6Фев

Принцип работы дроссельной заслонки на инжекторном двигателе: Что такое дроссельная заслонка в автомобиле? Устройство, как выглядит, принцип работы, для чего служит

функции, принцип работы и регулировка


Для чего двигателю воздух

Вся работа двигателей внутреннего сгорания основана на горении. Как известно для горения топлива необходим газ, который будет выполнять роль окислителя. В нашем случае этим газом будет выступать кислород, который содержится в воздухе. При смешивании этого газа с топливом – получится смесь, которая легко воспламенится в цилиндрах двигателя. В бензиновых двигателя, воспламенению поспособствует искра свечи, а в дизельных двигателях – образование высокого давления при сжатии этой смеси в цилиндре за счёт хода поршня.


Виды дроссельных заслонок

Заслонки, которые открывают поток воздуха двигателю, присутствуют в любых системах впрыска. В отличие от карбюратора в котором заслонка встроена, на инжекторе заслонка сделана более технологично, и является отдельным узлом, ее называет дроссельной заслонкой.

Различают два вида заслонок:

  1. Механическая
  2. Электрическая

Дроссельная заслонка открывается, когда Вы нажимаете на педаль газа. В механическом исполнении дросселя, педаль газа связана с заслонкой с помощью тросика или тяги. При нажатии на педаль тросик сдвигает собачку дросселя, и заслонка открывается.

На современных автомобиля, часто можно увидеть аббревиатуру ЕГАЗ. Это значит, что используется электронная педаль газа, и электронная дроссельная заслонка.

Принцип действия такой заслонки отличается от механической, тем что заслонку двигает не тросик или тяга, а электромотор, который получает данные от ЭБУ автомобиля. В ЭБУ данные приходят от электронной педали газа.

Считается, что система ЕГАЗ позволяет экономить топливо, но на практике это практически не заметно, зато отзывчивость педали газа намного хуже.

Зачем чистить дроссельную заслонку

Чистить дроссельную заслонку необходимо для того, чтобы двигатель автомобиля мог принимать чистый воздух без каких-либо препятствий которые образуются в виде отложений на стенках. Образованию этих отложений способствует:

  • Грязный воздух. Конечно, же во всех автомобиля есть воздушный фильтр. Весь свой срок эксплуатации он фильтрует всасываемый воздух двигателем. Но к сожалению, он фильтрует только крупные частицы пыли в виде абразива, самым же мелки удается пройти сквозь него, какая-то часть сгорает в двигателе, а какая-то оседает на дроссельной заслонке и ее узлах.
  • Картерные газы. На современных автомобиля, картерные газы, отчищаются от масла в специальном узле – маслоотделителе. В дальнейшем они попадают обратно в двигатель через впуск, а именно дроссельную заслонку.
  • Отработавшие газы. С каждым годом нормы экологичности становятся все более жесткими. И производители вынуждены внедрять все новые и новые системы по ее обеспечению в двигатели авто. Одной из таких систем является клапан ЕГР, суть которого заключается в возвращении небольшого количества выпускных газов обратно в двигатель, через дроссельную заслонку.

Статья в тему: Как проверить термостат автомобиля двумя способами

А теперь делаем вывод, что частички масла которые находятся в картерных газах, смешиваются с продуктами горения из отработавших газов, с пылью и мелким абразивом из воздуха внешней среды, и все это оседает в дроссельной заслонке. Спустя тысячи километров, внутри нее образуется солидный слой всей это субстанции, который нарушает правильную работу дроссельной заслонки.

Назначение, основные конструктивные элементы

Несмотря на то, что подачей воздуха «заведует» целая система, конструктивно она очень проста и основным ее элементом выступает дроссельный узел (многие по старинке называют его дроссельной заслонкой). И даже этот элемент имеет несложную конструкцию.

Принцип работы дроссельной заслонки остался идентичным еще со времен карбюраторных двигателей. Она перекрывает основной воздушный канал, благодаря чему и регулируется количество подаваемого в цилиндры воздуха. Но если эта заслонка раннее входила в конструкцию карбюратора, то в инжекторных двигателях она является полностью отдельным узлом.

Инжекторная система ДВС

Помимо основной задачи – дозировки воздуха для нормального функционирования силового агрегата на любом режиме, эта заслонка также отвечает за поддержание требуемых оборотов коленвала на холостом ходу (ХХ), причем с разной нагрузкой на мотор. Участвует она и в функционировании усилителя тормозной системы.

Устройство дроссельной заслонки – очень простое. Основными ее конструктивными составляющими являются:

  1. Корпус
  2. Заслонка с осью
  3. Механизм привода

Как почистить дроссельную заслонку на Рено Логан?

Обычные простые операции по обслуживанию инжекторного двигателя, такие как чистка дроссельной заслонки, могут значительно увеличить ресурс вашего Рено.

Французские машины всегда очень радушно принимает наш рынок, так как варианты автомобилей, что поставляются сюда, как правило, изменяются под наши дорожные условия. Отличным примером хорошего французского автомобиля можно назвать Рено Логан. Разрабатывалиэту машину в начале 2000-х, так что модель свежая. Интересным моментом можно назвать то, что при проектировке не было произведено ни одного пробного образца. С помощью компьютерных моделей все характеристики были рассчитаны заранее и Логан начали производить сразу же по готовому варианту. Долго время автомобиль выпускался в Румынии, позже выпускать начли в Москве. Основной задачей инженеры Reno поставили для себя достижение бюджетной отметки в 5000 евро за автомобиль не ухудшив при этом характеристики и престижности машины. И это отлично получилось путем нахождения таких выходов: был установлен уже проверенный на других моделях двигатель, подвеска, КПП и рулевое управление, массовое применение штампованных деталей в изготовлении и еще многое другое.

Reno Logan

Содержание

  1. Принципы работы узла дроссельной заслонки
  2. Когда нужно чистить дроссельный узел
  3. Порядок снятия дроссельного узла и его чистка

Принципы работы узла дроссельной заслонки

Ведя разговор на тему необходимости чистки дроссельной заслонки автомобиля Рено Логан стоит разобраться для чего вообще он нужен, где располагается и каковы его функции. Дроссельный узел — это важная составляющая автомобиля, которая обеспечивает дозировку воздуха, что попадает во впускной коллектор. После того как дроссельная заслонка открывается в двигатель попадает воздух, а ориентируюсь по показателям датчиков форсунки впрыскивают в коллектор необходимое количество топлива. Проще говоря дроссельный узел это клапан, который изменяет давление в топливной системе: когда он открыт, то давление равно атмосферному, а когда закрыт создается вакуум. Устройство его просто: в корпусе вмонтирована ось, на которой установлена округлая заслонка. Привод заслонки может быть либо электрическим, либо механическим.

Механический привод представляет собой прямую связь между педалью акселератора и самой заслонкой путем связывания их тросом. Электрический же ориентируясь на показатели датчика положения педали акселератора проводит открытие и закрытие дроссельной заслонки.

Датчики тоже требуют нашего внимания, так как на их работе основывается весь принцип работы инжекторного двигателя. Датчик снимает показатели в определенных местах двигателя и передает их в бортовой компьютер, который, в свою очередь, управляет всеми основными узлами двигателя. В инжекторном двигателе множество датчиков (датчик массового расхода воздуха, датчик положения распределительного вала, датчик положения коленчатого вала, датчик насыщенности кислородаи еще очень многие) однако, к нашей теме относится только датчик положения дроссельной заслонки, именно он нас и интересует. Он снимает показания с положения заслонки. Интересует нас еще и потому, что его чистка также проводится и должна проводится вовремя, так как его неправильная работа может привести к ухудшению работы двигателя. Датчик ПДЗ обычно располагается прямо на узле перед чисткой его также необходимо снимать, но об этом далее.

Дросельная заслонка Reno Logan

 

Когда нужно чистить дроссельный узел

Чистка дроссельной заслонки должна проводится регулярно в соответствии с условиями ТО. Однако признаки того, что нужно залезть под капот могут появиться и раньше. Вот основные из них:

  1. При бросании педали акселератора двигатель плохо меняет обороты, то есть они падают до минимального значения, и машина либо глохнет, либо обороты медленно восстанавливаются.
  2. Плохой запуск в холодную погоду при уже прогретом двигателе. Дополнительным признаком можно считать появляющийся запах бензина вместо запаха выхлопных газов.
  3. Троение и вибрации мотора после очередного плохого пуска.
  4. Рывки мотора при низких оборотах, нестабильная работа

Если был замечен хоть один из таких признаков, то чистка;в скорейшем времени будет просто необходима.

Порядок снятия дроссельного узла и его чистка

На Логане добраться до дроссельной заслонки несложно. Первое, что нам понадобится это инструмент:

  • Набор отверток.
  • Рожковый ключ на 10″.

Первым делом необходимо снять воздушный фильтр, открутив крышку и вынув его. Далее нам понадобится ключ, чтобы открутить крепежные гайки и снять корпус воздушного фильтра. Сняв его, мы увидим корпус дроссельной заслонки. Теперь отключаем привод заслонки и аккуратно, чтобы не повредить, снимаем датчик положения заслонки и датчик холостого хода. Потом нужно открутить крепление корпуса и все дроссельный узел у нас в руках.

Далее приступаем к самой очистке узла от пыли, грязи и любых налетов. Первое, что надо усвоить — нельзя применять никаких щеток, тем более по металлу. Все, что нам пригодится это много ветоши, промывочная жидкость и любой аэрозольный очиститель, лучше всего WD 40.

Если время есть, и машина срочно не нужна, то лучше побрызгать «вэдэшкой» и оставить узел постоять. При промывке нужно тщательно просмотреть и прочистить все, залить промывочную жидкость во все возможные каналы и отверстия, привести в порядок все посадочные места датчиков. Промывку лучше провести дважды, чтобы довести узел до максимально чистого состояния это позволит еще долго не думать о его чистке. Собирать все на место нужно в обратной последовательности, обращая внимание на правильность установки всех датчиков. Если все будет сделано правильно, то положительных изменений в работе двигателя ждать не придется.

Теория двигателя

Впрыск топлива через порт размещает топливную форсунку непосредственно над впускным клапаном во впускном отверстии головки блока цилиндров. Это был автомобильный стандарт с 1980-х годов и архитектура, наиболее подходящая для устаревших авиационных двигателей EFII, SDS, Precision Airmotive и других. (Изображение: предоставлено Robert Bosch Corp. )

Впрыск топлива — это общий термин для любого количества механических или электронных систем подачи топлива. Различий в деталях предостаточно, поэтому немного точности помогает при рассмотрении предмета. Например, когда мы слышим «впрыск топлива» сегодня, мы мысленно по умолчанию «многоточечный последовательный впрыск топлива с электронным портом» или просто «EFI», потому что это то, что автомобили использовали в течение последней четверти века. Но это не то, что у нас есть в авиации (за исключением более новых систем послепродажного обслуживания).

Электронная топливная форсунка EFII демонстрирует хорошо распыленную форму распыления на испытательном стенде EFII.

Спонсор освещения авиашоу:

Bendix Baseline

В начале Второй мировой войны немцы были впереди всех с механическим впрыском топлива прямого цилиндра Bosch (результат развития дизельного двигателя). Попытки многоточечного впрыска топлива в двигателях самолетов союзников в основном были неудачными или не были разработаны вовремя (ваша первая подсказка впрыска топлива не является вашим средним техническим достижением). После войны компания Bendix усовершенствовала свою карбюраторную систему с одноточечным давлением военного времени в систему многоточечного впрыска топлива RS, и к концу 1950s, который был детально улучшен в системе RSA, которая до сих пор с нами, как в исходном виде, так и обновленная несколькими источниками вторичного рынка, в частности Airflow Performance и Precision Airmotive.

RSA компании Bendix представляет собой механический впрыск топлива с постоянным расходом. Мембранный насос с приводом от двигателя подает топливо в топливный сервопривод; это корпус дроссельной заслонки и дозатор топлива, который обычно устанавливается в том же месте, что и карбюратор. Сервопривод измеряет давление воздуха и использует ряд диафрагм для измерения расхода топлива в зависимости от массы воздуха, проходящего через дроссельную заслонку сервопривода. Но в отличие от карбюратора топливо не подается в воздушный поток на топливном сервоприводе; вместо этого он направляется к делителю потока. Подобно железнодорожной развязке, делитель потока распределяет топливо по небольшим линиям, идущим к впускному отверстию каждого цилиндра. Там топливо проходит через прецизионную форсунку, распыляясь постоянным потоком во впускное отверстие, прямо перед впускным клапаном.

Обратите внимание, пульсация топлива отсутствует; она течет ровным потоком. Давление топлива, подаваемое в топливный сервопривод, зависит от потребности и часто составляет около 20 фунтов на квадратный дюйм, но может возрасти примерно до 45 фунтов на квадратный дюйм. Давление топлива — это энергия, управляющая тем, что можно было бы назвать аналоговым топливным компьютером (топливным сервоприводом), и поэтому давление топлива по своей конструкции расходуется на работу различных диафрагменных пружин, преодоление потерь в трубопроводе и проталкивание топлива через главный жиклер. Поэтому давление топлива в топливных форсунках намного ниже, чем в топливном сервоприводе. Давление в форсунке может быть менее 1 фунта на квадратный дюйм на холостом ходу и около 7 фунтов на квадратный дюйм на полном газу.

Топливный сервопривод Bendix слева и меньший блок EFII справа являются дроссельными заслонками. Но блок Bendix также измеряет топливо, отсюда и название топливного сервопривода; электронный корпус дроссельной заслонки EFII просто дросселирует подачу воздуха и сообщает положение дроссельной заслонки на компьютер.

Очевидно, что большим преимуществом является то, что топливо подается индивидуально в каждый цилиндр, а не в одну точку, как в карбюраторе. Изменения состава смеси ограничены конструкцией впускного коллектора, к чему производитель двигателя может легко приблизиться, плюс вы можете точно настроить состав смеси, заменив форсунки разного размера. Каждый цилиндр может быть более точно оптимизирован для мощности, экономичности и агрессивной работы на обедненных пиках; Таким образом, возможна большая максимальная мощность двигателя по сравнению с рудиментарными карбюраторными системами, а также возможна большая экономичность при наклоне. Система RSA имеет стандартную ручку управления топливной смесью в кабине, а также схему автоматической компенсации высоты, поэтому пилоту не нужно регулировать смесь из-за последующих подъемов или спусков.

В отличие от карбюратора топливо не подается через трубку Вентури внутри топливного сервопривода (все еще есть трубка Вентури для генерации сигнала воздушного потока), поэтому исключается обледенение. Вместо этого предусмотрен альтернативный источник воздуха на тот случай, если воздухозаборник главного двигателя забьется туалетной бумагой, когда вы разрезаете выброшенный за борт рулон — для этого требуется всего один квадрат…

Недостатки: стоимость, сложность и, следовательно, повышенная количество точек отказа. Тем не менее, простую систему Bendix трудно сломать. Мембраны доказали свою пуленепробиваемость, резервный подкачивающий насос спасает положение в случае выхода из строя диафрагменного насоса с приводом от двигателя (редко), оставляя мусор единственной реальной проблемой. Даже в этом случае песок, засоряющий топливный сервопривод, приводит к тому, что система работает на богатой смеси. Простое вытягивание ручки смеси почти до упора на холостом ходу обычно восстанавливает рабочую смесь и, следовательно, мощность.

Что еще более раздражает, маленькие форсунки легко заткнуть мельчайшими кусочками. Обычно это вызывает неровную работу до тех пор, пока форсунки не будут сняты, а мусор не будет промыт обратно. Очевидно, требуется фильтрация топлива и чистота системы.

Без поплавковой камеры система впрыска топлива нуждается в насосе без привода для заливки. На практике электрический насос служит в качестве подкачивающего насоса и в качестве аварийной резервной копии насоса с приводом от двигателя. В остальном система Bendix является чисто механической и не нуждается в электрической системе, тем самым отделяя электрическую систему как точку отказа от топливной системы в полете.

Делитель потока Bendix определяет расход топлива между цилиндрами при низком расходе топлива (холостой ход, очень низкая мощность), обеспечивает принудительное перекрытие потока при выключении двигателя и функционирует как простой распределительный блок при нормальных крейсерских и взлетных режимах мощности. В этих условиях расход топлива определяется размером сопла форсунки.

Редко встречающееся ограничение стандартной системы Bendix заключается в том, что ее окно измерения топлива может быть немного уже, чем необходимо, поэтому измерение топлива на горячем двигателе большого объема может стать все более неточным при сильном наклоне. Это не обычная проблема для обычных двигателей, но с мощными экспериментальными двигателями система подает топливо точно при WOT и крейсерских режимах с высокой мощностью, но различия между цилиндрами проявляются при обеднении. -пик при настройках низкой мощности (давление в коллекторе). Подумайте о RV-10, который чуть не задохнулся на высоте 12 000 футов. Тщательное согласование диаметров форсунок, давления топлива и давления диафрагменной пружины в делителе потока может решить эту проблему.

Электронная топливная форсунка EFII мощностью 60 фунтов в час определенно больше, чем латунная топливная форсунка Bendix справа. Форсунка EFII представляет собой электромагнитный топливный клапан, который срабатывает дискретными импульсами. Деталь Bendix представляет собой дозированное отверстие, которое непрерывно течет.

Электронный впрыск топлива

Имея немного больше, чем этикетку «впрыск топлива», система EFI, известная нам по автомобилям, полностью отличается от стандартного авиационного механического впрыска топлива с постоянным потоком. Но автомобильный EFI — это то, к чему, похоже, движется экспериментальная авиация, поэтому здесь требуется описание.

В теперь традиционном автомобильном EFI действие начинается с электрического топливного насоса, подающего топливо под дозированным давлением — обычно около 40 фунтов на квадратный дюйм — в топливную рампу. Это простые галереи, установленные сверху и соединяющие отдельные топливные форсунки. Форсунки представляют собой управляемые компьютером электромагнитные клапаны с электрическим приводом; когда они открыты, они распыляют топливо во впускное отверстие.

Конечно есть фильтры и топливные регуляторы, а топливо может либо бежать по постоянному контуру из топливного бака, через топливные рампы и обратно в топливный бак (старая школа, меньше нагрев топлива на форсунке при горячих пусках ) или иметь одностороннюю безвозвратную конструкцию (новая конструкция, основанная на выбросах, с меньшим нагревом топлива и вызывающим испарение перемешиванием топлива в баке).

Топливные форсунки Bendix уже много лет состоят из двух частей, что упрощает осмотр, очистку и замену форсунок. Нижняя латунная часть содержит внутреннюю камеру, сообщающуюся с атмосферой через перфорированную сетку. Воздух, всасываемый через сетку при низком давлении в коллекторе, смешивается с топливом, способствуя распылению. Маленькая буква «А» на шестиграннике должна быть установлена ​​лицевой стороной вниз; Это удерживает вентиляционное отверстие вверх, чтобы топливо не вытекало при остановке двигателя.

Преимуществом EFI является компьютерное управление. Небольшая армия датчиков измеряет многие параметры, включая частоту вращения двигателя, положение коленвала, распредвала и дроссельной заслонки, а масса всасываемого воздуха измеряется непосредственно датчиком массы воздуха с термопроводом. Примерно десять раз в секунду компьютер использует всю эту информацию для расчета времени и продолжительности включения форсунок, тем самым контролируя соотношение воздух/топливо в зависимости от количества подаваемого топлива.

Непосредственный впрыск бензина — новая норма в автомобилестроении. Концептуально аналогично дизельной практике, топливо под очень высоким давлением впрыскивается непосредственно в камеру сгорания, получая полезный эффект гашения. Включение GDI 2500 фунтов на квадратный дюйм в устаревшие авиационные двигатели практически потребовало бы полной модернизации двигателя в дополнение к дорогостоящему топливному насосу высокого давления и надежным форсункам.

Стратегии автомобильных компьютеров сильно различаются у разных производителей, и расчеты более сложны, чем измерение оборотов и расхода воздуха, а затем просмотр значений искры и топлива в таблице. И да, компьютер также контролирует момент зажигания и момент распредвала (иногда это четыре распредвала, движущихся независимо друг от друга) и запрограммирован корректировать расчеты топлива (и искры, и распредвала) по мере необходимости, возможно, по 30 различным параметрам. К ним относятся температура охлаждающей жидкости двигателя, скорость ускорения двигателя, входной сигнал датчика детонации, передача трансмиссии, требования к выбросам, такие как функция рециркуляции отработавших газов и продувка угольного фильтра, обогащение WOT, вспомогательные нагрузки от кондиционера и, возможно, генератора переменного тока, декомпрессия двигателя. настройка при переключении АКПП, аварийное воздушное охлаждение двигателя (путем отключения цилиндров) в случае потери охлаждающей жидкости и, по-видимому, при включенном плафоне. Эти системы даже слегка адаптируются к историческому стилю вождения водителя, а иногда также регулируются в соответствии с условиями сцепления (снег, дождь, грязь, сухая дорога) по выбору водителя на циферблате. Адаптация программного кода к конкретному двигателю и автомобильному приложению, называемая картированием, является длительным и трудоемким процессом для производителя; четырем техническим специалистам, имеющим доступ ко всем инструментам, лаборатории климат-контроля и множеству испытательных полигонов по всему миру (в Абу-Даби летом и в Фэрбенксе зимой), может потребоваться три года, чтобы полностью отобразить программное обеспечение для управления новым двигателем. Такие вещи, как настройка стратегии холодного пуска, могут занять недели, чтобы составить карту просто потому, что вы получаете только один холодный пуск за ночное прогревание. Вы поняли идею.

В 1980-х годах такие системы запускали сразу все топливные форсунки (зажигание партии) или по одному ряду цилиндров в V-образном двигателе за раз (зажигание группы). Но с достижениями в области вычислений последовательное срабатывание давно стало нормой, когда срабатывание форсунки синхронизировано с порядком зажигания цилиндра. Эффективность периодического и последовательного сжигания невелика и в основном определяется выбросами и переходной характеристикой (изменениями оборотов двигателя).

В то время как в электронных форсунках используется один игольчатый клапан, они выпускают поток топлива с давлением 35+ фунтов на квадратный дюйм через выпускное отверстие с несколькими отверстиями, чтобы разбить поток на капли. Для сравнения, сопло Bendix впрыскивает постоянный поток через одно большое отверстие при давлении от 1 до 7 фунтов на квадратный дюйм.

EFI on the Fly

Сегодня такие компании, как EFII (помимо описанной здесь системы EFII, существует еще несколько других) предлагают послепродажные электронные системы впрыска топлива через порт для Lycomings. Как и только что описанные автоматические системы, это на самом деле системы управления двигателем, включающие зажигание вместе с топливом. В отличие от автоматических систем, авиационные системы (в том числе разработки Continental и Lycoming, которые еще не вышли на рынок) намного проще в том смысле, что они связаны исключительно с двигателем и не беспокоятся о взаимодействии с остальной частью самолета (реагируя на движение винта). шаг или положение закрылков, скажем). Кроме того, авиационные двигатели работают в гораздо более узком диапазоне оборотов и изменяют обороты намного реже и медленнее, чем автомобильные двигатели, датчики детонации не используются, потому что наши двигатели с воздушным охлаждением с неустойчивым допуском механически слишком шумны, а 100LL универсален. Система EFII также работает в периодическом режиме, что устраняет необходимость в датчике распредвала.

Кроме того, в отличие от автомобильных систем массового воздуха , авиационные системы EFI имеют плотность скорости. Они не измеряют массу воздуха напрямую, а выводят ее из температуры воздуха, атмосферного давления и оборотов двигателя. Это заметно дешевле, но требует сопоставления программного обеспечения с каждым двигателем, и если что-то значимое изменяется (синхронизация кулачка), его необходимо переназначить. К счастью, требования к отображению для наших авиационных приложений значительно упрощены по сравнению с автомобильными. Черт возьми, вашему газонному трактору могло бы потребоваться больше карт, если бы это был EFI.

Такие авиационные системы послепродажного обслуживания являются большим шагом вперед и предоставляют экспериментаторам новые возможности. В конечном счете, такие экипировки, как EFII, SDS, Precision Airmotive и другие, среди прочего показывают путь к снижению рабочей нагрузки пилота и более легкой экономии топлива. Но они являются товарами послепродажного обслуживания с крошечными бюджетами на разработку, а также требуют современного мышления и абсолютно зависят от электричества. Если этот электрический топливный насос выйдет из строя, он станет очень тихим, поэтому самолет с EFI должен быть электрически надежным. Профессиональные стандарты электропроводки, двойные генераторы переменного тока, батареи, шины или их комбинация являются обязательными. Короче говоря, EFI нуждается в интеграции во весь планер и мышление строителя.

При одинаковых рабочих условиях на испытательном стенде EFII форсунка Bendix (слева) выпускает ровный, густой поток бензина с давлением 3 фунта на кв. дюйм, а инжектор EFII выпускает импульсы капель топлива с давлением 35 фунтов на квадратный дюйм. Лучшее распыление EFI увеличивает мощность при частичной нагрузке и более низких оборотах; в WOT резкое изменение давления при открытии впускного клапана превращает даже лужу топлива в распыленное облако.

Горячие и холодные коллекторы

И последнее: горячие впускные коллекторы. В плоскомоторном начале (1940s), обледенение карбюратора было большим страхом, и простой ответ заключался в предварительном подогреве всасываемого воздуха. Простое решение для горизонтально-оппозитного двигателя состоит в том, чтобы упаковать впускные направляющие через масляный поддон. Это уменьшает обледенение на впуске, а также плотность воздуха и, следовательно, мощность.

В ответ рынок запасных частей для авиации предлагает воздухозаборники холодного воздуха для использования с впрыском топлива, и они необходимы, если целью является максимальная мощность или топливная экономичность. В то время как эти воздухозаборники создают мощность, недавние тесты показывают, что большая часть их прироста связана с чем-то другим, помимо более холодного всасываемого воздуха. Оптимизированная длина и форма рабочего колеса, а также объем камеры и другие настройки, вероятно, являются их самыми большими преимуществами.

К сожалению, эти системы слишком дороги в условиях послепродажного эффекта масштаба, чтобы обеспечить экономию топлива, поэтому они остаются хот-родом для пилотажа и гонок. Но они доступны, если вы экспериментируете с максимальной эффективностью или вам нужна скорость.

Впускные трубы Lycoming являются очевидным и удобным местом для добавления электронной топливной форсунки, как показано на этой сборке EFII. На то, чтобы форсунка дула в воздушный поток, требуется секунда, это сделано для того, чтобы топливные магистрали оставались над форсункой, чтобы пузырьки воздуха, образующиеся при остановке двигателя, самопродувались, а не затрудняли горячий пуск.

Будущее

Забегая вперед, электронное управление двигателем (впрыск топлива и зажигание управляются одним компьютером) кажется очевидным, поскольку новые самолеты становятся все более электронными и надежными. Уменьшенная нагрузка на пилота (отсутствие ручки управления смесью), более легкий запуск, более плавная работа, лучшая экономия топлива, большая мощность на высоте (меньше осечек и регулируемое опережение зажигания), беспроблемный крейсерский режим на обедненных пиках и меньшее загрязнение свечей зажигания (на ровной поверхности). эксплуатации) все преимущества. Тем не менее, такие системы более дороги и относительно не испытаны в самолетах. В краткосрочной перспективе финансовая реальность показывает, что у устаревших авиационных систем впуска еще много времени, когда дело доходит до наддува наших простых двигателей с постоянными оборотами. В долгосрочной перспективе марш прогресса продолжится.

Карбюраторы поплавкового типа — дозирование топлива поршневого двигателя


Карбюратор поплавкового типа состоит в основном из шести подсистем, которые регулируют количество выбрасываемого топлива в зависимости от потока воздуха, подаваемого в цилиндры двигателя. Эти системы работают вместе, чтобы обеспечить двигатель правильным потоком топлива во всех рабочих диапазонах двигателя.

Основные подсистемы поплавкового карбюратора показаны на рисунке 1.

Рисунок 1. Карбюратор с поплавковым типом

Эти системы:

  1. Systemer Systemer Systemer
  2. Система
  3. .
  4. Система экономайзера

Система механизма поплавковой камеры

Поплавковая камера расположена между подачей топлива и основной дозирующей системой карбюратора. Поплавковая камера или чаша служит резервуаром для топлива в карбюраторе. [Рисунок 2] Эта камера обеспечивает почти постоянный уровень топлива в главном нагнетательном сопле, который обычно находится примерно на 1/8 дюйма ниже отверстий в главном нагнетательном сопле. Уровень топлива должен поддерживаться немного ниже выпускных отверстий нагнетательного сопла, чтобы обеспечить правильный расход топлива и предотвратить утечку топлива из форсунки при неработающем двигателе.0003

Рис. 2. Поплавковая камера со снятым поплавком сиденье. Седло иглы обычно изготавливается из бронзы. Игольчатый клапан изготовлен из закаленной стали или может иметь секцию из синтетического каучука, подходящую к седлу. При отсутствии топлива в поплавковой камере поплавок опускается к дну камеры и позволяет игольчатому клапану широко открываться. Когда топливо поступает из линии подачи, поплавок поднимается (плавает в топливе) и закрывает игольчатый клапан, когда топливо достигает заданного уровня. Когда двигатель работает, и топливо вытекает из поплавковой камеры, клапан занимает промежуточное положение, так что открытия клапана достаточно для подачи необходимого количества топлива и поддержания постоянного уровня. [Рисунок 1] Если обнаружена утечка топлива из нагнетательного патрубка карбюратора при неработающем двигателе, наиболее вероятной причиной является негерметичность поплавкового игольчатого клапана и седла, которые необходимо заменить.

При правильном уровне топлива (поплавковая камера) скорость нагнетания точно регулируется скоростью воздуха через трубку Вентури карбюратора, где падение давления на нагнетательном сопле заставляет топливо поступать во всасываемый воздушный поток. Атмосферное давление над топливом в поплавковой камере вытесняет топливо из нагнетательного сопла. Вентиляционное отверстие или небольшое отверстие в верхней части поплавковой камеры позволяет воздуху входить или выходить из камеры по мере повышения или понижения уровня топлива.

Главная дозирующая система

Основная дозирующая система подает топливо в двигатель на всех оборотах выше холостого хода и состоит из:

  1. Вентури
  2. Главный дозирующий жиклер
  3. Главный выпускной патрубок
  4. Канал, ведущий к системе 27 дросселирования 901 клапан

Поскольку дроссельный клапан регулирует массовый расход воздуха через карбюратор Вентури, его следует рассматривать как основной узел в основной дозирующей системе, а также в других карбюраторных системах. Типичная главная измерительная система показана на рисунке 3.

Рис. 3. Основная дозирующая система

Трубка Вентури выполняет три функции:

  1. Дозирует топливно-воздушную смесь
  2. Уменьшает давление на нагнетательном сопле
  3. Ограничивает поток воздуха при полном газе в стволе карбюратора так, чтобы его открытый конец находился в горловине или в самой узкой части трубки Вентури. Главное дозирующее отверстие, или жиклер, расположено в топливном канале между поплавковой камерой и нагнетательным соплом, чтобы ограничить поток топлива, когда дроссельная заслонка широко открыта.

    При вращении коленчатого вала двигателя при открытой дроссельной заслонке карбюратора создаваемое во впускном коллекторе низкое давление воздействует на воздух, проходящий через камеру карбюратора. Из-за разницы давлений между атмосферой и впускным коллектором воздух поступает из воздухозаборника через корпус карбюратора во впускной коллектор. Объем воздушного потока зависит от степени открытия дроссельной заслонки. Когда воздух проходит через трубку Вентури, его скорость увеличивается. Это увеличение скорости создает область низкого давления в горловине Вентури. Форсунка подачи топлива подвергается воздействию этого низкого давления. Поскольку поплавковая камера вентилируется до атмосферного давления, создается перепад давления на выпускном сопле. Именно эта разница давлений, или сила дозирования, заставляет топливо вытекать из нагнетательного сопла. Топливо выходит из форсунки в виде тонкой струи, и мельчайшие частицы топлива в струе быстро испаряются в воздухе.

    Дозирующее усилие (перепад давления) в большинстве карбюраторов увеличивается по мере увеличения открытия дроссельной заслонки. Топливо должно быть поднято в нагнетательном патрубке до уровня, при котором оно выбрасывается в воздушный поток. Для этого требуется перепад давления 0,5″ рт. ст. При значительном уменьшении дозирующего усилия на низких оборотах двигателя подача топлива из нагнетательного сопла уменьшается, если в карбюратор не встроен воздухоотводчик (воздушный дозирующий жиклер). Уменьшение расхода топлива по отношению к расходу воздуха обусловлено двумя факторами:

    1. Топливо имеет тенденцию прилипать к стенкам нагнетательного сопла и периодически отрываться большими каплями вместо того, чтобы образовывать мелкие брызги.
    2. Часть дозирующего усилия требуется для подъема уровня топлива от уровня поплавковой камеры до выпускного отверстия нагнетательного сопла.

    Основной принцип отвода воздуха можно пояснить с помощью простых схем, как показано на рис. 4. В каждом случае одинаковая степень всасывания применяется к вертикальной трубке, помещенной в емкость с жидкостью. Как показано на рисунке А, сила всасывания, прикладываемая к верхнему концу трубки, достаточна для того, чтобы поднять жидкость примерно на 1 дюйм над поверхностью. Если сделать небольшое отверстие в боковой стенке трубки над поверхностью жидкости, как в случае В, и применить отсос, пузырьки воздуха попадают в трубку, и жидкость вытягивается непрерывной серией мелких порций или капель. Таким образом, воздух «всасывается» в трубку и частично уменьшает силы, стремящиеся задержать поток жидкости через трубку. Однако большое отверстие в нижней части трубки эффективно предотвращает сильное всасывание, оказываемое на отверстие для выпуска воздуха или вентиляционное отверстие. Точно так же отверстие для выпуска воздуха, слишком большое по сравнению с размером трубы, уменьшит всасывание, доступное для подъема жидкости. Если модифицировать систему, поместив дозирующее отверстие на дно трубки и всасывая воздух ниже уровня топлива с помощью воздухоотводной трубки, то в трубке образуется мелкодисперсная смесь воздуха и жидкости, как показано на рис. С.

    Рис. 4. Принцип отбора воздуха

    В карбюраторе небольшой отвод воздуха осуществляется немного ниже уровня топлива в топливную форсунку. Открытый конец воздухозаборника находится в пространстве за стенкой Вентури, где воздух относительно неподвижен и находится под давлением, близким к атмосферному. Низкое давление на конце форсунки не только всасывает топливо из поплавковой камеры, но и всасывает воздух из-за трубки Вентури. Воздух, подаваемый в главную дозирующую топливную систему, снижает плотность топлива и разрушает поверхностное натяжение. Это приводит к лучшему испарению и контролю расхода топлива, особенно при более низких оборотах двигателя. Дроссельная заслонка или дроссельная заслонка расположена в цилиндре карбюратора рядом с одним концом трубки Вентури. Он обеспечивает средства управления частотой вращения двигателя или выходной мощностью путем регулирования потока воздуха к двигателю. Этот клапан представляет собой диск, который может вращаться вокруг оси, так что его можно поворачивать, чтобы открыть или закрыть воздушный канал карбюратора.


    Система холостого хода

    Когда дроссельная заслонка закрыта на холостом ходу, скорость воздуха через трубку Вентури настолько мала, что он не может получить достаточно топлива из основного нагнетательного сопла; на самом деле распыление топлива может вообще прекратиться. Однако на дроссельной заслонке со стороны двигателя существует низкое давление (всасывание поршня). Для обеспечения работы двигателя на холостом ходу предусмотрен топливный канал для выпуска топлива из отверстия в зоне низкого давления рядом с краем дроссельной заслонки. [Рисунок 5] Это отверстие называется жиклером холостого хода. Когда дроссельная заслонка открыта настолько, что работает основная нагнетательная форсунка, топливо не вытекает из жиклера холостого хода. Как только дроссельная заслонка закрывается достаточно далеко, чтобы остановить струю из основного нагнетательного сопла, топливо вытекает из жиклера холостого хода. Отдельный воздухозаборник, известный как воздухозаборник холостого хода, входит в состав системы холостого хода. Он работает так же, как основной воздухоотводчик. Устройство регулировки смеси холостого хода также включено. Типичная система холостого хода показана на рис. 6.9.0003

    Figure 5. Throttle action in idle position

    Figure 6. Idling system

    Mixture Control System

    С увеличением высоты воздух становится менее плотным. На высоте 18 000 футов воздух вдвое менее плотный, чем на уровне моря. Это означает, что кубический фут пространства содержит вдвое меньше воздуха на высоте 18 000 футов, чем на уровне моря. Цилиндр двигателя, наполненный воздухом на высоте 18 000 футов, содержит вдвое меньше кислорода, чем цилиндр, наполненный воздухом на уровне моря.

    Область низкого давления, создаваемая трубкой Вентури, зависит от скорости воздуха, а не от его плотности. Действие трубки Вентури всасывает тот же объем топлива через выпускное сопло на большой высоте, что и на малой высоте. Поэтому топливная смесь становится богаче с увеличением высоты. Это можно преодолеть либо с помощью ручного, либо автоматического управления смесью.

    В карбюраторах поплавкового типа для управления топливно-воздушными смесями обычно используются два типа чисто ручных или управляемых из кабины устройств: игольчатый и с обратным всасыванием. [Рисунки 7 и 8]

    Рис.

    В игольчатой ​​системе ручное управление обеспечивается игольчатым клапаном в основании поплавковой камеры. [Рисунок 7] Его можно поднять или опустить, отрегулировав элемент управления в кабине. При переводе регулятора в положение «богатый» игольчатый клапан широко открывается, что позволяет топливу беспрепятственно поступать к форсунке. При переводе регулятора в положение «обеднение» клапан частично закрывается и ограничивается подача топлива к форсунке.

    Наиболее распространена система регулирования смеси с обратным всасыванием. [Рисунок 8] В этой системе определенное количество низкого давления Вентури воздействует на топливо в поплавковой камере, так что оно противодействует низкому давлению, существующему в главном выпускном сопле. Атмосферная линия с регулируемым клапаном открывается в поплавковую камеру. Когда клапан полностью закрыт, давление топлива в поплавковой камере и на нагнетательном сопле почти одинаковое, и подача топлива уменьшается до максимальной обедненной смеси. При широко открытом клапане давление топлива в поплавковой камере наибольшее, а топливная смесь самая богатая. Регулировка клапана в положения между этими двумя крайними положениями регулирует смесь. Квадрант в кабине обычно помечен как «худой» ближе к задней части и «богатый» спереди. Крайнее заднее положение маркируется как «отсечка холостого хода» и используется при остановке двигателя.

    На поплавковых карбюраторах, оснащенных игольчатым регулятором смеси, установка регулятора смеси в положение отсечки холостого хода запирает игольчатый клапан, полностью перекрывая подачу топлива. В карбюраторах, оснащенных регуляторами смеси с обратным всасыванием, предусмотрена отдельная линия отсечки холостого хода, ведущая к крайне низкому давлению на дроссельной заслонке со стороны двигателя. (См. пунктирную линию на рис. 8.) Регулятор состава смеси так связан, что при переводе его в положение «отключение холостого хода» он открывает еще один проход, ведущий к всасыванию поршня. При установке в другие положения клапан открывает проход, ведущий в атмосферу. Чтобы остановить двигатель с такой системой, закройте дроссельную заслонку и поставьте смесь в положение «отсечки холостого хода». Оставьте дроссельную заслонку до тех пор, пока двигатель не остановится, а затем полностью откройте дроссельную заслонку.

    Ускорительная система

    При быстром открытии дроссельной заслонки большой объем воздуха проходит через воздушный канал карбюратора; количество топлива, которое смешивается с воздухом, меньше нормы из-за низкой скорости срабатывания основной дозирующей системы. В результате после быстрого открытия дроссельной заслонки топливно-воздушная смесь на мгновение обедняется. Это может привести к тому, что двигатель будет медленно разгоняться или спотыкаться при попытке разогнаться.

    Чтобы преодолеть эту тенденцию, карбюратор оснащен небольшим топливным насосом, называемым ускорительным насосом. Распространенный тип ускорительной системы, используемой в поплавковых карбюраторах, показан на рисунке 9.. Он состоит из простого поршневого насоса, приводимого в действие дроссельной заслонкой, и канала, открывающегося в основную дозирующую систему или цилиндр карбюратора рядом с трубкой Вентури. Когда дроссельная заслонка закрыта, поршень движется назад, и топливо заполняет цилиндр. Если поршень медленно продвигается вперед, топливо просачивается через него обратно в поплавковую камеру; при быстром нажатии он распыляет топливо в трубке Вентури и обогащает смесь. Пример ускорительного насоса в разрезе показан на рис. 10.

    Figure 9. Accelerating system

    Figure 10. Accelerating pump shown in cutaway

    Economizer System

    For an чтобы двигатель развивал максимальную мощность на полном газу, топливная смесь должна быть богаче, чем для круиза. Дополнительное топливо используется для охлаждения камер сгорания двигателя для предотвращения детонации. Экономайзер — это, по сути, клапан, который закрывается при настройках дроссельной заслонки ниже примерно 60–70 процентов от номинальной мощности. Эта система, как и система ускорения, управляется дроссельной заслонкой.

    Типичная система экономайзера состоит из игольчатого клапана, который начинает открываться, когда дроссельный клапан достигает заданного положения, близкого к полностью открытому положению. [Рисунок 11] По мере того, как дроссельная заслонка продолжает открываться, игольчатый клапан открывается еще больше, и через него проходит дополнительное топливо. Это дополнительное топливо дополняет поток от основного дозирующего жиклера непосредственно к основному выпускному соплу.

    Рисунок 11. Система экономайзера с игольчатым клапаном


    Система экономайзера, работающая под давлением, показана на рис. 12. Этот тип имеет герметичный сильфон, расположенный в закрытом отсеке. Отсек вентилируется до давления в коллекторе двигателя. Когда давление в коллекторе достигает определенного значения, сильфон сжимается и открывает клапан в топливном канале карбюратора, дополняя нормальное количество топлива, выбрасываемого через главный жиклер.

    Рис. 12. Система экономайзера, работающего под давлением


    Другим типом экономайзера является система обратного всасывания. [Рис. 13] Экономия топлива в крейсерском режиме обеспечивается за счет снижения эффективного давления, действующего на уровень топлива в поплавковом отсеке.

    Когда дроссельная заслонка находится в крейсерском положении, всасывание подается на поплавковую камеру через отверстие экономайзера, канал и жиклер обратного всасывания экономайзера. Всасывание, действующее на поплавковую камеру, противодействует всасыванию сопла, создаваемому трубкой Вентури. Расход топлива уменьшается, смесь обедняется для крейсерской экономичности.

    Рис. 13. Поплавковый карбюратор

    Другой тип стационарной системы контроля смеси использует дозирующий клапан, который может свободно вращаться в дозирующей втулке. Топливо поступает в основную и систему холостого хода через щель, прорезанную в смесительной втулке. Дозирование топлива осуществляется относительным положением между одним краем прорези в полом дозирующем клапане и одним краем прорези в дозирующей втулке. Перемещение регулятора смеси для уменьшения размера прорези обеспечивает более бедную смесь для компенсации высоты.