10Авг

Типы двигателей внутреннего сгорания: Типы двигателей внутреннего сгорания

Двигатель внутреннего сгорания поршневого типа

 

Использование: модифицированные дизельные двигатели, работающие на смеси газа и воздуха. Сущность изобретения: предлагается двигатель внутреннего сгорания поршневого типа, у которого степень сжатия превышает 15. Двигатель снабжен системой зажигания, в которой момент зажигания находится за верхней мертвой точкой, в частности, в пределах от 0o от верхней мертвой точки до около 20o от верхней мертвой точки, и предпочтительно, отстоит на 4o от верхней мертвой точки. Результирующее зажигание создает максимальное давление в цилиндре в момент, отстоящий на 90o от верхней мертвой точки, тем самым достигается высокая эффективность сгорания топлива без резкого увеличения температуры в камере сгорания. 5 з.п. ф-лы, 3 ил.

Изобретение относится к двигателю внутреннего сгорания поршневого типа, в частности, к модифицированному дизельному двигателю работающему на смеси газа и воздуха, в котором заряд в камере сгорания зажигается устройством генерации искры, расположенным в прежнем отверстии для сопла впрыска топлива в головке цилиндров дизельного двигателя.

Известно использование дизельных двигателей, бензиновых двигателей и газовых двигателей для транспортных средств, судов и других силовых систем. Все двигатели являются двигателями, работающими по циклу Отто и приводятся в действие некоторым количеством воздушно-газовой смеси, зажигаемой в камере сгорания, после чего сгорание вызывает повышение давления. Повышение давления не происходит мгновенно после зажигания, а происходит постепенно в течение некоторого промежутка времени. Механизм зажигания дизельного двигателя является самовоспламенение, выборочно комбинированное с трубкой с запальным шаром в течение процесса нагревания, когда сгораемая смесь зажигается вследствие повышения давления в камере сгорания. Другие два типа двигателей, а именно, бензиновый двигатель и газовый двигатель зажигаются посредством искры от системы зажигания. В последних двух типах двигателей обычно не используется самовоспламенение, но если, тем не менее, происходит самовоспламенение, например, в бензиновом двигателе, это сопровождается отрицательным эффектом, а именно, детонацией. Газовые двигатели для наземных транспортных средств обычно конструируются на принципах бензиновых двигателей, которые конструируются или непосредственно для газа или могут быть переоборудованы в газовый двигатель. Значительная разница между дизельным двигателем и бензиновым двигателем состоит в степени сжатия топливной смеси. Степень сжатия для дизельных двигателей часто не превышает 12, в то время, как для бензиновых двигателей она редко превышает 10. Момент зажигания в бензиновом двигателе обычно находится в пределах примерно от 12o до 3o до верхней мертвой точки, что приведет к тому, что максимальное давление не достигается в камере сгорания перед достижением верхней мертвой точки.

В [1] описан двигатель внутреннего сгорания, в частности, модифицированный дизельный двигатель, работающий на смеси природного газа и воздуха, в котором заряд в камере сгорания зажигается устройством генерации искры, расположенным в отверстиях для сопел впрыска топлива в камере сгорания прежнего дизельного двигателя.

Задачей изобретения является разработка высокоэффективного внутреннего сгорания и обеспечение возможности простого переоборудования дизельного двигателя в газовый двигатель, а также разработка простого способа повышения мощности.

Предлагаемый двигатель внутреннего сгорания отличается тем, что статическая степень сжатия превышает 15 и момент зажигания находится после верхней мертвой точки. Это приводит к тому, что можно достичь зажигания топлива, самовоспламеняющая способность которого при заданной степени сжигания обычно не страдает. Результирующее зажигание приводит к максимальному давлению в цилиндре в момент, отстоящий примерно на 90o от верхней точки, тем самым, достигается высокая эффективность сгорания топлива одновременно без резкого повышения температуры в камере сгорания.

Воплощение предлагаемого двигателя внутреннего сгорания такого, что газ состоит из жидкого пропана практически включает пропан и бутан, и где используется атмосферный воздух, содержащий примерно 21% кислорода. Таким образом можно увеличить мощность двигателя внутреннего сгорания путем использования обычного топлива высокой частоты, где продуктом сгорания в основном является двуокись углерода и вода. Кроме того, жидкий пропан имеет то преимущество, что он может содержаться в резервуарах со сравнительно тонкими стенками по сравнению с резервуарами для природного газа.

Другое воплощение для предлагаемого двигателя внутреннего сгорания отличается тем, что он представляет собой 6-цилиндровый двигатель объемом 9570 см3 с диаметром цилиндра 125 мм и ходом поршня 130 мм и который снабжен системой зажигания, например, типа Люменишн /Lumeniton/, системой испарения типа Рензо Матик /Renzo Matic/, карбюраторной системой, включающей диффузор, и стандартной системой выпуска выхлопных газов для дизельных агрегатов. В результате этого можно при низких затратах переоборудовать известный дизельный двигатель в газовый двигатель с высоким КПД.

Кроме того, предлагаемый двигатель внутреннего сгорания может отличаться тем, что система впрыска топлива дизельного агрегата, включающая насос, трубопровод и систему сопел заменяется системой зажигания, включающей катушку зажигания, распределитель, электропроводку высокого напряжения и свечи зажигания. Таким образом, можно для переоборудования использовать обычные легкодоступные компоненты.

Воплощение предлагаемого двигателя внутреннего сгорания отличается тем, что устройство генерации искры, предпочтительно является типа свечи зажигания или, альтернативно: типа запального шара.

Таким образом, можно повысить КПД известного двигателя, дороже бы обошлось конструирование с нуля. Можно обеспечит эффективную работу двигателя с повышением мощности более, чем на 10% и уменьшенным потреблением топлива более, чем примерно на 10% и уменьшенными затратами на топливо более, чем примерно на 20% Изобретение описывается ниже более подробно по прилагаемым рисункам.

На фиг. 1 показан предлагаемый двигатель внутреннего сгорания.

На фиг. 2 показан схематичный вид, иллюстрирующий принципы переоборудования дизельного двигателя.

На фиг. 3 показано сечение переоборудованной головки цилиндров.

Изобретение было испытано на двигателе, представленном на фиг. 1, отмеченном поз. 1. Двигатель представлял собой двигатель от фиата типа 8220. 12, являющийся дизельным двигателем, обычно используемым для грузовиков и подобных транспортных средств. Двигатель является 6-цилиндровым 4-тактным дизельным двигателем г, обычно развивающим мощность 151 квт, соответствующую 205 л. с. при скорости вращения 2600 об/мин. Двигатель имеет крутящий момент 638 Нм, соответствующий 65 кгм при скорости вращения 1600 об/мин. Цилиндр имеет диаметр 125 мм, ход поршня 130 мм, что приводит к объему в 9570 см3. Степень сжатия была установлена для дизеля, работающего без трубок с запальным шаром, которая была рвана 16. Двигатель обычно снабжается различным периферийным оборудованием, таким, как генератор для зарядки батарей, водяной насос и вентилятор для системы охлаждения. Все периферийное оборудование могло быть сохранено для переоборудования двигателя в газовый двигатель. Трансмиссия также могла быть сохранена, т.е. цепочка двигателя до дороги, и совсем не обязательно также изменять общее передаточное число, т.к. характеристика двигателя изменяется незначительно. Конечно, можно сделать так, чтобы двигатель развивал большую мощность на более высоких оборотах, но при этом увеличивается износ и соответствующим образом должна изменяться трансмиссия. Очень важным фактором, связанным с преобразованием дизельного двигателя в газовый двигатель является то, что возникает необходимость замены очень незначительного количества частей.

На фиг. 2 показаны части дизельного двигателя, которые в принципе заменяются. Впускной и выпускной коллекторы дизельного двигателя сохраняются, но выпускной коллектор 11 присоединяется к карбюраторному устройству 7, присоединяемому посредством 53 к системе испарения 5, например, типа Рензо Матик. Испаритель 5 соединяется с резервуаром для газа, заменяющим в транспортном средстве резервуар для дизельного топлива. Резервуар для газа обычного типа и он содержит автозаг или жидкий пропан.

Система зажигания 3 двигателя 2 представляет собой электронную систему зажигания, например, типа Люменишн, включающую катушку зажигания 31, распределитель 33 и в настоящем воплощении шесть свечей зажигания 37, связанных с подходящей электропроводкой высокого напряжения 35. Электронная система зажигания и катушка зажигания 31 обычного типа, допускающие различную регулировку. Крышка распределителя, электропроводка высокого напряжения 35 и свечи зажигания 37 также обычного типа, но основной элемент распределителя был сконструирован специально для используемого двигателя 1. Основной элемент должен присоединяться к валу в двигателе, который вращается синхронно с коленчатым валом. Вал, например, может быть кулачковым или распределительным валом. Дизельные двигатели обычно связаны с внешней насосной системой, подающей дизельное топливо к соплам каждой камеры сгорания. Т.к. нет необходимости в такой насосной системе, после переоборудования распределитель 33 может быть с успехом присоединен к двигателю 1 в этом месте. Другим преимуществом размещения является то, что вал движется синхронно с коленчатым валом двигателя, раньше указанный вал приводил в действие насосную систему, а теперь должен приводить в действие распределитель 33.

На фиг. 3 показано сечение головки цилиндров 9 предлагаемого двигателя 1, на котором вверху видна камера сгорания с двумя клапанами, впускным клапаном 93 и выпускным клапаном 95. Впрыскивающее сопло было заменено обычной свечой зажигания 37. Замена возможна благодаря винтовому соединению в отверстии 91 в головке цилиндров 9 и в которое может быть вставлена свеча зажигания 37. Винтовое соединение может быть таким, что свеча зажигания 37 правильно устанавливается в камере сгорания. Оба элемента, впрыскивающие сопло в дизельном двигателе и свече зажигания в газовом двигателе теоретически должны размещаться в одном и том же месте в камере сгорания, а именно, в месте считывающемся геометрическим центром распространения волны давления при сгорании. Вышеуказанное легкое переоборудование затрудняется в случае двигателей, в которых топливо не впрыскивается непосредственно перед входом воздушного потока в указанный цилиндр, т.к. свечу зажигания 37 необходимо размещать в камере сгорания. Однако, обычно впрыскивающее сопло устанавливается в камере сгорания дизельных двигателей.

Двигатель внутреннего сгорания 1, который должен переоборудоваться согласно настоящему изобретению, должен иметь статическую степень сжатия более, чем приблизительно 15, в частности, она должна находиться в диапазоне от около 15 до около 20, предпочтительно, должна быть около 17. Момент зажигания свечи загорания 37 находится на верхней мертвой точке. Момент зажигания находится в пределах от около 0o от верхней мертвой точки до около 20o от верхней мертвой точки. Момент зажигания зависит, в частности, от состава газа, но при использовании жидкого пропана момент зажигания является сравнительно неизменным.

Топливо, которое должно использоваться в двигателе внутреннего сгорания 1, обычно является жидким пропаном в виде смеси автогаза с воздухом, где жидкий пропан по существу содержит пропан и бутан. Воздух является обычным атмосферным воздухом, содержащим около 21% кислорода. Однако, также можно использовать другие составы газа, но природный газ требует очень прочных резервуаров, а также очень низкой температуры для поддержания жидкого состояния, необходимого на транспортном средстве для уменьшения занимаемого объема. Могут разрабатываться другие типы резервуаров для хранения, дающие возможность использовать на транспортном средстве природный газ. Мог бы также использоваться городской газ, но по сравнению с жидким пропаном испаряемая энергия городского газа является значительно более низкой.

Переоборудование двигателя внутреннего сгорания 1 включает операции вставки в отверстия 91 головки цилиндров 9 свеч зажигания 37, предпочтительно, искрового типа, альтернативно, типа запального шара /фиг. 3/. Эти отверстия 91 ранее использовались для размещения топливных сопел для дизельного двигателя.

Что касается общей конструкции, двигатель внутреннего сгорания 1 представляет собой дизельный двигатель. Двигатель внутреннего сгорания 1 снабжен системой зажигания 3, например, типа Люменишн, системой испарения 5, например, типа Рензо Матик и карбюраторным устройством, включающим диффузор 71. Система выпуска выхлопных газов, ранее используемая для работы дизельного двигателя, переоборудуваемого в двигатель 1, может оставаться без изменения. Система зажигания 3 и система испарения 5, конечно могут быть других типов, отличных от вышеуказанных. Система зажигания 3 не обязательно должна быть электронной системой, а она может быть также чисто механической.

Система впрыска топлива дизельного двигателя, включающая насос, трубопровод и систему сопел заменяется системой зажигания 3, включающей катушку зажигания 31, распределитель 33, электропроводку высокого напряжения 35 и свечи зажигания 37.

Для управления распределителем 33 системы зажигания 3 используется устройство управления, т.е. ведущий вал, управляющий и системой впрыска топлива дизельного двигателя.

Изобретение не ограничивается вышеописанными воплощениями, а может иметь различные модификации в пределах объема изобретения. Таким образом, может использоваться несколько диффузоров и система зажигания может представлять электростатическое зажигание.

Формула изобретения

1. Двигатель внутреннего сгорания поршневого типа, работающий на смеси сжиженного нефтяного газа в виде автогаза, смешанного с воздухом, где сжиженный нефтяной газ по существу включает пропан и бутан, или сжиженный натуральный газ, или городской газ и воздух, в котором заряд в камере сгорания зажигается устройством, генерирующим искру, отличающийся тем, что статистическая степень сжатия превышает 15 1, а момент зажигания находится за верхней мертвой точкой, особенно в интервале от 0o верхней мертвой точки до 20o после верхней мертвой точки, предпочтительно 4o после верхней мертвой точки.

2. Двигатель по п. 1, отличающийся тем, что газ состоит из сжиженного нефтяного газа в виде автогаза, смешанного с воздухом, где жидкий пропан по существу включает пропан и бутан и воздух является атмосферным воздухом, содержащим около 21% кислорода.

3. Двигатель по п. 1 или 2, отличающийся тем, что он представляет собой шестицилиндровый двигатель объемом в 9570 см3 с диаметром цилиндра 125 мм и ходом поршня 130 мм, который снабжен системой зажигания, например, типа Люменишн, системой испарения, например, типа Рензо Матик, карбюраторной системой, включающей диффузор, и стандартной системой выпуска выхлопных газов для дизельных агрегатов.

4. Двигатель по одному из пп. 1 3, отличающийся тем, что система впрыска топлива дизельного агрегата, включающая насос, трубопровод и систему сопел, заменена системой зажигания, включающей катушку зажигания, распределитель, электропроводку высокого напряжения и свечи зажигания.

5. Двигатель по одному из пп. 1 4, отличающийся тем, что он содержит средство контроля системы впрыска топлива дизельного агрегата, служащее для управления распределителем системы зажигания.

6. Двигатель по одному из пп. 1 5, отличающийся тем, что в качестве устройства генерации искры использовано устройство типа свечи зажигания.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3

ДВС — Сайт Александра Таранова

 

Паровая машина для откачивания воды из шахты

С неё началось использование двигателей

Паровой двигатель

ДВС — двигатель внутреннего сгорания

Двигатель внутреннего сгорания — это устройство, в котором химическая энергия топлива превращается в полезную механическую работу.

Несмотря на то, что ДВС относятся к относительно несовершенному типу тепловых машин (громоздкость, сильный шум, токсичные выбросы и необходимость системы их отвода, относительно небольшой ресурс, необходимость охлаждения и смазки, высокая сложность в проектировании, изготовлении и обслуживании, сложная система зажигания, большое количество изнашиваемых частей, высокое потребление горючего и т.

 д.), благодаря своей автономности (используемое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы), ДВС очень широко распространены, — например, на транспорте

ДВС 16-ти клапанный 4-х цилиндровый

радиальный двигатель

Типы двигателей внутреннего сгорания

Поршневой ДВС

 

Роторно-лопастной ДВС

Чем РЛДВС лучше современного поршневого двигателя?

  • Эффективный КПД на 10-12% выше.

  • На всех режимах работы расход топлива меньше, чем у поршневого двигателя.

  • Малое количество деталей.

  • Простота конструкции. Нет сложного механизма газораспределения. Более технологичен.

  • Эффективный газообмен способствует лучшему сжиганию топлива и меньшей токсичности.

  • Хорошая уравновешенность.

  • В несколько раз лучше удельные массогабаритные показатели.

  • Несравнимо малый расход смазочных материалов.

  • Существенно ниже стоимость производства.

Газотурбинный ДВС

 

 

Циклы работы поршневых ДВС

 

Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.

Рабочий цикл в поршневых двигателях внутреннего сгорания состоит из пяти процессов: впуска, сжатия, сгорания, расширения и выпуска. В двигателе рабочий цикл может быть осуществлен по следующей широко применяемой схеме:

1. В процессе впуска поршень перемещается от верхней мертвой точки (в.м.т.) к нижней мертвой точке (н.м.т.), а освобождающееся надпоршневое пространство цилиндра заполняется смесью воздуха с топливом. Из-за разности давлений во впускном коллекторе и внутри цилиндра двигателя при открытии впускного клапана смесь поступает (всасывается) в цилиндр в момент времени, называемый углом открытия впускного клапана Фа.

Воздушно-топливная смесь и продукты сгорания (всегда остающиеся в объёме пространства сжатия от предыдущего цикла), смешиваясь между собой, образуют рабочую смесь. Тщательно приготовленная рабочая смесь повышает эффективность сгорания топлива, поэтому её подготовке уделяется большое внимание во всех типах поршневых двигателей.

Количество воздушно-топливной смеси, поступающее в цилиндр за один рабочий цикл, называется свежим зарядом, а продукты сгорания, остающиеся в цилиндре к моменту поступления в него свежего заряда — остаточными газами.

Чтобы повысить эффективность работы двигателя, стремятся увеличить абсолютную величину свежего заряда и его весовую долю в рабочей смеси.

2. В процессе сжатия оба клапана закрыты и поршень, перемещаясь от н.м.т. к в.м.т. и уменьшая объём надпоршневой полости, сжимает рабочую смесь (в общем случае рабочее тело). Сжатие рабочего тела ускоряет процесс сгорания и этим предопределяет возможную полноту использования тепла, выделяющегося при сжигании топлива в цилиндре.

Двигатели внутреннего сгорания строятся с возможно большей степенью сжатия, которая в случаях принудительного зажигания смеси достигает значения 10—12, а при использовании принципа самовоспламенения топлива выбирается в пределах 14—22.

3. В процессе сгорания происходит окисление топлива кислородом воздуха, входящего в состав рабочей смеси, вследствие чего давление в надпоршневой полости резко возрастает.

В рассматриваемой схеме рабочая смесь в нужный момент вблизи в. м.т. поджигается от постороннего источника с помощью электрической искры высокого напряжения (порядка 15 кВ). Для подачи искры в цилиндр служит свеча зажигания, которая ввер­тывается в головку цилиндра.

Для двигателей с воспламенением топлива от тепла, выделяющегося от предварительно сжатого воздуха, запальная свеча не нужна. Такие двигатели снабжаются специальной форсункой, через которую в нужный момент в цилиндр впрыскивается топливо под давлением в 10—30 МПа и более.

4. В процессе расширения раскаленные газы, стремясь расшириться, перемещают поршень от в.м.т. к н.м.т. Совершается рабочий ход поршня, который через шатун передает давление на шатунную шейку коленчатого вала и проворачивает его.

5. В процессе выпуска поршень перемещается от н.м.т. к в.м.т. и через второй открывающийся к этому времени клапан, выталкивает отработавшие газы из цилиндра. Продукты сгорания остаются только в объёме камеры сгорания, откуда их нельзя вытеснить поршнем.

Непрерывность работы двигателя обеспечивается последующим повторением рабочих циклов.

Процессы, связанные с подготовкой рабочей смеси к сжиганию её в цилиндре, а также освобождением цилиндра от продуктов сгора­ния, в одноцилиндровых двигателях осуществляются движением поршня за счёт энергии маховика, которую он накапливает в про­цессе рабочего хода.

В многоцилиндровых двигателях вспомогательные ходы каждого из цилиндров выполняются за счёт работы других (соседних) цилиндров. Поэтому эти двигатели в принципе могут работать без маховика.

Для удобства изучения рабочий цикл различных двигателей расчленяют на процессы или, наоборот, группируют процессы рабочего цикла с учетом положения поршня относительно мертвых точек в цилиндре. Это позволяет все процессы в поршневых двигателях рассматривать в зависимости от перемещения поршня, что более удобно.

Часть рабочего цикла, осуществляемая в интервале перемещения поршня между двумя смежными мертвыми точками, называется тактом.

Такту, а следовательно, и соответствующему ходу поршня присваивается название процесса, который является основным при данном перемещении поршня между двумя его мертвыми точками (положениями).

В двигателе каждому такту (ходу поршня) соответствуют, например, вполне определённые основные для них процессы: впуск, сжатие, расширение, выпуск. Поэтому в таких двигателях различают такты: впуска, сжатия, расширения и выпуска. Каждое из этих четырёх названий соответственно присваивается ходам поршня.

В любых поршневых двигателях внутреннего сгорания рабочий цикл складывается из рассмотренных выше пяти процессов по ра­зобранной выше схеме за четыре хода поршня или всего за два хода поршня. В соответствии с этим поршневые двигатели подразделяют на двух- и четырёхтактные.

 

Бесшатунный дизельный двигатель Вуль Vool механизм Баландина

Схема мотора Фролова

(в этом двигателе нет коленвала)

 

Двигатель Ванкеля (роторный)

 

И наконец. .. двигатель внешнего сгорания!

Если Вам понравилась эта страница, и Вам захотелось, чтобы Ваши друзья тоже её увидели, то выберите внизу значок социальной сети, где вы имеете свою страницу, и выразите своё мнение о содержании.

Ваши друзья и случайные посетители благодаря этому добавят Вам и моему сайту рейтинг

Двигатели внутреннего сгорания

Двигатели внутреннего сгорания

Шон Кэссиди


10 декабря 2016 г.

Представлено в качестве курсовой работы для Ph340, Стэнфордский университет, осень 2016 г.

Введение

Рис. 1: Цикл Отто для искрового зажигания Двигатель. [2] (Источник: С. Кэссиди)

Двигатель внутреннего сгорания — один из самых важные изобретения в истории человечества. Это произвело революцию в путешествиях автомобилем, поездом, кораблем и самолетом. Существует два основных типа двигатели внутреннего сгорания (ДВС): прерывистое и непрерывное сгорание двигатели. Четырехтактный поршневой двигатель, например, является прерывистым. двигатель внутреннего сгорания, в то время как газотурбинный двигатель использует непрерывное сгорание. IC двигатели используют сгорание топлива с окислителем для преобразования химическую энергию в чувственную энергию и работу. После зажигания, высокотемпературный газ воздействует на поршень или турбину, когда он расширяется, совершая полезную работу. Основной экзотермический углеводород реакцию горения (в воздухе) можно записать [1]

C x H y + w O 2 + 3,76 w N 2 → a CO 2 + b H 2 O + c О 2 + d N 2 + ε

, где w, a, b, c и d представляют собой молярные коэффициенты, которые зависят от конкретного углеводородного реагента и количество присутствующего воздуха, реагенты wO 2 + 3,76 Вт Н 2 представляют собой инженерный воздух, а ε представляет энергию. [1] Однако на практике диоксид углерода, азот, и кислород не являются единственными продуктами горения. Такие виды, как оксид азота (NO), диоксид азота (NO 2 ) и углерод монооксид (CO) также являются обычными продуктами реакции, и их можно найти в выхлопных газах двигателей внутреннего сгорания. [1] Кратко рассмотрим два двигателя внутреннего сгорания. представлены здесь: поршневой двигатель с искровым зажиганием и газотурбинный реактивный двигатель.

Двигатель с искровым зажиганием

Термодинамический цикл Отто описывает идеальный двигатель с искровым зажиганием. Топливно-воздушная смесь всасывается в поршень в постоянное давление (1-2), а затем изоэнтропически сжимается до тех пор, пока поршень достигает верхней мертвой точки (2-3). Искровое воспламенение смеси моделируется как постоянный объемный подвод тепла к рабочему телу (3-4), который затем расширяется изоэнтропически (4-5), пока не достигнет дна мертвая точка (НМТ). При BDC тепло отводится постоянным объемом, а затем выхлопной газ выбрасывается при постоянном давлении. Схема Цикл Отто показан на рис. 1. Идеальная производительность цикла равна область, ограниченная путем процесса.

В реальном двигателе с искровым зажиганием идеализированный подвод тепла постоянного объема заменяется сжиганием топлива. В Чтобы приблизиться к идеальным условиям, текущие исследования направлены на гомогенизацию топливной смеси в камере сгорания, а также изучить время задержки воспламенения, распространение пламени и др. характеристики.

Газотурбинный двигатель

Рис. 2: Цикл Брайтона для газовой турбины Двигатель. [2] (Источник: С. Кэссиди)

Газотурбинный двигатель идеально моделируется Термодинамический цикл Брайтона. [2] Воздух поступает через впускное отверстие, сжимается изоэнтропически (1-2) и смешивается с топливом. [2] Тепло добавляется при постоянном давлении в процессе, моделирующем идеальное сгорание топлива (2-3), а газ адиабатически расширяется через сопло (3-4). [2] Процесс показан на рис. 2. Как и в случае с циклом Отто, идеальный результат работы — это область, ограниченная технологическим путем.

Настоящий газотурбинный двигатель содержит впуск, компрессор, камера сгорания, турбина и сопло. [3] Турбина подключена к компрессору, так что газ, проходящий через турбину, приводит в движение степень сжатия двигателя. [3] Воздух поступает через впускное отверстие и подается в компрессор. Компрессия часто происходит в несколько этапы. После сжатия воздух смешивается с топливом и поступает в камера сгорания. [3] Высокотемпературный газ устремляется через турбины и расширяется через сопло. [3] Весь процесс происходит постоянно, при этом газ проходит через двигатель без перерыва. [3]

Заключение

Термодинамический анализ искрового и газового газотурбинных двигателей раскрывает общие процессы, посредством которых каждый преобразует химическую потенциальную энергию в работу движения. Понимание реального химические реакции внутри двигателей дают представление о сам процесс горения и образование токсичных и экологически вредные газы. Повышение эффективности и сокращение выбросов требуют инновационных исследований с глубоким пониманием термодинамики и газодинамика, задействованная в системах двигателей внутреннего сгорания.

© Шон Кэссиди. Автор дает разрешение на копировать, распространять и отображать это произведение в неизмененном виде, с ссылка на автора только в некоммерческих целях. Все остальные права, включая коммерческие права, сохраняются за автором.

Ссылки

[1] К. Уорк, Усовершенствованная термодинамика для Engineers (McGraw-Hill, 1995), гл. 10.

[2] Ю. Ценгель и М. Болес Термодинамика: Ан Инженерный подход , 7-е издание (McGraw-Hill, 2011), гл. 9.

[3] С. Фарохи, ГД , 2-й Издание (Wiley, 2014), гл. 4.

Классификация двигателей внутреннего сгорания | Двигатели внутреннего сгорания |

В этой статье я упомянул Классификация двигателей внутреннего сгорания (двигатели внутреннего сгорания) в деталях.

Содержание

Рычаг

Двигатели внутреннего сгорания — это двигатели, в которых сгорание топлива происходит с окислителем (обычно воздухом) в камере сгорания, являющейся составной частью контура потока рабочей жидкости.

В двигателе внутреннего сгорания расширение высокотемпературных и высоконапорных дымовых газов, прямое воздействие силы на любую часть двигателя.

Сила обычно прикладывается к поршням, лопаткам турбины или соплу.


Классификация двигателей внутреннего сгорания (двигатели внутреннего сгорания)

1. По типу зажигания (по способу зажигания)

А) Двигатель СИ :- Двигатель с искровым зажиганием (двигатель с искровым зажиганием) представляет собой двигатель внутреннего сгорания, обычно бензиновый двигатель, в котором цикл сгорания воздушно-топливной смеси зажигается свечой зажигания.

B) Двигатель с воспламенением :- Двигатель с воспламенением от внутреннего сгорания представляет собой тип двигателя внутреннего сгорания, в котором топливный заряд воспламеняется за счет тепла сжатия.


2. Классификация двигателей внутреннего сгорания (двигателей внутреннего сгорания) на основе T видов используемого топлива

A) Бензиновый двигатель: — Бензиновый двигатель (британский вариант английского языка) или бензиновый двигатель (американский вариант английского языка) — это двигатель внутреннего сгорания с искровым зажиганием, предназначенный для работы на бензине (бензине) и аналогичных летучих видах топлива.

B) Дизельный двигатель: — Дизельный двигатель (также известный как двигатель с воспламенением от сжатия или CI), названный в честь Рудольфа Дизеля, представляет собой двигатель внутреннего сгорания, в котором воспламенение топлива вызывается высокой температурой воздуха в цилиндре за счет механического сжатия (адиабатического сжатия)

C) Газовый двигатель :- Газовый двигатель представляет собой двигатель внутреннего сгорания, работающий на газообразном топливе, таком как угольный газ, генераторный газ, биогаз, свалочный газ или природный газ.

D) Двухтопливный двигатель:- Двухтопливный двигатель — это дизельный двигатель, предназначенный для работы как на газообразном, так и на жидком топливе.


3. Классификация двигателей внутреннего сгорания по количеству тактов за цикл (в зависимости от рабочего цикла)

A) 2-тактный двигатель: — Двухтактный (или двухтактный) двигатель — тип двигателя внутреннего сгорания, который завершает двухтактный (вверх и вниз) рабочий цикл поршня за один оборот коленчатого вала.

B) 4-тактный двигатель:- Четырехтактный (также четырехтактный) двигатель представляет собой двигатель внутреннего сгорания (ВС), в котором поршень совершает четыре отдельных хода при вращении коленчатого вала.

Читайте также: Разница между 2-тактным и 4-тактным двигателями

4. Классификация двигателей внутреннего сгорания на основе типа системы охлаждения

A) Двигатель с воздушным охлаждением: — Двигатели с воздушным охлаждением обеспечивают прохождение воздуха непосредственно через ребра рассеивания тепла или горячие области двигателя для охлаждения их для поддержания двигателя при рабочих температурах.

B) Двигатель с водяным охлаждением: — Когда двигатель внутреннего сгорания имеет жидкостное или водяное охлаждение; он известен как двигатель с жидкостным или водяным охлаждением.

Читайте также: Узнайте, как теплообменники используются для охлаждения

C) Испарительный двигатель:- В системе испарительного охлаждения, включая рубашку охлаждающей жидкости двигателя, конденсатор, нижний бак, соединенный с нижней частью конденсатора, и трубопровод означает, что эти части соединены для создать контур циркуляции теплоносителя, для временного захвата остаточного воздуха в контуре циркуляции теплоносителя отводится бак переменной емкости, соединенный с нижним баком.


5. Классификация двигателей внутреннего сгорания по циклу термодинамики

A) Двигатель с циклом Отто:- Цикл Отто представляет собой идеализированный термодинамический цикл, описывающий работу типичного поршневого двигателя с искровым зажиганием.

B) Дизельный цикл:- Дизельный цикл представляет собой процесс сгорания в двигателе внутреннего сгорания. В нем топливо воспламеняется за счет тепла, выделяющегося при сжатии воздуха в камере сгорания, в которую затем впрыскивается топливо.

C) Двойной цикл: — Двойной цикл сгорания (также известный как смешанный цикл, цикл Тринклера, цикл Зайлигера или цикл Сабате) представляет собой термический цикл, представляющий собой комбинацию цикла Отто и цикла Дизеля. .


6. Классификация двигателей внутреннего сгорания на основе типов продувки

A) Перекрестная продувка:- При поперечной продувке поступающий воздух направляется вверх, выталкивая выхлопные газы перед собой. Затем выхлопные газы опускаются вниз и выходят из выпускных отверстий. На рисунке выше показан метод.

B) Петлевая продувка:- При продувке в петле поступающий воздух проходит над головкой поршня и падает к головке гильзы цилиндра. Выхлопные газы выталкиваются из выпускных отверстий, расположенных чуть выше впускных отверстий, пока воздух не опустится.

C) Прямоточная продувка:- При прямоточной продувке поступающий воздух достигает нижнего конца гильзы цилиндра и выходит у обода. Порты или широкий клапан могут быть выходом в верхней части цилиндра.


7. Классификация двигателей внутреннего сгорания на основе расположения цилиндров

A) Вертикальный двигатель: — Двигатель, в котором поршень перемещается вверх и вниз вертикально, а коленчатый вал обычно находится под цилиндром.

B) Горизонтальный двигатель: — Горизонтальный двигатель имеет цилиндры, которые перемещаются горизонтально относительно земли, в отличие от двигателей V-6 или V-8.

C) Радиальный двигатель:- Радиальный двигатель представляет собой поршневой тип конструкции двигателя внутреннего сгорания, в котором цилиндры расходятся наружу от центрального картера, как спицы колеса.

D) Двигатель типа V:- Это двигатель, в котором цилиндры расположены в двух рядах под углом друг к другу, образуя V.

E) Противоположный поршневой двигатель:- Противопоршневой двигатель представляет собой поршневой двигатель, в котором каждый цилиндр имеет поршень на обоих концах и не имеет головки цилиндра.

8. Классификация двигателей внутреннего сгорания по положению клапана

A) Поворотный клапан

B) Верхний клапан

9 0106 C) Клапан под головкой

Подробнее: В чем разница между предохранительный клапан и предохранительный клапан


9. Классификация двигателей внутреннего сгорания по скорости

A) Тихоходный двигатель

B) Среднескоростной двигатель

901 06 C) Высокоскоростной двигатель


10. Классификация двигателя внутреннего сгорания в соответствии с заявкой

A) Стационарный двигатель: — Стационарный двигатель — это двигатель, конструкция которого неподвижна. Они используются для питания неподвижных механизмов, таких как насосы, генераторы, мельницы или заводское оборудование.

B) Автомобильный двигатель: — Двигатели внутреннего сгорания, используемые в автомобилях.

C) Судовой двигатель: — Двигатель внутреннего сгорания, специально разработанный для морских целей.

D) Авиационный двигатель:- Двигатели внутреннего сгорания, используемые в самолетах.

E) Локомотив :- Локомотив или двигатель является железнодорожным транспортным средством, которое обеспечивает движущую силу поезда.