22Мар

Система питания дизельного двигателя: Система питания дизельного двигателя

Содержание

Системы питания дизельных двигателей

ВМТ – верхняя мертвая точка
ГБЦ – головка блока цилиндров
КШМ – кривошипно-шатунный механизм
ТНВД – топливный насос высокого давления

Отличие бензинового и дизельного двигателей

На современных автомобилях могут устанавливаться бензиновые и дизельные двигатели. Раньше дизельные двигатели в основном применялись на грузовиках большой грузоподъемности и на тракторах. При их работе можно было наблюдать клубы черного дыма, которые вырывались из выхлопной трубы. Двигатель издавал довольно громкий звук, сопровождающийся стуком. Повышенный шум и вибрации были основными недостатками дизелей. Поэтому такие моторы не устанавливали на легковые автомобили. Современные дизельные двигатели по многим показателям способны конкурировать с бензиновыми моторами. По некоторым характеристикам дизеля серьезно превосходят бензиновые двигатели.

По конструкции бензиновые и дизельные двигатели почти одинаковы. Основное отличие дизеля от бензинового мотора – это использование более прочных материалов при изготовлении его деталей. Это необходимо потому, что дизельный двигатель во время работы испытывает более сильные нагрузки в отличие от своего бензинового собрата. Для повышения прочности некоторые детали изготавливают более массивными, что увеличивает вес мотора.

На дизельном двигателе степень сжатия несколько выше, чем на бензиновом. Поэтому блок цилиндров на дизеле выше, чем на аналогичном бензиновом моторе. С увеличением высоты блока цилиндров увеличивается высота кривошипа коленчатого вала и длина шатунов, что так же сказывается на утяжелении двигателя. Самым главным конструктивным отличием является система питания. На дизеле она кардинально отличается от системы питания бензинового мотора.

На бензиновом моторе топливовоздушная смесь готовится посредством смешивания паров бензина и воздуха. После этого смесь сжимается поршнем в цилиндре при его движении вверх, в ВМТ на свечу зажигания подается электрический ток, искра воспламеняет топливовоздушную смесь, и происходит рабочий ход. Во время работы бензинового двигателя для регулирования мощности нужно изменять количество топлива и количество воздуха, которые подаются для приготовления топливовоздушной смеси. При этом их пропорции должны строго соблюдаться. При недостатке или переизбытке одного из компонентов невозможна нормальная работа двигателя.

Для регулирования подачи воздуха в бензиновом двигателе во впускном воздушном тракте устанавливается дроссельная заслонка (на некоторых моторах подача регулируется другим способом). Подача топлива на современных бензиновых двигателях регулируется электронным блоком управления посредством увеличения или уменьшения времени открытия топливных форсунок. В результате чего изменяется количество топлива, которое впрыскивается за это время.

В дизельный двигатель топливо и воздух подаются раздельно. В воздушном тракте дроссельной заслонки нет (но иногда используется для аварийного отключения подачи воздуха). Чем больше подать воздуха в цилиндр, тем лучше и полнее произойдет сгорание дизтоплива. Топливо в дизельный двигатель подается через форсунки. Смешивания воздуха и топлива как такового не происходит. Воздух необходим для поддержания горения дизтоплива. Как же происходит воспламенение в дизеле? А вот тут самое интересное.

По каким-то причинам во многих источниках этот вопрос затрагивается поверхностно или раскрывается не достаточно точно, а в некоторых случаях не совсем верно. Простому обывателю не так просто понять, что же происходит в процессе воспламенения топлива в дизеле. Некоторые люди пишут, что топливо в дизеле воспламеняется от его сжатия. Если налить на поршень дизтоплива и вращать дизель стартером, в цилиндре воздух в такте сжатия начнет сжиматься и давить на эту «лужицу», но топливо никогда не загорится в цилиндре, хоть весь день крутите. Некоторые люди пишут, что топливо воспламеняется от сжатия воздуха в цилиндре. Пример выше… При таких условиях дизтопливо никогда не воспламенится.

В дизельном двигателе во время такта сжатия воздух в цилиндре разогревается до высокой температуры. Это происходит во время его работы или при запуске в идеальных условиях при плюсовой температуре окружающего воздуха. Некоторые ссылаются именно на высокую температуру сжатого воздуха в цилиндре. Что именно из-за высокой температуры сжатого воздуха дизтопливо самовоспламеняется. В этом есть доля правды, но процесс не раскрыт полностью. Попробуем разобраться в этом более подробно.

Дизтопливо, распыленное форсункой на мелкие частички в дизельном двигателе, воспламеняется в результате его нагрева от трения об сжатый воздух. Чем мельче частички топлива при его распылении, тем больше точек трения и, соответственно, легче воспламенение. Если же в цилиндр под большим давлением подать струю дизтоплива, воспламенения не произойдет, ибо точек трения очень мало. Разогретый воздух в цилиндре способствует лучшему воспламенению дизтоплива за счет более быстрого разогрева частичек топлива от трения. Но нужно понимать, что воспламенение происходит именно от трения. Для примера вспомните спичку и как её поджигают. Оказывается, все просто, достаточно вспомнить физические процессы, которые известны из школьного курса физики.

Плотность воздуха в цилиндре так же влияет на процесс воспламенения. Чем плотнее среда, которая образуется в такте сжатия, тем сильнее происходит трение. Если впрыснуть дозу дизтоплива в объем воздуха с атмосферным давлением, и, соответственно, с недостаточной плотностью, воспламенения не произойдет. И не произойдет воспламенения, если впрыснуть дизтопливо в бензиновый мотор. Степень сжатия в бензиновом моторе ниже, чем в дизеле. Существует некий порог, ниже которого дизтопливо не способно воспламеняться. Поэтому в дизелях степень сжатия выше по отношению к бензиновым моторам.

Системы подачи воздуха

Система питания дизельного двигателя включает в себя систему подачи воздуха и систему подачи топлива в двигатель. В зависимости от способа подачи воздуха в двигатель различают атмосферные дизеля и турбодизеля. В атмосферных моторах воздух поступает в цилиндры посредством всасывания во время такта впуска, то есть за счет естественного разряжения. В турбодизелях используется нагнетатель воздуха, в основном это турбокомпрессор, работающий от выхлопных газов.

На одном валу находится две крыльчатки. За счет выхода выхлопных газов одна из крыльчаток раскручивается и через общий вал вращение передаётся на вторую крыльчатку, которая создает поток воздуха и нагнетает его во впускной тракт двигателя. Так как во время прохождения горячих выхлопных газов через турбину нагнетаемый воздух может нагреваться, между турбиной и впускным коллектором иногда устанавливают интеркулер. Это теплообменник, который позволяет охладить нагнетаемый в двигатель воздух, что еще больше увеличивает его объем. Перед использованием воздух на любом двигателе очищается системой очистки. Это фильтры разных видов и конструкций.

Турбодизеля обладают большей мощностью в отличие от атмосферных моторов. За счет большего объема воздуха, который нагнетается в цилиндры, происходит более полное и быстрое сгорание топлива. Это способствует снижению расхода топлива и повышению мощности мотора. Так же снижается токсичность выхлопных газов. Так как скорость сгорания топлива в турбированном моторе выше, это позволяет увеличить максимальные обороты вращения двигателя, что положительно сказывается на его характеристиках.

Есть и несколько минусов при использовании турбин на дизелях. Сам турбокомпрессор подвергается воздействию высоких температур от выхлопных газов. Что требует использовать дорогостоящие термостойкие материалы при изготовлении турбины. На некоторых моделях дизелей турбина охлаждается жидкостью из основной системы охлаждения двигателя. Во время работы вал турбины раскручивается до нескольких десятков тысяч оборотов в минуту. Для увеличения срока службы пары трения используют износостойкие материалы, способные выдерживать огромные скорости вращения. Узлы вращения вала турбины обычно смазывают моторным маслом из общей системы смазки двигателя, что предъявляет серьезные требования к качеству моторных масел.

При использовании турбокомпрессора на двигателе его ресурс несколько сокращается по отношению к атмосферному двигателю. Это происходит из-за повышения нагрузок на основные механизмы двигателя. Так же повышается стоимость двигателя в целом. Этому способствует высокая стоимость самого турбокомпрессора, конструктивное усложнение систем охлаждения и смазки двигателя и увеличению воздушных трубопроводов. Несмотря на свои недостатки из-за большей экономичности и мощности турбодизеля все чаще устанавливаются на автомобили.

Камера сгорания

В зависимости от вида камеры сгорания различают камеры раздельного типа и камеры нераздельного типа. Раздельная камера сгорания представляет собой дополнительную камеру небольшого объема, которая соединяется каналом с верхней частью цилиндра. Эта камера обычно находится в полости ГБЦ. Топливо через форсунку впрыскивается именно в эту, так называемую, предкамеру. В момент воспламенения топлива продукты горения распространяются по соединительному каналу в цилиндр и давят на поршень.

Основным плюсом таких моторов является мягкость работы. То есть во время работы такого двигателя почти не слышен характерный «дизельный стук». Это обусловлено тем, что взрывная волна при воспламенении топлива образуется внутри предкамеры и не воздействует непосредственно на поршень. На таких моторах в распылителях форсунок было, как правило, одно отверстие, что упрощало и удешевляло их изготовление. Но были и минусы в такой конструкции. Это сложность изготовления самой предкамеры и её рубашки охлаждения.

Моторы с раздельными камерами сгорания обладали довольно высоким расходом топлива.
Двигатели с нераздельными камерами сгорания получили большее распространение. Такие моторы чаще называют двигатели с непосредственным впрыском. То есть на них топливо впрыскивается непосредственно в цилиндр в надпоршневое пространство. Камера сгорания может быть выполнена в днище поршня, в полости ГБЦ или частично там и там. По геометрической форме камеры сгорания могут быть разные. В некоторой степени это зависит от формы факела распыла топлива форсункой. Некоторые формы камеры сгорания способствуют образованию завихрений внутри цилиндра, что улучшает сгорание топлива.

Двигатели с непосредственным впрыском обладают рядом преимуществ по отношению к моторам с раздельными камерами сгорания. Самый главный показатель – это экономичность. Нераздельная камера сгорания имеет компактную форму, поэтому обладает малыми тепловыми потерями при работе двигателя. Это позволяет мотору быстрее выходить на рабочий тепловой режим и соответственно меньше тратить топлива. При нераздельной камере сгорания уменьшается высота ГБЦ и сложность её изготовления. Одним из минусов таких моторов является высокие ударные нагрузки, которые действуют на КШМ.

При использовании в форсунках распылителей с несколькими отверстиями малого диаметра удалось обеспечить более плавное горение топлива. Что послужило снижению ударных нагрузок, действующих на КШМ. Но производство таких форсунок довольно трудоемко и предъявляет к себе высокую точность изготовления, что сказывается на их стоимости. Тем не менее, именно моторы с непосредственным впрыском получили большое распространение в современном автомобилестроении. Такие моторы постоянно модернизируются и получают новые технологии, в частности по повышению прочности материалов КШМ.

Системы подачи топлива

На дорогах всего мира можно встретить автомобили с различными по конструкции системами подачи топлива. Некоторые из них устарели морально и физически. Эти системы не отвечают экологическим нормам по содержанию вредных выбросов в выхлопных газах. Тем не менее, такие автомобили выполняют свои функции. Существует несколько видов систем подачи топлива в дизельный двигатель.

Топливо из бака подается к ТНВД подкачивающим насосом. В подающем топливопроводе устанавливаются фильтры очистки топлива. Как правило, это двухступенчатая система очистки. На первом этапе топливо очищается от крупных примесей в виде мелких камешков, металлических обломков и так далее. Второй этап – это фильтр тонкой очистки, который улавливает все остальное, в том числе и воду. От ТНВД топливо подается к форсункам через трубки, которые способны выдерживать высокое давление.

ТНВД могут быть рядными и распределительными. Иногда встречаются V- образные, они схожи по конструкции с рядными насосами. Так же существуют так называемые магистральные насосы, о них чуть ниже… Рядные ТНВД могут иметь несколько плунжеров, которые создают давление топлива для индивидуальной форсунки. Насосы работают от вращения, имеют привод от двигателя, и вращение строго синхронизировано с положением поршней в ВМТ. Во время работы каждый плунжер обеспечивает повышение давления в подающей магистрали в нужный момент для каждого цилиндра двигателя. Форсунка имеет запорную иглу в распылителе, которая открывается от возросшего давления топлива. После открытия и впрыска топлива, давление в магистрали падает, и игла запирает отверстия распылителя. Все довольно просто устроено и работает механически.

Для увеличения подачи топлива в плунжере увеличивается давление, что увеличивает время впрыска топлива, а в итоге и его количество. Чтобы увеличить давление в плунжере насоса имеется специальная зубчатая рейка, которая при линейном перемещении поворачивает специальные втулки плунжеров относительно вертикальной оси. Тем самым отсечка происходит позже, в итоге повышается давление в топливной магистрали. Рейка соединяется с педалью газа механически или электроприводом. Такие ТНВД также имеют механический регулятор холостых оборотов и регулятор опережения момента впрыска топлива, который необходим при увеличении оборотов двигателя.

Насосы такого типа смазываются моторным маслом из общей системы смазки двигателя, поэтому могут работать на топливе низкого качества.

Системы питания топливом такого типа очень надежны. Они хорошо зарекомендовали себя за многолетнее применение и до сих пор могут применяться на дизелях. Но такие системы не обладают потенциалом в дальнейшем развитии. Для более мягкой работы дизеля и повышения экономичности следует повысить давление впрыска топлива. На таких системах повышать давление неограниченно нет возможности. Во время работы в определенный момент происходит резонанс в трубопроводах высокого давления. Поэтому увеличение давления может привести к разрушению трубок. Так же есть зависимость производительности насоса от оборотов работы двигателя, что негативно сказывается на тонкости распыления топлива в этом режиме.

Распределительный насос отличается от рядного насоса количеством плунжерных секций. Такие насосы могут иметь одну или несколько плунжеров, но их количество может не соответствовать количеству цилиндров двигателя, на которые они устанавливаются. Подача топлива распределяется специальным механизмом. В нужный момент топливо под высоким давлением подается на нужную форсунку в соответствии с тактом работы двигателя. Форсунки при этом могут использоваться такой же конструкции, которая описана выше. Насосы такого типа компактнее рядных насосов, поэтому чаще применяются на легковых дизелях. Механизм распределения подачи топлива довольно точно работает, что увеличивает мягкость работы двигателя. В отличие от рядных насосов производительность распределительных почти не зависит от оборотов двигателя.

Но есть в таких насосах и недостаток. Все детали внутри насоса смазываются дизтопливом, которое он подает к форсункам. Точность изготовления прецизионных пар довольно высока. Поэтому качество топлива влияет на долговечность работы насосов такого типа. При недостаточной смазке ускоряется износ деталей, а присутствие влаги в топливе достаточно серьезно уменьшает его ресурс.

Существуют системы, в которых насос высокого давления и форсунка объединены в один элемент. Что исключает применение трубопроводов высокого давления. Подкачивающий насос подает топливо сразу на насос-форсунку. На каждый цилиндр устанавливается индивидуальная насос-форсунка. В таких системах давление впрыска топлива может достигать нескольких сотен МПа, что увеличивает экономичность и уменьшает содержание вредных выбросов в выхлопных газах. Насос-форсунка приводится в работу от кулачков распределительного вала, что упрощает конструкцию двигателя в целом. Современные топливные системы такого типа, а существуют они довольно давно, имеют ряд новшеств.

Например, на некоторых двигателях с такой системой впрыск топлива разделен на несколько фаз. То есть топливо впрыскивается не одной порцией, а несколькими. Каждая из порций может отличаться по объему, что позволяет контролировать процесс сгорания топлива. В результате воспламенение происходит более мягко, снижая ударные нагрузки на КШМ, а токсичность выхлопных газов снижается за счет более полного сгорания топлива в цилиндрах. Минусом же являются высокая стоимость насос-форсунки и необходимость использовать топливо высокого качества.

Еще одна система питания топливом на дизельном моторе – это система Common Rail. В переводе с английского означает общая магистраль. На легковых двигателях разные бренды называют эту систему по-своему, но принцип работы у них схож. В роли общей магистрали выступает топливная рампа, в которой накапливается энергия давления. Из топливной рампы топливо подается на форсунки, открывающиеся электрическим импульсом. Чем-то напоминает топливную рампу бензинового мотора, но в дизеле давление в рампе составляет несколько сотен МПа. Такое давление создает магистральный насос высокого давления. Электрический импульс подается в нужный момент из блока управления двигателем.

Во время запуска двигателя магистральный насос начинает качать топливо и создается высокое давление в топливной рампе. На рампе расположен датчик давления, который измеряет давление топлива в ней. Блок управления считывает показания с этого датчика, и только при достижении определенного давления он подает импульс на открытие форсунок. Происходит запуск дизеля и дальнейшая его работа. Во время работы двигателя насос постоянно поддерживает высокое давление в топливной рампе, поэтому обороты двигателя не влияют на давление впрыска топлива, рампа выступает в роли накопителя. Электронный блок управления позволяет контролировать угол опережения впрыска и поддерживает обороты холостого хода мотора, что упрощает конструкцию насоса в отличие от ТНВД рядного типа.

Высокое давление впрыска позволяет добиться наилучшего распыления топлива и уменьшить его расход до феноменально малых показателей, сохраняя при этом высокую мощность двигателя. Легковой дизель объемом в 3 литра может потреблять топлива в городском режиме всего около 8-10 литров на 100 километров пробега. Крутящий момент дизельных двигателей выше, чем на аналогичных бензиновых моторах, он приближается к расчетным максимальным показателям почти с холостых оборотов. Бензиновые же достигают этого момента на максимально допустимых оборотах вращения коленвала.

В настоящее время легковые автомобили с системой впрыска Common Rail способны конкурировать по динамике разгона с бензиновыми моторами. Но потреблять при этом намного меньше топлива. Всю картину портит качество дизтоплива в нашей стране. В итоге выходят из строя насосы высокого давления и форсунки. Стоимость этих деталей довольно высока, поэтому экономия на расходе топлива сходит на нет при наступлении очередного ремонта топливной аппаратуры. Возможно, в скором будущем наши нефтеперерабатывающие заводы повысят качество выпускаемого дизтоплива. И каждый потенциальный клиент сможет выбрать для себя автомобиль именно с экономичным дизельным двигателем…

Автор: Александр Назаров

Принцип работы дизельного двигателя.

Принцип работы дизельного двигателя совсем иной, чем у мотора, работающего на бензине. Этим и объясняется принцип его питания. В двух словах – работа дизельного мотора строится на воспламенении топливной смеси от сильного сжатия, поскольку высокая температура вызывает ее возгорание.

Ремонт дизельных двигателей – дело не такое сложное, если знать, как он устроен, и на чем построена работа дизельного двигателя.

Порядок работы системы дизельного двигателя

Сначала цилиндры дизельного двигателя наполняются воздухом. Поршни в них движутся вверх, создавая очень высокое давление, от сжатия воздух раскалится до того, что дизельное топливо, будучи смешанным с ним, воспламенится.

Температура достигает максимального значения, когда поршень заканчивает движение вверх, затем дизтопливо впрыскивается посредством форсунки, она подает его не струйкой, а распыляет. Далее, из-за высокой степени нагрева сдавленного воздуха, воздушно-горючая смесь взрывается. Давление из-за взрыва достигает критической отметки и заставляет поршень опускаться вниз. На языке физики – совершается работа.

Система дизельного двигателя устроена так, что подает горючее в мотор, обеспечивая одновременно и несколько других функций.

Части системы дизельного двигателя, механизм его действия

Дизель состоит из:

  • бака для горючего,
  • насоса, подкачивающего дизтопливо,
  • фильтров,
  • топливного насоса, который подает горючее под высоким давлением,
  • свечи накаливания
  • основной части двигателя, которой является форсунка.

Подкачивающий насос отвечает за забор дизельного топлива из бака и отправляет его в топливный насос, а сам этот насос для подачи горючего под давлением – состоит из нескольких секций (их столько же, сколько двигатель ДВС имеет цилиндров – одна секция отвечает за обслуживание одного цилиндра).

Устройство насоса для подачи горючего под воздействием давления таково: внутри него по низу во всю длину располагается вал с кулачками, который совершает вращения от распредвала мотора. Кулачки воздействуют на толкатели, заставляющие функционировать плунжер (поршень). Поднимаясь, плунжер способствует давлению горючего в цилиндре. Таким образом и происходит выталкивание горючего посредством ТНВД в ту главную рабочую часть двигателя, которой и является форсунка.

Поступающему в магистраль дизельному топливу необходимо давление, чтобы продвинуться к форсунке для распыления через нее. Для этого и нужен поршень – он захватывает горючее внизу и продвигает к секционной верхушке. Поступающее под напором – горючее уже может качественно распыляться в камере сгорания. В этом насосе сила давления достигает 2000 атмосфер.

Одна из функций плунжера – контролировать объем подачи дизтоплива на форсунку своей двигающейся частью, открывающей и закрывающей канальца внутри него, эта часть соединяется с педалью, отвечающей за подачу газа в салоне машины. То, насколько открыты каналы подачи горючего и его объем – обусловлено углом, под которым повернут поршень. Его поворот осуществляет рейка, соединяющаяся с педалью газа.

Вверху насоса, подающего под давлением горючее, расположен клапан, он устроен так, чтобы открываться под давлением и захлопываться, если оно мало. Таким образом, когда поршень внизу, клапан – в захлопнутом положении, и горючее из шланга, к которому подсоединена форсунка, поступать в насос не может. Давление, образующееся в секции, достаточно для впрыскивания горючего в цилиндр, тогда топливо и доставляется по шлангу в форсунку, а она – производит распыление его в цилиндре.

Форсунка — назначение и виды

Очень часто ремонт дизельных двигателей связан с диагностикой работы форсунок и их починкой или заменой.

Они бывают двух видов:

  • управляемые механически
  • электромагнитные

В управляемых механически – отверстие, которое распыляет горючее, открывается в зависимости от силы давления в шланге. Ее отверстие закрывает игла, соединенная с поршеньком на верхушке форсунки. Пока не возникло давления, игла не позволяет горючему выйти через распылитель. Когда горючее поступает под напором, плунжер поднимается и оттягивает иголку. Отверстия распылителя раскрываются, и горючее выбрызгивается в цилиндр.

В нем установлены свечи накаливания, воспламеняющие горючее с воздухом. Они раскаляют воздух в специализированном отсеке, прежде, чем он окажется в цилиндре. По сути, свечи только облегчают запуск мотора ДВС, поскольку перед попаданием в цилиндр воздух уже достаточной температуры. Именно поэтому, когда на улице тепло, или если мотор еще не остыл после выключения зажигания, его запуск происходит и без участия свечей, а когда холодно – это невозможно.

Оснащенный электромагнитными форсунками дизель – более современный вариант. В таком случае – в насосе, подающем горючее, отсутствуют для каждого цилиндра своя секция, а шланг – один на все форсунки, и обеспечивает нужное давление и впрыск горючего сразу во все форсунки цилиндров ДВС.

При данной системе ДВС – на форсунки воздействуют электрические импульсы, поступающие от блока управления автомобилем: их клапаны, открывающие и закрывающие выходы для впрыска горючего – электромагнитные. Сам блок управления мотором считывает информацию со специальных датчиков, а затем дает команду электромагнитному управлению форсунками.

Такая система подачи топлива в дизельный двигатель еще и намного экономичней.

Форсунки начали использовать в производстве моторов еще в тридцатых годах XX столетия, их устанавливали сначала на авиамоторы, затем стали применять в двигателях гоночных машин. А массовое применение в автомобилестроении они получили лишь в семидесятые-восьмидесятые годы прошлого века. Тому послужили топливный кризис и осознание необходимости сбережения природы: чтобы сделать авто более мощными – специально переобогащали воздушно-горючую смесь, но это приводило к увеличению расхода топлива и переизбытку продуктов сгорания в газовых выхлопах автомобилей. И в 1967-м проблема была решена – тогда и была изобретена электромагнитная форсунка, в которой впрыск осуществляется электронной командой. Вне всяких сомнений, электроника всегда лучше механики, поскольку имеет перед ней массу очевидных преимуществ.

Система питания дизельного двигателя или бдительность автовладельца

Система питания дизельного двигателя работает по совершенно другому принципу, чем в карбюраторных автомобилях. Здесь в цилиндры производится всасывание наружного воздуха, который в результате сильного сжатия находится под высоким давлением. Происходит нагрев воздушной массы до температуры от 700 до 900 градусов, которая значительно превышает ту точку, при которой производится воспламенение дизельного топлива.

Система питания дизельного двигателя – основная функция

Впрыск топлива в цилиндры производится несколько раньше, после чего происходит его воспламенение. Поэтому свечи зажигания (которые есть в бензиновом автомобиле) в дизельном двигателе отсутствуют. Так же как и в бензиновом варианте, схема системы питания в дизеле включает в себя два такта, во время которых подается топливо и воздух. Для нагнетания необходимого количества воздуха используется турбокомпрессор, который приводится в движение с помощью потока отработанных газов.

Теперь нам известна схема, назначение же системы питания дизельного двигателя заключается в своевременном обеспечении его рабочей смесью с целью превращения энергии топлива в механическую энергию. Весь процесс начинается с засасывания топлива под высоким давлением с помощью насоса и пропуска его в топливном фильтре для очистки от воды и грязи.

Подача топлива осуществляется при отсутствии воздуха в системе, после чего происходит распределение его по цилиндрам. Для регулировки количества топлива используется педаль газа. Подача топлива непосредственно в цилиндр производится с помощью форсунок. Для полного отключения системы питания предусмотрен магнитный клапан.

Диагностирование системы питания дизельного двигателя – что смотреть в первую очередь?

В любом автомобиле этого типа питание двигателя совмещает в себе множество различных приборов и агрегатов. Началом служит топливный бак, затем фильтры очистки разной степени, различные насосы, трубопроводы высокого и низкого давления, система выброса выхлопных газов. Для того чтобы все системы работали нормально, и не давало сбоев само устройство, диагностика неисправности системы питания дизельного двигателя должна проводится своевременно.

Как показывает практика, большая часть всех поломок приходится на топливную аппаратуру, работающую под высоким давлением, с которой и необходимо начинать проверку.

Чтобы правильно выполнить диагностирование и ремонт системы питания дизельного двигателя, необходимо обратить внимание на те приборы, от которых в наибольшей степени зависит расход топлива. Обычно в первую очередь осуществляется проверка воздухоочистителя, фильтров, форсунок, насоса подкачки и доставки топлива под высоким давлением, а также не поленитесь проверить регулятор частоты вращения и привод.

Ремонт системы питания дизельного двигателя – как убрать неисправности вовремя?

Когда окончательно выявлены неисправности, необходимо планировать их исправление. Для этого проводятся различные виды технического обслуживания, и в первую очередь контролируется работа фильтров, из которых удаляется отстой, и промываются фильтрующие элементы. При более серьезных неисправностях необходимо производить ремонт.

Самые простые действия по ремонту заключаются в проверке и очистке засоренного воздухоочистителя. Низкое давление топлива в магистрали проверяется с помощью контрольного манометра, который подключается между топливным насосом и фильтром для тщательной (тонкой) очистки. Работа насоса для подкачки топлива под высоким давлением должна обеспечить ровную дозированную подачу топлива ко всем форсункам по очереди.

При проведении следующего технического обслуживания этот насос может сниматься и диагностироваться на специальном стенде, после чего проводятся необходимые настройки и регулировочные работы. Своевременное выполнение всех мероприятий и рекомендаций позволит избежать аварий и поломок на пути следования автомобиля.

Оцените статью: Поделитесь с друзьями!

Система питания дизельного двигателя: устройство :: SYL.ru

За последние годы технологии дизельных двигателей прошли значительный путь развития. Почти половина всех легковых машин, которые продаются в европейских странах – это автомобили с модифицированным под дизельное топливо силовым агрегатом. Сегодня такие моторы больше не создают клубы густого черного дыма, а шум при работе такого ДВС уже давно в прошлом. Силовые агрегаты на соляровом топливе на сегодняшний день не только экономичные, но и более экологически чистые по сравнению с агрегатами на бензине. Такие автомобили имеют более высокие характеристики по мощности, а динамические показатели стали лучше в десятки раз. Современный мотор на соляровом масле более тихий. Давайте рассмотрим, как так вышло, что такие ДВС лучше соответствуют нормам по токсичности выбросов и значительно выигрывают в тяговых и экономичных параметрах.

Принцип работы и схема

Система питания дизельного двигателя отличается иной конструкцией. Хотя на первый взгляд может показаться, что ДВС на соляре совсем не имеет хоть каких-то отличий от мотора на привычном бензине. Ведь здесь нет ничего особенного, а устройство и внутренние узлы агрегата такие же. Да и по сути, система питания дизельного двигателя, назначение которой – подавать горючую смесь в камеры сгорания, практически не имеет отличий. Здесь такие же поршни, цилиндры, шатуны. Но это только на первый взгляд.

На самом деле основное и принципиальное отличие - это система питания дизельного двигателя. Здесь можно видеть значительную разницу в способах образования и зажигания смеси из горючего и воздуха. Что в карбюраторном, что в обыкновенном инжекторном агрегате смесь создается не в цилиндрах, а в впускном тракте системы. Воспламенение смеси в таких моторах происходит не от искры, а от температур в цилиндре.

Система питания воздухом дизельного двигателя подает в цилиндры очищенный воздух, который впоследствии сильно сжимается, а затем нагревается до 900 градусов. Топливо под высоким давлением при помощи системы впрыска подпадает в камеры сгорания в тот момент, когда поршень подходит к своей верхней мертвой точке. Воздух уже достаточно горячий, а когда горючее смешивается с воздухом, происходит воспламенение. Смесь воспламеняется, создавая при этом рост давления. Это влечет за собой шум и жесткость работы таких моторов. Так, можно применять более дешевые горючие вещества, а мотор может работать даже на очень бедных смесях. Отсюда и более высокая экономичность. Такая схема система питания дизельного двигателя отличается более высоким КПД и, соответственно, крутящим моментом. Недостатками считается шум, вибрации, уменьшенная мощность на литр и некоторые трудности при попытке холодного запуска, а также возможные неисправности (система питания дизельного двигателя старых моделей более подвержена воздействию некачественного топлива). Однако в новых модификациях автомобилей, рассчитанных на такой вид горючего, этих проблем уже нет.

Устройство топливных систем

Система питания дизельного двигателя является особенно важной частью. Она должна обеспечить подачу необходимого количества горючего непосредственно в камеры сгорания.

Система питания дизельного двигателя: устройство

Процесс подачи топлива начинается с насоса высокого давления. Он принимает солярку из бака, которая подается при помощи насоса для низкого давления. Затем необходимые порции солярки нагнетаются в топливную магистраль форсунок гидромеханического типа для каждого из цилиндров. Эти форсунки под воздействием высокого давления в магистралях открываются, а закрываются, когда давление снижается.

Виды ТНВД

В природе существуют всего лишь два вида насосов высоко давления. Это рядный насос с многоплунжерной системой и распределительный насос.

Рядный насос

Данный ТНВД представлен в виде нескольких секций по количеству цилиндров. Каждая секция имеет отдельную гильзу и плунжер. Привод плунжера – кулачковый вал, который вращается от силового агрегата. Такие механизмы располагаются в ряд, поэтому и имеют соответствующее название. Их на сегодняшний день фактически не используют в конструкциях. Эти устройства не справляются с современными требованиями по уровню шума и экологичности. Также уровень давления, которое могут создавать такие насосы, зависит от количества оборотов коленчатого вала. Система питания дизельного двигателя «Камаз» имеет насос именно такого типа.

Устройство распределительного типа

Более современная система питания дизельного двигателя и ТНВД распределительного типа позволяет создавать более высокие показатели давления для системы впрыска. Кроме этого, такие насосы полностью соответствуют всем современным нормативам по токсичности и шуму. Эта система питания дизельного двигателя способна поддерживать необходимое давление в магистралях и системах питания при разных режимах работы мотора.

Распределительный насос высокого давления оснащен одним плунжером, который совершает поступательные движения для нагнетания топливной смеси, а также вращается для того, чтобы улучшить распределение горючего по форсункам. Эти устройства отличаются компактностью, равномерностью подачи, отличными рабочими показателями. Однако для того, чтобы эти устройства могли работать более эффективно, нужно следить за чистотой дизтоплива. Солярка работает в качестве смазки, а зазоры в узлах деталей очень маленькие.

Форсунки

Главное предназначение форсунок – это распыление смеси в камеру сгорания. Сколько горючей смеси будет распылено, оценивается по тонкости и однородности распыления, равномерности, отсечке, поддержке необходимого давления.

Форсунки разделяют на две группы по особенностям конструкции. Различают открытые и закрытые детали. Самый ответственный элемент этого узла – распылитель. Эта деталь выбирается в зависимости от типа камеры сгорания и того, как создается смесь дизеля и воздуха.

В форсунке закрытого исполнения давление, которое необходимо для распыления смеси, напрямую зависит от отношения площадей сечений плунжера и отверстий в сопле. Давление, которого будет достаточно для открытия форсунки, определяют тем усилием, которое нужно для затяжки пружины, создающей нагрузку на запорную иглу.

Раньше широко применялись форсунки с управлением посредством гидравлической системы. Дизтопливо подается к форсунке с помощью трубопровода под высоким давлением. Трубопровод, в свою очередь, соединяется со штуцером. Внутри штуцер имеет фильтр в виде сетки. Когда горючее прошло фильтр, тогда оно проходит во внутренние каналы форсунки и распылителя. Система питания дизельного двигателя «Камаз» 740 оснащена именно такими форсунками.

Непосредственно впрыск начинается тогда, когда давление, которое создает насос высокого давления, растет, вследствие чего сжимается пружина и открывается проход смеси к соплам. Когда давление падает, игла опускается и закрывается сопла. Здесь впрыск заканчивается.

Распылители в форсунках такого типа имеют несколько отверстий. Общее число отверстий зависит от того, как выполняется смесеобразование. Закрытые форсунки имеют преимущество. Здесь лучше проходит распыление, особенно на пониженных оборотах. Меньше течет дизель, их гораздо проще регулировать.

Камеры сгорания

Для легковых автомобилей эти узлы были преимущественно неразделенными. Процесс впрыска производится не в полость над поршнем, а в специальную камеру в ГБЦ. При этом существовало два вида процесса смесеобразования. Это предкамерный (или форкамерный) и вихрекамерный.

При использовании последнего вида процесса сгорание начинается в отдельной камере, которая имеет форму шара. В момент начала такта насос подает воздушную смесь в предкамеру и в ней же образуется как бы вихрь. Затем происходит впрыск и смешивается с воздухом.

Так, процесс сгорания состоит из двух ступеней. Это позволило значительно снизить нагрузку на поршни, а звук мотора стал значительно мягче. Недостаток таких моторов – это повышенный расход из-за потерь на поверхности камеры сгорания, огромных потерь на перетекание воздуха в отдельную камеру, а также попадания смеси в цилиндр. Также пусковые качества силового агрегата значительно хуже.

В моторах с неразделенной камерой горючее впрыскивается прямиком в полость цилиндра, в свою очередь, камера сгорания расположена на дне поршня. Подобную схему еще совсем недавно применяли на агрегатах с большими объемами, но низкими оборотами. Эти моторы оказались гораздо экономичнее, нежели агрегаты, оснащенные разделенной системой камер. Но использование их на небольших моторах было сопряжено с трудностями организации процесса, а также высоким уровнем шумов и вибрациями на разгоне.

Сегодня система питания дизельного двигателя, устройство которой мы рассмотрели, управляется электроникой, поэтому процесс дозирования значительно оптимизирован в агрегатах с неразделенной камерой, а также снизилась шумность при работе.

Система Common Rail

Вследствие некоторого ужесточения норм по экологии и выбросу токсичных веществ, которые предъявляли к силовым агрегатам на солярке, система питания дизельного двигателя подверглась некоторым изменениям. Поговорим об этом более подробно.

Что это такое?

Common Rail - это система впрыска, которую можно охарактеризовать, как впрыск смеси воздуха и дизеля под достаточно высоким, но атмосферным давлением. В результате с этой схемой можно понизить расход, а мощность увеличится.

Конечно, это далеко не все, на что способна эта схема. Удалось понизить шум и увеличить крутящий момент. Новая система стала особо популярной И сегодня каждая вторая машина оснащается вот этой самой схемой.

Недостатками системы считают высокие требования, которые предъявляются к качеству солярки. Если даже самые мелкие частицы проникнут в систему питания, тогда форсунки с управлением от ЭБУ могут выйти из строя.

Основные неисправности

Система питания дизельного двигателя имеет свойство изнашиваться и порой выходит из строя. Часто это может происходить из-за отказа работы устройств электроники и топливопроводных магистралей.

Основными неисправностями считаются засоры и разгерметизация. Также иногда случаются неполадки в работе насоса низкого давления.

Итак, мы выяснили, какое устройство имеет система питания топливом дизельного двигателя. Есть еще множество стандартных неисправностей, но это тема для другой статьи.

Системы питания двигателя: система питания бензинового двигателя

Системы питания бензиновых и дизельных двигателей значительно отличаются, поэтому рассмотрим их по отдельности. Итак, что такое система питания автомобиля?

Система питания бензинового двигателя

Системы питания бензиновых двигателей бывают двух типов - карбюраторная и впрысковая (инжекторная). Поскольку на современных автомобилях карбюраторная система уже не применяется ниже рассмотрим лишь основные принципы ее работы. При необходимости вы легко сможете найти дополнительную информацию по ней в многочисленных специальных изданиях.

Система питания бензинового двигателя, независимо от типа двигателя внутреннего сгорания, предназначена для хранения запаса топлива, очистки топлива и воздуха от посторонних примесей, а также подачи воздуха и топлива в цилиндры двигателя.

Для хранения запаса топлива на автомобиле служит топливный бак. На современных автомобилях применяются металлические или пластмассовые топливные баки, которые в большинстве случаев расположены под днищем кузова в задней части.

Систему питания бензинового двигателя можно условно разделить на две подсистемы - подачи воздуха и подачи топлива. Что бы ни случилось, в любой ситуации наши специалисты по выездной тех помощи на дорогах москвы приедут и окажут необходимую помощь.

Система подачи воздуха практически одинакова для всех типов двигателей внутреннего сгорания. Воздух, предназначенный для подачи в цилиндры двигателя, очищается от пыли воздушным фильтром, который расположен в моторном отсеке автомобиля. Воздух очищается сменным фильтрующим элементом, который выполнен из специальной бумаги с мелкими порами. Из следующей главы можно будет узнать электронная система управления двигателем - что это такое и как осуществляется диагностика электронной системы управления двигателем.

Дальнейший путь очищенного воздуха зависит от типа системы питания и будет рассмотрен ниже. А в одной из следующих глав можно будет узнать система питания дизельного двигателя: устройство системы питания дизельного двигателя.

Система питания бензинового двигателя карбюраторного типа

В карбюраторном двигателе система подачи топлива работает следующим образом.

Топливный насос (бензонасос) подает топливо из бака в поплавковую камеру карбюратора. Топливный насос, обычно мембранный, расположен непосредственно на двигателе. Привод насоса осуществляется при помощи штока-толкателя эксцентриком на распределительном валу.

Очистка топлива от загрязнений совершается в несколько этапов. Самая грубая очистка происходит сеточкой на заборнике в топливном баке. Затем топливо фильтруется сеточкой на входе в бензонасос. Также сетчатый фильтр-отстойник установлен на входном патрубке карбюратора.

В карбюраторе очищенный воздух из воздушного фильтра и бензин из бака смешиваются и подаются во впускной трубопровод двигателя.

Карбюратор устроен таким образом, чтобы обеспечить оптимальное соотношение воздуха и бензина в смеси. Это соотношение (по массе) составляет приблизительно 15 к 1. Топливовоздушная смесь с таким соотношением воздуха к бензину называется нормальной.

Нормальная смесь необходима для работы двигателя в установившемся режиме. На других режимах двигателю могут потребоваться топливовоздушные смеси с иным соотношением компонентов.

Обедненная смесь (15-16,5 частей воздуха к одной части бензина) имеет меньшую скорость сгорания по сравнению с обогащенной, но зато происходит полное сгорание топлива. Обедненная смесь применяется при средних нагрузках и обеспечивает высокую экономичность, а также минимальный выброс вредных веществ.

Бедная смесь (более 16,5 частей воздуха к одной части бензина) горит очень медленно. На бедной смеси могут возникать перебои в работе двигателя.

Обогащенная смесь (13-15 частей воздуха к одной части бензина) обладает наибольшей скоростью сгорания и используется при резком увеличении нагрузки.

Богатая смесь (менее 13 частей воздуха к одной части бензина) горит медленно. Богатая смесь необходима при пуске холодного двигателя и последующей работе на холостом ходу.

Для создания смеси, отличной от нормальной, карбюратор снабжен специальными устройствами - экономайзер, ускорительный насос (обогащенная смесь), воздушная заслонка (богатая смесь).

В карбюраторах разных систем эти устройства реализованы по-разному, поэтому здесь мы не будем рассматривать их более подробно. Суть просто в том, что система питания бензинового двигателя карбюраторного типа содержит такие конструктивные элементы.

Для изменения количества топливовоздушной смеси и, следовательно, частоты вращения коленчатого вала двигателя служит дроссельная заслонка. Именно ею управляет водитель, нажимая или отпуская педаль газа.

Система питания бензинового двигателя инжекторного типа

На автомобиле с системой впрыска топлива водитель тоже управляет двигателем посредством дроссельной заслонки, но на этом аналогия с карбюраторной системой питания бензинового двигателя заканчивается.

Топливный насос расположен непосредственно в баке и имеет электропривод.

Электробензонасос обычно объединен с датчиком уровня топлива и сетчатым фильтром в узел, получивший название топливный модуль.

На большинстве впрысковых автомобилей топливо из топливного бака под давлением поступает в сменный топливный фильтр.

Топливный фильтр может быть установлен под днищем кузова либо в моторном отсеке.

Топливные трубопроводы подсоединяются к фильтру резьбовыми или быстросъемными соединениями. Соединения уплотнены кольцами из бензостойкой резины или металлическими шайбами.

В последнее время многие автопроизводители стали отказываться от применения подобных фильтров. Очистка топлива производится только фильтром, установленным в топливном модуле.

Замена такого фильтра не регламентирована планом технического обслуживания.

Системы впрыска топлива бывают двух основных типов - центральный впрыск топлива (моновпрыск) и распределенный впрыск, или, как его еще называют, многоточечный.

Центральный впрыск стал для автопроизводителей переходным этапом от карбюратора к распределенному впрыску и на современных автомобилях применения не находит. Это связано с тем, что система центрального впрыска топлива не позволяет выполнить требования современных экологических стандартов.

Агрегат центрального впрыска похож на карбюратор, только вместо смесительной камеры и жиклеров внутри установлена электромагнитная форсунка, которая открывается по команде электронного блока управления двигателем. Впрыск топлива происходит на вход впускного трубопровода.

В системе распределенного впрыска количество форсунок равно количеству цилиндров.

Форсунки установлены между впускным трубопроводом и топливной рампой. В топливной рампе поддерживается постоянное давление, которое обычно составляет около трех бар (1 бар равен примерно 1 атм). Для ограничения давления в топливной рампе служит регулятор, который стравливает излишки топлива обратно в бак.

Раньше регулятор давления устанавливали непосредственно на топливной рампе, а для соединения регулятора с топливным баком использовалась обратная топливная магистраль. В современных системах питания бензинового двигателя регулятор располагают в топливном модуле и необходимость в обратной магистрали отпала.

Топливные форсунки открываются по командам электронного блока управления, и происходит впрыск топлива из рампы во впускной трубопровод, где топливо смешивается с воздухом и поступает в виде смеси в цилиндр.

Команды на открытие форсунок вычисляются на основании сигналов, поступающих от датчиков электронной системы управления двигателем. Тем самым обеспечивается синхронизация работы системы подачи топлива и системы зажигания.

Система питания бензинового двигателя инжекторного типа обеспечивает большую производительность и возможность соответствия более высоким экологическим стандартам, чем карбюраторного.

Техническое обслуживание системы питания дизельного двигателя

Основные работы и приемы их выполнения при техническом обслуживании системы питания дизельного двигателя.

Ежедневное обслуживание. Проверить уровень топлива в баках, уровень масла в картере топливного насоса высокого давления и регулятора, проверить отсутствие подтекания топлива во всех соединениях. Слить отстой из топливного бака и фильтра в количестве по 0,1 л и прокачать топливную систему.

Первое техническое обслуживание. Проверить исправность механизма управления подачей топлива и работу двигателя, уровень масла в воздушном фильтре, смазать коромысло тяг управления подачи топлива.

Второе техническое обслуживание. Проверить крепление топливного насоса и состояние муфты привода топливного насоса. Проверить, работу двигателя и при необходимости снять форсунки с двигателя, проверить их работу на приборе и отрегулировать. Через одно ТО-2 отрегулировать минимальную частоту вращения коленчатого вала в режиме холостого хода двигателя. Два раза в год следует снимать топливный насос высокого давления и форсунки, проверять, регулировать их на стендах, менять масло в картере насоса высокого давления и регулятора частоты вращения коленчатого вала двигателя.

Промывка топливных фильтров. Для определения загрязнения топливного фильтра необходимо ослабить болты для выпуска воздуха и сделать несколько качков ручным насосом. При этом топливо должно выбрасываться через отверстия болтов в виде сильной струи. Если струя слабая, то необходимо разобрать фильтр, промыть или заменить фильтрующий элемент с войлочной набивкой и заменить бумажный элемент.

Для очистки фильтра необходимо вывернуть болты для удаления воздуха, болты крепления фильтра, снять корпус и вынуть фильтрующие элементы. Вылить остатки топлива из корпуса и промыть его в дизельном топливе. Заглушить войлочную набивку с двух сторон и мягкой (не металлической) щеткой очистить снаружи фильтрующий элемент в дизельном топливе или в керосине. После этого промыть набивку в чистом топливе. При установке на место фильтрующих элементов следить за наличием войлочных колец по концам элемента, а при установке корпуса за правильным прилеганием уплотнения.

Удаление воздуха из системы питания. Для удаления воздуха из топливной системы при работающем двигателе следует слегка вывернуть болты в крышке фильтра очистки топлива. Появление пузырьков под болтом свидетельствует о наличии воздуха в системе. Когда струя выходящего топлива будет прозрачной, болт фильтра необходимо плотно завернуть. После этого проделать такую же операцию с пробками топливных каналов THВД.

Воздух при неработающем двигателе удаляют в такой же последовательности, создавая давление в топливной системе насосом ручной подкачки или специальным приспособлением.

Исправность топливоподкачивающего насоса проверяют при работающем двигателе. При частоте вращения коленчатого вала двигателя 1200 об/мин следует отсоединить сливной трубопровод и поставить под него посуду для слива. В течение 1 мин должно вытечь 1,2—1,5 л топлива. При меньшем вытекании топлива неисправен топливоподкачивающий насос. Насос ремонтируют в мастерской.

Определение неисправной форсунки на двигателе. Для проверки необходимо: слегка ослабить накидную гайку у штуцера проверяемой форсунки так, чтобы в нее не поступало топливо; при выключенной форсунке наблюдать за качеством отработавших газов и прислушиваться к работе двигателя; если после выуключения форсунки частота вращения коленчатого вала двигателя не меняется и дымность выпускных газов уменьшилась, значит отключена неисправная форсунка.

Проверка и регулировка форсунок. В форсунке проверяют герметичность, давление начала впрыска и качество распыления топлива. Проверку выполняют на приборе КП-1609А. Герметичность форсунки оценивают  продолжительностью снижения давления.

Для проверки приготовляют смесь дизельного топлива и масла вязкостью около 10 сСт и заливают в бачок. Прокачивая прибор, медленно завертывают регулировочный болт, ослабив контргайку,  и устанавливают давление начала впрыска, равное 300 кгс/см2, а затем секундомером определяют продолжительность снижения давления от 280 до 230 кгс/см2. Время снижения давления должно быть не менее 8 с. Каждую форсунку регулируют на давление подъема иглы, равное 175 кгс/см2. Сжатие пружины регулируется при помощи болта. Правильность регулировки проверяют по манометру, создавая давление рычагом. Качество распыливания проверяется по туманообразному равномерному конусу струи выбрызгиваемого топлива. Начало и конец впрыска должны быть четкими, распылитель не должен иметь подтеканий. Впрыск должен сопровождаться характерным резким звуком. В случае закоксовывания отверстий форсунки ее разбирают, промывают в бензине, а сопла прочищают стальной проволокой. Перед сборкой протирают и слегка смазывают детали дизельным топливом. При подтекании распылителя или заедании иглы распылитель заменяют.

Проверка исправности насосных секций насоса высокого давления. При появлении перебоев в работе двигателя, его неравномерной работе для выяснения причины неисправности после проверки форсунок проверить исправность секций насоса высокого давления. Для этого поочередно отсоединять от форсунок нагнетательные трубки и дать поработать двигателю на максимальной частоте вращения коленчатого вала (до 2100 об/мин).

При исправной секции из отсоединительной трубки периодически появляется струя топлива, отсутствие струи укажет на неисправность секции насоса, который в этом случае необходимо сдать в ремонт.

John Deere Power Systems в сети DieselNet: дизельные двигатели и двигатели, работающие на сжатом природном газе

Промышленные двигатели

Final Tier 4 / Stage V

John Deere Power Systems имеет хорошие возможности для того, чтобы вести своих OEM-клиентов в предстоящий переход к сокращению выбросов, благодаря своему глобальному опыту, испытанному на практике. На каждом этапе последовательных нормативов выбросов John Deere предлагал решения, удовлетворяющие ключевые потребности клиентов. К ним относятся увеличенное время безотказной работы, низкие эксплуатационные расходы и гибкая интеграция.

John Deere долгое время придерживался стандартного подхода к внедрению решений по выбросам, и то же самое касается двигателей, готовых к Final Tier 4 / Stage V. Линейка двигателей John Deere оптимизирована для увеличения крутящего момента, крутящего момента на низких скоростях, повышения эффективности жидкости и обеспечивает высокую мощность на больших высотах. Модельный ряд двигателей John Deere, подготовленных к Final Tier 4 / Stage V, включает двигатели объемом 2,9 л, 4,5 л, 6,8 л, 9,0 л и 13,5 л с номинальной мощностью 36 - 448 кВт (48 - 600 л.с.).

Двигатель 13,6 л

Двигатель John Deere объемом 13,6 л, который также будет соответствовать стандарту Stage V, является выдающимся примером лидерства компании в предоставлении инновационных решений по снижению выбросов. При разработке этого двигателя John Deere придерживался принципа «чистого листа» и использовал проверенные технологии для оптимизации конечного продукта. Этот двигатель обеспечивает гибкость установки и компактную упаковку, что позволяет легко интегрировать машину. Благодаря этой конструкции John Deere продолжает обеспечивать повышенную производительность, надежность и долговечность, а также общую ценность для своих OEM-клиентов и конечных пользователей.13,6-литровый двигатель планируется произвести в будущем.

Последующая обработка: уменьшенные, оптимизированные и упрощенные

Производители оригинального оборудования получат выгоду от постоянных улучшений и усовершенствований продукции John Deere за счет сохранения той же производительности двигателя при меньшем размере корпуса. Технологии последующей обработки Final Tier 4 / Stage V от John Deere оптимизированы для гибкой интеграции и предлагают меньшую упаковку и вес по сравнению с предыдущими решениями Final Tier 4 / Stage IV.

John Deere также предлагает варианты доочистки ниже 174 л.с. для OEM-клиентов.В зависимости от области применения и требований заказчика интегрированная система контроля выбросов может быть оснащена фильтром сажевого фильтра или без него, при этом соблюдая нормы выбросов. Кроме того, текущая линейка John Deere также предоставляет множество выбираемых опций. Это позволяет производителям настраивать свои двигатели, упрощая установку в существующие конструкции.

Приводные двигатели генератора

John Deere Power Systems предлагает обширную линейку резервных и основных приводных двигателей генератора, которые соответствуют нормам выбросов в объемах от 2.9л в будущее 13.6л. Двигатели с приводом от резервного генератора имеют номинальную мощность от 30 до 500 кВтэ и включают в себя опции, не сертифицированные по выбросам, и опции уровня 3 EPA. Номинальные параметры привода основного генератора составляют от 28 до 400 кВтэ и включают отсутствие сертификации по выбросам; ЕС Stage III A и Stage V; и варианты EPA Final Tier 4.

John Deere также предлагает две линейки двигателей для приложений EPA Final Tier 4: одну с системой дополнительной обработки DPF, а другую без. Обе эти линии включают смещения от 4,5 л до 13.5л. Для John Deere приоритетной задачей является удовлетворение потребностей своих клиентов в гибкости интеграции при соблюдении требований по выбросам.

John Deere - надежный партнер всех производителей комплектного оборудования для генераторных установок. Компания фокусируется на выпуске двигателей и силовых агрегатов без оборудования, уделяя особое внимание потребностям своих OEM-партнеров. Кроме того, текущая линейка генераторов John Deere предоставляет широкий выбор опций.

Судовые двигатели

John Deere Power Systems полностью подготовлена ​​к удовлетворению потребностей своих глобальных морских заказчиков в морских силовых установках, генераторах и вспомогательных источниках энергии, разработанных в соответствии с требованиями различных международных морских директив. Полный модельный ряд судовых двигателей John Deere будет соответствовать нескольким нормам выбросов, с рабочим объемом от 4,5 л до 13,5 л и диапазоном мощности от 54 до 750 л.с. (от 40 до 559 кВт).

Новейшие судовые двигатели 4,5 л

Двигатель 4045SFM85 от John Deere обеспечивает высокое соотношение мощности и веса для модернизации и постройки новых лодок, а также идеально подходит для глиссирования и полувмещаемых корпусов. Он имеет два рейтинга для легких коммерческих судов, высокоскоростных правительственных судов и высокоскоростных прогулочных судов, в том числе рейтинг M4 с 275 л.с. (205 кВт) при 2600 об / мин и рейтинг M5 с 315 л.с. (235 кВт) при 2800 об / мин. об / мин.В двигателе используется турбонагнетатель с перепускным клапаном, который обеспечивает больший крутящий момент в диапазоне низких и средних оборотов, что наиболее заметно во время разгона судна, и оснащен сменными гильзами цилиндров, что позволяет переоборудовать двигатель для увеличения срока службы.

Двигатель John Deere объемом 4,5 л пополнил линейку гребных двигателей John Deere Marine Tier 3. Рейтинги 4045SFM85 соответствуют нормам выбросов Уровня 3 для морских судов и Директиве II о прогулочных судах Агентства по охране окружающей среды США, а также стандартам Tier II Международной морской организации для коммерческих и развлекательных приложений.Двигатель ожидает одобрения Американского бюро судоходства, DNV GL, Lloyd’s Register и Bureau Veritas. 4045SFM85 будет единственным доступным на рынке 4-цилиндровым бортовым дизельным двигателем мощностью 315 л.с., имеющим сертификат ABS.

Новейшие судовые вспомогательные двигатели

John Deere также представила судовые двигатели 6090HFM85 и 6135HFM85, специально разработанные для судовых генераторных установок и вспомогательных агрегатов с радиаторным охлаждением. 6090HFM85 рассчитан на регулируемую скорость 325 л.с. (242 кВт) при 2000 об / мин и привод генератора и вспомогательную постоянную скорость 351 л. с. (262 кВт) при 1800 об / мин.6135HFM85 рассчитан на регулируемую скорость 500 л.с. (373 кВт) при 2000 об / мин и для привода генератора и вспомогательного устройства постоянной скорости 614 л.с. (458 кВт) при 1800 об / мин.

Вспомогательные двигатели объемом 9,0 л и 13,5 л хорошо подходят для вспомогательных систем с генераторными установками, с постоянной и регулируемой скоростью, особенно когда желательны или требуются мокрые коллекторы и сертификаты классификации морского общества. Номинальные характеристики обоих двигателей соответствуют требованиям EPA Marine Tier 3 по выбросам и стандартам IMO Tier II для коммерческого применения.Типы двигателей одобрены АБС.

Интегрированные силовые агрегаты

Двигатели, компоненты трансмиссии и силовая электроника от John Deere Power Systems известны своей долговечностью и надежностью. Кроме того, как один из немногих производителей двигателей, предлагающих компоненты для интегрированной системы трансмиссии, John Deere может предложить комплексное решение от двигателя до трансмиссии.

Производители оригинального оборудования получат выгоду от инвестиций, которые компания John Deere вложила в интеграцию этих систем в комплексные решения для механических и электрических силовых агрегатов для мобильных внедорожных машин, что повысило производительность, увеличило время безотказной работы и снизило эксплуатационные расходы.

О компании Deere & Company

Deere & Company (NYSE: DE) является мировым лидером в предоставлении передовых продуктов и услуг и стремится к успеху клиентов, чья работа связана с землей - тех, кто возделывает, собирает урожай, трансформирует, обогащает и строит на земле, чтобы удовлетворить резко возрастающая потребность мира в продуктах питания, топливе, жилье и инфраструктуре. С 1837 года John Deere поставляет инновационные продукты высшего качества, основанные на традициях добросовестности.John Deere Power Systems производит и продает промышленные дизельные двигатели мощностью от 30 до 448 кВт (от 40 до 600 л.с.) и судовые дизельные двигатели от 56 до 559 кВт (от 75 до 750 л. с.), а также компоненты трансмиссии для использования в различных внедорожные приложения.

С JDPS можно связаться по телефону 1-800-JD-ENGINE (1-800-533-6446) или по электронной почте [email protected] Информация о полной линейке двигателей JDPS и компонентов трансмиссии доступна на сайте www.JohnDeere.com/jdpower.

Создание устойчивых обществ с помощью интеллектуальных технологий

Wärtsilä Online Область Wärtsilä Global Глобальная контактная информация
  • Аргентина
  • Австралия
  • Азербайджан
  • Бангладеш
  • Бразилия
  • Болгария
  • Канада
  • Чили
  • Китай
  • Колумбия
  • Кипр
  • Дания
  • Доминиканская Республика
  • Эквадор
  • Эстония / Прибалтика
  • Финляндия
  • Франция
  • Германия
  • Греция
  • Венгрия
  • Индия
  • Индонезия
  • Италия
  • Япония
  • Кения / Восточная Африка
  • Корея
  • Малайзия
  • Мексика
  • Марокко
  • Нидерланды
  • Норвегия
  • Пакистан
  • Панама
  • Папуа-Новая Гвинея
  • Перу
  • Филиппины
  • Польша
  • Португалия
  • Пуэрто-Рико / Карибские острова
  • Румыния
  • Россия
  • Саудовская Аравия
  • Сенегал / Западная Африка
  • Сингапур
  • Южная Африка
  • Испания
  • Шри-Ланка
  • Швеция
  • Швейцария
  • Тайвань
  • Турция
  • ОАЭ / Ближний Восток
  • Соединенное Королевство
  • США
  • Венесуэла
  • Вьетнам
  • английский
  • Суоми
  • Свенска
  • Около
  • Карьера
  • Инвесторам
  • СМИ
  • Устойчивость
  • Связаться с нами
  • Главная
  • морской
    • Потребительские сегменты
      • Морское путешествие
      • Паром
        • Паромы с нулевым выбросом
      • Рыбалка
      • Торговец
        • Контейнеровозы
        • Газовозы
        • Танкеры
        • Балкеры
        • Грузовые суда
        • Суда РО-РО PCTC
      • Флот
      • Офшор
      • Специальные суда
      • Буксиры
      • Яхты
      • Рекомендации
        • Морское путешествие
          • AIDAvita
          • AIDAvita - Техническое обслуживание турбокомпрессора
          • Карнавальная гордость
          • Гармония морей
          • Оазис морей
          • Королева Мэри II
          • Тренинг для RCCL
        • Паром
          • Балеария на СПГ
          • Балтикборг и Ботниаборг
          • BC Ferries
          • Пункт назначения Готланд
          • Экспресс 4
          • Finnlines
          • М. Ф. Фольгефонн
          • Франциско
          • Hammershus
          • MS Helgoland
          • Святой Иоанн Павел II
          • СуперСкорость 2
          • Tallink
          • Линия Викинга
          • Гибридный автомобиль Finnlines RoRo
          • Хейлз Трофи
          • Два парома Hankyu
          • Натчан Рера
          • Скоростной паром Экспресс 5
        • Рыбалка
        • Торговец
          • Арклоу Шиппинг
          • М. В. Арвика
          • Атлантическая Контейнерная Линия
          • Контейнеровозы VII
          • Даная К.
          • Быстрый Джеф
          • Гашем Белуга
          • Хапаг Ллойд
          • Промышленный шкипер
          • Халид Фарадж Шиппинг
          • Ла Манча
          • MSC Париж
          • MV Pontica
          • Пак Алкайд
          • Газовый журнал с соглашениями о жизненном цикле
        • Флот
          • Саад Субахи Класс
          • HSV2 Swift
        • Офшор
          • Харви залив
          • Гигант Северного моря
          • Быстрое бурение
          • Вестланд Лебедь
          • Принцесса викингов
        • Специальные суда
          • Rolldock Storm
          • UKD Marlin
        • Буксиры
        • Яхты
          • Балтийские Яхты
          • Суперяхта ЯС
    • Построить
      • Автоматизация
        • Автоматизация
          • Wärtsilä NACOS VALMATIC Platinum
          • Wärtsilä NACOS MCS Platinum
          • Wärtsilä NACOS PCS Platinum
        • Технологии измерения и контроля
          • Блок управления двигателем Wärtsilä
          • Уровень Wärtsilä Smart EP
          • Светофоры Wärtsilä
          • Уровень Wärtsilä Smart VS
          • Система дистанционного управления клапанами Wärtsilä
          • Пилотная система флота Wärtsilä
        • Контроль и мониторинг земснаряда
          • Системы контроля и мониторинга земснаряда
      • Управление балластными водами
        • Wärtsilä Aquarius EC BWMS
        • Wärtsilä Aquarius UV BWMS
      • DP и интеллектуальные датчики
        • SmartPredict
        • Джойстик Wärtsilä с контролем направления
        • Wärtsilä NACOS DP Platinum
        • Управление подруливающим устройством Wärtsilä
        • Артемида
        • CyScan AS
        • Эталонный блок движения
        • РадаСкан
        • RadaScan Просмотр
        • RangeGuard
        • SceneScan
      • Двигатели и генераторные установки
        • Гибридные решения
          • Гибридный
            • Wärtsilä HY
        • Дизельные двигатели
          • Wärtsilä 14
          • Wärtsilä 20
          • Wärtsilä 26
          • Wärtsilä 31
          • Wärtsilä 32
          • Wärtsilä 46F
        • Двухтопливные двигатели
          • Wärtsilä 20DF
          • Wärtsilä 31DF
          • Wärtsilä 34DF
          • Wärtsilä 46DF
          • Wärtsilä 50DF
        • Двигатели на чистом газе
          • Wärtsilä 31SG
        • Генераторные установки
          • Wärtsilä Auxpac 20
          • Генераторные установки Wärtsilä
        • Тихоходные двигатели RTA и RT-flex
        • Вспомогательные системы двигателей Wärtsilä
        • Снижение выбросов NOx
          • Редуктор NOx Wärtsilä (NOR)
      • Развлекательные и световые решения
        • Аудио
          • Wärtsilä Audio
        • Освещение
          • Архитектурное освещение Wärtsilä
          • Система динамического освещения Wärtsilä
        • видео
          • Wärtsilä Broadcast
          • Светодиодные экраны Wärtsilä
          • Цифровые вывески Wärtsilä
      • Обработка выхлопных газов
        • Снижение выбросов SOx
          • Конструкции скрубберных систем
      • Производство пресной воды
        • Многоступенчатые испарители мгновенного действия Wärtsilä
        • Одноступенчатые системы опреснения воды Wärtsilä
        • Горизонтальные испарители с внутренней трубкой Wärtsilä
        • Обратный осмос Wärtsilä
      • Газовые решения
        • Системы обработки газовых грузов
          • Wärtsilä Cargo Handling для малых газовозов
          • Система обработки грузов Wärtsilä для газовозов / этиленовозов
          • Система обработки грузов Wärtsilä для газовозов с полным давлением
          • Система обработки грузов Wärtsilä для рефрижераторных газовозов
          • Система обработки грузов Wärtsilä для полурефрижераторных газовозов
          • Проект судов и грузовых танков Wärtsilä
        • Система восстановления ЛОС
        • Системы инертного газа
          • Дымовой газ Wärtsilä
          • Генераторы инертного газа Wärtsilä для газовозов
          • Генераторы инертного газа Wärtsilä для танкеров
          • Системы Wärtsilä Mult-Inert ™
          • Генераторы азота Wärtsilä
          • Морские установки инертного газа Wärtsilä
        • Система подачи топливного газа
          • Блок газовых клапанов
          • LNGPac
        • Сжижение и повторное сжижение BOG
          • Установки СПГ - технология сжижения в миниатюрном масштабе
          • Заводы СПГ - Технология сжижения малых объемов
          • Wärtsilä BOG Повторное ожижение
        • Регазификация СПГ Wärtsilä
        • Системы управления танками
          • Wärtsilä Whessoe Система измерения СПГ и СПГ в резервуарах
          • Гидравлическая система аварийного отключения
        • Биогазовые решения
          • Обновление биогаза
            • Инновации в модернизации биогаза
            • Биогаз процветает в Дании
            • Европе нужно больше биогаза
          • ЕГЭ Биогаз
          • Биокрафт ЛБГ
          • VEAS
          • Tekniska Verken
        • Модернизированный газовоз LFSS
        • Грузовая система СПГ для бункеровочной баржи
        • Система подачи топлива Wärtsilä LPG
      • Навигация и общение
        • Коммуникационные системы для решений связи
          • Системы связи для решения связи
            • Доступные продукты
            • Услуги по добавлению стоимости
            • Глобальное покрытие
          • Системы безопасности
          • Системы безопасности
          • Информационно-развлекательная система
            • Информационно-развлекательная система Wärtsilä
        • Встроенное управление мостом
          • Wärtsilä NACOS Platinum
        • Навигация
          • Wärtsilä NACOS CONNINGPILOT Platinum
          • Wärtsilä NACOS DATAPILOT Platinum
          • Wärtsilä NACOS ECDISPILOT Platinum
          • Wärtsilä NACOS MULTIPILOT Platinum
          • Wärtsilä NACOS RADARPILOT Platinum
          • Твердотельный радар S-диапазона Wärtsilä NACOS Platinum
          • Wärtsilä NACOS TRACKPILOT Platinum
          • Wärtsilä VDR 4370
          • RS24
        • Датчики навигации
          • Wärtsilä R5 Supreme AIS
          • Wärtsilä BNWAS Platinum
          • Навигационная система Wärtsilä GNSS / (D) GNSS R5
          • Wärtsilä SATLOG SLS 4120
          • Wärtsilä SAM 4642
          • Wärtsilä SAM 4682
          • Wärtsilä SAM 4683
      • Системы питания
        • Электродвигатель
          • Электродвигательные установки
        • Распределение мощности
          • Прямое электрическое отопление Wärtsilä
        • Системы валовых генераторов
          • Генератор вала Wärtsilä
        • Береговая связь
          • Wärtsilä SAMCon
          • Беспроводная зарядка
        • Гибридная автоматизация
          • Система удаленного мониторинга и помощи (RMS)
          • Интегрированная система автоматизации Wärtsilä
          • Система управления питанием Wärtsilä
      • Движители и шестерни
        • Шестерни
          • 2-ступенчатая передача Wärtsilä
          • Двойная входная шестерня Wärtsilä
          • Шестерня с одним входом Wärtsilä
        • Пропеллеры
          • Встроенные гребные винты Wärtsilä (BUP)
          • Прибрежные и внутренние гребные винты Wärtsilä
          • Винты с фиксированным шагом Wärtsilä
          • Wärtsilä EnergoProFin
          • Wärtsilä EnergoFlow
        • Системы управления движением
          • Системы управления движением Wärtsilä
          • Wärtsilä EcoControl
        • Рули
          • Wärtsilä Energopac
        • Двигатели
          • Выдвижные подруливающие устройства Wärtsilä
          • Управляемые двигатели Wärtsilä
          • Поперечные подруливающие устройства Wärtsilä
          • Подводные регулируемые подруливающие устройства Wärtsilä
        • Гидроабразивы
          • Wärtsilä Midsize Waterjets
          • Модульные гидрорезки Wärtsilä
        • Wärtsilä OPTI Дизайн
      • Решения для валопроводов
        • Wärtsilä уплотнения кормовой трубы с водяной смазкой
          • Wärtsilä Enviroguard PSE и FSE
          • Wärtsilä Enviroguard MB и M4
          • Wärtsilä Enviroguard M
        • Wärtsilä уплотнения кормовой трубы с масляной смазкой
          • Уплотнение Wärtsilä Sternguard, работающее в воде
          • Wärtsilä Airguard
          • Система Wärtsilä Airguard (двухтрубная)
          • Wärtsilä Sandguard
          • Wärtsilä Dualguard
          • Wärtsilä Sternguard OLS
          • Wärtsilä Sternguard EK, EJ и EL
        • Гидравлические уплотнения Wärtsilä
        • Уплотнения перегородки Wärtsilä
        • Балка руля и уплотнения стабилизатора Wärtsilä
        • Электрическая гондола и уплотнения подруливающего устройства Wärtsilä
        • Подшипники кормовой трубы с масляной смазкой Wärtsilä
        • Подшипники кормовой трубы Wärtsilä с водяной смазкой
        • Подшипники промежуточного вала Wärtsilä
        • Упорные подшипники Wärtsilä
        • Подшипники руля и стабилизатора Wärtsilä

Генератор (двигатель) - оборудование энергетической зоны

ЛЮБОЕ УЧАСТИЕ В УСЛУГАХ, ПРЕДОСТАВЛЯЕМЫХ НА НАШЕМ ВЕБ-САЙТЕ, ИЛИ ДОСТУП К ИНФОРМАЦИИ, ИНСТРУМЕНТАМ ИЛИ ДОКУМЕНТАЦИИ, СОДЕРЖАЩИМСЯ НА САЙТЕ, ЯВЛЯЕТСЯ ПРИНЯТИЕМ НАСТОЯЩЕГО СОГЛАШЕНИЯ.

Ваша конфиденциальность в Интернете важна для нас.В этом документе описаны правила, конфиденциальность, положения и условия, которые мы придерживаемся для пользователей нашего веб-сайта. Дополнительные вопросы о нашей политике или нашей практике можно направить нам по электронной почте [email protected]

Или позвоните нам по телефону:
(719) -754-1981

Или отправьте свой вопрос по адресу:
Power Zone Equipment, Inc.
Attn: Director of Marketing
46920 County Road E.
Center, CO 81144

Личная информация - как она используется
Мы можем собирать общедоступную информацию, но не собираем личную информацию, если вы специально не предоставите ее.

В случае предоставления мы можем использовать вашу личную информацию для обеспечения наилучшего обслуживания. Это может включать (1) предоставление Информации, услуг или продуктов по вашему запросу, (2) обращение к вам по поводу продуктов или услуг, которые мы предлагаем, по телефону, электронной почте, с помощью печатной или цифровой рекламы, и (3) обращение к вам для проведения опрос клиентов. Предоставляя Оборудованию Power Zone вашу контактную информацию, вы даете согласие на то, чтобы оборудование Power Zone могло связываться с вами с информацией о наших продуктах, услугах и другой деловой информации, связанной с Оборудованием Power Zone, по телефону, электронной почте, печатным или цифровым рекламным объявлениям.Кроме того, используя наш веб-сайт под зарегистрированным IP-адресом компании, вы даете Power Zone согласие на связь с компанией, в которой зарегистрирован ваш IP-адрес. Незарегистрированные и частные IP-адреса не используются и не сохраняются на серверах Power Zone Equipment.

Продолжая улучшать работу нашего веб-сайта, мы используем Google Analytics для сбора анонимной и совокупной статистики о том, как используется наш веб-сайт. Мы можем делиться неличной совокупной информацией о пользователях нашего сайта с третьими сторонами.Любая передаваемая информация является анонимной, чтобы помочь защитить вашу конфиденциальность. Используя веб-сайт Power Zone Equipment, вы разрешаете Power Zone Equipment собирать анонимную статистику использования нашего веб-сайта. Кроме того, если и когда вы решите предоставить его с помощью наших онлайн-форм для электронной почты, вы соглашаетесь на использование и предоставление вашей личной информации, которую вы нам предоставили.
Power Zone Equipment также использует сторонние рекламные и маркетинговые платформы, такие как Facebook, LinkedIn, Constant Contact, Drip и / или Google AdWords, для размещения рекламы, отправки электронных писем и привлечения потенциальных клиентов.Предоставляя информацию, вы даете согласие Power Zone Equipment на использование вашей контактной информации в маркетинговых целях Power Zone Equipment. Мы делаем все возможное, чтобы предоставлять вам только те маркетинговые материалы, которые, по нашему мнению, имеют отношение к вам, и вы можете в любое время (1) отказаться от подписки на маркетинговые электронные письма с помощью ссылки «отказаться от подписки» или «обновить настройки» в нижней части маркетингового электронного письма, (2) отправьте нам запрос на удаление вашей информации с наших маркетинговых платформ, отправив нам электронное письмо по адресу [email protected] com, и (3) измените свои рекламные предпочтения в ваших личных учетных записях для социальных сетей.

Информация, которую вы нам предоставляете, является частной, и мы не будем раскрывать или продавать вашу информацию, если (1) вы не уполномочили нас на это, (2) это требуется по бизнес-соглашению для предоставления вам продуктов или услуг. вы запросили, (3) мы требуем по закону, (4) это необходимо для защиты наших прав собственности. Обратите внимание, что любые личные данные, которые должны храниться в соответствии с законодательством штата и национальным законодательством для целей налогообложения, выставления счетов или ведения учета, не включены в эту политику конфиденциальности.

Личная информация

- что мы собираем Оборудование
Power Zone будет собирать вашу личную информацию только в том случае, если вы ее добровольно предоставили. Например, когда вы отправляете контактную форму через наш веб-сайт, мы просим вас предоставить нам ограниченную личную информацию, такую ​​как:

Имя
Адрес электронной почты
Номер телефона

Этот набор информации позволяет Power Zone ответить на ваш запрос. Эта информация может быть добавлена ​​в базу данных Power Zone и использована по причинам, указанным выше в разделе «Личная информация - как она используется».Информация о кредитной карте, номера социального страхования или другая личная информация не должна отправляться в Power Zone с использованием наших онлайн-форм. Мы свяжемся с вами для получения дополнительной информации при заключении делового соглашения.

При посещении нашего веб-сайта с зарегистрированного IP-адреса компании мы собираем ограниченную общедоступную информацию о вашей компании, например:

Официально зарегистрированное название компании
Государственно зарегистрированная основная компания Телефонный номер
Основной адрес публично зарегистрированной компании.

Кроме того, информация о сеансе на нашем веб-сайте может быть собрана и связана с публично зарегистрированным IP-адресом компании. Информация о сеансе хранится в общедоступной регистрационной информации и не может быть напрямую идентифицирована отдельным пользователем. Информация, полученная при использовании нашего веб-сайта в рамках зарегистрированной компании:

страниц, посещенных во время сеанса на нашем веб-сайте
Общая статистика использования (время, проведенное на странице, ссылающийся веб-сайт и т. Д.)

Cookies Веб-сайт
Power Zone Equipment использует файлы cookie, чтобы мы могли понять, как используется наш сайт.Файлы cookie - это стандартный инструмент, который веб-дизайнеры используют для понимания своих пользователей. Информация, которую мы собираем, используется для улучшения нашего сайта и его функций. Могут использоваться как временные файлы cookie, так и файлы cookie в памяти. Ваш веб-браузер может быть настроен на прием всех файлов cookie, уведомление об их использовании и отклонение всех файлов cookie. Поскольку наши файлы cookie используются для улучшения взаимодействия с пользователем на нашем сайте, их отключение в вашем браузере может привести к отключению некоторых функций нашего сайта. Веб-сайт Power Zone использует Google Analytics и может хранить файлы cookie, как это разрешено и регулируется политикой Google в отношении файлов cookie для Google Analytics. Для получения информации о файлах cookie Google щелкните здесь.

Личная информация - как мы ее защищаем
Мы серьезно относимся к безопасности. Используя стандартные отраслевые методы, такие как брандмауэры и программное обеспечение безопасности, мы защищаем любую информацию, которую можем хранить в наших записях. Хотя безопасность - наша цель, мы не можем гарантировать или гарантировать безопасность личной информации, которую вы нам предоставляете. Удаление вашей информации с наших серверов и базы данных будет выполнено по запросу. Вы можете написать нам по адресу contact @ powerzone.com с вашим запросом на просмотр имеющейся у нас информации о вас или на удаление любой личной информации, которая может храниться у нас.

Внешние веб-сайты
Чтобы предоставить вам как можно больше ресурсов, мы можем предоставлять ссылки на внешние сторонние веб-сайты. Power Zone не контролирует эти веб-сайты и не несет ответственности за их политику или практику. Если у вас возникнут какие-либо вопросы по поводу их веб-сайта, рекомендуется ознакомиться с политикой их веб-сайтов.

Авторское право, товарные знаки и интеллектуальная собственность
Наш сайт и его содержимое могут быть защищены действующими законами, такими как авторское право, патенты или товарные знаки.Вся информация на нашем сайте может быть использована только для справки. Документы, информация о продукте, изображения, видео или другой контент, представленный на нашем веб-сайте, не могут быть использованы без письменного разрешения Power Zone Equipment, Inc. Авторские права на содержимое веб-сайта, включая формат и макет нашего сайта, принадлежат Power Zone Equipment, Inc. Любые сторонние материалы на нашем веб-сайте размещаются с письменного разрешения третьей стороны.

Домены PowerZone.com и PowerZoneEquipment.com принадлежат Power Zone Equipment, Inc. Использование логотипов, знаков обслуживания, товарных знаков или названий, которые появляются на сайте, нельзя использовать в какой-либо рекламе или рекламе, а также для обозначения спонсорства или принадлежности какого-либо продукта или услуги без письменное разрешение операторов оборудования Power Zone. Сайт не дает согласия и не разрешает использование своего контента или дизайна третьей стороной. Любое использование материалов, охраняемых авторским правом Power Zone Equipment, должно быть разрешено в письменной форме. Наш сайт может также содержать другие уведомления о правах собственности и информацию об авторских правах, которые необходимо соблюдать и соблюдать в дополнение к заявлению, изложенному на этой странице.

Заявление об ограничении ответственности
POWER ZONE EQUIPMENT ОТКАЗЫВАЕТСЯ ОТ ВСЕХ ЯВНЫХ И ПОДРАЗУМЕВАЕМЫХ ГАРАНТИЙ В ОТНОШЕНИИ ИНФОРМАЦИИ, УСЛУГ И МАТЕРИАЛОВ, СОДЕРЖАЩИХСЯ НА ДАННОМ САЙТЕ, ВКЛЮЧАЯ БЕЗ ОГРАНИЧЕНИЙ, ЛЮБЫЕ ПОДРАЗУМЕВАЕМЫЕ ГАРАНТИИ, КОММЕРЧЕСКУЮ ПРИГОДНОСТЬ, USA ИСПОЛЬЗОВАНИЕ ВЕБ-САЙТА ОБОРУДОВАНИЯ POWER ZONE НА ВАШ СОБСТВЕННЫЙ РИСК. УСЛУГИ И МАТЕРИАЛЫ МОГУТ БЫТЬ НЕ БЕЗОШИБОЧНЫМИ, И ИСПОЛЬЗОВАНИЕ КОНКРЕТНОГО СОДЕРЖАНИЯ МОЖЕТ БЫТЬ ПРЕРЫВНО ИЛИ УДАЛЕНО В ЛЮБОЕ ВРЕМЯ. ИНФОРМАЦИЯ, ПРЕДОСТАВЛЯЕМАЯ НА НАШЕМ ВЕБ-САЙТЕ ТОЛЬКО ДЛЯ ИНФОРМАЦИОННЫХ ЦЕЛЕЙ. ОБОРУДОВАНИЕ POWER ZONE, ЕГО СОТРУДНИКИ ИЛИ ПОСТАВЩИКИ, КОТОРЫЕ МОГУТ УЧАСТВОВАТЬ В СОЗДАНИИ СОДЕРЖИМОГО САЙТА ИЛИ ПРЕДОСТАВЛЕННОЙ ИНФОРМАЦИИ, НЕ НЕСЕТ НИКАКОЙ ОТВЕТСТВЕННОСТИ ЗА ТОЧНОСТЬ, ПОЛНОСТЬЮ ИЛИ ПОЛЕЗНОСТЬ ПРЕДОСТАВЛЕНИЯ ТАКОГО СОДЕРЖАНИЯ. СТОРОНЫ, ПРИВЕДЕННЫЕ ЗДЕСЬ, ТАКЖЕ НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА ЛЮБЫЕ ПРЯМЫЕ ИЛИ КОСВЕННЫЕ, СЛУЧАЙНЫЕ, СПЕЦИАЛЬНЫЕ, КОСВЕННЫЕ ИЛИ КАРАТНЫЕ УБЫТКИ, ВЫЗВАННЫЕ ВАМИ ИЛИ НЕВОЗМОЖНОСТЬЮ ИСПОЛЬЗОВАТЬ ЭТОТ САЙТ. ВСЯ ИНФОРМАЦИЯ, УСЛУГИ И МАТЕРИАЛЫ ПРЕДОСТАВЛЯЮТСЯ «КАК ЕСТЬ» И «ПО ДОСТУПНОСТИ» БЕЗ КАКИХ-ЛИБО ГАРАНТИЙ, ЕСЛИ ИНОЕ НЕ СОГЛАСОВАНО ПРИ НАПИСАНИИ В ДОГОВОРЕ АРЕНДЫ ИЛИ ПОКУПКИ.

ПРИ ИСПОЛЬЗОВАНИИ НАШЕГО САЙТА ВЫ ПОДТВЕРЖДАЕТЕ И СОГЛАШАЕТЕСЬ, ЧТО УКАЗАННЫЕ ВЫШЕ ОГРАНИЧЕНИЯ ЯВЛЯЮТСЯ ОСНОВНЫМИ ЭЛЕМЕНТАМИ НАСТОЯЩЕГО СОГЛАШЕНИЯ, И ДАННЫЙ САЙТ НЕ БУДЕТ ПРЕДОСТАВЛЯТЬСЯ ВАМ БЕЗ ТАКИХ ОГРАНИЧЕНИЙ.

ПРОВЕРЬТЕ МЕСТНОЕ ЗАКОНОДАТЕЛЬСТВО НА ЛЮБЫЕ ОГРАНИЧЕНИЯ ИЛИ ОГРАНИЧЕНИЯ, КАСАЮЩИЕСЯ ИСКЛЮЧЕНИЯ ПОДРАЗУМЕВАЕМЫХ ГАРАНТИЙ, ТАК КАК НЕКОТОРЫЕ ЮРИСДИКЦИИ МОГУТ НЕ ДОПУСКАТЬ ИСКЛЮЧЕНИЯ ТАКИХ ГАРАНТИЙ.

Возмещение убытков
Вы соглашаетесь возместить, защитить и обезопасить оборудование Power Zone, его поставщиков, уважаемые аффилированные лица, сотрудников, директоров и представителей каждого из них от любой ответственности, убытков, претензий, исков, ущерба и расходов (включая разумный суд и адвокат сборов), которые связаны с нарушением настоящих условий.

Применимое законодательство
Наши положения и условия, а также любые разрешения споров, связанных с нашими условиями, должны толковаться в соответствии с законами штата Колорадо. Любые споры между Power Zone Equipment и вами или вашей компанией в связи с нашими положениями и условиями будут разрешаться исключительно судами штата и федеральными судами штата Колорадо.

Наш веб-сайт доступен и используется во всем мире. Используя наш сайт, вы соглашаетесь с статутами и законами штата Колорадо, которые будут применяться ко всем связанным видам использования нашего веб-сайта, без учета каких-либо коллизионных норм. Доступ к нашему веб-сайту из других мест, стран или территорий осуществляется по вашей собственной инициативе, и вы несете ответственность за соблюдение своих местных законов.

Реклама
Мы не разрешаем третьим сторонам размещать рекламу на нашем сайте посредством платной рекламы или рекламных акций, но рекламируем наши собственные продукты и услуги.

Обзор наших политик
Поскольку Интернет продолжает меняться и мы продолжаем обновлять и улучшать работу нашего веб-сайта, мы можем вносить обновления и / или изменения в эту политику конфиденциальности.Чтобы получить самую последнюю информацию о правилах, время от времени проверяйте нашу политику. Power Zone Equipment оставляет за собой право в любое время изменять нашу политику конфиденциальности и / или наши условия. Использование нашего сайта означает ваше согласие следовать условиям, изложенным на этой странице, и соблюдать их.

---- Обновлено 31 декабря 2018 г. ----

Engine Power Plant> Продукция

PPS (блочная электростанция)

PPS - первая в мире электростанция контейнерного типа, разработанная HHI-EMD, обладающая многими достоинствами, такими как быстрая доставка, простота транспортировки, простота установки и так далее.PPS получил всемирное признание за свои инновационные технологии и был воспринят пользователями с виртуальным почтением, причем изображение системы даже появилось на валюте одной из стран, где она была установлена.

Общие характеристики
* MCR основан на условиях ISO.
Модель двигателя 6х31 / 32 8х31 / 32 9х31 / 32
Двигатель (кВт) 1,200 1,600 1,800
Генератор (кВт) 1,128 1 504 1,701
Общий вес (т) 42 48 50
Размеры (Ш × В × Д) 2. 4 м × 3,4 м × 12 м (размер контейнера)
Метод охлаждения Радиатор / Градирня
Скорость 900 об / 1 000 об / мин
Топливо Дизельное топливо / Мазут

  1. ① Двигатель
  2. ② Радиатор
  3. ③ Генератор
  4. ④ Глушитель выхлопных газов
  5. ⑤ Панель управления
  6. ⑥ Вентилятор приточного воздуха
  7. ⑦ Корпус

Австралийский дистрибьютор морских и промышленных дизельных двигателей

Выбрать регион
ВсеЮжная АвстралияЗападная АвстралияСеверная территорияКвинслендНовый Южный УэльсВикторияТасманияПапуа-Новая ГвинеяСоломанские островаНауруКирибатиТувалуВануатуНовая КаледонияФиджиТонгаНиуэОстрова КукаСамоаАмериканское СамоаЛайн островаНовая Зеландия

Выбрать пригород
AllAbbotsfordAberdeenЭрли-БичAlbanyAlbertonAlburyAlice RiverAlice SpringsAlics SpringsAltona NorthArmidaleArtarmonAspendaleAthertonAscot ParkAucklandAyrBairnsdaleBalcattaBalgowlahBallaratBALMAINBarmayathBateBateBelmontBendigoBentleyBentlyBermaguiBerriganBerrimahBeverleyBibra LakeBiloelaBlackwaterBlenheimBomaderryBotanyBordertownBoonahBoorowaBoulderBowenBowralBraesideBranxtonBrisbaneBrisbane SouthBrooklynBrookvaleBroomeBrowns PlainsBucklands BeachBulimbaBunburyBundabergBungalowBurpengaryBusseltonCabooltureCairnsCamdenCampbellfieldCanning ValeCanningvaleCapalabaCarrum DownsCasinoCastertonCessnock WestCharlevilleCharter TowersCharters TowersChatswoodChelsea HeightsChildersChinchillaChipping NorthChristchurchClevelandClive CornellClontarfCobarCobramCoffs HarbourCohunaColacColeamballyCollingwoodCondobolinCooeeCoolahCoolamonCoomaCoomeraCootamundraCorioCorowaCorryongCowaramupCowraCraiglieCullen BayDALBYDandenongDandenong SouthDarwinDenham, акулы BayDeniliquinDerbyDerwent ParkDongaraDonnybrookDrummoyneDubboDulwich HillDuncraigDunedinDunedooEast ArmEast MoreeEastwoodEchucaEfateEildonEmeraldEsperanceFairfieldFannie BayFiary MedowFinleyFish CreekForbesForsterFremantleGattonGarbuttGeographeGeraldtonGlads toneGloucesterGoolwaGoondiwindiGosnellsGoulburnGrangeGranvilleGreymouthGreenfieldsGriffithGunnedahGympieHamiltonHarveyHastingsHayHeathcoteHealesvilleHemmantHendersonHervey BayHillarysHobsonvilleHoniaraHorshamHumeHumpty DooHuntlyInnisfailInnisfallInvercargillInverellJandakotJinderaKaikouraKalgoorlieKatherineKeithKeilor ParkKelmscottKewdaleKingaroyKnoxfieldKununurraKurmondKurnellKyabramKynetonLabradorLake EntranceLamerooLauncestonLauraLautokaLeemingLeetonLeongathaLilydaleLindenowLochinvarLoganholmeLONGFORDLonsdaleLynbrookMackayMaddingtonMaffraMaitlandMalagaMalandaMalenyMandurahManjimupMareebaMargaret RiverMarybroughMayfield WestMcMahons PointsMeadowbrookMedowieMidlandMiddle SwanMidvaleMilduraMile EndMinchinburyMoamaMoeMontoMooloolabaMordiallocMOREEMorleyMorningtonMosmanMosman ParkMoss ValeMotuekaMount IsaMt GambierMt IsaMt LousiaMt. MaunganuiMudgeeMurray BridgeMuswellbrookNambourNapierNaracoorteNarellanNarranderaNarromineNelsonNelson BayNewportNewtonNhulunbuyNorthbridgeNorth HavenNorth ParramattaNorth RockhamptonNorthamNoumeaNumurkahNuriooptaOconnorOpuaOrangeOrmistonOsbornePagetPakenhamPaynesvillePeats RidgePenrithPerthPictonPentonePine HarbourPinelandsPittsworthPoriruaPortsmithPort BundabergPort DouglasPort HinchinbrookPort LincolnPort MacdonnellPort MacquariePort MoresbyPort из TownsvillePort VilaProserpinePUTNEYQueenscliffRaceviewRenmarkReservoirRichmondRiversideRiverstoneRobeRobinvaleRocherleaRockhamptonRomaRoseberyRozelleRozelle BayRutherfordRydalmereSaleSamfordSanctuary PointSandrighamSandgateSandstone PointScarboroughSconeSebastapolSeven Хиллз

Понимание Дизельный двигатель Производительность

На корабле, важно, чтобы проверить работу двигателя, время от времени, чтобы проверить рабочее состояние и поиск неисправностей.Раньше мощность дизельного двигателя определялась вручную, но с развитием технологий теперь используются автоматические системы контроля.

Типы систем контроля дизельных двигателей

С помощью систем мониторинга можно легко и в кратчайшие сроки определить мощность дизельного двигателя. Новая технология предусматривает два типа систем мониторинга.

В первой системе производительность дизеля отслеживается непрерывно и, таким образом, называется онлайн-мониторингом.Тогда как во второй системе инженер должен вручную установить прибор на головку блока цилиндров, подключить провод к датчику оборотов и снять показания вручную, а затем передать их на компьютер. Как правило, на кораблях главный двигатель имеет онлайн-систему производительности дизельного двигателя, тогда как для дизельных генераторов используется ручная система.

Тип устанавливаемой системы зависит от компании, типа корабля и двигателя. Онлайн-система довольно дорогостоящая, чем ручная.В онлайн-системе производительность дизеля можно увидеть удаленно в диспетчерской, а также в кабине главного инженера. Система также предоставляет несколько графиков, которые точно анализируют состояние двигателя. Графики представляют собой аналогичные карты тиражей и индикаторов, построенные вручную. Они помогают добиться надежной и эффективной работы судового двигателя.

На основе полученных графиков показаны различные характеристики, такие как синхронизация двигателя, давление сжатия, мощность цилиндра и т. Д.можно проанализировать. Они также сообщают нам, сбалансирован ли двигатель или некоторые агрегаты перегружены. Графики также показывают, нужно ли регулировать время, информацию об утечках поршневых колец и т. Д., Тем самым обеспечивая необходимое обслуживание и регулировки, чтобы избежать отказа двигателя или повреждения двигателя.

Как правило, мощность дизельного двигателя основного и вспомогательного двигателей измеряется один раз в месяц, а затем анализируется отчет. Копия отчета также отправляется в технический отдел компании вместе с комментариями главного инженера к отчету.Технический отдел проверяет и отвечает, если персонал судна упустил какие-либо пункты.

Скорая помощь

В аварийных целях старый метод проверки работы дизеля остается в качестве резервного. Делается это с учетом отказов системы и отсутствия запчастей для ремонта.

Отчеты о характеристиках дизельного топлива хранятся в виде записей, чтобы их можно было сравнить с последними отчетами и проверить тенденцию, чтобы проанализировать, ухудшились или улучшились характеристики дизельного топлива.Если отчет показывает тенденцию к снижению, то проводится техническое обслуживание и заменяются или регулируются необходимые детали.

Преимущества дизельной системы производительности

1) Эффективная и надежная работа двигателя.
2) Помогает экономить топливо и оптимизировать SFOC (удельный расход мазута.
3) Помогает спрогнозировать необходимый ремонт и предотвратить отказ двигателя.
4) Помогает снизить стоимость запасных частей и увеличить время между капитальными ремонтами.