13Авг

Ротор в двигателе: Ротор двигателя подъема тельфера, электротали, электротельфера, купить, цена

Содержание

Принцип действия электродвигателей

MaxPlant





Принцип действия

Асинхронный двигатель с короткозамкнутым ротором

Обмотка ротора состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами (беличья клетка). Обмотка статора (обмотка возбуждения) питается от сети переменным током – образуется вращающееся магнитное поле, которое индуцирует в обмотках ротора ток. На проводники с током обмотки ротора со стороны магнитного поля обмотки возбуждения действуют электромагнитные силы — образуется вращающий момент, увлекающий ротор за магнитным полем. Частота вращения ротора не может достигнуть частоты вращения магнитного поля статора (поэтому электродвигатель и называется асинхронным), в противном случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю и магнитное поле перестанет индуцировать в обмотке ротора ЭДС и создавать крутящий момент.

Асинхронный двигатель с фазным ротором

Обмотки ротора выводятся на контактные кольца, вращающиеся вместе с валом машины. С помощью металлографитовых щёток, скользящих по этим кольцам, в цепь обмотки ротора включается пускорегулирующий реостат. Увеличивая сопротивление реостата в момент пуска, можно увеличить пусковой момент и снизить пусковой ток.

Синхронные электродвигатели

Обмотка статора (якорная обмотка) питается от сети переменным током – образуется вращающееся магнитное поле. На роторе находится индукторная обмотка, выведенная на контактные кольца. При пуске обмотки ротора закорачиваются накоротко или через реостат, и двигатель разгоняется в асинхронном режиме. После выхода на скорость, близкую к номинальной, индуктор запитывается постоянным током — создаётся постоянное магнитное поле, которое сцепляется с магнитным полем статора и начинает вращаться с ним синхронно (двигатель входит в синхронизм).

Режимы работы асинхронного двигателя

  • Двигательный
  • Электродвигатель преобразует электрическую энергию, потребляемую из сети, в механическую.

  • Генераторный
  • Асинхронный двигатель переходит в генераторный режим, если ротор начинает вращаться быстрее магнитного поля – на валу появляется тормозной момент. В этом режиме электродвигатель преобразовывает механическую энергию в электрическую и отдаёт её в сеть.

  • Электромагнитного тормоза
  • Асинхронный двигатель переходит в режим электромагнитного тормоза, если ротор и магнитное поле статора вращаются в разные стороны — на валу появляется тормозной момент, но двигатель при этом продолжает потреблять электроэнергию из сети — вся потребляемая энергия идёт на нагрев двигателя.


Способы регулирования скорости вращения асинхронного двигателя

  • Реостатное
  • В цепь ротора (двигателя с фазным ротором) вводятся добавочные сопротивления — механическая характеристика двигателя становится мягче (ухудшается устойчивость работы, увеличивается скольжение), скорость снижается, при этом увеличивается пусковой момент и сохраняется перегрузочная способность.
    Недостатки: большие потери на реостате, скорость меняется скачками.

  • Изменением числа пар полюсов

    В многоскоростных двигателях, по-разному коммутируя обмотки статора, можно менять число пар полюсов, а значит и скорость вращения вала, т.к. скорость вращения магнитного поля пропорциональна числу пар полюсов. При этом способе сохраняется КПД и жёсткость механических характеристик, но снижается перегрузочная способность (которую можно сохранить, изменяя напряжение).
    Недостатки: ступенчатое регулирование, высокая цена, большие габариты.

  • Частотное
  • Для этого способа регулирования применяются преобразователи частоты. Если при изменении частоты сохранять неизменным магнитный поток (а для этого мы должны поддерживать постоянным соотношение U/f), то мы получаем семейство механических характеристик с одинаковой жёсткостью и перегрузочной способностью.
    Преимущества: плавность регулирования, отличные экономические характеристики, возможность увеличивать частоту выше 50 Гц (частоты сети).

Как выбрать электродвигатель

Обмотка ротора

  • Короткозамкнутый ротор (беличья клетка)
  • Фазный ротор: обмотка ротора выведена на контактные кольца, вращающиеся с валом двигателя. С помощью металлографитовых щёток в цепь ротора включается пуско-регулирующий реостат. С помощью этого реостата можно уменьшить пусковой ток и регулировать скорость вращения вала двигателя.

Обмотка статора, напряжение питания

Обмотка статора может быть соединена по схеме «звезда» или «треугольник».
Если на шильдике двигателя написано: 220/380, D/Y, то это значит, что двигатель можно включать в сеть с Uл = 220 В по схеме «треугольник», а с Uл = 380 В — по схеме «звезда».

Для IEC двигателей стандартное напряжение — 230/400 В, а для отечественных — 220/380 В.


Типоразмер

Типоразмер или габарит (Frame size) — это расстояние в миллиметрах «от пола» до оси вала двигателя. Типоразмеры отечественных двигателей (ГОСТ) и импортных (IEC, NEMA) в общем случае не совпадают: наши двигатели ниже, чем импортные той же мощности.

Материал корпуса (станины)

  • Алюминий (Aluminium)
  • Чугун (Cast Iron).

Коэффициент полезного действия (Efficiency)

КПД η равен отношению механической мощности на валу двигателя P2 к потребляемой из сети электрической мощности P1.

   P1 = √3 х U х I х cos φ
   P2 = M х n / 9,55
   η = P2 / P1

Выходная мощность меньше входной на величину потерь.

Класс энергоэффективности

  • EFF1 (High Efficiency motors)
  • EFF2 (Improved Efficiency motors)
  • EFF3 (Conventional Efficiency motors).

Монтажное исполнение

  • Лапы (Foot) литые с корпусом или прикручиваемые
  • Фланцы (Flange) с врезными отверстиями (малые фланцы) или со сквозными (большие фланцы)
  • Комбинированные — лапы и фланец.

Конструктивное исполнение по способу монтажа электродвигателей

Класс защиты корпуса двигателя IP

Стандартная степень защиты электродвигателей — IP55.

Подробнее о расшифровке кодов IP

Скорость вращения

Скорость вращения магнитного поля двигателя (синхронная скорость):
n1 = 60f / p [об/мин],
где p — число пар полюсов двигателя,
f — частота сети (50 Гц).

  • 2 полюса — 3000 об/мин
  • 4 полюса — 1500 об/мин (стандарт)
  • 6 полюсов — 1000 об/мин
  • 8 полюсов — 750 об/мин
  • 10 полюсов — 600 об/мин
  • 12 полюсов — 500 об/мин.

Скорость вращения ротора асинхронного двигателя меньше скорости вращения магнитного поля:
n2 = n1(1 — s),
где s — скольжение.

Многоскоростные электродвигатели — это двигатели, у которых ступенчатое изменение скорости реализовано с помощью переключения числа пар полюсов.


Температура окружающей среды и высота над уровнем моря

При установке двигателя выше 1000 метров над уровнем моря и при эксплуатации при повышенной температуре окружающей среды необходимо учитывать снижение (Derating) мощности двигателя (для этого есть специальные таблицы).

Класс нагревостойкости изоляции

  • B — 130° С
  • F — 150° С (достаточно для работы от преобразователя частоты)
  • H — 180° С

Номинальные характеристики двигателя для всех классов изоляции указываются для температуры охлаждающей среды +40°С.

Подробнее о классах нагревостойкости изоляции

Режим нагрузки (Duty)

  • S1 — продолжительный: двигатель работает при установившейся температуре
  • S2 — кратковременный: двигатель не успевает нагреться до установившейся температуры, но во время остановки успевает полностью охладиться
  • S3 — повторно-кратковременный: работа с постоянной нагрузкой чередуется с выключениями, при этом двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
  • S4 — повторно-кратковременный с длительными пусками: двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
  • S5 — повторно-кратковременный с длительными пусками и электрическим торможением: двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
  • S6 — перемежающийся: работа с постоянной нагрузкой чередуется с работой на холостом ходу, при этом двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
  • S7 — перемежающийся с длительными пусками и торможениями: двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
  • S8 — перемежающийся с периодическим изменением скорости вращения: двигатель не успевает ни нагреться, ни охладиться до установившейся температуры

Тепловая защита двигателя

  • PTC-термисторы — это резисторы, сопротивление которых мгновенно возрастает при достижении заданной температуры.
    От 1 до 3 термисторов соединяются последовательно для сигнализации температуры отключения (Trip), например, 155°C. Ещё одна цепочка термисторов может быть настроена на сигнал предупреждения (Alarm), например, 145°C.
  • PT100 — платиновые датчики температуры обладают высокой стойкостью к окислению и большой точностью измерения. PT100 подключаются по 2-х, 3-х или 4-х проводной схеме (чем больше проводов — тем меньше влияние помех).
    От 3 до 6 датчиков PT100 могут устанавливаться в обмотку статора.
    Для измерения температуры подшипников могут быть использованы ещё 2 датчика PT100.
  • KTY — кремниевые термодатчики с положительным коэффициентом сопротивления, характеризуются высокой линейностью характеристики, высоким быстродействием, надёжной твёрдотельной конструкцией и небольшой стоимостью.

Сервис-фактор

Двигатель с сервис-фактором 1.1 может постоянно работать с перегрузкой 10% от номинального выходного момента.

Класс по моменту (Torque class)

Класс по моменту показывает кратность пускового момента (при прямом пуске от сети) при пониженном на 5% напряжении:

  • Класс 16 — 160%
  • Класс 13 — 130%
  • Класс 10 — 100%
  • Класс 7 — 70%
  • Класс 5 — 50%

Коэффициент мощности cos φ

Коэффициент мощности (cos φ) равен отношению потребляемой двигателем активной мощности к полной мощности.
Активная мощность расходуется на совершение полезной работы.
Полная мощность равна геометрической сумме активной и реактивной мощности.
Реактивная мощность расходуется на намагничивание двигателя.

Антиконденсационный нагрев

Для того, чтобы перед пуском двигателя в сыром помещении просушить обмотки есть два способа:

  • Использовать двигатель со специальным встроенным нагревателем
  • Подать на одну обмотку статора напряжение от 4 до 10% номинального (чтобы пропустить ток от 20 до 30% от номинального), что достаточно для испарения конденсата (применимо не для всех двигателей). Некоторые преобразователи частоты умеют это делать.

Охлаждение

  • Поверхностное охлаждение (Non-ventilated: вентилятора нет)
  • Самовентиляция (Self-ventilated: вентилятор на валу двигателя)
  • Принудительное охлаждение (Forced cooling: независимый вентилятор или жидкостное охлаждение водой или маслом)

Для турбомеханизмов (вентиляторы и насосы, для которых момент на валу пропорционален квадрату скорости), как правило, достаточно самовентиляции.
Двигатели, которые работают от преобразователей частоты с постоянным моментом длительное время на низких скоростях, необходимо или переразмеривать, или обеспечить принудительным охлаждением.

Классификация методов охлаждения электрических двигателей

Вентилятор

  • Пластиковый
  • Металлический
  • Металлический с увеличенным моментом инерции

Требования к двигателю при работе от преобразователя частоты

  • Температурный класс изоляции не ниже F
  • Возможно принудительная вентиляция (см. выше)
  • Изолированный подшипник с нерабочей стороны вала (рекомендуется для типоразмеров 225 и выше)

Подшипники

При работе от преобразователя частоты на частотах выше 50 Гц срок службы подшипников уменьшается.

У одних двигателей с рабочей стороны вала установлен плавающий подшипник (Floating bearing), а с нерабочей стороны подшипник зафиксирован (Located bearing). У других — наоборот (для сочленения с редуктором, например).

В стандартном исполнении подшипники подпружинены в аксиальном направлении (вдоль вала) для обеспечения равномерной работы двигателя. У двигателей с радиально-упорными подшипниками такой пружины нет, поэтому радиальное усилие (перпендикулярно валу — от ремня, например) должно быть приложено постоянно, иначе подшипник быстро выйдет из строя.

Смазка

Как правило, для двигателей с типоразмерами до 250, работающих в номинальном режиме, смазка рассчитана на весь срок службы подшипников.
Для пополнения смазки у двигателя должен быть предусмотрен специальный ниппель.

Вал двигателя

У двигателя может быть выведен второй конец вала двигателя, который может передавать как номинальный, так и меньший момент.
Второй конец вала несовместим с такими опциями как: датчик скорости и вентилятор принудительного охлаждения, а, возможно, и с тормозом.

Тормоз

При выборе тормоза необходимо учесть:

  • Тип:
    • статический (удерживающий тормоз срабатывает только при неподвижном вале)
    • динамический (можно регулировать момент торможения, меньше изнашивается в случае аварийного торможения)
  • Максимальную скорость, при которой возможно аварийное торможение
  • Момент нагрузки
  • Момент инерции
  • Число пусков
  • Напряжение питания: переменное (~220В) или постоянное (=24В)
  • Скорость срабатывания: тормоз с выключением на DC-стороне срабатывает быстрее (для подъёмника, например), чем тормоз с выключением на AC-стороне (для конвейера)

Датчик скорости

Датчик скорости может находится герметично внутри корпуса (Incapsulated) или снаружи под защитной крышкой.



Сервопривод

Устройства плавного пуска





Асинхронный электродвигатель | ЭлектроСветоСервис

  1. Главная
  2. Новости
  3. Асинхронный электродвигатель

  Асинхронный электродвигатель наиболее распространённый преобразователь электричества в механическую энергию, которую можно использовать практически во всех производственных процессах. В асинхронном электродвигателе используются также само, как и в двигателях на постоянный ток, электромагниты на каждой фазе. Выполнено это достаточно просто, за счёт прокладки в специальных пазах шихтованного железа токопроводящих проводников. Причём заложенный в одном пазу проводник будет заходить в следующий паз по кругу через пять пазов, а далее токопроводник будет возвращаться на два паза назад.

  Таким образом, одним токопроводником выполнено на одной фазе круговые электромагниты, заложенные в специальные пазы. Такие электромагниты изготавливаются на каждой фазе и закладываются в железо статора, по прямым пазам зачастую изолированных от железа, при помощи электрокартона и пропитанного шерлаком или бакелитовым лаком.

  Ротор асинхронного электродвигателя выполнен по принципу беличьего колеса, которое состоит из пазов в шихтованном металле, в которых расположены токопроводники закороченные с одной стороны и выведенные на коллектор — для асинхронного двигателя с фазным ротором.

  Но наиболее часто применяется асинхронный двигатель с короткозамкнутым ротором, в этом двигателе ротор состоит также само из изолированных от железа токопроводных пазов, но которые закорочены с двух сторон ротора. При запуске асинхронного электродвигателя с короткозамкнутым ротором остаточное намагничивание железа ротора позволяет создать в короткозамкнутых токопроводящих проводниках электрический ток. Который, взаимодействуя и усиливаясь с магнитным полем, созданным трёхфазными электромагнитами в обмотке статора приводят к разгону электродвигателя на номинальные обороты. Для более щадящего режима запуска и работы асинхронного двигателя с короткозамкнутым ротором»беличье колесо»токопроводящей обмотки ротора немного сдвигается от прямолинейных линий.

  Асинхронный двигатель с фазным ротором зачастую использовался в электродвигателях, которые устанавливались на оборудовании где затяжной пуск или необходимо регулировать обороты и момент на валу. Для того чтобы регулировать обороты и момент на валу в цепь фазного ротора через коллектор и щётки подсоединялись активные сопротивления. Что позволяло регулировать обороты и мощность при помощи их подключения или отключения в нужный режим. Также данные сопротивления в цепи ротора использовались для динамического торможения, которые широко востребованы в мощных крановых установках. В настоящее время данный вид двигателей используется крайне редко, так как они достаточно громоздкие и при этом требуют специализированного обслуживания за счёт наличия в них перехода коллектор — щётки.

  Асинхронные электродвигатели с короткозамкнутым ротором используются повсеместно. Наряду с основным преимуществом, связанным с дешевизной и надёжностью в данных двигателях до недавнего времени был основной недостаток — это отсутствие регулировки мощности и оборотов. То есть данные двигатели работали на номинальных оборотах постоянно и способны были выдавать на вал номинальную мощность. Если на валу двигателя практически нет механической нагрузки, он работает в режиме холостого хода и потребляет электроэнергии не на много меньше, чем при работе на номинальной нагрузке.

  Следует также отметить, что при большой нагрузке на валу, которая значительно выше номинальной мощности выдаваемой двигателем, значение скольжения возрастает, что может привести к тому и приводило, что двигатель выходит с режима синхронизации. Так что при выборе любого электрооборудования независимо от того электродвигатель это или коммутационное, осветительное или защитное, необходимо всегда закладывать в его мощность небольшой запас по мощности.

  В настоящее время асинхронные электродвигатели получили возможность использоваться в качестве регулируемых по оборотам и мощности на валу источников механической энергии. Осуществляется это за счёт применения частотных преобразователей, выполненных с применением современных силовых транзисторов. Для того чтобы регулировать обороты и самое главное мощность с изменением потребляемой мощности от сети, частотные преобразователи имеют возможность изменять номинальное напряжение и частоту сети в достаточно широких диапазонах. Что позволяет без потери электричества поступающего из сети регулировать обороты и мощность на валу электродвигателя за счёт программного изменения выходного напряжения с соответствующей частотой с частотного преобразователя.