20Июн

Работа датчиков инжекторного двигателя: Датчики на инжекторный двигатель. Разберем на примере ВАЗ

Содержание

Датчики на инжекторный двигатель — Блог компании Pitstore

11.10.2017

11.10.2017

Инжекторы, устанавливаемые на большинство современных автомобилей, в своей работе не обойдутся без множества датчиков. Именно эти датчики точно задают режимы подачи топлива. Попробуем разобраться, зачем они нужны и за что отвечают.

Конструкция большинства инжекторных двигателей одинакова и предполагает наличие стандартного базового набора датчиков. Сразу отметим, что мы не рассматриваем сложные двигатели с турбонаддувом и фазовращателями, берем простые атмосферники, встречающиеся на подавляющем большинстве машин. Всего их чуть меньше десятка (на сложных двигателях суперкаров гораздо больше), и основные датчики такие:

  • датчик массового расхода воздуха (ДМВР). Он измеряет количество воздуха, который подается в двигатель. Устанавливается на входе в воздушный фильтр.
    Причиной выхода из строя может являться попадание внутрь влаги, пыли, песчинок или прочих посторонних частиц;
  • датчик положения дроссельной заслонки (ДПДЗ). Показывает открытое или закрытое положение заслонки, ставится сбоку на дросселе и совмещается по оси с самой заслонкой. Может сломаться от сильной нагрузки при мойке струей под давлением;
  • датчик температуры у охлаждающих жидкостей (ДТОЖ). Регулирует топливную смесь, ставится между термостатом и головкой блока цилиндра. Недорогой по цене, меняется быстро;
  • датчик детонации (ДД). Показывает наличие детонации в камере сгорания, ставится между третьим и вторым цилиндром в блоке цилиндров. В продаже встречается широкополосный и детонации- резонансный. Если он выйдет из строя, мотор будет плохо развивать мощность, а расход горючего повысится;
  • датчик кислорода, (ДК), он же лямбда-зонд. Определяет остаток кислорода в выхлопном газе, ставится на выпускной трубе в глушителе либо же рядом с катализатором.
    Стоимость средняя, при выходе из строя увеличивается расход топлива и количество токсичных веществ выхлопе;
  • датчик положения коленвала (ДПКВ). Он определяет положение цилиндра для впуска топлива и подачи искры, по сути, запускает двигатель. Простой и выносливый датчик, недорогой по цене. Но если выходит из строя, мотор перестанет работать;
  • датчик скорости (ДС). Ставится на коробке передачи и считывает скорости вращения валов, подбирая оптимальный режим работы движка. При неисправности появятся провалы оборотов, а некоторые машины вообще могут не заводиться;
  • датчик положения распредвала (ДПРВ). Определяет форсунку, в которую должен производиться впрыск топлива в данный момент. Устанавливается в одном из торцов головки блока цилиндров. При неисправности топливо подается сразу на 2 форсунки, что ведет в перерасходам горючего.

В магазине «»Питстор» можно купить масла и присадки для топлива, которые помогут поддерживать любой двигатель в хорошем рабочем состоянии. Мы поможем вам оформить заказ и в короткие сроки получить для своей машины обновку отличного качества и со способностью долго прослужить!

Датчики инжекторного двигателя | I4CAR

В 80-ых годах производители автомобилей начали активно внедрять, мало кому известную среди простых автолюбителей на то время, технологию принудительной подачи топлива. Такая система впрыска горючего была разработана как альтернатива карбюраторам. Но в связи со сложностью конструкции, довольно долго не применялась. Главным отличием данных систем от карбюраторных является принцип подачи топлива. В двигателях с принудительной системой подачи, как можно определить исходя из названия, горючее принудительно впрыскивается в цилиндр или впускной коллектор. Впрыск осуществляется специальными распылителями – форсунками. В наше время двигателя с такой системой принято называть инжекторными.

Уже сейчас можно говорить о том, что инжекторные двигателя практически вытеснили карбюраторные. Это не удивительно, так как преимуществ у них больше чем недостатков.

Советы: Принцип работы межосевого дифференциала

Основные преимущества:

— более рациональный и экономичный расход топлива за счет улучшения его дозировки;

— мощность двигателя увеличивается приблизительно на 7-10%;

— улучшается «динамика» автомобиля;

— легче запускается двигатель в любых погодных условиях;

— срок эксплуатации больше;

— надежнее;

Приведенные выше преимущества появились благодаря новому принципу работы системы подачи горючего. Управление системой осуществляться специальными микроконтроллерами – электронное управление. На основе полученных от датчиков данных, микроконтроллером определяется момент, когда должны открыться форсунки, а также и время, на протяжении которого они должны быть открыты.

Если вспомнить первые модели таких систем, то все выше описанные функции микроконтроллера ложились на «плечи» механических устройств. В наше время главными деталями используемыми в инжекторных двигателях для работы системы снабжения топливом являются: ЭБУ (электронный блок управления), распылители (форсунки) и набор специальных электронных датчиков. Все данные детали, можно сказать, работают как один сплошной механизм.

В данной статье мы рассмотрим электронные датчики, которые снабжают необходимой информацией ЭБУ.

Советы: Причины скрипа тормозных колодок

Датчики инжекторного двигателя

Как работает инжектор

Датчик массового расхода воздуха (волюметр) – необходим для получения информации о количестве всасываемого воздуха двигателем (кг/ч.). Надежность – хорошая. Главной проблемой для такого датчика является влага, которая попадет в него с воздухом. Основная «поломка» у данного элемента – отправка на ЭБУ завышенных значений. При низких оборотах, такая погрешность достигает 10-20%, что несомненно сказывается на стабильной работе мотора во время холостого хода. Также могут появиться некоторые проблемы с запуском. Когда двигатель работает на высоких оборотах, такие погрешности приводят к нерациональному использованию топлива (больше расход).

Датчик положения дроссельной заслонки – необходим для получения информации о текущем состоянии педали «газ». Работа элемента может быть нарушена благодаря мойщикам двигателей или в результате некачественного изготовления на заводе. Соответственно сложно определить даже приблизительные сроки службы. Основными показателями нарушений в работе датчика являются завышенные обороты во время холостого хода, провалы и рывки при незначительных нагрузках.

Датчик температуры охлаждающей жидкости – по функциональному назначению похож на карбюраторный «подсос». При низкой температуре двигателя, необходимо больше топлива. Также отвечает за включение вентилятора и выключение охлаждающего вентилятора. Надежность – высокая. Возможные неисправности – нарушается изоляция провода рядом с датчиком, повреждаются контакты в самом датчике. Результат поломки – вентилятор может включаться, когда двигатель холодный, появляются проблемы с запуском двигателя, когда он нагрет, повышается расход горючего.

Датчик детонации – работает по принципу пьезо зажигалки. Напряжение увеличивается прямо пропорционально возрастающей силе удара. Служит для отслеживания детонационных стуков мотора. Повреждение датчика влияет на оптимальность работы двигателя и расход горючего.

Датчик кислорода – элемент отвечающий за информацию по остаткам кислорода в отработавших газах. В случае, если кислород в них отсутствует, топливная смесь является богатой, если же кислород присутствует – бедной. Данные служат для корректировки подачи горючего. Использовать этиловый бензин запрещено. Повреждение датчика влияет на расход топлива и выброс вредных веществ.

Советы: Как работает выжимной подшипник сцепления

Давайте подробнее рассмотрим то, как работает такой датчик.

Наиболее известным типом можно назвать циркониевый кислородный датчик. Это своего рода переключатель, который при достижении в выхлопных газах показателя кислорода 0. 5%, резко меняет состояние. Такой показатель равнозначен с идеальным стехиометрическим соотношением воздуха и топлива (14.7:1). Интерфейс таких датчиков сделан следующим образом: горячий датчик (300 С и больше) при малом содержании кислорода (меньше 0,5%), выдавая слабый ток, будет давать напряжение на выходе 0,45-0,8 V, а при более высоком показателе (больше 0,5%) – 0,2-0,45 V. Точное значение напряжения не важно. Когда смесь является бедной, подача топлива увеличивается, если во время следующего периода измерения, оказываться, что смесь уже довольно богатая – количество уменьшается. Подача горючего регулируется по фактическому сгоранию. Делает возможным адаптацию системы под разные условия работы. Во время холостого хода, напряжение на датчике колеблется в пределах 1-2 Гц, а при 3000 об/мин. – 10-15 Гц. Из-за того, что нормальная работа датчика возможна только когда он прогрет, ЭБУ системы TCCS будет «ловить» информацию от него, когда будет достаточно прогрет двигатель. В последнее время в них монтируют специальный подогреватель.

Датчик скорости – снабжает ЭБУ информацией о скорости машины. Имеет среднюю надежность. Поломка такого датчика в основном не оказывает серьезного влияния на работу двигателя или ездовые характеристики авто.

Датчики положения коленчатого вала – можно назвать основным датчиком. На основе его показаний рассчитывается необходимое время подачи горючего и искры, а также определяется нужный цилиндр. С точки зрения конструкции, является магнитом и катушкой с тонким проводом. Имеет достаточно большой эксплуатационный ресурс. Зубчатый шкив коленчатого вала и данный датчик работаю вместе. Если данный элемент выходит из строя, двигатель останавливается. В наилучшем варианте будет ограничение по количеству оборотов (3500-5000 об/мин).

Датчик фаз – установка производится на 16-ти клапанные двигателя. Полученные данные используются, чтобы организовать подачу топлива в целевой цилиндр. Когда датчик ломается, система переходит в попарно-параллельный режим, из-за чего топливная смесь резко обогащается.

Сенсорная технология для синхронизации впрыска топлива

Момент впрыска является критическим параметром в двигателях внутреннего сгорания. От мастеров-механиков, выжимающих из своей поездки каждую лошадиную силу, до инженеров, стремящихся к прорыву в топливной экономичности, внесение корректировок здесь влияет на всю систему двигателя.

Сенсорная технология для синхронизации впрыска топлива

Эмили Фолк | Люди сохранения

24.08.20, 05:40 | Инжиниринг | Датчики и схемы

Процесс впрыска должен строго контролироваться, если двигатель должен получать правильное количество топлива для правильной работы. Сегодня это, как правило, цифровой процесс, когда блок управления двигателем (ECU) получает данные от ряда датчиков и соответствующим образом регулирует время подачи топлива.

Это обзор основных типов датчиков, используемых сегодня в системах впрыска топлива.

 

1. Датчики массового расхода воздуха

Датчик массового расхода воздуха (MAF) отвечает за измерение количества воздуха, поступающего в двигатель. Плотность воздуха меняется в зависимости от высоты над уровнем моря и температуры окружающей среды. Это означает, что для того, чтобы двигатель поддерживал правильное соотношение топлива и воздуха, необходимы непрерывные измерения.

Датчики массового расхода бывают двух видов — датчики с термометром и крыльчатые расходомеры. Первая является более новой и лучшей технологией. Датчики с горячей проволокой обычно меньше по размеру, лучше реагируют на незначительные изменения и дешевле встраиваются.

 

2. Датчики кислорода (O2)

Большинство автомобилей, выпущенных после 1980 года, оснащены датчиками кислорода. Каждый вид топлива имеет разное идеальное соотношение воздуха и бензина в процессе сгорания. Кислородные датчики определяют, достигается ли это соотношение в любой момент времени.

Кислородные датчики работают, контролируя выхлоп автомобиля и измеряя содержание кислорода. Слишком мало воздуха приводит к остаткам топлива. Такая смесь называется «богатой». Слишком много воздуха создает «бедную» смесь.

Обе ситуации приводят к предотвратимым уровням загрязняющих веществ, включая оксид азота. Бедная смесь также может снизить производительность или повредить двигатель.

 

3. Датчики положения дроссельной заслонки

Водители вводят множество собственных переменных во время вождения, поэтому современные автомобили стандартно оснащаются датчиками положения дроссельной заслонки.

Эти датчики обеспечивают прямую обратную связь с системой впрыска топлива, регулярно измеряя, насколько открыта или закрыта дроссельная заслонка и как быстро происходят эти изменения.

По сути, датчики положения дроссельной заслонки предоставляют данные о том, как движется автомобиль, и о потребляемой мощности двигателя в данный момент.

«Синхронизация» поведения дроссельной заслонки с моментом впрыска топлива с помощью этого датчика обеспечивает плавность холостого хода автомобилей и ускорение по требованию.

 

4. Датчики абсолютного давления во впускном коллекторе (MAP)

Расположенные вблизи или внутри впускного коллектора автомобиля датчики MAP измеряют силовую нагрузку, воздействующую на двигатель в любой момент времени. Датчик сравнивает эти измерения с вакуумом для согласованности.

Датчики MAP важны, потому что они сообщают о внешних факторах, которые способствуют высокой нагрузке двигателя и более высокой потребности в расходе топлива. Например, если транспортное средство начинает подниматься в гору, датчик MAP должен регистрировать низкий уровень вакуума и высокую нагрузку на двигатель. В свою очередь, датчик MAP отправляет эти данные в ECU, который запрашивает больше топлива.

 

5. Датчики температуры охлаждающей жидкости двигателя (ECT)

Как и другие сенсорные технологии, упомянутые здесь, датчики ECT помогают согласовать условия внутри и снаружи двигателя. В этом случае датчики ЕСТ, расположенные рядом с термостатом автомобиля, определяют влияние температуры окружающей среды на двигатель.

Если двигатель холодный, для его нормальной работы необходимы две вещи:

Более теплые двигатели, напротив, нуждаются в регулировке. Когда двигатель прогревается, датчик ЕСТ и ЭБУ включают вентиляторы охлаждения или регулируют угол опережения зажигания. Когда угол опережения зажигания работает должным образом, двигатель не должен терять мощность, когда это необходимо. Неправильное зажигание может привести к детонации двигателя, потерям мощности и повреждению двигателя.

 

Другие сенсорные технологии

Это обзор наиболее распространенных датчиков момента впрыска топлива. Есть также множество других, находящихся в активной разработке, многие из которых дают наилучшие результаты при совместном использовании.

В одном научном исследовании изучался ряд нестандартных, но «достаточно эффективных» и «надежных» технологий, включая следующие:

  • Датчики подъема иглы

    : обеспечивают мгновенные измерения начала и окончания впрыска топлива.

  • Пьезорезистивные преобразователи давления: обеспечивают более точные измерения изменений давления в двигателе.

  • Фотодатчики (или оптические оконные датчики): датчики этого типа обеспечивают быстрые измерения начала и продолжительности горения.

 

Интеллектуальная технология улучшает впрыск топлива

Существует несколько преимуществ более тщательного изучения впрыска топлива и интеграции датчиков для обеспечения оперативного сбора данных. Точная настройка впрыска топлива увеличивает срок службы двигателя, увеличивает мощность двигателя, когда это необходимо больше всего, и снижает уровень расхода топлива.

Эти интеллектуальные датчики привносят принципы Индустрии 4.0, такие как мобильность данных, во внутренние ниши некоторых из самых распространенных машин на земле — бензиновых двигателей.

Применение правильных технологий на этом уровне делает наши автомобили более эффективными. Благодаря экономии топлива это также означает, что наш мир становится все более здоровым местом для жизни.

 

Содержание и мнения в этой статье принадлежат автору и не обязательно отражают точку зрения ManufacturingTomorrow

24.08.20, 05:40 | Инжиниринг | Датчики и схемы


Другие технические статьи | Истории | Новости

Эта запись не имеет комментариев. Будьте первым, кто оставит комментарий ниже.


Опубликовать комментарий

Прежде чем оставлять комментарии, вы должны войти в систему. Войти сейчас.

Рекомендуемый продукт

PI USA — Разница между портальным и раздельным мостом

Традиционная портальная система использует диапазон перемещения X-Y или X-Y-Z. Две параллельные направляющие, установленные на опорной плите, обычно из гранита, обеспечивают синхронное движение по оси Y, а поперечная ось (ось моста) обеспечивает движение по оси X. Вертикальная ось может быть добавлена ​​на мост для движения Z. Система с разделенным мостом может быть менее сложной, чем традиционная портальная система, поскольку не требуется синхронизация двух параллельных линейных двигателей. Обе системы используются в промышленном производстве, тестировании и аддитивном производстве.

Как контролируется электронный впрыск топлива (EFI)?

Поиск по ключевым словам


Элементы управления и датчики EFI

EFI использует датчики для определения количества топлива, необходимого в любой момент времени. Каждая система EFI будет иметь некоторую комбинацию следующих частей.

Электронный блок управления (ECU)

ECU является мозгом операции. Он использует обороты двигателя и сигналы от различных датчиков для измерения расхода топлива. Он делает это, сообщая топливным форсункам, когда и как долго стрелять. ЭБУ часто управляет другими функциями, такими как топливный насос и опережение зажигания.

Датчик положения дроссельной заслонки (TPS)

Датчик TPS крепится к концу вала дроссельной заслонки. Он точно сообщает ЭБУ, насколько открыт дроссельный клапан. ЭБУ использует эту информацию для подачи нужного количества топлива.

Датчик абсолютного давления во впускном коллекторе (MAP)

Датчик MAP устанавливается во впускном коллекторе или рядом с ним. Он определяет нагрузку двигателя на основе вакуума двигателя. Низкий уровень вакуума может указывать на высокую нагрузку, например, при движении в гору. Для этого требуется больше топлива.

Датчик массового расхода воздуха (MAF)

Датчик массового расхода воздуха расположен во впускной трубе перед корпусом дроссельной заслонки. Он измеряет объем воздуха, поступающего в двигатель. Затем ECU использует измерения для регулировки количества топлива.

Датчик кислорода (O2)

Датчики кислорода расположены в выхлопной трубе рядом с выпускным коллектором. Они измеряют количество кислорода в выхлопе. Существует 2 типа датчиков O2, стандартные и широкополосные. Оба сообщают ECU правильность соотношения воздух/топливо.

  • Стандартный датчик O2 посылает в ECU сигнал либо о богатой, либо о обедненной смеси.
  • Широкополосный кислородный датчик или датчик воздуха/топлива (A/F) может точно определить, сколько кислорода содержится в выхлопных газах. Широкополосный датчик более полезен в качестве средства настройки.

ЭБУ использует сигнал O2 для регулировки количества топлива. Компенсация, основанная на датчике O2, называется «коррекцией подачи топлива».

Датчик температуры впускного воздуха (IAT)

Датчики IAT расположены во впускном коллекторе. Он сообщает ЭБУ, насколько теплый или холодный воздух. Поскольку холодный воздух более плотный, ЭБУ может компенсировать это, подавая больше топлива.

Датчик температуры охлаждающей жидкости двигателя (ECT)

Датчик ECT обычно расположен рядом с термостатом. Он сообщает ЭБУ, когда двигатель прогрет. Холодному двигателю требуется больше топлива и более высокие обороты холостого хода для облегчения запуска. Когда он прогревается, ECU может включить вентилятор охлаждения или увеличить опережение зажигания.

Датчик детонации

Датчики детонации расположены на блоке цилиндров. Они очень чувствительны и обнаруживают детонацию, как только она происходит. Он сигнализирует ЭБУ о задержке синхронизации.

Клапан управления холостым ходом (IAC)/привод

IAC расположен на корпусе дроссельной заслонки. Он управляется ЭБУ. Он обеспечивает достаточное количество воздуха, чтобы двигатель мог поддерживать обороты холостого хода.