4Янв

Электронный дроссель: Электронная дроссельная заслонка: как она устроена, и как её ремонтировать?

Содержание

Электронный дроссель: типы, схемы, применение

Электронный дроссель – это специализированное, употребляемое в среде профессионалов, жаргонное обозначение простейших твердотельных стабилизаторов.

Общая информация

Сложно, сказать, кто придумал это странное название, но оно периодически употребляется радиолюбителями.

Параметрические стабилизаторы – электронные дроссели

Идея использования стабилизаторов вместо фильтров основана не на пустом месте. Суть заключается в желании научиться фильтровать помехи, пока полезный сигнал проходит беспрепятственно. Известно, что дроссель хорошо пропускает низкие частоты. На этом основано его применение в виде фильтра в звукозаписи и воспроизведении мелодий. Слышимые ухом частоты обнаруживают верхний предел в области 15 кГц, хотя отдельные люди слышат до 20 кГц. Если сообщить колебания костям черепа, пределы слышимости распространяются до 220 кГц. Утверждается, что человек через пломбы в зубах способен принимать вещание в сверхнизком диапазоне. Но оставим для спецслужб их игры с разумом и вернёмся к аудиозаписи.

Дроссели здесь используются, чтобы срезать частоты выше 20 кГц. Их ставят перед динамиками для удаления известного радиолюбителям «белого шума». Простые люди звук называют шипением, он навязчив, легко различим даже на фоне громкой музыки. Меломаны стали думать, как избавиться от напасти. Среди них попадались радиолюбители, и кто-то предложил использовать амплитудно-частотную (передаточную) функцию каскада для срезания «белого шума». Эффект основывается на том, что полезного сигнала выше 20 кГц нет, а там лежит значительная часть спектра шипения.

Попробовали сделать и немедленно отметили частичное улучшение. Технологию пустили в ход, единственным недостатком оказались большие габариты дросселя. А среди меломанов ходит легенда – и авторы лично слышали – что в электронных блоках не предполагается твердотельной электроники (транзисторы, тиристоры и пр.). Даже диоды использовать нежелательно. Поэтому люди не согласились бы использовать параметрические стабилизаторы в аппаратуре. Но большой размер дросселя вызывает необходимость заменить его электроникой.

Твердотельный стабилизатор

Кратко об обычных дросселях

Дроссель аналогичен катушке индуктивности, но демонстрирует специфическое назначение и ряд обмоток. Без углубления в тему скажем, что предложил свернуть проволоку спиралью Лаплас, потом действие проделали Швейггер, Ампер, Фарадей и прочие учёные. Так на свет, предположительно, в 1820 году появилась катушка индуктивности.

Ключевым свойством, обнаруженным далеко не сразу, стало наличие реактивного сопротивления. Его называли – индуктивностью. Особенность: ток на таком элементе не способен повыситься сразу, значит, срезается и сглаживается его фронт, становится пологим. Это соответствует на уровне спектра фильтрации нижних частот, что применяется меломанами для уменьшения мощности шипения.

Колонка, как правило, включает ряд динамиков. К примеру, три. И шипит самый маленький, предназначенный для воспроизведения высоких частот, к примеру, тонкого пения скрипки. Если аккуратно прикрыть динамик ладонью, «белый шум» пропадает. Это сродни механической фильтрации при помощи руки.

Схема электронного дросселя

Хотим поблагодарить Евгения Карпова. Любой желающий вправе прочесть выложенную им статью «Электронный дроссель», где обсуждаются основные ошибки по конструированию аппаратуры, даются советы по улучшению качества.

Включение с общей базой называется сравнительной схемой. Транзистор оценивает разницу напряжений на базе и коллекторе. Сигнал снимается с эмиттера. Конденсатор С3 заряжается через резистор R5 служа параметрическим стабилизатором (вместо стабилитрона). Необычное решение требуется, чтобы отслеживать относительно медленно меняющийся звуковой сигнал. На конденсаторе неизменно находится его усреднённое значение, так происходит стабилизация. Транзистор следит, чтобы выходной сигнал равнялся (либо оставался пропорционален) напряжению на стабилизаторе.

Так вкратце действует простая схема электронного дросселя. Смысл использования частично раскрывается Евгением Карповым, но рядовым гражданам он неочевиден. Дроссель большой и тяжёлый, занимает много места, делает вдобавок две неполезных вещи:

  1. Вносит в цепь значительное омическое (активное) сопротивление, применяемое в законе Ома для участка цепи.
  2. Обладает индуктивным сопротивлением, сдвигающим фазу между током и напряжением. Специалисты склонны считать это дефектом.

Электронный дроссель позволяет убрать указанные недостатки, но Евгений Карпов отмечает, что размер радиатора для транзистора бывает значительным, что уничтожает преимущество. А необходимость точной настройки не каждому под силу. Тем не менее, электронный дроссель вправе использоваться как представитель простейших видов параметрических стабилизаторов.

Обоснование применения электронного дросселя

Считается, что задачей стабилизатора становится стабилизация напряжения, добиваясь постоянства. В действительности речь обычно идёт о действующем значении. Стабилизатор устроен так, чтобы пропускать медленные составляющие. Допустимо добавление обратной связи, эталонов напряжения, чтобы устранить этот «недостаток».

Радиолюбители намеренно в конструкции электронного дросселя упускают подобные навороты, полученное устройство спокойно плавает вдоль нужных частот. На выходе стоит фильтр из конденсатора C4, резисторы задают рабочую точку транзистору.

Стабилизаторы

Классификация

В глобальном смысле стабилизаторы напряжения делят на два класса:

  • Параметрические.
  • Компенсационные.

Первые обычно опираются на некий эталон. К примеру, простейшим параметрическим стабилизатором становится единственный стабилитрон. Но при этом нельзя добиться высокого выходного напряжения, и ток станет делиться, уходя впустую. Высокие потери, необходимость охлаждения… Это попытались преодолеть в компенсированных стабилизаторах, где в цепь заложена обратная связь. Смысл: сравнить с эталоном не входное напряжение, а выходное и по результатам «теста» провести корректировку коэффициента усилительного каскада.

Электронный дроссель намеренно сделан без обратной связи, чтобы параметры плавали и не мешали полезному сигналу проходить на выход. Электронный дроссель не является параметрическим стабилизатором непосредственно, но представляет намеренно ухудшенный его вариант. Ухудшенный с точки зрения стабильности. Выходной характеристикой идеального считается прямая, не подразумевающая музыки. Вывод:

Электронный дроссель – это параметрический стабилизатор напряжения с намеренно ухудшенными долговременными характеристиками, обеспечивающими постепенный уход напряжения в нужную сторону сообразно форме входного сигнала.

Простейшие схемы стабилизаторов

Выше приводилось упрощённое толкование вопроса – да простят нас истинные радиолюбители. В действительности электронный дроссель использует каскад сравнения из компенсационного стабилизатора. Причём наипростейший из имеющихся, из единственного транзистора. Изложим кратко теорию.

Итак, простейшим параметрическим стабилизатором становится разновидность твердотельного диода – стабилитрон. При превышении напряжением некого порога происходит резкое падение сопротивления p-n-перехода. Стабилитрон, вразрез с обычным диодом, всегда включается навстречу току. На катод нтребуется подать плюс. Значение порога легко изменяется включением между стабилитроном и схемной нейтралью диодов в прямом направлении. На каждом кремниевом p-n-переходе падает 0,5 В. Это порой бывает предпринято для температурной компенсации.

Усложнением схемы является транзисторная, где стабилитрон служит эталоном, а триод занимается стабилизацией. На выходе включается эмиттерный повторитель для улучшения согласования с нагрузкой, а включение по схеме с общей базой стабилизирует ток. Но пора посмотреть на схемы компенсационных стабилизаторов, откуда электронный дроссель кое-что взял.

На рисунке показаны регулирующие элементы из составных транзисторов. Это каскад, на который подаётся петля обратной связи для сравнения с эталоном. Одно из сравниваемых напряжений поступает на эмиттер – от стабилитрона, второе – на базу – из цепи обратной связи. С коллектора снимается сигнал. Транзистор считается симметричным, за исключением мелких деталей, описанных в соответствующей теме (см. биполярный транзистор), допустимо для сравнения использовать базу и коллектор, как в схеме электронного дросселя, приведённой выше.

Исключение – цепь обратной связи из конструкции выкушена. Зато включён вместо эталона конденсатор, заведомо не выдающий постоянное напряжение, радуя радиолюбителя. Постоянная времени берётся такой, чтобы успевал изменяться сигнал согласно полезной частоте (до 20 кГц), а повышенные частоты сглаживались. И хотя меломаны против твердотельной электроники, конструкция вправе существовать.

Для температурной компенсации и увеличения чувствительности возможно создавать сравнительные элементы из нескольких транзисторов и добиваться частичного усиления. В частности, это достигается применением дифференциальной пары (см. операционные усилители). Созданы прочие полезные схемы, читатели найдут примеры самостоятельно в поучительной книге под редакцией Г.С. Найвельта.

Осталось добавить, что электронный дроссель собирается и на полевом транзисторе (MOSFET). Тогда стабилизирующие свойства ухудшаются, а каскад добавляет в цепь тот шум, с которым борется. Карпов добавляет, что жёсткость электронного фильтра намного больше за счёт накопленной в конденсаторе энергии, допустимой к использованию в любой момент, и меньшего активного сопротивления. Электронный дроссель отлично фильтрует напряжение 50 Гц и применяется в маломощных источниках питания. Однако шум устройство подавляет хуже, нежели традиционный полосовой LC-фильтр. Следовательно, питаемая аппаратура не должна быть критична к уровню шумов.

Электронный неуправляемый дроссель EL 2*18ngn 220-240V 4335801


Характеристики

Напряжение (В)

220-230

Степень защиты (IP)

20

Для ламп

Люминесцентных 1*18

Общая мощность (Вт)

18

Мощность лампы (Вт)

18

Лаборатория звуковой техники: Блок питания с фильтрацией для лампового предусилителя: электронный дроссель

При построении любой маломощной конструкции на лампах одним из первых встаёт вопрос анодного питания.

Блок питания это и так — в принципе — наиважнейшая часть любого электронного устройства, но почему в данной статье я упоминаю питание именно маломощных и именно ламповых устройств? И вообще — что я подразумеваю под этими самыми устройствами?

Ну, во-первых, в соответствии с тематикой блога, это устройства звукоусиления. А это могут быть — в первую очередь — предварительные усилители для звукозаписи, которые в последнее время очень популярны именно на лампах. Ну и устройства на их основе — ламповые фонокорректоры, ламповые темброблоки, ламповые гитарные эффекты.

Специфика питания маломощных ламп — это малый ток, но при этом довольно высокое напряжение. И — для этого типа устройств — постоянное напряжение с очень хорошей фильтрацией, т.е. максимально сглаженное, с минимумом (отсутствием?) пульсаций.

В классических усилителях мощности с линейными блоками питания проблема пульсаций решается, как правило, применением конденсаторов большой ёмкости (зачастую соединённых помногу в параллель) и даже дросселей. Но я не просто так в самом начале подчеркнул, что речь идёт о блоке питания именно для микромощного (предварительного) усилителя. В этом случае конденсаторы большой ёмкости будут

  • занимать слишком много места, если конструкция компактна
  • стоить, возможно, дороже, чем вся конструкция в целом
  • перегружать маломощный анодный трансформатор в момент заряда
  • Чтоб обеспечить хорошую фильтрацию сигнала и при этом сэкономить место/средства, помогает популярная конструкция под названием «электронный дроссель».
  • Схема эта известна очень давно и имеет огромное множество повторений и модификаций, ею воспользовались сотни радиолюбителей-конструкторов. Поэтому принцип ещё действия я описывать не буду (мы против копипасты!), хотя порекомендую, всё таки, почитать самую удачную, на мой взгляд, статью об этой схеме от Олега Иванова.

    Мы не претендуем на авторство данной схемы, и, в свою очередь,  взяли за основу схему, описанную в статье по ссылке выше и немного модифицировали её, как, в своё время, Олег Иванов модифицировал одну из первых схем стабилизатора.

    Данная схема — ниже.

    В начале — как и обычно — идёт диодный мост, который может быть выполнен как из четырёх отдельных диодов, так и в виде конструкции в одном корпусе. Диоды рекомендуем использовать на ток не менее 2А. Несмотря на то, что рабочие токи схем, которые будут питаться данной конструкцией, составляют десятки, а то и единицы миллиампер, сравнительно высок и скачкообразен ток в момент заряда конденсатора. Он может вывести из строя маломощные диоды даже при целой и работоспособной внешне конструкции.

    Затем идут включённые в параллель два или более конденсатора на высокое напряжение, ёмкость которых сравнительно невелика (может быть 22мкФ, 33мкф, 47мкФ). Решение в пользу именно нескольких конденсаторов, включённых в параллель, вместо одного большого, сделано в пользу понижения стоимости конструкции и уменьшения её размера.
    Затем, через резистор в 0,47 — 1кОм, чтобы обеспечить второй порядок в фильтрации, включается ещё один или несколько соединённых конденсаторов в параллель, общей ёмкостью, соизмеримой с общей ёмкостью конденсаторов, стоящих перед резистором.

    Далее — схема с использованием полевого транзистора, принцип работы которой подробно описан в статье, одной из ключевых частей которой является множество соединённых в параллель металоплёночных или других, не электролитических конденсаторов. Впрочем, некоторые другие авторы в данной конструкции считают допустимым использовать и оксидные конденсаторы, соблюдая при этом полярность.
    После непосредственно стабилизатора мы предусмотрели делитель напряжения, который, с которого, при необходимости, можно подать смещающее напряжение на нить накала лампы, как это рекомендуют конструкторы ламповой техники, особенно в SRPP каскадал, чтобы снизить фон и вероятность пробоя через нить накала.

    Резистор R8 нужен, если в схему будет вводиться миллиамперметр или индикатор появления нагрузки. Сопротивление его подбирается таким образом, чтобы падение напряжения на нём при рабочем токе соответствовало нужному напряжению для отклонения стрелки индикатора или свечения светодиода. Так, R=U/I, где U — необходимое напряжение, I — рабочий ток.

    Например, чтобы при токе 10мА загорался светодиод с рабочим напряжением 2.2В, необходимо сопротивление 22Ом мощностью не менее 0,25Вт.
    Если же потребности в индикации нет, резистор следует заменить шунтом.


    Теперь рассмотрим конструкцию, которую мы разработали и теперь выпускаем серийно для использования коллегами-радиолюбителями в своих изделиях.

    На одной печатной плате размером 170х40мм мы, помимо электронного дросселя, расположили выпрямитель и стабилизатор напряжения накала. Рабочий ток его, правда, невелик и эта часть схемы может быть использована только в случае работа на одну лампу с током накала 150мА и входным напряжением не более 12В. Для работы с лампами с бОльшим током накала, но не более 1А, понадобится более массивный радиатор.

    При питании накала переменным напряжением или от отдельного выпрямителя данная (нижняя) часть схемы (левая часть платы) часть схемы не собираться.

    Как вы видите на изображении разводки (layout), на плате предусмотрено место для диодов разных типоразмеров а так же для диодного моста. Переменное высокое напряжение с анодного трансформатора подаётся на точки 250V AC in.

    Два конденсатора в параллель второй части фильтра могут быть заменены на один бОльшей ёмкости, предусмотрено место ИЛИ для двух малых ИЛИ для одного большого. В самой правой части платы предусмотрено место для включения нескольких конденсаторов в параллель. Оно выполнено в виде макетной области специально для того, чтобы можно было установить различное количество конденсаторов разных типоразмеров (предположим, 3 конденсатора по 3,3мкФ 400В или 4 конденсатора по 2,2мкФ 400В).

    Так же предусмотрена возможность расположить на плате предохранитель-плавкую вставку или многоразовый термостатический предохранитель. Выход выпрямленного и отфильтрованного напряжение — HV DC out +-, выход делителя для смещения на нить накала — heat DC shift.

    Существует несколько модификаций данной конструкции. Вы можете скачать по ссылкам ниже файлы разводки для самостоятельного изготовления. Так же вы можете заказать у нас качественный (заводские) готовые платы данного проекта.

    Для этого используйте расположенную слева форму для обратной связи.

    Модификация 1: 160х40мм, только электронный дроссель.

  • Скачать файл в формате Sprint Layout
  • Разводка
  • Внешний вид устройства (плата справа)

    Модификация 2. 170х40мм, электронный дроссель и выпрямитель для накала.

  • Скачать файл в формате Sprint Layout
  • Разводка
  • Внешний вид готовых плат
  • Собранное устройство

    Модификация 3. 170х37мм, расширенная ёмкость (увеличено количество посадочных мест под конденсаторы)

  • Скачать файл в формате Sprint Layout
  • Разводка

    Модификация 4.

    90х39мм, уменьшенный размер.
  • Скачать файл в формате Sprint Layout
  • Разводка

  • Как правильно ремонтировать автомобиль? — журнал За рулем

    К сожалению, ценный опыт по качественному ремонту всегда построен на массе дорогих ошибок. Хотя никто не отменял и банальную лень с разгильдяйством.

    Даже рядовые операции по ремонту машины могут обернуться существенными затратами. И здесь дело не только в отношении мастера или самого владельца к своему автомобилю, но и в массе подводных технических камней. Причем далеко не все из них упомянуты даже в заводском руководстве по обслуживанию.

    Замена элементов подвески и ходовой

    Распространены случаи, когда клиент приезжает в сервис на замену элементов подвески, а в итоге при возврате машины на щитке приборов почему-то загорается лампа неисправности системы ABS. Компьютерная диагностика, скорее всего, укажет на неисправность датчика скорости колеса, со стороны которого шли ремонтные работы. Странно, а ведь механик вообще не трогал этот электронный измеритель, а его приходится менять. Где же связь?

    Датчик скорости колеса системы ABS

    Наиболее частая причина выхода из строя активного датчика скорости колеса системы ABS — неосторожная работа молотком при замене элементов подвески.

    Наиболее частая причина выхода из строя активного датчика скорости колеса системы ABS — неосторожная работа молотком при замене элементов подвески.

    Материалы по теме

    Система ABS известна уже давно, за несколько десятков лет сменилось уже не одно ее поколение. Однако при всей ее конструктивной однообразности некоторые производители используют датчики скорости колес разного типа. Именно здесь и затаилась потенциальная опасность. Простейший, пассивный датчик скорости считывает гребенку на приводе колеса, но в последнее время все больше машин оборудуют более продвинутыми активными измерителями. Они имеют принципиально другую конструкцию со встроенной электронной схемой, усиливающей сигнал. При этом они считывают уже не гребенку, а магнитное кольцо на ступичном подшипнике.

    Беда в том, что эти активные датчики очень боятся вибраций от ударов вблизи места их установки при работах по замене элементов подвески. К сожалению, во многих случаях безболезненно снять их проблематично из-за характера установки в кулаке. Вероятность поломки 50/50! Поэтому при замене элементов подвески важно использовать любые доступные съемники и приспособления, чтобы минимизировать количество и силу ударов молотком.

    Но бывает и более банальная проблема с «неработающим» активным датчиком, который на самом деле исправен. Механик попросту установил ступичный подшипник не той стороной, и магнитное кольцо оказалось на другом полюсе. В этом случае подшипник придется заменить. Маловероятно, что он сохранит работоспособность после попытки его переустановить.

    Чистка датчика расхода воздуха (MAF)

    Чистка датчика массового расхода воздуха (чаще всего его называют MAF) — крайне сомнительная операция. Мало того что она не принесет никакого положительного эффекта, так может и вообще обездвижить автомобиль, выведя MAF из строя. Пуск моторов некоторых моделей будет попросту невозможен. Но если уж сильно чешутся руки, то надо помнить о нескольких важных моментах.

    Датчик массового расхода

    Датчик массового расхода — не надо мешать его работе. Тот случай, когда гигиена лишь во зло!

    Датчик массового расхода — не надо мешать его работе. Тот случай, когда гигиена лишь во зло!

    Датчики массового расхода воздуха имеют разные конструкции. И далеко не все исполнения можно чистить химией. Датчики пленочного типа категорически нельзя подвергать такому воздействию. Химия мгновенно выведет из строя внешние чувствительные элементы. Датчики проволочного типа, как на фото выше, мыть можно. Важно использовать относительно мягкие аэрозольные очистители. К примеру, подойдет очиститель тормозной системы. Главное не переусердствовать, ведь корпус датчика не герметичен на 100% и внутренности с электронной схемой можно запросто залить. С очистителями карбюратора, которые представляют собой кислоту, этот риск возрастает в разы.

    Чистка электронной дроссельной заслонки

    На некоторых машинах электронный дроссель очень быстро обрастает отложениями, из-за чего заслонка может залипать в некоторых положениях. На выходе имеем неровную работу двигателя и плавающие обороты. Ситуацию спасет чистка узла. Операция действительно нужная, но и ответственная, несмотря на кажущуюся простоту.

    Чистка электронного дросселя

    Чистка электронного дросселя — полезная процедура, но технику безопасности никто не отменял.

    Чистка электронного дросселя — полезная процедура, но технику безопасности никто не отменял.

    Для чистки дросселя нужно использовать очистители карбюраторов. Более мягкая химия может вообще не справиться с нагаром. При сильных загрязнениях дроссель снимают, чтобы хорошенько прочистить. И вот тут важно промывать узел в правильном положении. Ось заслонки не имеет герметичных соединений с корпусом. Если держать дроссель блоком с датчиками вниз, когда вы распыляете аэрозоль, то кислота легко протекает по оси в электронные внутренности. В этом случае узел уже не спасти!

    что это такое, разновидности: электронный, дроссель-трансформатор, схема подключения к лампе дневного света, цветовая маркировка, фото и видео

    Автор Aluarius На чтение 7 мин. Просмотров 2.4k. Опубликовано

    Ни одна люминесцентная газоразрядная лампа (бытовой или офисный светильник, уличный фонарь) без дросселя работать не будет. Это своеобразный гаситель или ограничитель напряжения, которое подается в колбу газоразрядной лампы. А точнее сказать, на ее электроды. В принципе, с немецкого так это слово и переводится. Но это не единственная функция данного прибора. Еще дроссель создает пусковое напряжение, которое необходимо для образования электрического разряда между электродами. Именно таким образом зажигается люминесцентный источник света. Кстати, пусковое напряжение краткосрочное, длится доли секунды. Итак, дроссель – это прибор, который отвечает и за включение лампы, и за ее нормальную работу.

    Дроссель – прибор, отвечающий за нормальную работу ламп

    Принцип работы

    Необходимо сразу оговориться, что в основе принципа работы этого прибора лежит самоиндукция катушки. Если рассмотреть устройство дросселя, то это обычная катушка, которая работает по типу электрического трансформатора. То есть, можно смело применять в разговоре термин дроссель трансформатор. Хотя в конструкции лежит всего лишь одна обмотка.

    По сути, катушка – это сердечник из стальных или ферромагнитных пластин, которые изолированы друг от друга. Это делается специально для того, чтобы не образовались токи Фуко, которые создают большие помехи. У такой катушки очень большая индуктивность. При этом она на самом деле выступает мощным сдерживающим барьером при снижении напряжения в сети, а особенно при его сильном росте.

    Схема подключения

    Но именно эта конструкция считается низкочастотной. Почему такое у нее название? Все дело в том, что переменный ток, который протекает в бытовых сетях – это широкий диапазон колебаний: от единицы до миллиарда герц и выше. Пределы диапазона очень велики, поэтому чисто условно колебания разделяют на три группы:

    • Низкие частоты, их еще называют звуковые, имеют диапазон колебаний от 20 Гц до 20 кГц.
    • Ультразвуковые частоты: от 20 кГц до 100 кГц.
    • Сверхвысокие частоты: свыше 100 кГц.

    Так вот вышеописанная конструкция – это низкочастотный дроссель трансформатор. Что касается высокочастотных приборов, то их конструкция отличается отсутствием сердечника. Вместо них, как основа навивки медного провода, используются пластиковые каркасы или обычные резисторы. При этом сам дроссель трансформатор представляет собой секционную (многослойную) навивку.

    По устройству дроссель – это обычная катушка, которая работает по типу электрического трансформатора

    Дроссели очень тщательно рассчитываются по задаваемым параметрам, которые будут поддерживать работу ламп дневного света. Особенно это касается начала свечения, где необходимо разрядом пробить газовую среду. Здесь требуется высокое напряжение. После чего прибор, наоборот, становится сдерживающим устройством. Ведь для того, чтобы лампа светилась, большого напряжения не надо. Отсюда и экономичность светильников данного типа.

    Сердечник для дросселя

    Материал для сердечника также представлен несколькими позициями. Его выбор лежит в основе габаритов самого дросселя. К примеру, магнитный сердечник – это возможность уменьшить размеры дросселя до минимума. При этом показатели индуктивности не изменяются.

    Оптимальный вариант для высокочастотных приборов – это сердечники из магнитодиэлектрических сплавов или феррита. Кстати, именно сплавы позволяют использовать сердечники данного типа практически во всех диапазонах.

    Характеристики

    Выбирать дроссель трансформатор надо по нескольким характеристикам, главная из которых – индуктивность (измеряется в генри Гн). Но кроме этого еще есть и другие:

    • Сопротивление. Учитывается при постоянном токе.
    • Изменение напряжения (допустимого).
    • Ток подмагничивания, применяется номинальное значение.

    Разновидность дросселей

    Люминесцентные лампы представлены на рынке большим ассортиментом. И у каждого вида ламп дневного света свой дроссель трансформатор. К примеру, лампа ДРЛ и ДНАТ не могут зажигаться от одного вида дросселя. Все дело в различных параметрах пуска и поддержания горения. Здесь и напряжение отличается, и сила тока.

    А вот лампа МГЛ может работать и от дросселя лампы ДРЛ, и от ДНАТ. Но тут есть один момент. Яркость свечения данного источника света будет зависеть от подаваемого напряжения. Да и цветовая температура будет разной.

    Внимание! Любой дроссель трансформатор по сроку эксплуатации «переживет» несколько ламп. Конечно, при оговорке, что эксплуатация светильника проводится правильно.

    Разновидности дросселей

    Но учитывать приходится тот факт, что лампа с годами «стареет». На вольфрамовые электроды люминесцентных ламп дневного света наносится специальная паста из щелочных металлов. Так вот эта паста постепенно испаряется, электроды оголяются, а, значит, повышается напряжение, что приводит к перегреву дросселя. Конечный результат может быть двух вариантов:

    1. Произойдет обрыв обмотки катушки, что приведет к отключению подачи напряжения на электроды.
    2. Произойдет замыкание катушки. А это подключение лампы напрямую к сети переменного тока. Лампа перегорит – это точно, а может и взорваться, что приведет к порче светильника в целом.

    Поэтому совет – не стоит ждать, когда лампа сама перегорит. Есть специальный график замены, который определяет производитель, и которого необходимо строго придерживаться. Опытные электрики при проведении профилактических работ обязательно проверяют эти осветительные приборы на параметр напряжения. Если он подходит к пределу нормы, то лампу меняют еще до срока эксплуатации. Лучше заменить недорогую лампу, чем дорогой дроссель трансформатор.

    Схема подключения к лампе

    Добавим, что производители сегодня предлагают усовершенствованные системы защиты люминесцентных светильников. В их конструкцию добавили предохранительные автоматы, которые срабатывают при повышении напряжения внутри газоразрядного источника света.

    Разделение по назначению

    По сути, все дроссели делятся на две основные группы, как и лампы, в которых они устанавливаются.

    1. Однофазные. Их используют в светильниках бытовых и офисных с подключением к сети в 220 вольт.
    2. Трехфазные. Подключаются к сети 380 вольт. К ним относятся лампы ДРЛ и ДНАТ.

    По месту установки эти приборы делятся также на две группы:

    1. Встраиваемые. Их еще называют открытыми. Такие дроссели устанавливают в корпус светильника, который защищает его и от влаги, и от пыли, и от ветра.
    2. Закрытые (герметичные, влагозащищенные). У этих приборов есть специальный короб, защищающий их. Такие модели можно устанавливать на улице под открытым небом.
    Электронный дроссель

    Электронные аналоги

    Основная масса дросселей – это достаточно габаритные приборы. Чтобы уменьшить их размеры, но при этом не изменять параметров, необходимо заменить катушку индуктивности полупроводниковым стабилизатором, который, в принципе, собой представляет высокой мощности транзистор. То есть в конечном итоге получается электронный дроссель.

    По сути, установленный транзистор стабилизирует скачки (колебания) напряжения, уменьшают его пульсацию. Но придется учитывать тот факт, что электронный дроссель является все-таки полупроводниковым устройством. Так что в высокочастотных приборах его использовать нет смысла.

    Полезные советы

    Как и многие электронные приборы, дроссели маркируются в зависимости от своих параметров. Это достаточно сложная аббревиатура, которая неопытным электрикам будет непонятна. Поэтому была введена цветовая маркировка. То есть, на приборе нанесено несколько цветных колец, которые определяют индуктивность устройства. Первых два кольца – это номинальная индуктивность, третье – это множитель, четвертое – это допуск.

    Внимание! Если на дросселе всего три цветных кольца, то по умолчанию принимается, что его допуск составляет 20%.    

    Цветовая маркировка

    Цветовая маркировка удобна, особенно для тех, кто начинает разбираться в области электрики. С ее помощью можно точно подобрать параметры устанавливаемых приборов (транзистор, электронный дроссель, резистор и так далее).

    Заключение по теме

    Итак, нами было проведено определение значения дросселя, его устройство, принцип работы и классификация. Как показывает практика, это устройство может работать десятилетиями, если правильно эксплуатировать сам светильник. Даже самые большие скачки напряжения дроссель прекрасно гасит. А, значит, лампа будет светить долго и без проблем.

    Ламповый усилитель.

    Дроссели электронные | paseka24.ru

    Электронный дроссель. Такое название в последнее время приходится часто встречать в схемах блоков питания. Что это такое? Почему электронная транзисторная схема может служить заменой железному дросселю с медной обмоткой, показанному на картинке рис.1? Познакомимся поближе с особенностями работы «электронного дросселя» и с часто встречающимися ошибками при его сборке и применении. В блоках питания ламповых усилителей, радиолюбители довольно широко используют стабилизаторы напряжения, выполненные на полевом транзисторе. Такие стабилизаторы называют ещё «электронный дроссель», «усилитель ёмкости» и даже «виртуальная батарея». Будем называть его «электронный дроссель», хотя по сути — это обычный стабилизатор с плавающим опорным напряжением, изменяющимся в зависимости от величины входного. Устройство похоже на активный фильтр пульсаций с функцией задержки подачи напряжения и ничего общего с обычным дросселем (накопителем энергии) и принципом его работы оно не имеет. «Электронный дроссель» можно собирать и на биполярных транзисторах, такие схемы известны ещё с 60-х годов, но на полевых схема имеет гораздо лучшую эффективность. Поэтому здесь показан «электронный дроссель» на мощных полевых транзисторах. Рассмотрим обычную схему, гуляющую по сети, см. рисунок 2.

    У некоторых радиолюбителей эта схема работает, у некоторых нет, почему? Эта схема имеет свои недостатки, которые сейчас рассмотрим. Входное напряжение здесь подаётся на С1 через резистор R1 большого сопротивления. Ток стока транзистора практически нулевой и при качественном конденсаторе С1 (с очень маленькой утечкой) он зарядится до уровня напряжения входа, транзистор уйдёт в насыщение и пользы от такого «дросселя» будет мало. Если конденсатор С1 будет не очень качественный (иметь утечку больше тока заряда R1), то напряжение на затворе транзистора будет меньше входного и схема может работать. Для нормальной работы схемы, напряжение на затворе должно быть меньше входного, минимум на величину пульсаций при номинальном токе нагрузки. Это ещё не учитывается нестабильность напряжения сети. То есть входное напряжение сначала должно подаваться на делитель напряжения. Этот делитель и определяет разность между входным и выходным напряжением «электронного дросселя». Сделать такой делитель можно, добавив всего одно сопротивление (R3).

    На второй схеме ЭД (рис.3), входное напряжение на конденсатор С1 подаётся с делителя (R1, R3). Коэффициент такого делителя рассчитывают таким образом, что бы разница между входным и выходным напряжением, для обеспечения нормальной работы ЭД, была 20 — 30 вольт. Сопротивление резистора R1 можно уменьшить, что бы компенсировать ток утечки у конденсатора С1, если он попадётся не очень качественный. Для увеличения времени заряда конденсатора (увеличение времени задержки нарастания выходного напряжения), его ёмкость можно увеличить. Время заряда конденсатора определяется величиной R1 и ёмкостью конденсатора, т.е. постоянная времени заряда. Так, как постоянная времени R1, C1 очень большая (десятки секунд), то: 1) Обеспечивается плавное нарастание выходного напряжения. 2) Быстрые изменения и колебания сети не проходят на выход схемы. 3) Очень качественная фильтрация напряжения, так как на затворе транзистора практически отсутствуют пульсации и в виду наличия у полевого транзистора огромнейшего входного сопротивления и весьма большой крутизны характеристики, на выходе имеем пульсации почти такие же как и на RC-фильтре в цепи затвора.

    Рассмотрим назначение элементов схемы. Резистор R2 подобен «антизвоновому» резистору в цепи сетки лампы выходного каскада, и необходим для предотвращения самовозбуждения транзистора. Его величина выбирается в пределах 1 – 10 кОм. Наличие его обязательно. При монтаже, его лучше припаять непосредственно к выводу транзистора (и стабилитрон VD2 тоже). Стабилитрон VD2 предназначен для защиты транзистора от переходных процессов и статики. Напряжение его стабилизации выбирается в пределах 14 — 18 вольт. В нормальном режиме работы он заперт. Его можно не ставить, если он уже встроен в транзистор (есть транзисторы со встроенным стабилитроном). Если у транзистора отсутствует встроенный диод между истоком и стоком, то его необходимо поставить. Он защищает транзистор от обратного напряжения, и если (например, при выключении питания) входные конденсаторы разрядились (на схеме не показаны), а выходные ещё нет и напряжение на них больше напряжения входного, то открывается этот диод и конденсаторы на выходе, подключаются через диод к входным и к делителю R1, R3. Диод VD1 необходим для быстрой разрядки конденсатора С1. Рассмотрим некоторые особенности монтажа подобных схем. Транзистор желательно применять в изолированном корпусе. Если корпус транзистора не изолирован, то на радиатор он крепится через изолирующую прокладку (например слюда), а корпус радиатора заземляется. Антизвоновый резистор и защитный стабилитрон лучше распаять непосредственно на выводах транзистора. Наличие в схеме «электронного дросселя» не отменяет необходимость в установке конденсаторов после него, которые играют роль источника энергии для быстрых импульсов тока потребления нагрузкой и уменьшают выходное сопротивление источника питания. «Электронный дроссель», в отличии от обычного дросселя, не является накопителем энергии, и соответственно не применим (как замена обычному дросселю) в схемах выпрямителей с L-фильтром там, где дроссель отдаёт накопленную энергию. Хотя бытуют различные мнения у противников «транзисторизации» ламповых схем, вплоть до замены индикаторов на светодиодах — неоновыми лампочками (хотя попадаются неонки с очень большим уровнем шума), скажу однозначно — применение в блоке питания лампового усилителя «электронного дросселя», нисколько не ухудшает его звучание, а в некоторых случаях гораздо его улучшает, позволяя при этом сэкономить габариты и вес любительских конструкций. Автор Николай Петрушов.

    В качестве заключения можно сказать буквально несколько слов и привести ссылку на публикацию Евгения Карпова, в белорусском «Радиолюбителе». Здесь на сайте эти материалы тоже есть. Тенденция применения разнообразной полупроводниковой электроники в ламповой схемотехнике совершенно правильная. Конкретно об электронном дросселе нужно сказать, что его применение не даёт выигрыша в габаритах, по причине использования охлаждающего радиатора. А по массе выигрыш заметен. В отношении качества фильтрации пульсаций есть сведения, что при существенной динамике нагрузочного режима электронный дроссель в сравнении с медным не эффективен. Его преимущества очевидны при построении схем со стабильным электропотреблением в режимах, близких к А. По материалам сети публикацию подготовил

                   Евгений Бортник, Красноярск, Россия, март 2018

    сферы применения, устройство и электронные аналоги

    На чтение 5 мин Просмотров 216 Опубликовано Обновлено

    Дросселем называется катушка индуктивности определенной конструкции и номинала, предназначенная для установки в электротехнических и электронных схемах. Дроссель электрический требуется отличать от аналога, используемого в электронных устройствах с учетом их конструктивных особенностей. Для понимания, в чем состоят различия этих двух изделий, придется ознакомиться с принципом работы и существующими разновидностями.

    Принцип работы

    Дроссель электрический

    Принцип работы дросселей в электрической схеме можно объяснить так:

    • при протекании переменного тока через индуктивный элемент скорость его нарастания замедляется, что приводит к аккумулированию энергии в магнитном поле катушки;
    • объясняется это действием закона Ленца, согласно которому ток в индуктивности не может изменяться мгновенно;
    • нарушение этого правила привело бы к недопустимому нарастанию напряжения, что физически невозможно.

    Другой отличительной особенностью, поясняющей принцип работы индуктивности, является эффект самоиндукции, теоретически обоснованный Фарадеем. На практике он проявляется как наведение в катушке собственной ЭДС, имеющей противоположную полярность. За счет этого эффекта через индуктивность начинает течь ток, препятствующий нарастанию вызвавшего его полевого образования.

    Указанное свойство позволяет применять индуктивные элементы в электротехнике для сглаживания низкочастотных пульсаций. Для них индуктивность представляется большим сопротивлением.

    Использование в других технических областях (в высокочастотных устройствах, например) дроссель обеспечивает развязку основной электронной схемы от вспомогательных (низкочастотных) цепей.

    Технические характеристики

    Технические характеристики компенсационных дросселей

    Основным техническим параметром дросселя в электротехнике и электронике, полностью характеризующим его функциональность, является величина индуктивности. Этим он напоминает обычную катушку, применяемую в различных электрических схемах. И в том и другом случае за единицу измерения принимается Генри, обозначаемый как Гн.

    Еще один параметр, описывающий поведение дросселя в различных цепях – его электрическое сопротивление, измеряемое в Омах. При желании его всегда удается проверить посредством обычного тестера (мультиметра). Для полноты описания работы этого элемента потребуется добавить такие показатели:

    • допустимое (предельное) напряжение;
    • номинальный ток подмагничивания;
    • добротность образуемого катушкой контура.
    Дроссель цепи постоянного тока СТА-ФТП-93 93 кВт

    Указанные характеристики дросселей позволяют разнообразить их ассортимент и использовать для решения самых различных инженерных задач.

    Разновидности дросселей

    По виду электрических цепей, в которых устанавливаются дроссельные элементы, классификация следующая:

    • низкочастотные индуктивности;
    • высокочастотные катушки;
    • дроссели в цепях постоянного тока.

    Низкочастотные элементы внешне напоминают обычный трансформатор, у которого имеется всего лишь одна обмотка. Их катушка навита на пластиковом каркасе с размещенным внутри сердечником, изготовленным из трансформаторной стали.

    Стальные пластины надежно изолированы одна от другой, что позволяет снизить уровень вихревых токов.

    Катушка индуктивности для НЧ динамика, сабвуфера, низких частот, провод ПЭТВ 1,25мм

    Дроссельные НЧ катушки обычно имеют большую индуктивность (более 1 Гн) и препятствуют прохождению токов сетевых частот 50-60 Герц через участки цепей, где они установлены.

    Еще одна разновидность индуктивных изделий – высокочастотные дроссели, витки которых навиваются на ферритовом или стальном сердечнике. Существуют разновидности ВЧ изделий, которые работают без ферромагнитных оснований, а провода в них наматываются просто на пластмассовый каркас. При секционной намотке, применяемой в схемах среднечастотного диапазона, витки провода распределяются по отдельным секциям катушки.

    Электротехнические изделия с ферромагнитным сердечником имеют меньшие габариты, чем простые дроссели той же индуктивности. Для работы на высоких частотах применяются сердечники ферритовые или из диэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели используются в довольно широком диапазоне частот.

    Некоторые из них изготавливаются в виде толстой витой проволоки, совсем не имеющей каркаса.

    Дроссель постоянного тока в основном применяется для сглаживания пульсаций, появляющихся после его выпрямления в специальных схемах.

    Применение индуктивных элементов и их графическое обозначение

    Назначение дросселя в импульсных схемах питания — блокировать резкие всплески от трансформатора

    Электрические дроссели, работающие в цепях переменного тока, традиционно применяются в следующих случаях:

    • для развязки вторичных цепей импульсных источников питания;
    • в обратноходовых преобразователях или бустерах;
    • в балластных схемах люминесцентных ламп, обеспечивающих быстрый запуск;
    • для запуска электрических двигателей.

    В последнем случае они используются в качестве ограничителей пусковых и тормозных токов.

    Электротехнические изделия, устанавливаемые в электрических приводах мощностью до 30 кВт, по своему виду напоминают классический трехфазный трансформатор.

    Так называемые дроссели насыщения используются в типовых обратноходовых стабилизаторах напряжения, а также в феррорезонансных преобразователях и магнитных усилителях. В последнем случае возможность намагничивания сердечника позволяет изменять индуктивное сопротивление действующих цепей в широких пределах. Сглаживающие дроссели применяются для снижения уровня пульсаций в выпрямительных цепях.

    Источники питания с такими элементами до сих пор встречаются в электротехнической практике. Для запуска люминесцентных ламп все чаще используется «электронный» балласт, постепенно вытесняющий намоточные изделия. Его применение объясняется следующими преимуществами:

    • низкий вес;
    • эксплуатационная надежность;
    • отсутствие характерного для обычных дросселей гудения.

    Для обозначения дросселя на электротехнических и электронных схемах используются значки, представляющие собой отрезок витого проводника. Для катушек с сердечником внутри намотки дополнительно ставится черточка, а в бескаркасном варианте исполнения она отсутствует.

    штуцеры

    НОВИНКА! ‣ — Пакеты электронных компонентов Amazon. Посетите страницу Amazon Electronic Component Packs.

    Что такое дроссели?

    Дроссели — это фиксированные катушки индуктивности, в первую очередь предназначенные для «дросселирования» переменного тока, в том числе высокочастотного, от линий питания постоянного тока. «ВЧ дроссель» спроектирован так, чтобы иметь высокий импеданс в большом диапазоне частот.

    Это сильно отличается от фиксированных катушек индуктивности, которые предназначены для использования в настраиваемых схемах.В некоторых очень случайных приложениях вы можете заменить дроссели на фиксированные катушки индуктивности, но, как правило, и, конечно, есть исключения из этого правила, я бы не стал.

    Единственным исключением могут быть приложения, в которых используются некритические фильтры верхних частот или фильтры нижних частот.

    С другой стороны, я, конечно, не стал бы рассматривать использование дросселя в приложении с фиксированной катушкой индуктивности, таком как качественный узкополосный фильтр или в каскадах определения частоты LC-генератора.

    Мое главное возражение касается «Q» штуцера.Вторичные возражения касаются термической устойчивости штуцера. Типичные формованные дроссели, которые можно купить довольно дешево, не совсем предназначены для того, чтобы служить памятником ни высокой добротности, ни термической стабильности, ни высоким допускам.

    Другие возражения относятся к собственной резонансной частоте (SRF). Дроссель, как и любой дроссель, также демонстрирует некоторую степень собственной емкости или «распределенной емкости». Эта емкость в сочетании с расчетной индуктивностью являются резонансными на определенной частоте.

    Резонансные частоты дросселя

    На низких частотах эта емкость практически не влияет, и дроссель может быть изображен как «A» ниже на рисунке 1. Сопротивление — это внутреннее сопротивление дросселя как при переменном, так и постоянном токе. Когда рабочая частота повышается, «распределенная емкость» начинает становиться значительной в точке, где L и C образуют параллельный резонансный контур, как в «B».


    Рисунок 1. — резонансные частоты дросселя

    Еще раз увеличивая рабочую частоту, мы обнаруживаем, что реактивное сопротивление дросселя определяется емкостью до такой степени, что теперь он представляет собой последовательный резонансный контур «C».В этот момент производительность дросселей серьезно ухудшается.

    Литые дроссели

    Типичный экономичный дроссель, который имеет тенденцию выглядеть как резистор и имеет цветовую кодировку, аналогичную следующей на рисунке 2, который представляет собой таблицу цветовых кодов дросселей.

    Таблица цветовых кодов дросселей


    Рисунок 2. — Таблица цветовых кодов штуцера

    Вообще говоря, эти дроссели предназначены для миниатюризации, и какой бы тип дросселя вы ни собирались использовать, всегда дважды проверяйте его, чтобы убедиться, что он может выдерживать ожидаемый ток.Самое главное !, вы не хотите, чтобы он функционировал как «вспышка», каламбур.

    Простые маломощные дроссели часто можно дешево изготовить, намотав витки провода, способного пропускать достаточный ток, на корпусный резистор подходящего размера. Формирователь пластикового типа также может быть использован при использовании отрезка, например, спицы. На более высоких частотах рассмотрите небольшой дроссель с воздушной обмоткой. Дроссели тоже дешевые.

    Самодельные дроссели часто легко наматываются на ферритовые тороиды с высокой проницаемостью, ферритовые бусины или даже сердечники бинокулярного типа, используемые для балунов.Просто не забудьте использовать калибр, который будет комфортно выдерживать ожидаемый ток через ваши дроссели. Также помните, что чем выше проницаемость сердечника, тем меньше требуется витков и тем меньше «распределенной емкости» возникает в ваших дросселях.

    Если позволяет ваш бюджет, подумайте о создании комплекта LC-метра, чтобы иметь возможность измерять индуктивность ваших дросселей, катушек индуктивности или даже проверять емкость конденсаторов.

    КНИГА — Справочник по индуктору Клетуса Дж. Кайзера

    Ссылка на страницу

    НОВИНКА! Как перейти по прямой ссылке на эту страницу

    Хотите создать ссылку на мою страницу со своего сайта? Нет ничего проще.Знания HTML не требуются; даже технофобы могут это сделать. Все, что вам нужно сделать, это скопировать и вставить следующий код. Все ссылки приветствуются; Искренне благодарю вас за вашу поддержку.

    Скопируйте и вставьте следующий код для текстовой ссылки :

    <а href = "https://www.electronics-tutorials.com/basics/chokes.htm" target = "_ top"> посетите страницу Ian Purdie VK2TIP "Chokes"

    , и он должен выглядеть так:
    посетите Ian Purdie VK2TIP «Chokes» Страница



    ВЫ ЗДЕСЬ: ГЛАВНАЯ> ОСНОВНЫЕ НАПРАВЛЕНИЯ> ЗАМЕТКИ

    автор Ян К.Purdie, VK2TIP сайта www.electronics-tutorials.com заявляет о моральном праве на быть идентифицированным как автор этого веб-сайта и всего его содержания. Copyright © 2000, все права защищены. См. Копирование и ссылки. Эти электронные учебные пособия предназначены для индивидуального частного использования, и автор не несет никакой ответственности за применение, использование, неправильное использование любого из этих проектов или учебных пособий по электронике, которое может привести к прямому или косвенному ущербу или убыткам, связанным с этими проектами или учебными пособиями. .Все материалы предоставляются для бесплатного частного и общественного использования.
    Коммерческое использование запрещено без предварительного письменного разрешения www.electronics-tutorials.com.


    Авторские права © 2000, все права защищены. URL — https://www.electronics-tutorials.com/basics/chokes.htm

    Обновлено 15 мая 2000 г.

    Связаться с ВК2ТИП

    Дроссель карбюратора

    Когда двигатель холодный, для запуска требуется более богатая смесь воздуха и топлива. Для создания этого состояния используется дроссель.

    Чок представляет собой пластину или лезвие, закрывающее основные стволы. Он ограничивает поток воздуха через карбюратор. Это означает, что во впускной коллектор поступает больше топлива и меньше воздуха.

    По мере прогрева двигателя он может работать на более бедной смеси. Дроссельную заслонку необходимо открывать постепенно, чтобы в двигатель попало больше воздуха.

    Карбюраторы

    доступны с дроссельной заслонкой или без нее. Также есть несколько типов дросселей на выбор.

    Как это работает?

    Вручную — Ручная заслонка управляется рычагом сбоку карбюратора.Затем с помощью кабеля прикрепляется рычаг или ручка внутри транспортного средства. Для этого необходимо, чтобы человек в машине медленно открывал воздушную заслонку вручную.

    Автоматически — автоматический штуцер использует металлическую пружину для открытия и закрытия пластины штуцера. Пружина намотана в корпусе и одним концом прикреплена к рычагу воздушной заслонки. По мере прогрева двигателя он нагревает металлическую пружину. По мере того как пружина нагревается, она расширяется, вращается и открывает дроссельную заслонку.

    Автоматические дроссели могут быть 1 из 3-х типов:

    • Электрический дроссель — Электрический дроссель использует электричество для нагрева пружины и постепенного открытия дроссельной заслонки.
    • Дроссельная заслонка с разводкой — В схеме с разделенной заслонкой металлическая пружина расположена во впускном коллекторе. Пружина соединяется с карбюратором с помощью небольшого стержня. Пружина нагревается выхлопными газами, проходящими через переходной канал.
    • Дроссель с горячим воздухом — В установке с дросселем с горячим воздухом металлическая пружина расположена в собственном корпусе. Трубка соединяется с корпусом и подает воздух, нагретый выхлопом.

    Как это влияет на производительность?

    Если вы живете в теплом климате, вам может не понадобиться дроссель.Кроме того, в большинстве гоночных автомобилей используется карбюратор без дроссельной заслонки.

    Если вам нужен дроссель, вы можете выбрать тот, который лучше всего соответствует вашим потребностям. Если вам нужен больший контроль, вы можете выбрать ручной дроссель. Установка и регулировка автоматической воздушной заслонки может быть сложной задачей. Но это удобнее, чем ручной дроссель.

    Разводные дроссели и дроссели с горячим воздухом часто используются при замене карбюратора OEM-типа. Если двигатель уже настроен на работу одного из этих дросселей, его легко сохранить в таком состоянии.

    Электрические дроссели популярны и работают очень хорошо.Они также просты в установке и обслуживании. Комплекты для переоборудования электрических дросселей доступны для многих областей применения.

    ID ответа 4722 | Опубликовано 23.01.2017 13:14 | Обновлено 14.04.2021 08:07

    ELECTRONIC CHOKE VS ELECTRICAL CHOKE ~ электрика и электроника

    Здравствуйте, читатели! Сегодня я здесь с совершенно новой темой. Многие из них обнаруживают, что в настоящее время в ламповом освещении используются электронные балласты или дроссели. Большинство из них задавалось вопросом, что не так с самым старым типом дросселя.Давайте посмотрим на подробную информацию об обоих в этой статье.

    Щелкните этот текст, чтобы узнать больше о магнитных цепях. ЧАСТИ В ТРУБКЕ:
    • БАЛЛАСТ
    • СТАРТЕР (ЭЛЕКТРИЧЕСКИЙ ТИП)
    • ВЫКЛЮЧАТЕЛЬ
    • НАПОРНАЯ ТРУБКА



    РАБОЧАЯ ТРУБКА:
    На самом деле работа лампового света включает в себя следующий процесс:

    1. Когда мы включаем ламповый свет, максимальный ток течет через ламповый свет через балласт и стартер. Сначала не происходит разряда, поэтому не получается выходной сигнал.
    2. Сначала мы можем увидеть свечение в стартере, это связано с тем, что газы в стартере начинают ионизоваться из-за максимального напряжения, и, следовательно, биметаллическая полоса плавится и начинается проводимость к трубке.
    3. Затем напряжение постепенно уменьшается, так как падение напряжения создается в балласте, который является индуктором, снова оно отрывается от неподвижного контакта, и через ламповый свет протекает сильный выброс тока.
    4. Получен газовый разряд в ламповой лампе.Ток вместо того, чтобы проходить через стартер, проходит через трубку, потому что лампа лампы имеет низкое сопротивление по сравнению с сопротивлением стартера.
    5. Таким образом, при разряде ртути образуется ультрафиолетовое излучение, которое, в свою очередь, возбуждает люминофорное порошковое покрытие в свете трубки, тем самым доставляя белый видимый свет.
    6. Таким образом, после зажигания ламповой лампы стартер может быть удален из ламповой лампы, так как он неактивен. (Стартер P.S используется только для ламповых ламп с электрическим балластом, а не для электронных устройств)
    РАБОТА С МАГНИТНЫМ БАЛЛАСТОМ:

    На самом деле балласт магнитного или электрического типа представляет собой индуктивную катушку.Это будет похоже на трансформатор, но это не трансформатор. Это просто медный провод, намотанный на материал сердечника, который делает его похожим на трансформатор. Как правило, индукторы известны своей способностью противодействовать любому изменению входного тока, проходящего через них, поскольку они имеют запаздывающий коэффициент мощности и поэтому используются в этой цепи.

    На самом деле, как видно из работы лампового света, электроды должны иметь высокую температуру, чтобы ламповый свет загорелся. В этом начальном положении балласт будет противодействовать входному току от сети, поскольку сначала он идет прямо в пускатель, предотвращая повреждение.Стартер, включенный последовательно с балластом, работает как выключатель, который изначально находится в рабочем состоянии, после того как ток превысит номинальное значение тока, материал стартера плавится и замыкается.

    Таким образом, проводя ток, проходящий через лампу, свет. Сильный ток, создаваемый для разряда, создается противодействующим током, накопленным в катушке индуктивности. Таким образом зажигая цепь. Из-за наличия воздушной среды ток через нее ионизируется, и сопротивление постепенно уменьшается, при этом ток продолжает увеличиваться.Катушка индуктивности теперь действует как реактивная нагрузка и ограничивает ток, как уже упоминалось выше.

    Поскольку магнитные балласты не так сложны, как электронные балласты, и могут быть проблематичными, их заменяют электронные версии. Магнитные балласты находятся в розетке между вилкой лампочки и шнуром питания.

    В магнитных балластах ток проходит через катушки с медным проводом, прежде чем перейти к лампочке. Большая часть тока улавливается создаваемым им магнитным полем, и только небольшие приращения передаются на лампочку.Пропускаемый ток зависит от толщины и длины медной катушки. Этот непостоянный ток вызывает мерцание лампочки, а также создает жужжащий звук.


    Метод магнитного балласта создает огромное количество индуктивной реактивной мощности, одновременно превышающее величину активной мощности, но эту реактивную мощность можно легко и дешево снизить. компенсируется без риска каких-либо помех.
    ЭЛЕКТРОННЫЕ БАЛЛАСТЫ:

    Электронный балласт дается с нашим обычным A.Источник C с напряжением 220 В при частоте 50 — 60 Гц. Электронный балласт имеет выпрямитель, который сначала преобразует переменное напряжение в постоянное. С помощью конденсаторов фильтруется постоянный ток, полученный от выпрямителя. Отфильтрованный постоянный ток затем пропускается через ряд индукционных катушек, которые отделены друг от друга. Теперь отфильтрованное постоянное напряжение подается на каскад высокочастотных колебаний, где колебания обычно представляют собой прямоугольную волну, а диапазон частот составляет от 20 кГц до 80 кГц. Следовательно, выходной ток имеет очень высокую частоту.


    РАБОТАЕТ:
    Как только напряжение постоянного тока фильтруется конфигурацией конденсатора, напряжение постоянного тока представляет собой высокочастотные катушки, колебания которых будут зависеть от входного напряжения и частоты. Небольшая индуктивность обеспечивается за счет высокой скорости изменения тока и высокочастотной генерации в электронной схеме. Формула индуктивности равна

    I = L (dI / dT)
    Обычно для накаливания требуется напряжение более 440+.когда переключатель включен, напряжение на лампе становится равным 1000 В. Когда процесс разряда превысит ограничение, ток будет течь через лампу и предотвратит короткое замыкание. В рабочем состоянии люминесцентной лампы электронный балласт действует как диммер для ограничения тока и напряжения.

    ФИЛЬТР ЭМИ:
    Он используется для однократного блокирования любых электромагнитных помех, если таковые имеются.

    ВЫПРЯМИТЕЛЬ:
    Он используется для преобразования A.От C до D.C

    РЕЗОНАНСНЫЙ ВЫХОД ПОЛУМОСТА:
    Преобразует постоянный ток в прямоугольное напряжение с высокой частотой.

    Предусмотрена небольшая индуктивность, связанная с высокой скоростью изменения тока на высокой частоте, чтобы генерировать высокие значения. Обычно для включения процесса газового разряда в свете люминесцентных ламп требуется более 400 В. Когда переключатель включен, начальное напряжение на лампе становится около 1000 В из-за высокого значения, поэтому газовый разряд происходит мгновенно.После начала процесса разряда напряжение на лампе снижается от 230 В до 125 В, а затем этот электронный балласт позволяет ограниченному току проходить через эту лампу. Этот контроль напряжения и тока осуществляется блоком управления электронного балласта. В рабочем состоянии люминесцентной лампы электронный балласт действует как диммер для ограничения тока и напряжения.

    электронный балласт не производит — или не должен — производить значительное количество основных реактивных мощность . Однако решающим аргументом в пользу его использования является экономия энергии, достигаемая не столько за счет более низких внутренних потерь в самом балласте, сколько скорее за счет повышения эффективности лампы при работе на высокой частоте от выходных клемм такого электронного балласта. По этой причине они подают меньше энергии в лампы, чем магнитный балласт. Однако электронные балласты в несколько раз дороже. чем простые пассивные магнитные модели и гораздо более восприимчивы к определенным помехам и сами могут стать источником беспокойства. В отличие от магнитного балласты, которые по закону физики могут следовать только одному принципу работы и только одному основному конструкции, силовая электроника обеспечивает богатый выбор вариантов дизайна и принципов работы для проектировать электронные схемы для работы люминесцентных ламп.

    РАЗНИЦА МЕЖДУ НИМИ:

    Еще одно отличие состоит в том, что электронные балласты изменяют частоту электрического тока без изменения напряжения. В то время как магнитные балласты в люминесцентных лампах работают с частотой 60 герц, электронные балласты значительно увеличивают эту частоту до 20 000 герц.

    Из-за такой высокой частоты вы не увидите мерцания огней и не услышите жужжание люминесцентных ламп с электронными балластами.

    Сравнение электронных балластов и магнитных балластов
    Помимо того, что они не мерцают и работают тише, чем магнитные балласты, предпочтительнее использовать электронные балласты, потому что они имеют много других преимуществ. Они меньше по размеру и меньше весят. Они также полезны для окружающей среды и вашего банковского счета, поскольку они энергоэффективны и, следовательно, снижают ваш ежемесячный счет за электроэнергию.

    Еще одно преимущество состоит в том, что электронные балласты могут использоваться в лампах, работающих в параллельном и последовательном режимах.Если одна из ламп погаснет, это не повлияет на другие лампы, даже если все лампы используют один и тот же балласт.

    Кроме того, если вы хотите заменить свой магнитный балласт на электронный, это дешево и относительно легко.

    10 ПРИЧИН, ПОЧЕМУ МЫ ПРЕДПОЧИТАЕМ ЭЛЕКТРОННЫЕ БАЛЛАСТЫ:

    1. Увеличивает срок службы лампы.
    2. Потери балласта меньше и в большинстве случаев незначительны.
    3. Масса минимальная
    4. Минимальный размер
    5. Нет вибрации при запуске
    6. В трубке нет мерцания
    7. Без интерфейса RF
    8. Слишком низкий уровень шума
    9. Работает только при напряжении питания.
    10. Запуск происходит мгновенно, поскольку электронный дроссель работает быстрее.

    ДЛЯ ЛУЧШЕГО ПОНИМАНИЯ КОНЦЕПЦИИ БАЛЛАСТА ПОСМОТРЕТЬ ВИДЕО:

    ВЧ дроссель

    против индуктора — Блог о пассивных компонентах

    Дроссели и ВЧ дроссели в основном представляют собой электрические компоненты одного и того же типа.Разница в конструкции связана с функцией, которую устройство будет выполнять в цепи. Большинство инженеров больше знакомы с индукторами — некоторые думают, что оба устройства могут использоваться взаимозаменяемо — которые распространены в частотно-избирательных системах, таких как тюнер для радиоприемников или фильтров.

    Катушки индуктивности

    Стандартный индуктор создается путем плотной обмотки проводов (катушек) вокруг твердого стержня или цилиндрического кольца, называемого сердечником индуктора. Когда ток циркулирует по проводам, создается магнитный поток, который противоположен изменению тока (сопротивляется любому изменению электрического тока), но пропорционален значению тока.Кроме того, в катушке индуцируется напряжение из-за движения магнитного потока. Сила магнитного потока зависит от типа сердечника.

    Катушки индуктивности классифицируются в зависимости от типа сердечника, на который намотана катушка. На рисунке 1 показаны символы, используемые для различения некоторых типов.

    Рисунок 1: Символы индуктивности. Источник: www.electronics-tutorials.ws

    Единицы

    Как мы видели, катушки индуктивности сопротивляются изменению тока (переменного тока), но легко пропускают постоянный ток.Эта способность противодействовать изменениям тока и взаимосвязи между потоком тока и магнитным потоком в катушке индуктивности измеряется показателем качества, называемым индуктивностью, с символом L и единицами измерения Генри (H), в честь американского ученого и первого секретаря Смитсоновского института. , Джозеф Генри.

    RF Дроссели

    Мы можем думать о ВЧ дросселях как о применении катушек индуктивности. Они спроектированы как фиксированные индукторы с целью перекрытия или подавления высокочастотных сигналов переменного тока (AC), включая сигналы от радиочастотных (RF) устройств, и обеспечения прохождения низкочастотных сигналов и сигналов постоянного тока.Строго говоря, в идеале ВЧ дроссель — это индуктор, который отклоняет все частоты и пропускает только постоянный ток. Для этого дроссель (или катушка индуктивности) должен иметь высокий импеданс в диапазоне частот, который он предназначен для подавления, как мы можем видеть, проверив формулу для значения импеданса, X L :

    X L = 6,283 * f * L

    Где f — частота сигнала, а L — индуктивность. Мы видим, что чем выше частота, тем выше импеданс, поэтому сигнал с высокой частотой встретит эквивалентное сопротивление (импеданс), которое заблокирует его прохождение через дроссель. Низкочастотные сигналы и сигналы постоянного тока будут проходить с небольшими потерями мощности.

    Дроссели обычно состоят из катушки из изолированных проводов, намотанных на магнитный сердечник, или круглой «бусинки» из ферритового материала, нанизанной на провод. Их часто наматывают сложными узорами, чтобы уменьшить их внутреннюю емкость.

    Обычно ВЧ-дроссели можно увидеть на компьютерных кабелях. Они известны как ферритовые шарики и используются для устранения цифрового радиочастотного шума. Как показано на рисунке 2, ферритовые бусины имеют цилиндрическую или торообразную форму и обычно надеваются на проволоку.

    Рисунок 2. Ферритовый шарик. Источник: Wuerth Elektronik

    Саморезонанс

    Реальные катушки индуктивности и дроссели не являются 100-процентными индуктивными. При подаче питания появляются паразитные элементы, которые изменяют поведение устройства и изменяют полное сопротивление. Провода катушки, используемой для изготовления индуктора, всегда создают последовательное сопротивление, а расстояние между витками катушки (обычно разделенных изоляцией) создает паразитную емкость. Этот элемент является параллельным компонентом последовательной комбинации паразитного резистора и идеальной катушки индуктивности. Типичная эквивалентная схема катушки индуктивности показана на рисунке 3.

    Рисунок 3: Эквивалентная схема индуктора

    Реактивное сопротивление идеальной катушки индуктивности и паразитного конденсатора определяется по известным формулам:

    X L = wL = 6,283 * f * L (1)

    X C = 1 / (wC) = 1 / (6,283 * f * C) (2)

    Из-за наличия реактивных сопротивлений значение полного импеданса цепи изменяется с частотой.С увеличением частоты реактивное сопротивление конденсатора падает, а емкость катушки индуктивности увеличивается. Существует частота, при которой реактивное сопротивление идеальной катушки индуктивности и паразитного конденсатора равны. Это называется собственной резонансной частотой параллельной резонансной системы. В параллельном резонансном контуре полное сопротивление на резонансной частоте является максимальным и чисто резистивным. На рисунке 4 показаны графики зависимости импеданса от частоты в соответствии с уравнениями 1 (красным) и 2 (синим).Общий импеданс (черный) показывает резонансную частоту в точке, где оба импеданса равны. Импеданс в этой точке является чисто резистивным и имеет максимальное значение.

    Рисунок 4. Импеданс в зависимости от частоты. Источник: Texas Instruments

    .

    Tube Light Electronic Choke, в Shahdara, Delhi, Bharatiya Electronics

    Tube Light Electronic Choke, в Shahdara, Delhi, Bharatiya Electronics | ID: 16421531688

    Спецификация продукта

    Тип балласта Электронный балласт
    Метод пуска Мгновенный пуск
    Марка Magiclite
    Тип Mini Mini . 12A
    Входная частота 50-60 Гц
    Входное напряжение 90-300В
    Мощность (мощность) 36/40 Вт

    Описание продукта

    Благодаря нашему обширному опыту и знаниям в этой области, мы занимаемся предоставлением серии Tube Light Electronic Choke с гарантированным качеством.

    Диапазон цен: 60-70 рупий / —


    Заинтересовал этот товар? Получите последнюю цену у продавца

    Связаться с продавцом

    Изображение продукта


    О компании

    Год основания 2012

    Юридический статус Фирмы Физическое лицо — Собственник

    Характер бизнеса Производитель

    Количество сотрудников До 10 человек

    IndiaMART Участник с декабря 2009 года

    GST07AJQPB30003D2ZB Мы — известная компания, занимающаяся производством качественного ассортимента патронов для ламп, дверных звонков, электронных дросселей, заглушек и т. Д.Наша продукция известна своим безупречным качеством и длительным сроком службы.

    Видео компании

    Вернуться к началу 1

    Есть потребность?
    Получите лучшую цену

    1

    Есть потребность?
    Получите лучшую цену

    Мне нужно подключить электрический дроссель к карбюратору.

    Где я могу взять ленту для этого? К сожалению, это может немного сбить с толку, а также немного затянуть. Поскольку я не знаю, какой тип проводов используется в вашем приложении, я постараюсь охватить здесь все основы. По сути, для выполнения этой задачи вам понадобится 12-вольтная цепь зажигания с предохранителем.

    Если вы используете OEM-привязь Factory Fit ® , следует учесть несколько моментов. Многие жгуты 1970-х и более поздних версий уже имеют 12-вольтный предохранитель в жгутах, которые использовались для включения таких вещей, как соленоиды остановки холостого хода, системы контроля искры TCS, мощность пониженного давления Turbo 400 и т.Если вам повезло, что у вас есть одна из этих привязей, обычно вы можете просто отключить одну из этих привязок.

    Если у вас ремни Factory Fit до 1970 года, скорее всего, у вас нет провода с предохранителем на 12 В, уже подключенного к ремню. Лучше всего протянуть новый провод к автомобилю и подключить его к одной из дополнительных ножек на блоке предохранителей, где вы видите «IGN FUSED». Если вы предпочитаете, вы также можете коснуться провода подачи стеклоочистителя, так как это также цепь с предохранителем на 12 В.

    То, что вы не хотите делать ни при каких обстоятельствах , — это брать питание от катушки или питания главного распределителя. Для этого есть две причины:


    1. Эта цепь всегда не используется, и вы не хотите подключать электрический дроссель к цепи без предохранителя. В случае короткого замыкания он просто продолжал бы гореть и плавиться все время, пока зажигание было переведено в положение «включено», потому что не было бы предохранителя, который бы контролировал цепь.

    2. Большинство стандартных первичных цепей зажигания подключены через резистивный провод, что позволяет использовать только 8.От 6 до 9,6 вольт на катушку. Этого напряжения будет недостаточно для правильной работы вашего электрического дросселя.


    При использовании любых других комплектов проводки American Autowire, таких как Classic Update, Power Plus, Highway или Builder Series, вам просто нужно взять любой источник питания 12 В с предохранителем зажигания (используйте предохранитель примерно на 10 А) и подключить его к электросети. дроссельная заслонка. У некоторых продуктов AAW на самом деле есть провод, уже предназначенный для электрического дросселя, поэтому следите за этим в своих инструкциях.Как правило, это будет описано в области подключения двигателя вашего набора инструкций

    Что такое электрический дроссель, почему электрический дроссель используется в люминесцентных лампах, применение электрических дроссельных катушек


    Электрический дроссель — очень известное нам слово. Но многие не знают про дроссель . Давайте узнаем об электрическом дросселе.

    Что такое электрический дроссель?


    Электрический дроссель представляет собой катушку или индуктор.Проводник, намотанный на сердечник с несколькими витками, можно назвать дросселем. Электрический дроссель работает так же, как индуктор. Когда ток, протекающий через дроссельную катушку, постоянно изменяется, создается магнитное поле, которое действует против протекающего тока. Поскольку переменный ток постоянно изменяется, дроссельная катушка пытается заблокировать переменный ток. Поскольку постоянный ток не меняется, дроссельная катушка легко проходит через него. Это свойство дроссельной катушки используется для фильтрации выхода выпрямителя.

    Дроссельная катушка или катушка индуктивности также обладают свойством, аналогичным конденсатору, они оба хранят заряды, проходящие через них. Дроссельная катушка накапливает электрический заряд, создавая вокруг себя магнитное поле. Конденсатор так не работает.

    Теперь используется дневной электронный дроссель.

    Почему дроссельная катушка используется в люминесцентных лампах?

    1. Дроссельная катушка соединена последовательно с лампой. Он ограничивает ток во время пуска при замкнутом состоянии биметаллического контакта в пускателе.

    2. Для попадания ионизированного газа внутрь лампы необходимо высокое напряжение. Дроссельная катушка создает на ней высокое напряжение и способствует ионизации газа.

    В настоящее время электронные дроссели используются в люминесцентных лампах.

    Влияние переменного и постоянного тока на электрическую дроссельную катушку:

    Поскольку дроссельная катушка является индуктором, она пытается блокировать переменный ток, но в случае постоянного тока она не оказывает никакого сопротивления прохождению постоянного тока.

    Давайте разберемся математически,

    Нам известно индуктивное реактивное сопротивление (это сопротивление индуктора) XL = 2πfL

    «F» — частота, а «L» — индуктивность.

    Поскольку переменный ток имеет частоту, индуктор дает сопротивление переменному току. Но в случае постоянного тока он не имеет частоты, поэтому катушка индуктивности не оказывает никакого сопротивления протеканию постоянного тока.

    Применение электрических дроссельных катушек:

    1 . Он используется для фильтрации выхода выпрямителя и обеспечения чистого выхода постоянного тока.

    2 . Благодаря своим магнитным свойствам он используется в реле, автоматических выключателях и т. Д.

    3. Используется в устройствах, используемых в радиостанциях.

    4. Применяется в резонансных цепях.

    5. Используется в системах передачи сигналов.

    Читайте также:


    .