Типы двигателей внутреннего сгорания — Энциклопедия по машиностроению XXL
Поршневые двигатели представляют собой один из типов двигателей внутреннего сгорания. [c.376]В 70—90-х годах XIX в. были созданы различные типы двигателей внутреннего сгорания (газовый двигатель Н. Отто, бензиновый двигатель Г. Даймлера, двигатель высокого сжатия Р. Дизеля, способный работать на тяжелом топливе). В течение одного-двух десятилетий двигатель Р. Дизеля получил массовое распространение в производстве, особенно для тяжелых самоходных машин — тракторов, кранов, экскаваторов, бульдозеров, а также для транспортных машин различного назначения. [c.26]
Паровая турбина должна была выдержать конкуренцию с паровой машиной, высоко развитой в то время в конструктивном отношении, и новым типом двигателя внутреннего сгорания—дизелем (1897 г.). В области тепловых электростанций эта борьба закончилась полной победой паровой турбины, являющейся и сейчас непревзойденным типом двигателя для привода электрического генератора.
Наиболее распространенный тип двигателя внутреннего сгорания известен как двигатель Отто. Этот двигатель широко используется в автомобилях и самолетах. Процессы, в которых участвует топливо — [c.148]
Какую энергию преобразуют двигатели внутреннего сгорания в механическое движение Какие типы двигателей внутреннего сгорания применяют в приводах строительных машин На каких видах топлива они работают Что такое рабочий цикл или рабочий процесс двигателя внутреннего сгорания Что такое такт Опишите рабочий цикл четырехтактного карбюраторного двигателя. Чем отличается от него рабочий цикл дизеля Для чего в конструкциях двигателей внутреннего сгорания применяют несколько рабочих цилиндров Каков порядок их работы Каково назначение маховика в конструкции двигателя внутреннего сгорания [c.75]
Чтобы облегчить изучение различных типов двигателей внутреннего сгорания, необходимо прежде всего изучить карбюраторные автотракторные двигатели. Это поможет лучше закрепить в памяти преемственность конструктивных форм и даст возможность наметить пути общего развития двигателей внутреннего сгорания. [c.9]
Газовые двигатели малой мощности являются старейшими типами двигателей внутреннего сгорания. Вполне естественно, что на их компоновку [c.390]
Принципиально новым типом двигателя внутреннего сгорания, работающего на жидком легком топливе, является двигатель, построенный в 1879 г. И. С. Костовичем. Двигатель Костовича имел карбюратор и электрическое зажигание и развивал мощность Л =80 л. с. [c.177]
ПРИНЦИП ДЕЙСТВИЯ РАЗЛИЧНЫХ ТИПОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ [c.178]
Трансмиссия автопогрузчиков включает общие для всех моделей агрегаты автомобильного типа двигатель внутреннего сгорания 5 с муфтой сцепления и коробкой перемены передач, коробку заднего хода, карданную передачу, ведущий мост с дифференциалом. Рулевое управление 3 также автомобильного типа обычно снабжается гидроусилителем 7.
В судовых установках применяются разнообразные типы двигателей внутреннего сгорания. Для водного транспорта требуются двигатели от самых малых до очень крупных, развивающих мощность в несколько десятков тысяч лошадиных сил. Водный транспорт (морской и речной) является наиболее широкой областью для применения двигателей различных конструкций, мощностей, чисел оборотов, моторесурсов и габаритов. Поэтому в числе судовых двигателей представлены почти все типы двигателей внутреннего сгорания—дизели, карбюраторные, калоризаторные и даже газовые. [c.10]
Тип двигателя…….. Внутреннего сгорания, одноцилиндровый, двухтактный [c.176]
Область применения Стандартный сплав для изготовления поршней любого типа двигателей внутреннего сгорания Специальные сплавы для изготовления поршней двухтактных двигателей и двигателей с воздушным охлаждением Специальный сплав для изготовления поршней двигателей с воспламенением от сжатия при высокой тепловой напряженности поршня Для изготовления поршней тихоходных двигателей при умеренной напряженности поршня [c.69]
В данную товарную позицию включаются моторные транспортные средства различных видов (включая автомобили-амфибии), предназначенные для перевозки людей однако она не включает автомобили товарной позиции 8702. У транспортных средств данной товарной позиции могут быть моторы любого типа (двигатели внутреннего сгорания, электромоторы, газовые турбины [c.42]
Остающийся после такой разгонки остаток тяжелых фракций носит название мазута и либо поступает в дальнейшую переработку для получения смазочных масел, либо непосредственно применяется в качестве топлива в топках печей и котельных установок и для некоторых типов двигателей внутреннего сгорания.
Тип двигателя внутреннего сгорания. . ЗИЛ-120 [c.81]
ТИПЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ [c.29]
Двигатели внутреннего сгорания сегодня являются основными загрязнителями воздушного бассейна. В ФРГ, например, автомобильный транспорт, потребляя 12 % общего расхода топлива в стране, дает 50 % общего количества вредных выбросов. Особенно плохо, что основная масса выхлопных газов от автомобилей выбрасывается в местах с высокой концентрацией людей (городах), причем на уровне роста человека (особенно детей), где газы не рассеиваются на большие расстояния, В выхлопных газах две содержатся твердый углерод (сажа), который является адсорбентом токсичных, в том числе канцерогенных веществ, оксиды азота NOоксид углерода СО и альдегиды, а при работе на этилированном бензине — и крайне токсичные соединения свинца. Содержание указанных соединений в выхлопных газах зависит от типа двигателя, его состояния и регулировки, режима работы, применяемого топлива и др. Например, содержание NOx в отработавших газах дизелей и карбюраторных двигателей практически одинаково (до 2,5 г/м ), в то время как выброс СО в карбюраторных двигателях (до [c.183]
В целом поршневые двигатели внутреннего сгорания, работающие на различных видах топлив с различными процессами сгорания, имеют достаточные резервы снижения токсичности и расхода топлива, в полной мере отвечают назначению автомобиля и останутся основны.м типом энергосиловых установок на автомобильном транспорте. [c.61]
Термодинамический анализ циклов двигателей внутреннего сгорания различных типов позволяет отметить, что степень совершенства этих двигателей возрастает с увеличением степени сжатия рабочего тела. [c.10]
Сплавы типа АК применяют для ковки и штамповки деталей (шатунов быстроходных двигателей, дисков центробежных и аксиальных компрессоров и Др.). Из жаропрочного сплава АК4 изготовляют поршни двигателей внутреннего сгорания и головки цилиндров двигателей воздушного охлаждения.
В автомобильных двигателях внутреннего сгорания, где поршневые кольца и стенки цилиндров постоянно корродируют под действием газообразных продуктов сгорания и конденсатов, потери от увеличения потребления бензина и масла сравнимы с потерями от механического износа, а иногда и превышают их. Потенциальные потери этого типа в системах преобразования энергии оцениваются в несколько миллиардов долларов в год [9, 101. [c.18]
Н. Отто, построившим в 1878 г. первый четырехтактный газовый двигатель внутреннего сгорания. КПД этого двигателя достигал 22%, что превосходило значения, полученные при использовании двигателей всех предшествующих типов. [c.109]
На рис. 3.1 изображена схема устройства двигателя внутреннего сгорания, в котором химическая энергия топлива преобразуется в цилиндре в тепловую, затем тепловая энергия превращается в механическую в форме движения поршня это движение преобразуется во вращательное движение коленчатого вала. Энергия вращательного движения посредством передачи того или иного типа сообщается технологической машине. [c.321]
Все варианты можно разделить на два типа к первому (варианты 3—11, 14—22, 25—28, 30) относятся подъемники различного вида, транспортеры, пилы, электрогенераторы и т. п. с приводом от одноцилиндрового двухтактного двигателя внутреннего сгорания с движущей силой / д, приложенной к поршню. Ко второму типу (варианты 1, 2, 12, 13, 23, 24, 29) относятся прессы, поршневые насосы и компрессоры с приводом от электродвигателя с вращающим моментом Л/д. Через обозначена сила нагрузки, приложенная к исполнительному звену машины, поршню насоса, полотну пилы и т. п., через М-а — момент нагрузки.
Экстремальными следует считать также условия, при которых в эксплуатации протекают неустановившиеся режимы силового и теплового воздействий, в том числе периодические или случайные импульсные нагрузки и резкие теплосмены, т. е. фактически условия, которые имеют место в реальной эксплуатации большинства стационарных энергетических установок, летательных аппаратов, различного типа турбомашин, корпусов надводных и подводных кораблей, химических установок, трубопроводов, двигателей внутреннего сгорания, подвижного состава железнодорожного транспорта, землеройных машин и т. п. Во многих из этих объектов при-эксплуатации сложно сочетаются самые различные факторы, оказывающие неблагоприятное влияние на прочность и долговечность наиболее ответственных элементов конструкций. [c.743]
Первый признак классификации определяется типом объемной гидромашины, подающей рабочую среду в гидродвигатель. При этом под магистральным гидроприводом понимается гидропривод, в котором рабочая среда подается от гидромагистрали, не входящей в состав привода. В эксплуатационном нефтепромысловом оборудовании такой тип привода обычно не применяется. Наиболее распространенный привод — насосный, от автономного двигателя внутреннего сгорания. [c.7]
Первые три насоса состоят из двух унифицированных узлов насоса типа 207, установленных в одном литом чугунном корпусе и объединенных между собой цапфой (рис. 57). Насосы 323 и 333 также состоят из двух унифицированных узлов насосов типа 309, установленных в одном литом корпусе из высокопрочного алюминиевого сплава. В отличие от насосов 223 насосы 323 и 333 имеют автономное регулирование подачи каждого потока, что позволяет оптимально использовать мощность приводного двигателя внутреннего сгорания. [c.180]
Отсюда следует, что использование наддува применительно к одной и той же заданном мощности двигателя соответственно снижает его удельную конструктивную металлоемкость. График (фиг. 54) иллюстрирует зависимость удельного веса двухтактных двигателей от литровой моихности, являющейся одним из важнейших, решающих критериев при выборе типа двигателя внутреннего сгорания. На графике фиг. 55 приведены сравнительные результаты испытаний двухтактного двигателя без наддува и с газотурбинным налдувом.
ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ СУДОВЫЕ. На судах применяются пг.е типы двигателей внутреннего сгорания ироме газовых. [c.162]
Для выбора технических решений по повышению износостойкости и безразбориому восстановлению узлов трения двигателей внутреннего сгорания рассмотрим основные детали, которые выходят из строя по причине изнашивания. Это, прежде всего, износ поршневых колец и гильз цилиндров, шатунных и коренных шеек коленчатых валов, вкладышей, кулачков распределительных валов, толкателей и т.д. Детали поршневой группы в большей части типов двигателей внутреннего сгорания изнашиваются наиболее бьютро, и по их состоянию судят о необходимости ремонта. Наибольший износ наблюдается при движении поршня вблизи верхней мертвой точки. Гильза цилиндра изнашивается в верхней части, максимальному износу подвергаются также верхнее компрессионное кольцо и его канавка. Это вызвано [c.65]
Поршневой двигатель внутреннего сгорания по сравнению с любым другим тепловым двигателем является наиболее экономичным. Малая металлоемкость, надежность, быстрота запуска и относительная долговечность позволили этому типу машины занять ведущее место прежде всего на транспорте. Стационарные двигатели применяются на электростанциях для привода насосных установок, на нефте- и газоперекачивающих и буровых установках, в сельском хозяйстве и т. п. Кроме того, они работают на металлургических заводах, используя в качестве топлива доменный и генераторный газы. Мобильные (передвижные) двигатели устанавливаются на автомобилях, тракторах, самолетах, судах, локомотивах и других передвижных установках, ДВС особенно незаменимы н местах, не охваченшлх сетью районных электро- [c.177]
Литье широко применяют для изготовления фаеонных деталей от мелких до самых крупных типа базовых и корпусных. У многих машин (двигатели внутреннего сгорания, турбины, компрессоры, металлорежущие стаикп и т. д.) масса литых деталей составляет 60 — 80% от массы машины. [c.53]
Алюминиево-железные бронзы типа БрАЖ, имеющие повышенную твердость НВ 70 — 100), прп.меняют для изготовления втулок, работающих Нрй высоких нагрузках п малых скоростях в ус.товиях полужпдкостного и полусу.хогб трения (направляющие втулки всасывающих клапанов двигателей внутреннего сгорания). [c.379]
Тип двигателя определяет закон изменения движущей силы и момента. Они по-разному изменяются в зависимости от скорости рабочего звена. Разные двигатели имеют различные механические характеристики Тд = Тд (со) (рис. 20.1). Данная механическая характеристика соответствует определенному уровню преобразуемой энергии. Например, при увеличении количества сжигаемого топлива двигатель внутреннего сгорания имеет механическую характеристику, расположенную выше, чем приведенная на рис. 20.1, е. Уравнения механических характеристик используют при описании воздействия двигателя на механизм. [c.242]
Одно из основных требовании к приводу указанных типов насосов — работа их в соответствующе. диапазоне скоростей вращения вала (см. табл. 3) и исключение нагружения валов насосов радиальными и осевы.ми нагрузками при передаче крутящего момента от приводного двигателя. Поэтому в подъемных установках привод насосов от двигателей внутреннего сгорания осуществляется через трансмиссии, представляющие собой системы зубчатых передач, и муфты, передающие только крутящий момент. [c.76]
При предметном моделировании исследование ведется на модели, воспроизводящей основные геометрические, физические и функциональные характеристики оригинала. На таких моделях изучают процессы, происходящие в оригинале — объекте исследования. Примером предметного моделирования являются стендовые испытания двигателей внутреннего сгорания, газотурбинных установок, различных типов холодильных установок и т. п. При этих испытаниях исследуются термодинамические циклы установок и их характеристики. Методика исследования циклов некоторых из перечисленных устанорок применительно к задачам учебных лабораторий подробно изложена в [37]. [c.238]
Типы двигателей для строительной техники
Эффективность работы строительной техники во многом зависит от мощности, надежности и безопасности установленного в ней двигателя. Его тип и характеристики выбирают в зависимости от функционального назначения стройтехники, условий ее эксплуатации, требуемых производительности и времени непрерывного функционирования. Современные типы двигателей для строительной техники: ДВС (бензиновые и дизельные), электрические (постоянного и переменного тока), гибридные. Наиболее широко для комплектации строительной техники используются двигатели внутреннего сгорания – дизельные и бензиновые. Основные их преимущества – автономность и широкий диапазон мощностей.
Виды бензиновых двигателей для строительной техники – особенности конструкции
Бензиновые двигатели для вибротрамбовок, виброплит, глубинных вибраторов могут быть двухтактными или четырехтактным:
- двухтактные – используются для установки на легких и маневренных агрегатах;
- четырехтактные – предназначены для более тяжелой и мощной техники.
По способу запуска бензиновые агрегаты бывают с ручным запуском, электрическим стартером, комбинированной системой запуска.
В конструкции современных бензиновых двигателей реализованы различные способы защиты агрегата от выхода из строя:
- система защиты от низкого уровня масла – датчик подает сигнал на отключение при недостаточном количестве масла;
- фильтр двойной очистки – предотвращает попадание в ДВС посторонних механических частиц;
Как выбрать бензиновый двигатель для строительной техники – рекомендации профессионалов
При выборе нового двигателя на строительную технику необходимо учитывать следующие характеристики:
- Основной критерий – мощность. При замене двигателя необходимо приобретать агрегат такой же мощности, как и старый, или немного мощнее, но не более чем на 1-2 л.с. Мотор с меньшей мощностью не сможет обеспечить эффективную работу строительного оборудования. Но покупка слишком мощного мотора ускорит износ или выход из строя узлов и механизмов, конструкция которых не рассчитана на такие интенсивные нагрузки. Редуктор, привод вала и даже силовая рама могут не выдержать.
- Моторесурс. Если двигатель меняется на технике, узлы которой выработали большую часть своего ресурса, то покупать дорогостоящий агрегат с большим моторесурсом не имеет смысла. В этом случае можно обойтись недорогими китайскими моделями.
- Для какой техники предназначен ДВС. Часто моторы покупают для установки на самодельное оборудование. В этом случае не рекомендуется приобретать дорогую модель, поскольку есть вероятность, что и качественный ДВС от известного бренда может не выдержать работу с такой техникой. Отремонтировать недорогой китайский двигатель менее затратно, чем качественный дорогостоящий агрегат.
- Комплектация бензодвигателя. Большую роль в функциональности двигателя играет конструкция его фильтра, очищающего воздух, который попадает в камеру сгорания. При работе в условиях значительной запыленности, отрицательных температур, высокой влажности рекомендуется выбирать модели с воздушным фильтром в масляной ванне.
Обзор популярных брендов бензиновых двигателей для строительной техники
При комплектации строительной техники популярны бензиновые двигатели брендов Honda и Kipor.
Двигатели Хонда выпускаются в нескольких странах на собственных заводах этого концерна и они являются лидерами на рынке моторов для небольшой механизированной техники, в том числе строительной.
Агрегаты серии Honda GX предназначены для комплектации оборудования профессионального применения и приспособлены для эксплуатации в самых сложных условиях, при интенсивных нагрузках. Они просты в эксплуатации, экономичны, долговечны. Модели до GX 390 – одноцилиндровые.
Для таких моторов характерны:
- верхнее расположение клапанов и нижнее размещение распредвала;
- металлический штатный топливный бак;
- вынесенные в общий блок рычаги, управляющие бензиновым краном и воздушной заслонкой;
- возможность комплектации агрегата датчиком, определяющим уровень масла в картере.
Kipor – крупнейшая китайская компания, специализирующаяся на производстве электростанций, генераторов, дизельных и бензиновых двигателей. Для бензиновых двигателей Kipor характерны:
- компактные габариты;
- надежность;
- стабильная работа в сложных эксплуатационных условиях;
- экономный расход топлива;
- длительный рабочий ресурс.
Все перечисленные выше положительные характеристики сочетаются с бюджетной стоимостью. Двигатель может иметь горизонтальную или вертикальную установку. Агрегаты оснащены системами быстрого старта, автоматического отключения при низком уровне масла, опционно – глушителями для снижения уровня шума при работе.
Модель Kipor KG690 – самый мощный силовой агрегат в этой линейке: двухцилиндровый, с системой воздушного охлаждения. Способен длительно работать без перерыва. Предназначен для установки на мощную строительную технику.
Дизельные двигатели для строительной техники
В мощных моделях строительной техники, предназначенных для эксплуатации при высоких нагрузках в течение длительного времени без перерыва, выбирают дизельные двигатели. Их преимущества по сравнению с бензиновыми:
- повышенная экономичность в плане расходования топлива;
- более высокий моторесурс;
- длительный беспрерывный период работы;
- более высокий КПД;
- экологичность благодаря эффективному сжиганию топлива, что существенно снижает токсичность выхлопов.
Минусы таких агрегатов по сравнению с бензиновыми аналогами: более высокая стоимость, сложность эксплуатации в зимних условиях, необходимость использования сезонного топлива, большая масса.
Электродвигатели для строительной техники
Для комплектации строительной техники используются следующие разновидности электрических двигателей:
- постоянного тока;
- переменного тока синхронные;
- переменного тока асинхронные.
Для комплектации электроприводной строительной техники чаще всего используются асинхронные электродвигатели, функционирующие на одно- или трехфазном переменном токе. Их преимущества:
- относительно простая производственная технология;
- бюджетная стоимость;
- хорошие эксплуатационные характеристики.
Асинхронные электродвигатели обеспечивают плавное регулирование скорости вращения вала, но они менее надежны и стоят дороже. В зависимости от назначения выпускают электродвигатели открытого, закрытого (влаго-, пылезащищенного, полностью герметичного) и взрывобезопасного типа.
Двигатели и их разновидности / Автобегиннер.ру
Как известно, движущей силой большинства автомобилей является двигатель внутреннего сгорания (ДВС). Устройство его достаточно сложно даже для профессионала, не говоря уже о новичках. Но, покупая машину, всегда приходится обращать внимание на характеристики двигателя. Зачастую люди попросту теряются, не зная, какой автомобиль или какую его версию выбрать. Данная статья поможет вам освоиться в такой сложной технической сфере, как двигатели внутреннего сгорания.
Прежде всего, поговорим о технических характеристиках двигателей.
Основными внешними характеристиками являются:
Количество цилиндров
В современных автомобилях варьируется от 2 до 16. Этот показатель является достаточно серьезным. Так, два двигателя с одинаковым объемом и мощностью, могут сильно различаться по другим параметрам.
Расположение цилиндров
Различают два типа расположения: рядное, когда все цилиндры расположены последовательно друг за другом, и V-образное, когда на одном коленвале цилиндры расположены с обоих сторон. В этом случае большую роль играет угол развала цилиндров.
Так, большой угол развала понижает центр тяжести, облегчает охлаждение и маслоподачу, но в то же время снижает динамические характеристики и увеличивает инерционность, малый угол позволяет достичь уменьшения веса и инерционности, но способствует более быстрому перегреву.
Радикальной разновидностью такого двигателя является оппозитный двигатель с углом развала в 180°. В этом случае все его преимущества и недостатки выражаются в своем максимальном проявлении. Еще одна разновидность V-образного двигателя – W-образный. Он представляет из себя два V-образных двигателя, синхронизированных и включенных в общую систему привода. V-образные двигатели также называют двурядными, а W-образные – четырехрядными.
Существует также уникальный тип двигателя – рядно-V-образный, являющийся синтезом этих двух разновидностей. В этом случае цилиндры расположены последовательно, но с отклонением по обе стороны, что способствует лучшему охлаждению.
В целом же можно заметить, что различие между двумя основными типами двигателей заключается в их массе и габаритах. Но наиболее важным является то, что наименьший уровень шума и вибраций достигается только тогда, когда в нем в одном ряду расположено четное количество цилиндров.
Объем камер сгорания
Зачастую в литературе встречается выражение «объем двигателя», аналогичное данному. Объем напрямую влияет абсолютно на все остальные характеристики ДВС. Следует заметить, что в большинстве случаев увеличение объема ведет к увеличению как расхода топлива, так и мощностных характеристик. Уменьшение же объема – наоборот.
Материал двигателя
Современные двигатели в основном изготовлены из трех типов материалов – чугун или другие ферросплавы дает наибольшую прочность, но является наиболее тяжелым. Алюминий и его сплавы – малый вес и средняя прочность. Магниевые сплавы – наименьший вес и высокая прочность, однако цена просто огромна.
Однако, эти характеристики, по сути, отражают лишь ресурсные и шумовибрационные качества двигателей.
Для владельцев авто обычно более важными являются выходные характеристики:
Мощность
Максимальный уровень отдачи. Измеряется в лошадиных силах (л.с.) или киловаттах (кВт). Определяет скорость автомобиля и время его разгона до определенной скорости.
Крутящий момент
Максимальное тяговое усилие, создаваемое двигателем. Измеряется в Ньютон-метрах (Н·м). Косвенно влияет на скорость и разгон и прямо – на эластичность двигателя – способность ускоряться на низких оборотах.
Максимально допустимое число оборотов коленвала в минуту (об/мин)
Показывает, сколько оборотов коленвала в минуту сможет выдержать двигатель без потери в ресурсной прочности. Обычно большое число оборотов указывает на более резкий и динамичный характер авто.
Эти характеристики имеют наибольшее значение при покупке автомобиля.
Но, кроме того, не менее важны расходные характеристики:
Расход топлива
В большинстве стран измеряется в литрах на 100 километров. Обычно разделяется на расход в городском, загородном и смешанном циклах.
Тип топлива
Марка потребляемого бензина или дизельного топлива (ДТ). В современных автомобилях возможно использование любых марок топлива, но при снижении октанового числа падают как ресурсная прочность, так и мощность, а при повышении сверх нормы – повышается мощность, но снижается ресурс. Также при повышении октанового числа увеличивается теплоотдача, что может привести к раннему перегреву. Пример марок топлива: А-76, А-92, АИ-98, А-95Евро, ДТ, ДТ Евро, ДТ Супер.
Расход масла
Как и для топлива, измеряется в литрах, но на 1000 км. Максимальный показатель для исправной машины – 1л/1000км.
Марка потребляемого масла
Обычно используется цифровое обозначение вида ххWхх. Первое число – густота масла, второе – его вязкость. Например – 0W40 и 5W40 – синтетические масла, 10W40 – полусинтетическое масло, 15W40 и 20W40 – минеральные масла. Второе число также может изменяться. Более густые и вязкие масла улучшают прочность и надежность двигателя, менее густые – улучшают динамические выходные характеристики.
Внимание! Масла с обозначением типа 70W90 или 95W100 являются трансмиссионными и ни в коем случае не подлежат использованию в двигателе. Использование таких масел гарантированно приведет к неисправности двигателя!
Ресурсная прочность – как часто двигатель нуждается в техническом обслуживании
Обычно изменяется в пределах 5000-30000 километров пробега. Также к ресурсной прочности относится предельный пробег двигателя, который примерно позволяет определить срок его службы и гарантийный пробег, после которого прекращаются гарантийные обязательства.
Вот, пожалуй и все характеристики, которые интересуют среднестатистического владельца.
Однако, для двигателя также выделяется широкий ряд сложных технических спецификаций:
Тип топливной системы
Существуют две основные разновидности – бензиновые и дизельные двигатели. Бензиновые двигатели обычно имеют большую мощность, в то время как дизельные отличаются более низким расходом и большим крутящим моментом.
Тип бензиновой системы впуска
Современные автомобили оснащаются исключительно электронной системой впрыска (инжекции) топлива. Такая система позволяет добиться большего коэффициента полезного действия (КПД). Однако ранее автомобили в большинстве оснащались карбюраторной системой впуска топлива. В отличии от инжектора, карбюратор не распыляет топливо в камере сгорания, а вбрасывает в нее струю, что негативно влияет на КПД, расход топлива и удобство управления.
Обычно карбюратор устанавливается на двигатель в одном экземпляре, многокарбюраторные двигатели – прерогатива тюнинговых и спортивных моделей.
Тип бензиновой системы впрыска
Если говорить о впрыске бензина, то тут выделяют две большие группы двигателей – с одноточечным и многоточечным впрыском. В современных двигателях одноточечная система практически не используется, так как падение мощности намного больше, чем снижение расхода топлива.
Многоточечный впрыск, в свою очередь, также делится на распределенный впрыск и прямой впрыск. При распределенном впрыске в камере сгорания создается равномерная смесь. Эта система обеспечивает стабильность работы в любых режимах и неприхотливость. Прямой, или непосредственный впрыск, как это ни парадоксально, повышает одновременно мощность и ресурсную прочность, а также снижает расход топлива. Но недостатки этой системы – большая стоимость, требовательность к качеству топлива и нестабильная работа на малых оборотах и при холодном старте.
Обе системы имеют достоинства и недостатки, поэтому одно из последних новшеств – комбинированный или двойной впрыск. Устройство этой системы просто – в двигателе применены обе эти системы раздельно и при изменении режимов работы электроника переключается между ними.
Тип дизельной системы впрыска
Несмотря на простоту дизельного двигателя, система его впрыска сложнее, чем у бензинового. В общем, применяются те же системы впрыска, но они построены по другому принципу.
Существуют следующие разновидности этих систем: система с топливным насосом высокого давления (ТНВД), насос-форсунками, общей топливной рампой Common Rail и аккумуляторной рампой Common Rail.
ТНВД – наиболее примитивная система дизельного впрыска. Она обеспечивает достаточно скромные характеристики, поэтому сама по себе эта система почти не используется.
Система с насос-форсунками – также малоиспользуемый вариант. В этом случае каждая форсунка впрыска является еще и насосом, подающим топливо в камеру сгорания. Характеристики в этом случае получше, но стабильной работы двигателя все равно добиться сложно.
Общая топливная рампа высокого давления Common Rail является синтезом этих двух систем. В ней используется ТНВД, подающий топливо в рампу, где оно сжимается и под высоким давлением впрыскивается в камеру сгорания. Данная система является лучшей на сегодняшний день, так как она обеспечивает высокие мощностные характеристики и низкий расход топлива.
Аккумуляторно-возвратная рампа Common Rail второго поколения является продолжением данной идеи. В ней сжатие в рампе происходит за счет накопления топлива, а излишки возвращаются обратно в ТНВД, что уменьшает насосные потери мощности и расход топлива.
Тип форсунок впрыска – механические или пьезотронные
Различий в характеристиках двигателя они не создают, но пьезотронные форсунки создают более плавный рабочий цикл и, кроме того, их легче настраивать.
Количество клапанов на впуске/выпуске
Варьируется от 2 до 5 на цилиндр. Большее число клапанов обеспечивает более плавную работу и большую мощность, при этом незначительно увеличивая расход топлива.
Наличие компрессора
По этому параметру двигатели делятся на атмосферные, компрессорные и турбонаддувные.
Атмосферные двигатели – не имеющие компрессора. Все компрессоры работают по одному и тому же принципу – сжатия впускной смеси.
Различие между механическими компрессорами и турбонаддувом заключается в типе их привода. Если механический компрессор приводится непосредственно от коленвала двигателя, что создает определенные потери в мощности и увеличивает расход топлива, то турбонаддув включает в себя крыльчатку турбины, которая раскручивается от давления выхлопных газов. Такая схема надежнее и не дает потерь, но обеспечивает меньший прирост крутящего момента, особенно на малых оборотах.
Встречаются отдельные двигатели, на которых установлены несколько компрессоров – либо последовательно, что улучшает стабильность работы, либо параллельно, что повышает характеристики в пиковых режимах работы.
Система газораспределения
Состоит из механизма газораспределения, распределительных валов и привода. Количество распределительных валов может изменяться, но наиболее распространенная схема – по 1 распредвалу на каждые 8 клапанов.
Привод газораспределительного механизма (ГРМ) бывает двух типов – цепь и ремень. Ремень более прост, однако требует регулярной замены. Цепь же по определению более надежна, но более шумна (издает характерный металлический лязг) и дорога.
Механизм газораспределения
Кроме простейшего статического механизма выделяют динамические – с изменяемой высотой подъема клапанов или изменяемыми фазами газораспределения.
Первая система позволяет переключаться между двумя режимами движения – например, между экономичным и скоростным. Система изменения фаз газораспределения обеспечивает более ровную работу во всем диапазоне рабочих оборотов коленвала двигателя.
Существует также большое множество других особенностей и спецификаций двигателей, но они оказывают меньшее влияние на их характеристики.
Надеемся, что данная статья поможет вам лучше ориентироваться в сложном мире техники….
Типы двигателей внутреннего сгорания
Типы поршневых двигателей внутреннего сгорания: виды
Автопроизводители с каждым годом разрабатывают все больше новых моторов. Они отличаются по размерам, объему и мощности.
Линейки моторов, устанавливающихся на конкретный автомобиль, пестрят ассортиментом. На одну модель производитель может предлагать до 15 вариантов двигателей. Вид топлива, лошадиные силы, количество цилиндров, наличие турбины, тип впрыска, количество клапанов — отличают моторы друг от друга. Но одним из самых главных критериев для различия двигателей является их тип. Именно его чаще всего отмечают дополнительным шильдиком на крышке багажника. Двигатели внутреннего сгорания (ДВС) можно разделить на рядные, V-образные, VR-образные, опозитные и W-образные. Также к ним можно отнести роторный мотор. Авто Информатор разобрался, в чем же характерные различия этих ДВС.
Вкратце о принципе работы самого распространенного четырехтактного поршневого двигателя внутреннего сгорания. В таком двигателе цикл делится на 4 такта (4 хода поршня):
- Поршень идет вниз от верхней мертвой точки, освобождая камеру сгорания (цилиндр) и засасывая смесь из открытого впускного клапана.
- Поршень движется к верхней мертвой точке, сдавливая смесь. Когда поршень приближается к ней, в камеру сгорания подается искра.
- Свободный ход поршня. После подачи искры смесь детонирует и выдавливает поршень из камеры сгорания.
- Когда поршень совершает свой четвертый ход, открывается выпускной клапан, через который поршень выдавливает отработанные газы из камеры сгорания.
4 такта работы одного цилиндра ДВС
Рядный двигатель
Ход поршней в рядном ДВС (R6 — 6 цилиндров)
Один из самых простых типов двигателя. Он обозначается буквой «R» (R3, R4, R5 и так далее). В таком моторе цилиндры расположены в ряд. Их может быть от двух до шести. Самый распространенный из рядных двигателей — 4-х цилиндровый. Но в истории есть автомобили и с рядными 8-ми цилиндровыми моторами. Их перестали устанавливать из-за большой длины. Рядные «четверки» устанавливаются почти на все машины, объем которых находится в диапазоне от 1 до 2,4 литра. «Пятерки» начали устанавливать еще в 1974 году на Mercedes-Benz W123. Позже они начали появляться на Audi, а в конце 80-х — на автомобилях Volvo и Fiat. Касаемо рядной шестерки, самым ярким носителем данного мотора является Volvo S80, с объемом 3,2 литра.
V-образный двигатель
Ход поршней в V-образном двигателе (V8 — 8 цилиндров)
Следующий по популярности после рядного мотора. В таком двигатели цилиндры расположены друг напротив друга под углом от 10° до 120° (наиболее часто 45°, 60° и 90°) в форме латинской буквы «V», с равным количеством «котлов» на обоих сторонах. В таких моторах поршни вращают один общий коленчатый вал. На шильдике буква «V» обозначает тип двигателя, а следующие за ней цифры — количество цилиндров. Такие моторы бывают V6, V8, V10, V12. (не путать с 16V или 20V, в случае когда буква «V» расположена после цифр, она обозначает количество клапанов «Valve»). Почти всегда это машины с объемом двигателя более 3-х литров. Но бывают и меньше, например 2,8 v6 или 2,6 v6.
VR-образный двигатель
Так располагаются поршни в VR-образном двигателе
Знаменитый двигатель VR6 от Volkswagen, «V-образно-рядный» мотор (об этом и говорит обозначение VR). На таких двигателях применяется очень маленький развал блока, всего в 15°. Угол настолько мал, что такой мотор называют еще «смещённо-рядным». Самыми известными авто с таким мотором являются Golf VR6 и Passat VR6.
W-образный двигатель.
Ход поршней в W-образном двигателе (W16 — 16 цилиндров)
Этот мотор также разрабатывался компанией Volkswagen. Суть двигателя заключается в слиянии двух VR-образных моторов в один под углом 72°. Мотор W12 был презентован на концепт каре W12 Roadster. Он состоял из двух моторов VR6. Позже Volkswagen презентовал топовую версию Passat B5 с двигателем W8. Он компоновался из тех же двух VR6 моторов, только с «обрезанными» двумя цилиндрами с каждого. Самый известный W-образный мотор установлен на Bugatti Veyron. Его объем достигает 16,4 литра, а сделан он из двух моторов VR8.
Оппозитный двигатель
Ход поршней в оппозитном двигателе
Двигатель внутреннего сгорания, в котором угол между цилиндрами составляет 180°. Отличается от V-образного с развалом в 180° тем, что стоящие напротив поршни достигают верхней мертвой точки одновременно, а не поочередно. Оппозитный мотор очень активно устанавливается в автомобили марки Subaru.
Рекомендуем посмотреть наш репортаж с чемпионата по дрифту. Он прошел в Киеве на автодроме «Чайка».
avto.informator.ua
Виды автомобильных двигателей: описание, характеристики
Мало кто знает, что двигатель внутреннего сгорания был изобретён ещё 5 веков назад, легендарным инженером и конструктором Леонардо да Винчи. Но, после первого чертежа потребовалось ещё 300 лет, чтобы были созданы первые прототипы, которые могли полноценно работать.
Виды двигателей
Первый полноценный прототип двигателя внутреннего сгорания был сконструирован в далёком 1806 году, который принадлежал братьям Ньепсье. После этого важного исторического факта было недолгое затишье.
Но, в конце 19 века три легендарным немца положили старт автомобилестроению — Николас Отто, Готлиб Даймлер и Вильгельм Майбах. После этого двигатели внутреннего сгорания получили много модификаций и вариантов, которые используются по сегодняшний день.
Рассмотрим, какие существуют виды автомобильных ДВС, а также укажем типы двигателей:
- Паровая машина
- Бензиновый двигатель
- Карбюраторная система впрыска
- Инжектор
- Дизельные двигатели
- Газовый двигатель
- Электрические моторы
- Роторно-поршневые ДВС
Паровая машина
Первым представителем полноценного двигателя внутреннего сгорания следует считать паровую машину, которая устанавливалась на все транспортные средства 19 века, до момента изобретения остальных видов моторов.
На то время паровыми движками оснащались паровозы, автомобили и даже примитивные трёхколёсные самоходные машины (напоминающие мотоциклы). Изобретение такого класса завоевало весь мир, но к концу 19 — начало 20 века стало неэффективное, поскольку транспортные средства на пару не могли развивать достаточно большую скорость.
Бензиновый двигатель
Бензиновый двигатель — это ДВС средством питания, которого является бензин. Горючее подаётся с топливного бака при помощи насоса (механического или электрического) на систему впрыска. Итак, рассмотрим, какие бывают типы бензиновых моторов:
- С карбюратором.
- Инжекторного типа.
Современный мир привык, что большинство автомобилей имеет электронную систему впрыска топлива (инжектор).
Карбюраторная система впрыска
Карбюратор — это тип впрыскового устройства горючего во впускной коллектор с дальнейшим распределением по цилиндрам. Первый примитивный карбюратор был разработан в Германии ещё в конце 19 века и имеет почти 100 летнюю историю развития.
Карбюраторы бывают — одно-, двух-, четырех- и шестикамерные. Кроме этого существует достаточно много прототипов.
Принцип работы карбюратора достаточно простой: бензонасос подаёт топливо в поплавковую камеру, где бензин проходит сквозь жиклёры механическим путём (количество впрыскиваемого топлива регулирует водитель при помощи педали акселератора), и подаётся во впускной коллектор. Недостатком карбюратора стало то, что он чувствительный к регулировкам, а также не соответствует экологическим международным нормам.
Инжектор
Инжекторный двигатель — это тип впрыскового устройства горючего в цилиндры двигателя. Инжекторный впрыск бывает моно и разделённым Данная система на сегодняшний день все больше совершенствуется, чтобы уменьшит выбросы СО2 в атмосферу. Для впрыска используются форсунки, которые ещё ранее начали использоваться на дизельных двигателях.
С переходом на данную систему транспортные средства стали оснащать электронными блоками управления двигателем, чтобы корректировать состав воздушно-топливной смеси, а также сигнализировать о неисправностях внутри системы.
Дизельные двигатели
Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.
На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.
Дизель с турбонаддувом
Одним из подвидов дизельного ДВС считается турбодизель. На этом моторе установлена турбина, которая имеет вид улитки. При помощи турбины в мотор подаётся больше количество сжатого воздуха, который даёт больше детонационный эффект, за счёт чего движок можно быстрее разогнать.
Газовый двигатель
Газовые двигатели на сегодняшний день в автоиндустрии в чистом виде почти не используются, поскольку частые поломки моторов, стали причиной полного отказа от них. Вместо этого, газовые установки зачастую можно встретить на бензиновых автомобилях, что значительно экономит расход денег на горючее.
Газ с баллона подаётся на редуктор, который распределяет топливо по цилиндрам, а затем горючее попадает непосредственно в камеры сгорания. После этого с помощью свечей зажигания газ воспламеняется. Единственным недостатком использования газовой установки считается то, что мотор теряет 20% своего потенциального ресурса.
Электрические моторы
Николас Тесла впервые предложил использовать для автомобилей электроэнергию. Электрические моторы на сегодняшний день не распространены, поскольку заряда батареи хватает только до 200 км пути, а заправочных станций, которые могут предоставить услугу зарядки автомобиля — практически нет.
Известная мировая компания, производитель электрических автомобилей «Тесла» продолжает совершенствовать электродвигатели, и каждый год дарит потребителям новинки, которые имеют больший запас хода без дозарядки.
Гибриды
Наверное, самые желаемые двигатели на сегодняшний день. Это смесь бензинового двигателя внутреннего сгорания и электромотора. Существует несколько вариантов работы такого движка.
- Мотор может работать на попеременном питании. Сначала движение производится на бензине, пока генератор заряжает батарею, а затем водитель может переключиться на электропитание.
- Двигатель и электромотор работают одновременно, что помогает сэкономить расход горючего на одно, и тоже расстояние с другими типами ДВС.
Роторно-поршневые ДВС
Роторно-поршневой силовой агрегат в автомобилестроении не нашёл широкого распространения, хотя можно встретить модели автомобилей, которые используют такой тип ДВС. Предложил создание такого мотора — конструктор Ванкель.
Движение осуществляется за счёт вращения трёхзубчатого ротора, который позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Данный мотор активно использовался в 80-е годы 20 ст.
Водородный мотор
НОУ-ХАУ современного мира считается водородный двигатель. В автомобиль устанавливается установка водородного типа. Отличие от бензиновых моторов заключается в подаче топлива. Если у бензина топливо подаётся вовремя возврата поршня к ВТМ, то у водородного силового агрегата в момент, когда поршень возвращается к НТМ.
В будущем планируется создать водородный двигатель закрытого типа, когда не будет требоваться выброс отработанных газов, а также на 500 км автолюбитель сможет забить о заправке автомобиле.
Стоит понимать, что автомобили с таким мотором будут стоить весьма не дёшево, пока они полностью не вытеснят бензинового брата.
Вывод
Двигатели внутреннего сгорания имеют достаточно большое количество видов и типов, на любой вкус. Так, самыми популярными, по мировой статистике, считают бензиновые, дизельные и гибридные силовые агрегата. Но, все движется к тому, что человек хочет отойти от использования бензина и его аналогов и перейти полностью на электрику.
avtodvigateli.com
8 самых известных типов двигателей в мире и их отличия
После прочтения нашего обзора вы будете понимать, как работают восемь типов двигателей в мире.
Двигатель – это агрегат, который может преобразовать одну энергию в механическую. В эту категорию входит множество видов двигателей, начиная от паровых (двигатели внешнего сгорания) и электрических и заканчивая двигателями внутреннего сгорания (бензиновые, дизельные моторы и т. д.). Мы покажем вам восемь самых известных в мире двигателей, а также просто и интуитивно понятно расскажем вам, как они работают, описав принципы их работы.
1. Оппозитный двигатель
В горизонтально противоположном двигателе (оппозитном) поршни двигаются по обеим сторонам коленчатого вала влево и вправо в горизонтальном направлении. В этом случае высота двигателя уменьшена. За счет использования оппозитного двигателя уменьшается центр тяжести транспортного средства – автомобиль движется более плавно. Крутящий момент, создаваемый поршнями с обеих сторон, компенсирует друг друга, значительно уменьшая вибрацию транспортного средства во время движения.
Также подобная конструкция позволяет сделать двигатели высокооборотистыми. Но, несмотря на высокие обороты, оппозитные моторы имеют меньше шума, чем обычные ДВС.
Двигатели с горизонтальным ходом поршней использует компания Porsche почти во всех моделях. Но, например, в Porsche Cayenne и Panamera оппозитные двигатели не применяются.
2. Рядный двигатель
В рядном двигателе все его цилиндры расположены рядом друг с другом в одной плоскости. Конструкция цилиндров и коленвала довольно-таки проста. Головка блока цилиндров имеет небольшую стоимость при изготовлении. Также рядные двигатели отличаются высокой стабильностью, характеристиками крутящего момента на низких оборотах, низким расходом топлива и компактным размером. Рядные двигатели обычно обозначаются латинской буквой «L-n», где n – количество цилиндров рядного двигателя. Современные автомобили в основном имеют двигатели с обозначением L3, L4, L5, L6.
3. Двигатель V-типа (V-образный силовой агрегат)
V-образный двигатель разделяет все цилиндры на две группы друг напротив друга под определенным углом. В итоге мотор образует плоскость под углом. Если посмотреть на этот тип двигателя со стороны, то он будет иметь V-образную форму. V-образные двигатели имеют небольшую высоту и длину. Этот тип моторов удобнее размещать в автомобиле по сравнению с обычными рядными моторами, которые по своим размерам гораздо больше.
В настоящее время во многих автомобилях среднего и люкс-класса используются V-образные двигатели. Чаще всего это 6-цилиндровые силовые агрегаты. Например, такие двигатели стоят на Volkswagen Passat, Audi A6 и Mercedes E-класса AMG.
4. Квазитурбинный двигатель
Квазидвигатель представляет собой модифицированный двигатель, основанный на роторном силовом агрегате. Если в обычном роторном двигателе задействованы три лопасти, то квазидвигатель использует цепной ротор, состоящий из четырех частей. Это беспоршневой роторный мотор с ромбовидным ротором. Преимущество двигателя: это новый тип двигателя небольшого размера, с высокой мощностью, высоким крутящим моментом, который может работать на множестве источников энергии.
В настоящий момент квазидвигатель не используется ни на одном автомобиле, поэтому невозможно проверить, подходит ли он для замены обычных поршневых двигателей внутреннего сгорания или в качестве лучшей альтернативы обычным роторным моторам. Квазидвигатель все еще находится в стадии создания прототипа.
5. Роторный двигатель
Внутреннее пространство корпуса роторного двигателя всегда разделено на три рабочие камеры. Во время движения ротора объем трех рабочих камер постоянно изменяется. Двигатель также имеет четыре такта: впуск, сжатие, сгорание и выпуск последовательно завершаются в циклоидальном цилиндре.
Роторный двигатель сильно отличается от обычных поршневых двигателей внутреннего сгорания. Себестоимость производства роторных моторов существенно больше, также как и их последующее обслуживание и ремонт. Кроме того поршневой двигатель по сравнению с роторным эффективней с точки зрения мощности, веса, выбросов и энергопотребления.
В сочетании с этим, а также в связи со странности технологий роторного двигателя, крупные автомобильные компании пришли к выводу, что использование роторных силовых агрегатов в автопромышленности бессмысленно. Так как роторные моторы не показали своих преимуществ перед обычными, у автомобильных компаний не появилось энтузиазма по их дальнейшей разработке. Только компания Mazda до сих пор тратит огромные деньги на разработку новых поколений роторных моторов.
6. Двигатель Green Steam
Green Steam – эффективный, экономичный и простой двигатель, разработанный изобретателем Робертом Грином из Лагуна Вудс, Калифорния, США. Этот мотор преобразует избыточное тепло в водяной пар, который и приводит в движение силовой агрегат. Легкий и компактный двигатель Green Steam преобразует возвратно-поступательное движение во вращательное. Его основной характеристикой является гибкий вал, который передает возвратно-поступательное движение от поршней к кривошипу «Z», таким образом, совершая вращательное движение, не используя запястья, шатуны или коленчатые валы.
Этот мотор может использоваться для воздушных насосов, генераторов, водяных насосов, воздуходувок горячего воздуха, аппаратов дистилляции воды, тепловых насосов, кондиционеров, модельных самолетов и т. д.
Одним из наиболее уникальных преимуществ двигателя является его способность генерировать энергию из тепла двигателей. По существу, отработанное тепло выхлопных газов от двигателя транспортного средства может быть преобразовано в энергию, используемую для некоторых систем охлаждения и насосов транспортного средства. Этот двигатель повысит уровень эффективности любого транспортного средства или системы машины, на которой он установлен.
7. Двигатель Стирлинга
Двигатель Стирлинга относится к типам силовых агрегатов внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменении давления. Принцип работы двигателя Стирлинга заключается в постоянном сжатии рабочего цилиндра, в результате чего происходит нагревание его внутренней части, а затем охлаждение. Из-за перепада давления из цилиндра извлекается энергия, образуемая при изменении давления. Обычно в качестве рабочего тела используется водород или гелий. Но чаще в таких моторах используется воздух.
Двигатели Стирлинга отлично подходят для преобразования тепла в электроэнергию. Например, многие специалисты считают, что эти моторы подходят для солнечных электрических установок.
То есть это идеальные силовые агрегаты для преобразования солнечной энергии в электричество.
8. Радиальный двигатель (звездообразный)
Звездообразный двигатель представляет собой поршневой двигатель внутреннего сгорания, в котором цилиндры расположены вокруг коленчатого вала. Один поршень соединен с коленвалом через главный шатун. Остальные поршни прикреплены через шатуны к кольцам главного ведущего шатуна.
Двигатель преимущественно создан для использования в самолетах. До появления реактивных двигателей в большинстве поршневых авиационных двигателей использовались подобные звездообразные конструкции силовых агрегатов. Эти моторы, как правило, устанавливались на самолеты небольшой дальности. Остальные самолетные моторы имели V-образную форму.
Некоторые современные легкие самолеты до сих пор оснащаются радиальными моторами.
Ряд компаний продолжает строить радиальные системы сегодня. Например, вот современный авиационный радиальный 9-цилиндровый двигатель Веденеев мощностью 360–450 л. с., который в настоящий момент используется на самолетах Яковлева и Сухого.
1gai.ru
Типы и параметры ДВС
Автомобильные поршневые двигатели внутреннего сгорания (ДВС) обладают множеством показателей – мощность, крутящий момент, расход топлива, выброс вредных веществ и т. д., которые во многом зависят от их конструктивных параметров.
Содержание статьи
Типы двигателей
Двигатель — устройство, преобразующее энергию сгорания топлива в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов:
- впуск воздуха или его смеси с топливом;
- сжатие рабочей смеси,
- рабочий ход при сгорании рабочей смеси;
- выпуск отработавших газов.
Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.
Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:
- в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
- в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
- двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.
Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — “тяговиты на низах”).
Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:
- большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
- большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
- меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.
Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания. Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание.
Гибридная силовая установка представляет собой комбинацию поршневого двигателя (как правило, дизеля), электродвигателя, генератора и тяговых (тяговая аккумуляторная батарея, в отличие от стартерной, рассчитана на разряд большими токами (50-100 А) в течение 30-60 минут) аккумуляторных батарей. Работа этой установки происходит в различных режимах в зависимости от характера движения автомобиля. При интенсивном разгоне вместе работают поршневой и электрический двигатели. Во время торможения двигателем за счет энергии замедления генератор заряжает аккумуляторные батареи. При движении в городском цикле может работать только электродвигатель. Все это позволяет, сохраняя (или даже улучшая) динамику разгона, значительно повысить экономичность и снизить выброс вредных веществ.
Компоновка поршневых двигателей
Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.
Рядный двигательV-образный двигательРядный двигатель (рис. 1, а) — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров (2, 3, 4, 5 и 6). Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной.
V-образный двигатель (рис. 1, б) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала. Наиболее часто такое размещение цилиндров применяется для шести- и восьмицилиндровых двигателей и обозначается V6 и V8 соответственно. Такая компоновка позволяет уменьшить длину двигателя, но увеличивает его ширину.
Оппозитный двигательVR-двигательОппозитный двигатель (рис. 1, в) имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок.
VR-двигатель (рис. 1, г) обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.
W-двигательW-двигательW-двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 1, д) или как бы две VR-компоновки (рис. 1, е).Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.
Конструктивные параметры двигателей
Любой двигатель характеризуется следующими конструктивно заданными параметрами (рис. 2), практически неизменными в процессе эксплуатации автомобиля.
Конструктивные параметры двигателейОбъем камеры сгорания — объем полости цилиндра и углубления в головке над поршнем, находящимся в верхней мертвой точке — крайнем положении на наибольшем удалении от коленвала.
Рабочий объем цилиндра — пространство, которое освобождает поршень при движении от верхней до нижней мертвой точки. Последняя является крайним положением поршня на наименьшем удалении от коленвала.
Полный объем цилиндра — равен сумме рабочего объема и объема камеры сгорания.
Рабочий объем двигателя (литраж) складывается из рабочих объемов всех цилиндров.
Степень сжатия — отношение полного объема цилиндра к объему камеры сгорания. Этот параметр показывает, во сколько раз уменьшается полный объем при перемещении поршня из нижней мертвой точки в верхнюю. Для бензиновых двигателей определяет октановое число применяемого топлива.
Показатели двигателей
Силы, действующие в цилиндреПоказателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр.
Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндро-поршневой группы и клапанов.
Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо (рис. 3) и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).
Крутящий момент увеличивается с ростом:
- рабочего объема . Поэтому двигатели, которым необходим значительный крутящий момент, обладают большим объемом;
- давления горящих газов в цилиндрах , которое ограничено детонацией (взрывное горение бензо-воздушной смеси, сопровождаемое характерным звонким звуком. Ошибочно называется “стуком поршневых пальцев”) или ростом нагрузок в дизелях.
Максимальный крутящий момент двигатель развивает при определенных оборотах (см. ниже), они вместе с его величиной указываются в технической документации.
Мощность двигателя — величина, показывающая, какую работу он совершает в единицу времени, измеряется в кВт (ранее в лошадиных силах). Одна лошадиная сила (л.с.) приблизительно равняется 0,74 кВт. Мощность равна произведению крутящего момента на угловую скорость коленвала (число оборотов в минуту, умноженное на определенный коэффициент).
Двигатели большей мощности производители получают увеличением:
- рабочего объема , что, в свою очередь, приводит к росту габаритов двигателя и ограничению допустимых максимальных оборотов из-за значительных сил инерции увеличившихся деталей;
- оборотов коленчатого вала , число которых ограничено инерционными силами и увеличением износа деталей. Высокооборотный двигатель одинаковой мощности (при прочих равных условиях — конструкции двигателя, технологии изготовления, применяемых материалах и т.д.) с низкооборотным обладает меньшим сроком службы, так как в среднем для одного и того же пробега его коленчатый вал будет совершать больше оборотов;
- давления в цилиндре путем повышения степени сжатия либо наддувом воздуха посредством турбо- или механических нагнетателей. Для применения наддува степень сжатия вынужденно уменьшают для предотвращения детонации (у бензиновых двигателей) и снижения жесткости работы (повышенные нагрузки в цилиндро-поршневой группе дизеля, сопровождаемые чрезмерным шумом) (у дизелей). Наддув позволяет, например, сохранить мощность при меньшем рабочем объеме.
Номинальная мощность — гарантируемая производителем мощность при полной подаче топлива на определенных оборотах. Именно она, а не максимальная мощность, указывается в технической документации на двигатель.
Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива.
Характеристики двигателей
При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.
Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рис. 4), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.
Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.
Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.
Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.
Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике (см. рис. 4). Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.
Пунктирной линией на графике показаны более оптимальные характеристики двигателя.
avtonov.info
Конфигурация двигателя — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 марта 2013; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 марта 2013; проверки требуют 3 правки. Три типа двигателей: а — однорядный двигатель, b — V-образный двигатель, с — VR-двигательКонфигурация двигателя внутреннего сгорания — это инженерный термин, обозначающий расположение главных компонентов поршневого двигателя внутреннего сгорания (ПДВС). Этими компонентами являются цилиндры и в особенности коленчатые валы, а также иногда распределительный вал.
Классификация по взаимному расположению цилиндров[править | править код]
- Одноцилиндровый двигатель.
- Рядные двигатели:
- Однорядный двигатель, где все цилиндры расположены в один ряд.
- U-образный двигатель, представляющей собой два рядных двигателя, коленчатые валы которых механически соединены при помощи цепи или шестерней.
- V-образный двигатель, с двумя рядами цилиндров, расположенных под углом (45° — 90°) друг к другу и работающих на один коленвал.
- Оппозитный двигатель — частный случай V-образного двигателя, где блоки цилиндров расположены под углом 180°.
- VR-двигатель — V-образный двигатель с углом развала 15° и накрытый общей головкой блока.
- Двигатель со встречным движением поршней — с двумя блоками цилиндров, расположенных друг против друга с общей камерой сгорания и отдельными коленчатыми валами.
- Однорядный двигатель, где все цилиндры расположены в один ряд.
- Звездообразный двигатель — поршневой двигатель внутреннего сгорания, цилиндры которого расположены радиальными лучами вокруг одного коленчатого вала через равные углы.
- Y-образный двигатель — частный случай звездообразного двигателя, с тремя блоками цилиндров под углом 120°.
- Ротативный двигатель — звездообразный двигатель воздушного охлаждения, основанный на вращении цилиндров (обычно представленных в нечетном количестве) вместе с картером и воздушным винтом вокруг неподвижного коленчатого вала, закреплённого на моторной раме.
- Роторно-поршневой двигатель.
Обозначение конфигурации на машинах[править | править код]
Как правило на легковых машинах с V-образным мотором производители это пишут на багажнике . На грузовых машинах марки Scania это пишут над бампером справа .
ru.wikipedia.org
V-образный двигатель — Википедия
Материал из Википедии — свободной энциклопедии
Двигатель Mercedes V6 RennmotorV-образная схема двигателя — схема расположения цилиндров поршневого двигателя внутреннего сгорания, при которой цилиндры размещаются друг напротив друга под углом от 10° до 120° (наиболее часто 45°, 60° и 90°) в форме латинской буквы «V». В настоящее время в автомобилях чаще всего встречаются конфигурации с 6, 8, в спортивных моделях с 10 и 12 цилиндрами. В мотоциклах — с 2, 4, в спортивных моделях с 5, 6 цилиндрами. В авиационных или корабельных двигателях — с 4, 5, 10, 12 или более цилиндрами. Позволяет сократить линейные размеры мотора по сравнению с рядным расположением цилиндров.
Различные углы развала цилиндров используются в различных двигателях, в зависимости от числа цилиндров. Существуют углы, при которых двигатель работает устойчивее. Очень узкие углы развала цилиндров сочетают в себе преимущества V-образного и рядного двигателей (в первую очередь в виде компактности), так и недостатки; концепция старая, пионером в области её освоения была Lancia, а концерн Volkswagen Group недавно её переработал.
Некоторые конфигурации V-образных двигателей хорошо сбалансированы, в то время как другие работают менее плавно, чем их аналоги среди рядных двигателей. С оптимальным углом развала цилиндров, двигатели V16 имеют ровную работу цилиндров и отличную уравновешенность. Двигатели V10 и V8 могут быть сбалансированы с противовесами на коленчатый вал. Двигатели V12, состоящие из двух рядных шестицилиндровых двигателей, всегда имеют ровную работу цилиндров и отличную уравновешенность независимо от угла развала цилиндров. Другие, такие как V2, V4, V6, V8 и V10, показывают увеличение вибрации и обычно требует балансировки.
Некоторые типы V-образных двигателей были построены перевёрнутыми, в большинстве своём для авиации. Преимущества включают в себя улучшение видимости из одномоторного самолёта и низкий центр тяжести. Примеры включают в себя двигатели Второй мировой войны: немецкие Daimler-Benz DB 601 и двигатели Junkers Jumo.
Обычной практикой считается написание V#, где # обозначает количество цилиндров в двигателе:
ru.wikipedia.org
Нефтяной двигатель — Википедия
Материал из Википедии — свободной энциклопедии
Трактор Lanz Bulldog с одноцилиндровым двухтактным нефтяным двигателем. В передней части виден кожух калоризатораНефтяной двигатель (также керосиновый двигатель, двигатель с калильной головкой, калоризаторный двигатель[1], полудизель[2]) — двигатель внутреннего сгорания, воспламенение топлива в котором происходит в специальной калильной головке — калоризаторе[3]. Двигатель может работать на различных видах топлива: керосине, лигроине, дизельном топливе, сырой нефти, растительном масле[4] и т. д.
Калоризаторный двигатель изобрёл англичанин Герберт Акройд-Стюарт (англ.). В 1886 году были выпущены первые опытные образцы, а в 1891 году начался серийный выпуск на фабрике Richard Hornsby & Sons (англ.), производящей сельскохозяйственные машины. Из-за определённого сходства в конструкции (применение непосредственного впрыска топлива) и принципе работы (воспламенение при сжатии) этот двигатель стал объектом патентных споров с Рудольфом Дизелем[5].
В России двухтактные нефтяные двигатели также известны под названием болиндер (от J & CG Bolinders Mekaniska Verkstad AB — названия фирмы, поставлявшей такие двигатели)[6]
Нефтяной двигатель может быть как двухтактным, так и четырёхтактным, но большинство из них были двухтактными с картерной продувкой, что упрощало конструкцию. Основной особенностью данного типа двигателей является калильная головка (калоризатор), закрытая теплоизоляционным кожухом. Перед запуском двигателя калоризатор должен быть нагрет до высокой температуры — например, при помощи паяльной лампы. Впоследствии вместо горелки для прогрева калильной головки стала использоваться электрическая спираль.
При работе двигателя в ходе такта впуска в калильную головку через форсунку подаётся топливо (обычно в момент прохождения поршнем нижней мёртвой точки), где сразу же испаряется, однако не воспламеняется, так как калильная головка в момент срабатывания форсунки заполнена отработавшими газами и в ней недостаточно кислорода для поддержания горения топлива. Лишь незадолго до того, как поршень придёт в верхнюю мёртвую точку, в головку из цилиндра поступает богатый кислородом сжатый поршнем свежий воздух, в результате чего пары топлива воспламеняются.
Степень сжатия у подобных двигателей гораздо ниже, чем у дизельных — не более 8. К тому же топливо, в отличие от дизельного двигателя, поступает не в конце такта сжатия, а во время впуска[7], что позволяет применять топливный насос более простой конструкции, рассчитанный на сравнительно небольшое давление (обычно не более 30…40 атм).
Момент воспламенения топлива зависит от температуры калильной головки, которая в процессе работы может изменяться. Для управления опережением воспламенения мог использоваться впрыск воды.
- Простота конструкции, надёжность, нетребовательность к уходу;
- Возможность работы на разных видах топлива (вплоть до отработанного моторного масла) без перенастройки;
- Двухтактные нефтяные двигатели могут работать при любом направлении вращения маховика, для реверсирования необходимо плавно снижать обороты до тех пор, пока очередная вспышка топлива не произойдёт раньше, чем поршень подойдёт достаточно близко к верхней мёртвой точке, после чего маховик останавливается и начинает вращение в обратную сторону.
- Необходимость прогрева калильной головки до температуры 300—350 °C перед запуском, что занимало 10….15 минут при использовании открытого огня, или 1…2 минуты с электрической спиралью;
- Низкий КПД за счёт плохой продувки калоризатора свежим воздухом и низкой степени сжатия[8];
- Двигатель данной конструкции развивает максимальную мощность на более низких оборотах, чем традиционные дизельные двигатели, отсюда — сильные вибрации и малая удельная мощность. К тому же двигатель требует очень массивного маховика. Однако низкая скорость вращения может быть достоинством, например, при применении двигателя в качестве судового;
- Высокая температура калильной головки поддерживается за счёт вспышек топлива в цилиндрах, поэтому данный тип двигателя не может работать длительное время без дополнительного подогрева при малой нагрузке и на холостых оборотах.
- При длительной работе на высоких нагрузках калильная головка может перегреваться, из-за чего увеличивается угол опережения зажигания, что приводит к снижению мощности и увеличению нагрузки на детали двигателя.
Двигатели данного типа выпускались до конца 1950-х годов и применялись в основном в сельскохозяйственной технике, судостроении (в особенности на небольших рыболовных судах) и на маломощных электростанциях. Именно таким двигателем оснащался один из первых советских тракторов — «Запорожец». Самый известный и один из наиболее успешных примеров применения такого двигателя — немецкий трактор «Ланц-Бульдог» (Lanz-Buldog), выпускавшийся с 1920-х по 1960-е годы.
ru.wikipedia.org
Свободно-поршневой двигатель внутреннего сгорания — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 мая 2014; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 мая 2014; проверки требуют 4 правки. Схема действия свободно-поршневого генератора горячего газа (СПГГ)Свободно-поршневой двигатель внутреннего сгорания (СП ДВС) — двигатель внутреннего сгорания, в котором отсутствует кривошипно-шатунный механизм, а ход поршня от нижней мёртвой точки в верхней мёртвой точки осуществляется под действием давления воздуха, сжатого в буферных ёмкостях, пружины или веса поршня. Указанная особенность позволяет строить только двухтактные СП ДВС. СП ДВС могут использоваться для привода машин, совершающих возвратно-поступательное движение (дизель-молоты, дизель-прессы, электрические генераторы с качающимся якорем), могут работать в качестве компрессоров или генераторов горячего газа[1].
Преимущественное распространение получила схема СП ДВС с двумя расходящимися поршнями в одном цилиндре. Поршни кинематически связаны через синхронизирующий механизм (рычажный или реечный с паразитной шестерней). В отличие от кривошипно-шатунного механизма синхронизирующий механизм воспринимает только разность сил, действующих на противоположные поршни, которая при нормальной работе СП ДВС сравнительно мала. Один поршень управляет открытием впускных окон, а другой — выпускных. Поршни компрессора и поршни буферных ёмкостей жёстко связаны с соответствующими поршнями двигателя.
К достоинствам свободно-поршневых ДВС относится сравнительная простота их конструкции, хорошая уравновешенность, долговечность, компактность. Недостатки — сложность пуска и регулирования, неустойчивость работы на частичных нагрузках (с развитием микропроцессорных систем управления последний недостаток стал неактуальным).
- Бальян С. В. Техническая термодинамика и тепловые двигатели. — Л: Машиностроение, 1973. — 304 с. — 23 000 экз.
ru.wikipedia.org
Различия и особенности автомобильных ДВС
Современный двигатель внутреннего сгорания (ДВС) — это тепловой вид двигателя, который преобразует энергию взрыва топливной смеси в механическую силу. Взрыв происходит внутри камеры сгорания, что приводит в действие поршневую группу. Так как наибольшее распространение получили поршневые и комбинированные виды двигателей, далее пойдет речь именно о них.
Виды двигателей автомобилей по типу топлива
Конструкторами разработано большое количество автомобильных двигателей в зависимости от типа смеси, количества тактов, а также физического расположения цилиндров.
Как различаются двигатели внутреннего сгорания по типу питания:
- Бензиновые
- Дизельные
- Гибридные
Бензиновый двигатель — самый популярный вид двигателя среди автомобилей. Это обусловлено простой конструкцией, доступностью и дешевизной деталей на замен. Автомобили с данным видом двигателя чаще остальных встречаются на ДОПах.
Подача смеси для бензинового двигателя:
Существует 2 вида доставки топлива в бензиновый мотор. Первый — карбюратор. Смесь из бензина и воздуха готовится в карбюраторе в определенных (зависит от режима) пропорциях и подаётся во впускной коллектор. Данный вид подачи топлива являлся самым популярным на протяжении многих лет из-за простоты конструкции и возможности ремонта «на месте».
Преимущества карбюраторного ДВС:
- Низкая цена ремонта
- Прост в конструкции
- Дешевизна обслуживания
Но также следует упомянуть что карбюраторная система подачи считается устаревшей ввиду ее не экономичности, трудности обслуживания и настройке.
Недостатки карбюраторного двигателя:
- Сложность настройки
- Чувствителен к температурным перепадам
- Низкая экологичность
- Нестабилен
Большинство видов двигателей с карбюратором не соответствуют Евро-3 и выше.
Инжекторная система питанияНа смену карбюратору пришла инжекторная система впрыска. Она в свою очередь делится на моновпрыск и распределённый впрыск горючей смеси. На большинстве двигателей внутреннего сгорания используется именно распределённый впрыск. Бензин из бака через магистраль попадает в топливную рампу, далее через форсунки во впускной коллектор, который отдельно ведёт к каждому цилиндру. Таким образом на каждую секцию отведена отдельная форсунка.
Стоит упомянуть, что существуют конструкции, когда форсунка подаёт топливо прямиком в камеру сгорания. Такой вид двигателя внутреннего сгорания является гораздо более точным в плане дозирования смеси, при котором достигается максимальный кпд бензинового ДВС.
Преимущества инжекторного двигателя:
- Высокая стабильность
- Количество вредных выбросов уменьшается до 70%
- Экономичность
- Более мощный
- Не чувствителен к перепадам температур
Инжекторная система впрыска имеет большое количество плюсов для автолюбителей из больших городов, где имеются профессиональные СТО или официальные дилеры, которые смогут провести правильную диагностику и ремонт. Однако за пределами города, если у вас возникнут проблемы с инжектором, скорее всего вы ничего не сможете сделать, в отличие от карбюратора.
Недостатки инжекторного двигателя:
- Трудный ремонт и диагностика
- Качество бензина должно быть не менее А-92
- Очень высокая стоимость замены узлов
- Дефицит квалифицированных специалистов по ремонту
Принцип работы дизельного двигателя
Главным отличием дизельного вида мотора от бензинового является способ образования зажигательной смеси. В большинстве бензиновых ДВС, смесь попадает через впускной коллектор, тогда как в дизеле смесь всегда подаётся непосредственно в камеру сгорания.
Воспламенение тоже происходит по другому сценарию. В дизельном двигателе внутреннего сгорания, цилиндр сначала втягивает воздух, после поршень путём резкого сжатия доводит температуру воздуха до 700-850 градусов во время сжатия, далее под высоким давлением подаётся дизель и происходит воспламенение. Температура достигает 2400 градусов. Качество смеси сильно зависит от скорости впрыска. Если скорость впрыска малая, бензин может не полностью испаряться. Система зажигания на дизельных ДВС отсутствует.
Из минусов дизельного двигателя можно выделить:
- Повышенная вибронагруженность
- Трудность холодного пуска
- Сложность обслуживания
- Повышенный вес
Самым важным отличием дизельного мотора от бензинового является система подачи топлива. ТНВД (топливный насос высокого давления) работает по следующему принципу: дизель из бака нагнетается в требуемые порции, далее по индивидуальным магистралям поступает через форсунки и подаётся в каждую камеру отдельно.
ТНВД делится на:
— Распределительные
— Многоплунжерные рядные (редко используются на современных авто)
Ремонт и диагностика дизельных двигателей с ТНВД требует наличия инструкций и специнструментов. С другой стороны, некоторые специалисты утверждают что автомобили концерна VAG (Audi, Skoda, Porsche) легки при настройке.
Роторный двигатель
Принцип работы роторного вида двигателя заключается в повышенных оборотах и отсутствии привычного для ДВС строения. ДВС Ванкеля (РПД) а именно так зовут изобретателя данного вида мотора, предложил расположить ротор непосредственно в цилиндре. У РПД отсутствует коленчатый вал и шатуны, что упрощает его конструкцию.
Среди преимуществ данного вида мотора — отсутствие большого количества деталей. Даже в обычном 4-х цилиндровом двигателе минимум 45 движущихся частей: клапанные пружины, масляные колпачки, поршневые кольца, поршни, коленчатый вал, шатуны, т.д.
Роторный двигатель отличается малыми габаритами, и большими мощностями — 1.3 мотор выдаёт 190-240 л.с.
Из недостатков стоит выделить следующие пункты:
- Ограничение в ресурсе (порядка 65-85 тыс.км.)
- Потребление большого количества бензина
- Стоимость производства и ремонта
- Экологичность
Гибридный двигатель
Как работает гибридный вид двигателя? Стоит начать с того, что автомобиль с гибридным мотором набирает всё большую популярность ввиду своей экологичности. Все автомобильные концерны имеют в своей линейке хотя бы одну модель с гибридным видом двигателя.
Принцип работы гибридного мотора заключается во взаимодействии двух видов двигателей — бензинового и электрического.
Всё работает под управление ЭБУ, который решает когда и какой двигатель использовать именно сейчас. К примеру для города обычно используется электрический, сводя к нулю нужду заправляться. Однако на трассе, за городом, обычно система переключается на топливный двигатель. Это обусловлено быстрой разрядкой аккумуляторной батареи. Стоит также упомянуть что во время езды на бензине электрический мотор заряжается. При повышенных нагрузках используются оба вида двигателей.
Гибридный двигатель: плюсы и минусы
Из плюсов можно указать:
- Высокая экономичность (примерно на 25% ниже от топливных ДВС)
- Не уступают в мощности моделям из своего класса
- Меньше шума
- Заправка происходит таким же образом как у классических автомобилей
- При езде по городу с частыми остановками экономия вырастает в разы
Учитывая географическую зависимость стоит отметить минусы для гибридного авто в условиях стран бывшего СНГ.
Из минусов можно указать:
- Очень сложная конструкция
- Очень дорогой ремонт
- Коротки срок службы аккумулятора
Гибридный мотор прекрасно подходит для больших городов где находятся специализированные СТО. В маленьких городах и посёлках смысл владения авто с гибридным двигателем сводится к минимуму.
Типы ДВС: Рядный, V образный и оппозитный двигатель. Какой лучше?
В мире существует большое количество видов моторов не только по виду горючей смеси, но и по типу расположения цилиндров. Ниже приведен перечень самых популярных типов двигателей.
Рядный двигательРядные ДВС считаются классическими, так как именно такой тип был применён впервые в ДВС. Соответственно названию, цилиндры расположены в ряд, и приводят в движение 1 коленчатый вал. Также ГБЦ одна для всех камер сгорания. Количество цилиндров может колебаться от одного до десяти. На практике десятицилиндровые ДВС оказались очень сложными при производстве, поэтому наибольшее распространение получили следующие:
- Одноцилиндровые
- Двухцилиндровые
- Четырехцилиндровые
- Шестицилиндровые
К достоинствам рядных типов двигателя можно отнести простоту в обслуживании и малые габариты. Такие моторы не идеально сбалансированы, однако это не мешает им пользоваться огромной популярностью у производителей и автолюбителей.
V образный двигательДанный тип ДВС ничем не отличается от рядной четвёрки кроме расположения цилиндров. У V образного двигателя цилиндры находятся друг напротив друга, из-за чего конструктивно он гораздо сложнее рядного. Здесь две ГБЦ, другая конструкция ГРМ и подача бензина или дизеля. Также, очень большую роль играет угол, под которым расположены цилиндры. В истории встречаются модели как с 1° наклона, так и 180° (как у субару). Как итог, конструкторы пришли к решению что 45°, 60°, 90° градусов самые оптимальные.
Одним из главных достоинств v двигателя является его компактность.
Из минусов можно выделить:
- Сложность конструкции
- Повышенная вибронагруженность на 2-х и 4-х цилиндровых ДВС
- Более дорогой ремонт по сравнение с рядной «четвёркой»
V образные моторы очень востребованы в различных отраслях. Существуют концерны, которые выпускают только данный вид двигателей.
Оппозитный двигательПо факту, оппозитный ДВС принадлежит к семейству v образных имея угол между цилиндрами в 180 градусов. То есть, они расположены друг напротив друга. Таким решением конструкторы избавили оппозитный мотор от лишних вибраций, и движок стал более плавно работать.
Кроме того, благодаря такой форме, центр тяжести снижается и качественно улучшается управляемость.
Оппозитный мотор, как и v образный зачастую имеет два распредвала и вертикально расположенный ГРМ.
Виды оппозитных двигателей:
— ОРОС
— «Боксер»
ОРОС — В данной конструкции поршни попарно перемещаются по одному цилиндру, двигаясь друг навстречу другу.
«Боксер» — Поршни располагаются друг перед другом, словно боксёры в бою. Когда один поршень находится в ВМТ(верхняя мёртвая точка) его парный поршень находится в НМТ(нижняя мёртвая точка). При работе они словно «обмениваются ударами» из-за чего и получили название.
Из плюсов оппозитного ДВС можно выделить следующее:
- Отсутствие вибрации
- Низкий центр тяжести
- Малые габариты
- Большой ресурс (300-500 тыс. км до первого капитального ремонта)
Минусы оппозитного двигателя:
- Высокая стоимость обслуживания
- Дефицит СТО, где есть специалисты по оппозитным моторам
- Сложность обслуживания
- Дороговизна запчастей
Двухтактный и четырёхтактный двигатель
В чём разница между этими двумя видами?
Двухтактные моторы почти не используются на автомобилях в силу своих особенностей. Они гораздо легче и проще в своей конструкции из-за отсутствия газораспределительного механизма. Тяга равномернее, литровая мощность выше, а вес меньше.
Из минусов можно выделить крайнюю неэкологичность, большее потребление бензина и масла.
В карбюраторном 2-тактнике ещё и придётся готовить смесь из масла и бензина или заказывать специальное масло для двухтактных двигателей.
Использование двухтактного ДВС идеально подходит для негабаритных устройств. К примеру газонокосилки, пилы, снегоуборочные машины. В общем там, где нужны более равномерные обороты.
Принцип работы четырехтактного двигателя
Название ДВС происходит из количества тактов рабочего цикла.
Данный тип используется в большинстве автомобилей из-за своей простоты и лёгкости в обслуживании. Отличаются высокой экологичностью, равномерной работой, при которой не нужно переживать из-за «жора» масла как на двухтактниках.
Пошагово четыре такта делятся на следующие шаги:
1) Камера сгорания заполняется смесью.
Движение поршня в НМТ при котором открывается клапан впуска. Из инжектора или карбюратора топливо всасывается в камеру сгорания. Когда поршень опускается до нижней мертвой точки, впускной клапан закрывается.
2) Сжатие смеси.
Поршень возвращается в верхнюю точку, происходит такт сжатия. Доходя до ВМТ следует взрыв
3) Воспламенение топливной смеси.
Энергия взрыва толкает поршень вниз, происходит механическая работа
4) Расширение газа и очищение цилиндра.
Коленвал возвращает поршень снова вверх, открывается выпускной клапан и сгоревшие газы поступают в выпускной коллектор. Далее снова следует первый такт.
Денис — специалист в сфере автомобилей. Он имеет 5-летний опыт работы на СТО и пишет про новости в мире автомобилей. Теперь он делится своими знаниями с людьми, рассказывает про устройство и ремонт современных авто.
Поршневой двигатель внутреннего сгорания. Поршневой двигатель
7. Топливная экономичность искровых ДВС
Сжатие топливо-воздушной смеси в искровых ДВС повышает их эффективность КПД, но рост степени сжатия также увеличивает вызываемое сжатием нагревание рабочей смеси согласно закону Шарля. Если топливо легковоспламеняемое, вспышка происходит до достижения поршнем ВМТ. Это приводит к такому увеличению давления в процессе сжатия, что повредит двигателю. Поэтому в двигателе с искровым зажиганием отто-мотор самовоспламенение топлива недопустимо. Самовоспламенение, требующее значительного времени для предпламенных реакций, иногда возникает при достаточно малом числе оборотов, проявляется обычно как то, что двигатель не глохнет при выключении зажигания, а продолжает неравномерное вращение, иногда в обратную сторону калильное зажигание от свечей и частиц нагара. Это может приводить к повреждению двигателя, поэтому для его исключения принимаются конструктивные меры.
Область топливного заряда в искровых ДВС отделена от продуктов реакции фронтом пламени, движущимся со порядка 50 м/с. В условиях нормального горения фронт пламени, в котором и происходит горение, проходит с этой скоростью от свечи до стенок цилиндра. Однако при работе часто наблюдается быстрое самовоспламенение последних порций топливной смеси, происходящее в объёме. Явление это получило название детонации. Причиной детонации является значительное увеличение давления и температуры в оставшейся части заряда поджатие продуктами горения из-за, а также диффузия активных веществ из фронта пламени вместе с достаточным временем десятки миллисекунд, позволяющим пройти предпламенным реакциям. При отсутствии подачи искры детонация при сжатии и расширении не наблюдается детонация не самовоспламенение.
Когда же детонация наконец возникает, то скорость сгорания достигает величин 2 км/с и более, тем самым в цилиндре образуются многократные отражённые ударные волны, снаружи воспринимаемые как звонкий стук. Ударные волны, принимая в себя часть энергиии топлива, не только снижают мощность, но и наносят повреждения деталям двигателя таким как поршень, кольца и головка цилиндров. В конечном счёте, энергия детонационных волн переходит в тепловую, поэтому при детонации двигатель может перегреваться. Длительная работа с сильной детонацией вызывает выкрашивание материала, поломки поршневых колец, прогар поршня, и потому недопустима; причём поверхность, повреждённая детонацией, лишь усиливает это явление.
В результате этого для каждого двигателя, с учётом его быстроходности, выбранной степени сжатия, угла опережения зажигания, величины подогрева заряда, способа смесеобразования и турбулизации заряда, существует предел работы без детонации на данном виде топлива. Применение топлива с меньшей стойкостью может приводить к описанным выше явлениям в двигателе, что вызывает его отказ. Стойкость топлива к детонационному сгоранию определяют обычно по сравнению с эталонной смесью изооктана и н-гептана. Если бензин имеет октановое число 80, его стойкость соответствует смеси 80% изооктана и 20% н-гептана. Для топлив, имеющих стойкость выше изооктана, число определяют сравнением смешением других смесей. В общем случае, величина измеренного ОЧ зависит от методики. Стойкость топлива к самовоспламенению и детонационная стойкость не равнозначны нет линейной корреляции. Поэтому организация рабочего процесса в двигателе должна учитывать обе опасности.
В двигателях с воспламенением от сжатия, самовоспламенение топлива носит позитивный характер и оценивается цетановым числом топлива. Большее число показывает более быстрое воспламенение; обычно применяют топлива с ЦЧ более 40. Жёсткость сгорания в дизелях ограничена постепенным сгоранием топлива по мере его подачи, поэтому классической детонации при исправной топливной аппаратуре в таком двигателе не наблюдается.
Некоторые типы и виды двигателей для автомобилей
Самый простой двигатель — рядный (мы будем обозначать такие двигатели индексамиR2, R3, R4 и т. д.). Располагаем в ряд нужное количество цилиндров — получаем
необходимый рабочий объем.
V-образная схема двигателя — схема расположения цилиндров поршневого двигателя внутреннего сгорания, при которой цилиндры размещаются друг напротив друга под углом от 1° до 180° (наиболее часто 45°, 60° и 90°) в форме латинской буквы «V». В настоящее время в автомобилях чаще всего встречаются конфигурации с 5, 6, 8, в спортивных моделях с 10 и 12 цилиндрами. В мотоциклах — с 2, 4, в спортивных моделях с 5, 6 цилиндрами. В авиационных или корабельных двигателях — с 4, 5, 10, 12 или более цилиндрами. Позволяет сократить линейные размеры мотора по сравнению с рядным расположением цилиндров.
VR-образный
«VR» аббревиатура двух немецких слов, обозначающих V-образный и R- рядный, т.е «v-образно-рядный». Двигатель разработан компанией Volkswagen и представляет собой симбиоз V-образного двигателя с экстремально малым углом развала 15° и рядного двигателя.Его шесть цилиндров расположены V-образно под углом 15° в отличие от традиционных V-образных двигателей, имеющих угол 60° или 90°. Поршни расположены в блоке в шахматном порядке. Совокупность достоинств обоих типов двигателей привела к тому, что двигатель VR6 стал настолько компактным, что позволил накрыть оба ряда цилиндров одной общей головкой, в отличие от обычного V-образного двигателя. В результате двигатель VR6 получился существенно меньше по длине, чем рядный 6 цилиндровый, и меньше по ширине, чем обычный V-образный 6-цилиндровый двигатель. Ставился с 1991г (1992 модельный) на автомобили Volkswagen Passat, Golf, Corrado, Sharan. Имеет заводские индексы «AAA» объемом 2.8 литра, мощностью 174 л/с и «ABV» объемом 2.9 литра и мощностью 192 л/с.
Оппозитный двигатель — поршневой двигатель внутреннего сгорания, в котором угол между рядами цилиндров составляет 180 градусов. В автомобильной и мототехнике оппозитный двигатель применяется для снижения центра тяжести, вместо традиционного V-образного, так же оппозитное расположение поршней позволяет им взаимно нейтрализовывать вибрации, благодаря чему двигатель имеет более плавную рабочую характеристику.
Наиболее широкое распространение оппозитный двигатель получил в модели Volkswagen Kaefer (Beetle, в английском варианте) выпущенной за годы производства (с 1938 по 2003 год) в количестве 21 529 464 штук.
Компания Porsche использует его в большинстве своих спортивных и гоночных моделях серий 911, GT1, GT2 и GT3.
Оппозитный двигатель является также отличительной чертой автомобилей марки Subaru, который устанавливается практически во все модели Subaru c 1963 года. Большинство двигателей этой фирмы имеют оппозитную компоновку, которая обеспечивает очень высокую прочность и жёсткость блока цилиндров, но в то же время делает двигатель сложным в ремонте. Старые двигатели серии EA (EA71, EA82 (выпускались примерно до 1994 года)) славятся своей надёжностью[источник не указан 288 дней]. Более новые двигатели серии EJ, EG, EZ (EJ15, EJ18, EJ20, EJ22, EJ25, EZ30, EG33, EZ36), устанавливаемые на различные модели Subaru с 1989 года и по настоящее время (с февраля 1989 года автомобили Subaru Legacy оснащаются оппозитными дизельными двигателями вкупе с механической коробкой передач).
Также устанавливался на румынские автомобили Oltcit Club (является точной копией Citroen Axel), с 1987 по 1993 годы. В производстве мотоциклов оппозитные двигатели нашли широкое применение в моделях фирмы BMW, а также в советских тяжёлых мотоциклах «Урал» и «Днепр».
U-образный двигатель — условное обозначение силовой установки, представляющей собой два рядных двигателя, коленчатые валы которых механически соединены при помощи цепи или шестерней.
Известные примеры использования: спортивные автомобили — Bugatti Type 45, опытный вариант Matra Bagheera; некоторые судовые и авиационные двигатели.
U-образный двигатель с двумя цилиндрами в каждом блоке обозначается иногда как square four.
Двигатель со встречным движением поршней — конфигурация двигателя внутреннего сгорания с расположением цилиндров в два ряда один напротив другого (обычно один над другим) таким образом, что поршни расположенных друг напротив друга цилиндров движутся навстречу друг другу и имеют общую камеру сгорания. Коленвалы механически соединены, мощность отбирается с одного из них, или с обоих (например, при приводе двух гребных винтов). Двигатели этой схемы в основном двухтактные с турбонаддувом. Эта схема применяется на авиадвигателях, танковых двигателях (Т-64, Т-80УД, Т-84, Chieftain), двигателях тепловозов (ТЭ3, 2ТЭ10) и больших морских судовых дизелях. Встречается и другое название этого типа двигателей — двигатель с противоположно-движущимися поршнями (двигатель с ПДП).
Принцип действия:
1 впуск
2 приводной нагнетатель
3 воздухопровод
4 предохранительный клапан
5 выпускной КШМ
6 впускной КШМ (запаздывает на ~20° относительно выпускного)
7 цилиндр со впускными и выпускными окнами
8 выпуск
9 рубашка водяного охлаждения
10 свеча зажигания
Ротативный двигатель — звездообразный двигатель воздушного охлаждения, основанный на вращении цилиндров (обычно представленных в нечетном количестве) вместе с картером и воздушным винтом вокруг неподвижного коленчатого вала, закреплённого на моторной раме[1]. Подобные двигатели широко использовались во времена первой мировой войны и гражданской войны в России[1]. На протяжений этих войн эти двигатели превосходили по удельной массе двигатели водяного охлаждения, поэтому в основном использовались именно они (в истребителях и самолетах-разведчиках)[2].
Звёздообразный двигатель (радиальный двигатель) — поршневой двигатель внутреннего сгорания, цилиндры которого расположены радиальными лучами вокруг одного коленчатого вала через равные углы. Звездообразный двигатель имеет небольшую длину и позволяет компактно размещать большое количество цилиндров. Нашел широкое применение в авиации.
Звёздообразный двигатель отличается от других типов конструкцией кривошипно-шатунного механизма. Один шатун является основным, он похож на шатун обычного двигателя с рядным расположением цилиндров, остальные являются вспомогательными и крепятся к основному шатуну по его периферии (такой же принцип применяется в V-образных двигателях). Недостатком конструкции звездообразного двигателя является возможность протекания масла в нижние цилиндры во время стоянки, в связи с чем требуется перед запуском двигателя убедиться в отсутствии масла в нижних цилиндрах. Запуск двигателя при наличии масла в нижних цилиндрах приводит к гидроудару и поломке кривошипно-шатунного механизма.
Четырёхтактные звездообразные моторы имеют нечётное число цилиндров в ряду — это позволяет давать искру в цилиндрах «через один».
Ро́торно-поршнево́й дви́гатель внутреннего сгорания (РПД, двигатель Ва́нкеля), конструкция которого разработана в 1957 году инженером компании NSU Вальтером Фройде, ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя.[1]
Особенность двигателя — применение трёхгранного ротора (поршня), имеющего вид треугольника Рело, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде.
Конструкция
Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй — статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов.
Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого (экономия составляет около тысячи деталей), а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот ванкель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.
Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.
Конфигурация двигателя W
Двигатель разработан компаниями Audi и Volkswagen и представляет собой два V-образно расположенных двигателя VR. Крутящий момент снимается с обоих коленвалов.
Роторно-лопастной двигатель внутреннего сгорания (РЛД, двигатель Вигрия́нова), конструкция которого разработана в 1973 году инженером Михаилом Степановичем Вигрияновым. Особенность двигателя — применение вращающегося сложносоставного ротора размещённого внутри цилиндра и состоящего из четырех лопастей.
Конструкция На паре соосных валов установлены по две лопасти, разделяющие цилиндр на четыре рабочие камеры. Каждая камера за один оборот совершает четыре рабочих такта (набор рабочей смеси, сжатие, рабочий ход и выброс отработанных газов). Таким образом, в рамках данной конструкции возможно реализовать любой четырехтактный цикл. (Ничто не мешает использовать данную конструкцию для работы парового двигателя, только лопастей придется использовать две вместо четырех.)
Свободно-поршневой двигатель внутреннего сгорания (СП ДВС) — двигатель внутреннего сгорания, в котором отсутствует кривошипно-шатунный механизм, а ход поршня от нижней мёртвой точки в верхней мёртвой точки осуществляется под действием давления воздуха, сжатого в буферных ёмкостях, пружины или веса поршня. Указанная особенность позволяет строить только двухтактные СП ДВС. СП ДВС могут использоваться для привода машин, совершающих возвратно-поступательное движение (дизель-молоты, дизель-прессы, электрические генераторы с качающимся якорем), могут работать в качестве компрессоров или генераторов горячего газа.
Преимущественное распространение получила схема СП ДВС с двумя расходящимися поршнями в одном цилиндре. Поршни кинематически связаны через синхронизирующий механизм (рычажный или реечный с паразитной шестерней). В отличие от кривошипно-шатунного механизма синхронизирующий механизм воспринимает только разность сил, действующих на противоположные поршни, которая при нормальной работе СП ДВС сравнительно мала. Один поршень управляет открытием впускных окон, а другой — выпускных. Поршни компрессора и поршни буферных ёмкостей жёстко связаны с соответствующими поршнями двигателя.
К достоинствам свободно-поршневых ДВС относится сравнительная простота их конструкции, хорошая уравновешенность, долговечность, компактность. Недостатки — сложность пуска и регулирования, неустойчивость работы на частичных нагрузках (с развитием микропроцессорных систем управления последний недостаток стал неактуальным).
Существует механизм (Российский патент № 82283),с помощью которого можно преобразовать возвратно-поступательное движение СП ДВС во вращательное в одном направлении.
Уравновешанность двигателей
Степень уравновешенности | |||||||||||||||||||||
1 | R2 | R2* | V2 | B2 | R3 | R4 | V4 | B4 | R5 | VR5 | R6 | V6 | VR6 | B6 | R8 | V8 | B8 | V10 | V12 | B12 | |
Силы инерции первого | |||||||||||||||||||||
Силы инерции второго | |||||||||||||||||||||
Центробежные силы** | |||||||||||||||||||||
Моменты от сил инерции первого | |||||||||||||||||||||
Моменты от сил инерции второго | |||||||||||||||||||||
Моменты от центробежных | |||||||||||||||||||||
* Поршни в противофазе. |
Двигатели внутреннего сгорания — обзор
2.1 Введение
Двигатели внутреннего сгорания (ДВС) и реактивные двигатели являются важными силовыми установками для гражданского и военного применения. Эти двигатели — это машины, которые преобразуют тепло, выделяемое при сгорании, в механическую или кинетическую энергию. В настоящее время ДВС и реактивные двигатели по-прежнему работают на ископаемом топливе и в основном полагаются на него. Растущая озабоченность по поводу экологической и энергетической безопасности привлекает внимание к альтернативным видам топлива (AFs). Существует два типа ДВС, а именно двигатели с искровым зажиганием (SI) и двигатели с воспламенением от сжатия (CI), обычно соответствующие бензиновым двигателям и дизельным двигателям.Двигатели SI широко используются в качестве источников энергии для легковых автомобилей и мотоциклов, в то время как двигатели CI в основном используются для грузовиков, кораблей и внедорожников из-за их более высокой энергоэффективности и удельной мощности по сравнению с бензиновыми двигателями [1].
Преобладающие АФ, задействованные в ДВС, охватывают широкий спектр нетрадиционных видов топлива, включая биотопливо, полученное из биомассы, сжиженного нефтяного газа (СНГ), преобразования угля в жидкие углеводороды (CtL) и водорода (H 2 ). Биотопливо считается более чистым, чем обычное топливо для ДВС, с точки зрения выбросов вредных газообразных веществ и твердых частиц (ТЧ) [2,3].Хотя все еще существуют некоторые технологические барьеры при использовании H 2 в ДВС, H 2 по-прежнему является одним из перспективных видов топлива для будущих двигателей, о котором будет кратко рассказано в разделе 2.2. LPG и CtL обычно получают из ископаемого топлива [4], и они обычно классифицируются как альтернативные виды топлива, но не как биотопливо. В этой главе основное внимание уделяется технологии и производству биотоплива. Сжиженный нефтяной газ и CtL также кратко рассматриваются в разделе 2.2.
Биотопливо, которое в настоящее время применяется в транспортных средствах во всем мире, — это биодизель и биоспирт [5].Биодизель — это кислородсодержащее топливо на основе сложных эфиров, состоящее из длинноцепочечных жирных кислот, полученных из растительных масел (как пищевых, так и несъедобных) или животных жиров, и оно не взрывоопасно, биоразлагаемо, негорючо, возобновляемо и нетоксично. Его можно использовать в дизельном двигателе в качестве альтернативы дизельному топливу без существенной модификации двигателя с такими же или лучшими характеристиками по сравнению с обычным дизельным топливом [6–8]. С другой стороны, биоспирты производятся из ряда сельскохозяйственных культур, таких как картофель, сахарный тростник, зерно, кукуруза, сорго и т. Д.Этанол и бутанол — наиболее часто используемые альтернативные виды топлива в ДВС [9]. Таким образом, биодизель используется для замены дизельного топлива в двигателях CI, тогда как биоспирты используются для смешивания с бензином в двигателях SI. Сообщается, что сжигание биодизеля может привести к заметному снижению выбросов ТЧ из-за присутствия атомов кислорода и более полному сгоранию [10,11].
Пластинки графена выглядят более искаженными и имеют более длинные разделительные расстояния. Кроме того, выбросы NO x несколько увеличиваются, в то время как выбросы углеводородов (HC) и оксида углерода (CO) уменьшаются по сравнению со сжиганием нефтяного дизельного топлива.Это можно объяснить более высокой температурой камеры сгорания при сжигании биодизеля. Биобутанол и обычные смеси дизельного топлива, по-видимому, способны эффективно снижать выбросы ТЧ, а выбросы NO x немного ниже, чем при сжигании чистого дизельного топлива. Более высокий уровень смешивания может привести к большему снижению. Аналогичная тенденция наблюдается и при использовании топлива, смешанного с биоэтанолом. Тенденция выбросов углеводородов диаметрально противоположна выбросам NO x . Однако влияние биоспиртов на выбросы CO все еще остается спорным и требует дальнейшего объяснения [12–14].
Реактивные двигатели можно разделить на четыре типа: турбореактивные двигатели, турбовентиляторные двигатели, турбовальные двигатели и турбовинтовые двигатели, работающие на реактивном топливе со строгими стандартами [15]. Альтернативные виды топлива для реактивных двигателей получают из ископаемых источников, таких как уголь и природный газ, экологически чистого сырья растений или животных или других потенциальных углеводородных материалов. Как правило, альтернативные реактивные топлива получают с использованием следующих методов: газификация биомассы, синтез с использованием процесса Фишера-Тропша (F-T) и гидрообработка растительных масел и жиров (гидрообработанные сложные эфиры и жирные кислоты) [16].Синтез F-T, который был предложен и разработан Францем Фишером и Гансом Тропшем в 1925 году [17], включает серию химических реакций и позволяет преобразовывать синтез-газ (CO и H 2 ) в жидкие углеводороды. Sasol и Shell поставляют коммерчески доступные виды топлива F-T по всему миру. Sasol производит топливо F-T с помощью процесса преобразования угля в жидкость (CtL), а Shell — с помощью процесса преобразования газа в жидкость (GtL).
Большинство альтернативных видов топлива содержат большую долю изопарафинов и нормальных парафинов, не содержат ароматических углеводородов и серы.Более высокое содержание парафинов в альтернативных видах топлива приводит к более высокому содержанию C и H и, следовательно, к более высокому уровню выбросов CO 2 и H 2 O. Для большинства альтернативных видов топлива можно найти сокращение выбросов CO примерно на 20%. Нет существенной разницы в выбросах NO x , поскольку образование NO x обычно является тепловым. Выбросы SOx напрямую связаны с содержанием серы в топливе. Ароматические углеводороды являются важными предшественниками сажи. Предыдущие экспериментальные работы показали, что сжигание альтернативных видов топлива может снизить образование сажи на 60–95%, особенно при более низкой мощности [18].
Эта глава демонстрирует классификацию альтернативных видов топлива и знакомит с их характеристиками выбросов по сравнению с обычными видами топлива. Во-первых, альтернативные виды топлива для ДВС и реактивных двигателей будут обсуждаться в разделах 2 и 3, где будут рассмотрены пути производства топлива и сырье. Далее, выбросы газообразных веществ и твердых частиц (ТЧ) от ДВС, работающих на альтернативных видах топлива, будут объяснены в разделах 4 и 5. Наконец, характеристики выбросов газообразных и ТЧ реактивных двигателей будут рассмотрены в разделах 6 и 7.
Заправка двигателей внутреннего сгорания | Давайте поговорим о науке
AB Химия 30 (2007 г., обновлено 2014 г.) 12 Блок A: Термохимические изменения
AB Химия 30 (2007 г., обновлено 2014 г.) 12 Блок C: Химические изменения органических соединений
AB Наука о знаниях и возможности трудоустройства 8, 9 (пересмотрено в 2009 г.) 9 Блок B: Материя и химические изменения
AB Наука 10 (2005 г., обновлено в 2015 г.) 10 Блок A: Энергия и материя в химических изменениях
AB Наука 20 (2007 г., обновлено 2014 г.) 11 Блок А: Химические изменения
AB Наука 24 (2003 г., обновлено 2014 г.) 11 Блок A: Применение материи и химических изменений
AB Наука 24 (2003 г., обновлено 2014 г.) 11 Блок B: Общие сведения о системах преобразования энергии
AB Наука 30 (2007 г., обновлено 2014 г.) 12 Блок B: Химия и окружающая среда
AB Наука 30 (2007 г., обновлено 2014 г.) 12 Блок D: Энергия и окружающая среда
AB Наука 7-8-9 (2003 г., обновлено в 2014 г.) 9 Блок B: Материя и химические изменения
г. до н.э. Химия 11 (июнь 2018) 11 Большая идея: материя и энергия сохраняются в химических реакциях.
г. до н.э. Химия 11 (июнь 2018) 11 Большая идея: органическая химия и ее приложения имеют большое значение для здоровья человека, общества и окружающей среды.
г. до н.э. Science Grade 10 (март 2018 г.) 10 Большая идея: изменение энергии требуется, поскольку атомы перестраиваются в химических процессах.
МБ Химия 11 класс (2006) 11 Тема 5: Органическая химия
МБ Старший 1 по науке (2000) 9 Кластер 2: атомы и элементы
МБ Старший 2 науки (2001) 10 Кластер 2: химия в действии
NB Химия 111/112 (2009) 11 Блок 2: Стехиометрия
NB Химия 121/122 (2009) 12 Раздел 1: Термохимия
NB Химия 121/122 (2009) 12 Раздел 4: Органическая химия
NB 10 класс естественных наук (2002) 10 Физическая наука: химические реакции
NB Естественные науки 9 класс (2002) 9 Атомы и элементы
NL Химия 2202 (2018) 11 Раздел 3: Органическая химия
NL Химия 3202 (2005) 12 Раздел 3: Термохимия
NL Земные системы 3209 (н. Д.) 12 Блок 5: Ресурсы Земли: Реальные приложения
NL Наука об окружающей среде 3205 (редакция 2010 г.) 12 Раздел 5: Атмосфера и окружающая среда
NL 9 класс естествознания 9 Раздел 2: Атомы, элементы и соединения (редакция 2011 г.)
NL Наука 1206 (2018) 10 Блок 2: Химические реакции
NL Наука 3200 (2005) 12 Блок 1: Химические реакции
НС Химия 11 (2003) 11 Органическая химия
НС Химия 12 (2003) 12 Термохимия
НС Структура результатов обучения: естественные науки 9 класс (2014 г.) 9 Атомы и элементы
НС Наука 10 (2012) 10 Физическая наука: химические реакции
NT Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок A: Термохимические изменения
NT Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок C: Химические изменения органических соединений
NT Наука о знаниях и возможностях трудоустройства 9 (Альберта, редакция 2009 г.) 9 Блок B: Материя и химические изменения
NT Наука 10 (Альберта, 2005 г., обновлено в 2015 г.) 10 Блок A: Энергия и материя в химических изменениях
NT Наука 20 (Альберта, 2007 г., обновлено 2014 г.) 11 Блок А: Химические изменения
NT Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок A: Применение материи и химических изменений
NT Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок B: Общие сведения о системах преобразования энергии
NT Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок B: Химия и окружающая среда
NT Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок D: Энергия и окружающая среда
NT Наука 9 (Альберта, 2003 г., обновлено в 2014 г.) 9 Блок B: Материя и химические изменения
NU Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок A: Термохимические изменения
NU Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок C: Химические изменения органических соединений
NU Наука о знаниях и возможностях трудоустройства 9 (Альберта, редакция 2009 г.) 9 Блок B: Материя и химические изменения
NU Наука 10 (2005 г., обновлено в 2015 г.) 10 Блок A: Энергия и материя в химических изменениях
NU Наука 20 (Альберта, 2007 г., обновлено 2014 г.) 11 Блок А: Химические изменения
NU Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок A: Применение материи и химических изменений
NU Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок B: Общие сведения о системах преобразования энергии
NU Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок B: Химия и окружающая среда
NU Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок D: Энергия и окружающая среда
NU Наука 9 (Альберта, 2003 г., обновлено в 2014 г.) 9 Блок B: Материя и химические изменения
ВКЛ Химия, 11 класс, ВУЗ (СЧ4У) 11 Нить C: химические реакции
ВКЛ Химия, 12 класс, техникум (СЧ5С) 12 Строка C: органическая химия
ВКЛ Химия, 12 класс, ВУЗ (СЧ5У) 12 Направление B: органическая химия
ВКЛ Науки о Земле и космосе, 12 класс, Университет (SES4U) 12 Strand E: Земляные материалы
ВКЛ Экология, 11 класс, Университет / колледж (SVN3M) 11 Строка B: Научные решения современных экологических проблем
ВКЛ Экология, 11 класс, Университет / колледж (SVN3M) 11 Strand F: Сохранение энергии
ВКЛ Экология, 11 класс, рабочее место (SVN3E) 11 Strand D: Энергосбережение
ВКЛ Естественные науки 10 класс, академический (SNC2D) 10 Нить C: химические реакции
ВКЛ Прикладная наука 10 класс (SNC2P) (2008) 10 Нить C: химические реакции и их практическое применение
ВКЛ Естественные науки, 12 класс, рабочее место (SNC4E) 12 Направление C: химические вещества в потребительских товарах
PE Химия 521A (2006) 11 Органическая химия
PE Химия 621А (2006) 12 Термохимия
PE Наука 421A (2005) 10 Блок 3: Химические реакции
PE Science 421A (проект, 2018 г.) 10 СК 2.1 Предскажите продукты химических реакций.
PE Science 421A (проект, 2018 г.) 10 CK 2.2 Анализируйте реальные химические реакции, применяя принципы химической реактивности.
PE Наука 431A (без даты) 10 Блок 2: Химические реакции
PE Science 7e année (2016) (только на французском) 7 Тема 2: L’univers vivant — Понятие D: Режимы воспроизведения
PE Естественные науки 9 класс (2018) 9 Блок 2: Атомы и элементы
КК Прикладная наука и технологии Раздел IV Материальный мир
КК Химия Раздел V Энергетические изменения в реакциях
КК Наука и технология Раздел IV Материальный мир
СК Химия 30 (2016) 12 Химическая связь и материаловедение
СК Химия 30 (2016) 12 Химическое равновесие
СК Науки о Земле 30 (фев 2018) 12 Литосфера
СК Физические науки 20 (2016) 11 Основы химии
СК Физические науки 20 (2016) 11 Нагревать
YT Chemistry 11 (Британская Колумбия, июнь 2018 г.) 11 Большая идея: материя и энергия сохраняются в химических реакциях.
YT Chemistry 11 (Британская Колумбия, июнь 2018 г.) 11 Большая идея: органическая химия и ее приложения имеют большое значение для здоровья человека, общества и окружающей среды.
YT Science Grade 10 (Британская Колумбия, июнь 2016 г.) 10 Большая идея: изменение энергии требуется, поскольку атомы перестраиваются в химических процессах.
Исследование метода вероятностной диагностики трех видов неисправностей двигателя внутреннего сгорания на основе графической модели
Предлагается стратегия повышения точности диагностики неисправностей двигателя внутреннего сгорания (ДВС) на основе вероятностной графической модели.В этом методе строится трехуровневая сеть с вероятностным выводом, и как материальные условия, так и сигналы, собранные от различных частей двигателя, рассматриваются как входные данные системы. Машинные сигналы, измеренные датчиками, обрабатывались для диагностики потенциальных неисправностей, которые были представлены в виде вероятностей на основе компонентов в слое 1, категорий неисправностей в слое 2 и симптомов неисправностей в слое 3. Диагностическая модель была построена с использованием узлов и дуг. , а результаты зависели от связи между категориями неисправностей и симптомами.Параметры сети представляли количественные вероятностные отношения между всеми слоями, и были суммированы условные вероятности каждого типа неисправности и соответствующих симптомов. Случаи неисправности были смоделированы на 12-цилиндровом дизельном двигателе, и были протестированы три типа неисправностей, которые часто возникают на ДВС, на основе пяти различных симптомов неисправности с разными нагрузками, соответственно. Были исследованы диагностические возможности метода, сообщающие о высоких показателях точности.
1. Введение
Двигатели внутреннего сгорания (ДВС) играют важную роль в энергоснабжении основных промышленных приложений, часто работая в течение длительного времени без остановки.Любая неисправность ДВС может прервать производственный процесс, привести к значительным экономическим потерям и даже нанести вред операторам на месте, если серьезный ущерб случится в результате взрыва. Поэтому важно контролировать состояние двигателя во время рабочего процесса для диагностики неисправностей.
Диагностика неисправностей ДВС изучается с момента изобретения ДВС, и за последние несколько десятилетий исследователями были предложены различные методы. Вейвлет-пакет [1–5] был разработан и применяется в области диагностики неисправностей ДВС.Система диагностики неисправностей с использованием вейвлет-пакетного преобразования и методов искусственной нейронной сети была предложена Ву и Лю [6]. Применение вейвлет-преобразования для мониторинга состояния машин и диагностики неисправностей было обобщено Пэн и Чу [7]. Было изучено выделение признаков разломов с использованием алгоритма разреженного анализа [8, 9] и метода оценки размеров [10]. Новый метод локализации разломов был предложен Cui et al. [11]. Были предложены сверточная нейронная сеть [12] и метод байесовской диагностики [13, 14].Несколько других методов, метод Монте-Карло [15], метод нечеткой диагностики [16] и метод опорных векторов (SVM) [17, 18], также применялись в диагностике неисправностей машин с хорошей производительностью. Кроме того, были предложены новые подходы, такие как метод переключения фильтров Калмана без запаха [19], Extreme Learning Machines [20], Online Dictionary Learning [21] и метод дискриминантной неотрицательной матричной факторизации (DNMF) [22]. Как часть прикладного искусственного интеллекта (ИИ), экспертные системы также внедряются в области диагностики неисправностей и были построены с хорошей производительностью [23–25].
Хотя в предыдущих исследованиях были достигнуты некоторые многообещающие результаты, по-прежнему существует потребность в улучшении ряда аспектов. Во-первых, принимая во внимание только один тип сигнала, поскольку диагностический вход не может точно отражать рабочее состояние двигателя. В связи с тем, что один тип неисправности может приводить к нескольким симптомам, различные сигналы состояния необходимо собирать с машины и использовать в процессе диагностики системы. Во-вторых, для каждого метода сообщается только одна категория неисправностей.Продвинутая система должна быть способна справляться с распространенными неисправностями, которые могут возникать во время работы, и одновременно диагностировать несколько неисправностей. В-третьих, нет никаких доказательств того, что конкретный симптом двигателя может использоваться исключительно как уникальный сигнал неисправности, и поэтому в процесс следует ввести вероятностную модель, способную описать состояние оборудования более точно, чем просто указание на наличие. или не по вине. Следует учитывать вероятность сигнала, который представляет собой признак потенциальной неисправности.
Результаты логического вывода должны быть связаны с вероятностью, которая может точно описать состояние двигателя. Вероятностная графическая модель представляет собой комбинацию теории графов с теорией вероятностей, которая подходит для работы со сложными системами [26]. В настоящем исследовании, чтобы преодолеть вышеупомянутые проблемы, представлен метод для трех видов неисправностей ДВС с использованием вероятностной графической модели. Механизм логического вывода системы был создан на основе вероятностной графической модели.Объединенная информация о вибрации машины и скорости вращения была одновременно собрана и использована в качестве входных данных для системы. Учитывались различные признаки неисправности, которые одновременно возникали во время работы двигателя. В ходе экспериментов в качестве выходных сигналов системы были установлены три категории неисправностей, и было изучено восемь случаев для каждой категории. Результаты продемонстрировали высокую точность.
2. Вероятностная графическая модель
2.1. Байесовская теория
Вероятностная графическая модель, состоящая из ориентированного ациклического графа (DAG) с узлами и дугами, может моделировать причинно-следственные связи между несколькими фактами, представленными узлами, соединенными друг с другом направленными дугами, поскольку вероятность появления узла может вычисляться по независимой вероятности и условной вероятности.Вентиль Noisy-OR был введен для повышения точности диагностики и повышения надежности системы. Модуль расчета утечки Noisy-OR может решить проблему с большим количеством параметров путем моделирования условной вероятности, что из-за сложной рабочей среды часто занимает очень много времени при построении системы.
Учитывая, что событие A и событие B независимы друг от друга, условная вероятность события A для данного события B обозначается как и определяется как где — совместная вероятность.
Предположим, что,, где S — определенное событие, и гипотезы исключают друг друга. Когда события представляют собой набор случайных величин, вероятность is и апостериорная вероятность равна
Классическую вероятностную графическую модель можно увидеть на рисунке 1, и существуют три необходимых требования для построения модели затвора с шумовым ИЛИ: (1) Все узлы в сети должны быть двоичными, что означает, что каждый узел может иметь только два состояния: Истина (T) или Ложь (F). (2) Для каждого узла S и его родительские узлы должны быть независимыми друг от друга. .(3) Для каждого родительского узла существует вероятность соединения:, которая представляет собой вероятность узла S, состояние которого равно T, когда равно T, а другие состояния его родительских узлов равны F.
Вероятность того, что событие S находится в Истинное состояние — это где H — весь родительский набор узлов S и подмножество H узлов, которые находятся в истинном состоянии. Однако, если это пустой набор, значение будет равно нулю. В связи с тем, что в промышленных процессах не было бы нулевой вероятности, для решения был применен вентиль утечки Noisy-OR.
2.2. The Leak Noisy-OR Gate
Возможно, что неисправность машины может быть результатом симптомов, не включенных в узлы причин, и система диагностики не может быть построена в явном виде со всеми возможными причинами. Таким образом, вероятность утечки должна быть включена в модель [27–29].
Затвор с шумом ИЛИ утечки вводится в вероятностную графическую модель, как показано на рисунке 2. Все неясные события собираются в одном узле, обозначенном как, с вероятностью.
Вероятность утечки может быть рассчитана как
После вычисления вероятностей может быть получена таблица условной вероятности (CPT) на основе
2.3. Априорная вероятность модели
Априорная вероятность всей модели зависит от вероятности выживания материалов и может зависеть от текущих свойств материалов компонентов двигателя во время работы. Движение поршней и шатунов с коленчатым валом может определяться возвратно-поступательным поступательным движением поршня и вращательным движением коленчатого вала.Сила инерции может быть описана как комбинация возвратно-поступательной силы инерции, создаваемой возвратно-поступательной массой, с центробежной силой, создаваемой вращающейся массой. Таким образом, априорные вероятности могут быть описаны вероятностной кривой S-N (кривая P-S-N) материала [30] на основе байесовской теории. Согласно вероятностной модели, представленной Feng et al. Согласно [31] функция плотности вероятности выживания параметра материала: где — усталостная долговечность компонента, а T — количество циклов.Априорные вероятности могут быть получены из справочника данных [32].
3. Система диагностики неисправностей
3.1. Трехуровневая структура
Логическая система состоит из узлов и дуг. Узлы разделены на три разных уровня: верхний уровень, средний уровень и нижний уровень [33]. Дуги являются связями между узлами в соседних слоях, но нет прямых связей между верхним и нижним слоями. Следовательно, все дуги от узлов верхнего уровня указывают на узлы среднего уровня, а дуги от узлов среднего уровня указывают на узлы нижнего уровня.
Первый уровень, который называется уровнем компонентов, состоит из ключевых компонентов двигателя, связанных с вероятностями возникновения неисправности, которая может повлиять на априорные вероятности неисправности. На этом уровне состояния узлов обеспечивают сети априорную вероятность в процессе вычислений. Любые изменения в состояниях узлов первого уровня будут влиять на узлы разлома во втором слое. Второй уровень, который называется слоем неисправностей, состоит из различных типов неисправностей, которые могут возникнуть в двигателе.Каждый тип неисправности представлен одним узлом. После расчета каждый узел будет в определенном состоянии с процентным соотношением, указывающим вероятность возникновения соответствующей неисправности во время работы. Третий уровень, который называется уровнем симптомов неисправности, состоит из нескольких характеристик двигателя. Информацию о рабочем состоянии двигателя можно измерить и передать на компьютер, где сигналы двигателя, которые могут отражать симптомы неисправности, активируют связанные узлы на этом уровне.Затем активированные узлы перейдут в состояние неисправности, которое также является состоянием T, что означает, что существует своего рода неисправность, и расчет перейдет ко второму уровню. Трехуровневая структура показана на рисунке 3.
Для конструкции CPT, предполагая, что, можно получить согласно (4), а вероятность соединения родительских узлов S может быть рассчитана на основе (8) : поскольку можно получить по следующему уравнению, чтобы получить. Для априорных вероятностей, основанных на (7), здесь подчиняется логнормальное распределение.Поскольку у нас есть стандартная переменная нормального распределения, которая обозначается функцией распределения стандартного нормального распределения, то априорные вероятности неисправности компонента двигателя в ДВС могут составлять
3.2. Создание модели
Для диагностики неисправностей ДВС информация о характеристиках двигателя может быть обнаружена датчиками и передана на компьютер, который запускает систему. Вероятность потенциальной неисправности может быть рассчитана с помощью механизма вывода.
Датчики размещены на ключевых частях ДВС для сбора полезной информации.Пьезоэлектрические датчики вибрации и датчики вихревых токов размещаются на поверхности двигателя для сбора информации о рабочем состоянии, которая будет передана в коллектор данных. Перед процедурой логического вывода все сигналы обрабатываются с помощью шумоподавляющего фильтра. Затем информация, собранная в хранилище компьютера, будет обработана и проанализирована. Комбинация полученных данных может показать текущее состояние машины.
Система была создана на основе диагностических правил, полученных от экспертов, опубликованных статей [34–36] или экспериментальных знаний.Каждый сигнал, собранный датчиками и переданный в компьютер, сравнивается с пороговым значением, определяющим состояние узла, которое заранее устанавливается экспертом при инициализации системы. На основе одного сигнала или комбинации сигналов можно рассчитать различные вероятности неисправности в зависимости от того, выше или ниже пороговое значение. Узлы третьего уровня и соответствующие идентификаторы можно увидеть в таблице 1, в то время как соответствующие отношения между сигналами и типами неисправностей между тремя уровнями показаны на рисунке 4.Когда входной сигнал передается в систему, уровень компонентов и узлы уровня симптомов будут влиять на уровень разлома. Представлены прямые взаимодействия между любыми двумя узлами соседних слоев.
|