает тепловое реле для электродвигателя, установленное в цепь питания и обеспечивающее надежную защиту от перегрева. Данный прибор осуществляет контроль над величиной тока, и в случае длительного отклонения от номинала установки производит размыкание контактов. Таким образом, цепь управления остается без питания, а пусковое устройство размыкается. Тепловое реле надежно защищает агрегат от механических перегрузок, заклинивания ротора, перекоса фаз и других аварийных ситуаций.

Как работает тепловое реле защиты электродвигателя

Общее устройство всех тепловых реле включает в себя одни и те же детали, отличающиеся лишь небольшими конструктивными особенностями. Основной элемент представляет собой чувствительную биметаллическую пластину, состоящую из двух металлических сплавов – железа с никелем и железа с латунью. Они соединяются друг с другом с помощью пайки и обладают различными коэффициентами теплового расширения.

Данный коэффициент указывает на степень удлинения металлической пластины при ее нагреве. Этот показатель составляет для латуни 18,7, а для сплава железа с никелем – 1,5. В результате, длина латуни во время нагревания увеличивается значительно быстрее, давая тем самым толчок для изгиба биметаллической пластины в свою сторону. Данное свойство лежит в основе работы всех тепловых реле.

Внутри корпуса прибора находятся биметаллическая пластина с нагревательным элементом, толкатель, исполнительная пластина и пружина замыкающего контакта. Температурный компенсатор состоит из пластины и регулировочного винта. Кроме того, тепловое реле оборудуется контактами, эксцентриком с движком уставки тока срабатывания и кнопкой возврата прибора в рабочее состояние.

Причины срабатывания теплового реле электродвигателя

Под действием электрического тока, протекающего по проводнику, происходит его нагревание. С возрастанием силы тока в проводнике с одним и тем же поперечным сечением, увеличивается и его нагрев, то есть происходит рост нагрузки. В связи с этим, причины срабатывания заключаются преимущественно в повышении температуры.

Эта же тепловая энергия нагревает и биметаллическую пластину, которая под влиянием температуры изгибается и соприкасается с исполнительной пластиной температурного компенсатора через толкатель. В свою очередь, эта пластина расцепляет замкнутые контакты в магнитном пускателе и приводит в рабочее состояние кнопку включения реле. Сам температурный компенсатор является своеобразным противовесом, снижающим влияние дополнительного нагрева под действием температуры окружающей среды. Изгиб пластины происходит в противоположную сторону, а для его регулировки используется специальный винт.

Эксцентрик или регулятор тока срабатывания оборудован шкалой на 5 делений влево и 5 делений вправо, для соответствующего уменьшения и увеличения тока относительно центральной риски. Чтобы отрегулировать ток срабатывания, необходимо изменить зазор между исполнительной пластиной и толкателем. Изменение зазора выполняется движком эксцентрика, воздействующим на пластину температурного компенсатора. После срабатывания теплового реле специалисты рекомендуют выдержать временную паузу, чтобы тепловой расцепитель мог остыть. Следует тщательно осмотреть электродвигатель и найти причину срабатывания прибора.

Тепловое реле для электродвигателя схема подключения

Непосредственное подключение тепловых реле к контакторы осуществляется напрямую с помощью штыревых контактов. После подключения, в зависимости от величины тока, протекающего в цепи, необходимо отрегулировать уставки срабатывания колесиком поворотного регулятора. Нужный ток уставки обозначен на шкале специальными рисками, нанесенными на корпус прибора.

Панель управления реле оборудована кнопкой TEST, с помощью которой проверяется работоспособность устройства путем имитации срабатывания защиты. Кнопка STOP красного цвета позволяет принудительно разомкнуть нормально замкнутый контакт. При этом отключается питание, поступающее на катушку контактора, что в свою очередь приводит к отключению нагрузки. Примерно по такой схеме подключаются и работают все тепловые реле для защиты электродвигателей и их модификации.

Для работы теплового реле предусмотрен ручной или автоматический режим, задаваемый при помощи поворотного переключателя RESET. Автоматический режим предполагает утопленный выключатель и автоматическое включение реле после срабатывания, когда остынет биметаллическая пластина. Перевод прибора в ручной режим осуществляется поворотом переключателя против часовой стрелки.

Схема подключения с нормально замкнутыми контактами используется для управления электродвигателем с помощью магнитного пускателя. К силовым контактам теплового реле выполняется подключение лишь двух фаз, а третья фаза подключается напрямую к двигателю. В работе современных устройств принимают участие все три фазы совместно с дополнительным нормально замкнутым контактом реле. При возникновении перегрузок он размыкается и разрывает цепь питания контактора.

Выбор теплового реле для электродвигателя

В условиях разнообразия конструкций и моделей электрических двигателей и соответствующих тепловых реле, выбор наиболее подходящего сочетания может вызвать определенные затруднения, особенно у неспециалистов. Для того чтобы выбрать наиболее оптимальное устройство, отвечающее всем требованиям, необходимо придерживаться определенных рекомендаций.

Основным требованием ко всем тепловым реле является соответствие их номинала току оборудования, которое требуется защитить. Сами устройства тоже должны быть защищены от коротких замыканий, поэтому в схемах подключения используются предохранители.

Необходимо заранее установить условия эксплуатации тепловых реле, и в каких пределах они могут применяться. Если в системе защиты велика вероятность работы электродвигателя в аварийных режимах, не связанных с ростом потребления электроэнергии, в этих случаях тепловое реле будет бесполезным и не обеспечит надежную защиту. Для этого в обмотку статора электродвигателя включаются элементы специальной тепловой защиты.

Если же тепловая защита двигателя не связана с какими-либо специальными требованиями, решение вопроса как подобрать тепловое реле для электродвигателя, таблица поможет выбрать наиболее подходящее устройство с оптимальными техническими характеристиками.

Защитное устройство выбирается с учетом максимального рабочего тока реле, который не должен быть меньше, чем номинальный ток защищаемого электродвигателя. Тем не менее, рекомендуется, чтобы установочный ток реле незначительно превышал номинал агрегата.

Следует обращать внимание и на возможность регулировок тока с большим запасом в обе стороны – увеличения и уменьшения. В этом случае обеспечивается более надежная и управляемая защита.

Что важно знать?

Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).

При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:


Как видно на бирке, номинальный ток электродвигателя 13. 6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.

При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров. К примеру, как на реле РТИ-1314:

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Реле снабжены двумя группами контактов нормально замкнутой и нормально открытой группой, которые подписаны на корпусе 96-95, 97-98. На картинке ниже структурная схема обозначения по ГОСТу:Давайте разберемся каким образом собрать схему управления которая бы отключала двигатель от сети при возникновении аварийной ситуации перегрузки или обрыва фазы. Из нашей статьи про подключение двигателя через магнитный пускатель, вы уже узнали некоторые нюансы. Если еще не успели ознакомится то просто перейдите по ссылке.

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

17 Дек 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1. 1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Тепловое реле магнитного пускателя

Тепловое реле в магнитных пускателях устанавливают для защиты, электродвигателя от перегрузок.
Тепловое реле состоит из четырех основных элементов: нагревателя 1, включаемого последовательно в защищаемую от перегрузки цепь; биметаллической пластинки 2 из двух спрессованных металлических пластинок с различными коэффициентами линейного расширения; системы 3—7 рычагов и пружин; контактов 8 и 9.

Схема теплового реле. 1 — нагреватель; 2 — биметаллическая пластинка; 3 — регулировочный винт; 4 — защелка; 5 — рычаг; 6 — пружина; 7 — кнопка возврата; 8 — подвижный контакт; 9 — неподвижный контакт; 10 — вывод нагревателя

Когда через нагревательный элемент 1 проходит ток, превышающий номинальный ток электродвигателя, выделяется такое количество тепла, что незакрепленный (на рисунке левый) конец биметаллической пластинки 2 изгибается в сторону металла с меньшим коэффициентом линейного расширения (то есть опускается), нажимает на регулировочный винт 3 и выводит защелку 4 из зацепления. В этот момент под действием пружины 6 верхний конец рычага 5 поднимется, разомкнет контакты 8 и 9 и разорвет цепь управления магнитного пускателя. Кнопка 7 служит для ручного возврата рычага 5 в исходное положение после срабатывания реле.
Из вышесказанного следует, что работа теплового реле основана на изгибании биметаллической пластинки под действием тепла выделяемого в нагревательном элементе. Но эта же пластинка будет изгибаться и под действием тепла окружающего воздуха. Таким образом, в жаркие дни реле будет срабатывать быстрее, чем в холодные. Для устранения этого явления в реле применена температурная компенсация, сущность которой заключается в том, что изгибанию биметаллической пластинки от изменения температуры окружающего воздуха соответствует противоположное по направлению изгибание пластинки компенсатора. Пластинка компенсатора тоже представляет собой биметаллическую пластинку, но с обратным по отношению к основной биметаллической пластинке прогибом.
В магнитные пускатели типа ПМЕ-100, ПМЕ-200 и в магнитные пускатели ПАЕ-300 встраивают тепловые реле ТРН. Эти реле двухфазные, с температурной компенсацией, с ручным возвратом. Нагрев биметалла косвенный, нагреватели сменные с номинальным током до 40 А.
Температурный компенсатор выполнен из биметалла с обратным прогибом по отношению к основному термоэлементу. При установившейся температуре между компенсатором и защелкой устанавливается определенный зазор. Изменение величины этого зазора путем поворота эксцентрика (регулятора уставки), т.е. удаление или приближение защелки, изменяет уставку реле. Каждое деление регулятора уставки соответствует 5% величины номинального тока нагревателя. При уставке регулятора в положение «О» ток уставки реле равен номинальному току нагревателя. При уставке регулятора в положение «-5» ток уставки уменьшается на 25%, в положение «+5» — увеличивается на 25% по отношению к величине номинального тока нагревателя.
Время срабатывания реле при температуре окружающего воздуха 20±5°С и нагреве реле из холодного состояния шестикратным номинальным током уставки при любом положении регулятора уставки должно быть в следующих пределах:

Конструкция теплового реле ТРН-10: 1, 2, 3, 4, 6 — винты; 5 — крышка; 7 — нагревательный элемент; 8 — пластмассовая крышка; 9 — шток; 10 — контактный мостик

  1. 3—15 с — для реле ТРН-10 A;
  2. 6—25 с — для реле типов ТРН-10; ТРН-25 и ТРН-40.

Время ручного возврата реле в пределах температуры окружающего воздуха от -40 до +60°С должно быть не более 2 мин.
При установке реле в рабочее положение при температуре окружающего воздуха 20 ±5°С и обтекании обоих полюсов номинальным током реле не должно срабатывать в установившемся тепловом состоянии и должно срабатывать в течение не более 20 мин при токе, равном 1,2 номинального тока уставки. Защитные характеристики реле приведены на рис. 2.16 и 2.17.
Однофазные тепловые реле ТРП-60 и ТРП-150 (рис. 2.18), встраиваемые в пускатели ПАЕ четвертой, пятой и шестой величин, имеют комбинированный нагрев биметаллической пластинки (одна часть тока проходит через нагревательный элемент, другая — через биметаллическую пластинку). При одном нагревателе, рассчитанном на ток нулевой уставки, имеется возможность регулировать ток уставки в пределах ±25%. Реле имеет шкалу, на которой нанесены по пять делений по обе стороны от нуля. Цена деления 5% для открытого исполнения и 5,5% для защищенного.
В тепловом реле ТРП предусмотрены два исполнения по возврату: ручной возврат с гарантированным отсутствием самовозврата контактной группы и самовозврат с ускорением возврата вручную. Реле не срабатывает при длительном обтекании током, равном току уставки; срабатывает в течение 20 мин после увеличения тока по сравнению с током уставки на 20%. Реле нормально работает при токах, не превышающих 15-кратного значения. Реле допускает нагрузку 18-кратным номинальным током теплового элемента в течение 1 с, или до срабатывания реле, если оно произойдет за время меньше 1 с.


Кратность тока срабатывания по отношению к току установки

Защитные характеристики реле ТРН-25 и ТРН-40 1 — зона защитных характеристик при срабатывании реле из холодного состояния; 2 — зона защитных характеристик при срабатывании реле из горячего состояния (после прогрева)

Кратность тока срабатывания по отношению к току установки

Защитные характеристики реле ТРН-10А
1 — зона защитных характеристик при срабатывании реле из холодного состояния; 2 — зона защитных характеристик при срабатывании реле из горячего состояния (после прогрева)


Тепловые реле типа ТРП: 1 — биметаллическая пластинка; 2 — упор самовозврата; 3 — держатель подвижного контакта; 4 — пружина; 5 — подвижный контакт; 6 — неподвижный контакт; 7 — сменный нагреватель; 8 — регулятор тока уставки; 9 — кнопка ручного возврата

Для защиты реле ТРП-60 и ТРП-150 от токов короткого замыкания достаточно, чтобы номинальный ток плавкой вставки предохранителя, включенного последовательно с тепловым элементом защищаемого реле, превышал номинальный ток теплового элемента не более чем в 4—5 раз.

Тепловая защита электродвигателя. Электротепловое реле.

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1. 1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Удачи!

Как работает термостат? Объяснил технический специалист Южной Калифорнии.

Если в вашем доме слишком жарко или слишком прохладно, вы, вероятно, сразу обратитесь к термостату, чтобы решить проблему. Одним нажатием кнопки вы можете направить теплый или холодный воздух в циркуляцию по всему дому. В качестве основного средства контроля температуры вашего дома ваш термостат позволяет вам взаимодействовать с вашей системой отопления и охлаждения.

Однако именно здесь большинство людей перестают думать об этом.

Хотя большинство из нас понимают, что делает термостат, на самом деле мы не задумываемся о том, как он работает. Поскольку это одна из самых важных систем в вашем доме, важно понимать, как она контролирует температуру в вашем доме.

Давайте посмотрим, как на самом деле работает ваш термостат, а также что вы можете сделать, чтобы сэкономить энергию и снизить расходы на электроэнергию.

Нужна помощь с термостатом? Свяжитесь с нами сегодня, и мы пришлем технику!

Как работает термостат?

Прежде чем мы поговорим о том, как термостат на самом деле контролирует температуру в вашем доме, нам нужно рассмотреть типы термостатов, которые могут быть в вашем доме. В то время как в большинстве домов сегодня есть электронные термостаты, в старых домах все еще могут быть электромеханические системы. Каждый из этих термостатов работает по-своему.

Электронные термостаты просты в понимании. Они работают так же, как маленький компьютер, используя датчики, чтобы определить, поддерживается ли в вашем доме нужная температура. Они также предоставляют функции и преимущества, такие как программируемые настройки и возможности Wi-Fi, позволяющие поддерживать в доме разную температуру днем ​​или ночью, будь вы дома или вдали от дома.

Электромеханические системы могут быть немного сложнее для понимания. Электромеханический термостат обычно содержит биметаллическую катушку или металлическую ленту. При изменении температуры эта катушка или полоска будет двигаться, в результате чего флакон, содержащий ртуть, опрокинется в сторону. Ртуть течет к одному концу пузырька, сигнализируя о том, что необходимо включить нагрев или охлаждение.

Независимо от типа термостата, слишком большое количество перепадов температуры заставляет вашу систему работать сверхурочно. Если вы постоянно поворачиваете термостат вверх и вниз, вы можете обнаружить, что тратите много энергии.

Правильный контроль над вашим термостатом важен для экономии энергии и денег.

Как установить температуру для экономии энергии

Вот несколько советов, связанных с термостатами, которые помогут вам экономить энергию круглый год.

1. Знайте внешнюю температуру

Когда ваш термостат пытается контролировать температуру внутри дома, он будет бороться с температурой снаружи.Это означает, что чем больше разница между двумя температурами, тем тяжелее должна работать система, в результате чего вы потребляете больше энергии.

Чтобы снизить потребление энергии, следите за ожидаемой наружной температурой. Установите термостат как можно ближе к этому числу, сохраняя при этом комфортную атмосферу в доме.

2. Пребывание пациента

Если вы пылаете или очень холодно, у вас может возникнуть соблазн повысить или понизить температуру термостата, надеясь, что это поможет вам быстрее освоиться. Однако ваша система может выделить не так много энергии за один раз. Ваш дом не будет охлаждаться или нагреваться быстрее только потому, что вы установили слишком высокую или очень низкую температуру.

Не забывайте сохранять терпение, пытаясь установить в доме нужную температуру. Избегайте чрезмерного нагрева или охлаждения дома и вместо этого сосредоточьтесь на том, чтобы с первого раза установить нужную температуру.

3. Используйте свои программируемые функции

Если у вас есть электронный термостат, воспользуйтесь преимуществами программируемых функций, которые, вероятно, идут с ним.Попробуйте настроить термостат так, чтобы температура была ближе к температуре наружного воздуха, когда вы отсутствуете на работе в течение дня. Вы можете использовать программируемые функции термостата, чтобы изменить температуру после того, как вы ушли на работу, и переключиться обратно перед возвращением.

Использование программируемого термостата с поддержкой Wi-Fi позволяет получить удаленный доступ с помощью смартфона или компьютера. У вас есть возможность точного контроля температуры с помощью интеллектуальных предупреждений, которые автоматически определяют, нужно ли обогревать ваш дом или охлаждать.Некоторые термостаты Wi-Fi даже имеют индикаторы смены фильтров, чтобы вы не догадывались, когда вам нужно заменить эти надоедливые фильтры!

4. Используйте альтернативные варианты энергосбережения

Если вы серьезно относитесь к экономии энергии, сокращение количества, которое вы используете для системы охлаждения и обогрева, может иметь огромное значение. Хотя будут дни, когда вы просто не сможете обойтись без кондиционера или отопления, альтернативы энергосбережению могут помочь вам сократить количество дней, в течение которых ваша система работает.

Зимой одеяла с подогревом или камин могут добавить тепла без значительного расхода энергии. В более теплые летние месяцы вентиляторы помогают циркулировать воздуху в помещении. При использовании вместе с вашей системой отопления и охлаждения вы можете избежать возиться с термостатом, что может помочь снизить потребление энергии.

5. Поддерживайте надлежащий уход за ОВК

Если вы не заботитесь о своей системе HVAC должным образом, вы можете тратить много энергии впустую. Грязные и засоренные воздушные фильтры, пренебрежение графиком обслуживания или невыполнение очистки области вокруг ваших компрессоров могут привести к тому, что ваша система будет работать тяжелее.Чем тяжелее ему нужно работать, тем больше энергии он будет использовать.

Всегда внимательно относитесь к своей системе HVAC. Назначьте профессионального специалиста для выполнения технического обслуживания вашей системы один раз осенью и один раз весной, чтобы убедиться, что она готова к обогреву или охлаждению вашего дома. Назначение предсезонных встреч может помочь вам найти и устранить проблемы до того, как они станут слишком серьезными.

Поддержание хорошо функционирующей системы HVAC важно для поддержания комфортного дома и экономии энергии.

Получите помощь по термостату от Redlands Tech

Если у вас есть вопросы по уходу за системами отопления и охлаждения или вы готовы назначить встречу с техническим обслуживанием, свяжитесь с командой Burgeson по отоплению и кондиционированию воздуха, запишитесь онлайн или позвонив по телефону 909. 792.2222

Как работают домашние термостаты | HowStuffWorks

Часто в вашем доме есть комнаты, в которых всегда теплее или холоднее, чем в других.Этому может быть много объяснений. Во-первых, повышается температура, поэтому в комнатах на втором или третьем этажах часто бывает слишком тепло. В свою очередь, в подвальных помещениях обычно слишком холодно. Комнаты со сводчатыми потолками с трудом удерживают тепло, в то время как комнаты, которые получают долгие часы солнечного света, часто трудно охладить. Это всего лишь несколько причин, но независимо от того, почему температура в комнате неудобная, есть только один верный способ выровнять температуру в вашем доме: зонирование системы.

Система зонирования довольно проста.Он включает в себя несколько термостатов, которые подключены к панели управления, которая управляет заслонками в воздуховоде вашей системы приточного воздуха. Термостаты постоянно считывают температуру в своей конкретной зоне, а затем открывают или закрывают заслонки в воздуховоде в соответствии с настройками термостата. Системное зонирование полезно не только для домов с непостоянной температурой в комнатах, но также отлично подходит для обогрева или охлаждения отдельных спален в зависимости от желаемой настройки температуры. Если у вас обычно пустая комната для гостей, просто закройте дверь и закройте заслонку.

При правильном использовании зонирование системы может помочь вам сэкономить деньги на счетах за электроэнергию. По данным Министерства энергетики США, зонирование системы может сэкономить домовладельцам до 30 процентов на типичных счетах за отопление и охлаждение. Эта экономия может составить приличную сумму - по оценкам Министерства энергетики, на отопление и охлаждение приходится 40 процентов расходов на коммунальные услуги в среднем домохозяйстве. Поскольку комнаты для гостей и другие редко используемые комнаты не требуют постоянного обогрева или охлаждения, зонирование системы позволяет вам сэкономить деньги, подавая в эти комнаты воздух с регулируемой температурой только тогда, когда это необходимо.

Многие домовладельцы не решаются или не хотят переходить на программируемые термостаты и зонирование системы из-за первоначальной стоимости установки. Это понятная проблема для всех, кто не строит новый дом или не заменяет старую систему отопления, вентиляции и кондиционирования воздуха, но есть и другие варианты. Несмотря на то, что установка типичной зонированной системы не является самостоятельным проектом, Программа изобретений и инноваций Министерства энергетики профинансировала разработку демпферной системы, которая может быть модернизирована для существующих воздуховодов.Система сочетает в себе вставки для контроля воздуха с гибкими заслонками RetroZone с электронным контроллером и системой нагнетания воздуха. Здесь не используются тяжелые двигатели, поэтому существующие воздуховоды не нуждаются в изменении или поддержке.

Гибкие демпферы, которые выпускаются в моделях с круглыми и квадратными воздуховодами, заполняются воздухом, чтобы ограничить или заблокировать воздушный поток внутри воздуховода. Они устойчивы к нагреванию, старению, влаге, переносимым по воздуху химическим веществам и озону, и даже если они будут проколоты, что маловероятно, большинство отверстий не повлияют на производительность.Демпферы Flex следует устанавливать в стальных или гибких воздуховодах. Заслонки можно легко обслужить, получив доступ через регистр. Демпферы Flex также работают с большинством марок зонных панелей управления.

Если вы планируете установить модернизированную систему зонального контроля, вот что вам нужно включить в свой список покупок:

  • термостат для каждой зоны
  • соленоидный насос
  • панель соленоида
  • панель управления зоной
  • нагнетательный трубопровод
  • трансформатор
  • лента с огнестойкостью
  • концевой выключатель управления
  • гибкие демпферы

Количество зон, необходимых вашему дому, повлияет на способ настройки системы.В двухзонной системе, при которой зоны примерно равны по размеру, воздуховоды каждой зоны должны быть способны обрабатывать до 70 процентов от общего количества CFM (кубических футов в минуту) воздуха, производимого вашей системой HVAC. В трехзонной системе зоны должны располагаться как можно ближе по общей площади. В этом случае воздуховоды каждой зоны должны выдерживать до 50 процентов общего объема CFM. Установка четырехзонной системы требует немного больше работы. Воздуховоды должны быть увеличены на один дюйм, и они требуют демпфера сброса статического давления и защиты по верхнему и нижнему пределу.Чтобы избежать серьезных повреждений, не перекрывайте полностью поток воздуха через теплообменник или змеевик вашей системы отопления, вентиляции и кондиционирования воздуха.

Теперь мы рассмотрим еще одну новинку в области домашнего термостата - говорящий термостат.

Как работают домашние термостаты | HowStuffWorks

Часто в вашем доме есть комнаты, в которых всегда теплее или холоднее, чем в других. Этому может быть много объяснений. Во-первых, повышается температура, поэтому в комнатах на втором или третьем этажах часто бывает слишком тепло.В свою очередь, в подвальных помещениях обычно слишком холодно. Комнаты со сводчатыми потолками с трудом удерживают тепло, в то время как комнаты, которые получают долгие часы солнечного света, часто трудно охладить. Это всего лишь несколько причин, но независимо от того, почему температура в комнате неудобная, есть только один верный способ выровнять температуру в вашем доме: зонирование системы.

Система зонирования довольно проста. Он включает в себя несколько термостатов, которые подключены к панели управления, которая управляет заслонками в воздуховоде вашей системы приточного воздуха.Термостаты постоянно считывают температуру в своей конкретной зоне, а затем открывают или закрывают заслонки в воздуховоде в соответствии с настройками термостата. Системное зонирование полезно не только для домов с непостоянной температурой в комнатах, но также отлично подходит для обогрева или охлаждения отдельных спален в зависимости от желаемой настройки температуры. Если у вас обычно пустая комната для гостей, просто закройте дверь и закройте заслонку.

При правильном использовании зонирование системы может помочь вам сэкономить деньги на счетах за электроэнергию.По данным Министерства энергетики США, зонирование системы может сэкономить домовладельцам до 30 процентов на типичных счетах за отопление и охлаждение. Эта экономия может составить приличную сумму - по оценкам Министерства энергетики, на отопление и охлаждение приходится 40 процентов расходов на коммунальные услуги в среднем домохозяйстве. Поскольку комнаты для гостей и другие редко используемые комнаты не требуют постоянного обогрева или охлаждения, зонирование системы позволяет вам сэкономить деньги, подавая в эти комнаты воздух с регулируемой температурой только тогда, когда это необходимо.

Многие домовладельцы не решаются или не хотят переходить на программируемые термостаты и зонирование системы из-за первоначальной стоимости установки. Это понятная проблема для всех, кто не строит новый дом или не заменяет старую систему отопления, вентиляции и кондиционирования воздуха, но есть и другие варианты. Несмотря на то, что установка типичной зонированной системы не является самостоятельным проектом, Программа изобретений и инноваций Министерства энергетики профинансировала разработку демпферной системы, которая может быть модернизирована для существующих воздуховодов.Система сочетает в себе вставки для контроля воздуха с гибкими заслонками RetroZone с электронным контроллером и системой нагнетания воздуха. Здесь не используются тяжелые двигатели, поэтому существующие воздуховоды не нуждаются в изменении или поддержке.

Гибкие демпферы, которые выпускаются в моделях с круглыми и квадратными воздуховодами, заполняются воздухом, чтобы ограничить или заблокировать воздушный поток внутри воздуховода. Они устойчивы к нагреванию, старению, влаге, переносимым по воздуху химическим веществам и озону, и даже если они будут проколоты, что маловероятно, большинство отверстий не повлияют на производительность.Демпферы Flex следует устанавливать в стальных или гибких воздуховодах. Заслонки можно легко обслужить, получив доступ через регистр. Демпферы Flex также работают с большинством марок зонных панелей управления.

Если вы планируете установить модернизированную систему зонального контроля, вот что вам нужно включить в свой список покупок:

  • термостат для каждой зоны
  • соленоидный насос
  • панель соленоида
  • панель управления зоной
  • нагнетательный трубопровод
  • трансформатор
  • лента с огнестойкостью
  • концевой выключатель управления
  • гибкие демпферы

Количество зон, необходимых вашему дому, повлияет на способ настройки системы.В двухзонной системе, при которой зоны примерно равны по размеру, воздуховоды каждой зоны должны быть способны обрабатывать до 70 процентов от общего количества CFM (кубических футов в минуту) воздуха, производимого вашей системой HVAC. В трехзонной системе зоны должны располагаться как можно ближе по общей площади. В этом случае воздуховоды каждой зоны должны выдерживать до 50 процентов общего объема CFM. Установка четырехзонной системы требует немного больше работы. Воздуховоды должны быть увеличены на один дюйм, и они требуют демпфера сброса статического давления и защиты по верхнему и нижнему пределу.Чтобы избежать серьезных повреждений, не перекрывайте полностью поток воздуха через теплообменник или змеевик вашей системы отопления, вентиляции и кондиционирования воздуха.

Теперь мы рассмотрим еще одну новинку в области домашнего термостата - говорящий термостат.

Как работают домашние термостаты | HowStuffWorks

Часто в вашем доме есть комнаты, в которых всегда теплее или холоднее, чем в других. Этому может быть много объяснений. Во-первых, повышается температура, поэтому в комнатах на втором или третьем этажах часто бывает слишком тепло.В свою очередь, в подвальных помещениях обычно слишком холодно. Комнаты со сводчатыми потолками с трудом удерживают тепло, в то время как комнаты, которые получают долгие часы солнечного света, часто трудно охладить. Это всего лишь несколько причин, но независимо от того, почему температура в комнате неудобная, есть только один верный способ выровнять температуру в вашем доме: зонирование системы.

Система зонирования довольно проста. Он включает в себя несколько термостатов, которые подключены к панели управления, которая управляет заслонками в воздуховоде вашей системы приточного воздуха.Термостаты постоянно считывают температуру в своей конкретной зоне, а затем открывают или закрывают заслонки в воздуховоде в соответствии с настройками термостата. Системное зонирование полезно не только для домов с непостоянной температурой в комнатах, но также отлично подходит для обогрева или охлаждения отдельных спален в зависимости от желаемой настройки температуры. Если у вас обычно пустая комната для гостей, просто закройте дверь и закройте заслонку.

При правильном использовании зонирование системы может помочь вам сэкономить деньги на счетах за электроэнергию. По данным Министерства энергетики США, зонирование системы может сэкономить домовладельцам до 30 процентов на типичных счетах за отопление и охлаждение. Эта экономия может составить приличную сумму - по оценкам Министерства энергетики, на отопление и охлаждение приходится 40 процентов расходов на коммунальные услуги в среднем домохозяйстве. Поскольку комнаты для гостей и другие редко используемые комнаты не требуют постоянного обогрева или охлаждения, зонирование системы позволяет вам сэкономить деньги, подавая в эти комнаты воздух с регулируемой температурой только тогда, когда это необходимо.

Многие домовладельцы не решаются или не хотят переходить на программируемые термостаты и зонирование системы из-за первоначальной стоимости установки. Это понятная проблема для всех, кто не строит новый дом или не заменяет старую систему отопления, вентиляции и кондиционирования воздуха, но есть и другие варианты. Несмотря на то, что установка типичной зонированной системы не является самостоятельным проектом, Программа изобретений и инноваций Министерства энергетики профинансировала разработку демпферной системы, которая может быть модернизирована для существующих воздуховодов. Система сочетает в себе вставки для контроля воздуха с гибкими заслонками RetroZone с электронным контроллером и системой нагнетания воздуха. Здесь не используются тяжелые двигатели, поэтому существующие воздуховоды не нуждаются в изменении или поддержке.

Гибкие демпферы, которые выпускаются в моделях с круглыми и квадратными воздуховодами, заполняются воздухом, чтобы ограничить или заблокировать воздушный поток внутри воздуховода. Они устойчивы к нагреванию, старению, влаге, переносимым по воздуху химическим веществам и озону, и даже если они будут проколоты, что маловероятно, большинство отверстий не повлияют на производительность.Демпферы Flex следует устанавливать в стальных или гибких воздуховодах. Заслонки можно легко обслужить, получив доступ через регистр. Демпферы Flex также работают с большинством марок зонных панелей управления.

Если вы планируете установить модернизированную систему зонального контроля, вот что вам нужно включить в свой список покупок:

  • термостат для каждой зоны
  • соленоидный насос
  • панель соленоида
  • панель управления зоной
  • нагнетательный трубопровод
  • трансформатор
  • лента с огнестойкостью
  • концевой выключатель управления
  • гибкие демпферы

Количество зон, необходимых вашему дому, повлияет на способ настройки системы. В двухзонной системе, при которой зоны примерно равны по размеру, воздуховоды каждой зоны должны быть способны обрабатывать до 70 процентов от общего количества CFM (кубических футов в минуту) воздуха, производимого вашей системой HVAC. В трехзонной системе зоны должны располагаться как можно ближе по общей площади. В этом случае воздуховоды каждой зоны должны выдерживать до 50 процентов общего объема CFM. Установка четырехзонной системы требует немного больше работы. Воздуховоды должны быть увеличены на один дюйм, и они требуют демпфера сброса статического давления и защиты по верхнему и нижнему пределу.Чтобы избежать серьезных повреждений, не перекрывайте полностью поток воздуха через теплообменник или змеевик вашей системы отопления, вентиляции и кондиционирования воздуха.

Теперь мы рассмотрим еще одну новинку в области домашнего термостата - говорящий термостат.

Как работают домашние термостаты | HowStuffWorks

Часто в вашем доме есть комнаты, в которых всегда теплее или холоднее, чем в других. Этому может быть много объяснений. Во-первых, повышается температура, поэтому в комнатах на втором или третьем этажах часто бывает слишком тепло.В свою очередь, в подвальных помещениях обычно слишком холодно. Комнаты со сводчатыми потолками с трудом удерживают тепло, в то время как комнаты, которые получают долгие часы солнечного света, часто трудно охладить. Это всего лишь несколько причин, но независимо от того, почему температура в комнате неудобная, есть только один верный способ выровнять температуру в вашем доме: зонирование системы.

Система зонирования довольно проста. Он включает в себя несколько термостатов, которые подключены к панели управления, которая управляет заслонками в воздуховоде вашей системы приточного воздуха.Термостаты постоянно считывают температуру в своей конкретной зоне, а затем открывают или закрывают заслонки в воздуховоде в соответствии с настройками термостата. Системное зонирование полезно не только для домов с непостоянной температурой в комнатах, но также отлично подходит для обогрева или охлаждения отдельных спален в зависимости от желаемой настройки температуры. Если у вас обычно пустая комната для гостей, просто закройте дверь и закройте заслонку.

При правильном использовании зонирование системы может помочь вам сэкономить деньги на счетах за электроэнергию.По данным Министерства энергетики США, зонирование системы может сэкономить домовладельцам до 30 процентов на типичных счетах за отопление и охлаждение. Эта экономия может составить приличную сумму - по оценкам Министерства энергетики, на отопление и охлаждение приходится 40 процентов расходов на коммунальные услуги в среднем домохозяйстве. Поскольку комнаты для гостей и другие редко используемые комнаты не требуют постоянного обогрева или охлаждения, зонирование системы позволяет вам сэкономить деньги, подавая в эти комнаты воздух с регулируемой температурой только тогда, когда это необходимо.

Многие домовладельцы не решаются или не хотят переходить на программируемые термостаты и зонирование системы из-за первоначальной стоимости установки. Это понятная проблема для всех, кто не строит новый дом или не заменяет старую систему отопления, вентиляции и кондиционирования воздуха, но есть и другие варианты. Несмотря на то, что установка типичной зонированной системы не является самостоятельным проектом, Программа изобретений и инноваций Министерства энергетики профинансировала разработку демпферной системы, которая может быть модернизирована для существующих воздуховодов.Система сочетает в себе вставки для контроля воздуха с гибкими заслонками RetroZone с электронным контроллером и системой нагнетания воздуха. Здесь не используются тяжелые двигатели, поэтому существующие воздуховоды не нуждаются в изменении или поддержке.

Гибкие демпферы, которые выпускаются в моделях с круглыми и квадратными воздуховодами, заполняются воздухом, чтобы ограничить или заблокировать воздушный поток внутри воздуховода. Они устойчивы к нагреванию, старению, влаге, переносимым по воздуху химическим веществам и озону, и даже если они будут проколоты, что маловероятно, большинство отверстий не повлияют на производительность.Демпферы Flex следует устанавливать в стальных или гибких воздуховодах. Заслонки можно легко обслужить, получив доступ через регистр. Демпферы Flex также работают с большинством марок зонных панелей управления.

Если вы планируете установить модернизированную систему зонального контроля, вот что вам нужно включить в свой список покупок:

  • термостат для каждой зоны
  • соленоидный насос
  • панель соленоида
  • панель управления зоной
  • нагнетательный трубопровод
  • трансформатор
  • лента с огнестойкостью
  • концевой выключатель управления
  • гибкие демпферы

Количество зон, необходимых вашему дому, повлияет на способ настройки системы.В двухзонной системе, при которой зоны примерно равны по размеру, воздуховоды каждой зоны должны быть способны обрабатывать до 70 процентов от общего количества CFM (кубических футов в минуту) воздуха, производимого вашей системой HVAC. В трехзонной системе зоны должны располагаться как можно ближе по общей площади. В этом случае воздуховоды каждой зоны должны выдерживать до 50 процентов общего объема CFM. Установка четырехзонной системы требует немного больше работы. Воздуховоды должны быть увеличены на один дюйм, и они требуют демпфера сброса статического давления и защиты по верхнему и нижнему пределу.Чтобы избежать серьезных повреждений, не перекрывайте полностью поток воздуха через теплообменник или змеевик вашей системы отопления, вентиляции и кондиционирования воздуха.

Теперь мы рассмотрим еще одну новинку в области домашнего термостата - говорящий термостат.

Как работает автомобильный термостат? [Простое руководство]

Средняя температура человеческого тела составляет около 98,6 ° F, , если она всего на несколько градусов выше, это говорит о том, что что-то не так.

Двигатель автомобиля работает примерно так же, в среднем 195-220 ° F .Одним из основных компонентов, отвечающих за регулирование нагрева или холода, является термостат.

Как работает автомобильный термостат?

Проще говоря, он реагирует на изменение температуры охлаждающей жидкости двигателя. Если холодно, термостат остается закрытым, удерживая его в двигателе.

Если он становится слишком горячим, термостат открывается, позволяя воде течь к радиатору, где она остывает.

Все еще не уверены?

Не беспокойтесь, потому что в этом руководстве мы расскажем все, что вам нужно знать об автомобильном термостате.

Сюда входит, что это такое в целом, как оно работает и как определить, работает ли он неправильно. Наконец, мы предоставим пошаговое руководство, объясняющее, как проверить автомобильный термостат.

Что такое автомобильный термостат?

Термостат - один из основных компонентов системы охлаждения двигателя, служащий для регулирования потока охлаждающей жидкости между радиатором и двигателем.

Хотя он может быть небольшим по размеру (помещается в ладони), работа, которую он выполняет, имеет решающее значение для поддержания вашего двигателя в пределах безопасной рабочей температуры.

Слишком сильный нагрев в течение слишком долгого времени, и вы можете получить треснувший блок двигателя или взорвавшуюся прокладку головки (в основном два наихудшего сценария ).

Как работает автомобильный термостат?

Охлаждающая жидкость, протекающая через двигатель, улавливает излишки тепла. Покидая двигатель, он попадает в радиатор, где отводится избыточное тепло. Затем он делает еще несколько остановок по пути через систему охлаждения и возвращается обратно в двигатель.

Термостат - это клапан между двигателем и радиатором.

Когда охлаждающая жидкость в двигателе становится слишком горячей, этот клапан открывается, позволяя ей пройти к радиатору, где она остынет. Если он не нагревается, термостат остается закрытым, позволяя охлаждающей жидкости продолжать циркуляцию внутри блока.

Как термостат знает, когда открывать или закрывать? Он содержит уникальный тип воска , который действует как расширяющий агент. Когда тепло достигает определенной температуры, агент расширяется, что открывает клапан.

Когда тепло спадает, агент сжимается, возвращая клапан в его обычное закрытое положение.

Как вы могли догадаться, двигатель, работающий на горячей охлаждающей жидкости, не сможет остыть, а это значит, что он подвержен риску перегрева. А теперь давайте рассмотрим несколько наиболее распространенных признаков, указывающих на то, что вашему термостату требуется внимание.

Каковы симптомы неисправного термостата?

Низкая производительность двигателя

Представьте, что вы отправляетесь в долгий поход жарким летним днем ​​и обнаруживаете, что у вас нет воды. Вы не сможете продолжать так долго.

Именно так это работает и в вашем автомобиле. Если термостат не работает должным образом, двигатель не может охладиться. Когда это произойдет, вы заметите падение производительности двигателя, поскольку он изо всех сил пытается не отставать.

Одним из наиболее очевидных признаков того, что что-то внутри вашей системы охлаждения неисправно, является снижение расхода топлива.

Перегрев / недогрев двигателя

Являясь одним из основных устройств, отвечающих за контроль температуры внутри двигателя, если термостат не работает, датчик выйдет за пределы допустимого диапазона.

Если термостат застрял в открытом положении, охлаждающая жидкость будет непрерывно течь. Это может помешать достижению двигателем оптимальной рабочей температуры, уменьшая такие вещи, как мощность двигателя и экономия топлива .

Другая сторона уравнения - это двигатель , который перегревается, , что может быть серьезной проблемой. Это происходит, когда термостат заклинивает, не позволяя горячей охлаждающей жидкости остыть в радиаторе. Если это не лечить слишком долго, это может нанести серьезный вред вашему двигателю.

Хотя многие вещи могут вызвать перегрев двигателя, неисправный термостат - это одна из первых вещей, которую вы должны проверить.

Колебания температуры двигателя

Другой симптом, связанный с температурой, - это колебания манометра. Если вы замечаете, что он часто переходит с горячего на холодное (или наоборот), это может быть связано с неисправным термостатом.

Если термостат не открывается / закрывается должным образом, охлаждающая жидкость, выходящая из двигателя, не может регулироваться. Это может сбить с толку систему и привести к отображению неверных показаний.

Утечки охлаждающей жидкости

Еще один признак того, что ваш термостат неисправен, - это если вы видите оранжевые или зеленые лужи жидкости под вашей машиной. Когда клапан не позволяет жидкости вытекать из двигателя, это может вызвать повреждение окружающих шлангов, что приведет к их утечке.

Если этот признак совпадает с любым из других в этом списке, возможно, пора проверить термостат.

Как проверить термостат?

К счастью, проверить термостат довольно просто.

Сначала запустите двигатель и дайте ему поработать пару минут. Затем найдите и снимите крышку радиатора и загляните внутрь, чтобы проверить, не течет ли охлаждающая жидкость.

К этому моменту двигатель не должен быть достаточно горячим, чтобы охлаждающая жидкость могла понадобиться, поэтому она не должна течь. Если это так, вероятно, клапан открыт.

Другая возможность заключается в том, что клапан заклинивает.

Чтобы проверить это, дайте двигателю прогреться, пока он не достигнет оптимальной рабочей температуры, затем посмотрите, не течет ли охлаждающая жидкость.Если это не так, он должен совпадать с показателем повышающейся температуры на панели приборов.

Любой сценарий предполагает, что вам нужен новый термостат. В зависимости от того, насколько вы подкованы под капотом автомобиля, вы можете самостоятельно заменить на по цене от 50 до 150 долларов. В противном случае магазин сделает это за вас по цене от 200 до 300 долларов.

Малый размер дает большую ответственность

Помимо размера, термостат в вашем автомобиле выполняет жизненно важную работу. Если он не работает должным образом, и вы игнорируете симптомы, указывающие на это, в конечном итоге вы получите огромный счет за ремонт (что имеет значение).

Будьте ответственным автовладельцем и позаботьтесь о нем на протяжении всего срока его службы . Это лучший способ сохранить его работоспособность.

Как работает термостат | Cozy Indoor

Термостат является важным устройством для всех, кто управляет системами отопления, вентиляции и кондиционирования воздуха. Это снимает бремя постоянной настройки вашей системы для достижения желаемых результатов. Таким образом, вам нужно всего лишь установить термостат на определенную температуру; затем он должен настроить систему HVAC для достижения этой температуры.Термостаты бывают разного дизайна; однако обычно они работают одинаково. Некоторые блоки HVAC поставляются со встроенным термостатом. Тем не мение. Для других вам, возможно, придется приобрести его отдельно и связать с блоком HVAC.

Понимание термостата очень важно, особенно если вы используете его ежедневно. Знание того, как он работает, и выявление недостатков в его работе поможет вам предотвратить проблемы, которые могут быть опасными для жизни. В этой статье мы расскажем вам все о термостате, чтобы вооружить вас знаниями, необходимыми для работы с этим устройством.

Термостат - это термометр?

Хотя оба они имеют дело с температурой, существует большая разница между термостатом и термометром. Термометр считывает температуру и дает результаты. Напротив, с другой стороны, термостат считывает температуру в комнате. Он регулирует его, отправляя сигналы в блок HVAC, чтобы увеличить или уменьшить операции для достижения желаемой температуры.

Слово термостат образовано от двух греческих слов: thermo, , что означает «тепло», и statos, , что означает «оставаться таким же или неизменным. Следовательно, как следует из названия, термостат - это устройство, которое измеряет и поддерживает температуру на одном уровне.

Как работают термостаты?

Термостат работает по принципу: вещество расширяется при нагревании и сжимается при охлаждении. Механический термостат использует идею теплового расширения для включения или выключения электрической цепи. Чтобы лучше понять это, давайте рассмотрим два наиболее распространенных типа термостатов.

Биметаллические ленты

Термостаты этой категории состоят из двух частей из разных металлов, соединенных бок о бок.Эта металлическая полоса является мостом электрического тока, который переключает кондиционер. Эти два металла имеют разные скорости расширения и сжатия. Когда полоса горячая из-за высоких температур в помещении, внутренний металл расширяется, заставляя его выгибаться наружу, что приводит к отключению электрического потока. Следовательно, кондиционер отключается, и комната начинает охлаждаться.

Когда температура опускается ниже установленного уровня, металл начинает сжиматься и выпрямляться, восстанавливая свою первоначальную форму.Таким образом, электрическая цепь замыкается, и кондиционер снова включается. Регулируя шкалу температуры, вы изменяете температуру, при которой контур включается и выключается.

Обратите внимание, что термостат не включает и не выключает нагревательный элемент каждые несколько секунд. Это будет бессмысленно, так как вы можете даже не осознавать влияние кондиционера. Металлическая полоса расширяется и сжимается в течение часа. Это зависит от температуры внутри и снаружи вашего дома.

Газонаполненный сильфон

Как мы видели, термостаты, построенные из биметаллических полосок, слишком долго реагируют на изменения температуры. В этом случае вам, возможно, придется пережить несколько длительных эпизодов дискомфорта, прежде чем термостат среагирует на изменение. Альтернативная конструкция термостатов быстрее реагирует на изменения температуры, сокращая время, необходимое кондиционеру для соответствующей реакции.

В этой конструкции используется пара металлических дисков со стеклянным сильфоном между ними.Металлические диски имеют большую площадь поверхности, что позволяет им быстро реагировать на изменения температуры. Они также гофрированы, чтобы сделать их упругими и гибкими. Когда в комнате жарко, газ в сильфоне расширяется, заставляя диски расходиться. Следовательно, ток прерывается, и система отопления отключается, заставляя комнату остывать. Когда температура падает ниже установленного уровня, газ сжимается, заставляя диски вместе. В этом случае протекание тока восстанавливается, и включается нагрев.

В этой конструкции также использовался разбавленный спирт вместо газа. Короче говоря, вещество, используемое в установке, во многом зависит от диапазонов температур, в которых должен работать термостат.

Восковые термостаты

В этой конструкции используется изменение состояния воска с твердого на жидкое при нагревании. Термостат обычно используется в системах охлаждения двигателей и душевых смесителей. Воск содержится в закрытой камере. При высоких температурах воск плавится и расширяется, выталкивая стержень из камеры, включая систему охлаждения.По такому же принципу работает смеситель для душа, где штанга отключает водонагреватель, когда вода становится слишком горячей.

Что касается долговечности, восковые термостаты, как правило, служат дольше, особенно когда речь идет о двигателях транспортных средств.

Интеллектуальные термостаты с подключением к Интернету

Технология машинного обучения внесла заметные изменения в отрасль HVAC. Термостаты не исключение. В недавнем прошлом появилось новое поколение интеллектуальных термостатов, которые помогут вам сократить потери энергии из-за ненужного отопления вашего дома.Например, если вы работаете вдали от дома, вы можете понести большие счета за электроэнергию. Это может произойти, если вы иногда оставляете систему отопления включенной. Термостат никак не может понять, что дома нет никого, кому бы не требовалось отопление. Умные термостаты пришли как раз для решения этой проблемы.

Эти умные термостаты запоминают различные настройки, которые вы делаете, которые они, в свою очередь, используют для регулировки отопления вашего дома даже в ваше отсутствие. В этом случае, если вы иногда оставляете свой агрегат выключенным, когда утром уезжаете на работу, когда вы забываете выключить его, термостат выключит его за вас.

У них также есть приложение для телефона, которое позволяет удаленно контролировать работу термостата, когда вы находитесь вдали от дома. Эти функции персонализации позволяют вам сосредоточиться на том, что для вас важно, а не беспокоиться о кондиционере дома.

Проблемы с термостатом и способы их решения

Теперь, когда мы знаем, что такое термостаты и какие типы существуют, вы, вероятно, знаете, какой термостат вы установили или который соответствует вашим потребностям.Тем не менее, наличие термостата не гарантирует бесперебойную работу вашей системы автоматизации отопления. Некоторые недостатки могут сделать устройство проблематичным.

Это важный фактор, из-за которого термостат может не реагировать на изменения температуры. Если термостат не чистить регулярно и должным образом, он может перестать работать. Чтобы очистить термостат, убедитесь, что вы протираете внешнюю крышку во время повседневной чистки. Внутреннюю часть следует чистить не реже одного раза в месяц, чтобы предотвратить чрезмерное вмешательство в систему.

Для очистки термостата используйте сухое бумажное полотенце как снаружи, так и изнутри. Если вы опасаетесь повредить устройство во время чистки, обратитесь к специалисту по HVAC для регулярного обслуживания системы от вашего имени.

  • Положение термостата в вашем доме

У вас могут возникнуть проблемы с термостатом, если вы разместили его не в том месте в вашем доме. Например, если ваш термостат находится рядом с окном, он попадет прямо на солнце. в этом случае он будет реагировать на более высокие температуры снаружи дома, посылая неправильный сигнал на блок HVAC.

Также не следует размещать термостат рядом с камином или другими приборами, излучающими тепло. Он должен быть расположен в центре, чтобы он мог реагировать на общую температуру в помещении. Если ваш термостат находится рядом с источником тепла или под прямыми солнечными лучами, обратитесь к специалисту по HVAC, чтобы он переместился.

Если установить термостат неправильно, он не будет работать соответственно. Хотя термостаты легко установить, для их работы по мере необходимости может потребоваться некоторый уровень знаний.Если к термостату не прикреплены незакрепленные провода, он может не работать из-за плохой установки. Системы HVAC дороги в покупке, установке и ремонте. Неправильное подключение к термостату может привести к повреждению устройства, что повлечет за собой расходы на ремонт. Чтобы этого избежать, при установке термостата проконсультируйтесь со специалистом. Если вы уже установили, вызовите специалиста, чтобы проверить устройство, прежде чем оно вызовет дальнейшее повреждение.

Современные термостаты компьютеризированы. Поэтому они запрограммированы производителем на наличие определенных компьютеризированных функций.

Если ваш термостат работает нормально, но внезапно начал показывать дефекты, которых вы не понимаете, возможно, в программе есть дефекты. В этом случае единственный вариант - заменить термостат на новый.

Некоторые термостаты питаются от батарей. В этом случае они могут перестать работать, если аккумулятор разряжен. Поэтому вам следует проверить, питается ли устройство от батареи, и заменить батареи на новые. Обязательно ознакомьтесь с подробными советами производителя относительно типа используемых батарей.

Как и любое другое электронное устройство, термостаты стареют; когда это происходит, у них обычно больше проблем, чем у новичков. В таком случае не стоит сильно беспокоиться о ремонте агрегата. Вероятно, он достиг максимального срока службы. Лучше всего заменить его новым.

Заключение

При правильной установке работа термостата во многом будет зависеть от системы HVAC, с которой он сопряжен.