10Мар

Как работает мотор машины: Как работает двигатель машины [для начинающих и чайников]

что это и как работает. 5 интересных фактов :: Autonews

Двигатель внутреннего сгорания, или сокращённо ДВС, — это «сердце» большинства современных автомобилей. И не только машин, но также мотоциклов, кораблей, тепловозов, самолётов и даже масштабных моделей транспортных средств.

  • Что такое ДВС
  • Как создавался ДВС
  • Устройство ДВС
  • Виды
  • 5 интересных фактов

adv.rbc.ru

Что такое ДВС

ДВС — это пока основной вид двигателей транспортных средств, тепловая машина, преобразующая химическую энергию топлива в механическую работу. Сжигая горючее во внутренних камерах, двигатель внутреннего сгорания освобождает энергию, а затем преобразует её во вращательное движение. Оно, в свою очередь, раскручивает колёса или лопасти.

Двигатели внутреннего сгорания принято делить на несколько основных типов:

  • Поршневой двигатель внутреннего сгорания;
  • Роторно-поршневой двигатель внутреннего сгорания:
  • Газотурбинный двигатель внутреннего сгорания.

Основным типом ДВС является классический поршневой двигатель, поэтому преимущественно речь дальше пойдёт о нём.

Как создавался ДВС

Двигатель внутреннего сгорания стар как мир. История создания этой машины тесно связана с паровыми двигателями, то есть двигателями внешнего сгорания.

Паровые двигатели, применяемые в XVIII веке, были громоздкими и слабыми, с чрезвычайно низким коэффициентом полезного действия. Тепло от сгорания топлива в них использовалось для нагрева жидкости, а та в свою очередь, превращалась в пар и совершала работу. Звучит красиво, а что на деле? По факту практический КПД, то есть эффективность преобразования энергии, обычно составлял от 1 до 8%. Уже тогда было ясно — систему нужно улучшать. Зачем сжигать горючее вне мотора, не лучше ли делать это прямо в нём?

Попытки создания ДВС начались намного раньше, чем вы можете себе представить, — ещё в XVII веке. В 1678 году голландский математик Христиан Гюйгенс создал примитивный ДВС, работающий… на порохе. Идея получила развитие: экспериментаторы в различных странах шли по схожему пути, но далеко не все из них попали в историю.

Доподлинно известно, что в 1794 году Робертом Стритом был запатентован двигатель внутреннего сгорания на жидком топливе. Построен первый рабочий прототип. В 1807 году француз Нисефор Ньепс разработал твердотельный ДВС, работающий на порошке пиреолофора. С прототипом лично ознакомился Наполеон Бонапарт. В том же году Франсуа Исаак де Риваз создал поршневой ДВС, работающий на газообразном водороде — этот мотор получил поршневую группу и искровое зажигание.

Первый автомобильный ДВС в привычном понимании был создан в 1885 году Карлом Бенцем — мотор использовался на автомобиле Benz Patent-Motorwagen.

Многие изобретатели приложили руку к сознанию двигателя внутреннего сгорания, но первым коммерчески успешным проектом стало детище французского изобретателя из Бельгии Жана Этьена Ленуара. К 1864 году он продал свыше 1 400 своих двигателей и неплохо на этом нажился.

Первый автомобильный ДВС в привычном понимании был создан в 1885 году Карлом Бенцем — мотор использовался на автомобиле Benz Patent-Motorwagen.

Устройство поршневого ДВС

Традиционный поршневой двигатель внутреннего сгорания — чрезвычайно сложная система. Однако основных деталей у классического ДВС не так уж и много. Без этих элементов работа двигателя внутреннего сгорания невозможна:

  • блока цилиндров — механической основы мотора;
  • головки блока цилиндров;
  • поршней;
  • шатунов;
  • коленчатого вала;
  • распределительного вала с кулачками;
  • впускных и выпускных клапанов;
  • свечей зажигания*.

* — на самом деле деталей значительно больше, но рассказать о каждой из них в рамках короткой статьи не представляется возможным.

Принципы работы ДВС

Все классические ДВС работают по схожему принципу. В процессе их работы энергия вспышки топлива, то есть тепловая энергия, преобразуется в энергию механическую.

Обычно это происходит следующим образом:

  1. Когда поршень в цилиндре движется вниз, открывается впускной клапан. В цилиндр поступает топливовоздушная смесь.
  2. Поршень поднимается, а выпускной клапан закрывается. Поршень сжимает топливовоздушную смесь и доходит до верхней мёртвой точки.
  3. На свече зажигания возникает искра, топливовоздушная смесь мгновенно сгорает, выделяя большой объём газов. Под их действием поршень устремляется вниз.
  4. Открывается выпускной клапан и выхлопные газы выдавливаются в выпускной коллектор.

Четырехтактный двигатель

В четырёхтактном моторе происходит четыре непрерывных последовательных стадии:

  1. Впуск (наполнение цилиндра смесью).
  2. Сжатие.
  3. Рабочий ход или сгорание.
  4. Выпуск отработавших газов.

Двухтактный двигатель

Но бывают и иные моторы — двухтактные. Они работают немного по-другому и применяются, как правило, на мототехнике и бензиновых инструментах вроде бензопил. Что происходит в них?

  1. Когда поршень движется снизу-вверх, в камеру сгорания поступает топливо. Сжатая поршнем топливовоздушная смесь поджигается искрой.
  2. Смесь загорается и поршень устремляется вниз. Открывается доступ к выпускному коллектору и из цилиндра выходят продукты сгорания.

Разница в том, что тактов всего два: на первом одновременно происходит впуск и сжатие, а на втором — опускание поршня и выпуск продуктов сгорания из коллектора.

Какие ещё бывают ДВС

Помимо поршневых двигателей внутреннего сгорания создано немало иных разновидностей ДВС — роторные, газотурбинные, реактивные, турбореактивные и бесчисленное множество их модификаций. Чем они отличаются?

  • Газотурбинные ДВС

Если в традиционных поршневых ДВС работа расширения газообразных продуктов сгорания преобразуется во вращательное движение коленчатого вала, то в газотурбинных работа расширения продуктов сгорания воспринимается рабочими лопатками ротора, а в реактивных используется реактивное давление, возникающее при истечении продуктов сгорания из сопла. Все эти типы ДВС объединяет одно — во время работы они внутри себя сжигают топливо.

  • Роторные ДВС

Крайне необычные моторы, которые можно встретить даже на серийных машинах. Первый роторно-поршневой мотор был создан немецким инженером Феликсом Ванкелем в 1957 году. Этот ДВС внешне совершенно не похож ни на один традиционный поршневой мотор.

Двигатель Ванкеля состоит из корпуса, камеры сгорания, впускного и выпускного окон, неподвижной шестерни, зубчатого колеса, ротора, вала и свечи зажигания. Ротор на эксцентриковом валу приводится в действие силой давления газов в результате сгорания топливовоздушной смеси. Он вращается относительно статора посредством шестерён. Когда ротор совершает эксцентричные круговые движения, его грани соприкасаются с внутренней поверхностью камеры сгорания. Таким образом создаются три изолированные камеры, в которых попеременно сжигается топливо. Вращающийся ротор передаёт крутящий момент на трансмиссию.

Человечество создало немало невероятных и по-настоящему уникальных моторов. Вот 10 самых совершенных из них:

👉 Железные мускулы. 10 лучших двигателей в истории

5 интересных фактов о ДВС

ДВС может работать на альтернативном топливе

Современные ДВС принято делить на два основных типа по применяемому топливу — бензиновые и дизельные. Однако сама история создания двигателей внутреннего сгорания позволяет понять: сжигать в таких моторах можно многие виды горючего — от различных газов до всевозможных растворителей и спиртов. Главное — испарить их и подмешать воздух в нужных пропорциях.

Наиболее распространённые альтернативы бензину и дизелю — пропан-бутан и метан, но можно использовать даже «гремучую смесь» — водород с кислородом. И это далеко не всё: почти любая современная машина с ДВС способна ездить на смеси бензина с этанолом или на чистом этаноле, то есть спирте, получаемом экологически чистым путём. Поедет бензиновый автомобиль и на различных растворителях. К примеру, запустить ДВС можно на обычном сольвенте из хозяйственного магазина — с помощью этой жидкости обычно осуществляют чистку топливной системы.

ДВС выживет в космосе и под водой (если очень постараться)

Двигатель внутреннего сгорания можно заставить работать даже в космосе. Всё, что для этого требуется, — обеспечить подачу кислорода для создания топливовоздушной смеси. При соблюдении этого нехитрого условия ДВС может запуститься и работать даже под водой. Для него нет ничего невозможного.

ДВС действительно плох

Несмотря на всю свою технологичность и сложность, по уровню КПД бензиновый ДВС недалеко ушёл от парового мотора. Эффективность этих агрегатов оставляет желать лучшего. Коэффициент полезного действия в среднем варьируется в диапазоне от 20 до 25%.

Иными словами, при сжигании условных 10 литров бензина лишь около трёх литров выполняют полезное действие. Всё остальное горючее тратится на тепловые и механические потери. С этой точки зрения дизельные движки намного круче: их КПД достигает 40%. Но и их век уже прошёл.

Отказ от ДВС неизбежен

Одну из причин грядущего отказа от двигателей внутреннего сгорания мы уже раскрыли — это низкий КПД. Но есть и ещё один немаловажный момент — влияние на экологию. Поскольку почти все ДВС работают на невозобновляемых ресурсах (бензине, дизеле, нефтяном газе), отказ от них жизненно необходим.

По данным специалистов, мировой запас нефти составляет 1,726 трлн баррелей, которых хватит при нынешнем уровне потребления немногим более чем на 50 лет. Из нефти делают не только топливо. Она — основа синтетических каучуков, пластиков, еды, тканей, шампуней и даже аспирина. Всего того, без чего жизнь человека уже практически невозможна.

Чего надо бояться, если двигатель начал работать громче обычного — Лайфхак

  • Лайфхак
  • Эксплуатация

фото: соцсети

Давно прошли времена рукастых гаражных дедов-умельцев, которые могли по звуку двигателя «Жигулей» точно сказать, какой именно клапан в головке блока требует внимания или в каком цилиндре упала компрессия. Но несмотря на это, любой автомобилист должен знать «куда бежать», когда заметил, что изменился звук мотора. Портал «АвтоВзгляд» рассказывает о возможных источниках лишнего шума под капотом.

Максим Строкер

Слишком громкая, по сравнению с привычным уровнем, работа мотора может объясняться, например, прогоревшим в каком-то месте выпускным трактом. Или ослабшим креплением самого двигателя к кузову. Среди прочих возможных источников дополнительных звуков, не связанных напрямую с функционированием силового агрегата, можно назвать его навесное оборудование.

Так, о своем существовании (вернее, о своих проблемах) могут громко заявлять насос гидроусилителя рулевого управления, генератор, помпа системы охлаждения, компрессор кондиционера, наконец!

Гораздо опаснее (и дороже в ремонте), когда новые звуки несутся из самого блока цилиндров. Самая безобидная и легко устранимая причина более громкой работы мотора — неподходящее масло, залитое в него при очередной смене. Эксперименты владельца машины с его вязкостью или маркой могут привести к более громкой работе механизма, говорящей о том, что лубрикант недостаточно эффективно смазывает трущиеся поверхности. Убираем его, заливаем свежую жидкость проверенной марки и проблема уходит.

фото asx-club

Неприятнее ситуация, когда вы заправили машину бензином со слишком низким октановым числом — на какой-нибудь «левой» заправке. Детонация, которая при этом будет происходить в камере сгорания, проявляется в виде громкого «шелеста», быстро «убивая» цилиндро-поршневую группу.

Свечи неподходящей для конкретного двигателя модели, либо сильное загрязнение отложениями камеры сгорания также могут приводить к подобному эффекту, — из-за детонации при калильном зажигании. Ну, а когда какая-то свеча вышла из строя, мотор не только сильнее шумит, но еще и дергается, вибрирует, «троит». Благодаря столь явным симптомам, вычислить и решить подобную проблему не сложно.

А вот когда свеча работает, но напряжение на нее из-за какого-то сбоя подается не вовремя, топливо-воздушная смесь не успевает сгореть в цилиндрах полностью и продолжает это делать уже в выпускном тракте — с соответствующими шумовыми эффектами.

фото asx-club

152986

За слишком громкую работу движка порой «отвечает» газораспределительный механизм. Цепь может растянуться, ремень — износиться, вызывая сбой в фазах газораспределения и более громкую работу мотора. Да и всевозможные натяжные ролики со временем изнашиваются и начинают «петь». Лечится вся это только заменой привода ГРМ.

Повышенный шум силового агрегата иной раз вызывают вышедшие из строя или некорректно работающие датчики электронной системы управления двигателем, проблемы с ней самой или с шиной, соединяющей ее с электросистемой машины. Электрические неполадки оборачиваются неправильной работой самого двигателя и, как следствие, более громкой его работой.

Таким образом, если вы поняли, что из-под капота авто стали нестись явно более громкие звуки — немедленно отправляйтесь в автосервис для их локализации и устранения причин. В противном случае, можно «попасть» на по-настоящему крупный ремонт мотора.

Фото производителя.

Впрочем, столь тяжелых последствий можно избежать, если правильно обслуживать агрегат и быстро реагировать на первые симптомы его недомоганий. Например, отмеченные выше проблемы ГРМ могут быть спровоцированы загрязнением гидрокомпенсаторов клапанов и нарушением цикличности их работы. Так вот, восстановить работоспособность гидрокомпенсаторов, причем без какой-либо разборки двигателя, можно с помощью особой моющей процедуры.

Этот способ успешно внедрила немецкая компания Liqui Moly, разработавшая присадку Hydro Stossel Additiv. Главное назначение продукта — экспресс-очистка масляных каналов гидрокомпенсаторов. Суть в том, что, что когда они засорены, гидрокомпенсаторы не работают. Но достаточно удалить из каналов грязь — и все функции тут же восстанавливаются. Именно так и работает немецкий Hydro Stossel Additiv.

Специально подобранная рецептура позволяет средству прочищать даже самые тонкие каналы системы смазки, нормализуя подачу моторного масла ко всем значимым узлам ГРМ. Благодаря этому гидрокомпенсаторы начинают смазываться и функционировать нормально. Сервисная практика свидетельствует, что 300 мл присадки с избытком хватает для обработки системы смазки, в которой объем применяемого масла не превышает шести литров.

417499

  • Автомобили
  • Тест-драйв

Сравниваем лютых конкурентов в бюджетном сегменте рынка

193693

  • Автомобили
  • Тест-драйв

Сравниваем лютых конкурентов в бюджетном сегменте рынка

193693

Подпишитесь на канал «Автовзгляд»:

  • Telegram
  • Яндекс.Дзен

двигатель, автосервис, ремонт, мототехника, моторное масло

Как работают автомобильные двигатели | Артикул

Окунитесь во взрывоопасный мир четырехтактного двигателя

Приблизительно один миллиард автомобилей на дорогах используют для передвижения бензин. И хотя основные принципы работы двигателей внутреннего сгорания, на которые они опираются, не претерпели кардинальных изменений в течение почти 150 лет, в наших автомобилях используется удивительный уровень химии.

Источник: © X-RAY Pictures/Shutterstock

Слова «автомобиль» и «взрыв» несовместимы. Но именно поршневые взрывы в двигателе внутреннего сгорания заставляют ваш автомобиль двигаться

В большинстве автомобилей используется четырехтактный двигатель, разработанный Николаусом Отто в 1861 году. Этот двигатель имеет ряд отверстий, называемых цилиндрами, с поршнем внутри. Когда поршень опускается, он втягивает воздух и бензин, смесь углеводородов и присадок для защиты двигателя. Затем поршень движется вверх, сжимая смесь и создавая идеальное сочетание температуры – до 2500°C – и давления. Как только поршень достигает своего верхнего положения, создается искра.

Теперь у нас есть ключевые ингредиенты для горения – кислород, топливо и тепло – которые вызывают взрыв, который снова опускает поршень. На обратном пути поршень выдавливает продукты сгорания в виде выхлопных газов и возвращается в исходное положение, чтобы цикл начался снова. Прикрепив нижнюю часть поршня к коленчатому валу, взрывы, создаваемые каждым цилиндром, приводят автомобиль в движение. Весь процесс происходит быстро: кривошип болида Формулы-1 вращается со скоростью около 15 000 оборотов в минуту, что составляет примерно 50 000 взрывов в двигателе на каждом круге.

Загадка возгорания

Однако с этой установкой связано много проблем. Во-первых, это невероятно неэффективно. Хотя углеводороды содержат много химической энергии, большая ее часть теряется в виде тепла, а не для питания автомобиля. Даже самый эффективный двигатель внутреннего сгорания может работать только с тепловым КПД 50%. Также трудно получить точный баланс топлива и воздуха в двигателе, чтобы обеспечить полное сгорание. Слишком мало воздуха означает, что топливо «богатое» и более мощное, но расточительное. Слишком много воздуха и «обедненное» топливо, которое производит меньше энергии и заставляет двигатель гореть сильнее.

Мир переходит на электромобили, в которых используются литий-ионные аккумуляторы, которые имеют гораздо более высокий КПД (до 90%) и практически не производят выбросов

Взрывы тоже могут быть проблемой. Ранние бензиновые двигатели часто имели проблему «детонации», когда небольшие воздушные карманы в цилиндре воспламенялись сами по себе, а не поршень, толкаемый гладкой стеной пламени. Эту проблему решил химик Томас Мидгли-младший, который предложил добавлять в бензин тетраэтилсвинец. Если бы образовался карман, вместо того, чтобы прервать цикл, он просто образовал бы небольшие комочки свинца или газообразного оксида свинца, которые можно было бы вытолкнуть с выхлопом. К сожалению, свинец токсичен для человека, что приводит к повреждению головного мозга, а его выделение с выхлопными газами автомобилей оказалось смертельным. Сегодня этилированный бензин запрещен во всем мире, а проблемы с детонацией решаются другими способами.

Истощающее загрязнение

Еще есть отработанный газ. Неполное сгорание в двигателе приводит к образованию выхлопных газов, содержащих углеводороды, двуокись углерода (CO 2 ), окись углерода (CO) и смесь оксидов азота (NO x ), которые могут вызывать кислотные дожди. Все эти атмосферные загрязнители ужасны для планеты, поэтому почти все современные автомобили включают в себя каталитический нейтрализатор выхлопных газов — небольшую коробку с керамической сотовой структурой, заполненную такими металлами, как платина или палладий. При достаточной температуре (около 400°C) металл вступает в реакцию с отработавшими газами двигателя, что приводит к окислению СО до СО 2 и окисление несгоревших углеводородов в CO 2 и воду. Современные каталитические нейтрализаторы являются «трехсторонними», поэтому также уменьшайте количество газов NO x , сначала реагируя с CO с образованием азота.

Несмотря на все эти усилия, трудно не признать, что двигатель внутреннего сгорания вреден для планеты. По оценкам Международного энергетического агентства, на транспорт приходится четверть глобальных выбросов CO 2 , и три четверти этого объема приходится на дорожное движение. Именно поэтому мир переходит на электромобили, в которых используются литий-ионные аккумуляторы, имеющие гораздо более высокий КПД (до 90%) и практически без выбросов. Тем не менее, имея миллиард автомобилей, пройдут десятилетия, прежде чем бензиновые и дизельные автомобили исчезнут навсегда, и мы, наконец, перейдем к более чистым и эффективным способам передвижения.

Кит ЧапманКит — отмеченный наградами научный журналист и ранее был редактором комментариев журнала Chemistry World

Темы

  • Применение химии
  • Топливо
  • Загрязнение

Как работают автомобильные двигатели? — Теперь из общенационального

Несмотря на относительно простое управление, автомобили на самом деле очень сложные машины. Автомобили нуждаются в топливе для работы, но что на самом деле делает с ним двигатель?

В общем, стандартный двигатель внутреннего сгорания, который сегодня используется в большинстве транспортных средств, работающих на топливе, использует воздух в сочетании с бензином для производства энергии.[1] Конечно, становится сложнее.

Компоненты двигателя

Перед тем, как углубиться в работу двигателя автомобиля, полезно изучить его базовую структуру (это также важно, если вам нужно выполнить какое-либо техническое обслуживание автомобиля). Взгляните на приведенную ниже схему двигателя автомобиля, а затем просмотрите список основных компонентов двигателя и их функции:

 

  • Блок двигателя: Блок двигателя, как правило, изготовленный из железа или алюминия, содержит большинство деталей, обеспечивающих работу двигателя, включая цилиндры, поршни, коленчатый и распределительный валы.
    [2] (Если вы открываете капот, генератор переменного тока обычно крепится к передней части блока цилиндров.)
  • Головка блока цилиндров: Головка блока цилиндров включает в себя компоненты, управляющие потоками всасываемого воздуха и выхлопных газов, такие как клапаны и распределительные валы.[2]
  • Коленчатый вал: Коленчатый вал преобразует движение поршней вверх-вниз в соответствующее круговое движение. Он прикреплен к поршням через шатун.[2]
  • Шатуны: Шатун крепит коленчатый вал к поршням. Он вращается на каждом конце, что дает ему возможность перемещаться с обоими компонентами.[3]
  • Поршни: Поршни двигаются вверх и вниз внутри цилиндра, передавая энергию коленчатому валу, который, в свою очередь, приводит автомобиль в движение. Поршневые кольца, расположенные внутри поршней, помогают герметизировать края цилиндра и уменьшают трение во время движения.[2],[3]
  • Свечи зажигания: Свечи зажигания вызывают сгорание, создавая искру, которая воспламеняет поступающую смесь воздуха и топлива. [3]
  • Топливные форсунки : Топливная форсунка подает топливо в двигатель. В процессе он превращает топливо в крошечные туманообразные частицы, чтобы его легче сжигать в двигателе.[4]
  • Клапаны: В двигателе есть два типа клапанов: впускные клапаны и выпускные клапаны. Первый пропускает воздух и газ в двигатель; последний выпускает выхлоп.
  • Распределительный вал: Распределительный вал контролирует открытие и закрытие клапанов. Для этого он преобразует круговое движение коленчатого вала в движение вверх-вниз, открывающее и закрывающее клапаны.[2]
  • Ремень или цепь ГРМ: Ремень или цепь ГРМ проходит между распределительным валом и коленчатым валом, обеспечивая их синхронную работу.[2]

Процесс четырехтактного двигателя

Большинство двигателей внутреннего сгорания работают по четырехтактному циклу. Эти шаги формально известны как ходы по отношению к четырем движениям, которые поршень совершает для завершения каждого цикла. Такты происходят в следующем порядке: впуск, сжатие, сгорание, выпуск.

При каждом такте поршень движется либо вверх, либо вниз внутри цилиндра, двигаясь вместе с впуском воздуха и топлива или выбросом выхлопных газов. Вот краткий обзор того, как работает этот процесс[1]:

1. Такт впуска

Во время такта впуска поршень смещается вниз, а впускной клапан открывается, пропуская поток бензина и воздуха. Как только поршень достигает основания цилиндра, клапаны закрываются, герметизируя смесь бензина и воздуха. (Стоит отметить, что в некоторых современных автомобилях бензин впрыскивается позже, во время такта сжатия.)

2. Такт сжатия

В этот момент поршень движется назад вверх, чтобы сжать газ и воздух к верхней части цилиндра. Проталкивание этой смеси в более ограниченное пространство подготавливает ее к воспламенению в такте сгорания.

3. Такт сгорания

Такт сгорания, также известный как рабочий ход, создает мощность двигателя и приводит автомобиль в движение. Здесь свеча зажигания воспламеняет газ. Возникающее в результате тепло и расширяющийся газ заставляют поршень двигаться вниз по цилиндру.

4. Такт выпуска

Когда поршень достигает дна цилиндра, открывается выпускной клапан, и поршень может откачивать отработавшие газы из двигателя. Оттуда газы попадают в выхлопную систему и выходят из автомобиля. Наконец, выпускной клапан закрывается, и четырехтактный цикл повторяется.

Различные типы автомобильных двигателей

Хотя все двигатели внутреннего сгорания в целом работают одинаково, существует несколько различных типов двигателей. При обсуждении двигателей, которые чаще всего используются в личных транспортных средствах, различия в основном связаны с расположением цилиндров. Например, цилиндры 9Рядные двигатели 0074 расположены прямо, а в двигателях V-образного типа цилиндры разделены на две группы и образуют V-образную форму. Другие двигатели будут регулировать определенные механизмы, такие как фазы газораспределения или количество воздуха, добавляемого в четырехтактный цикл, для повышения эффективности или мощности.