15Дек

Система зажигания инжекторного двигателя: Система зажигания инжекторного двигателя авто

Содержание

Система зажигания инжекторного двигателя авто

Система зажигания авто служит для поджигания смеси в определенный период, вследствие чего начинается процесс сгорания. От её работы зависит мощность двигателя, содержание вредных веществ в выхлопе и экономия топлива.

Процесс воспламенения

Когда поршень сжимает топливовоздушную смесь, давление в камере сгорания достигает 20-40 бар, а температура смеси 400 — 600°С. Но чтобы смесь загорелась, т.е. произошел бы процесс горения этого недостаточно и нужно на нее воздействовать. Для этого служит искра, которая возникает между центральным и боковым электродами свечи зажигания. Но если искровой заряд будет маломощным, то возгорание может и не произойти. Чтобы смесь поджигалась нужен очень мощный разряд. К примеру, для стехиометрической смеси он составляет 0.2 мДж, а для «бедной» или «богатой» смеси он должен быть равным 3.0 мДж. Необходимо, чтобы около искры находилось оптимальное количество топливовоздушной смеси. Именно это количество и поджигает всю оставшуюся смесь в цилиндре, а дальше начинается процесс сгорания топлива.

В системе зажигания автомобиля присутствует катушка зажигания, которая накапливает энергию и передает ее на свечу зажигания для возникновения напряжения. Особенность катушки зажигания состоит в том, что напряжение, которая она создает, намного превышает величину пробоя в зазоре свечи зажигания. Катушки зажигания способны накапливать энергию в районе 60 — 120 мДж и обеспечивают напряжение равное 25 — 40 кВ.

Условия для качественного горения топлива:

  • Достаточная продолжительность искрового разряда;
  • Оптимальное распыление топливовоздушной смеси;
  • Однородность топливовоздушной смеси;
  • Стехиометрический состав топливовоздушной смеси.
На процесс горения также влияет величина искрового разряда между электродами свечи зажигания. Увеличение зазора способствует увеличению длины искры, что приводит к более лучшему процессу сгорания топлива. Величину зазора в свечи зажигания надо выставлять согласно данным производителя мотора.

Угол опережения зажигания (УОЗ). Что это такое

Три миллисекунды — именно столько проходит между моментом начала воспламенения смеси и ее полным сгоранием.

При повышении частоты вращения коленвала время сгорания остается постоянным, но средняя скорость перемещения поршня возрастает. Это ведет к тому, что когда поршень отходит от ВМТ, сгорание смеси произойдет в большем объеме и давление газов на поршень уменьшиться. Из-за этого упадет мощность двигателя.

Кроме того, при одной частоте вращения коленвала с увеличением нагрузки на двигатель момент воспламенения должен наступать позже. Это объясняется тем, что увеличивается количество горючей смеси, поступающей в цилиндры, и одновременно уменьшается количество примешиваемых к ней остаточных отработавших газов, вследствие чего повышается скорость сгорания. Искра должна возникнуть в тот момент, когда давление сгорания при разных рабочих режимах будет наиболее оптимальным.

Это вызывает необходимость воспламенять рабочую смесь с опережением (до прихода поршня к ВМТ) с таким расчетом, чтобы смесь полностью сгорела к моменту перехода поршнем ВМТ.


Момент зажигания принято определять по положению коленчатого вала относительно ВМТ и обозначать его в градусах до ВМТ. Этот угол называют углом опережения зажигания (УОЗ). Сдвиг момента зажигания в сторону ВМТ считается поздним (УОЗ уменьшается), а сдвиг от ВМТ — ранним (УОЗ увеличивается). Чем выше частота вращения коленвала, тем более ранним должен быть угол опережения зажигания.

Момент зажигания является важным показателем в работе двигателя. От него зависит экономичность мотора, максимальная мощность и содержание вредных веществ в выхлопных газах.

В инжекторных моторах система самостоятельно рассчитывает угол опережения зажигания в зависимости от работы мотора в определенный период. Угол опережения зажигания определяется на основании скорости вращения коленвала, режима работы мотора и нагрузки на двигатель. На основании этих данных система управления двигателем подбирает оптимальный УОЗ.

Что такое детонация двигателя

Детонация — это непредсказуемый взрыв в моторе, который происходит в неположенное время и может загубить двигатель. Возникает при высокой степени сжатия двигателя и носит опасный характер. Происходит из-за самопроизвольного сгорания топливовоздушной смеси в камере сгорания. Детонация свидетельствует, что момент зажигания очень ранний. Могут пострадать детали двигателя из-за повышенной температуры и давления паров. В первую очередь страдают поршни, прокладка головки цилиндров и головка в зоне клапанов. Может приводить к полному ремонту двигателя.

Детонация мотора можно возникать:

  • При большой нагрузки на двигатель и повышенных (близким к критическим) оборотов коленчатого вала.
  • При разгоне. Она слышна как металлический звон и стуки в двигателе («стучат пальчики»). Она бывает при повышенной нагрузке, но при малых оборотах мотора. Именно она считается как самая опасная, т.к. её не слышно из-за повышенного шума мотора на больших оборотах.
  • Из-за конструкции двигателя авто, а также от плохого топлива.

Электронная система зажигания инжекторного двигателя :: Avto.Tatar

  Известно, что различные газы появляются при сгорании топлива. Они, в свою очередь, давят на поршень, из-за чего в последующем и происходит работа машины. Для того чтобы топливо сжигалось, существует специальная система зажигания. Как таковое горение начинается только после поджигания топлива. Если система работает нормально и исправно, она определит мощность в двигателе, а также то, сколько вредных веществ в газах содержится, и сэкономит топливо.


Каким образом работает система

В тот момент, когда тепловоздушная смесь сжимается при помощи определенного давления на нее, достигаются величины до сорока бар. Сама смесь температурой около пятисот градусов по Цельсию. Однако для того, чтобы произошло возгорание, этого мало. Тут нужно особое воздействие, чтобы процесс горения запустился.

С этим легко справится небольшая искорка, которая должна появиться между обоими электродами (центр и боковые). Однако если мощность искры окажется слишком малой, есть вероятность того, что возгорание все-таки не произойдет. Если смесь стехиометрическая, будет достаточно 0.2 мДж. Для прочих смесей заряд должен быть на порядок выше этого показателя. Не забывайте о необходимости определенного количества смеси тепловоздушной рядом с возникновением искры. Ведь именно от нее во многом зависит, будет ли подожжена остальная смесь, которая залита в цилиндр.

Энергия передается в свечу зажигания, в результате чего создается напряжение. Происходит это благодаря катушке зажигания. То напряжение, которое создается при помощи катушки, значительно больше, чем напряжение от пробы в свече.

Для того чтобы горение топлива было исключительно качественным, следует придерживаться следующего:
 

  • необходимо, чтобы хватало длины разряда от искры;
  • хорошее распыление от смесей;
  • чтобы смеси были только однородными;
  • состав в смесях должен быть стехиометрическим.


Но сам процесс зависит не только от этого. Например, также необходимо знать величину, с которой происходит разряд искры, которая возникает между двумя электродами в свече. Когда зазор в искре становится больше, становится лучше и горение топлива. Какой длины должен быть зазор в свече, определяет только производитель. Это должно быть прописано в инструкции.

Существует так называемый УОЗ – угол опережения зажигания, который рассчитан всего на две миллисекунды. Данное время – это период до того, как смесь сгорает до конца. Далее происходит увеличение вращения на коленчатом валу, но то время, за которое сгорает смесь, неизменно. Хотя скорость движений в цилиндре становится только выше. Если поршень отходит от необходимого места, то смесь сгорит в большем объеме. Также будет уменьшаться давление от газов, и в конечном итоге мощность будет снижаться. В том случае, когда нагрузка двигателя становится выше, притом, что частота у вращения не меняется, воспламенение, скорее всего, задержится.

При грамотной работе с двигателем данный момент крайне важен на фоне прочих показателей. От этого зависит то, насколько высока будет его экономичность, а также мощность и степень загрязнения выходящих газов. В некоторых видах двигателей система самостоятельно высчитывает УОЗ, при этом учитывается работа двигателя в тот или иной период времени. Определить угол, с которым опережается зажигание, можно при помощи скорости, с которой вращается коленчатый вал, а также нагрузка на сам двигатель и его работу. Учитывая все перечисленное выше и функции для лучшего УОЗ, возможно выбрать наиболее подходящую систему управления.


Каким образом происходит детонация у двигателя

Детонация может быть особенно опасна для двигателей в том случае, когда сжатие в нем слишком высокое. С чем именно это связано? Например, с тем, что воздушная смесь возгорается самопроизвольно. Если происходит детонация, значит, зажигание произошло слишком рано. Чрезмерно высокая температура вкупе с высоким давлением повреждают детали двигателя и причиняют ему существенный вред. Первым делом страдают поршни, в дальнейшем повреждения переходят к головке рядом с клапанами и прокладке в цилиндрах. Чаще всего необходим полный ремонт в моторе из-за влияния детонации.  

Диагностику и ремонт системы зажигания рекомендуется проводить в специализированных автосервисах.

Система зажигания инжекторного двигателя

Система зажигания служит для воспламенения топлива, что и позволяет ему превращаться в силу, приводящую автомобиль в движение. Искра зажигания должна появиться в правильный момент, быть достаточно длинной, сильной и долговременной. А от работы всей системы зависит мощность мотора, расход топлива и даже содержание вредоносных веществ в выхлопных газах.

Воспламенение топлива

При сжатии в цилиндре топливовоздушной смеси в камере сгорания образуется давление в 20-40 бар, а температура возрастает до 400-600°C. И хотя цифры впечатляют, но, оставаясь в покое, топливо при таких условиях не воспламенится. Для этого необходима искра.

Искра образуется между боковыми и центральным электродами свечи зажигания. Расстояние между ними определяет мощность искры, а она прямо влияет на то, произойдет ли возгорание. При маломощном разряде, топливовоздушная смесь может не воспламениться.

Для того чтобы в свече возникла искра, необходима энергия. В системе зажигания есть катушка, функция которой и заключается в аккумулировании энергии, а затем передаче на свечу ее часть. Напряжение, создаваемое катушкой зажигания, многократно превышает силу разряда, возникающего в свече. Она способна накопить 60-120 мДж энергии и обеспечить напряжение в 25-40 кВ.

Чтобы воспламенение топлива произошло, необходимо сочетание нескольких факторов. Искра должна обладать действительно большой силой заряда. А какой именно, зависит от типа смеси. Так, для стехиометрической это 0,2 мДж, а для «бедной» или «богатой» — 3 мДж. В момент разряда возле свечи должно быть не слишком много и не слишком мало топлива и примешиваемых к нему газов, их количество должно быть оптимальным. Именно эта часть смеси и распространит горение на все остальное топливо.

Необходимые условия

Для качественного сгорания топлива необходимо соблюдение таких условий:

• искра должна сохраняться достаточно долгий промежуток времени;

• топливовоздушная смесь должна быть однородной и распыленной равномерно;

• стехиометрический состав должен быть уравновешен.

Длина самой искры так же немаловажна для процесса горения топлива. Чем она больше, тем лучше. Увеличить ее можно, увеличивая зазор между электродами свечи зажигания. Чтобы выставить это расстояние правильно, необходимо опираться на техническую документацию двигателя.

Угол опережения зажигания (УОЗ)

Момент зажигания — это важный фактор. От воспламенения топливной смеси до ее полного сгорания проходит примерно три миллисекунды. Именно поэтому зажигание должно произойти в определенный момент, так, чтобы смесь полностью сгорела до перехода поршнем верхней мертвой точки (ВМТ). Своевременное зажигание и диктует качественные свойства двигателя: экономию топлива, мощность мотора, вредность паров сгорания.

 

 

Важно понимать, что при увеличении интенсивности вращения коленвала, скорость движения поршня возрастает, но скорость горения топлива остается прежней. Так возникает ситуация, приводящая к падению давления: когда поршень находится далеко от верхней мертвой точки, объем пространства для горения смеси больше, что и снижает давление. А это, в свою очередь, снижает мощность двигателя.

Если же интенсивность вращения коленвала остается неизменной, но увеличивается нагрузка на мотор, важно, чтобы зажигание происходило позже. Ведь объем топлива в цилиндры при таком режиме поступает больший, а вот количество остаточных газов, смешиваемых с ним, уменьшается. Это ведет к уменьшению времени, необходимого для полного сгорания смеси. Поэтому и искра должна возникать позже.

Для правильной работы системы разряд должен возникать тогда, когда давление, вне зависимости от режима работы двигателя, оптимально. Поэтому воспламенение смеси до того, как поршень окажется в верхней мертвой точке, необходимо, но момент этот не одинаков.

Определяющей здесь является позиция коленчатого вала по отношению к ВТМ: момент зажигания обозначается в градусах до мертвой точки. Этот угол и называется углом опережения зажигания.

Если момент зажигания приближается к ВМТ — он называется поздним, УОЗ становится меньше. Если отдаляется — ранним, УОЗ становится больше. Чем интенсивнее движение коленвала, тем больше должен быть угол опережения зажигания.

Инжекторные системы хороши тем, что сами определяют УОЗ в зависимости от трех основных факторов: режима работы, скорости вращения коленчатого вала и нагрузки на мотор. Анализируя эти показатели, система управления двигателем высчитывает оптимальный УОЗ.

Детонация

Детонация двигателя — это настолько же нехорошо, как и звучит. Этим термином обозначаются непредсказуемый взрыв, который случается в двигателе в случайный момент времени. Опасен он тем, что может стать причиной полного выхода двигателя из строя.

 

 

Детонация случается при слишком раннем УОЗ и высокой степени сжатия. Происходит она в результате самопроизвольного возгорания топливовоздушной смеси.

Сила самого взрыва незначительна, но температура и давление возрастают, что и может привести к поломке деталей двигателя. Чаще всего возникают повреждения поршней и прокладки головки блока цилиндров, особенно возле клапанов.

Вероятность возникновения детонации особенно высока при:

• высокой нагрузке на мотор и приближающейся к критической частоте оборотов коленвала;

• разгоне — когда нагрузка на двигатель большая, но обороты малые; такая детонация слышится как серия стуков и металлического звона, её принято считать самым опасным видом детонации, так как рёв мотора способен полностью заглушить звуки взрывов;

• конструктивных дефектах двигателя;

• некачественном топливе.

Зажигание ВАЗ 2110 инжектор, схема, свечи, модуль зажигания ВАЗ-2110

Зажигание ВАЗ 2110 инжектор принципиально отличается от карбюраторных версий. Во первых, в системе зажигания инжекторных «десяток» нет распределителя на валу распредвала и основной катушки зажигания, которые характерны для всех карбюраторных машин. В инжекторных моделях ВАЗ 2110, 2111, 2112 система зажигания построена без использования подвижных элементов.

Особенностью зажигания ВАЗ 2110 инжектор является отсутствие регулировок угла опережения, кроме того инжекторное зажигание «десятки» не требует какого либо обслуживания. Основным элементом всей схемы является модуль зажигания, смотрим фото модуля вначале нашей статьи. Модуль состоит из пары катушек зажигания и электроники, которая управляет распределением высокой энергии на свечи. В свою очередь команды на модуль зажигания ВАЗ 2110 инжектор подает контроллер. Вся схема зажигания далее на нашем изображении.

На схеме зажигания инжекторного двигателя ВАЗ-2110 изображены следующие элементы —

  • 1 — аккумуляторная батарея
  • 2 — выключатель зажигания
  • 3 — реле зажигания
  • 4 — свечи зажигания
  • 5 — модуль зажигания
  • 6 — контроллер
  • 7 — датчик положения коленчатого вала
  • 8 — задающий диск
  • А — устройство согласования

Свечи зажигания инжектора на «десятке» для 8-клапанного двигателя и для 16-клапанного моторов разные по конструкции. Для 8-клапанных инжекторов применяются свечи марки А17ДВРМ, для 16-клапанных силовых агрегатов это свечи АУ17ДВРМ. Последние имеют более компактный размер и откручиваются ключом на 16. В 8-клапнной головке блока цилиндров свечи установлены так же, как и на карбюраторных версиях мотора, а вот в 16 клапанной ГБЦ свечи утоплены вертикально в колодцах головки блока цилиндров. Нормальный зазор между электродами у этих свечей составляет 1,0-1,15 мм.

Искрообразование в инжекторном моторе 2110 происходит сразу в двух цилиндрах. При этом в одном цилиндре искра воспламеняет рабочую смесь на такте сжатия, а на втором цилиндре искра появляется на такте выпуска и никак не влияет на работу мотора, то есть это так называемая «холостая искра». Таким образом искрообразование происходит по парам, что облегчает всю схему работы силового агрегата. Для этого в модуле зажигания как раз имеются две высоковольтные катушки с постоянным направлением тока. Искра попеременно появляется в 1-4 и 2-3 цилиндрах.

Еще один важный элемент зажигания ВАЗ-2110, это контроллер. Именно контроллер зажигания дает команду на модуль, о том что пора направить ток на те или иные свечи. В контроллер поступает информация с датчиков положения коленчатого вала, датчика массового расхода воздуха, частоты вращения коленвала и  наличия детонации. Используется даже информация о температуре охлаждающей жидкости. После обработки всех сведений с датчиков и расчета последовательности срабатывания катушек в модуле, контроллер подает сигнал на модуль, а уже с него идет ток на свечи. Благодаря такой системе зажигания инжекторный двигатель ВАЗ-2110 стабильно и надежно работает.

Система зажигания инжекторного двигателя – Защита имущества

Устройство электронной системы зажигания

В электронной системе зажигания инжектора используется принцип статического распределения высокого напряжения, то есть в системе отсутствуют подвижные детали. На инжекторных авто высокое напряжение с катушки зажигания подается в два цилиндра, поршни которых в данный момент движутся к верхней мертвой точке. В одном из цилиндров происходит такт сжатия смеси, во втором — такт выпуска.

Такой принцип распределения высокого напряжения называется «методом холостой искры». На современных инжекторных двигателях устанавливают индивидуальные катушки зажигания на каждый из цилиндров.

Управление углом опережения зажигания
Состав системы зажигания инжекторного двигателя
Модуль зажигания

Катушка зажигания служит для накопления энергии, достаточной для воспламенения топливовоздушной смеси, в ее вторичной цепи формируется высокое напряжение, которое далее подается на свечи зажигания. Катушка зажигания состоит из двух индуктивно связанных обмоток (первичной и вторичной).

Коммутатор служит для включения и выключения тока в первичной обмотке катушки зажигания. Контроллер рассчитывает необходимое время включенного состояния в зависимости от текущих оборотов коленвала и напряжения бортсети и подает на коммутатор управляющий сигнал. В течение времени включенного состояния (времени накопления) ток в первичной обмотке катушки зажигания возрастает до заданного оптимального значения, при котором величина запасаемой энергии достигает максимума. Если время накопления слишком велико, то катушка зажигания будет работать с насыщением, что приведет к ее перегреву и снижению КПД.

Высоковольтные провода зажигания

С помощью высоковольтных проводов высокое напряжение с катушки зажигания подается на свечи зажигания. Высоковольтный провод представляет собой токопроводящую жилу в силиконовой изоляции, на концах которой и находятся высоковольтные контактные наконечники. Высоковольтный провод обладает сопротивлением 6—15 кОм. Это делается специально для снижения уровня электромагнитных помех, которые возникают в момент искрообразования.

Свечи зажигания

Свеча зажигания: 1 — контакт; 2 — изолятор; 3 — корпус; 4 — электропроводное стекло; 5 — уплотнение; 6 — центральный электрод; 7 — боковой электрод

Свечи зажигания служат для воспламенения топливовоздушной смеси. При увеличении напряжения вторичной цепи до величины пробоя искровой промежуток между центральным и боковым электродами свечи зажигания становится токопроводящим, запасенная энергия катушки зажигания преобразуется в искру, воспламеняющую топливовоздушную смесь.

Величина напряжения пробоя искрового промежутка зависит от зазора между электродами, от геометрии электродов, от давления в камере сгорания и от коэффициента избытка воздуха смеси в момент воспламенения. С ростом давления в камере сгорания напряжение пробоя увеличивается.

Длина искрового промежутка влияет на качество сгорания топливовоздушной смеси. Чем больше искровой промежуток, тем увереннее происходит ее воспламенение. Но максимальное значение межэлектродного расстояния ограничивается максимально допустимым значением вторичного напряжения катушки зажигания, скоростью нарастания вторичного напряжения, которое, в свою очередь, определяется конструктивными особенностями катушки зажигания, высоковольтных проводов и свечей зажигания.

Датчик положения коленвала (ДПКВ)

Чтобы обеспечить оптимальное управление двигателем, контроллер системы управления должен всегда знать точное положение поршней в цилиндрах двигателя относительно ВМТ. Для этой цели шкив привода генератора дополнили зубчатым венцом. Расчетное количество зубьев на венце 60, при этом два из них отсутствуют. Угловое расстояние между зубьями составляет 6°.

В паре с зубчатым шкивом работает ДПКВ. Воздушный зазор между ДПКВ и зубчатым венцом составляет 0,7—1,1 мм.

Датчик кислорода (ДК) установлен в нижней части приемной трубы, он работает совместно с нейтрализатором.

Чувствительный элемент датчика находится непосредственно в потоке отработанных газов. ДК формирует напряжение от 50 до 855 мВ в зависимости от содержания кислорода в отработанных газах.

Рис. 7. Внешний вид датчика кислорода

Внешний вид датчика кислорода показан на рис. 7, а на рис. 8 показан фрагмент схемы подключения ДК к контроллеру. В состав датчика входят измеряющий чувствительный элемент и нагреватель.

Нагреватель служит для быстрого прогрева чувствительного элемента после запуска двигателя. Температура нагрева, при котором эффективность работы ДК повышается, составляет около 300°С.

При нагреве датчика он вырабатывает напряжение в пределах от 300 до 600 мВ и выше.

Во время изменения напряжения контроллер реагирует на то, что датчик прогрелся и готов к работе.

Сигнал с чувствительного элемента датчика поступает на соединитель ХР1 контроллера и далее через резистивный делитель R15 R17 R18 на выв. 58 DD4. Одновременно на чувствительный элемент датчика в холодном состоянии подается опорное напряжение около 450 мВ.

Рис. 8. Схема подключения ДК к контроллеру

На контакт В нагревателя датчика подается напряжение 12,5 В с контактов главного реле (см. рис. 8). На контакт D подогревателя датчика кислорода подключается «земля» через ключ (полевой транзистор DA9 типа BTS 141), который управляется сигналом с выв. 38 микроконтроллера DD4.

Работа инжекторного двигателя обеспечивается в двух режимах:

«Открытый контур» – работа двигателя в холодном состоянии или на холостом ходу (выходное напряжение ДК находится в пределах от 300 до 580 мВ), контроллер производит расчет длительности импульсов впрыска без учета данных ДК.

«Закрытый контур» – двигатель и ДК прогреты до рабочей температуры, контроллер анализирует данные с ДК для поддержания соотношения «воздух/топливо» 14,7/1 (выходное напряжение ДК

находится в пределах от 50. 180 мВ до 680. 850 мВ). При этом низкий уровень напряжения характеризует наличие кислорода в отработанных газах(бедная смесь), а высокий уровень говорит об отсутствии или низком содержании кислорода (богатая смесь).

В автомобилях с двигателем, изготовленным под нормы токсичности Евро-3, используется два датчика кислорода – управляющий и диагностический.

Нестабильность в работе датчика кислорода (или полное отсутствие сигнала на его выходе) может быть связано как с неисправностью самого ДК, так и с внешними факторами.

Причины отказов ДК могут быть вызваны некачественным топливом, попаданием в камеру сгорания паров охлаждающей жидкости, моторного масла, перегревом или проблемами с электрооборудованием автомобиля.

Проверить датчик кислорода можно с помощью осциллографа или обычного мультиметра.

Во время проверки работы датчика, следует отсоединить колодку от ДК, включить зажигание и измерить напряжение на контакте «А» колодки, оно должно быть равно 450 мВ. Если напряжение в норме, следует заменить ДК (неисправен чувствительный элемент). При отсутствии напряжения на указанном контакте проверяют цепь между конт. «А» и конт 28 соединителя ХР1 (зажигание выключено, соединитель ХР1 отключен от контроллера). При отсутствии неисправности в данной цепи проверяют контроллер или заменяют его (данные неисправности соответствуют кодам Р0130 – неверный сигнал при работе ДК, Р0131 – низкий уровень сигнала ДК, Р0132 – высокий уровень сигнала ДК).

Рис. 9. Внешний вид измерительного элемента BOSCH ДМРВ

Поиск неисправности в цепи управления подогревателя датчика кислорода (код Р0135) начинают с проверки самого ДК. Отключают колодку ДК, проверяют отсутствие обрыва подогревателя, подключив омметр между контактами «В» и «D», сопротивление при этом

должно быть в пределах от 15 до 20 Ом (в зависимости от модели ДК).

Проверяют присутствие напряжения на контакте «D» колодки ДК.

Неисправность ДК может быть вызвана также замыканием на «массу» в цепи между контактами «D» колодки ДК и контактами 15 и 33 соединителя ХР1 контроллера. Как правило, данная неисправность может быть вызвана замыканием подогревателя ДК на «массу».

Последствия данной неисправности могут быть разнообразные: выход из строя ДК и его цепей, а также ЭБУ (выход из строя транзистора DA9, резистора R81, микросхемы DD7-5, микроконтроллера DD4).

Датчик массового расхода воздуха

Датчик расхода воздуха (ДМРВ) служит для измерения количества расходуемого двигателем воздуха.

Он устанавливается на автомобиле в разрыв между воздушным фильтрующим элементом и дроссельным патрубком. Показания ДМРВ являются одним из главных параметров, используемых контроллером для управления работой системы зажигания двигателя.

Датчик выполнен в виде патрубка из пластмассы со съемным измерительным элементом. Внешний вид измерительного элемента фирмы BOSCH показан на рис. 9, а на рис. 10 схема подключения ДМРВ к контроллеру с примером осциллограммы в момент резкого открытия дроссельной заслонки.

Рис. 10. Схема подключения ДМРВ к контроллеру

ДМРВ формирует постоянное напряжение в диапазоне от 1 до 5 В,значение которого зависит от объема проходящего через него воздуха.

За время выпуска автомобилей семейства ВАЗ завод комплектовал автомобили ДМРВ фирм GM (диаметр отверстия 86 мм), BOSCH (диаметр отверстия 74 мм) и Siemens. Датчики указанных фирм не взаимозаменяемые.

Неисправности ДМРВ, как правило, приводят к сбоям в работе двигателя – затрудненному пуску, провалам, рывкам и т.п. Отметим, что неверное вычисление контроллером количества воздуха, расходуемого при работе двигателя, приводит к отказам других элементов системы зажигания двигателя.

Следует учесть, что ДМРВ относится к неремонтируемым и необслуживаемым изделиям. При выходе из строя он требует замены (коды ошибок ДМРВ: Р0102 – низкий уровень сигнала, Р0103 – высокий уровень сигнала).

Причиной одного из распространенных отказов ДМРВ может быть попадание на чувствительный элемент датчика масла из системы вентиляции картера двигателя.

Исполнительные элементы системы зажигания

На рис. 11 приведен фрагмент схемы подключения к контроллеру исполнительных элементов системы зажигания инжекторного двигателя. Перечислим основные элементы: модуль зажигания, система топливоподачи (электробензонасос, форсунки, реле электробензонасоса), контрольная лампа «CHECK ENGINE» и датчик положения коленчатого вала.

Рис. 11. Схема подключения к контроллеру исполнительных элементов системы зажигания двигателя

Исполнительные элементы системы зажигания управляются микроконтроллером DD4.

Работу модуля зажигания по двум каналам (1/4 и 2/3 цилиндры) обеспечивает микросхема DA3 типа TPS 2814D. Сформированные импульсы с выв. 7 (1/4 цилиндры) и выв. 5 (2/3 цилиндры) микросхемы через контакты 1 и 20 соединителя ХР1 поступают на схему формирования высокого напряжения модуля зажигания.

В состав схемы обеспечения подачи топлива входят электробензонасос (ЭБН), реле электробензонасоса и форсунки.

Электробензонасос – турбинного типа, в его состав также входит датчик уровня топлива. ЭБН установлен в топливном баке и управляется микросхемой DA6 типа HIP 0045 (выв. 15) через буферное реле. Микросхема также управляет главным реле и реле вентилятора охлаждения.

При включении зажигания контроллер включает ЭБН на несколько секунд, при этом создается необходимое давление топлива в рампе форсунок (до 650 кПа).

Форсунки установлены одной частью своей конструкции в рампу, а другой – в отверстия впускной трубы. Конструкция форсунки и системы зажигания представляет собой обычный электромагнитный клапан, который управляется контроллером.

Последовательность работы форсунок определяется ЭБУ. В табл. 1 приведена последовательность работы форсунок, в зависимости от типа контроллера.

Порядок работы форсунок

BOSCH M1.5.4.N Январь 5.1 VS 5.1

Попеременный синхронный впрыск, включение попарное (1/4 и 2/3 цилиндры)

BOSCH M1.5.4 Январь 5.1

VS 5.1 (2111-1411020-72)

Одновременный впрыск, включение через каждые 360° поворота коленчатого вала

BOSCH M1.5.4.N (2112-1411020-40) Январь 5.1 (2112-1411020-41) Январь 1.5.4 Январь 5.1.2 BOSCH MP7.OH

Последовательный впрыск, с включением через каждые 180° поворота коленчатого вала (1-3-4-2)

Неисправности исполнительных элементов системы зажигания условно можно разделить на отказы механической части системы топ-ливоподачи и отказы, связанные с электронной частью.

Остановимся более подробно на отказах электронной части.

Типовым отказом является отсутствие запуска двигателя при прокручивании коленчатого вала.

После проверки работы системы топливоподачи проверяют целостность всех предохранителей,качество соединения жгута системы зажигания с исполнительными элементами, механизмами и датчиками.

Отсоединяют колодку жгута проводов форсунок и проверяют на клеммах «B, F, C, G» относительно клеммы «F» сопротивление обмоток электромагнитного клапана форсунок, которое должно быть в пределах от 10 до 15 Ом.

Поочередно проверяют пробником на каждой из форсунок наличие управляющего сигнала с контроллера. Проверяют работоспособность модуля зажигания методом проверки/замены высоковольтных проводов и свечей зажигания.

Омметром проверяют на обрыв и замыкание цепь между контактами 1, 20 соединителя ХР1 ЭБУ и контактами «В», «А» колодки модуля зажигания соответственно. При исправных цепях следует заменить ЭБУ.

Также следует проверить работу датчика коленчатого вала (сопротивление датчика должно быть от 550 до 750 Ом), расстояние от вершины зубцов на шкиве коленчатого вала до рабочей части датчика должно составлять 1±0,4 мм.

Ремонт и программирование контроллера

Для диагностики неисправностей электронной части системы зажигания современных автомобилей. Специалисты, как правило, используют специализированные электронные приборы – сканеры, диагностические тестеры и т.д. Их подключают к диагностическим колодкам автомобиля, обеспечивая тем самым оперативное обнаружение неисправностей по кодам ошибок и определение дефектного узла. После устранения неисправности с помощью этих же приборов необходимо стереть из памяти контроллера коды ошибок.

В электронной части системы зажигания автомобиля ЭБУ считается самым надежным узлом. Как правило, он выходит из строя из-за внешних факторов – нарушения герметичности и попадания влаги внутрь конструкции, отказа исполнительных устройств и датчиков, замыкания и изменение полярности питания.

Выявление неисправностей и ремонт ЭБУ следует проводить в стационарных условиях.

Большинство контроллеров, которые устанавливаются на отечественные автомобили, имеют одинаковую элементную базу, отличаются лишь типы микроконтроллеров и Flash-памяти.

В табл. 2 приведены данные по указанным элементам для наиболее распространенных типов ЭБУ.

Работа системы зажигания инжекторного двигателя

Процесс воспламенения топливовоздушной смеси

Когда поршень сжимает топливовоздушную смесь, давление в камере сгорания достигает 20-40 бар, а температура смеси 400 – 600°С. Но чтобы смесь загорелась, т.е. произошел бы процесс горения этого недостаточно и нужно на нее воздействовать. Для этого служит искра, которая возникает между центральным и боковым электродами свечи зажигания. Но если искровой заряд будет маломощным, то возгорание может и не произойти.

Чтобы смесь поджигалась нужен очень мощный разряд. К примеру, для стехиометрической смеси он составляет 0.2 мДж, а для ‘бедной’ или ‘богатой’ смеси он должен быть равным 3.0 мДж. Необходимо, чтобы около искры находилось оптимальное количество топливовоздушной смеси. Именно это количество и поджигает всю оставшуюся смесь в цилиндре, а дальше начинается процесс сгорания топлива.

В системе зажигания автомобиля присутствует катушка зажигания, которая накапливает энергию и передает ее на свечу зажигания для возникновения напряжения. Особенность катушки зажигания состоит в том, что напряжение, которая она создает, намного превышает величину пробоя в зазоре свечи зажигания. Катушки зажигания способны накапливать энергию в районе 60 – 120 мДж и обеспечивают напряжение равное 25 – 40 кВ.

Условия для качественного горения топлива:

  • Достаточная продолжительность искрового разряда,
  • Оптимальное распыление топливовоздушной смеси,
  • Однородность топливовоздушной смеси,
  • Стехиометрический состав топливовоздушной смеси.

На процесс горения также влияет величина искрового разряда между электродами свечи зажигания. Увеличение зазора способствует увеличению длины искры, что приводит к более лучшему процессу сгорания топлива. Величину зазора в свечи зажигания надо выставлять согласно данным производителя мотора.

Угол опережения зажигания (УОЗ). Что это такое?


Три миллисекунды – именно столько проходит между моментом начала воспламенения смеси и ее полным сгоранием.
При повышении частоты вращения коленвала время сгорания остается постоянным, но средняя скорость перемещения поршня возрастает. Это ведет к тому, что когда поршень отходит от ВМТ, сгорание смеси произойдет в большем объеме и давление газов на поршень уменьшиться. Из-за этого упадет мощность двигателя.

Кроме того, при одной и той же частоте вращения коленвала с увеличением нагрузки на двигатель момент воспламенения должен наступать позже. Это объясняется тем, что увеличивается количество горючей смеси, поступающей в цилиндры, и одновременно уменьшается количество примешиваемых к ней остаточных отработавших газов, вследствие чего повышается скорость сгорания. Искра должна возникнуть в тот момент, когда давление сгорания при разных рабочих режимах будет наиболее оптимальным.

Это вызывает необходимость воспламенять рабочую смесь с опережением (до прихода поршня к ВМТ) с таким расчетом, чтобы смесь полностью сгорела к моменту перехода поршнем ВМТ.

Момент зажигания является важным показателем в работе двигателя. От него зависит экономичность мотора, максимальная мощность и содержание вредных веществ в выхлопных газах.

В инжекторных моторах система самостоятельно рассчитывает угол опережения зажигания в зависимости от работы мотора в определенный период. Угол опережения зажигания определяется на основании скорости вращения коленвала, режима работы мотора и нагрузки на двигатель. На основании этих данных система управления двигателем подбирает оптимальный УОЗ.

Детонация двигателя. Что это такое?

Детонация – это непредсказуемые взрыв в моторе, который происходит в неположенное время и может загубить двигатель. Детонация возникает при высокой степени сжатия двигателя и носит опасный характер для мотора. Детонация бывает из-за самопроизвольного сгорания топливовоздушной смеси в камере сгорания.

Детонация свидетельствует о том, что момент зажигания очень ранний. Вследствие могут пострадать детали двигателя из-за повышенной температуры и давления паров. В первую очередь страдают поршни, прокладка головки цилиндров и головка в зоне клапанов. Детонация может приводить к ремонту двигателя.

Детонация мотора можно возникать:

  • При большой нагрузки на двигатель и повышенных (близким к критическим) оборотов коленчатого вала.
  • При разгоне. Она слышна как металлический звон и стуки в двигателе (‘стучат пальчики’). Она бывает при повышенной нагрузке, но при малых оборотах мотора. Именно она считается как самая опасная детонация, т.к. ее вовсе не слышно из-за повышенного шума мотора на больших оборотах.
  • Из-за конструкции двигателя, а также от плохого топлива.

Система зажигания инжекторного и дизельного двигателя автомобиля: виды (контактная и другие)

Эффективная работа автомобильного двигателя достигается только за счет нормальной работоспособности основных систем и узлов. Одной из таковых является система зажигания. Какие функции она выполняет, какие существуют виды СЗ, из каких механизмов и элементов она состоит? Ответы на эти и многие другие вопросы вы можете найти ниже.

Содержание

[ Раскрыть]

[ Скрыть]

Характеристика системы зажигания двигателя

Автомобильные бензиновые инжекторные и дизельные моторы не могут работать при неисправностях в работе системы зажигания. Если хотя бы один составляющий элемент СЗ по каким-то причинам выходит из строя, это приведет к некорректной работе мотора в целом. Для начала рассмотрим основные характеристики СЗ, начнем с предназначения.

Предназначение и функции

Предназначение СЗ заключается в подаче высоковольтного разряда (искры) на свечи в определенный так работы двигателя автомобиля. В частности, речь идет о бензиновых силовых агрегатах. Что касается дизельных моторов, то в данном случае под зажигание подразумевают момент впрыска горючего и такт сжатия.

Виды

Если с назначением все понятно, то перейдем к видам:

  1. Контактные СЗ, в данном случае процесс управления за процедурой накопления и распределения высоковольтного разряда по цилиндрам производится с помощью распределительного механизма. Более совершенствованные контактные СЗ стали транзисторными, в них в первичной цепи катушки используется специальный транзисторный коммутатор.
  2. Бесконтактные СЗ. В таких системах управление зарядом осуществления с помощью транзисторного коммутатора, который взаимодействует с бесконтактным датчиком Холла. Многоискровое коммутаторное устройство используется в качестве прерывателя, а процесс распределения энергии производится с помощью механического распределительного узла.
  3. Электронные СЗ. В таких системах применяются специальные управляющие модули, которые осуществляют накопление и дальнейшее распределение разряда одно- или двухконтурной СЗ.

Конструкция

Теперь перейдем к вопросу конструкции СЗ:

  1. Основным элементом считается источник питания, используется батарейное устройство (АКБ), а также генераторный узел. Первый применяется для запуска мотора, а второй — для питания оборудования во время езды.
  2. Выключатель, то есть замок, в который водитель вставляет ключ. Этот механизм используется для подачи напряжения на электросеть авто, а также на втягивающее реле стартерного узла.
  3. Катушка или модуль зажигания. Этот элемент используется непосредственно для накопления, а также дальнейшего преобразования электрической энергии в высоковольтный разряд. Накопители могут быть емкостными или индуктивными.
  4. Не менее важный элемент — это свечи. Эти элементы представляют собой устройства, оснащенные электродами, их количество может варьироваться в зависимости от типа свечей и их производителя. На центральной части конструкции расположен специальный проводниковый элемент.
  5. Механизм распределения. Его предназначение заключается в подачи высоковольтного заряда на определенный цилиндр в определенное время, то есть в самый оптимальный момент. Такие механизмы состоят из распределительных устройств (трамблеров), коммутаторов и управляющих модулей, но их состав может быть разным в зависимости от типа СЗ.
  6. Высоковольтные провода. По сути, это одножильный кабель, оснащенный надежной изоляцией. Проводник, расположенный внутри изоляции, может быть выполнен в виде спирали, это позволят предотвратить образование помех в радиодиапазоне.

Принцип работы и порядок зажигания

Как работает СЗ:

  1. На первом этапе происходит накопление электрической энергии, а также дальнейшая подача заряда нужного уровня.
  2. Далее, осуществляется преобразование накопленной энергии в высоковольтный разряд.
  3. На следующем этапе осуществляется распределение заряда по цилиндрам. Здесь же следует упомянуть о порядке. Порядок зажигания — это процесс подачи заряда на определенные цилиндры, данный параметр определяется производителем для каждого конкретного автомобиля. К примеру, в отечественных ВАЗ 2109 порядок такой — сначала заряд подается на первый цилиндр, затем на третий, четвертый, а потом на второй.
    В Газелях порядок немного другой — сначала в работу вступает первый цилиндр, затем второй, потом четвертый и третий. Если вам нужно точно узнать о порядке работы цилиндров, уточните эту информацию в сервисной книжке.
  4. Далее, с помощью свечей в цилиндрах образовывается искра.
  5. На завершающем этапе осуществляется возгорание топливовоздушной смеси, что приводит к запуску силового агрегата (автор видео — Михаил Нестеров).

Следует отметить, что на каждом из этапов важно, чтобы все компоненты системы работали слаженно, только это позволит добиться наиболее эффективной работы.

Характерные неисправности зажигания двигателя

Поскольку по своей конструкции СЗ — это достаточно сложная система, выход из строя одного из ее компонентов может привести к невозможности запуска мотора.

Если двигатель не запускается, причины могут быть следующими:

  1. Окислились контакты на прерывателе, возможно, между ними отсутствует зазор. В данном случае люфт следует отрегулировать, а сами контакты качественно очистить.
  2. Произошло замыкание на массу конденсаторного элемента или проводки контактов. Замыкание необходимо устранить для ликвидации неисправности, а конденсаторный компонент — поменять на работоспособный. Также причина может заключаться в его пробое.
  3. Произошел обрыв в электроцепи высоковольтного напряжения катушки, на ней могла появиться трещина. В данном случае катушка подлежит замене.
  4. В некоторых случаях причина кроется в неправильной установке момента, тогда его следует проверить и при необходимости — отрегулировать.
  5. Еще одна проблема — не включается замок, она актуальна для авто с замком, в машинах, где запуск мотора осуществляется путем нажатия на кнопку, такой проблемы не бывает. Необходимо полностью снять и разобрать механизм, зачистить его, а если нужно — поменять контактную группу (автор видео — канал Мир Матизов).

Если силовой агрегат функционирует неустойчиво на небольших и средних оборотах, причины могут быть такими:

  1. На крышке трамблера появилась трещина, загрязнился роторный механизм. Устройство необходимо протереть, а если трещина серьезная — то крышка подлежит замене.
  2. Заедает уголек крышки или этот компонент износился. Если есть возможность, то заедание следует устранить, а уголек можно поменять.
  3. Перегорело сопротивление, неисправность решается путем замены.
  4. Еще одна причина — пробой изоляции высоковольтных проводов. Неисправность нельзя решить путем дополнительного изолирования провода изолентой, это не тот случай. Нужно точно убедиться в том, что пробой имеет место, если есть необходимость, провод следует поменять.
  5. На свечах по каким-то причинам уменьшился или увеличился зазор, также сами свечи могли замаслиться. Если проблема в зазоре, то его следует отрегулировать. В том случае, если электроды перегорели, то свечи подлежат замене. Проблема замасливания решается путем очистки свечей, но также следует определить причину, по которым это произошло.
  6. Произошло подгорание распределительной пластины роторного механизма. В данном случае пластина подлежит очистке.

Фотогалерея «Неисправности СЗ»

Может быть такое, что мотор не позволяет развивать полную мощность, при этом нет приемистости двигателя, в некоторых случаях проблема может сопровождаться стуком поршневых колец.

Причины:

  1. На прерывательном механизме ослабла пружина подвижного контакта, можно попытаться произвести регулировку ее натяжения либо просто поменять.
  2. Выставлено позднее или ранее зажигание, необходимо его отрегулировать.
  3. Произошли перебои в образовании искры между электродами. Такая проблема, как правило, требует полной замены вышедшей из строя свечи.
  4. Если причина неисправности заключается в износе подшипниковых элементов прерывателя распределителя, то эти детали также полежат замене, поскольку отремонтировать их не получится.
  5. Проблема может быть обусловлена износом втулки подвижного контакта на прерывательном механизме. Необходимо произвести диагностику, а если есть необходимость, полностью поменять стойку с контактами.
 Загрузка …

Видео «Самостоятельно чистим свечи»

Как в домашних условиях произвести очистку свечей зажигания — подробная инструкция с описанием основных нюансов приведена в ролике ниже (автор видео — Oleg Ars).

УАЗ 31519 | Система зажигания инжекторных двигателей

Я решил назвать тему именно так «Нет искры после трамблёра» ибо во всем инете я не нашёл ничего по такому запросу просьба к админам не удаляйте пожалуйста может кому пригодится мой опыт.

И так сама история посреди города машина перестала заводится и толкали и на буксире тягали все равно не заводится проверили искру на свече нет искры, решили проверить есть ли искра на центральном кабеле после катушки искра есть жирная белая, поменяли трамблер все равно нет искры поменяли бегунок искра появилась нас вече машина все равно не заводится, стартер крутит как дурной все равно ни как, проверяем коммутатор нет питания, в коммутаторе оказался один дохлый вздутый конденсатор поменял нет машина на завелась.

Решение проблемы: Заменил катушку, искра стала жирная и синя и это главное.

Ситуация, когда машина не хочет заводиться, хотя и достаточно распространенная, но, все же, очень неприятная. Особенно, если учитывать тот факт, что случается она всегда именно в то время, когда мы куда-то спешим. Причин того, что мотор не хочет работать, достаточно много, но самая распространенная из них связана с тем, что нет искры с катушки зажигания.

Почему катушка не дает искру

Среди причин того, что транспортное средство не желает заводиться, можно выделить:

  • горючее не поступает к карбюратору;
  • нет искры с катушки;
  • к катушке не доходит сигнал тока;
  • поломался распределитель зажигания;
  • между электродами свечи зажигания отсутствует искра;
  • ток не поступает к тамблеру.

Кроме того, иногда случается так, что функционирование силового агрегата блокируется стартером. Но, прежде всего, следует осмотреть обмотку электромотора. Возможно, там есть обрывы. Если же нет, то, преимущественно, стартер будет исправным. В этом случае следует осмотреть катушку.

Как понять, что нет искры с катушки зажигания

Прежде всего, необходимо понимать, что собой представляет данный узел вообще. Фактически, это устройство предназначено для того, чтобы преобразовывать ток из низкого в высокое напряжение. Без нормальной работы системы, функционирование транспортного средства невозможно вообще. Понять, что с подобным элементом есть некоторые проблемы, можно по таким характерным симптомам:

  • снизилась мощность работы силового агрегата;
  • есть определенные проблемы с запуском мотора;
  • увеличился расход горючего;
  • наблюдаются перебои в работе транспортного средства на холостом ходу.

10.8. Система зажигания инжекторных двигателей Уаз Хантер 31516

  1. Руководства по ремонту
  2. Руководство по ремонту УАЗ 31519 (Хантер) 2003 г.в.
  3. 10.8. Система зажигания инжекторных двигателей

10.8.1 Система зажигания инжекторных двигателей Проверка и замена катушек зажигания В системе зажигания не используется традиционный распределитель. В ней применяются две двухвыводные катушки зажигания, установленные на крышке головки блока цилиндров. Управление током в первичных обмотках катушек зажигания осуществляет контроллер, получ…
10.8.2 Проверка и замена катушек зажигания Катушки зажигания двухвыводные, типа 3012.3705 или 406.3705. Наиболее частая причина выхода из строя катушек — перегрев или межвитковое замыкание, вызванные работой двигателя с чрезмерно большими искровыми зазорами свечей зажигания или при наличии зазоров в соединениях высоковольтных проводов…

↓ Комментарии ↓

1. Устройство автомобиля

1.0 Устройство автомобиля 1.1 Общие сведения об автомобиле 1.2 Паспортные данные 1.3 Ключи автомобиля 1.4 Панель приборов и органы управления 1.5 Отопление и вентиляция салона 1.6 Двери 1.7. Сиденья 1.8 Зеркала заднего вида 1.9 Освещение салона

2. Рекомендации по эксплуатации

2.0 Рекомендации по эксплуатации 2.1. Правила техники безопасности и рекомендации 2.2 Рекомендации по безопасности движения 2.3. Что нужно иметь в автомобиле 2.4 Эксплуатация автомобиля в гарантийный период 2.5 Обкатка автомобиля 2.6. Подготовка автомобиля к выезду 2.7 Заправка автомобиля топливом 2.8 Пользование домкратом 2.9 Буксировка автомобиля

3. Неисправности в пути

3.0 Неисправности в пути 3.1. Двигатель не заводится 3.2 Неисправности системы впрыска топлива 3.3. Перебои в работе двигателя 3.4. Автомобиль движется рывками 3.5 Автомобиль плохо разгоняется 3.6 Двигатель заглох во время движения 3.7. Упало давление масла 3.8. Перегрев двигателя 3.9. Аккумуляторная батарея не подзаряжается 3.11. Появились посторонние стуки 3.12. Проблемы с тормозами 3.13. Прокол колеса

4. Техническое обслуживание

4.0 Техническое обслуживание 4.1. Общие положения 4.2. Ежедневное обслуживание (ЕО) 4.3. Первое техническое обслуживание (ТО-1) 4.4. Второе техническое обслуживание (ТО-2) 4.5. Особенности первого технического обслуживания (ТО-1) автомобилей с дизельным двигателем 4.6. Особенности второго технического обслуживания (ТО-2) автомобилей с дизельным двигателем

5. Двигатель

5.0 Двигатель 5.1 Особенности конструкции 5.2 Возможные неисправности двигателя, их причины и способы устранения 5.3 Полезные советы 5.4 Проверка компрессии в цилиндрах 5.5 Снятие и установка брызговиков двигателя 5.6. Замена опор подвески силового агрегата 5.7 Замена ремня привода генератора и водяного насоса 5.8 Установка поршня первого цилиндра в положение ВМТ такта сжатия 5.9 Замена цепей и шестерен газораспределительного механизма 5.13. Замена деталей уплотнения двигателя 5.14. Головка блока цилиндров двигателя 5.16. Ремонт двигателя 5.17. Cистема смазки двигателя 5.18. Система охлаждения двигателя 5.19. Система выпуска отработавших газов 5.20. Система питания 5.21. Система улавливания паров топлива 5.22. Особенности конструкции дизельного двигателя

6. Трансмиссия

6.0 Трансмиссия 6.1. Сцепление 6.2. Коробка передач 6.3. Раздаточная коробка 6.4. Карданная передача 6.5. Передний мост 6.6. Задний мост

7. Ходовая часть

7.0 Ходовая часть 7.1. Передняя подвеска 7.2. Задняя подвеска

8. Рулевое управление

8.0 Рулевое управление 8.1 Особенности конструкции 8.2 Возможные неисправности рулевого управления, их причины и способы устранения 8.3. Рулевая колонка 8.4. Рулевая трапеция 8.5. Рулевой механизм

9. Тормозная система

9.0 Тормозная система 9.1 Особенности конструкции 9.2 Возможные неисправности тормозной системы, их причины и способы устранения 9.3 Прокачка гидропривода тормозной системы 9.4 Проверка и регулировка свободного хода педали тормоза 9.5. Главный тормозной цилиндр 9.6 Замена вакуумного усилителя тормозов 9.7. Замена шлангов и трубопроводов гидропривода тормозов 9.8. Тормозные механизмы передних колес 9.9. Тормозные механизмы задних колес 9.10. Регулятор тормозных сил в гидроприводе задних тормозов 9.11. Стояночный тормоз

10. Электрооборудование

10.0 Электрооборудование 10.1 Особенности конструкции 10.2. Аккумуляторная батарея 10.3. Монтажные блоки 10.4. Генератор 10.5. Стартер 10.6. Выключатель (замок) зажигания 10.7. Электронная система управления бензиновым двигателем (система впрыска топлива) 10.8. Система зажигания инжекторных двигателей 10.9. Электронная система управления дизельным двигателем (система впрыска топлива) 10.10. Освещение, световая и звуковая сигнализация 10.11. Очиститель ветрового стекла 10.12. Бачок омывателя ветрового стекла 10.13. Очиститель стекла двери задка 10.14. Бачок омывателя стекла двери задка 10.15. Электродвигатель вентилятора системы отопления и вентиляции салона 10.16. Прикуриватель 10.17. Комбинация приборов 10.18. Спидометр 10.19. Замена датчиков и выключателей

11. Кузов

11.0 Кузов 11.1 Особенности конструкции 11.2. Снятие и установка бамперов 11.3. Снятие и установка подкрылков и брызговиков колес 11.4 Снятие и установка передних крыльев 11.5 Снятие и установка облицовки радиатора 11.6 Снятие и установка накладки облицовки радиатора 11.7 Снятие и установка брызговиков моторного отсека 11.8 Снятие и установка крышек люка пола 11.9 Снятие и установка полки аккумуляторной батареи 11.10. Капот 11.11. Боковые двери 11.12. Дверь задка 11.14. Ветровое окно 11.15. Крышки люков наливных труб топливных баков 11.16. Сиденья 11.17. Зеркала 11.18. Арматура салона 11.19. Панель приборов 11.20. Отопитель 11.21. Уход за кузовом

12. Советы начинающему автомеханику

12.0 Советы начинающему автомеханику 12.1. Техника безопасности при проведении ремонтных работ 12.2. Инструменты 12.3 Перед началом работы 12.4. Восстановление резьбовых соединений 12.5 Советы по кузовному ремонту

13. Покупка запасных частей

13.0 Покупка запасных частей 13.1 Моторное масло 13.2 Пластичные смазки 13.3 Охлаждающие жидкости 13.4 Тормозная жидкость 13.5 Топливный фильтр тонкой очистки 13.6 Воздушный фильтр 13.7 Масляный фильтр системы смазки двигателя

14. Поездка на СТО

14.0 Поездка на СТО

15. Зимняя эксплуатация автомобиля

15.0 Зимняя эксплуатация автомобиля 15.1 Как подготовить автомобиль к зиме 15.2 Рекомендации по пуску двигателя в сильный мороз 15.3 Что полезно купить к зиме 15.4 Полезные зимние советы

16. Подготовка к техосмотру

16.0 Подготовка к техосмотру 16.1 Рекомендации 16.2 Перечень неисправностей и условий, при которых запрещается эксплуатация транспортных средств 16.3 Изменения к государственным стандартам, регламентирующим предельно допустимое содержание вредных веществ в отработавших газах автотранспортных средств

17. Приложения

17.0 Приложения 17.1 Приложение 1. Моменты затяжки резьбовых соединений 17.2 Приложение 2. Температурный диапазон применяемости моторных масел 17.3 Приложение 3. Горюче-смазочные материалы и эксплуатационные жидкости 17.4 Приложение 4. Лампы, применяемые на автомобиле 17.5 Приложение 5. Специальные инструменты и приспособления

18. Схемы электрооборудования

18.0 Схемы электрооборудования 18.1 Схема 1. Соединения системы управления двигателем мод. ЗМЗ-5143.10 18.2 Схема 2. Соединения системы управления двигателем мод. ЗМЗ-409 (Евро-2) 18.3 Схема 3. Соединения системы управления двигателем мод. ЗМЗ-409 (Евро-0) 18.4 Схема 4. Электрооборудование автомобилей мод. 31519-095, 31519-195 18.5 Схема 5. Электрооборудование автомобилей мод. 315195-025, 315195-125 18.6 Схема 6. Электрооборудование автомобилей мод. 315195-023, 315195-123

Как проверить искру на катушке зажигания

Когда вы поняли, что проблема кроется именно в катушке, следует осуществить ее ремонт. Но не стоит сразу же бежать в сервисный центр, если нет искры от катушки зажигания. Ведь за такие услуги придется немало заплатить.

Для начала необходимо провести визуальный осмотр элемента. Различные деформации, механические повреждения, сильные загрязнения и пятна могут привести к тому, что на катушку зажигания не поступает ток. Грязь необходимо стереть при помощи сухой тряпки. Обратить внимание нужно и на проводку.

Важно, чтобы на ней не было влаги и обрывов.

Затем следует немножко пошевелить высоковольтной проводкой. Если после этого все равно не идет искра с катушки зажигания, то тут необходимо заняться более тщательной диагностикой.

Проверяем свечи зажигания и катушку

Далее необходимо оценить адекватность функционирования свечей. Прежде всего, снимает 2 высоковольтных провода с распределителя. После кладем проводку так, чтобы она находилась в 7 миллиметрах от мотора. Запускаем стартер. Если вы увидите искру голубого цвета, то система работает исправно. Если же оттенок будет отличаться, или же искра отсутствует вообще, необходимо заняться ремонтом системы.

Затем, в ситуации, когда у вас пропала искра с катушки зажигания, необходимо оценить работоспособность и самой катушки. Алгоритм тут ничем не отличается от проверки свечей. Берем провод, что идет от катушки, после чего подносим его к мотору. Если при запуске движка не будет искрить, то элемент неисправен.

Проверка и устранение неисправности

Раз уж неприятность коснулась вас, не нужно сломя голову лететь в сервис и платить непонятно какие деньги за диагностику и ремонт. Починить свою машину вы можете самостоятельно, при этом сэкономите немало средств. Давайте же разберемся, почему нет искры с катушки зажигания, и узнаем, почему она могла пропасть и как решить такую проблему.

Первым делом нужно очень внимательно осмотреть катушку на наличие каких-либо механических повреждений, а также различных пятен, которые могут вызвать потерю высокого напряжения.

Если имеются загрязнения, то их нужно вытереть сухой ветошью. Осмотрите все контакты и провода, они не должны быть влажными и иметь какие-либо повреждения. После этого попробуйте пошевелить высоковольтные провода и завести после этого автомобиль. Если после таких манипуляций машина не завелась, то нужно проводить более глубокую диагностику.

Нужно проверить работоспособность свечей. Чтобы убедиться в правильной работе свечей, можно сделать следующее: нужно два высоковольтных провода снять с крышки распределителя и расположить их возле двигателя авто на расстоянии семи миллиметров. Итак, если при запуске стартера на этом расстоянии появится голубая искра – это значит, что система исправна, а если ее цвет не голубой или же ее вообще нет, то нужно заняться ее ремонтом или поменять ее на новую.

Катушку проверяют таким же методом, как и свечи. Берем провод идущий от нее к трамблеру и подносим его к массе двигателя, после чего запускаем зажигание автомобиля. Если искры не видать, истинная причина остановки автомобиля- катушка индуктивности. Далее нужно проверить ее омметром. Таким образом мы проверим наличие разрыва цепи на первичной и вторичной ее обмотках. Если разрыв отсутствует, то омметр покажет три Ома на первичной и семь тысяч Ом на вторичной обмотках. В том случае, когда данные будут меньше, вам следует заменить катушку зажигания на новую.

При диагностике желательно также проверить каждый проводок и контакт. Нужно осмотреть и провода и их изоляцию, возможно именно на этих участках «засела» неисправность. Нужно распутать провода, если они запутаны, разложив их правильно. При помощи амперметра нужно проверить наличие тока в цепи и его силу. Чтобы это сделать, нужно соединить провода трамблера и запустить зажигание автомобиля.

В случае когда сила тока гораздо меньше стандарта (он указан для каждого автомобиля отдельно в ПТС) – значит существует разрыв в катушке, который мог появиться в результате короткого замыкания. Очень часто катушка зажигания искрит и таким образом ломается при включенном зажигании и при выключенном двигателе. В результате этого на проводах начинает греться изоляция, которая со временем трескается и осыпается. В момент когда оголенные провода соприкасаются, происходит короткое замыкание.

Итак, когда выявлена истинная проблема поломки, ее нужно перемонтировать или же приобрести новую и заменить. Ремонту подлежат те механизмы, которые имеют незначительные трещины, царапины. Такие повреждения можно удалить путем зачистки или же заклеивания специальным веществом. Меняется катушка только на такую же самую, с такими же характеристиками.

При подключении новой катушки необходимо быть очень внимательным и аккуратным. Очень важно не перепутать провода. В противном случае, кода провода будут подключены неправильно, это приведет к их нагреву и к короткому замыканию.

Чтобы с вашим автомобилем не происходило преждевременных поломок, следите за его работой и его составляющими механизмами. В противном случае вы можете поплатиться за свою халатность. Удачи вам с ремонтом автомобиля.

Что делать дальше

Итак, причина того, почему нет искры от катушки обнаружена. Теперь же необходимо решать, что делать дальше. Основных варианта два:

  • отремонтировать неисправный элемент;
  • приобрести новую катушку, после чего осуществить замену.

Ремонт узла является достаточно сложным процессом. Тут необходимо разобрать механизм на составляющие элементы, после чего проверить их на наличие различных сколов, царапин и прочих дефектов, после чего зачистить повреждения. Затем нужно восстановить оболочку при помощи клея или специального состава.

Чтобы заменить катушку, необходимо подобрать модель с аналогичными параметрами.

Важно правильно подключить соединительные провода, иначе высока вероятность перегрева и возникновения короткого замыкания. Если же во время проверки появляется искра, а данные, полученные омметром и амперметром, находятся в пределах нормы, то следует искать неполадку в остальных элементах системы зажигания.

Дополнительные рекомендаци

При признаках поломки двигателя сразу проверяйте исправность свечей. Отключая провода, помечайте их “-” и “+” (поможет не перепутать полярность при подключении).

Если с диагностикой, ремонтом или заменой элементов системы зажигания вашей машины возникли трудности и у авто очень слабая искра на свечах, на Uremont.com вы найдете подходящий автосервис. Плюсы нашего сайта-агрегатора:

  • работает на Россию, Казахстан и Белоруссию;
  • интерактивная карта с партнерскими СТО;
  • вы всегда можете запросить информацию в “живом” чате;
  • техническое обслуживание портала осуществляется круглосуточно;
  • для удобства выбора на сайте есть оценки пользователей и рейтинг.

MAHLE Силовой агрегат | MAHLE Jet Ignition

Система MAHLE Jet Ignition® имеет небольшую камеру зажигания, в которой находится обычная свеча зажигания, которая соединена с основной камерой несколькими небольшими отверстиями, которые создают быстро движущиеся струи частично сгоревших продуктов, которые воспламеняют основной заряд. . Эти струи горячего газа проникают глубоко в основную камеру сгорания, создавая эффект распределенного воспламенения. При использовании 4-8 форсунок зажигания, в зависимости от области применения, основной заряд воспламеняется в нескольких местах, что приводит к быстрому и стабильному сгоранию.Характеристики системы предлагают дополнительные преимущества как за счет способности воспламенять разбавленные смеси, так и за счет снижения требований к высоким уровням движения заряда, вызванного портом.

В обеих конфигурациях основная камера заправляется топливом через обычный порт или инжектор прямого впрыска. В «пассивной» конфигурации это единственный источник топлива, что делает эту конструкцию пригодной для использования в приложениях с λ = 1, при этом разбавление обеспечивается за счет добавления рециркуляции выхлопных газов (EGR).Эта система совместима с обычными системами нейтрализации бензина. В «активной» конфигурации в узел форкамеры встроен 2-й прямой инжектор с низким расходом. Это позволяет точно и независимо управлять подачей топлива как в форкамеру, так и в основной камере, обеспечивая гомогенное сверхбедное сгорание в современных бензиновых двигателях, где смеси с бедностью λ = 2 могут воспламеняться при сохранении стабильности.

Помимо работы над клиентскими приложениями для обеих систем, продолжаются внутренние исследования с использованием версий нашей собственной 1.5-литровый 3-цилиндровый демонстрационный двигатель. На этом двигателе пассивная система зажигания MAHLE Jet Ignition®, которая, как правило, может быть упакована в один корпус с обычной установкой свечи зажигания M12, продемонстрировала способность работать на всей карте как для первичных двигателей, так и для специализированных гибридных двигателей. Благодаря сочетанию пассивного зажигания MAHLE Jet Ignition®, очень высокой геометрической степени сжатия, впрыска топлива в порт, работы по циклу Миллера и системы рециркуляции ОГ при низком давлении была продемонстрирована тепловая эффективность тормозов более 41%.

В конфигурации Active MAHLE Jet Ignition® значительная экономия топлива достигается за счет более высокого, почти сравнимого с дизельным КПД. Испытания двигателя показали удельный расход ниже 200 г / кВтч и соответствующее сокращение выбросов CO 2 . Это эквивалентно текущему пиковому показателю заушных слуховых аппаратов, составляющему 43%, с планом работ, запланированных для достижения уровня заушных слуховых аппаратов> 45%. Помимо повышения эффективности и расхода топлива, Active MAHLE Jet Ignition® также позволяет снизить выбросы NO x при выходе из двигателя более чем на 99% в условиях сверхнормативной обедненной смеси.Выбросы углеводородов (HC) поддерживаются на уровне, эквивалентном стандартному процессу искрового зажигания. Активное зажигание MAHLE Jet Ignition® (с заправкой в ​​основную камеру PFI) выделяет немного больше твердых частиц по сравнению с двигателем PFI, но их количество значительно меньше по сравнению с двигателем DI.

Как в «пассивном», так и в «активном» вариантах, форкамера была разработана таким образом, что она способна обеспечивать сопоставимую работу по задержке искры на холостом ходу и нагреву катализатора и подавать выбросы газа в центральную свечу зажигания в стехиометрических условиях, без Требование наличия второго воспламенителя в основной камере.

MJI увеличивает скорость горения и расширяет диапазон стабильного разбавления, поэтому он может работать с широким диапазоном типов топлива и является идеальной технологией для будущих низкоуглеродных видов топлива с особыми эксплуатационными требованиями. Например, водород требует высокого уровня разбавления, чтобы свести к минимуму вероятность аномального сгорания и предотвратить механическое повреждение двигателя. Двигатели MJI H 2 продемонстрировали способность достигать высоких уровней мощности при сопоставимых выбросах CO 2 от скважины до колеса с эквивалентными топливными элементами.

MAHLE Jet Ignition® — это новая впечатляющая система сгорания, которая обеспечивает большой потенциал для дальнейшего снижения выбросов CO 2 в бензиновых двигателях последнего поколения.

MAHLE Jet Ignition® Passive [PDF; 545 KB]

MAHLE Jet Ignition® Active [PDF; 429 KB]

Доступ к дополнительным материалам

Объяснение системы зажигания предкамеры — Maserati MC20 Engine Tech

После нескольких месяцев тизеров Maserati, наконец, представила свой суперкар MC20 в начале этого месяца.В его основе лежит новый двигатель V-6 с двойным турбонаддувом, получивший название Nettuno, который, как указала итальянская компания, использует технологию, полученную из Формулы-1, внутри головки блока цилиндров, называемую «форкамерой», предназначенной для повышения эффективности. и производительность. Вот как это работает.

Road & Track Джейсон Фенске недавно опубликовал на своем канале YouTube Engineering Explained видео, в котором рассказывается о процессе сгорания Nettuno. Предварительные камеры — это именно то, на что они похожи: отдельные камеры внутри головки блока цилиндров, соединенные с областью главного цилиндра.Есть два типа: активный и пассивный. Активные форкамеры содержат свечу зажигания и топливную форсунку и воспламеняются после подачи обедненной топливовоздушной смеси в цилиндр. Обычно в этой смеси не хватает топлива, чтобы воспламениться самостоятельно, но топлива из форкамеры достаточно для создания оптимального соотношения воздух-топливо и ускорения процесса сгорания, повышения эффективности.

Пассивные форкамеры, с другой стороны, имеют только свечу зажигания в форкамеру, без добавления топлива или воздуха внутри.Когда свеча зажигания загорается, камера распространяет пламя по всей площади цилиндра, обеспечивая сверхбыстрый цикл сгорания. Это тот тип форкамеры, который использует Maserati, и производитель утверждает, что он позволяет на 15 процентов увеличить степень сжатия, при этом не нарушая законов о выбросах.

В системе форкамеры Maserati используется как порт, так и прямой впрыск, что является обычным усовершенствованием для повышения эффективности энергопотребления. Впрыск через порт создает лучшую топливно-воздушную смесь, а прямой впрыск охлаждает смесь в цилиндре, обеспечивая большую мощность.Система также имеет вторую свечу зажигания непосредственно внутри основной камеры для стабилизации горения при низких нагрузках.

Как отмечает Фенске, это довольно сложная установка, поэтому надежность может стать проблемой в долгосрочной перспективе. Также стоит отметить, что топливо или воздух не проходят через предкамеру Nettuno во время цикла сгорания, поэтому накопление углерода с течением времени также может быть проблемой. Нам просто нужно подождать несколько лет и посмотреть, как все обернется.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Как это работает: впрыск топлива

Ссылки на след

  1. Как это работает
  2. История возможностей

Подача топлива прямо в цилиндр оказалась намного более эффективной, чем старый добрый карбюратор

Автор статьи:

Джил МакИнтош

Дата публикации:

27 сентября 2017 г. • 7 февраля 2019 г. • 4 минуты чтения • Присоединяйтесь к разговору

Содержание статьи

Вот как вы завели машину с карбюратором холодным утром в «старые добрые времена».«Вы вытаскиваете дроссельную заслонку, несколько раз откачиваете дроссель и поворачиваете ключ. Если не переборщить и залить бензином, двигатель заведется, и вы будете нажимать на дроссельную заслонку и дроссельную заслонку, чтобы он продолжал работать. Через несколько минут, когда вы узнали, что все в порядке, вы могли уехать.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Сегодня? Вы поворачиваете ключ или нажимаете кнопку стартера, и через несколько секунд все готово.Отличие заключается в впрыске топлива, который используется во всех новых автомобилях.

Бензин должен быть смешан с воздухом, прежде чем его можно будет сжечь, и когда поршни двигателя опускаются вниз, они создают внутренний вакуум, который втягивает этот воздух. В старых автомобилях этот воздух поступает через карбюратор, который измеряет его и смешивает с нужным количеством топлива. (На любом транспортном средстве педаль «газа» на самом деле является пневматической педалью: нажатие на нее сигнализирует двигателю о необходимости втягивания большего количества воздуха, и система добавляет необходимое дополнительное топливо.) Эта воздушно-топливная смесь втягивается во впускной коллектор и в цилиндры, где воспламеняется в каждом от свечей зажигания.

Двигатель Ford EcoBoost V8 с двойным турбонаддувом сочетает в себе турбонаддув с прямым впрыском топлива для создания системы, которая обеспечивает мощность безнаддувного V8 с экономией топлива V6

Гораздо эффективнее заправлять топливо именно там, где это необходимо, и это что делает двигатель с впрыском топлива. Топливные форсунки распыляют бензин под давлением изнутри в двигатель, когда воздух врывается внутрь, создавая пар топливо-воздух в точке, где двигатель использует его, в отличие от карбюратора, который установлен над двигателем.Топливо впрыскивается точно в нужное время и в нужном количестве, чтобы максимизировать эффективность двигателя.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

В самых ранних основных системах впрыска топлива, которые появились на автомобилях в 1980-х годах, использовалась простая и недорогая система, называемая впрыском через корпус дроссельной заслонки. Блок был установлен над двигателем и, как и карбюратор, добавлял топливо, когда воздух проходил через впускной коллектор.Двигатель запускался легче, но у него был общий недостаток с карбюратором: не все цилиндры получали одинаковое количество топлива, что приводило к потере газа и увеличению выбросов.

Система дроссельной заслонки была заменена многоточечным впрыском, который используется сегодня в некоторых автомобилях. Над каждым поршнем имеется камера сгорания, в которой впускные клапаны открываются, впуская топливно-воздушную смесь. Свеча зажигания воспламеняет топливо для подачи энергии, а затем открываются клапаны для выпуска выхлопных газов. В многопортовой системе есть инжектор за пределами каждой камеры сгорания, распыляющий топливо в воздух непосредственно перед его поступлением в камеру.Предоставление каждому цилиндру собственной форсунки решает старую проблему неравномерного распределения топлива.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Следующим шагом стал непосредственный впрыск бензина, или GDI, который раньше использовался почти исключительно на дорогих автомобилях, но теперь также используется большинством основных производителей. Форсунка установлена ​​так, что ее сопло находится внутри камеры сгорания.Когда впускные клапаны открываются, в камеру попадает обычный воздух. Форсунка распыляет топливо, и вихревой воздух смешивается с ним, образуя пар, прежде чем свеча зажигания воспламенит его.

Прямой впрыск более эффективен, чем многопортовый. GDI создает более мелкий туман, который воспламеняется более полно, а также распыляет более точное количество топлива. Эти двигатели могут быть более мощными, даже если они потребляют меньше топлива и выделяют меньше выбросов из выхлопной трубы. Относительно новый для бензина, непосредственный впрыск всегда использовался в дизельных двигателях, которые зависят от тепла сжатия, а не от свечи зажигания для воспламенения топлива.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Ни одна система не идеальна. GDI более сложен, чем многоточечный впрыск, и, поскольку он находится под более высоким давлением, а сопла должны выдерживать высокую температуру сгорания, компоненты более мощные и, соответственно, более дорогие. У них также может быть проблема с отложениями в двигателе. Все двигатели выделяют загрязняющие вещества и углерод, которые вместе с остатками масла могут превращаться в твердую жирную субстанцию, известную как мусор.

На верхние части впускных клапанов в многопортовых двигателях попадает очищающий спрей бензина, а на клапаны двигателей GDI — нет, и они могут образовывать слой грязи. Сколько мусора и сколько проблем это создаст, может зависеть от производителя, двигателя и даже от того, кого вы спрашиваете — это может быть спорной темой для автолюбителей, а также от того, что с этим делать. Любые несгоревшие пары бензина рециркулируют обратно в систему как часть системы контроля выбросов двигателя, поэтому использование топлива хорошего качества может помочь уменьшить отложения, а также сохранить чистоту форсунок.Кроме того, замените свечи зажигания и выполните другое техническое обслуживание в соответствии с графиком вашего автомобиля, который вы найдете в руководстве по эксплуатации, включая своевременную замену воздушного фильтра и моторного масла.

Регулярная промывка форсунок или чистящие добавки также вызывают споры. Некоторые говорят, что это профилактическое обслуживание, а другие называют это пустой тратой денег. Они часто были полезны на старых двигателях, когда форсунки и топливо были не так хороши, как сегодня, но если ваш автомобиль работает нормально и в руководстве по эксплуатации не указано ни одного из них, скорее всего, вы сможете обойти это стороной.

Поделитесь этой статьей в своей социальной сети

Подпишитесь, чтобы получать информационный бюллетень Driving.ca Blind-Spot Monitor по средам и субботам

Нажимая кнопку подписки, вы соглашаетесь на получение вышеуказанного информационного бюллетеня от Postmedia Network Inc. откажитесь от подписки в любое время, нажав на ссылку отказа от подписки внизу наших писем. Postmedia Network Inc. | 365 Bloor Street East, Торонто, Онтарио, M4W 3L4 | 416-383-2300

Спасибо за регистрацию!

Приветственное письмо уже готово.Если вы его не видите, проверьте папку нежелательной почты.

Следующий выпуск «Монитора слепых зон» Driving.ca скоро будет в вашем почтовом ящике.

Комментарии

Postmedia стремится поддерживать живой, но гражданский форум для обсуждения и поощрять всех читателей делиться своим мнением о наших статьях. На модерацию комментариев может потребоваться до часа, прежде чем они появятся на сайте. Мы просим вас, чтобы ваши комментарии были актуальными и уважительными.Мы включили уведомления по электронной почте — теперь вы получите электронное письмо, если получите ответ на свой комментарий, есть обновление в цепочке комментариев, на которую вы подписаны, или если пользователь, на которого вы подписаны, комментарии. Посетите наши Принципы сообщества для получения дополнительной информации и подробностей о том, как изменить настройки электронной почты.

System32 — FlyEFII

Комплекты System32 EFII

Комплектный электронный впрыск и зажигание EFII для 4- и 6-цилиндровых двигателей Lycoming и Continental 520/550.

EFII означает «электронный впрыск топлива и зажигание». Комплект System32 EFII — это полностью дублированная электронная система управления двигателем для двигателей легких самолетов. В настоящее время мы концентрируем наши усилия на четырех- и шестицилиндровых двигателях Lycoming и двигателях Continental с большим диаметром цилиндра (520 и 550). Комплект System32 можно использовать в любом самолете экспериментальной категории, использующем один из этих двигателей.

Комплект System32 EFII очень похож на то, что вы найдете на любом современном автомобильном двигателе.

Электронный впрыск топлива и электронная система зажигания с компьютерным управлением. Система управляется ЭБУ (компьютером) и включает в себя полностью отображенную кривую топлива и кривую опережения зажигания. В части системы с электронным впрыском топлива используются клапаны электронных топливных форсунок, которые устанавливаются в каждый цилиндр с помощью нашей системы форсунок с креплением к отверстию (PMI). Корпус дроссельной заслонки заменяет типичный карбюратор или механический узел бабочки инжектора. Электронная часть системы зажигания использует высокоэнергетические индукционные катушки зажигания вместо магнето, чтобы подавать очень сильную и эффективную искру на каждую свечу.Все комплекты System32 полностью дублированы и включают два ЭБУ System32 и дублированные датчики двигателя.

Подробнее

Комплекты двойного зажигания System32

Электронные системы зажигания для авиационных двигателей существуют уже давно, но мы думаем, что у нас есть идея получше. Система зажигания EFII System32 представляет собой высокоэнергетическое индуктивное зажигание с большой продолжительностью искры. Это то, что вы найдете на всех современных автомобильных двигателях. Когда у вас есть длинная горячая искра для воспламенения топливовоздушной смеси в вашем двигателе, есть явное преимущество как в мощности, так и в эффективности.Независимо от того, являетесь ли вы человеком максимальной мощности или человеком максимальной эффективности, зажигание System32 принесет пользу эксплуатации вашего самолета.

При 2750 об / мин система зажигания System32 обеспечивает непрерывную горячую искру на коленчатый вал более 36 градусов, чтобы топливо загорелось. Это означает, что вы можете продвигать смесь глубже в богатый диапазон для большей мощности или дальше в обедненный диапазон для большей эффективности.

Подробнее

Замечания по зажиганию в RFI

Замечания по зажиганию в RFI

Содержание: Основы; Топливные форсунки и насосы; Другие источники импульсных радиопомех;

Основы

Без сомнения, наиболее распространенным источником шума RFI (радиочастотных помех) в любом современном автомобиле с бензиновым двигателем является система зажигания.Эти системы содержат катушку с проводом в виде трансформатора. Когда поле катушки схлопывается (после того, как ток питания снят), генерируется импульс CEMF (противоэлектродвижущая сила). Именно этот импульс, который звучит так, заставляет искру прыгать через зазор свечи. Это, в свою очередь, генерирует богатые гармониками RFI, большая часть которых излучается. Небольшое количество может быть наведено в первичную проводку, хотя и редко.

Между прочим, многие операторы мобильной связи считают, что системы инъекций также являются основной причиной импульсных радиопомех.Истина в другом, и эта проблема раскрыта ниже

.

Большинство производителей автомобилей перешли на технологию Coil Over Plug (COP) в той или иной форме, которая, как правило, работает тише, чем те, которые все еще используют провода. Хорошим примером последнего являются фирменные толкательные двигатели GM, в которых до сих пор используется короткая высоковольтная перемычка между отдельными блоками катушек и вилками.

Если вас беспокоят радиочастотные помехи от зажигания, вы можете сделать несколько вещей, а некоторые — не делать! Склеивание различных деталей, прикрученных болтами, особенно горизонтальных, таких как выхлопная система и капот, всегда является хорошей любительской практикой.Некоторые формы RFI, AFI и EMI могут быть вызваны или усугублены контурами заземления, поэтому важны также правильные методы подключения. И всегда требуются синфазные дроссели!

Если в вашем автомобиле все еще используется проводка зажигания высокого напряжения, запасные части должны быть заменены непосредственно OEM. Использование нерезисторных проводов и вилок увеличит уровень радиопомех. Если ничего другого не видно, уменьшение RFI зажигания не является одноэтапным, панацеей.

Следует отметить, что экранирование современных, регулируемых жилых высоковольтных систем зажигания — это катастрофа, ожидающая своего часа.Более того, использование ферритовых шариков является пустой тратой ресурсов и может фактически увеличить RFI, а не уменьшить его. Предупрежден — значит вооружен!

Наконец, схема АРУ, встроенная в каждый трансивер, и то, как она настраивается, действительно влияет на уровень воспринимаемого шума , который мы слышим. Этот вопрос освещен в выделенной статье.

☜Возврат☜

Топливные форсунки и насосы

Топливные форсунки с индукционной катушкой действительно вызывают радиопомехи, но по сравнению с любой формой искрового зажигания они бледнеют.Когда они издают радиопомехи, это указывает на неисправный инжектор и / или неисправный жгут проводов, питающий их. Единственные системы впрыска топлива, которые могут быть широко распространены, — это старые дизельные двигатели, в которых используется система челнока. Они звучат так. Двигатели с механическими или пьезоинжекторами практически не имеют радиопомех.

За последние несколько лет были достигнуты большие успехи в разработке и применении топливных форсунок как для бензиновых, так и для дизельных двигателей. До сих пор большинство бензиновых форсунок распыляли топливо во впускной коллектор, но последние версии распыляют топливо непосредственно в камеру сгорания (прямой впрыск бензина), как это делает дизель.Эти системы требуют другого подхода к форсункам, поскольку давление в топливной рампе может достигать 35 000 фунтов на квадратный дюйм (2500 бар). Это намного превышает возможности инжекторов с индукционной катушкой. Чтобы поднять штифт (открыть клапан), используется стопка пьезоэлектрических кристаллов, которые расширяются при подаче напряжения. Сами форсунки не генерируют радиопомех, но управляющая ими электроника может быть второстепенным источником. Здесь также важно правильное соединение.

Топливные насосы, питающие форсунки, также могут вызывать радиопомехи.Однако, если у вас есть автомобиль, выпущенный после ≈ 2004 г., вероятность того, что топливный насос станет основным источником радиопомех, составляет очень . Если у вас возникла проблема с RFI, вы думаете, что может быть топливным насосом , вот вам некое просветление. Все автомобили последних моделей используют шину данных между различными встроенными процессорами. Их обычные RFI-сигнатуры представляют собой серию равномерно расположенных птичек, некоторые из которых могут быть пульсирующими . Эти автобусы работают при включенном зажигании и при наличии давления моторного масла.

В течение короткого времени, необходимого для падения давления масла, топливный насос продолжает работать, облегчая продувку адсорбера паров топлива. Таким образом, радиопомехи от смешения частот шины данных (пульсирующие или другие) совпадают с работой топливного насоса. Поэтому легко сделать неверное предположение о том, откуда исходит RFI. Обычно после включения зажигания возникает небольшая задержка, прежде чем вы услышите, как насос заряжает топливную рампу, а затем ритмичный импульс, когда насос поддерживает давление в топливной рампе.

☜Возврат☜

Другие источники импульсных радиопомех

Автомобильная электроника плывет по течению с цифровыми подписями, большая часть которых не утомительна, но некоторые раздражают! Как отмечалось в выделенной статье, некоторые автомобильные компьютеризированные системы управления представляют собой кварцевый генератор цветовой синхронизации (3,579545 МГц). Гармоники от этих генераторов могут доходить до ОВЧ-спектра.

Еще один очень хороший пример — бортовые инверторы на 120 вольт. Подавляющее большинство использует модифицированную прямоугольную волновую технологию, главным образом потому, что она недорогая.Они также являются основными источниками RFI! К счастью, они всегда соединены по отдельности, что упрощает диагностику.

Вентиляторы радиатора и переменного тока часто имеют ШИМ (широтно-импульсную модуляцию), как и некоторые формы регуляторов генератора. Известно, что даже органы управления стеклоочистителями вызывают низкокачественные радиопомехи.

Хотя с большинством форм RFI можно справиться или, по крайней мере, снизить до допустимого уровня, предположение, что RFI исходит из какого-то конкретного источника, исключая все другие, просто значительно затрудняет идентификацию и / или адресацию.

☜Возврат☜

Дом

Двигатель с воспламенением от сжатия — обзор

Топливо с воспламенением от сжатия

Двигатель с воспламенением от сжатия обычно работает на дизельном топливе, а в последнее время — на биодизельном топливе. Некоторые желательные рабочие характеристики дизельного топлива включают в себя (1) высокое тепловыделение при сгорании, (2) летучесть, которая сохраняет его в жидком состоянии до тех пор, пока температура не станет значительно выше точки кипения воды, (3) быстрое воспламенение от сжатия (без искры). ), когда степень сжатия составляет примерно 15 к одному или выше, и (4) образование тонкого однородного тумана при прокачке топлива через топливные форсунки в каждом цилиндре.

Характеристики дизельного топлива почти противоположны характеристикам бензина. Бензин легко испаряется в воздух и не воспламеняется при сжатии в цилиндре двигателя. Воздух сжимается в цилиндре дизельного двигателя перед впрыском топлива, поэтому предварительного зажигания быть не может. Дизельное топливо испаряется, когда мелкие частицы тумана из топливных форсунок воспламеняются в горячем сжатом воздухе. Топливо также смазывает топливный насос форсунки. Цетановое число дизельного топлива характеризует склонность топлива к воспламенению.Стандарты США для дизельного топлива требуют минимального цетанового числа 40. Механическое различие между дизельным двигателем и бензиновым двигателем заключается в том, что свечи зажигания заменяются топливными форсунками.

Наливать бензин в бак для дизельного топлива и наоборот — не лучшая идея. Многие заправочные станции продают оба вида топлива. Сопло на бензонасосе больше, чем на дизельном топливном насосе. Отверстие под крышкой топливного бака на топливном баке дизельного топлива меньше, чем топливная форсунка для бензина, поэтому вы не можете заправить дизельный бак бензином.Однако форсунка для дизельного топлива будет заполнять топливный бак , поэтому покупатель будьте осторожны!

При разработке альтернативных видов топлива ученый / инженер в области топлива сначала переводит физические свойства, такие как летучесть и легкость воспламенения, в молекулярные свойства, такие как размер и форма молекул. Создание топлива становится управляемой задачей, поскольку молекулы в основном содержат атомы углерода, водорода и кислорода, за некоторыми исключениями.

Небольшие молекулы, содержащие десять или меньше атомов углерода, более летучие и делают бензин искровым топливом.Слово октан в «октановой шкале» — это химическое название восьмиуглеродной молекулы, которая содержится в бензине. Это хорошая репрезентативная молекула для бензина. Чистому изооктану присваивается октановое число 100, и оно использовалось для определения эмпирической октановой шкалы в 1930 году.

Дизельное топливо содержит молекулы с восемью или более атомами углерода и менее летучие, чем бензин. У них есть цетановое число, которое характеризует хорошие топлива с воспламенением от сжатия. Слово цетан в «цетановой шкале» — это название молекулы из 16 атомов углерода, которая представляет «хорошее» дизельное топливо.Молекулы с атомами углерода, расположенными в прямые цепи, имеют высокое цетановое число и являются лучшим топливом для двигателей с воспламенением от сжатия. Молекулы, в которых атомы углерода образуют кольца (бензол или толуол) или разветвленные цепи (например, изооктан), как правило, лучше подходят для искрового зажигания.

Сегодня нефтеперерабатывающие заводы используют перегруппировку молекул (каталитический риформинг) для получения от шести до восьми атомов углерода с разветвленной конфигурацией. Это увеличивает долю бензина, производимого на баррель сырой нефти, и бензин имеет более высокое октановое число, чем может быть получено простой перегонкой.Спецификации дизельного топлива легче достичь с помощью простых процессов нефтепереработки, поэтому для производства дизельного топлива требуется небольшой молекулярный дизайн. Дизельное топливо представляет собой смесь различных потоков нефтеперерабатывающих заводов, которые направляются в резервуар для смешивания и смешиваются для получения нужной летучести и цетанового числа, чтобы получилось «хорошее» дизельное топливо.

Впрыск топлива с искровым зажиганием в двигателе с циклом Отто

T Исследование HIS было проведено в лаборатории авиационных двигателей Массачусетского технологического института для определения практической ценности использования системы впрыска топлива вместо карбюратора на двигателе с циклом Отто с искровым зажиганием.В большинстве исследований использовался бензин, но сравнительные испытания проводились также с использованием мазута. Используемое оборудование представляло собой одноцилиндровый двигатель для лабораторных испытаний и другое оборудование, необходимое для полного испытания рабочих характеристик. Использовался топливный насос дизельного двигателя. Для впрыска во впускной коллектор использовался клапан впрыска дизельного типа, а для испытаний, в которых впрыск производился в цилиндр, использовался клапан особой конструкции, обеспечивающий мелкую струю и малое проникновение.

Была проведена серия испытаний для сравнения характеристик двигателя, имеющего ( a ) впрыск топлива во впускной трубопровод и ( b ) впрыск топлива в цилиндр, с одной стороны, с характеристиками, достижимыми с помощью обычный карбюратор, с другой. Результаты этого исследования представлены в виде графиков характеристик двигателя, определенных в ходе испытаний, и обсуждения графиков, указывающих на указанные важные факты и предлагающих объяснение каждого из них.

Впрыск топлива во впускную трубу или в цилиндр оказался более эффективным по сравнению с обычным типом карбюратора. Доступная мощность была увеличена более чем на 10% за счет впрыска в цилиндр, и был получен существенно меньший расход топлива. Механические проблемы впрыска оказались проще, чем проблемы аналогичной системы для дизельных двигателей. Работа на жидком топливе по сравнению с работой на бензине при такой степени сжатия, при которой не происходит детонации ни одного из видов топлива.К сожалению, эта степень сжатия должна быть довольно низкой из-за плохих антидетонационных характеристик жидкого топлива. Влияние впрыска вместо карбюрации топлива, будь то бензин или мазут, на самую высокую полезную степень сжатия было незначительным.

Обсуждение * статьи выявило ряд предложенных направлений, в которых дальнейшие исследования могут быть полезными. Среди них были расслоение заряда для получения хорошей смеси на свече зажигания при плохом общем соотношении смеси и впрыск после закрытия впускного клапана.