26Ноя

Двигатель внутреннего сгорания сообщение – Двигатель внутреннего сгорания | Физика

Содержание

Двигатель внутреннего сгорания | Физика

Двигатель внутреннего сгорания был изобретен в 1860 г. французским механиком Э. Ленуаром. Свое название он получил из-за того, что топливо в нем сжигалось не снаружи, а внутри цилиндра двигателя. Аппарат Ленуара имел несовершенную конструкцию, низкий КПД (около 3 %) и через несколько лет был вытеснен более совершенными двигателями.

Наибольшее распространение среди них получил четырехтактный двигатель внутреннего сгорания, сконструированный в 1878 г. немецким изобретателем Н. Отто. Каждый рабочий цикл этого двигателя включал в себя четыре такта: впуск горючей смеси, ее сжатие, рабочий ход и выпуск продуктов сгорания. Отсюда и название двигателя — четырехтактный.

Двигатели Ленуара и Отто работали на смеси воздуха со светильным газом. Бензиновый двигатель внутреннего сгорания был создан в 1885 г. немецким изобретателем Г. Даймлером. Примерно в это же время бензиновый двигатель был разработан и О. С. Костовичем в России. Горючая смесь (смесь бензина с воздухом) приготовлялась в этом двигателе с помощью специального устройства, называемого карбюратором.

Устройство двигателя внутреннего сгорания
Современный четырехцилиндровый двигатель внутреннего сгорания изображен на рисунке 88. Поршни, находящиеся внутри цилиндров двигателя, соединены с коленчатым валом 1. На этом валу укреплен тяжелый маховик 2. В верхней части каждого цилиндра имеется два клапана: один из них называется впускным, другой — выпускным. Через первый из них горючая смесь попадает в цилиндр, а через второй продукты сгорания топлива уходят наружу.

Принцип действия одноцилиндрового двигателя внутреннего сгорания иллюстрирует рисунок 89.

1-й    такт — впуск. Открывается клапан 1. Клапан 2 закрыт. Движущийся вниз поршень 3 засасывает в цилиндр горючую смесь.
2-й    такт — сжатие. Оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь. Смесь при сжатии нагревается.
3-й    такт — рабочий ход. Оба клапана закрыты. Когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи 4. В результате сгорания смеси образуются раскаленные газы, давление которых составляет 3—6 МПа, а температура достигает 1600—2200 °С. Сила давления этих газов толкает поршень вниз. Движение поршня передается коленчатому валу с маховиком. Получив сильный толчок, маховик будет вращаться дальше по инерции, обеспечивая тем самым перемещение поршня и при последующих тактах.

4-й    такт — выпуск. Открывается клапан 2. Клапан 1 закрыт. Поршень движется вверх. Продукты сгорания топлива уходят из цилиндра и через глушитель (на рисунке не показан) выбрасываются в атмосферу.
Принцип работы двигателя внутреннего сгорания

Мы видим, что в одноцилиндровом двигателе полезная работа совершается лишь во время третьего такта. В четырехцилиндровом двигателе (см. рис. 88) поршни укреплены таким образом, что во время каждого из четырех тактов один из них находится в стадии рабочего хода. Благодаря этому коленчатый вал получает энергию в 4 раза чаще. При этом увеличивается мощность двигателя и в лучшей степени обеспечивается равномерность вращения вала.

Частота вращения вала у большинства двигателей внутреннего сгорания лежит в пределах от 3000 до 7000 оборотов в минуту, а в некоторых случаях достигает 15 000 оборотов в минуту и более.

В 1897 г. немецкий инженер Р. Дизель сконструировал двигатель внутреннего сгорания, в котором сжималась не горючая смесь, а воздух. В процессе этого сжатия температура воздуха поднималась настолько, что при попадании в него топлива оно самовозгоралось. Специального устройства для воспламенения топлива в этом двигателе уже не требовалось; не нужен был и карбюратор. Новые двигатели стали называть дизелями.

Двигатели Дизеля являются наиболее экономичными тепловыми двигателями: они работают на дешевых видах топлива и имеют КПД 31—44 % (в то время как КПД карбюраторных двигателей составляет обычно 25-30 %). В настоящее время они применяются на тракторах, тепловозах, теплоходах, танках, грузовиках, передвижных электростанциях.

Судьба самого изобретателя нового двигателя оказалась трагической. 29 сентября 1913 г. он сел на пароход, отправлявшийся в Лондон. Наутро его в каюте не нашли. Талантливый инженер бесследно исчез. Считается, что он покончил с собой, бросившись ночью в воды Ла-Манша.

Изобретение двигателя внутреннего сгорания сыграло огромную роль в автомобилестроении. Первый автомобиль с бензиновым двигателем внутреннего сгорания был создан в 1886 г. Г. Даймлером. Одновременно с этим Даймлер запатентовал установку своего двигателя на моторной лодке и мотоцикле. В том же году, но чуть позже появился трехколесный автомобиль К- Бенца. Громоздкие и трудноуправляемые паровые автомобили стали вытесняться новыми машинами. Последующие годы явились началом промышленного производства автомобилей.

В 1892 г. свой первый автомобиль построил Г. Форд (США). Через 11 лет его автомобили (рис. 90) были запущены в массовое производство.
Автомобиль Форда

В 1908 г. автомобили начали производить на Русско-Балтийском заводе в Риге. Один из первых русских автомобилей «Руссо-Балт» показан на рисунке 91.
Первый русский автомобиль

Важную роль в развитии и распространении нового вида транспорта сыграли автомобильные гонки, которые стали устраиваться с 1894 г. В первой из них средняя скорость автомобилей составляла лишь 24 км/ч. Однако уже через пять лет она достигла 70 км/ч, а еще через пять лет— 100 км/ч.

После 1900 г. началось производство специальных гоночных автомобилей. С каждым годом их скорость возрастала. В 60-х гг. скорость автомобилей с поршневым двигателем превысила 600 км/ч, а после установки на автомобиле газотурбинного двигателя она перевалила за 900 км/ч. Наконец, в 1997 г. Э. Грин (Великобритания) на своем ракетном автомобиле «Траст SSC» достиг скорости 1227,985 км/ч, что превысило скорость звука в воздухе!

1. Опишите принцип действия четырехтактного двигателя внутреннего сгорания. Из каких тактов состоит каждый его рабочий цикл? 2. Какую роль в двигателе играет маховик? 3. Чем отличается дизельный двигатель внутреннего сгорания от карбюраторного? 4. Кто создал первые автомобили с двигателем внутреннего сгорания?

phscs.ru

Надо написать доклад на тему. Двигатель внутреннего сгорания. Напишите пожалуйста

Надо написать доклад на тему. Двигатель внутреннего сгорания. Напишите пожалуйста

В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу.

Различают следующие основные типы двигателей внутреннего сгорания: поршневой, роторно-поршневой и газотурбинный. Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.

Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются: автономность, универсальность (сочетание с различными потребителями), невысокая стоимость, компактность, малая масса, возможность быстрого запуска, многотопливность.

Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков, к которым относятся: высокий уровень шума, большая частота вращения коленчатого вала, токсичность отработавших газов, невысокий ресурс, низкий коэффициент полезного действия.

В зависимости от вида применяемого топлива различают бензиновые и дизельные двигатели. Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.

Водородный двигатель с точки зрения экологии является перспективным, т. к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.

Устройство двигателя внутреннего сгорания

Поршневой двигатель внутреннего сгорания включает корпус, два механизма (кривошипно-шатунный и газораспределительный) и ряд систем (впускную, топливную, зажигания, смазки, охлаждения, выпускную и систему управления).

Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.

Впускная система предназначена для подачи в двигатель воздуха. Топливная система питает двигатель топливом. Совместная работа данных систем обеспечивает образование топливно-воздушной смеси. Основу топливной системы составляет система впрыска.

Система зажигания осуществляет принудительное воспламенение топливно-воздушной смеси в бензиновых двигателях. В дизельных двигателях происходит самовоспламенение смеси.

Система смазки выполняет функцию снижения трения между сопряженными деталями двигателя. Охлаждение деталей двигателя, нагреваемых в результате работы, обеспечивает система охлаждения. Важные функции отвода отработавших газов от цилиндров двигателя, снижения их шума и токсичности предписаны выпускной системе.

Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.

Работа двигателя внутреннего сгорания

Принцип работы ДВС основан на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.

Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель): впуск, сжатие, рабочий ход и выпуск.

Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).

На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.

На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.

fizikahelp.ru

Двигатель внутреннего сгорания — это… Что такое Двигатель внутреннего сгорания?

Дви́гатель вну́треннего сгора́ния (сокращённо ДВС) — это тип двигателя, тепловой машины, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую энергию.

Несмотря на то, что двигатель внутреннего сгорания относится к относительно несовершенному типу тепловых машин (

громоздкость, сильный шум, токсичные выбросы и необходимость системы их отвода, относительно небольшой ресурс, необходимость охлаждения и смазки, высокая сложность в проектировании, изготовлении и обслуживании, сложная система зажигания, большое количество изнашиваемых частей, высокое потребление горючего и так далее), благодаря своей автономности (используемое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы), ДВС очень широко распространены, — например, на транспорте.

История создания

В 1799 году французский инженер Филипп Лебон открыл светильный газ. В 1799 году он получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля, однако светильный газ годился не только для освещения.

В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения, стремительно расширяясь, оказывали сильное давление на окружающую среду — таким образом, оставалось только найти способ использования выделившейся энергии. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый светильный газ из газогенератора. Затем газовоздушная смесь поступала в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он погиб, так и не успев воплотить в жизнь своё изобретение.

В последующие годы изобретатели из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной.

Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи. Решив возникшие по ходу проблемы (тугой ход и перегрев поршня, ведущий к заклиниванию) продумав систему охлаждения и смазки двигателя, Ленуар создал работоспособный двигатель внутреннего сгорания. В 1864 году было выпущено более трёхсот таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над дальнейшим усовершенствованием своей машины, и это предопределило её судьбу — она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто и получившим патент на изобретение своей модели газового двигателя в 1864 году.

В 1864 году немецкий изобретатель Августо Отто заключил договор с богатым инженером Лангеном для реализации своего изобретения — была создана фирма «Отто и Компания». Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. Цилиндр двигателя Отто, в отличие от двигателя Ленуара, был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Принцип действия: вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разреженное пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разрежение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 %, то есть превосходил КПД самых лучших паровых машин того времени. Кроме того, двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Несмотря на это, Отто упорно работал над усовершенствованием их конструкции. Вскоре была применена кривошипно-шатунная передача. Однако самое существенное из его изобретений было сделано в 1877 году, когда Отто получил патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

Типы двигателей внутреннего сгорания

Поршневой ДВС Роторный ДВС Газотурбинный ДВС

ДВС классифицируют:

а) По назначению — делятся на транспортные, стационарные и специальные.

б) По роду применяемого топлива — легкие жидкие (бензин, газ), тяжелые жидкие (дизельное топливо, судовые мазуты).

в) По способу образования горючей смеси — внешнее (карбюратор, инжектор) и внутреннее (в цилиндре ДВС).

г) По способу воспламенения (с принудительным зажиганием, с воспламенением от сжатия, калоризаторные).

д) По расположению цилиндров разделяют рядные, вертикальные, оппозитные с одним и с двумя коленвалами, V-образные с верхним и нижним расположением коленвала, VR-образные и W-образные, однорядные и двухрядные звездообразные, Н-образные, двухрядные с параллельными коленвалами, «двойной веер», ромбовидные, трехлучевые и некоторые другие.

Бензиновые

Бензиновые карбюраторные

Смесь топлива с воздухом готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае — гомогенность.

Бензиновые инжекторные

Также, существует способ смесеобразования путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжектор). Существуют системы одноточечного и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно — рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется под управлением электронного блока управления (ЭБУ), управляющим электрическими бензиновыми вентилями.

Дизельные, с воспламенением от сжатия

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания. Т. к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.

Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Дизельное топливо является более дешевым, нежели бензин. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжелых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счет пневматической схемы с запасом сжатого воздуха, либо в случае с инверторными генераторными установками, от присоединенной электромашины, которая при обычной эксплуатации выполняет роль генератора.

Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера-Сабатэ со смешанным подводом теплоты.

Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряженностью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Газовые

Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

  • смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
  • сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
  • генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются:

Газодизельные

Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

Роторно-поршневой

Предложен изобретателем Ванкелем в начале ХХ века. Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 «Жигули», ВАЗ-416, ВАЗ-426, ВАЗ-526), в настоящее время строится только Маздой (Mazda RX-8). При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки.

В Германии в конце 70х годов ХХ века существовал анекдот: «Продам НСУ, дам в придачу два колеса, фару и 18 запасных моторов в хорошем состоянии».

  • RCV — двигатель внутреннего сгорания, система газораспределения которого реализована за счёт движения поршня, который совершает возвратно-поступательные движения, попеременно проходя впускной и выпускной патрубок.

Комбинированный двигатель внутреннего сгорания

  •  — двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой и лопаточной машин (турбина, компрессор), в котором обе машины в соотносимой мере участвуют в осуществлении рабочего процесса. Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув). Большой вклад в теорию комбинированных двигателей внес советский инженер, профессор А. Н. Шелест.

Циклы работы поршневых ДВС

Двухтактный цикл Схема работы четырёхтактного двигателя, цикл Отто
1. впуск
2. сжатие
3. рабочий ход
4. выпуск

Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.

Рабочий цикл четырёхтактных двигателей внутреннего сгорания занимает два полных оборота кривошипа, состоящий из четырёх отдельных тактов:

  1. впуска,
  2. сжатия заряда,
  3. рабочего хода и
  4. выпуска (выхлопа).

Изменение рабочих тактов обеспечивается специальным газораспределительным механизмом, чаще всего он представлен одним или двумя распределительными валами, системой толкателей и клапанами, непосредственно обеспечивающими смену фазы. Некоторые двигатели внутреннего сгорания использовали для этой цели золотниковые гильзы (Рикардо), имеющие впускные и/или выхлопные окна. Сообщение полости цилиндра с коллекторами в этом случае обеспечивалось радиальным и вращательным движениями золотниковой гильзы, окнами открывающей нужный канал. Ввиду особенностей газодинамики — инерционности газов, времени возникновения газового ветра такты впуска, рабочего хода и выпуска в реальном четырёхтактном цикле перекрываются, это называется перекрытием фаз газораспределения. Чем выше рабочие обороты двигателя, тем больше перекрытие фаз и чем оно больше, тем меньше крутящий момент двигателя внутреннего сгорания на низких оборотах. Поэтому в современных двигателях внутреннего сгорания всё шире используются устройства, позволяющие изменять фазы газораспределения в процессе работы. Особенно пригодны для этой цели двигатели с электромагнитным управлением клапанами (BMW, Mazda). Имеются также двигатели с переменной степенью сжатия (СААБ), обладающие большей гибкостью характеристики.

Двухтактные двигатели имеют множество вариантов компоновки и большое разнообразие конструктивных систем. Основной принцип любого двухтактного двигателя — исполнение поршнем функций элемента газораспределения. Рабочий цикл складывается, строго говоря, из трёх тактов: рабочего хода, длящегося от верхней мёртвой точки (ВМТ) до 20—30 градусов до нижней мёртвой точки (НМТ), продувки, фактически совмещающей впуск и выхлоп, и сжатия, длящегося от 20—30 градусов после НМТ до ВМТ. Продувка, с точки зрения газодинамики, слабое звено двухтактного цикла. С одной стороны, невозможно обеспечить полное разделение свежего заряда и выхлопных газов, поэтому неизбежны либо потери свежей смеси, буквально вылетающей в выхлопную трубу (если двигатель внутреннего сгорания — дизель, речь идёт о потере воздуха), с другой стороны, рабочий ход длится не половину оборота, а меньше, что само по себе снижает КПД. В то же время длительность чрезвычайно важного процесса газообмена, в четырёхтактном двигателе занимающего половину рабочего цикла, не может быть увеличена. Двухтактные двигатели могут вообще не иметь системы газораспределения. Однако, если речь не идёт об упрощённых дешёвых двигателях, двухтактный двигатель сложнее и дороже за счёт обязательного применения воздуходувки или системы наддува, повышенная теплонапряжённость ЦПГ требует более дорогих материалов для поршней, колец, втулок цилиндров. Исполнение поршнем функций элемента газораспределения обязывает иметь его высоту не менее ход поршня + высота продувочных окон, что некритично в мопеде, но существенно утяжеляет поршень уже при относительно небольших мощностях. Когда же мощность измеряется сотнями лошадиных сил, увеличение массы поршня становится очень серьёзным фактором. Введение распределительных гильз с вертикальным ходом в двигателях Рикардо было попыткой сделать возможным уменьшение габаритов и массы поршня. Система оказалась сложной и дорогой в исполнении, кроме авиации, такие двигатели нигде больше не использовались. Выхлопные клапаны (при прямоточной клапанной продувке) имеют вдвое большую теплонапряжённость в сравнении с выхлопными клапанами четырёхтактных двигателей и худшие условия для теплоотвода, а их сёдла имеют более длительный прямой контакт с выхлопными газами.

Самой простой с точки зрения порядка работы и самой сложной с точки зрения конструкции является система Фербенкс — Морзе, представленная в СССР и в России, в основном, тепловозными дизелями серий Д100. Такой двигатель представляет собой симметричную двухвальную систему с расходящимися поршнями, каждый из которых связан со своим коленвалом. Таким образом, этот двигатель имеет два коленвала, механически синхронизированные; тот, который связан с выхлопными поршнями, опережает впускной на 20—30 градусов. За счёт этого опережения улучшается качество продувки, которая в этом случае является прямоточной, и улучшается наполнение цилиндра, так как в конце продувки выхлопные окна уже закрыты. В 30х — 40х годах ХХ века были предложены схемы с парами расходящихся поршней — ромбовидная, треугольная; существовали авиационные дизели с тремя звездообразно расходящимися поршнями, из которых два были впускными и один — выхлопным. В 20-х годах Юнкерс предложил одновальную систему с длинными шатунами, связанными с пальцами верхних поршней специальными коромыслами; верхний поршень передавал усилия на коленвал парой длинных шатунов, и на один цилиндр приходилось три колена вала. На коромыслах стояли также квадратные поршни продувочных полостей. Двухтактные двигатели с расходящимися поршнями любой системы имеют, в основном, два недостатка: во-первых, они весьма сложны и габаритны, во-вторых, выхлопные поршни и гильзы в зоне выхлопных окон имеют значительную температурную напряжённость и склонность к перегреву. Кольца выхлопных поршней также являются термически нагруженными, склонны к закоксовыванию и потере упругости. Эти особенности делают конструктивное исполнение таких двигателей нетривиальной задачей.

Двигатели с прямоточной клапанной продувкой оснащены распределительным валом и выхлопными клапанами. Это значительно снижает требования к материалам и исполнению ЦПГ. Впуск осуществляется через окна в гильзе цилиндра, открываемые поршнем. Именно так компонуется большинство современных двухтактных дизелей. Зона окон и гильза в нижней части во многих случаях охлаждаются наддувочным воздухом.

В случаях, когда одним из основных требований к двигателю является его удешевление, используются разные виды кривошипно-камерной контурной оконно-оконной продувки — петлевая, возвратно-петлевая (дефлекторная) в разнообразных модификациях. Для улучшения параметров двигателя применяются разнообразные конструктивные приёмы — изменяемая длина впускного и выхлопного каналов, может варьироваться количество и расположение перепускных каналов, используются золотники, вращающиеся отсекатели газов, гильзы и шторки, изменяющие высоту окон (и, соответственно, моменты начала впуска и выхлопа). Большинство таких двигателей имеет воздушное пассивное охлаждение. Их недостатки — относительно невысокое качество газообмена и потери горючей смеси при продувке, при наличии нескольких цилиндров секции кривошипных камер приходится разделять и герметизировать, усложняется и удорожается конструкция коленвала.

Дополнительные агрегаты, требующиеся для ДВС

Недостатком двигателя внутреннего сгорания является то, что он развивает наивысшую мощность только в узком диапазоне оборотов. Поэтому неотъемлемым атрибутом двигателя внутреннего сгорания является трансмиссия. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля, в котором мотор всегда работает в оптимальном режиме.

Кроме того, двигателю внутреннего сгорания необходимы система питания (для подачи топлива и воздуха — приготовления топливо-воздушной смеси), выхлопная система (для отвода выхлопных газов), также не обойтись без системы смазки(предназначена для уменьшения сил трения в механизмах двигателя, защиты деталей двигателя от коррозии, а также совместно с системой охлаждения для поддержания оптимального теплового режима), системы охлаждения(для поддержания оптимального теплового режима двигателя), система запуска (применяются способы запуска: электростартерный, с помощью вспомогательного пускового двигателя, пневматический, с помощью мускульной силы человека), система зажигания (для воспламениня топливо-воздушной смеси, применяется у двигателей с принудительным воспламенением).

См. также

Примечания

Ссылки

dic.academic.ru

Двигатель внутреннего сгорания

ВВЕДЕНИЕ

В древности люди приводили в действие простейшие механизмы руками или с помощью животных. Затем они научились использовать силу ветра, плавая на парусных кораблях. Они научились так же использовать ветер для вращения ветряных мельниц, перемалывающих зерно в муку. Позже они стали применять энергию течения воды в реках для вращения водяных колес. Эти колеса перекачивали и поднимали воду или приводили в действие различные механизмы.
История появления тепловых двигателей уходит в далекое прошлое. Хотя и двигатель внутреннего сгорания – очень сложный механизм. И функция, выполняемая тепловым расширением в двигателях внутреннего сгорания не так проста, как это кажется на первый взгляд. Да и не существовало бы двигателей внутреннего сгорания без использования теплового расширения газов.

Цель работы:
Рассмотреть двигатель внутреннего сгорания.

Задачи:
1. Изучить теорию двигателей внешнего и внутреннего сгорания.
2. Сконструировать модель на основе теории ДВС.
3. Рассмотреть влияние ДВС на окружающую среду.
4. Создать буклет на тему: “Двигатель внутреннего сгорания ”.

Гипотеза:
В качестве энергетических установок автомобилей наибольшее распространение получили двигатели внутреннего сгорания, в которых процесс сгорания топлива с выделением теплоты и превращением ее в механическую работу происходит непосредственно в цилиндрах. На большинстве современных автомобилей установлены двигатели внутреннего сгорания.

Актуальность:
Физика и физические законы являются неотъемлемой частью нашей жизни.
Техника, здания, различные процессы, протекающие в нашем мире – все это физика. Мы не можем жить и не знать, хотя бы элементарных законов этой науки. А, следовательно, физика – это актуальная, не стареющая наука.
Тема нашей работы поможет ученикам понять и усвоить на первый взгляд самые обычные процессы в окружающем нас мире, но сложные по своему устройству.


РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Двигатель внутреннего сгорания

Значительный рост всех отраслей народного хозяйства требует перемещения большого количества грузов и пассажиров. Высокая маневренность, проходимость и приспособленность для работы в различных условиях делает автомобиль одним из основных средств перевозки грузов и пассажиров. На долю автомобильного транспорта приходится свыше 80% грузов, перевозимых всеми видами транспорта вместе взятыми, и более 70% пассажирских перевозок. За последние годы заводами автомобильной промышленности освоены многие образцы модернизированной и новой автомобильной техники, в том числе для сельского хозяйства, строительства, торговли, нефтегазовой и лесной промышленности. В настоящее время существует большое количество устройств, использующих тепловое расширение газов. К таким устройствам относится карбюраторный двигатель, дизели, турбореактивные двигатели и т. д.

Тепловые двигатели могут быть разделены на две основные группы:
1. Двигатели с внешним сгоранием.
2. Двигатели внутреннего сгорания.

Изучая тему урока “Двигатели внутреннего сгорания” в 8 классе мы заинтересовались этой темой. Мы живем в современном мире, в котором техника играет важную роль. Не только та техника, которую мы используем у себя дома, но и на которой ездим – автомобиль. Рассматривая машину, я убедился, что двигатели это необходимая часть автомобиля. Неважно будь это старая или новая машина. Поэтому мы решили затронуть тему двигателя внутреннего сгорания, который использовали и раньше и сейчас.

Для того, чтобы понять устройство ДВС, мы решили создать его сами и вот, что у нас получилось.

Изготовление ДВС

Материал: картон, клей, проволока, моторчик, шестерни, батарейка 9V.

Ход изготовления
1. Изготовили из картона коленвал (вырезали круг)
2. Изготовили шатун (сложили прямоугольный лист картона 15*8 пополам и ещё на 90градусов), на концах которого сделали отверстия
3. Из картона изготовили поршень, в котором сделали отверстия (под поршневые пальцы)
4. Поршневые пальцы сделали по размеру отверстия в поршне, свернув небольшой лист картона
5. С помощью поршневого пальца закрепили поршень на шатуне, а с помощью проволоки шатун прикрепили к коленвалу
6. По размеру поршня свернули цилиндр, а по размеру коленвала картер (Картер – коробочка под коленвал)
7. Собрали механизм вращения коленвала (с помощью шестерёнок и моторчика), так чтобы при больших оборотах моторчика вращающий механизм развивал меньшие обороты (чтобы он мог провернуть коленвал с шатуном и поршнем)
8. К коленвалу прикрепили вращающийся механизм и поместили его в картер (закрепив вр. механизм к стенке картера)
9. Поршень поместили в цилиндр и склеили цилиндр с картером.
10. Идущие два провода + и – от моторчика присоединяем к батарейке и наблюдаем движение поршня.

Вид модели снаружи

Вид модели внутри

Применение ДВС

Тепловое расширение нашло свое применение в различных современных технологиях. В частности можно сказать о применении теплового расширения газа в теплотехники. Так, например, это явление применяется в различных тепловых двигателях, т. е. в двигателях внутреннего и внешнего сгорания:
* Роторных двигателях;
* Реактивных двигателях;
* Турбореактивных двигателях;
* Газотурбинные установки;
* Двигателях Ванкеля;
* Двигателях Стирлинга;
* Ядерные силовые установки.

Тепловое расширение воды используется в паровых турбинах и т. д. Все это в свою очередь нашло широкое распространение в различных отраслях народного хозяйства. Например, двигатели внутреннего сгорания наиболее широко используются:
* Транспортные установки;
* Сельскохозяйственные машины.

В стационарной энергетике двигатели внутреннего сгорания широко используются:
* На небольших электростанциях;
* Энергопоезда;
* Аварийные энергоустановки.

ДВС получили большое распространение также в качестве привода компрессоров и насосов для подачи газа, нефти, жидкого топлива и т. п. по трубопроводам, при производстве разведочных работ, для привода бурильных установок при бурении скважин на газовых и нефтяных промыслах.
Турбореактивные двигатели широко распространены в авиации. Паровые турбины – основной двигатель для привода электрогенераторов на ТЭС. Применяют паровые турбины также для привода центробежных воздуходувок, компрессоров и насосов.
Существуют даже паровые автомобили, но они не получили распространения из–за конструктивной сложности.
Тепловое расширение применяется также в различных тепловых реле, принцип действия, которых основан на линейном расширении трубки и стержня, изготовленных из материалов с различным температурным коэффициентом линейного расширения.

Воздействие тепловых двигателей на окружающую среду

Отрицательное влияние тепловых машин на окружающую среду связано с действием различных факторов.
Во–первых, при сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается.
Во–вторых, сжигание топлива сопровождается выделением в атмосферу углекислого газа.
В–третьих, при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека. А автомобильные двигатели ежегодно выбрасывают в атмосферу 2–3 тонны свинца.
Выбросы вредных веществ в атмосферу – не единственная сторона воздействия тепловых двигателей на природу. Согласно законам термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на Земле.

Методы борьбы с вредными воздействиями тепловых двигателей на окружающую среду

Один из способов уменьшения путей загрязнения окружающей среды связан с использованием в автомобилях вместо карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца.
Перспективными являются разработки автомобилей, в которых вместо бензиновых двигателей применяются электродвигатели или двигатели, использующие в качестве топлива водород.
Другой способ заключается в увеличении КПД тепловых двигателей. В Институте нефтехимического синтеза им. А. В. Топчиева РАН разработаны новейшие технологии превращения углекислого газа в метанол (метиловый спирт) и диметиловый эфир, увеличивающие в 2–3 раза производительность аппаратов при значительном уменьшении электроэнергии. Здесь был создан реактор нового типа, в котором производительность увеличена в 2–3 раза.
Введение этих технологий снизит накопление углекислого газа в атмосфере и поможет не только создать альтернативное сырьё для синтеза многих органических соединений, основой для которых сегодня служит нефть, но и решить упомянутые выше экологические проблемы.

ЗАКЛЮЧЕНИЕ

Благодаря нашей работе можно сделать следующие выводы:
Не существовало бы двигателей внутреннего сгорания без использования теплового расширения газов. И в этом мы легко убеждаемся, рассмотрев подробно принцип работы ДВС, их рабочие циклы – вся их работа основана на использовании теплового расширении газов. Но ДВС – это только одно из конкретных применений теплового расширения. И судя по тому, какую пользу приносит тепловое расширение людям через двигатель внутреннего сгорания, можно судить о пользе данного явления в других областях человеческой деятельности.
И пускай проходит эра двигателя внутреннего сгорания, пусть у них есть много недостатков, пусть появляются новые двигатели, не загрязняющие внутреннюю среду и не использующие функцию теплового расширения, но первые еще долго будут приносить пользу людям, и люди через многие сотни лет будут по доброму отзываться о них, ибо они вывели человечество на новый уровень развития, а пройдя его, человечество поднялось еще выше.

Литература

1. Хрестоматия по физике: А. С. Енохович – М.: Просвещение, 1999
2. Детлаф А. А., Яворский Б. М. Курс физики: – М., Высшая школа., 1989.
3. Кабардин О. Ф. Физика: Справочные материалы: Просвещение 1991.
4. Интернет–ресурсы.


Авторы работы:
Кайгородов Илья,
Филипчук Евгений,
ученики 10 класса

Руководители работы:
Шаврова Т. Г. учитель физики,
Бачурин Д. Н. учитель информатики.

Муниципальное общеобразовательное учреждение
“Первомайская средняя общеобразовательная школа №2”
Бийского района Алтайского края

Презентация работы: http://static.livescience.ru/dvigatel/presentation.pdf

livescience.ru

Доклад на тему Дизельный двигатель (сообщение 8 класс) (описание для детей)

Рудольф Дизель, немецкий инженер, стал знаменитым на весь мир благодаря изобретению дизельного двигателя. Это двигатель внутреннего сгорания, которому изобретатель посвятил всю свою жизнь. Это изобретение оказало огромное влияние, как на науку, так и на жизнь простых людей.

Патент на двигатель был получен в 1893 году, но идея создать двигатель, обладающий большим КПД, чем популярные тогда паровые машины пришла Дизелю еще в студенческие годы, когда он проходил обучение в  Баварском Политехническом институте.

Изобретателем была выведена зависимость –  при увеличении степени сжатия растет производительность механизма. Первый надежно работающий образец  четырехтактового двигателя  был сконструирован в 1897 году, ему предшествовали неудачные образцы, выходившие из строя  от сильного сжатия горючей смеси.

По какому принципу работает дизельный мотор?

Первый такт – такт впуска.  Открывается впускной клапан, в цилиндр начинает поступать воздух. Перемещением поршня создается разряжение в камере сгорания, что помогает воздуху втягиваться в цилиндр.

Второй такт – сжатие. Клапаны закрываются, поршень двигается к верхней точке цилиндра. Поступивший во время первого такта воздух сжимается, увеличивается его  давление и температура. Через форсунки впрыскивается дизельное топливо, когда поршень близок к своему верхнему положению. Из-за контакта с горячим воздухом происходит воспламенения смеси топлива.

Третий такт – рабочий ход. Из-за сгорания топлива возрастает давление, которое перемещает поршень к нижней точке цилиндра, это является движущей силой мотора.

Четвертый такт – выпуск. Через клапан выпуска из камеры сгорания  удаляются отработанные газы. Поршень вновь движется вверх, ”выталкивая” выхлопные газы.

За тактом выпуска опять следует такт впуска, и так по кругу.

В настоящее время существует огромное количество вариантов дизельных двигателей, но их основная особенность – впрыскивание топлива. Разнятся материалы, из которых сделан двигатель, используемые им виды топлива, но принцип работы остается одним и тем же.

Основное преимущество дизельного двигателя перед бензиновым заключается в его экономичности – вместо сжигания жидкого топлива происходит воспламенение топливной смеси, это позволяет сильно экономить на топливе. Также, дизельные моторы более надежные, из-за того, что в них отсутствует система зажигания, работающая от высокого напряжения.

Физика. 8 класс

Картинка к сообщению Дизельный двигатель

Дизельный двигатель

Популярные сегодня сообщения и доклады

  • Доклад-сообщение Река Обь (4, 6, 8 класс. Окружающий мир)

    По просторам западной части Сибири течет река с интересным названием Обь. Она является самой протяженной в России и поистине великой. Во-первых, это огромный источник водных ресурсов

  • Доклад Животные Кубани (сообщение)

    В России много прекрасных мест: великолепные зелёные леса, луга, покрытые цветами, высокие горы, степи, множество рек и озёр. Одним из таких мест является регион на Северном Кавказе – Кубань.

  • Доклад-сообщение Музыкальная культура барокко

    Эпоха барокко – довольно таки значимый период в развитии европейской академической музыки. Она берет свое начало со времен эпохи Возрождения и предшествует классицизму.

  • Доклад Программа Word (сообщение)

    Сейчас в это сложно поверить, однако первая версия Microsoft Word была создана в далеком 1983-м году. Естественно, она существенно отличалась от того варианта текстового редактора, который

  • Доклад на тему Права и обязанности гражданина

    ражданин этот термин обозначает человека, который проживает на территории государства (вместе с другим населением), он по праву пользуется правами (защита, права) которое предоставляет ему го

  • Доклад на тему Большая пирамида Хеопса сообщение

    Легендарные египетские пирамиды, и сейчас хранящие множество загадок — это единственное из семи удивительных чудес света, которое сохранилось до настоящего времени

doklad-i-referat.ru

Двигатель внутреннего сгорания: устройство и принцип работы

 

Согласитесь, что сегодня невозможно представить себе современный мир без автомобилей, поездов, теплоходов и так далее. А ведь так было не всегда.

Еще совсем недавно каких-то двести лет назад единственным средством передвижения по земле кроме собственных ног были лошади. Лошади возили телеги, повозки, кареты, даже вагоны по рельсам.

И мысль о том, что все это можно передвигать без помощи этих несчастных животных была из области фантастики. Тогда-то, в начале 19 века, и начались первые изобретения самоходных машин на основе парового двигателя.

В таком двигателе нагревался огнем наполненный водой котел, и пар от кипящей воды совершал механическую работу по приведению двигателя в ход. Двигатели были чудовищными, малоэффективными, огромными и небезопасными. Однако, на основе этих двигателей были созданы первые автомобили, паровозы и пароходы.

Изобретение двигателя внутреннего сгорания

Людям понравилась эта затея, несмотря на все минусы. Тогда это было чудом техники. И лишь в 1860 году, когда паровые двигатели применялись уже повсеместно и перестали считаться чем-то необыкновенным, был изобретен первый двигатель внутреннего сгорания.

Еще 18 лет понадобилось, чтобы изобретение доработали до нормально работающего варианта, который и по сей день является основой любого двигателя внутреннего сгорания четырехтактного двигателя.

Еще через семь лет двигатели начали работать на бензине. До этого их топливом был светильный газ. В наше время практически везде применяются двигатели внутреннего сгорания с кратным четырем количеством цилиндров. Давайте рассмотрим устройство и принцип работы двигателя внутреннего сгорания.

Устройство и принцип работы двигателя внутреннего сгорания

Он состоит из цилиндра с поршнем, клапанов для впуска топлива и выпуска отработанных паров и коленчатого вала, соединенного с поршнем. Разберем, как работает двигатель внутреннего сгорания на основе простейшего одноцилиндрового движка.

Во время первого такта сквозь топливный клапан впускается горючая смесь бензина и воздуха. Поршень двигается вниз.

На втором такте поршень двигается вверх, сжимая эту смесь, отчего она нагревается.

Третий такт: сжатая смесь поджигается электрической свечой, и энергия от этого небольшого взрыва толкает поршень вниз, приводя в движение коленчатый вал. Энергии толчка достаточно, чтобы коленвал, вращаясь по инерции, приводил в движение поршень при последующих тактах.

И наконец, на четвертом такте, сквозь второй клапан отработанные газы выталкиваются поршнем из цилиндра. Как видно, только один из четырех тактов рабочий.

Для равномерного вращения вала и увеличения мощности совмещают на одном валу четыре цилиндра таким образом, чтобы во время каждого такта один из цилиндров был в стадии рабочего хода. В таком случае они равномерно и последовательно вращают коленвал. Восемь, двенадцать и более цилиндров применяются уже исключительно для увеличения мощности движка.

Нужна помощь в учебе?



Предыдущая тема: Удельная теплота парообразования
Следующая тема:&nbsp&nbsp&nbspЭлектризация тел: два рода зарядов

Все неприличные комментарии будут удаляться.

www.nado5.ru

области применения ДВС. Классификация ДВС

Типы автомобильных двигателей

Среди двигателей, применяющихся в настоящее время, а также перспективных для использования на автомобильном транспорте, следует отметить следующие типы:

1. Двигатели внутреннего сгорания, которые подразделяют на поршневые и роторно-поршневые.

2. Газотурбинные двигатели (ГТД).

3. Двигатели внешнего сгорания (паровые, двигатели Стирлинга).

4. Электрические двигатели.

5. Криогенные двигатели.

6. Инерционные двигатели.

Двигатели внутреннего сгорания (ДВС) в настоящее время являются наиболее распространенными автомобильными двигателями. В этих двигателях топливо сгорает непосредственно внутри рабочего органа — цилиндра (в поршневых двигателях) или в полости, образованной ротором и корпусом (в роторных двигателях). Основным преимуществом ДВС является непосредственное воздействие продуктов сгорания топлива на поршень. Это дает возможность добиться сравнительно высоких значений термического коэффициента полезного действия (ТКПД).

Высокая (по сравнению с другими типами тепловых двигателей) экономичность ДВС, возможность построения их в большом диапазоне мощностей, достаточно быстрый пуск, небольшие масса и размеры, сравнительно невысокая стоимость, большой ресурс обусловили их широчайшее распространение в различных сферах деятельности. ДВС в настоящее время являются практически единственным типом двигателей в силовых агрегатах не только автомобилей, но и тракторов, сельскохозяйственной техники, дорожных, строительных машин. Судовые, локомотивные и авиационные силовые установки малой мощности обычно также представлены двигателями внутреннего сгорания различных типов.

Области применения ДВС

Поршневые и комбинированные двигатели в зависимости от их назначения изготовляются с мощностью от нескольких сот ватт до 40000кВт. Основные области их применения:

1. Автомобильный транспорт, тракторы, сельхозмашины и др.

2. Железнодорожный транспорт, в т.ч. энергопоезда.

3. Морской и речной флот, катера.

4. Легкомоторная авиация.

5. Строительная, дорожная техника (экскаваторы, бульдозеры, скреперы, грейдеры, самоходные краны, компрессоры, передвижные электростанции и др.).

6. Стационарная электроэнергетика.

7. Привод компрессоров, насосов на трубопроводах, в бурильных установках.

8. Модели и модельные установки.

9. Военная и специальная техника.

Классификация ДВС.

Признаки классификации ДВС могут быть различными и определяются как назначением, особенностями практического применения, так и принципами построения, элементами конструкции и др. Поэтому при некоторой условности все же следует отметить следующие общепринятые принципы и признаки классификации поршневых двигателей.

1. По назначению: стационарные, переносные, транспортные (автомобильные, тракторные, судовые, авиационные и др.).

2. По роду применяемого топлива: двигатели легкого топлива, тяжелого, газообразного, многотопливные.

3. По способу осуществления зарядки цилиндров: четырехтактные и двухтактные двигатели.

4. По способу смесеобразования: двигатели с внешним и внутренним смесеобразованием.

5. По способу воспламенения смеси: двигатели с искровым зажиганием и двигатели с воспламенением от сжатия.

6. По конструктивному расположению цилиндров и схеме: рядные и звездообразные, вертикальные и горизонтальные схемы. Кроме того, рядные двигатели подразделяют на V-, W-, H-, Y- и X-образные и др. Некоторые варианты компоновки представлены на рис.1.1.

7. По способу охлаждения двигатели разделяют на двигатели с жидкостным и воздушным охлаждением.

Помимо перечисленных признаков иногда двигатели классифицируют по способам регулирования, скорости вращения, признакам цикла, наличию систем наддува и т.д.

В современных автомобилях применяются преимущественно четырехтактные поршневые двигатели с рядным, V-образным и оппозитным расположением цилиндров.

studfile.net