28Апр

Порядок работы шестицилиндрового рядного двигателя: Порядок работы двигателя с 4, 6, 8 цилиндрами — просто о сложном

Содержание

Порядок работы двигателя с 4, 6, 8 цилиндрами — просто о сложном

Порядок работы двигателя с 4, 6, 8 цилиндрами — просто о сложном

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя?

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:

-расположение цилиндров двигателя: однорядное или V-образное;
-количество цилиндров;

-конструкция распредвала;
-тип и конструкция коленвала.

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.

Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ.

Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее.

Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 72° . У 2-х тактного двигателя 360° .

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 180° , ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).

Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 120° ).

Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 90° ).

Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 90° .

То есть если в 1 цилиндре происходит рабочий цикл, точерез 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам.

Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля.

Поделиться новостью с друзьями:

Похожее

Порядок работы двигателя 6 цилиндров автомобиля

Для обычного автовладельца принцип работы двигателя, например, шестицилиндрового, является чем-то вроде магии, интересной лишь автомеханикам и гонщикам.

С одной стороны, у большинства действительно нет никакой нужды в этой информации. Но с другой, отсутствие этих знаний порождает необходимость ехать на поклон в автосервис, чтобы решить простейшие задачи.

Содержание статьи

Немного о ДВС

Знание об устройстве и работе автомобиля пойдет большим плюсом в личное дело любого автолюбителя. Особенно это касается движка – важнейшего элемента и сердца железного коня. ДВС имеет уйму разновидностей – начиная от типа горючего и заканчивая уникальными для каждого авто мелкими нюансами.

Но суть работы примерно одинакова:

  1. Горючая смесь (топливо и кислород, без которого ничего гореть не будет) попадает в цилиндр двигателя и воспламеняется свечей зажигания.
  2. Энергия взрыва смеси толкает поршень внутри цилиндра, который, опускаясь, вращает коленвал. При вращении, коленвал поднимает к распределительному валу (который отвечает за подачу смеси через клапана) следующий цилиндр.

Благодаря последовательной работе цилиндров, коленвал находится в постоянном движении, образуя крутящий момент. Чем больше цилиндров – тем легче и быстрее будет вращаться коленвал. Вот и нарисовалась схема, знакомая даже школьникам, не разбирающимся в матчасти – больше цилиндров – мощнее мотор.

Порядок работы двигателя

Если объяснять по-простому, то порядок работы двигателя – это выверенная последовательность и интервал работы его цилиндров. Как правило, цилиндры мотора не работают строго по очереди (за исключением двухцилиндровых моторчиков). Этому способствует «змейкообразная» форма коленвала.

Порядок работы движка всегда начинается с первого цилиндра. А вот дальнейший цикл уже у всех разный. Причем даже у однотипных моторов разных модификаций. Знание этих нюансов будет необходимым, если вы захотите откалибровать работу клапанов или настроить зажигание. Поверьте, просьба подключить высоковольтные провода на автосервисе вызовет у мастеров чувство жалости.

Шестицилиндровый двигатель

Вот мы и добрались до сути. Порядок работы такого ДВС будет зависеть от того, как именно 6 цилиндров расположены. Здесь выделяют три типа — рядный, V-образный и оппозитный.

Стоит поподробнее остановиться на каждом:

  • Рядный двигатель. Такая конфигурация горячо любима немцами (в автомобилях BMW, AUDI и т.п. такой движок будет именоваться R6. Европейцы и американцы предпочитают маркировки l6 и L6). В отличии от европейцев, почти повсеместно оставивших рядные двигатели в прошлом, у BMW таким типом мотора может похвастаться даже навороченный X шестой. Порядок работы у таких 1 — 5 — 3 — 6 — 2 — 4 цилиндры соответственно. Но можно встретить и варианты 1 — 4 — 2 — 6 — 3 — 5 и 1 — 3 — 5 — 6 — 4 — 2
    .
  • V-образный движок. Цилиндры расположены по три в два ряда, пересекающихся снизу, образуя букву V. Хоть такая технология и пошла на конвейер в 1950 году, менее актуальной она не стала, комплектуя самых современных железных коней. Последовательность у таких движков 1 — 2 — 3 — 4 — 5 — 6. Реже 1 — 6 — 5 — 2 — 3 — 4.
  • Оппозитный мотор. Традиционно используется японцами. Чаще всего можно встретить на Субару и Сузуки. Двигатель такой компоновки будет функционировать по схеме 1 — 4 — 5 — 2 — 3 — 6.

Владея даже этими схемами, вы сможете грамотно подрегулировать клапана. Не обязательно вдаваться в историю развития технологий, физические характеристики и сложные формулы расчета – оставим это подлинным фанатам темы. Наша цель – научится самостоятельно делать то, что вообще возможно сделать самостоятельно. Ну а знание о функционале вашего мотора идет приятным бонусом.

Видео пример работы 6-ти цилиндров

Порядок работы цилиндров двигателя внутреннего снорания.

Порядок работы цилиндров двигателя разных авто Порядок работы цилиндров в разных двигателях

К такому двигателю относится четырехтактный дизель ЯМЗ-236. Угол развала между его цилиндрами равен 900. Колена коленчатого вала расположены в трех плоскостях под углом 1200 одно к другому. Особенностью этого двигателя является коленчатый вал, имеющий три кривошипа, к каждому из которых присоединено по два шатуна: к первому кривошипу - шатуны первого и четвертого цилиндров; ко второму второго и пятого цилиндров и к третьему - третьего и шестого цилиндров.

В этом двигателе, имеющем порядок работы 1 - 4 - 2 - 5 - 3 - 6, одноименные такты в цилиндрах происходят неравномерно через 90 и 1500 (табл. 4). Если в первом цилиндре осуществляется рабочий ход, то в четвертом он начинается через 900, во втором - через 1500, в пятом - через 900, в третьем через 1500 и в шестом - через 900. Поэтому двигатель ЯМЗ-236 имеет повышенную неравномерность хода и в нем приходится устанавливать на коленчатом валу маховик с относительно большим моментом инерции (на 60070% большим, чем для однорядного двигателя).

Восьмицилиндровый V-образный двигатель. Цилиндры в таком двигателе (например, двигатели автомобилей ГАЗ-53А, ГАЗ-53-12, ЗИЛ и КамАЗ-5320) расположены под углом 900 один к другому (рис. 24,6). Одноименные такты в цилиндрах начинаются через угол поворота коленчатого вала.

Рис. 24 - Схемы кривошипно-шатунного механизма четырехтактных V -образных двигателей:

а - шестицилиндрового; б - восьмицилиндрового; 1-8 - цилиндры.

Таблица 4. Чередование тактов в четырехтактном V -образном шестицилиндровом двигателе с порядком работы 1 - 4 - 2 - 5 - 3 - 6.

Впуск равный 720: 8 = 900. Следовательно, кривошипы коленчатого вала расположены крестообразно под углом 900. К первому кривошипу присоединены шатуны первого и пятого цилиндров, ко второму - второго и шестого цилиндров, к третьему - третьего и седьмого цилиндров, к четвертому - четвертого и восьмого цилиндров. В восьмицилиндровом четырехтактном двигателе за два оборота коленчатого вала совершается восемь рабочих ходов. Перекрытие рабочих ходов в различных цилиндрах происходит в течение поворота коленчатого вала на угол 90С, что способствует его равномерному вращению. Порядок работы восьмицилиндрового двигателя 1 - 5 - 4 - 2 - 6 - 3 - 7 - 8 (табл. 5).

Таблица 5. Чередование тактов в четырехтактном V -образном с порядком работы 1 - 5 - 4 - 2 - 6.


Зная порядок работы цилиндров двигателя, можно правильно распределить провода по свечам зажигания, присоединить топливопровод к форсункам и отрегулировать клапаны.

Обычно автовладельцы не задумываются о порядке активности цилиндров двигателя своего автомобиля, ограничиваясь знанием числа таковых. И в большинстве случаев просто нет необходимости углубляться в такие технические детали. Но информация о работе цилиндров оказывается полезной, когда нужно, например, выставить зажигания или отрегулировать клапана, в других ситуациях самостоятельной наладки и ремонта, когда нужно починить автомобиль без возможности добраться до СТО, или просто при желании сделать все самому. Далее мы узнаем, каков порядок работы 4-цилиндрового двигателя, и выясним последовательность для некоторых других компоновок.

Теория работы ДВС

Общий принцип функционирования двигателей на бензине или дизтопливе известен, пожалуй, всем – топливо, сгорая в цилиндрах, создает давление газов, которые толкают поршни, и далее усилие преобразуется в крутящий момент, идущий на колеса.

Для того, чтобы двигатель работал равномерно, сгорание топлива происходит не во всех цилиндрах одновременно, а в определенном порядке. За его соблюдение отвечают:

  • конструкция газораспределительного механизма;
  • углы между кривошипами коленвала автомобиля;
  • расположение цилиндров – V-подобное или рядное;
  • устройство системы зажигания для бензиновых авто, и ТНВД – у дизельных.

Как проходит рабочий цикл

Весь процесс впрыска топлива, его зажигания, работы поршней и выброса отработанных газов называется «рабочим циклом». Рассмотрим его на примере бензинового четырехтактного ДВС, стандартного для множества легковых автомобилей.

Цикл, как видно из названия, делится на четыре такта работы:

В этом состоянии впускной клапан в открытом состоянии, выпускной, наоборот, закрыт, поршень идет в нижнем направлении, в цилиндр попадает подготовленная топливовоздушная смесь.

Все клапаны цилиндра закрыты, а поршень двигается вверх и сжимает впрыснутую ранее смесь до заданных параметров.

Клапаны по-прежнему открыты, смесь поджигается, образуя газы. Их давление начинает двигать поршень вниз, а последний вращает коленвал.

По завершению рабочего хода клапан выпуска открывается, коленвал двигает поршень вверх, и тот вытесняет отработанные газы в выпускной коллектор.

Иллюстрация процесса:

Интересно: у дизельного двигателя цикл иной. При впуске всасывается только воздух, а горючее впрыскивается посредством ТНВД уже после сжатия воздушной массы в цилиндре. Контактируя с разогретым от сжатия воздухом, дизтопливо воспламеняется.

Чтобы обеспечить стабильную и непрерывную работу, горючее в цилиндрах (иногда называемых «горшками») воспламеняется в особой последовательности. Порядок работы двигателя должен соблюдаться, чтобы создавалось равномерное действие на коленвал.

Очередность цилиндров

Цилиндры имеют номера, в документации их описывают в формате A-B-C-D, где вместо букв указывается цифровое обозначение. Порядок нумерации начинается со стороны цепи или ремня ГРМ – с самого удаленного от коробки передач цилиндра. Тот, что носит номер 1, называется главным.

Важно: если цилиндры работают последовательно, они не должны быть расположены рядом. Именно с учетом этого условия производители моторов разработали определенные схемы порядка чередования тактов.

Цилиндры оснащены клапанами, через которые осуществляется впуск и выпуск газов. Клапанами управляет специальное устройство – распределительный вал, на поверхности которого особым образом расположены специальные кулачки. Именно их расположение отвечает за порядок работы: профиль кулачка и его высота влияет на моменты закрытия-открытия, величину сечения прохода для газов, а также на то, как будет двигаться клапан в зависимости от текущего угла коленвала.

Один из вариантов распредвала:


Коленвал:


Цикл стандартного ДВС на 4 такта проходит за 2 оборота, или за 720 градусов (360 и 360). Расположенные на валу «коленца» смещены на некоторый угол таким образом, чтобы усилие с поршней двигателя постоянно передавалось на вал. Упомянутый угол – величина, зависящая от модели двигателя, тактности такового, и количества цилиндров.

Рассмотрим типичный порядок у некоторых двигателей.

Рядный 4-цилиндровый

Существует две популярные компоновки таких ДВС:

  • рядная;
  • оппозитная.

Первое означает расположение цилиндров последовательно, в один ряд, а поршни мотора вращают общий коленвал. Двигатели нередко описывают сокращением I4 или L4, можно также встретить название Inline 4 и вариации. Инженеры располагают цилиндры и вертикально, и под некоторым углом – в зависимости от конструкции двигателя.

Пример блока цилиндров:


Эта цилиндровая компоновка получила широкое распространение в массовых моделях автомобилей, а также в тех транспортных средствах, где важна простота обслуживания и ремонта – внедорожниках, машинах, предназначенных для работы в такси, и т.д.

Кривошипы 1 и 4 цилиндров в конструкции коленвала рядного четырехцилиндрового двигателя расположены под углом 180 град., и под углом 90 – к кривошипам цилиндров 2 и 3. Чтобы создать оптимальное соотношение движущих сил, действующих на кривошипы, двигатели действуют в последовательностях:

  • система 1–2–4–3 – менее популярная;
  • основной вариант 1–3–4–2.

Из отечественных автомашин порядок работы четырехцилиндрового двигателя второго вида использован, к примеру, в продукции концерна ВАЗ, а первый актуален для некоторых двигателей ЗМЗ.

4-цилиндровая оппозитная компоновка

В таком моторе «горшки» размещены в два ряда под 180 градусов. Это позволяет сделать силовой агрегат сбалансированным и снизить центр тяжести, а коленвал получает меньшие нагрузки. Благодаря этому мотор подобной компоновки, при той же массе, выдает больше снимаемой мощности и оборотов.

Цилиндры в этих ДВС работают по отличной схеме: основная 1–3–2–4, и альтернативная 1–4–2–3.

Здесь поршни достигают т.н. «верхней мертвой точки», часто сокращаемой до ВМТ, одновременно с обеих сторон.


Интересно: встречаются машины с V-образными агрегатами на 4 цилиндра, но подобные образцы на рынке относительно редки, основную массу составляют рядные и оппозитные.

Пятицилиндровые

Это агрегаты с 5 цилиндрами, стоящими в ряд. Относительное смещение шатунных шеек коленвала – 72 градуса. Встречаются как двух- так и четырехтактные образцы, для первых (2 такта) стандартный порядок оптимальной работы блока цилиндров для данных двигателей – очередность активации 1–2–4–3–5. Ею обеспечивается равномерность возгорания топлива. Эти моторы широко применяются в судовой технике.

На легковых автомобилях инженерами сообщается иной порядок работе «горшков» 5 цилиндровых типичных двигателей – система 1–2–4–5–3.

Блок цилиндров:

Как действуют ДВС V6

Для эффективности порядка работы сегодняшних шестицилиндровых двигателей таковой строится также по особой системе. Типичный порядок работы 6 цилиндрового двигателя рядного исполнения – метод 1–5–3–6–2–4. В рассматриваемом форм-факторе силовой агрегат получается достаточно длинным и требует большого подкапотного пространства.

Чтобы снизить габариты, иногда применяют «вэ-подобную» систему. Схема порядка работы «горшков» 6 цилиндровых современных двигателей, V образного форм-фактора – очередность активации 1-4-2-5-3-6.

Интересно: рассматриваемая шестицилиндровая конструкция считается одной из наименее сбалансированных.

Агрегат от Audi, для которого актуален указанный порядок работы V-образного шестицилиндрового автомобильного двигателя:


ДВС на 8 цилиндров

Из-за габаритов двигатели делаются V-образной компоновки.

Восьмицилиндровый ДВС от Chevrolet:


Возможный порядок работы восьмицилиндрового двигателя современной машины:

  • вариант 1–5–4–2–6–3–7–8 – основной;
  • принцип 1–8–4–3–6–5–7–2 – другая вариация.

Различие это мнимое и произошло из-за разницы в подсчете цилиндров. В США цилиндр 1 расположен спереди по направлению движения авто, слева, а в европейской системе – справа. Нумерация цилиндров производится в шахматной последовательности, в направлении назад и слева направо, поэтому обе классификации представляют, по сути, одно и то же, что иллюстрирует схема:

Интервал между зажиганием топлива 90 град.

Как определить порядок

Чтобы узнать, по какой схеме работает мотор, необходимо изучать документацию на автомобиль и конкретный силовой агрегат, визуально определить это затруднительно.

Порядок работы цилиндров в разных двигателях отличается, даже с одним и тем же количеством цилиндров порядок работы может быть разным. Рассмотрим, в каком порядке работают серийные двигатели внутреннего сгорания различного расположения цилиндров и их конструктивные особенности. Для удобства описания порядка работы цилиндров, отсчёт будет производиться от первого цилиндра, первый цилиндр- это тот который спереди двигателя, последний, соответственно, возле коробки передач.

3-х цилиндровый

В таких двигателях всего 3 цилиндра и порядок работы самый простой: 1-2-3 . Запомнить легко, и работает быстро.
Схема расположения кривошипов на коленвале выполнена в виде звёздочки, они расположены под углом 120° друг к другу. Вполне возможно применить схему 1-3-2, но производители не стали этого делать. Так что единственной последовательностью работы трёхцилиндрового двигателя является последовательность 1-2-3. Для уравновешивания моментов от сил инерции на таких двигателях применяется противовес.

4-х цилиндровый

Существуют как рядные, так и оппозитные четырёх цилиндровые двигатели, коленвалы у них выполнены по одной и той же схеме, а порядок работы цилиндров разный. Это связано с тем, что угол между парами шатунных шеек равен 180 градусов, то есть, 1 и 4 шейки находятся на противоположных сторонах со 2 и 3 шейками.

1 и 4 шейки с одной стороны, 3 и 4- на противоположной.

В рядном двигатели применяется порядок работы цилиндров 1-3-4-2 — это самая распространённая схема работы, так работают практически все машины, от Жигулей до Мерседеса, бензиновые и дизельные. В ней последовательно работают цилиндры с расположенные на противоположных сторонах шейках коленвала. В данной схеме можно применить последовательность 1-2-4-3, то есть поменять местами цилиндры, шейки которых расположены на одной стороне. Используется в 402 двигателе. Но такая схема встречается крайне редко, в них будет другая последовательность в работе распредвала.

Оппозитный 4-х цилиндровый двигатель имеет другую последовательность: 1-4-2-3 либо 1-3-2-4. Дело в том, что поршни достигают ВМТ одновременно, как с одной стороны, так и с другой. Такие двигатели чаще всего встречаются на Субару (у них почти все оппозитники, кроме некоторых малолитражек для внутреннего рынка).

5-ти цилиндровый

Пятицилиндровые двигатели нередко применялись на Мерседесах или АУДИ, сложность такого коленвала заключается в том, что все шатунные шейки не имеют плоскости симметрии, и развёрнуты относительно друг друга на 72° (360/5=72).

Порядок работы цилиндров 5-ти цилиндрового двигателя: 1-2-4-5-3 ,

6-ти цилиндровый

По расположению цилиндров 6-ти цилиндровые двигатели бывают рядными, V-образными и оппозитными. У 6-ти цилиндрового мотора есть много различных схем последовательности работы цилиндров, они зависят от типа блока и применяемого в нём коленвала.

Рядный

Традиционно применяется такой компанией, как БМВ и некоторыми другими компаниями. Кривошипы расположены под углом 120° друг к другу.

Порядок работы может быть трёх видов:

1-5-3-6-2-4
1-4-2-6-3-5
1-3-5-6-4-2

V-образный

Угол между цилиндрами в таких двигателях составляет 75 либо 90 градусов, а угол между кривошипами составляет 30 и 60 градусов.

Последовательность работы цилиндров 6-ти цилиндрового V-образного двигателя может быть следующей:

1-2-3-4-5-6
1-6-5-2-3-4

Оппозитный

6-ти цилиндровые оппозитники встречаются на автомобилях марки Subaru, это традиционная компоновка двигателей для японцев. Угол между кривошипами коленвала составляет 60 градусов.

Последовательность работы двигателя: 1-4-5-2-3-6.

8-ти цилиндровый

В 8-ми цилиндровых двигателях кривошипы установлены под углом 90 градусов друг к другу, так уак в двигателе 4 такта, то на каждый такт работает по 2 цилиндра одновременно, что сказывается на эластичности двигателя. 12-ти цилиндровый работает ещё мягче.

В таких двигателях, как правило, наиболее популярной используется одна и та же последовательность работы цилиндров: 1-5-6-3-4-2-7-8 .

Но Феррари использовала другую схему- 1-5-3-7-4-8-2-6

В данном сегменте каждый производитель использовал ему только известную последовательность.

10-ти цилиндровый

10 цилиндровый не особо популярный мотор, редко производители использовали такое количество цилиндров. Тут возможны несколько вариантов последовательностей воспламенения.

1-10-9-4-3-6-5-8-7-2 — используется на Dodge Viper V10

1-6-5-10-2-7-3-8-4-9 — BMW заряженных версий

12-ти цилиндровый

На самых заряженных машинах ставили 12-ти цилиндровые двигатели, к примеру, Феррари, Ламборгини или более распространённые у нас Фольцвагеновские двигатели W12.

Самым простым автолюбителям не нужно знать все тонкости работы цилиндров двигателя. Работает как-то, ну и ладно. Весьма сложно с этим согласится. Наступает тот самый момент, пока нужно будет отрегулировать систему зажигания, а также клапанов зазора.

Не будет лишней информацией о порядке работы цилиндров, когда нужно будет подготовить высоковольтные провода к свечам или трубопроводы большого давления.

Порядок работы цилиндров двигателя. Что это означает?


Порядок работы любого двигателя - это определенная последовательность, при которой происходит чередование одноименных тактов в разных цилиндрах.

Порядок работы цилиндров и от чего он зависит? Есть несколько основных факторов его работы.

К ним можно отнести следующее:

  1. Система расположения цилиндров: однорядная, V-образная.
  2. Количество цилиндров.
  3. Распределенный вал и его конструкция.
  4. Коленвал, а также его конструкция.

Что такое рабочий цикл двигателя автомобиля?

Этот цикл состоит, прежде всего, из распределения газораспределительных фаз. Последовательность должна четко распределяться по силе воздействия на коленчатый вал. Только так и добиваться равномерной работы.

Цилиндры не должны находиться рядом, это основное условие. Производители создают схемы работы цилиндров. Старт работы начинается с первого цилиндра.

Разные двигатели и разных порядок работы цилиндров.


Разные модификации, разные двигатели, их работа может распределяться. Двигатель ЗМЗ. Определенный порядок работы цилиндров двигателя 402 - один-два-четыре-три. Порядок работы двигателя модификации - один-три-четыре-два.

Если сделать углубление в теорию работы двигателя, то мы сможем увидеть следующую информацию.

Полный цикл работы четырехтактного двигателя происходит за два оборота, то есть 720 градусов. Двухтактный двигатель, догадайтесь за сколько?

Коленвал смещают на угол для того, чтобы получить максимальное углубление поршней. Данный угол зависит от тактов, а также количества цилиндров.

1. Четырехцилиндровый двигатель происходит через 180 градусов, порядок работы цилиндров может быть один-три-четыре-два (ВАЗ), один-два-четыре-три (ГАЗ).

2. Шестицилиндровый двигатель и порядок его работы один-пять-три-шесть-два-четыре (интервалы между воспламенениями составляют 120 градусов).

3. Восьмицилиндровый двигатель один-пять-четыре-восемь-шесть-три-семь-два (интервал составляет 90 градусов).

4. Есть и двенадцати цилиндровый двигатель. Левый блок - один-три-пять-два-четыре-шесть, правый блок - семь-девять-одинадцать-восемь-десять-двенадцать.

Для понятности небольшое пояснение. У восьмицилиндрового двигателя ЗиЛ порядок работы всех цилиндров: один-пять-четыре-два-шесть-три-семь-восемь. Угол - 90 градусов.

В одном цилиндре происходит рабочий цикл, через девяносто градусов рабочий цикл в пятом цилиндре и дальше последовательно. Один поворот коленвала - четыре рабочих хода. Восьмицилиндровый двигатель, конечно, работает плавно, чем двигатель из шести цилиндров.

Мы дали только общее представление работы, более глубокие знания Вам не нужны. Желаем Вам успехов в изучении порядка работы цилиндров двигателя.

Многие автовладельцы не стремятся вникать в принцип работы основных устройств автомобиля, считая это уделом специалистов из автомастерских. С одной стороны, такое утверждение верно, с другой же – не понимая хотя бы основные процессы, легко пропустить поломку на самом начальном этапе, и затруднительно сделать мелкий ремонт. Зачастую отказ двигателя происходит вдали от мест, где можно получить квалифицированную помощь, и определенные знания не помешают.

Одно из ключевых понятий эксплуатации двигателя – это порядок работы цилиндров. Под этим понимается последовательность чередования в них одноименных тактов. Этот показатель различается в зависимости от следующих особенностей:

  1. Количество цилиндров (в современных двигателях - 4, 6 или 8)
  2. Расположение (двурядное V-образное или однорядное)
  3. Особенности конструкций, как распределительного, так и коленчатого валов

Рабочий цикл двигателя – это определенная устойчивая последовательность газораспределительных фаз, происходящих внутри данных устройств, расположенных не рядом друг с другом. Это обеспечивает стабильное воздействие на коленвал без излишних напряжений.

Последовательность цилиндров, в которых происходят газораспределительные фазы, определяется схемой порядка работы, заложенной при проектировании. Цикл всегда начинается с главного цилиндра №1, а потом, в зависимости от исполнения может различаться: например, 1-2-4-2 или 1-3-4-2.

Последовательность работы у различных моделей

Целью воздействия каждого поршня является поворот коленвала на заданный угол при соблюдении определенного такта. Например, полный цикл четырехтактного двигателя обеспечивает два полных поворота коленвала, а двухтактного – один. Наиболее распространенные схемы:

  • Однорядный четырехцилиндровый двигатель, с чередованием тактов через сто восемьдесят градусов: 1-3-4-2 или 1-2-4-3
  • Однорядный шестицилиндровый двигатель: 1-5-2-6-2-4 (при повороте каждый раз на сто двадцать градусов)
  • V-образный восьмицилиндровый: 1-5-4-8-6-3-7-2 (при повороте каждый раз на девяносто градусов). После того, как в цилиндре №1 заканчивается газораспределительная фаза, коленчатый вал, повернувшись на девяносто градусов, сразу же попадает под действие цилиндра №5. Для одного полного поворота требуется четыре рабочих хода

Количество цилиндров напрямую влияет на плавность хода – очевидно, что восьмицилиндровый с его 90 градусами, работает плавнее, нежели четырехцилиндровый. На практике, данные знания пригодятся при

Порядок работы 6 цилиндрового двигателя рядного – АвтоТоп

Особенности работы многоцилиндровых двигателей

Работа четырехцилиндрового однорядного двигателя

Многоцилиндровые двигатели, как уже отмечалось в предыдущей статье, представляют собой конструкцию, объединяющую в единое целое несколько одноцилиндровых двигателей с одним общим коленчатым валом. При этом количество рабочих ходов за два полных оборота коленчатого вала (720˚) в таком двигателе, при работе по четырехтактному циклу, будет равно количеству цилиндров.
В каждом цилиндре протекают одинаковые рабочие процессы, но не одновременно.
Для того, чтобы представить работу многоцилиндрового двигателя, необходимо знать порядок чередования одноименных тактов по цилиндрам и интервалы одноименных тактов в различных цилиндрах. Эти интервалы определяют в углах поворота коленчатого вала, принимая за начало отсчета нахождение поршня в верхней мертвой точке (ВМТ).

Наиболее равномерная работа многоцилиндрового двигателя имеет место при чередовании тактов расширения в цилиндрах через равные промежутки времени, т. е. через равные углы поворота коленчатого вала. У четырехтактного однорядного двигателя рабочий цикл совершается за два оборота коленчатого вала (720˚), поэтому при однорядном расположении цилиндров угол поворота коленчатого вала между одноименными тактами в разных цилиндрах должен составлять 720˚/i , где i – число цилиндров двигателя.

Для уменьшения локальной нагрузки на коленчатый вал выбирают такой порядок работы цилиндров, чтобы такты расширения (рабочего хода) не протекали одновременно в смежных цилиндрах. Кроме того, при чередовании тактов рабочего хода в удаленных друг от друга цилиндрах способствует более эффективному и равномерному охлаждению двигателя.

Очевидно, что у четырехтактного четырехцилиндрового однорядного двигателя одноименные такты должны следовать через 180˚ угла поворота коленчатого вала. Следовательно, и шатунные шейки коленчатого вала должны быть расположены под углом 180˚, т. е. лежать в одной плоскости. При этом шатунные шейки первого и четвертого цилиндров направлены в одну сторону относительно оси коленчатого вала, а шатунные шейки второго и третьего цилиндров – в противоположную сторону. Это обеспечивает равномерное чередование рабочих ходов в цилиндрах двигателя. Последовательность чередования одноименных тактов в различных цилиндрах двигателя в течение его рабочего цикла называется порядком работы цилиндров двигателя.

Для четырехцилиндрового рядного двигателя возможны два варианта чередования тактов в цилиндрах: 1-2-4-3 и 1-3-4-2 (нумерация цилиндров ведется от передней части двигателя по ходу автомобиля или, в случае с поперечным расположением двигателя, со стороны, противоположной маховику).
С точки зрения описанных выше требований оба порядка работы цилиндров равноценны, поэтому применяются в разных двигателях, устанавливаемых на автомобилях.
Так, например, на автомобильных двигателях, используемых Горьковским автомобильным заводом (ГАЗ-3102, ГАЗ-2410 т. п.) обычно используют последовательность работы цилиндров 1-2-4-3, а на двигателях автомобилей ВАЗ и Москвич – 1-3-4-2.

Работа четырехтактного четырехцилиндрового рядного двигателя с порядком работы цилиндров 1-3-4-2 подробно описана в Таблице 1.

Таблица 1. Работа однорядного четырехцилиндрового двигателя

Порядок работы 4, 6, 8 цилиндрового двигателя — просто о сложном
По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?
Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.
Что значит порядок работы цилиндров двигателя?
Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.
От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:
-расположение цилиндров двигателя: однорядное или V-образное;
-количество цилиндров;
-конструкция распредвала;
-тип и конструкция коленвала.
Рабочий цикл двигателя
Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.
Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

Обычно автовладельцы не задумываются о порядке активности цилиндров двигателя своего автомобиля, ограничиваясь знанием числа таковых. И в большинстве случаев просто нет необходимости углубляться в такие технические детали. Но информация о работе цилиндров оказывается полезной, когда нужно, например, выставить зажигания или отрегулировать клапана, в других ситуациях самостоятельной наладки и ремонта, когда нужно починить автомобиль без возможности добраться до СТО, или просто при желании сделать все самому. Далее мы узнаем, каков порядок работы 4-цилиндрового двигателя, и выясним последовательность для некоторых других компоновок.

Теория работы ДВС

Общий принцип функционирования двигателей на бензине или дизтопливе известен, пожалуй, всем – топливо, сгорая в цилиндрах, создает давление газов, которые толкают поршни, и далее усилие преобразуется в крутящий момент, идущий на колеса.

Для того, чтобы двигатель работал равномерно, сгорание топлива происходит не во всех цилиндрах одновременно, а в определенном порядке. За его соблюдение отвечают:

  • конструкция газораспределительного механизма;
  • углы между кривошипами коленвала автомобиля;
  • расположение цилиндров – V-подобное или рядное;
  • устройство системы зажигания для бензиновых авто, и ТНВД – у дизельных.

Как проходит рабочий цикл

Весь процесс впрыска топлива, его зажигания, работы поршней и выброса отработанных газов называется «рабочим циклом». Рассмотрим его на примере бензинового четырехтактного ДВС, стандартного для множества легковых автомобилей.

Цикл, как видно из названия, делится на четыре такта работы:

В этом состоянии впускной клапан в открытом состоянии, выпускной, наоборот, закрыт, поршень идет в нижнем направлении, в цилиндр попадает подготовленная топливовоздушная смесь.

Все клапаны цилиндра закрыты, а поршень двигается вверх и сжимает впрыснутую ранее смесь до заданных параметров.

Клапаны по-прежнему открыты, смесь поджигается, образуя газы. Их давление начинает двигать поршень вниз, а последний вращает коленвал.

По завершению рабочего хода клапан выпуска открывается, коленвал двигает поршень вверх, и тот вытесняет отработанные газы в выпускной коллектор.

Интересно: у дизельного двигателя цикл иной. При впуске всасывается только воздух, а горючее впрыскивается посредством ТНВД уже после сжатия воздушной массы в цилиндре. Контактируя с разогретым от сжатия воздухом, дизтопливо воспламеняется.

Чтобы обеспечить стабильную и непрерывную работу, горючее в цилиндрах (иногда называемых «горшками») воспламеняется в особой последовательности. Порядок работы двигателя должен соблюдаться, чтобы создавалось равномерное действие на коленвал.

Очередность цилиндров

Цилиндры имеют номера, в документации их описывают в формате A-B-C-D, где вместо букв указывается цифровое обозначение. Порядок нумерации начинается со стороны цепи или ремня ГРМ – с самого удаленного от коробки передач цилиндра. Тот, что носит номер 1, называется главным.

Важно: если цилиндры работают последовательно, они не должны быть расположены рядом. Именно с учетом этого условия производители моторов разработали определенные схемы порядка чередования тактов.

Цилиндры оснащены клапанами, через которые осуществляется впуск и выпуск газов. Клапанами управляет специальное устройство – распределительный вал, на поверхности которого особым образом расположены специальные кулачки. Именно их расположение отвечает за порядок работы: профиль кулачка и его высота влияет на моменты закрытия-открытия, величину сечения прохода для газов, а также на то, как будет двигаться клапан в зависимости от текущего угла коленвала.

Один из вариантов распредвала:

Цикл стандартного ДВС на 4 такта проходит за 2 оборота, или за 720 градусов (360 и 360). Расположенные на валу «коленца» смещены на некоторый угол таким образом, чтобы усилие с поршней двигателя постоянно передавалось на вал. Упомянутый угол – величина, зависящая от модели двигателя, тактности такового, и количества цилиндров.

Рассмотрим типичный порядок у некоторых двигателей.

Рядный 4-цилиндровый

Существует две популярные компоновки таких ДВС:

Первое означает расположение цилиндров последовательно, в один ряд, а поршни мотора вращают общий коленвал. Двигатели нередко описывают сокращением I4 или L4, можно также встретить название Inline 4 и вариации. Инженеры располагают цилиндры и вертикально, и под некоторым углом – в зависимости от конструкции двигателя.

Пример блока цилиндров:

Эта цилиндровая компоновка получила широкое распространение в массовых моделях автомобилей, а также в тех транспортных средствах, где важна простота обслуживания и ремонта – внедорожниках, машинах, предназначенных для работы в такси, и т.д.

Кривошипы 1 и 4 цилиндров в конструкции коленвала рядного четырехцилиндрового двигателя расположены под углом 180 град., и под углом 90 – к кривошипам цилиндров 2 и 3. Чтобы создать оптимальное соотношение движущих сил, действующих на кривошипы, двигатели действуют в последовательностях:

  • система 1–2–4–3 – менее популярная;
  • основной вариант 1–3–4–2.

Из отечественных автомашин порядок работы четырехцилиндрового двигателя второго вида использован, к примеру, в продукции концерна ВАЗ, а первый актуален для некоторых двигателей ЗМЗ.

4-цилиндровая оппозитная компоновка

В таком моторе «горшки» размещены в два ряда под 180 градусов. Это позволяет сделать силовой агрегат сбалансированным и снизить центр тяжести, а коленвал получает меньшие нагрузки. Благодаря этому мотор подобной компоновки, при той же массе, выдает больше снимаемой мощности и оборотов.

Цилиндры в этих ДВС работают по отличной схеме: основная 1–3–2–4, и альтернативная 1–4–2–3.

Здесь поршни достигают т. н. «верхней мертвой точки», часто сокращаемой до ВМТ, одновременно с обеих сторон.

Интересно: встречаются машины с V-образными агрегатами на 4 цилиндра, но подобные образцы на рынке относительно редки, основную массу составляют рядные и оппозитные.

Пятицилиндровые

Это агрегаты с 5 цилиндрами, стоящими в ряд. Относительное смещение шатунных шеек коленвала – 72 градуса. Встречаются как двух- так и четырехтактные образцы, для первых (2 такта) стандартный порядок оптимальной работы блока цилиндров для данных двигателей – очередность активации 1–2–4–3–5. Ею обеспечивается равномерность возгорания топлива. Эти моторы широко применяются в судовой технике.

На легковых автомобилях инженерами сообщается иной порядок работе «горшков» 5 цилиндровых типичных двигателей – система 1–2–4–5–3.

Как действуют ДВС V6

Для эффективности порядка работы сегодняшних шестицилиндровых двигателей таковой строится также по особой системе. Типичный порядок работы 6 цилиндрового двигателя рядного исполнения – метод 1–5–3–6–2–4. В рассматриваемом форм-факторе силовой агрегат получается достаточно длинным и требует большого подкапотного пространства.

Чтобы снизить габариты, иногда применяют «вэ-подобную» систему. Схема порядка работы «горшков» 6 цилиндровых современных двигателей, V образного форм-фактора – очередность активации 1-4-2-5-3-6.

Интересно: рассматриваемая шестицилиндровая конструкция считается одной из наименее сбалансированных.

Агрегат от Audi, для которого актуален указанный порядок работы V-образного шестицилиндрового автомобильного двигателя:

ДВС на 8 цилиндров

Из-за габаритов двигатели делаются V-образной компоновки.

Восьмицилиндровый ДВС от Chevrolet:

Возможный порядок работы восьмицилиндрового двигателя современной машины:

  • вариант 1–5–4–2–6–3–7–8 – основной;
  • принцип 1–8–4–3–6–5–7–2 – другая вариация.

Различие это мнимое и произошло из-за разницы в подсчете цилиндров. В США цилиндр 1 расположен спереди по направлению движения авто, слева, а в европейской системе – справа. Нумерация цилиндров производится в шахматной последовательности, в направлении назад и слева направо, поэтому обе классификации представляют, по сути, одно и то же, что иллюстрирует схема:

Интервал между зажиганием топлива 90 град.

Как определить порядок

Чтобы узнать, по какой схеме работает мотор, необходимо изучать документацию на автомобиль и конкретный силовой агрегат, визуально определить это затруднительно.

Порядок работы шестицилиндрового рядного двигателя

Шестицили́ндровые дви́гатели — двигатели внутреннего сгорания, имеющие шесть цилиндров, размещённые чаще всего друг напротив друга под углом 60° или 90°.

Содержание

Рядный шестицилиндровый двигатель [ править | править код ]

Рядный шестицилиндровый двигатель — конфигурация двигателя внутреннего сгорания с рядным расположением шести цилиндров, порядок работы цилиндров 1-5-3-6-2-4, и поршнями, вращающими один общий коленчатый вал. Часто обозначается R6 [1] [2] (от немецкого [3] «Reihe» — ряд), I6 или L6 («Straight-6», «In-Line-Six»). Плоскость, в которой находятся цилиндры, может быть строго вертикальной, или находиться под определённым углом к вертикали. Во втором случае двигатель иногда называют Slant-6 (/6).

В теории I6 в четырёхтактном варианте является полностью сбалансированной конфигурацией относительно сил инерции разных порядков поршней и верхних частей шатунов (силы инерции 1-го порядка разных цилиндров взаимно компенсируют друг друга так же, как и у рядного четырёхцилиндрового двигателя, но, в отличие от последнего, силы инерции 2-го порядка также взаимно компенсируются), сочетая сравнительно невысокую сложность и стоимость изготовления с хорошей плавностью работы. Такую же сбалансированность демонстрирует и V12, работающий как два шестицилиндровых двигателя с общим коленчатым валом.

Однако на малых (холостых) оборотах коленчатого вала возможна некоторая вибрация, вызванная пульсацией крутящего момента. Рядный восьмицилиндровый двигатель, помимо полной сбалансированности, демонстрирует лучшую равномерность крутящего момента, чем рядный шестицилиндровый, но в наше время применяется очень редко из-за целого ряда иных недостатков.

Двигатели конфигурации I6 широко использовались и продолжают использоваться в настоящее время на автомобилях, автобусах, тракторах, речных судах. На легковых автомобилях в последние десятилетия, в связи с повсеместным распространением переднего привода с поперечным расположением силового агрегата, и вообще компоновочных схем с более «плотной» организацией подкапотного пространства, более популярны оказались V-образные шестицилиндровые двигатели как более компактные и короткие, хоть и более дорогие, менее технологичные и сбалансированные. Вместе с тем, отдельные производители не спешат отказываться от рядных шестицилиндровых моторов. Яркий пример — BMW. Более того, современные [ когда? ] технологии позволяют создать достаточно компактный рядный шестицилиндровый двигатель даже для поперечной установки, правда, на достаточно крупном автомобиле — примером такого силового агрегата служит Chevrolet Epica с передним приводом и поперечно установленными 2,0- и 2,5-литровыми моторами разработки Porsche.

Максимальный рабочий объём рядных шестицилиндровых двигателей практически не ограничен и на судовых дизелях может достигать 1820 дм³ на один цилиндр.

V-образный шестицилиндровый двигатель [ править | править код ]

V-образный шестицилиндровый двигатель — двигатель внутреннего сгорания с V-образным расположением шести цилиндров двумя рядами по три, и поршнями, вращающими один общий коленчатый вал. Часто обозначается V6 (англ. «Vee-Six», «Ви-Сикс»).

Это второй по популярности в наши дни автомобильный двигатель после рядного четырёхцилиндрового двигателя.

Первый серийный V6 появился в 1950 году на итальянской модели Lancia Aurelia.

Технические особенности [ править | править код ]

V6 — несбалансированный двигатель; он работает как два рядных трёхцилиндровых двигателя, и без дополнительных мер может иметь весьма большой уровень вибраций. В двигателях V6 используется дисбаланс коленвала, создаваемый противовесами (иногда дополнительно применяют маховик и шкив с дисбалансом), уравновешивающий момент от сил инерции 1-го порядка поршней и верхних частей шатунов. Кроме того, иногда (при некоторых углах развала цилиндров) для этого дополнительно используют балансировочный вал, вращающийся со скоростью коленвала, но в противоположную сторону. Это позволяет приблизить их по плавности работы и уровню вибраций к рядному шестицилиндровому двигателю. Момент инерции 2-го порядка, как правило оставляют свободным, так как он имеет небольшую величину и может быть поглощён опорами двигателя.

Как правило, угол развала цилиндров составляет 60, 90 или 120 градусов. Но встречаются и иные варианты, например 54°, 45°, 65°, 75° или 15° (VR6).

Угол развала 90° обычно встречается на двигателях, унифицированных с двигателями конфигурации V8, для которых такой угол развала является основным. В первых двигателях такой конфигурации, по причине того, что технологии тогда не позволяли сделать достаточно прочный коленвал со смещёнными шатунными шейками, а делать полноопорный коленвал с отдельными шейками для каждого шатуна невыгодно, так как по длине двигатель становится сравнимым с исходным V8 (кроме того, это усложняет двигатель), на каждой шатунной шейке располагались (так же, как и в исходном V8) по два шатуна от противоположных цилиндров (схема с 3 кривошипами, пример — Buick Special, а также советский двигатель ЯМЗ-236). Такая конструкция при угле развала 90° позволяет уравновесить момент инерции 1-го порядка без применения балансировочных валов, однако равномерных интервалов поджига смеси она не обеспечивает (рабочие ходы в цилиндрах следуют не равномерно, а через 90 и 150° по углу поворота коленчатого вала, порядок работы цилиндров при этом 1-4-2-5-3-6). Следствием этого является заметная вибрация работающего двигателя, особенно при работе на малых оборотах коленчатого вала, а также грубый и неприятный на слух звук выхлопа, а по плавности хода двигатель больше напоминает трёхцилиндровый. Чтобы уменьшить вибрации и улучшить плавность хода, применяют маховик увеличенной массы. В более современных [ когда? ] двигателях V6 с углом развала 90° используется усложнённый коленвал со смещёнными шатунными шейками (6 кривошипов), обеспечивающий равномерные интервалы поджига смеси, а момент инерции 1-го порядка уравновешивается при применении балансировочного вала (без него он уравновешивается не полностью, что потребует усовершенствованной подвески двигателя и часто неприемлемо для современного [ когда? ] легкового автомобиля из-за повышенной вибрации). Однако на болидах формулы-1 (регламент 2014) года используется именно простой коленвал с тремя кривошипами, не обеспечивающий равномерных интервалов поджига, но обладающий большей прочностью и не требующий уравновешивания момента 1-го порядка.

120-градусный развал позволяет получить широкий, но низкий силовой агрегат, что лучше подходит для низких, например, спортивных машин. В нём так же на каждой шатунной шейке располагаются по два шатуна (число шатунных шеек — 3), но за счёт угла развала цилиндров 120° обеспечиваются равномерные интервалы поджига смеси. Такая конфигурация имеет довольно большой момент 1-го порядка, который можно скомпенсировать только при применении балансировочного вала. При всех остальных углах развала (отличных от 120°), чтобы обеспечить равномерные интервалы поджига смеси (через каждые 120° по углу поворота коленвала) и тем самым уменьшить вибрацию двигателя, а также обеспечить плавный ход, каждый шатун располагают на отдельной шатунной шейке коленвала, либо применяют усложнённый коленвал со смещёнными шатунными шейками (это уменьшает длину двигателя, а также упрощает его, но требует усовершенствованния технологии изготовления коленвала).

60-градусный развал позволяет скомпенсировать момент 1-го порядка без применения балансировочных валов. По этой причине, а также благодаря компактности, этот угол развала считается «родным» для V-образных шестёрок. Иногда по каким-либо причинам применяют близкие углы развала, например 54° или 65° при незначительном увеличении вибраций, которые растут по мере отклонения от угла 60°.

Угол развала 15° позволяет сделать одну общую головку для всех цилиндров, а также позволяет использовать порядок зажигания такой же, как у рядного шестицилиндрового двигателя и обладает удовлетворительной сбалансированностью без применения балансировочных валов, что вместе с усовершенствованной подвеской двигателя решает проблему вибраций.

Именно трудности балансировки и являлись основной причиной, сдерживавшей распространение серийных двигателей этого типа. До 1950-х годов такие двигатели создавались, но либо для стационарных установок (например бензогенераторов), либо как опытные образцы.

В 1959 году в США фирма GM начала производство пятилитрового V6, которым оснащались пикапы и субурбаны (гибрид универсала и микроавтобуса на шасси пикапа).

В 1962 году в США пошёл в производство «компакт» Buick Special с 90-градусным V6, разработанным на основе небольшой V-образной «восьмёрки», но он отличался высоким уровнем вибраций и вскоре был снят с производства.

Одним из первых полностью перешёл на V-образные шестицилиндровые моторы (двух семейств — Cologne и Essex, в зависимости от места разработки — ФРГ или Великобритании) европейский филиал «Форда»: с 1965…66 годов они постепенно вытеснили ранее использовавшиеся на наиболее крупных европейских моделях этой марки рядные шестёрки (первоначально европейский «Форд» также повсеместно заменил на своих автомобилях рядные четвёрки на моторы конфигурации V4, принадлежавшие к тем же семействам, что и V6, но впоследствии отказался от них — в то время, как V6 упомянутых выше семейств дожили до 2000-х годов). При этом американский «Форд» оставался крайне консервативен в выборе типов силовых агрегатов, начав выпуск собственных V6 (на основе разработок британского филиала) лишь в начале 1980-х годов (на пике бензинового кризиса рубежа 1970-х — 1980-х годов).

Первый серийный японский V6 появился только в 1983 году у фирмы Nissan — серия Nissan VG, затем более продвинутым японским V6 стал мотор серии 6G от Mitsubishi, появившийся в 1986 году, примечатлен он тем, что устанавливался он на самый дорогой спорткар этой компании Mitsubishi 3000GT и в турбоверсии выдавал аж 320 лошадиных сил, нося индекс 6G72TT.

Использование в автомобилях [ править | править код ]

V6 — один из самых компактных двигателей, он обычно короче, чем I4, и в большинстве исполнений у́же и короче, чем V8.

В современных [ когда? ] переднеприводных автомобилях с поперечным расположением двигателя по компоновочным соображениям как правило невозможна установка рядных шестицилиндровых двигателей, что, при повышенных требованиях к мощности в наши дни, обуславливает популярность V-образных шестицилиндровых моторов на автомобилях более высоких классов, несмотря на малую сбалансированность и сложность в производстве в сравнении с I6. Унификация двигателей различных автомобилей приводит к тому, что V6 устанавливают и в машинах с продольным расположением двигателя, в которых, в принципе, нет строгой компоновочной необходимости его применения, — хотя оно и даёт ряд преимуществ. Вместе с тем, на автомобилях того же класса с задним приводом, вроде 5-й серии BMW, всё ещё довольно широко распространены и рядные «шестёрки».

Из советских двигателей серийными V6 были только дизели большого рабочего объёма для грузовиков, и спецтехники: ЯМЗ-236 и СМД-60. Трёхлитровый V6 моделей ГАЗ-24-14 и ГАЗ-24-18 планировался в качестве базового двигателя легкового автомобиля «Волга» ГАЗ-24, но впоследствии в силу целого ряда причин был заменён на рядный четырёхцилиндровый. Однако, была выпущена опытно-промышленная партия этих двигателей, которые использовались на ряде спортивных автомобилей, в частности, на одном из серии «Эстония».

Шестицилиндровый двигатель VR [ править | править код ]

Другим направлением развития является VR-технология, которая зародилась в 1920-е годы, когда компания Lancia выпустила семейство V-образных моторов с очень маленьким углом развала цилиндров (всего 10—20°). «VR» представляет собой аббревиатуру двух немецких слов, обозначающих V-образный и R-рядный, т. е. «v-образно-рядный». [3]

Двигатель представляет собой симбиоз V-образного двигателя с минимально малым углом развала 15° и рядного двигателя, в котором шесть цилиндров расположены V-образно под углом 15°, в отличие от традиционных V-образных двигателей, имеющих угол 60° или 90°. Поршни в блоке размещаются в шахматном порядке.

Двигатель никак не наследует сбалансированность R6 [4] , но имеет лучшую компактность в сравнении с V6 и R6. Совокупность достоинств обоих типов двигателей привела к тому, что двигатель VR6 стал настолько компактным, что позволил накрыть оба ряда цилиндров одной общей головкой, в отличие от обычного V6. В результате двигатель VR6 получился значительно меньшим по длине, чем R6, и по ширине, чем обычный V6 [3] .

Рабочий объём варьируется как правило от 2,0 до 5,0 л. Использование конфигурации в двигателях объёмом меньше 2,0 л мало оправдано из-за относительно высокой стоимости изготовления (по сравнению с четырёхцилиндровыми двигателями) и большой (в сравнении с ними же) длины. Однако, подобные случаи имели место, например, мотоцикл Benelli 750 Sei имел двигатель I6 с рабочим объёмом всего 0,75 л.

В настоящее время технология возрождена концерном Volkswagen, который выпустил шестицилиндровые двигатели компоновки VR6. Ставился с 1991 года (1992 модельный) на автомобили Volkswagen Passat, Golf, Corrado, Sharan. Имеет заводские индексы «AAA» объёмом 2,8 литра, мощностью 174 л/с и «ABV» объёмом 2,9 литра и мощностью 192 л/с.

Оппозитный шестицилиндровый двигатель [ править | править код ]

Имеет два ряда по три цилиндра, которые расположены под углом 180°, причём противостоящие поршни двигаются зеркально (одновременно достигают верхней мёртвой точки). Такой двигатель хорошо уравновешен и имеет малую высоту и низкий центр тяжести, но при этом он довольно широкий. Используется на некоторых автомобилях («Порше», «Субару») и мотоциклах («Хонда Голд Винг»). [ источник не указан 452 дня ]

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя? ↑

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:

— расположение цилиндров двигателя: однорядное или V-образное;
— количество цилиндров;
— конструкция распредвала;
— тип и конструкция коленвала.

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.

Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

Порядок работы цилиндров у разных двигателей

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ. Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее. Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 720. У 2-х тактного двигателя 3600.

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

— Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 1800, ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).

— Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 1200).

— Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 900).

— Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 900 .

То есть если в 1 цилиндре происходит рабочий цикл, точерез 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам. Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля. ©

Многие автолюбители особо не задумываются над тем, какой порядок работы шестицилиндрового двигателя у их машины, полностью удовлетворяясь тем фактом, что он вообще функционирует. Однако бывают моменты, когда мотор авто начинает давать сбои, что может выражаться в совершенно разных симптомах. А для адекватной оценки ситуации любому водителю просто необходимо знать азы устройства своего автомобиля. В частности, абсолютно не лишним будет ознакомиться с порядком работы цилиндров двигателя внутреннего сгорания (ДВС) различной конструкции.

Что значит порядок работы цилиндров двигателя?

Чтобы понять, что такое порядок работы цилиндров, следует немного углубиться в технические нюансы конструкции ДВС. Работа поршневой системы происходит за определённое количество тактов – 2 или 4. Тактом называют один из этапов полного цикла подачи топливовоздушной смеси в цилиндр, её сгорания и удаления выхлопных газов.

В результате, под действием хода поршня, на который оказывают давление расширяющиеся газы воспламенившегося топлива, проворачивается коленчатый вал. В двухтактных моторах полный рабочий цикл происходит за один оборот коленвала, а в четырёхтактных – за два. При этом в разных цилиндрах такты не совпадают, то есть, цилиндры работают вразнобой.

Это необходимо для того, чтобы крутящее усилие на коленвал передавалось более равномерно, а не рывками.

Если бы все цилиндры работали в одинаковом такте, то коленвал, а за ним и кардан, и колёса, вращались бы не плавно, а частыми быстрыми рывками. Это приводило бы к ускоренному износу узлов и механизмов, а также не самым лучшим образом отражалось бы на комфорте передвижения.

Последовательность чередования одинаковых тактов в различных цилиндрах ДВС и называют порядком их работы. Зависит он от ряда условий:

  • Тип расположения цилиндров в двигателе – в один ряд, или в два ряда. Второй вариант ДВС в поперечном разрезе напоминает латинскую букву V, поэтому его называют V-образным.
  • Конструктивные особенности распредвала, отвечающего за ход впускных и выпускных клапанов.
  • Тип коленчатого вала.
  • Число цилиндров. Существуют самые разные варианты моторов, имеющие их в количестве от 1 до 16 штук.

В зависимости от сочетания перечисленных факторов, разные цилиндры по-разному включаются в работу, беспрерывно вращая коленвал.

Справка. В настоящее время на автомобили устанавливаются ДВС с числом цилиндров от 2 до 16. В недалёком прошлом можно было встретить и одноцилиндровые микролитражки, но сегодня подобными моторами оснащают в основном лёгкие скутеры. Среди примеров двухцилиндрового авто – отечественная «Ока». Шестнадцатицилиндровые двигатели обычно ставят на гоночные спорткары и мощные авто премиум-класса.

Рабочий цикл двигателя

Рабочий цикл ДВС, он же «цикл Карно» – это чередование фаз газораспределения. Его работа состоит из следующих этапов:

  1. Распределительный вал, вращаясь, открывает впускной клапан, и в цилиндр нагнетается топливовоздушная смесь из карбюратора.
  2. Затем впускной клапан закрывается, а топливо воспламеняется электрической искрой от свечи зажигания.
  3. В камере сгорания происходит микровзрыв, энергия которого толкает расположенный в нём поршень, соединённый с коленвалом. Поршень вращает коленчатый вал, а тот посредством трансмиссии (сцепление, кардан) передаёт крутящее усилие на ходовую часть.
  4. Далее распредвал открывает выпускной клапан, и продукты сгорания топлива удаляются через выхлопной коллектор.

После этого весь цикл повторяется снова.

Главное условие работы цилиндров состоит в том, что действовать они должны вразнобой, а не по порядку. То есть, недопустимо, чтобы такты чередовались по очереди от 1 до 4 или, к примеру, до 16 цилиндра.

Конечно, это правило не распространяется на двухцилиндровые ДВС, наподобие тех, что ставятся в «Оке». Но вот уже трёцилиндровые моторы работают по схеме 1-3-2. То есть, крутящее усилие на коленвал сначала передаёт поршень 1-го, затем 3-го, а уже потом 2-го цилиндра.

Порядок работы шестицилиндрового двигателя в зависимости от вида

Разные виды двигателей внутреннего сгорания могут иметь различный порядок работы, даже при одинаковом числе цилиндров.

Рядный ДВС

Отличительной чертой однорядного двигателя является расположение всех цилиндров в один ряд. Количество их может составлять от 2 до 6, но наиболее распространённый вариант – это 4 цилиндра. Подобные типы ДВС, в частности, ставятся на отечественные автомобили «АвтоВАЗа» и «ГАЗа».

Шестицилиндровые «однорядники» можно встретить на БМВ и прочих авто высокого класса. Их работа может происходить по одной из трёх возможных схем:

  • 1-4-2-3-6-5;
  • 1-5-3-6-2-4;
  • 1-3-5-6-4-2 – также отступление от правила неочерёдности (5–6).

V-образные двигатели

Эта конструкция силового агрегата позволяет размещать цилиндры в два ряда, напротив друг друга. Подобная схема нашла широкое применение не только в автомобилестроении, но и в авиационных и корабельных двигателях. Основное преимущество V-образных ДВС состоит в их компактности, что особо актуально для мощных многоцилиндровых моторов.

Ряды цилиндров в них установлены под некоторым углом относительно друг друга: 45 о , 90 о , 120 о . Для установки в автомобили выпускаются 6…16-цилиндровые силовые агрегаты подобной конфигурации.

Одним из вариантов являются и W-образные ДВС, представляющие, по своей сути, спаренные традиционные V-образные моторы.

Принцип работы подобных силовых агрегатов состоит в последовательном вращении коленвала поршнями из противоположных рядов.

Пример. На «Феррари» традиционно устанавливается V-образная восьмёрка, где цилиндры имеют следующую нумерацию: с 1-го по 4-й включительно – левый ряд, а с 5-го по 8-й – второй ряд. Порядок работы такого мотора схематично выглядит таким образом: 1-5-3-7-4-8-2-6.

Оппозитный двигатель

Оппозитный ДВС представляет собой конструкцию, в которой цилиндры располагаются попарно, друг напротив друга. Но, в отличие от V-образного расположения, угол между ними составляет 180 о . Другая их отличительная черта – противоположные поршни совершают зеркальное движение, одновременно достигая нижней и верхней крайних точек.

Подобные конструкции традиционны для многих японских автомобилей, в частности, очень их «любят» конструкторы компаний «Субару» и «Хонда». В Европе они устанавливались на «Фольксваген-жук», некоторые модели «Порше», БМВ, «Альфа Ромео», «Феррари». Также оппозитники ставили на советские мотоциклы «Урал» и «Днепр».

Порядок работы оппозитной установки с углом расположения «шеек» коленчатого вала 60° выглядит следующим образом: 1-4-5-2-3-6 для шестицилиндровой модификации.

Автолюбитель, который знает принцип работы двигателя своего железного коня, может, при необходимости, самостоятельно производить регулировку его работы. Например, сможет выставить зажигание, либо отрегулировать зазор клапанов.

Порядок работы цилиндров двигателя разных авто

Обычно автовладельцы не задумываются о порядке активности цилиндров двигателя своего автомобиля, ограничиваясь знанием числа таковых. И в большинстве случаев просто нет необходимости углубляться в такие технические детали. Но информация о работе цилиндров оказывается полезной, когда нужно, например, выставить зажигания или отрегулировать клапана, в других ситуациях самостоятельной наладки и ремонта, когда нужно починить автомобиль без возможности добраться до СТО, или просто при желании сделать все самому. Далее мы узнаем, каков порядок работы 4-цилиндрового двигателя, и выясним последовательность для некоторых других компоновок.

Теория работы ДВС

Общий принцип функционирования двигателей на бензине или дизтопливе известен, пожалуй, всем – топливо, сгорая в цилиндрах, создает давление газов, которые толкают поршни, и далее усилие преобразуется в крутящий момент, идущий на колеса.

Для того, чтобы двигатель работал равномерно, сгорание топлива происходит не во всех цилиндрах одновременно, а в определенном порядке. За его соблюдение отвечают:

  • конструкция газораспределительного механизма;
  • углы между кривошипами коленвала автомобиля;
  • расположение цилиндров – V-подобное или рядное;
  • устройство системы зажигания для бензиновых авто, и ТНВД – у дизельных.

Как проходит рабочий цикл

Весь процесс впрыска топлива, его зажигания, работы поршней и выброса отработанных газов называется «рабочим циклом». Рассмотрим его на примере бензинового четырехтактного ДВС, стандартного для множества легковых автомобилей.

Цикл, как видно из названия, делится на четыре такта работы:

В этом состоянии впускной клапан в открытом состоянии, выпускной, наоборот, закрыт, поршень идет в нижнем направлении, в цилиндр попадает подготовленная топливовоздушная смесь.

Все клапаны цилиндра закрыты, а поршень двигается вверх и сжимает впрыснутую ранее смесь до заданных параметров.

Клапаны по-прежнему открыты, смесь поджигается, образуя газы. Их давление начинает двигать поршень вниз, а последний вращает коленвал.

По завершению рабочего хода клапан выпуска открывается, коленвал двигает поршень вверх, и тот вытесняет отработанные газы в выпускной коллектор.

Иллюстрация процесса:

Интересно: у дизельного двигателя цикл иной. При впуске всасывается только воздух, а горючее впрыскивается посредством ТНВД уже после сжатия воздушной массы в цилиндре. Контактируя с разогретым от сжатия воздухом, дизтопливо воспламеняется.

Чтобы обеспечить стабильную и непрерывную работу, горючее в цилиндрах (иногда называемых «горшками») воспламеняется в особой последовательности. Порядок работы двигателя должен соблюдаться, чтобы создавалось равномерное действие на коленвал.

Очередность цилиндров

Цилиндры имеют номера, в документации их описывают в формате A-B-C-D, где вместо букв указывается цифровое обозначение. Порядок нумерации начинается со стороны цепи или ремня ГРМ – с самого удаленного от коробки передач цилиндра. Тот, что носит номер 1, называется главным.

Важно: если цилиндры работают последовательно, они не должны быть расположены рядом. Именно с учетом этого условия производители моторов разработали определенные схемы порядка чередования тактов.

Цилиндры оснащены клапанами, через которые осуществляется впуск и выпуск газов. Клапанами управляет специальное устройство – распределительный вал, на поверхности которого особым образом расположены специальные кулачки. Именно их расположение отвечает за порядок работы: профиль кулачка и его высота влияет на моменты закрытия-открытия, величину сечения прохода для газов, а также на то, как будет двигаться клапан в зависимости от текущего угла коленвала.

Один из вариантов распредвала:


Коленвал:


Цикл стандартного ДВС на 4 такта проходит за 2 оборота, или за 720 градусов (360 и 360). Расположенные на валу «коленца» смещены на некоторый угол таким образом, чтобы усилие с поршней двигателя постоянно передавалось на вал. Упомянутый угол – величина, зависящая от модели двигателя, тактности такового, и количества цилиндров.

Рассмотрим типичный порядок у некоторых двигателей.

Рядный 4-цилиндровый

Существует две популярные компоновки таких ДВС:

  • рядная;
  • оппозитная.

Первое означает расположение цилиндров последовательно, в один ряд, а поршни мотора вращают общий коленвал. Двигатели нередко описывают сокращением I4 или L4, можно также встретить название Inline 4 и вариации. Инженеры располагают цилиндры и вертикально, и под некоторым углом – в зависимости от конструкции двигателя.

Пример блока цилиндров:


Эта цилиндровая компоновка получила широкое распространение в массовых моделях автомобилей, а также в тех транспортных средствах, где важна простота обслуживания и ремонта – внедорожниках, машинах, предназначенных для работы в такси, и т.д.

Кривошипы 1 и 4 цилиндров в конструкции коленвала рядного четырехцилиндрового двигателя расположены под углом 180 град. , и под углом 90 – к кривошипам цилиндров 2 и 3. Чтобы создать оптимальное соотношение движущих сил, действующих на кривошипы, двигатели действуют в последовательностях:

  • система 1–2–4–3 – менее популярная;
  • основной вариант 1–3–4–2.

Из отечественных автомашин порядок работы четырехцилиндрового двигателя второго вида использован, к примеру, в продукции концерна ВАЗ, а первый актуален для некоторых двигателей ЗМЗ.

4-цилиндровая оппозитная компоновка

В таком моторе «горшки» размещены в два ряда под 180 градусов. Это позволяет сделать силовой агрегат сбалансированным и снизить центр тяжести, а коленвал получает меньшие нагрузки. Благодаря этому мотор подобной компоновки, при той же массе, выдает больше снимаемой мощности и оборотов.

Цилиндры в этих ДВС работают по отличной схеме: основная 1–3–2–4, и альтернативная 1–4–2–3.

Здесь поршни достигают т.н. «верхней мертвой точки», часто сокращаемой до ВМТ, одновременно с обеих сторон.


Интересно: встречаются машины с V-образными агрегатами на 4 цилиндра, но подобные образцы на рынке относительно редки, основную массу составляют рядные и оппозитные.

Пятицилиндровые

Это агрегаты с 5 цилиндрами, стоящими в ряд. Относительное смещение шатунных шеек коленвала – 72 градуса. Встречаются как двух- так и четырехтактные образцы, для первых (2 такта) стандартный порядок оптимальной работы блока цилиндров для данных двигателей – очередность активации 1–2–4–3–5. Ею обеспечивается равномерность возгорания топлива. Эти моторы широко применяются в судовой технике.

На легковых автомобилях инженерами сообщается иной порядок работе «горшков» 5 цилиндровых типичных двигателей – система 1–2–4–5–3.

Блок цилиндров:

Как действуют ДВС V6

Для эффективности порядка работы сегодняшних шестицилиндровых двигателей таковой строится также по особой системе. Типичный порядок работы 6 цилиндрового двигателя рядного исполнения – метод 1–5–3–6–2–4. В рассматриваемом форм-факторе силовой агрегат получается достаточно длинным и требует большого подкапотного пространства.

Чтобы снизить габариты, иногда применяют «вэ-подобную» систему. Схема порядка работы «горшков» 6 цилиндровых современных двигателей, V образного форм-фактора – очередность активации 1-4-2-5-3-6.

Интересно: рассматриваемая шестицилиндровая конструкция считается одной из наименее сбалансированных.

Агрегат от Audi, для которого актуален указанный порядок работы V-образного шестицилиндрового автомобильного двигателя:


ДВС на 8 цилиндров

Из-за габаритов двигатели делаются V-образной компоновки.

Восьмицилиндровый ДВС от Chevrolet:


Возможный порядок работы восьмицилиндрового двигателя современной машины:

  • вариант 1–5–4–2–6–3–7–8 – основной;
  • принцип 1–8–4–3–6–5–7–2 – другая вариация.

Различие это мнимое и произошло из-за разницы в подсчете цилиндров. В США цилиндр 1 расположен спереди по направлению движения авто, слева, а в европейской системе – справа. Нумерация цилиндров производится в шахматной последовательности, в направлении назад и слева направо, поэтому обе классификации представляют, по сути, одно и то же, что иллюстрирует схема:

Интервал между зажиганием топлива 90 град.

Как определить порядок

Чтобы узнать, по какой схеме работает мотор, необходимо изучать документацию на автомобиль и конкретный силовой агрегат, визуально определить это затруднительно.

Ноя 6 2014

В большинстве случаев рядовому автовладельцу вовсе не нужно понимать порядок работы цилиндров двигателя. Однако эта информация не нужна до тех пор, пока у автолюбителя не появится желание самостоятельно выставить зажигание либо отрегулировать клапана.

Информация о порядке работы цилиндров двигателя авто непременно понадобится в том случае, если нужно будет подключить высоковольтные провода или трубопроводы в дизельном агрегате.

В таких случаях добраться до станции техобслуживания бывает порой попросту невозможно, а знаний о том, как работает двигатель не всегда достаточно.

Порядок работы цилиндров двигателя – теория

Порядком работы цилиндров называют последовательность, с которой происходит чередование тактов в разных цилиндрах силового агрегата.

Данная последовательность зависит от следующих факторов:

  • количество цилиндров;
  • тип расположения цилиндров: V-образное либо рядное;
  • конструкционные особенности коленвала и распредвала.

Особенности рабочего цикла двигателя

То, что происходит внутри цилиндра, называется рабочим циклом двигателя, который состоит из определенных фаз газораспределения.

Газораспределительной фазой называют момент, в который начинается открытие и заканчивается закрытие клапанов.

Измеряется фаза газораспределения в градусах поворота коленчатого вала по отношению к верхней и нижней мёртвым точкам (ВМТ и НМТ).

На протяжении рабочего цикла в цилиндре воспламеняется смесь топлива и воздуха. Промежуток между воспламенениями в цилиндре оказывает непосредственное влияние на равномерность работы мотора.

Двигатель работает максимально равномерно при наименьшем промежутке воспламенения. Данный цикл непосредственно зависит от количества цилиндров. Чем большим является число цилиндров, тем меньшим будет интервал воспламенения.

Порядок работы цилиндров двигателей разных автомобилей

У разных версий однотипных моторов цилиндры могут работать по-разному.

Для примера можно взять двигатель ЗМЗ. Порядок работы цилиндров 402 двигателя выглядит следующим образом – 1-2-4-3.

Но, если говорить о порядке работы цилиндров двигателя 406, то в данном случае он составляет 1-3-4-2.

Нужно понимать, что один рабочий цикл четырехтактного мотора по длительности равен двум оборотам коленчатого вала. Если использовать градусное измерение, то он составляет 720°. У двухтактного двигателя он равен 360°.

Колена вала расположены под специальным углом, в результате чего вал постоянно пребывает под усилием поршней.

Данный угол определяется тактностью силового агрегата и числом цилиндров.

  • порядок работы 4 цилиндрового двигателя со 180-градусным интервалом между воспламенениями может составлять 1-2-4-3 либо 1-3-4-2;
  • порядок работы 6 цилиндрового двигателя с рядным расположением цилиндров и 120-градусным интервалом между воспламенениями выглядит так: 1-5-3-6-2-4;
  • порядок работы 8 цилиндрового двигателя (V-образный) – 1-5-4-8-6-3-7-2 (90-градусный интервал между воспламенениями).

В каждой схеме двигателя, независимо от его производителя, порядок работы цилиндров начинается с главного цилиндра, отмеченного номером 1.

Наиболее вероятно, информация о порядке работы цилиндров двигателя автомобиля, не будет очень актуальной для вас.

Желаем успехов в определении порядка работы цилиндров мотора вашей машины.

К такому двигателю относится четырехтактный дизель ЯМЗ-236. Угол развала между его цилиндрами равен 900. Колена коленчатого вала расположены в трех плоскостях под углом 1200 одно к другому. Особенностью этого двигателя является коленчатый вал, имеющий три кривошипа, к каждому из которых присоединено по два шатуна: к первому кривошипу - шатуны первого и четвертого цилиндров; ко второму второго и пятого цилиндров и к третьему - третьего и шестого цилиндров.

В этом двигателе, имеющем порядок работы 1 - 4 - 2 - 5 - 3 - 6, одноименные такты в цилиндрах происходят неравномерно через 90 и 1500 (табл. 4). Если в первом цилиндре осуществляется рабочий ход, то в четвертом он начинается через 900, во втором - через 1500, в пятом - через 900, в третьем через 1500 и в шестом - через 900. Поэтому двигатель ЯМЗ-236 имеет повышенную неравномерность хода и в нем приходится устанавливать на коленчатом валу маховик с относительно большим моментом инерции (на 60070% большим, чем для однорядного двигателя).

Восьмицилиндровый V-образный двигатель. Цилиндры в таком двигателе (например, двигатели автомобилей ГАЗ-53А, ГАЗ-53-12, ЗИЛ и КамАЗ-5320) расположены под углом 900 один к другому (рис. 24,6). Одноименные такты в цилиндрах начинаются через угол поворота коленчатого вала.

Рис. 24 - Схемы кривошипно-шатунного механизма четырехтактных V -образных двигателей:

а - шестицилиндрового; б - восьмицилиндрового; 1-8 - цилиндры.

Таблица 4. Чередование тактов в четырехтактном V -образном шестицилиндровом двигателе с порядком работы 1 - 4 - 2 - 5 - 3 - 6.

Впуск равный 720: 8 = 900. Следовательно, кривошипы коленчатого вала расположены крестообразно под углом 900. К первому кривошипу присоединены шатуны первого и пятого цилиндров, ко второму - второго и шестого цилиндров, к третьему - третьего и седьмого цилиндров, к четвертому - четвертого и восьмого цилиндров. В восьмицилиндровом четырехтактном двигателе за два оборота коленчатого вала совершается восемь рабочих ходов. Перекрытие рабочих ходов в различных цилиндрах происходит в течение поворота коленчатого вала на угол 90С, что способствует его равномерному вращению. Порядок работы восьмицилиндрового двигателя 1 - 5 - 4 - 2 - 6 - 3 - 7 - 8 (табл. 5).

Таблица 5. Чередование тактов в четырехтактном V -образном с порядком работы 1 - 5 - 4 - 2 - 6.


Зная порядок работы цилиндров двигателя, можно правильно распределить провода по свечам зажигания, присоединить топливопровод к форсункам и отрегулировать клапаны.

В большинстве случаев рядовому автовладельцу вовсе не нужно понимать порядок работы цилиндров двигателя. Однако эта информация не нужна до тех пор, пока у автолюбителя не появится желание самостоятельно выставить зажигание либо отрегулировать клапана.

Ремонт, диагностика, сервис - Порядок работы цилиндров двигателя на разных авто - - Заказ запчастей

Информация о порядке работы цилиндров двигателя авто непременно понадобится в том случае, если нужно будет подключить высоковольтные провода или трубопроводы в дизельном агрегате. Стать опубликована в паблике Машины. В таких случаях добраться до станции техобслуживания бывает порой попросту невозможно, а знаний о том, как работает двигатель не всегда достаточно.


Порядок работы цилиндров двигателя – теория:

Порядком работы цилиндров называют последовательность, с которой происходит чередование тактов в разных цилиндрах силового агрегата. Данная последовательность зависит от следующих факторов:

Количество цилиндров; тип расположения цилиндров:
V-образное либо рядное;
Конструкционные особенности коленвала и распредвала.

Особенности рабочего цикла двигателя:

То, что происходит внутри цилиндра, называется рабочим циклом двигателя, который состоит из определенных фаз газораспределения.

Газораспределительной фазой называют момент, в который начинается открытие и заканчивается закрытие клапанов. Измеряется фаза газораспределения в градусах поворота коленчатого вала по отношению к верхней и нижней мёртвым точкам (ВМТ и НМТ).

На протяжении рабочего цикла в цилиндре воспламеняется смесь топлива и воздуха. Промежуток между воспламенениями в цилиндре оказывает непосредственное влияние на равномерность работы мотора. Двигатель работает максимально равномерно при наименьшем промежутке воспламенения.

Данный цикл непосредственно зависит от количества цилиндров. Чем большим является число цилиндров, тем меньшим будет интервал воспламенения.

Порядок работы цилиндров двигателей разных автомобилей:

Нужно понимать, что один рабочий цикл четырехтактного мотора по длительности равен двум оборотам коленчатого вала. Если использовать градусное измерение, то он составляет 720°. У двухтактного двигателя он равен 360°.

Колена вала расположены под специальным углом, в результате чего вал постоянно пребывает под усилием поршней. Данный угол определяется тактностью силового агрегата и числом цилиндров.

Порядок работы 4 цилиндрового двигателя со 180-градусным интервалом между воспламенениями может составлять 1-2-4-3 либо 1-3-4-2;

Порядок работы 6 цилиндрового двигателя с рядным расположением цилиндров и 120-градусным интервалом между воспламенениями выглядит так: 1-5-3-6-2-4;

Порядок работы 8 цилиндрового двигателя (V-образный) – 1-5-4-8-6-3-7-2 (90-градусный интервал между воспламенениями).

В каждой схеме двигателя, независимо от его производителя, порядок работы цилиндров начинается с главного цилиндра, отмеченного номером 1.

-+

Порядок работы 4, 6, 8 цилиндрового двигателя - просто о сложном

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя?

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:


-расположение цилиндров двигателя: однорядное или V-образное;
-количество цилиндров;
-конструкция распредвала;
-тип и конструкция коленвала.

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.


Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ.

Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее.

Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 72° . У 2-х тактного двигателя 360° .

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 180° , ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).

Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 120°).

Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 90°).

Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 90° .

То есть если в 1 цилиндре происходит рабочий цикл, точерез 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам.

Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля.

Порядок работы четырехцилиндрового двигателя


Порядок работы рядного 4 цилиндрового двигателя

Порядок работы 4 цилиндрового двигателя обозначается как Х―Х―Х―Х где Х ― номера цилиндров. Это обозначение показывает последовательность чередования тактов цикла в цилиндрах.

Порядок работы цилиндров зависит от углов между кривошипами коленчатого вала, от конструкции механизма газораспределения, и системы зажигания бензинового силового агрегата. У дизельного место системы зажигания в этой последовательности занимает ТНВД.

Для управления автомобилем это знать, конечно, необязательно.

Порядок работы цилиндров необходимо знать, регулируя зазоры клапанов, меняя ремень ГРМ либо выставляя зажигание. Да и при замене проводов высокого напряжения понятие порядка рабочих тактов не будет лишним.

В зависимости от числа тактов, составляющих рабочей цикл, ДВС делятся на двухтактные и четырехтактные. Двухтактные двигатели не ставят на современные автомобили, они используются лишь на мотоциклах и в качестве пускателей тракторных силовых агрегатов. Цикл четырехтактного бензинового двигателя внутреннего сгорания включает в себя следующие такты:

  1. Впуск ― выпускной клапан закрыт, впускной открыт, поршень движется вниз, производится всасывание воздушно-топливной смеси.
  2. Сжатие ― все клапаны закрыты поршень движется вверх, сжимая воздушно-топливную смесь.
  3. Рабочий ход ― клапаны остаются закрыты, по окончании предыдущего такта искра поджигает сжатую смесь. Поршень под действием давления газов, сгоревшей смеси, идет вниз вращая коленвал.
  4. Выпуск ― по окончании предыдущего такта открывается выпускной клапан. Поршень, толкаемый коленвалом, движется вверх и вытесняет продукты горения в выхлопной коллектор.

Цикл дизеля отличается тем что при впуске всасывается только воздух. Топливо же впрыскивается под давлением после сжатия воздуха, а воспламенение происходит от контакта дизеля с разогретым от сжатия воздухом.

Нумерация

Нумерация цилиндров рядного двигателя начинается с наиболее удаленного от коробки перемены передач. Иными словами, со стороны ремня ГРМ либо цепи.

У коленвала рядного 4-х цилиндрового ДВС кривошипы первого и последнего цилиндра располагаются под углом 180° друг к другу. И под углом 90° к кривошипам средних цилиндров. Поэтому для обеспечения оптимального угла приложения движущих сил к кривошипам такого коленвала, порядок работы цилиндров бывает 1―3―4―2, как у вазовских и москвичевских ДВС либо 1―2―4―3, как у газовских моторов.

Чередование тактов 1-3-4-2

Угадать порядок работы цилиндров двигателя по внешнем признакам нельзя. Об этом следует читать в мануалах производителя. Порядок работы цилиндров двигателя проще всего узнать в инструкции по ремонту вашей машины.

Кривошипно-шатунный механизм

  • Маховик поддерживает инерцию коленвала для вывода поршней из верхних или нижних крайних положений, а также для более равномерного его вращения.
  • Коленчатый вал преобразует линейное движение поршней во вращение и передает его через механизм сцепления на первичный вал КПП.
  • Шатун передает усилие, прикладываемое к поршню на коленчатый вал.
  • Поршневой палец создает шарнирное соединение шатуна с поршнем. Изготавливается из легированной высокоуглеродистой стали с цементацией поверхности. По сути является толстостенной трубкой со шлифованной наружной поверхностью. Бывает двух видов: плавающий или закрепленный. Плавающие свободно перемещаются в бобышках поршней и во втулке, запрессованной в головку шатуна. Не выпадает палец из этой конструкции благодаря стопорным кольцам, устанавливающимся в пазы бобышек. Закрепленные удерживаются в головке шатуна за счет горячей посадки, а в бобышках вращаются свободно.

autolirika.ru

Порядок работы 4, 6, 8 цилиндрового двигателя — просто о сложном — DRIVE2

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя? ↑

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:

— расположение цилиндров двигателя: однорядное или V-образное;— количество цилиндров;— конструкция распредвала;

— тип и конструкция коленвала.

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.

Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

Порядок работы цилиндров у разных двигателей

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ. Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее. Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 720. У 2-х тактного двигателя 3600.

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

— Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 1800, ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).

— Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 1200).

— Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 900).

— Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 900 .

То есть если в 1 цилиндре происходит рабочий цикл, точерез 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам. Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля. ©

www.drive2.ru

Порядок работы 4 цилиндрового рядного и V-образного двигателя

Четырёхтактный двигатель сегодня является наиболее распространённой разновидностью ДВС. Изобретён он был в конце XIX века немецким конструктором Николаусом Отто, и с тех пор нашёл широчайшее применение в различных областях техники. Такие двигатели используются в автомобилестроении, ими оснащаются речные и морские суда, поршневые самолёты, железнодорожные локомотивы. Рассмотрим подробнее устройство этого силового агрегата иразберёмся, каков принцип и порядок работы 4-цилиндрового варианта двигателя Отто.

Порядок работы цилиндров двигателя

Двигатель внутреннего сгорания практически без особых изменений дошёл до наших дней. Технически он состоит из следующих деталей:

  • корпус цилиндра;
  • поршень, передвигающийся внутри цилиндра;
  • свечи, с помощью которых в цилиндр подаётся электрическая искра;
  • коленчатый вал, через который крутящее усилие передаётся на ходовую часть;
  • шатун, соединяющий поршень с коленвалом.

Кроме того, современные силовые установки могут оснащаться дополнительными деталями, делающими их работу более эффективной. Это маховики коленвала, газораспределительная система, электронный впрыск и т. д.

Порядок работы 4-тактного двигателя основан на цикле Отто, получившем название по имени своего изобретателя. Состоит этот цикл из четырёх последовательных фаз, или тактов. Сегодня производится несколько разновидностей таких двигателей, каждый из которых, по сути, является подвидом исходного образца, впервые собранного в Германии полтора столетия назад. Отличаются они друг от друга лишь порядком расположения цилиндров и бывают рядными, V-образными или оппозитными.

Справка! Независимо от особенностей конструкции, за один полный ход поршня в любых разновидностях 4-тактных ДВС последовательно происходят все четыре такта, соответствующие двум полным оборотам коленчатого вала.

1 такт – впуск топливовоздушной смеси в цилиндр. После открытия впускного клапана в полость цилиндра всасывается топливо, представляющее собой смесь бензиновых паров и воздуха. Поршень в этой фазе перемещается вниз, достигая в её конце крайней нижней точки, коленвал делает пол-оборота.

2 такт – сжатие. Поршень начинает перемещение с крайней нижней точки вверх, а коленчатый вал  проворачивается ещё на половину оборота. Таким образом, за два такта (впуск и сжатие) он совершает один полный оборот. В конце фазы сжатия поршень достигает верхней точки своего хода.

3 такт – расширение. В сжатую поршнем топливную смесь через свечу зажигания подаётся электрическая искра. В результате происходит взрывообразное воспламенение паров топлива, и энергия этого микровзрыва толкает поршень обратно вниз. Через шатун поршень передаёт крутящий момент на коленвал, который проворачивается ещё на 180о.

4 такт – выпуск. В начале последнего такта поршень находится в своей самой нижней точке, но под действием инерционного вращения коленвала начинает вновь перемещаться в верхнюю часть цилиндра. Одновременно с этим открывается выпускной клапан, и скопившиеся внутри отработанные газы выталкиваются в выхлопной коллектор. После этого все четыре цикла вновь повторяются.

Рассмотрим для наглядности, как работают все три основных типа 4-тактных ДВС.

Рядный

Конструкция рядного двигателя представляет собой цилиндры, выстроенные в одну линию. Обычно их количество составляет от двух до шести-восьми. Самыми распространёнными рядными 4-тактными ДВС, применяемыми в автомобилестроении, являются 4-цилиндровые силовые агрегаты. Главный принцип, которому следуют разработчики двигателе − силовая установка должна передавать крутящий момент на ходовую часть как можно плавнее, без рывков.

Для этого поршни всех соседних цилиндров должны в один момент времени находиться в разных фазах своего перемещения. К примеру, 4-цилиндровые ДВС, устанавливаемые на отечественных «Ладах», работают по следующей схеме: 1-3-4-2. То есть, первый такт работы сначала происходит в первом цилиндре, затем в третьем, далее в четвёртом, и позже всех – во втором. А газовские моторы отсчитывают такт в порядке 1-2-4-3. В результате этого толкающее усилие передаётся на коленчатый вал непрерывно, а не рывками, как было при синхронной работе всех цилиндров.

Справка. Принцип «работы вразнобой» применяется во всех типах 4-тактных двигателей, независимо от количества цилиндров. Если их число больше четырёх, то одновременная работа поршней допускается только в цилиндрах, максимально удалённых друг от друга.

V-образные

Другая распространённая конструкция 4-тактных ДВС предусматривает расположение цилиндров в два ряда. При этом оба ряда находятся под некоторым углом по отношению друг к другу, в разных моделях − от 45 до 120о.

Подобный вариант расположения позволяет сделать мотор более компактным, увеличив при этом число рабочих цилиндров. В поперечном разрезе такой двигатель имеет форму латинской буквы V, откуда и произошло его название.

Особенностью работы V-образных силовых агрегатов является попеременное прохождение рабочих фаз поршнями из противоположных рядов. Такты 4-цилиндровый мотор отсчитывает по схеме 1-3-2-4, где  первый и второй цилиндры относятся к одному ряду, а третий и четвёртый – к другому.

Оппозитные

Оппозитные двигатели – довольно редкая конструкция, встречающаяся сегодня в основном на японских легковых автомобилях, а также на некоторых мотоциклах. Они, как и V-образные ДВС, представляют собой моторы-«двухрядники», но со своей особенностью. Особенность их конструкции и работы состоит в том, что противолежащие цилиндры располагаются под углом 180о по отношению друг к другу.

Перемещение поршней в них происходит зеркально. На практике такая схема для 4-цилиндрового «оппозитника» выглядит так: 1-3-2-4. То есть, когда поршень первого цилиндра перемещается вверх, то и на противоположном цилиндре №2 он также идёт к своей верхней точке. Разница только в том, что первый поршень находится в фазе сжатия топливовоздушной смеси, а второй совершает такт выпуска отработанных газов из камеры сгорания в выхлопной коллектор.

Как видим, несмотря на разнообразие конструкций 4-тактных ДВС, в основе их работы лежит цикл Отто. Простота конструкции и высокая надёжность работы подобных механизмов стала причиной их широчайшего распространения во всём мире и во всех областях машиностроения.

reedr.ru

Работа многоцилиндрового двигателя

Во время работы двигателя на его механизмы действуют значительные силы давления газов в цилиндре, силы инерции неравномерно движущихся деталей кривошипно-шатунного механизма, а также центробежные силы, возникающие вследствие вращения деталей. Эти силы непостоянны по величине и направлению своего действия, поэтому они вызывают неравномерную работу двигателя.

При неравномерной работе двигателя его механизмы работают с переменной нагрузкой, вследствие чего происходит интенсивный износ деталей. Особенно велика неравномерность работы одноцилиндрового четырехтактного двигателя.

Для достижения равномерности работы двигателя или устанавливают на коленчатом валу тяжелый маховик, или выполняют его многоцилиндровым.

Маховик накапливает энергию во время рабочего хода и отдает ее при совершении вспомогательных тактов. Но тяжелый маховик применяется только для стационарных двигателей, работающих, как правило, на постоянном режиме. Тяжелый маховик вследствие значительной инерции не обеспечивает необходимой автомобильному двигателю приемистости, т.е. способности двигателя быстро развивать и уменьшать обороты. Поэтому в автомобильных двигателях равномерность работы достигается не увеличением веса маховика, а за счет выполнения двигателя многоцилиндровым. В многоцилиндровом двигателе такты рабочего хода равномерно чередуются в отдельных цилиндрах, вследствие чего в значительной мере уравновешиваются силы инерции, возникающие в кривошипно-шатунном механизме при работе двигателя.

Для обеспечения наибольшей равномерности работы многоцилиндрового двигателя необходимо, чтобы такты рабочего хода в различных цилиндрах чередовались через равные промежутки времени и в определенной последовательности. Эта последовательность повторения одноименных тактов в различных цилиндрах называется порядком работы цилиндров двигателя.

Рис. Таблица чередования тактов четырехцилиндрового четырехтактного двигателя с порядком работы цилиндров 1—2—4—3 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)

Однако не при любом порядке обеспечивается хорошая работа двигателя. Необходимо, чтобы очередные такты рабочего хода следовали в цилиндрах, наиболее удаленных одни от другого. В этом случае нагрузка на коренные подшипники коленчатого вала будет распределяться более равномерно; кроме того, отработавшие газы из цилиндра, в котором начинается выпуск, не будут попадать через выпускной трубопровод в цилиндр, в котором выпуск еще не закончился.

Наиболее удобными порядками работы автомобильных двигателей являются: для четырехцилиндрового — 1—2—4—3 и 1—3—4—2, для шестицилиндрового — 1—5—3—6—2—4 и для восьмицилиндрового — 1—5—4—2—6—3—7—8.

Порядок работы цилиндров обычно изображается в виде таблицы чередования тактов.

Рассмотрим, как происходит работа четырехтактного четырехцилиндрового двигателя с порядком работы цилиндров 1—2—4—3. Так как рабочий цикл четырехтактного двигателя совершается за два оборота коленчатого вала (720°), а число рабочих ходов, происходящих за это время, равно четырем, то для правильного чередования рабочих ходов кривошипы коленчатого вала смещены один относительно другого на 180° (720°: 4), т.е. на пол-оборота коленчатого вала, и находятся, таким образом, в одной плоскости.

Во время работы двигателя поршни в первом и четвертом цилиндрах при первом полуобороте первого оборота коленчатого вала перемещаются от верхней мертвой точки к нижней, в первом цилиндре происходит рабочий ход, в четвертом цилиндре — такт впуска. Во втором и третьем цилиндрах поршни перемещаются в это время к верхней мертвой точке, во втором цилиндре происходит такт сжатия, а в третьем — такт выпуска.

Во время второго полуоборота первого оборота коленчатого вала поршни в первом и четвертом цилиндрах перемещаются от нижней мертвой точки к верхней, в первом цилиндре происходит такт выпуска, а в четвертом — такт сжатия. Поршни второго и третьего цилиндров в это время перемещаются от верхней мертвой точки к нижней, во втором цилиндре происходит рабочий ход, в третьем — такт впуска.

Во время первого полуоборота второго оборота коленчатого вала поршни в первом и четвертом цилиндрах перемешаются от верхней мертвой точки к нижней, в первом цилиндре происходит такт впуска, в четвертом — рабочий ход. Поршни второго и третьего цилиндров в это время перемещаются от нижней мертвой точки к верхней, во втором цилиндре происходит такт выпуска, в третьем такт сжатия.

Во время второго полуоборота второго оборота коленчатого вала поршни в первом и четвертом цилиндрах перемещаются от нижней мертвой точки к верхней, в первом цилиндре происходит такт сжатия, в четвертом —такт выпуска. Поршни во втором и третьем цилиндрах перемещаются от верхней мертвой точки к нижней, во втором цилиндре происходит такт впуска, в третьем — рабочий ход.

Четырехцилиндровый четырехтактный двигатель с порядком работы цилиндров 1—3—4—2 отличается от двигателя с порядком работы 1—2—4—3 лишь конструкцией распределительного механизма, которая определяет несколько иную последовательность открытия и закрытия клапанов и чередования тактов.

Оба порядка работы цилиндров, принятые для отечественных четырехтактных четырехцилиндровых двигателей, полностью равноценны и по равномерности, и по качеству работы двигателей. На отечественных автомобилях широко используются шестицилиндровые двигатели, у которых цилиндры расположены в один ряд. Такие двигатели называются рядными в отличие от двигателей, цилиндры которых расположены в два ряда под некоторым углом один к другому.

В шестицилиндровом рядном двигателе коленчатый вал имеет шесть кривошипов. Так как рабочий цикл четырехтактного двигателя совершается за два оборота коленчатого вала (720°), а количество рабочих ходов за это время равно шести, то для правильного чередования рабочих ходов кривошипы коленчатого вала смещены один относительно другого на 120° (720°: 6), т. е. на одну треть оборота вала.

Для однорядных шестицилиндровых двигателей применяется следующее расположение кривошипов: 1—6 — вверх, 2—5 — налево, 3—4 — направо, если смотреть со стороны переднего конца вала.

При вращении коленчатого вала поршни в шестицилиндровом двигателе проходят через мертвые точки не все одновременно, как в четырехцилиндровом двигателе, а только попарно. Поэтому и такты во всех цилиндрах начинаются и кончаются также не одновременно, а смещены в одной паре цилиндров относительно другой на 60°.

Перекрытие тактов и порядок чередования рабочих ходов в шестицилиндровом четырехтактном двигателе показаны в таблице на рисунке.

Рис. Таблица чередования тактов шестицилиндрового четырехтактного двигателя с порядком работы 1—5—3—6—2—4 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)

Особенностью двухтактных дизелей является то, что их рабочий цикл совершается за один оборот коленчатого вала (360°). Поэтому и взаимное расположение кривошипов коленчатых валов имеет свои особенности: в четырехцилиндровом двигателе кривошипы смещены один относительно другого на 90° (360°: 4), в шестицилиндровом — на 60° (360°: 6).

Рис. Таблица чередования тактов шестицилиндрового двухтактного дизеля с порядком работы 1—5—3—6—2—4 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)

Перекрытие тактов и порядок чередования рабочих ходов в двухтактном шестицилиндровом дизеле показаны в таблице на рисунке.

В настоящее время на автомобилях широкое применение получили восьмицилиндровые V-образные двигатели. Цилиндры у этих двигателей располагаются в два ряда, чаще всего под углом 90°. Коленчатый вал таких двигателей имеет четыре кривошипа, смещенных один относительно другого на 90°. На каждую шейку кривошипа опираются одновременно по два шатуна.

В восьмицилиндровом двигателе за рабочий цикл (720°) совершается восемь рабочих ходов; их чередование, следовательно, происходит через 90° (720°: 8). Порядок работы цилиндров и чередование тактов в восьмицнлиндровом двигателе показаны в таблице на рисунке.

Рис. Таблица чередования тактов восьмицилиндрового двигателя с порядком работы цилиндров 1—5—4—2—0—3—7—8 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)

В многоцилиндровых двигателях вследствие непрерывного чередования рабочих ходов и перекрытия их одного другим обеспечивается более плавное и равномерное вращение коленчатого вала. Многоцилиндровые двигатели работают более устойчиво, без толчков и сотрясений, присущих одноцилиндровым двигателям.

ustroistvo-avtomobilya.ru



Порядок работы цилиндров (автомобиль)

2.6.

Порядок зажигания цилиндров Порядок зажигания цилиндров

улучшает распределение свежего заряда в коллекторе к цилиндрам
и способствует выпуску выхлопных газов, в то же время подавляя крутильные колебания
. Эти условия следующие.
(i) Последовательное срабатывание цилиндров позволяет восстанавливать заряд в коллекторе и сводит к минимуму взаимодействие
между соседними или соседними цилиндрами.Обычно выбираются цилиндры с противоположного конца
коллектора или из альтернативных рядов цилиндров в двигателях * V, чтобы поочередно тянуть
. Однако эта компоновка становится трудной по мере уменьшения количества цилиндров
.
(ii) Разделение последовательных цилиндров, которые выпускаются, даже более важно, чем
для индукции. Это связано с тем, что, если периоды выхлопа совпадают с периодами выхлопа цилиндров, противодавление выхлопных газов
может препятствовать выходу продуктов сгорания из цилиндров.
(Hi) Силовые импульсы вызывают заводку коленчатого вала. Кроме того, если собственные крутильные колебания
вала совпадают с этими возмущающими импульсными частотами, могут иметь место крутильные колебания
. Поэтому, как правило, желательно иметь
последовательных импульсов мощности на чередующихся концах коленчатого вала.

Рис. 2.15. Одноцилиндровое устройство.
2.6.1.


Одноцилиндровые устройства

Одноцилиндровый двигатель имеет рабочий ход каждые
720 градусов / 1 л.е. 720 градусов поворота коленчатого вала
для четырехтактного двигателя. В двигателе
просто одноходовой шатун, а вращающаяся шейка шатуна
или шатунная шейка соединены с поршневым пальцем поршня
с помощью шатуна, чтобы иметь как линейное движение
, так и колебательное движение (Рис. 2.15).
Когда поршень находится в ВМТ, он либо завершает сжатие
и собирается начать рабочий такт, либо это
в конце такта выпуска и начале такта впуска.Если предположить, что поршень изначально находится в ВМТ
при нулевом угле поворота коленчатого вала, затем он находится в НМТ на 180 градусов и 540 градусов, а
в ВМТ при 360 градусах и 720 градусах вращения коленчатого вала.
2.6.2.

Двухцилиндровый механизм

A. Рядный Параллельный

Двухцилиндровый двигатель с рядным расположением рядных цилиндров имеет мощность
импульсов через каждые 720 градусов / 2, то есть 360 градусов поворота коленчатого вала на
. В коленчатом валу используется одноходовой шатун с поршнями и шатунами
, прикрепленными к общей шатунной шейке
или шатунной шейке (рис.2.16).
Когда поршень 1 находится в ВМТ, он находится на вершине своего такта сжатия
и вот-вот начнет свой рабочий такт. Поршень 2 в этом случае достигает
такта выпуска в ВМТ и собирается начать свой ход впуска
. При повороте коленчатого вала на 180 градусов оба поршня
находятся в НМТ, и поршень 1 собирается начать свой такт выпуска, а поршень 2 - такт сжатия.
Второе вращение коленчатого вала на 180 градусов переводит поршни 1 и 2 в ВМТ, чтобы начать их индукционный и рабочий ход
соответственно.При третьем повороте коленчатого вала на 180 градусов поршни
перемещаются в НМТ, и поршни 1 и 2 собираются начать такты
сжатия и выпуска соответственно. Четырехтактный цикл на 720 градусов завершается, когда четвертый поворот на 180 градусов
приводит поршни в исходное исходное положение.

B. Линия, сдвинутая по фазе на 180 градусов

При таком расположении импульсы мощности возникают с неравномерными интервалами
, то есть через каждые 180 градусов и 540 градусов смещения коленчатого вала
. Цилиндры расположены параллельно
друг к другу, когда поршень 1 находится в ВМТ, поршень 2 находится в НМТ и
ходы кривошипа сдвинуты по фазе на 180 градусов относительно друг друга
(рис. 2.17). Если первоначально поршень 1 находится в конце сжатия, а
- в начале своего рабочего такта, то поршень 2 находится в конце
мощности и в начале своего такта выпуска.
Первый поворот коленчатого вала на 180 градусов приводит поршень 1
к НМТ, который собирается начать свой такт выпуска после завершения рабочего такта
, в то время как поршень 2 находится в ВМТ, в конце такта выпуска
и около начала такта сжатия.omt-
двухцилиндрового расположения фаз.

Рис. 2.18. Горизонтально-оппозитный двухцилиндровый агрегат
.
л. Поршень 1 находится в конце выпуска и в позиции
в начале такта всасывания, а поршень 2 - в позиции
, начинающей свое сжатие после завершения своего хода всасывания
.
Третий поворот на 180 градусов коленчатого вала
переводит поршень 1 в НМТ, завершая индукцию
и начиная его такт сжатия, в то время как поршень 2
находится в ВМТ и готов к следующему такту
мощности после завершения такта сжатия.При четвертом повороте коленчатого вала на 180 градусов поршень 1
перемещается в ВМТ, а поршень 2 - в НМТ, приводя их в исходное исходное положение.

C. Горизонтально противоположно

Эта конструкция обеспечивает импульсы мощности с равными интервалами через каждые 360 градусов вращения коленчатого вала
. Ход кривошипа сдвинут по фазе на 180 градусов. Шатуны и поршни
расположены на противоположных сторонах коленчатого вала,
напротив друг друга (рис. 2.18), при этом оси цилиндров смещены друг относительно друга.Таким образом, поршни приближаются к положениям ВМТ
и НМТ вместе, хотя они все время движутся в противоположных направлениях. Предположим, что поршни
находятся в ВМТ, поршень 1 - в конце сжатия и начале рабочего такта, а затем
- поршень 2 заканчивает выпуск и собирается начать свой ход впуска.
Первый, второй и третий поворот коленчатого вала на 180 градусов приводит к поршни в положения НМТ, ВМТ
и НМТ соответственно, выполняя свои соответствующие ходы, как показано на рисунке.
Четвертый поворот на 180 градусов завершает цикл событий четырехтактного цикла и возвращает поршни
в их исходные исходные положения. Эти двигатели используются в небольших легковых автомобилях.

D. 90 градусов * V

В этой конструкции два цилиндра расположены под углом 90 градусов друг к другу, причем оба больших конца
прикреплены к одной шатунной шейке (рис. 2.19). В этой конфигурации импульсы мощности имеют
неравномерных интервалов, которые происходят через каждые 270 градусов и 450 градусов движения коленчатого вала.Ряды цилиндров
спроектированы так, чтобы образовывать V либо слева, либо справа, если смотреть со стороны
передней части двигателя. Используются параллельные соединительные дороги, и два ряда цилиндров смещены на
относительно друг друга.
Предполагая, что поршень 1 сначала в конце такта сжатия
находится в состоянии готовности к срабатыванию, а поршень 2 имеет значение
, затем в середине такта, приближаясь к ВМТ на выпуске
или такте сжатия. Пусть поршень 2 находится в положении
в середине такта выпуска.Поворот кривошипа на
на 450 градусов завершает его исходные
такты рывка, индукции и сжатия в
готовности к стрельбе. В этот момент поршень 1 находится в середине хода
на такте впуска, поэтому поворот кривошипа
еще на 270 градусов завершает
как его действие, так и такты сжатия. Общий интервал угла поворота коленчатого вала
для этих двух событий срабатывания
составляет 450 + 270, то есть 720 градусов.
V-образные двухцилиндровые двигатели могут иметь лишь умеренную степень динамического баланса, а их неравномерные интервалы наполнения
и недостаточная плавность циклического крутящего момента делают их непригодными для

Рис.2.19. Расположение цилиндров V-образное.
вагон. Этот случай был обсужден для того, чтобы объяснить базовую конструкцию цилиндров
с V-образным рядом цилиндров с шатунами, имеющими общий шатун. Это важная компоновка двигателя.
2.SJ3.

Рядный трехцилиндровый агрегат

Трехцилиндровый двигатель имеет импульс мощности каждые 720 градусов / 3, то есть 240 градусов поворота коленчатого вала
для работы в четырехтактном цикле. Ходовая часть кривошипа и шатунные шейки
расположены с интервалом в 120 градусов, и предусмотрены четыре основных шейки и подшипники (рис.2.20)
для опоры коленчатого вала.
Когда поршень 1 находится в верхней точке такта сжатия и в начале рабочего такта, поршни 2
и 3 находятся под углом поворота коленчатого вала 60 градусов от НМТ на своих тактах
впуска и выпуска соответственно. При повороте коленчатого вала на 20 градусов поршень 3 находится в ВМТ в конце его хода выпуска
и начале его хода всасывания, а поршни 1 и 2 - на 60 градусов от НМТ на их ходах мощности и сжатия
соответственно.
Второй поворот коленчатого вала на 120 градусов перемещает поршень 2 в ВМТ, завершая такт сжатия
в готовности к его рабочему такту.Поршни 1 и 3 находятся под углом 60 градусов от НМТ на своих
тактах выпуска и впуска. Третье перемещение на 120 градусов приводит поршень 1 к ВМТ
, так что он просто заканчивает такт выпуска и вот-вот начнет свой ход впуска. Поршни 2 и 3 теперь
находятся под углом 60 градусов от НМТ на их соответствующих ходах мощности и сжатия
. Наконец, четвертый поворот коленчатого вала на угол
на 120 градусов помещает поршень
3 в ВМТ такта сжатия и готов к такту
начала рабочего хода. Эта последовательность событий
приводит к порядку срабатывания 1, 2, 3.
Эти двигатели динамически сбалансированы.
Дополнительный цилиндр достаточно сглаживает циклический крутящий момент
, так что двигатель
уступает популярной четырехцилиндровой конфигурации
. Эта конфигурация обеспечивает экономию веса и длины
, а также снижает возвратно-поступательное движение
и сопротивление вращению, что улучшает расход топлива
.
2.6.4.

Схема с четырьмя цилиндрами

A. Рядный

Четырехцилиндровый рядный двигатель имеет импульс мощности
каждые 720 градусов / 4 дюйма.е. 180 градусов движения коленчатого вала
. Коленчатые валы имеют ходы кривошипа
, расположенные с интервалом в 180 градусов друг относительно друга
в том порядке, в котором предназначены импульсы мощности
. При таком расположении коленчатого вала (рис.
2.21) все четыре хода кривошипа лежат в одной плоскости,
шатунные штифты 1 и 4 находятся в фазе, но под углом 180 градусов
к шатунным штифтам 2 и 3.
Предполагая, что шатун 1 находится в верхней части такт сжатия
, шатун 4 должен находиться в верхней части такта выпуска
, а вращение коленчатого вала составляет

Рис.2.20. Рядный трехцилиндровый агрегат.

Рис. 2.21. Рядный четырехцилиндровый двигатель.
для опускания при рабочем такте и при такте всасывания соответственно. Вращение коленчатого вала
на 180 градусов помещает шатуны 1 и 4 в нижнюю часть их ходов, в то время как шатуны 2 и
Satthetop их аистов после такта сжатия или выпуска. Далее предполагается,
, что поршень 3 будет следующим опускающимся при рабочем такте, в то время как поршень 2 опускается при индукционном такте
.При этом порядок стрельбы 1,3.
При втором повороте коленчатого вала на 180 градусов шатунные шейки и поршни 1 и 4 на
находятся на вершине их рабочего хода и рабочего хода соответственно, так что в этот момент порядок срабатывания
составляет 1, 3, 4. Третий поворот коленчатого вала на 180 градусов снова помещает поршни 2 и 3 в верхнюю часть их хода
. Поскольку поршень 3 ранее опускался на рабочий ход, поршень 2 теперь находится на своем рабочем ходе
, так что полный порядок запуска составляет 1, 3, 4, 2. Последний поворот на 180 градусов завершает смещение коленчатого вала на 720
градусов за четыре -тактный двигатель.
Если цилиндр 2 выбран вместо цилиндра 3 для зажигания после цилиндра 1, то порядок зажигания будет
1,2,4,3. Оба этих порядка зажигания имеют равные достоинства и ограничения в отношении скручивания коленчатого вала
и неравномерных интервалов дыхания между соседними цилиндрами. Наибольшей популярностью пользуются рядные четырехцилиндровые двигатели
на конденсаторы от 0,75 до 2,0 л.

B. Горизонтально противоположный плоский

Для этой конструкции требуется одноплоскостной коленчатый вал с шатунными шейками, разнесенными на 180 градусов с интервалом
.Поэтому ходы кривошипа спарены так, что шатуны 1 и 4 кривошипа расположены диаметрально на
мм напротив шатунов 2 и 3 (рис. 2.22). Пусть поршни 1 и 2 находятся в ВМТ, а поршни 3 и 4
- в НМТ, с учетом порядка срабатывания. Пусть поршень 1 находится в конце своего хода
сжатия и только для начала рабочего такта, тогда поршень 2 завершает выпуск, в то время как поршни 3 и 4 находятся на
тактах мощности и такта всасывания соответственно.
Вращение коленчатого вала на 180 градусов помещает поршни 3 и 4 в ВМТ в конце
их соответствующих тактов выпуска и сжатия, а поршень 4
собирается начать рабочий такт.Поршни 1 и
2 находятся в НМТ, завершая соответствующие ходы мощности и
тактов индукции. Порядок срабатывания - 1, 4. Второй поворот на 180 градусов приводит поршни 1 и 2 в ВМТ,
в конце их соответствующих ходов выпуска и сжатия
, в то время как поршни 3 и 4 находятся в НМТ com-
выполняя их соответствующие индукционные и силовые ходы.
Порядок срабатывания: 1, 4, 2.
Третье вращение на 180 градусов приводит поршень 3 и
4 в ВМТ в конце их соответствующих тактов сжатия
и выпуска, в то время как поршни 1 и 2 находятся в НМТ
, завершая свои соответствующие индукционно-силовой
ход.Полный порядок стрельбы 1,4,2,3. Последний поворот на 180 градусов на
завершает смещение коленчатого вала на 720 градусов на
.
Плоский четырехцилиндровый двигатель имеет немного лучший динамический баланс, чем рядный четырехцилиндровый двигатель
, но плавность крутящего момента в обоих случаях одинакова. Плоская форма делает
подходящим для двигателей, установленных сзади, но расположенный напротив цилиндр оставляет очень мало места для обслуживания головки
.

Фиг.2.22. Горизонтально-оппозитный плоский четырехцилиндровый
.

C.60 градусов V

В этом расположении цилиндры стреляют через равные интервалы 180 градусов и
расположены под номерами 1 и 2 в левом ряду и числами 3 и 4 в правом ряду.
Шатуны шатунов расположены неравномерно с попеременным интервалом 60 градусов и 120 градусов (рис.
2.23), и они лежат в двух плоскостях, если смотреть спереди.Коренные шейки и подшипники
предусмотрены на каждом конце, с третьей шейкой между шатунными шейками 2 и 3. При таком расположении пары поршней
находятся в верхней части своего хода, но в разных рядах цилиндров.
Когда поршни 1 и 4 находятся в ВМТ, любой из них может быть выбран так, чтобы он находился в конце своего хода сжатия
и вот-вот сработает. Тогда другой поршень
будет в конце выпуска и только начнет свой ход впуска
. Пусть поршни 1 и 4 находятся в конце
тактов сжатия и выпуска соответственно.Вращение коленчатого вала
на 180 градусов помещает поршни 2 и 3 в положение
наверху их соответствующих ходов выпуска и сжатия
, вызывая в этой точке порядок срабатывания 1, 3.
Второе вращение на 180 градусов снова возвращает поршни 1 и 4
в положение ВМТ, при этом поршень 1 завершил свой ход выпуска
и вот-вот начнет свой ход всасывания, в то время как поршень
4 находится в конце сжатия и собирается начать рабочий ход
. Порядок стрельбы до этого момента 1,3,4.Третий поворот на
на 180 градусов устанавливает поршни 2 и 3 в ВМТ,
с поршнем 2 в конце сжатия и около
для начала его рабочего хода. Полный порядок зажигания теперь: 1, 3,
4, 2. Наконец, четвертый поворот на 180 градусов завершает поворот коленчатого вала на 720
градусов.
Это чрезвычайно компактный двигатель, но динамический баланс
такой компоновки оставляет желать лучшего, требуется дополнительный уравновешивающий вал
.

2.6.5.

Рядный пятицилиндровый агрегат

В этой схеме импульс мощности подается каждые 720 градусов / 5 i.е. 144 градуса поворота коленвала
. Имеется пять ходов кривошипа, все в отдельных плоскостях, расположенных с интервалом 72 градуса
относительно друг друга. Коленчатый вал может иметь коренную шейку и подшипник на каждом конце и
между каждой парой кривошипов, образуя коленчатый вал с шестью коренными шейками. В качестве альтернативы, основные шейки
между шатунными шейками 1 и 2, а также 4 и 5 могут быть удалены с немного уменьшенной опорой
, чтобы получить более короткий коленчатый вал с четырьмя основными шейками. Порядок зажигания учитывается для коленчатого вала
, показанного на рис.2.24.
Когда поршень 1 находится в ВМТ в конце такта сжатия и собирается начать свой рабочий ход, поршни
4 и 5 находятся под 72 градусом от ВМТ на своих тактах впуска и выпуска соответственно.
и поршни 2 и 3 находятся под углом 36 градусов от НМТ на их соответствующих ходах сжатия и мощности
. Вращение коленчатого вала на 144 градуса приводит поршень 2 к верхнему такту сжатия
и началу мощности, в то время как поршни 3 и 5 находятся под 72 градусами от ВМТ на своих соответствующих тактах выпуска и впуска
, а поршни 1 и 4 находятся под 36 градусами от НМТ. на их
соответствующие ходы мощности и сжатия.

Рис. 2.23. «V-образный четырехцилиндровый двигатель.
В конце второго поворота
коленчатого вала на 144 градуса поршень 4 находится вверху, завершает
сжатие и собирается начать свой рабочий ход
. Поршни 1 и 3 находятся под 72 градусами от ВМТ
на их соответствующих ходах выпуска и всасывания
, а поршни 2 и 5 находятся под углом 36 градусов
от НМТ на их соответствующих ходах мощности и сжатия
. В конце третьего поворота кривошипа
на 144 градуса поршень 5 достигает ВМТ,
до конца сжатия и начала своего рабочего хода
.Поршни 1 и 2 находятся под углом 72 градуса
от ВМТ при их соответствующих тактах подачи и отвода
, а поршни 3 и 4 находятся под углом 36
градусов от НМТ при их соответствующих тактах сжатия
и рабочего хода. Четвертый поворот на 144 градуса -
перемещает поршень 3 в ВМТ на такте
сжатия и приближается к началу рабочего такта. Поршни 2 и 4 при этом совершают такты
впуска и выпуска соответственно, а поршни 1 и 5 находятся в своих тактах сжатия и увеличения мощности соответственно. Такое расположение
обеспечивает порядок срабатывания 1,2,4, 5, 3.Последние 144 градуса поворота завершают смещение коленчатого вала на 720
градусов.
Расстояние между ходами кривошипа при нечетном количестве пяти цилиндров гарантирует, в отличие от четырехцилиндрового механизма
, что поршни не останавливаются и не запускаются вместе вверху. и
низ каждого штриха. Следовательно, такое расположение обеспечивает очень плавный ход.
2.6.6.

Расположение с шестью цилиндрами

A. Рядный

Шестицилиндровый рядный двигатель имеет импульс мощности
каждые 720 градусов / 6 л.е. 120 градусов поворота коленвала
. Коленчатый вал имеет шесть кривошипов
, расположенных под углом 120 градусов относительно фазы
друг к другу, которые могут быть расположены
только в трех плоскостях. Поэтому шатун
фазировки расположен попарно (рис. 2.25). Для тяжелонагруженных дизельных двигателей
предусмотрено семь шеек и подшипники
на каждом конце и между соседними шатунными шейками
. Для бензиновых двигателей
предусмотрены только 4 или 5 коренные шейки. Порядок зажигания
с коленчатым валом
, показанным на рис.2.25 считается.
Когда поршень 1 находится в верхней части такта сжатия
, его противоположный поршень 6 находится в верхней части такта выпуска
. Поворот коленчатого вала на 120 градусов приводит поршни 2 и 5 к их ВМТ
, и любой из них может быть приспособлен для завершения такта сжатия. Если поршень 5
расположен в конце сжатия и в начале своего рабочего хода, то поршень 2 должен быть
на своем такте выпуска. Поворот коленчатого вала через вторые 120 градусов положения поршней 3

Рис.2.25. Рядный шестицилиндровый агрегат.

рис. 2.24. Рядный пятицилиндровый агрегат. ,
и 4 в ВМТ, поэтому любой из них может находиться в такте сжатия. Если поршень 3 выполнен как
на сжатие, поршень 4 должен быть на такте выпуска.
Третий поворот на 120 градусов возвращает поршни 1 и 6 обратно в ВМТ, где поршень 6
расположен на сжатии, а поршень 1, следовательно, на своем такте выпуска. Четвертый поворот на
на 120 градусов приводит поршни 2 и 5 в их ВМТ.Поршень 2 теперь находится на уровне сжатия
, а поршень 5 - на такте выпуска. Поворот коленчатого вала на пятое место на 120 градусов приводит поршень
3 и 4 в ВМТ. Поршень 4 находится на стадии сжатия, а поршень 3 - на такте выпуска. Окончательный поворот на
120 градусов завершает смещение коленчатого вала на 720 градусов и переводит поршни в положения
для следующего цикла. Этот цикл обеспечивает порядок срабатывания 1, 5, 3, 6, 2, 4.
Если фазирование парных ходов кривошипа 3 и 4 и 2 и 5 поменяно местами, то второй
, также подходящий порядок срабатывания 1, 4, 2, 6, 3, 5 достигается.Такое расположение обеспечивает превосходный динамический баланс
и равномерность крутящего момента и является предпочтительным для двигателей объемом более 2,5 л.
при условии, что длина не является основным соображением.

B. Горизонтально противоположный плоский

У этого шестицилиндрового двигателя три цилиндра расположены в горизонтальной плоскости с каждой стороны
коленчатого вала. Импульсы мощности синхронизируются, как для рядного шестицилиндрового механизма
, с каждыми 120 градусами поворота коленчатого вала.Коленчатый вал имеет шесть шатунов, расположенных с интервалом 60
градусов вокруг коленчатого вала. Обычно используются пять коренных цапф и подшипники.
Пары поршней, по одному с каждой стороны банка одновременно достигают ВМТ и НМТ (рис.
2.26). Подобно рядному шестицилиндровому двигателю, эта компоновка очень хорошо сбалансирована,
, но ее плоская широкая конфигурация затрудняет установку спереди или сзади автомобиля.
Предположим, что поршни 1 и 2 находятся в ВМТ, при этом поршень 1 находится в конце сжатия и собирается начать рабочий ход
, а поршень 2 - в конце своего такта выпуска.
Поршни 3, 4, 5 и 6 затем находятся под углом 60 градусов от НМТ на
их тактах
выпускного, компрессионного, индукционного и рабочего хода соответственно. Когда коленчатый вал поворачивается на 120
градусов, поршни 3 и 4 достигают ВМТ в конце своих
ходов выпуска и сжатия. Поршни 1, 2,
, 5 и 6 затем находятся под углом 60 градусов от НМТ по их соответствующим ходам мощности, хода впуска, сжатия и выпуска.
Порядок срабатывания в этой точке - 1, 4.
Второе перемещение на 120 градусов помещает поршни 5 и
6 в ВМТ, завершая такты сжатия и выпуска
соответственно.Поршни 1, 2, 3 и 4 затем находятся под углом 60 градусов
от НМТ при тактах выпуска, сжатия, индукции и мощности
соответственно. Порядок стрельбы становится 1,4,5. При третьем повороте на 120 градусов на
поршни 1 и 2 снова устанавливаются в ВМТ
, завершая такты выпуска и такты сжатия
соответственно. Поршни 3, 4, 5 и 6 затем находятся под углом 6 градусов
от НМТ при тактах сжатия, выпуска, мощности и индукции
соответственно. Порядок срабатывания в этой точке: 1,
4, 5, 2,
. Четвертый поворот на 120 градусов снова помещает поршень 3 и 4 в ВМТ, завершая такты сжатия
и выпуска соответственно.Поршни 1, 2, 5 и 6 находятся под углом 60 градусов от НМТ на своих

Рис. 2.26. Горизонтально-оппозитный плоский шестицилиндровый
.
такты впуска, мощности, выпуска и сжатия соответственно. Порядок зажигания становится 1,
4, 5, 2, 3. Пятый поворот на 120 градусов снова приводит поршни 5 и 6 в ВМТ, завершая такты выпуска
и такты сжатия соответственно. Поршни 1, 2, 3 и 4 затем находятся под углом 60 градусов от BDC
при тактах сжатия, выпуска, мощности и впуска соответственно.Полный порядок стрельбы
составляет 1,4,5,2,3,6. Последний поворот на 120 градусов завершает смещение
коленчатого вала на 720 градусов, что позволяет начать следующий цикл.

C. 60 градусов * V Шестицилиндровый

В этой схеме цилиндры стреляют через равные интервалы в 120 градусов. Цилиндры
расположены под номерами 1,2 и 3 в левом ряду и номерами 4, 5 и 6 в правом ряду
. Коленчатый вал использует шесть кривошипов для поддержки вала, расположенных на равном расстоянии с интервалом 60
градусов и расположенных в трех плоскостях.На каждом конце и между парами кривошипных шатунов расположены четыре основных шейки и подшипники
, обеспечивающие поддержку вала, что обеспечивает относительно короткую, но жесткую конструкцию
(рис. 2.27). Относительно хороший динамический баланс обеспечивает короткий компактный двигатель
по сравнению с рядным шестицилиндровым двигателем.
Возможны четыре команды срабатывания, но три из них включают последовательное срабатывание трех цилиндров
в каждом ряду, и только четвертый позволяет поочередно запускать цилиндры из каждого ряда
, имеющего порядок срабатывания 1, 4, 2, 5, 3, 6.Эта компоновка также предлагает лучший выбор из соображений крутильной вибрации
. При таком расположении пары поршней в разных рядах цилиндров
находятся в верхней части своего хода.
Предположим, что поршни 1 и 5 находятся в ВМТ после тактов сжатия и выпуска соответственно, так что
поршень 1 собирается начать свой рабочий ход, а поршень 5 - такт впуска. При повороте коленчатого вала на угол A120 градусов на
поршни 3 и 4 достигают вершины тактов выпуска и сжатия
соответственно.На этом этапе порядок срабатывания составляет 1, 4. Второй поворот на 120 градусов приводит к позиционированию поршней
2 и 6 в ВМТ на тактах сжатия и выпуска на
соответственно. Порядок срабатывания в этой точке
составляет 1, 4, 2.
При третьем повороте на 120 градусов поршни 1 и
5 помещаются в ВМТ на тактах выпуска и сжатия соответственно
, так что в этот момент порядок срабатывания равен 1, 4,
2, 5. Четвертый поворот коленчатого вала
на 120 градусов переводит поршни 3 и 4 в ВМТ на тактах сжатия и
выпусков соответственно.Порядок срабатывания:
: 1, 4, 2, 5, 3. Пятый поворот на 120 градусов
приводит поршни 2 и 6 вверху тактов выпуска и
тактов сжатия соответственно. Таким образом, окончательный порядок срабатывания
составляет 1,4,2,5,3, 6. Следующие 120 градусов поворота на
завершают установку
смещения коленчатого вала на 720 градусов, так что готово к следующему циклу событий.
2.6.7.

Восьмицилиндровый механизм

A. Рядный Прямой

В этой схеме импульс мощности подается каждые 720
градусов / 8 i.е. 90 градусов поворота коленчатого вала.
Ход кривошипа расположен с интервалом 90
градусов друг к другу в порядке импульса мощности.

Рис. 2.27. Vsix-цилиндровое расположение.
ses (рис. 2.28). Может быть только четыре относительных угловых положения. Следовательно, фазирование кривошипа
выполнено попарно, и, следовательно, ход кривошипа лежит в двух плоскостях. Для поддержки коленчатого вала требуется пять или
девять основных шейек. Компоновка, представленная на рисунке
, напоминает четырехцилиндровый коленчатый вал в одной плоскости со сдвоенными кривошипами на обоих концах, образующими вторую плоскость
под прямым углом к ​​первой.Такое расположение иногда называют «разделенными четырьмя рядами
» и «восьмеркой».
Пусть поршни 1 и 8 находятся в ВМТ, при этом поршень 1 в конце сжатия готов к срабатыванию, а поршень
8 в конце своего такта выпуска. Поршни 3 и 6 находятся в середине рабочего хода на своих тактах выпуска и сжатия
; поршни 2 и 7 в НМТ в конце индукционного и силового
тактов соответственно; и поршни 4 и 5 в середине хода при их соответствующих мощностных и индукционных
ходах.
При повороте коленчатого вала на 90 градусов поршни 3 и 6 устанавливаются в ВМТ в конце
тактов выпуска и сжатия соответственно.Поршни 2 и 7 в этом случае находятся в середине хода на своих
тактах сжатия и выпуска; поршни 4 и 5 в НМТ в конце рабочего хода и
тактов впуска соответственно; и поршни 1 и 8 в середине рабочего хода при их соответствующих тактах мощности и
тактов всасывания. Порядок зажигания в этом положении - 1, 6.
Второй поворот коленчатого вала на 90 градусов обеспечивает порядок зажигания в этом положении как 1,6,
2. Положение вращения на третий градус дает порядок зажигания как 1, 6, 2, 5. ; четвертый поворот на 90 градусов
положение как 1, 6, 2, 5, 8; пятая позиция поворота на 90 градусов как 1, 6, 2, 5, 8, 3 и шестая позиция поворота на 90 градусов
позиция перемещения как 1, 6, 2, 5, 8, 3, 7.7, 4.
Дальнейшее перемещение на 90 градусов составляет
, всего 720 градусов, и завершает два
оборота коленчатого вала или четыре хода в
готовности к началу следующего цикла. За счет установки
различных пар кривошипов в двигателях
использовались другие порядки зажигания: 1, 5, 2, 6, 4, 8, 3, 7 и 1, 7, 3, 8,
4, 6. , 2, 5.
Чтобы иметь дополнительную способность выдерживать большие нагрузки
, коленчатый вал может быть удлинен с
еще на два цилиндра. Несмотря на то, что эта конструкция
динамически сбалансирована, могут возникнуть проблемы с крутильными колебаниями
, а также может быть трудно разместить удлиненную длину
в некоторых грузовиках
.

B. 90 градусов * V восемь с одноплоскостным коленчатым валом

Подобно двухплоскостному коленчатому валу рядного восьмицилиндрового двигателя, одноплоскостная компоновка
, используемая для восьмицилиндрового двигателя, обеспечивает импульс мощности через каждые 90 градусов вращения коленчатого вала. Одноплоскостной коленчатый вал
использует четыре пары шатунов, чтобы внешний и оба внутренних шатуна
были синхронизированы по фазе. Каждый шатун имеет два больших конца шатуна, и обычно для поддержки коленчатого вала используются пять основных шейек
(рис.2.29).

Рис. 2.28. Рядный рядный восьмицилиндровый двигатель.

Рис. 2.29. V-образный восьмицилиндровый двигатель
с одноплоскостным коленчатым валом.
Позвольте поршням 1 и 4 оставаться в ВМТ, при этом поршень 1
в конце сжатия и готов к срабатыванию, а поршень
4 в конце своего такта выпуска. Поршни 2 и 3 находятся в положении
, а затем в НМТ в конце рабочего и индукционного тактов
соответственно; поршни 5 и 8 находятся в середине хода на тактах выпуска и сжатия
соответственно; и
поршни 6 и 7 находятся в середине рабочего хода на впускном и
рабочем тактах соответственно.
Первый, второй, третий, четвертый, пятый и шестой поворот коленчатого вала на 90
градусов обеспечивает порядок зажигания
в их соответствующих положениях, как, 1, 8; 1, 8, 3; 1, 8, 3, 6;
1, 8, 3, 6, 4; 1, 8, 3, 6, 4, 5; и 1, 8, 3, 6, 4, 5, 2. Окончательный порядок зажигания
завершается после поворота на 360 градусов
, т. е. седьмого поворота коленчатого вала
на 90 градусов и составляет 1, 8, 3, 6, 4, 5 , 2, 7.
Восьмой поворот на 90 градусов завершает поворот коленчатого вала на 720
градусов четырехтактного цикла
и готов к следующему циклу событий.
Одноплоскостной коленчатый вал, в отличие от двухплоскостного коленчатого вала
с V-образной восьмеркой, обеспечивает интервалы между соседними цилиндрами не менее 180 градусов из-за
импульсов, а
с модификацией с одним коллектором может быть увеличен с
до 360 градусов, прежде чем могут возникнуть помехи импульсов происходить.

C. 90 градусов * V Восьмицилиндровый

с двухплоскостным коленчатым валом
Такое расположение цилиндров обеспечивает стрельбу
с одинаковыми интервалами фаз в 90 градусов.Цилиндры
расположены под номерами 1, 2, 3 и 4 в левой полосе
и под номерами 5, 6, 7 и 8 в правой полосе
, как показано на рис. 2.30. Двухплоскостной коленчатый вал использует
пар кривошипов, фазированных с интервалом в 90 градусов.
Каждая шатунная шейка включает в себя два отдельных шатуна
, шарнирно прикрепленных к поршням в разных рядах цилиндров. Коренная шейка
и подшипник предусмотрены на каждом конце, а
- между соседними шатунными шейками. Поскольку два шатуна
имеют общий шатун, эти коленчатые валы с пятью коренными шейками
чрезвычайно короткие и менее сложные.
Двухплоскостной коленчатый вал имеет динамический баланс, на
намного превосходящий таковой у одноплоскостного коленчатого вала, и, следовательно,
более популярен.
Примите во внимание порядок рабочих ходов цилиндра - кольцо
при вращении коленчатого вала, как показано на рис. 2.30.
С поршнем 1 в ВМТ после такта сжатия и в положении

Рис. 2.30. Восьмицилиндровый V-образный вал 90 градусов
с двухплоскостным коленчатым валом.
начало мощности, поршень 5 находится в середине хода сжатия.Поршень 3 и 7 в этом случае находятся в положении
среднего такта выпуска и в начале выпуска соответственно; поршни 4 и 8 находятся в начале сжатия
и в середине хода всасывания соответственно; а поршни 2 и 6
находятся в середине рабочего хода и в начале всасывания соответственно.
С последующими первым, вторым, третьим, четвертым, пятым, шестым и седьмым поворотами на 90 градусов
коленчатого вала задает порядок зажигания в этом случае как 1, 5, 4, 8, 6, 3, 7, 2. Заключительный восьмой поворот на 90
градусов завершает смещение коленчатого вала на 720 градусов.
2.6.8.

Двенадцать цилиндров

Эти двигатели изначально предназначены для самолетов. Но некоторые автомобили, такие как Rolls Royce,
Packard, Lincoln Zephyer и Daimler «Double» Six, также использовали эти двигатели. Эти
обеспечивают намного превосходящий крутящий момент и идеальный динамический баланс, но имеют дополнительное усложнение и высокую стоимость изготовления.
По сути, двенадцатицилиндровый агрегат состоит из двух рядных шестицилиндровых двигателей, каждый из которых
образует ряд, наклоненный под углом 60 или 75 градусов.Они используют общий коленчатый вал
и распределительный вал с шестью наборами вилочных и простых соединительных стержней. Для достижения наилучших результатов в двигателе используются пара магнитных катушек зажигания
, два циркуляционных насоса и два карбюратора. Эти двигатели
имеют порядок включения 1, 4, 9, 8, 5, 2, 11, 10, 3, 6, 7, 12. Итальянский Ferrari - единственный автомобиль
, который производится с двенадцатицилиндровым двигателем. двигатель.
2.6.9. Расположение шестнадцати цилиндров
Эти двигатели имеют два набора прямых восьмицилиндров, наклоненных под углом или «V», и
идеально сбалансированы.Этот двигатель работает плавно благодаря непрерывному потоку мощности через
восемь импульсов мощности, равномерно распределенных на каждый оборот коленчатого вала. Порядок включения цилиндров
: 1, 4, 9, 12, 3, 16, 11, 8, 15, 14, 7, 6, 13, 2, 5, 10. Автомобиль Cadillac
использует этот двигатель и имеет Диаметр цилиндра и ход поршня 88,9 мм каждый, объем цилиндра
7060 куб. см, мощность 136 кВт при 3600 об / мин. Цилиндры, расположенные в двух рядах по восемь цилиндров
в каждом, наклонены под углом 135 градусов.Одна отливка включает оба ряда цилиндров и большую на
часть картера. Типы толкателей клапанов с гидравлической компенсацией используются для
, автоматически поддерживая правильный зазор.

Регулировка клапанов

на дизельном двигателе без руководства

Регулировка клапанов рядного шестицилиндрового дизельного двигателя

Существует способ без руководства для регулировки клапанов двигателя на любом рядном дизельном двигателе благодаря универсальной конструкции, которая упрощает выполнение этой процедуры .Эта процедура называется рокерным методом, при котором положение впускного и выпускного клапана используется в качестве ориентира при ручном переворачивании двигателя. Положение двигателя будет в верхней мертвой точке (ВМТ), и это зависит от положения клапана, определяющего, какой цилиндр готов к регулировке.

Конфигурация двигателя

С рядным 6 дизельным двигателем поршни №1 и №6 поднимаются и опускаются вместе в своих соответствующих цилиндрах, как и поршни №2 и №5, а также поршни №3 и №4.Вы могли бы назвать эти пары родственными цилиндрами ... Например, 1 и 6 цилиндры будут иметь оба поршня в ВМТ, но один будет на такте выпуска, а другой - на такте сжатия.

Метод коромысла

Таким образом, используя метод коромысла, я обычно начинаю с регулировки клапана №1, поскольку порядок зажигания на всех рядных 6-ти двигателях составляет 1 5 3 6 2 4. Чтобы добраться до ручки регулировки клапана цилиндра № 1, двигатель должен перевернуться. и следите за клапанами цилиндра №6. Вы увидите закрытие выпускного клапана...... когда он полностью закрыт, впускной клапан ПРОСТО начнет открываться (это обычно называется перекрытием клапанов). Это указывает на то, что поршни №1 и №6 находятся в ВМТ, но впускные и выпускные клапаны цилиндра №1 находятся на такте сжатия и готовы к регулировке, в то время как цилиндр №6 находится на такте выпуска.

Следование порядку зажигания

Следующий цилиндр в порядке зажигания - №5. Проверните двигатель до тех пор, пока выпускной клапан цилиндра № 2 не закроется, а впускной клапан ПРОСТО не начнет открываться.Так же, как поршни №1 и №6 находились в ВМТ, вместе поршни №2 и №5 теперь находятся в ВМТ. Для регулировки всех клапанов потребуется 2 оборота двигателя. Каждые 120 градусов поворота коленчатого вала будут позиционировать двигатель должным образом для каждой регулировки.

Зачем нужен рокер-метод?

Конечно, существует заводской метод, при котором в случае с двигателем DT466E, изображенным на картинке, вы выравниваете референтную метку на крышке привода ГРМ и демпфере вибрации, то есть ВМТ. В этом положении вы можете отрегулировать половину клапанов.Вращение двигателя на 360 градусов настроит двигатель для оставшихся клапанов для регулировки. Основная причина использования кулисного метода заключается в том, что у вас нет под рукой руководства и вам известны зазоры клапанов. Я хотел бы видеть ваши комментарии ниже, если у вас есть опыт использования этого метода, или вы просто хотите оставить отзыв или задать вопрос.

Рядный 6 против V6 - почему возвращаются рядные шестерки?

Перейдите к разделу о наших 10 лучших рядных шестицилиндровых двигателях

Jaguar Land Rover объявил в прошлом году, что они снова будут устанавливать рядные шестицилиндровые двигатели в свои автомобили и внедорожники, постепенно сокращая свой почтенный ассортимент бензиновых двигателей V6.

Но почему этот капитальный ремонт двигателя важен? Как старый V6, так и новый рядный шестицилиндровый двигатель имеют одинаковый объем в 3,0 литра, заметите ли вы изменение, находясь за рулем?

Это вопрос, который также касается тех, кто следит за разработками в Mercedes-Benz, который также сделал аналогичный переход с силовых установок V6 на рядные шестерки. BMW, тем временем, никогда не отходила от формата рядной шестерки. Итак, почему возрождение интереса к типу двигателя, который многие считали мертвым?

Читать дальше: 10 лучших двигателей Австралии

Что ж, хотя количество цилиндров остается прежним, переход от их размещения в двух банках (как в V6) в один привносит некоторые удивительные различия.Вот те, которые будут иметь наибольшее значение для вас, водителя.

ДОБАВЛЕНИЕ

Рядная шестерка на самом деле более совершенная, чем V6 с таким же рабочим объемом. Фактически, улучшения в доработке были одной из основных причин, по которым Jaguar Land Rover решил вернуться к рядным шестеркам (от конфигурации двигателя, от которой компания отказалась несколько десятилетий назад в пользу двигателей V6).

В рядной шестерке каждый цилиндр, который подвергается такту сгорания, уравновешивается другим цилиндром, который подвергается такту всасывания, и, поскольку эти `` спаренные '' цилиндры часто расположены симметрично вокруг центральной точки коленчатого вала, возникает очень небольшая вибрация, создаваемая в результате рядный шестицилиндровый двигатель.

V6, напротив, не обладают таким же гармоническим преимуществом.

Читать далее: Объяснение разработки моторных масел: Geek Speak

ПРОИЗВОДИТЕЛЬНОСТЬ

У конфигурации с рядным шестицилиндровым двигателем есть и другие преимущества - преимущества, которые сосредоточены на повышении мощности за счет более интеллектуальной упаковки.

С шестицилиндровыми двигателями с турбонаддувом, эффективно заменяющими более крупные двигатели V8 во многих современных автомобилях, более простая линейная компоновка предоставляет больше места для размещения устройств, повышающих производительность, таких как турбокомпрессоры, нагнетатели и связанная с ними сантехника.

Двигатель V6, тем временем, должен располагаться либо в впадине между головками блока цилиндров (например, в Audis с турбированным двигателем V6), либо в ограниченном пространстве по обе стороны от двигателя (например, Nissan GT-R), что создает тесная и сложная установка турбокомпрессора. Установка других сумматоров мощности, таких как турбины с электроприводом и / или нагнетатели, будет чрезвычайно сложной задачей для V6.

А с учетом того, что в высокопроизводительных автомобилях все чаще используются турбины и нагнетатели с электрическим наддувом - часто оба в одной и той же установке в последовательной компоновке с уменьшением запаздывания - наличие максимального места для размещения этих вещей означает больший потенциал производительности.

Это несколько иронично, учитывая, что одной из главных причин внедрения двигателей V6 несколько десятилетий назад была их компактность и простота упаковки - но это было в те времена, когда турбонаддув не был таким обычным явлением, как сейчас.

Читать далее: Mercedes-Benz отказывается от двигателей V6

ЗВУК

Это преимущество может варьироваться в зависимости от конструкции конкретного автомобиля, но в целом рядные шестерки, как правило, производят более приятные звуки выхлопа, чем их аналоги V6.

Почему? Поскольку наличие всех шести выхлопных отверстий на одной стороне двигателя означает, что их можно объединить вместе таким образом, чтобы аккуратно отделить «импульсы» выхлопа от каждого цилиндра, что труднее сделать на V6 (но не невозможно). Результат: звуковое блаженство для рядных шестицилиндровых мощных автомобилей.

СТОИМОСТЬ И СЛОЖНОСТЬ

Вот НАСТОЯЩАЯ причина, по которой рядные шестерки возвращаются. Теперь для автопроизводителей более рентабельно просто установить некоторые основные размеры для своих рядных двигателей и добавлять или убирать цилиндры по мере необходимости - инженерный метод, известный как «модульность».

BMW делает это в течение многих лет - все его рядные шесть, рядные четыре и рядные три двигатели имеют одинаковые критические межосевые отверстия (расстояние между каждым цилиндром) и размеры цилиндров, что и друг у друга, основное различие состоит в том, сколько цилиндров отлиты в их блок двигателя.

Читать далее: Дизели Subaru и шестицилиндровый двигатель в списке исчезающих

Это не то, что можно легко сделать с форматом V6. Mercedes-Benz попытался сделать это, сделав свой первый серийный V6 укороченной версией существующей архитектуры двигателя V8, но он внес компромиссы в конструкции (а именно, использование угла 90 градусов между каждым рядом цилиндров, а не 60-градусного угла). угол градуса, который более характерен для двигателей V6), что дало шестицилиндровому двигателю плохую доработку.

И это экономит деньги, позволяя одной производственной линии обрабатывать разные двигатели разных размеров. Что это значит для тебя? Проще говоря, производители могут использовать деньги, сэкономленные на разработке и производстве двигателей, на другие вещи, такие как автомобильные технологии, более качественные материалы или просто сохранение минимально возможной цены.

ОТСУТСТВИЕ КОМПРОМИССОВ ПО БЕЗОПАСНОСТИ

Заботы о безопасности были основной причиной, по которой двигатели V6 пришли на смену рядным шестеркам, поскольку их меньшая длина позволяла увеличивать зоны смятия и сводила к минимуму вероятность попадания двигателя в кабину при крупном лобовом столкновении.Это была основная причина, по которой Mercedes-Benz заботился о безопасности, так почему же компания возвращается к рядным шестеркам для своих больших автомобилей?

Технологические достижения означают, что «аксессуары» двигателя - насос гидроусилителя руля, компрессор кондиционера и генератор - больше не нужно устанавливать на передней части двигателя, что увеличивает общую длину двигателя.

Теперь они могут иметь электрический привод, их можно разместить в любом месте моторного отсека и таким образом уменьшить размеры прямой шестерки до уровня, при котором безопасность при столкновении не снижается.

Еще одной проблемой безопасности была высота рядных двигателей, на этот раз для защиты пешеходов. Опять же, здесь на помощь приходят технологии: откидные петли теперь могут физически поднимать капот, чтобы дать незадачливым пешеходам больше свободного пространства от твердого металла головки блока цилиндров.

Так чего же нам ждать?

Есть так много героев мощных автомобилей прошлого с рядными шестицилиндровыми двигателями. Если новая скоба рядных шестицилиндровых двигателей хоть сколько-нибудь хороша, как эта партия, мы хорошо проведем время.

ШЕСТЬ СКОРОСТИ TVR

ПРОИЗВОДИТСЯ: 1999-06
ВНУТРЕННЯЯ ЧАСТЬ: 3996cc
ИНДУКЦИЯ: NA

Британская TVR была амбициозна, назвав свой рядный шестицилиндровый двигатель в честь знаменитого 6,5-литрового двигателя Bentley. Но получившийся в результате двигатель хорошо сохранил легендарное имя.

История гласит, что TVR мечтал построить дорожную версию 7,7-литрового V12 GT1 Cerbera Speed ​​12 - пока босс компании Питер Уиллер не решил, что это слишком опасно.

Затем была получена 4,0-литровая шестерка из сплава с сухим картером из проекта, которая развила мощность 268 кВт / 420 Нм.Самую безумную форму двигатель обрел в Sagaris 2005 года, развивая мощность 303 кВт / 473 Нм при 7500/5000 об / мин, что является зенитом для серийной рядной шестерки с атмосферным двигателем.

MERCEDES-AMG M256

ПРОИЗВОДИТ: 2016-
Объем: 2999cc
ВПУСКНОЙ: Turbo, s / c

Mercedes-Benz M256 вернулся к установке шести горшков подряд после того, как в 1999 году отказался от компоновки и сосредоточился на V-образных двигателях. Гений M256, представленного сегодня в вариантах AMG с 53 значками, заключается не в отвратительном ворчании V8, а в гибридной интеграции.

Аккумуляторная система 48 В питает вспомогательные устройства, такие как кондиционер и водяной насос, а также электрический нагнетатель, чтобы не только освободить двигатель от паразитного ременного привода, но и помочь турбо-катушке. Электродвигатель на выходном валу затем задействует как стартер, так и усилитель мощности, помогая выдавать 320 кВт, а иногда и 770 Нм.

В результате получился невероятно плавный, мощный двигатель, столь же совершенный, сколь и новаторский.

FORD BARRA

ПРОИЗВОДИТ: 2002-14
ВОМ: 3983cc
ВПУСКНОЙ: Turbo

Барра показал, что австралийцы могут построить лучшую шестерку не хуже всех остальных.

Это была вдохновленная идея инженера FPV Гордона Барфилда - прикрепить большой турбонагнетатель к совершенно новой 4,0-литровой шестицилиндровой двигателю Ford DOHC, производящей 220 кВт / 450 Нм при жалких пяти фунтах на квадратный дюйм. Более поздние версии Ford и FPV продемонстрировали истинный потенциал чугунного блока, кульминацией которого стал Falcon XR6 Sprint, который воплотил все самое лучшее в лебединой песне мощностью 325 кВт / 576 Нм, которая могла выдавать 370 кВт и 650 Нм при разгоне.

Неудивительно, что тюнеры также устремились к двигателю, обнаружив, что 1000 кВт достижимы на стандартном блоке.

ПОДРОБНЕЕ Почему возвращаются рядные шестерки

БМВ S54

ИЗГОТОВЛЕНО: 2000-06
ВТОРИЧНЫЙ: 3246cc
ВНУТРЕННИЙ: NA

Автомобиль E28 M5. Модель M1. BMW на протяжении десятилетий полагалась на рядных шестицилиндровых двигателей своих самых культовых героев производительности, и S54B32, дебютировавший в E46 M3, является особой изюминкой.

В обычных M3 он выдавал 252 кВт / 365 Нм благодаря отдельным корпусам дроссельной заслонки и двойным VANOS, в то время как переработка его клапанного механизма и новый воздухозаборник из углеродного волокна в версии HP CSL позволили разблокировать еще 13 кВт и 5 Нм.

Помимо невероятного шума, издаваемого при вращении S54HP до 8100 об / мин, он также извлекает по 83 кВт / 115 Нм из каждого литра его объема 3246 куб. См. Достижение в том, что для такого двигателя, как 5,0-литровый двигатель Coyote V8 Ford Mustang, потребуется 415 кВт / 575 Нм.

MERCEDES-BENZ M198

ПРОИЗВОДИТСЯ: 1954-63 гг.
ВТОРИЧНЫЙ ОБЪЕМ: 2996 куб. См Двигатели

обычно обретают свою окончательную форму на гоночных трассах, но дорожный Mercedes-Benz 300SL опроверг эту тенденцию, когда дебютировал на Международном автосалоне в Нью-Йорке в 1954 году.Его донк был основан на модели M186, установленной в лимузине марки W186 300, который затем был оборудован сухим картером для гоночных автомобилей W194 SL.

Они произвели 125 кВт, или достаточно, чтобы вывести их на первое место в гонке «24 часа Ле-Ман эндуро» в 1954 году. Что касается дорожной отделки, инженеры разработали двигатель, получивший название M198 с системой прямого механического впрыска топлива от Bosch (первый серийный автомобиль). , чтобы произвести 148 кВт и 275 Нм. В довершение всего, в 1962 году блок был модернизирован до гораздо более легкого сплава.

ПРОЧИТАТЬ Лучшие прямые четверки в истории

NISSAN RB26DETT

ПРОИЗВОДИТ: 1989-02
ОБЪЕМ: 2568 куб.см
ВПУСКНОЙ: Twin-turbo

Хотя двигатель Nissan RB существовал некоторое время, он достиг своего пика, когда его использовали для R32 Skyline GT-R.Дебютировав с новым суффиксом «26DETT», он использовал два верхних распределительных вала с ременным приводом, чугунный блок, отдельные дроссельные заслонки и две керамические турбины, чтобы добиться 205 кВт / 355 Нм.

В то время как этого было достаточно для своего времени, соглашение японского джентльмена об ограничении в 206 кВт становилось все более ограничительным, поскольку GT-R эволюционировал в версии R33 и R34. Гоночный рекорд двигателя Группы A с R32 намекал на его возможности, как и примеры тюнеров, в то время как Nismo продемонстрировала свой производственный потенциал, когда он скучал до двух.8 литров для GT-R Z-Tune 2004 года выпуска. Они составили 368 кВт / 540 Нм.

КРАЙСЛЕР HEMI 6

ПРОИЗВОДИТСЯ: 1972-73 гг.
ВТОРИЧНЫЙ ОБЪЕМ: 4342 куб. См

Австралийцы впервые попробовали шестерку с настоящим сокрушительным ворчанием V8, когда Chrysler Oz засучил рукава на Charger E49 1972 года.

В то время как австралийский двигатель Hemi с верхним расположением клапанов был довольно простым, с расположением выпускных и впускных отверстий на одной стороне, он доказал, что замены рабочего объема не было. Переделка 4.3-литровый двигатель, который использовался в Charger E38 1971 года, двигатель E49 всасывал воздух через свои тройные Webers, создавая мощность 225 кВт / 441 Нм.

Забудьте о Holden Torana GT-R XU-1, этот Chrysler заменил легендарный двигатель Ford GT-HO Phase III за киловатт. Хотя E49 не выиграл Батерст, он преодолел четверть мили за 14,4 секунды и заработал статус местной легенды.

ПОДРОБНЕЕ Подпишитесь на MOTOR , журнал о самых мощных автомобилях Австралии

ЯГУАР ХК6

ПРОИЗВОДИТ: 1949-92
ВТОРИЧНЫЙ: 3442cc
ВПУСКНОЙ: NA

Украшенный и универсальный, XK6 оснащен всем, от современных танков до великолепного E-Type.Его легенда началась с 3,4-литрового поперечного цилиндра DOHC six, который разогнал XK120 до 205 км / ч и установил рекорд скорости серийного автомобиля в 1949 году, прежде чем на носу C-Type завоевал 24 часа Ле-Мана в 1951 и 1953 годах.

Последующий D-Type выиграл грандиозную гонку в '55, '56 и снова в '57, когда капер участвовал в гонках на более крупной 3,8-литровой версии. Но именно в XK-SS 1957 года, дорожном двигателе D-Type, 3,4-литровый двигатель по-настоящему показал себя с мощностью 195 кВт.

Тойота 2JZ-GTE

ПРОИЗВОДИТ: 1991-02
ОБЪЕМ: 2997cc
ВПУСКНОЙ: Twin-turbo

Toyota Aristo, возможно, сначала владел 2JZ-GTE, но его запомнят как двигатель, принадлежавший Supra.

Strength была ключевой в дизайне чистящего листа 2JZ-GTE, который, как ни удивительно, вернулся к чугунному блоку. Также использовались закрытая дека, кованый коленчатый вал и квадратное отверстие и ход поршня.

Последовательные турбины могли развивать мощность 243 кВт и 431 Нм через его 3,0 литра, этого достаточно, чтобы разогнать Supra до 290 км / ч, но двигатель быстро нашел свое призвание на вторичном рынке, который обнаружил, что он может легко получить 745 кВт с выбранными модификациями.

ПРОЧИТАЙТЕ СЛЕДУЮЩИЙ Атмо V8 v V10 v V12 легенды суперкаров противостоят

БМВ S58

ПРОИЗВОДИТ: 2019-
ОБЪЕМ: 2993 куб.

Турбонаддув F80 M3, возможно, серьезно пошатнул бы его, но именно двигатель S58 нового M3 нашел способы работать с ним.

Двигатель по-прежнему раскручивается до 7200 об / мин. И не только его головка блока цилиндров, напечатанная на 3D-принтере, кованые поршни и более низкая степень сжатия сжимают внушительные 375 кВт / 650 Нм из всего 3,0 литров, но и послушны и более плавны в доставке - как мы обнаружили в X3 M.

Небольшая экономия веса также открывает дорогу новому M4 GT3, заменяющему V8 M6. Это подтверждает, что его блок с закрытой декой и кованый шатун достаточно прочны, чтобы справиться с серьезным автоспортом.

ПЕЩЕРА?

Итак, с таким количеством преимуществ в пользу рядных шестерок, V6 использует время? Не совсем, из-за одного простого факта - рядные шестерки чрезвычайно сложно установить в любой автомобиль без продольного двигателя, где двигатель указывает в ту же сторону, что и направление движения автомобиля.Для больших автомобилей с поперечным расположением двигателя (где двигатель расположен вбок), таких как Toyota Kluger, требуется шестицилиндровый двигатель в компактном корпусе, поэтому для этих автомобилей V6 по-прежнему является лучшим выбором.

Но для заднеприводных (или полноприводных) мощных автомобилей и больших роскошных седанов, похоже, рядная шестерка снова в моде.

А теперь читайте про коленвалы плоские

(PDF) Обнаружение дисбаланса цилиндров шестицилиндрового дизельного двигателя DI по изменению давления

S.Х. Гаванде и др. / Международный журнал инженерных наук и технологий

Vol. 2 (3), 2010, 433-441

Таблица 2

Идентификация цилиндра с пропуском зажигания из положения,

на диаграммах фазового угла

K Цилиндры

1 5 3 6 2 4

½ - -

1 - -

1½ - - -

I 0-1 0 0 0 0

8. Выводы

Собственные частоты крутильных колебаний четырехтактных шестицилиндровых дизельных двигателей определяются компьютеризированным методом

Holzer и они находятся в хорошем согласии.Однако известен фактор, что зная собственные частоты

и имея формы колебаний двигателя, ограничения в использовании рабочих скоростей двигателя могут быть фиксированными

, которые составляют 1885 об / мин, чтобы избежать возникновения резонанса. а так нежелательное повреждение коленвала

и деталей двигателя. Предлагаемая методика устанавливает способ обнаружения пропусков зажигания в работающем дизельном двигателе с использованием вариации давления

. Здесь соответствующим образом разработана детальная модель шестицилиндрового дизельного двигателя DI.ДПФ измеренной частоты вращения коленчатого вала

в установившемся режиме работы при постоянной нагрузке показывает значительное изменение амплитуды

самой низкой основной гармоники порядка. Это справедливо как для равномерной работы, так и для условий пропусков зажигания, и самый низкий порядок основной гармоники

может использоваться для корреляции ее амплитуды с крутящим моментом давления газа для данной частоты вращения двигателя. Амплитуды

,

наименьших порядков гармоник (1/2, 1 и 1½) измеренной скорости могут использоваться для отображения пропусков зажигания.Разработан метод

обнаружения пропусков зажигания в цилиндре дизельного двигателя Kirloskar, основанный на фазах трех младших гармоник порядка

измеренной скорости.

9. Благодарности

Авторы хотели бы поблагодарить г-на GS Supekar, старшего генерального директора (R&E), и г-на Shrikrishna Pathak, менеджера Asst

, Kirloskar Oil Engines (Corporate R&E) Pune-03 за предоставление необходимых экспериментальные входы. И снова

авторы хотели бы поблагодарить руководство колледжа за предоставление необходимых помещений.Авторы выражают благодарность BCUD

Департаменту Университета Пуны за предоставленную финансовую помощь.

Ссылки

[1] Дж. Гента, Динамика и управление вибрацией, Италия, Springer, 1-е изд., Стр. 745-787, 2009.

[2] Б. Челлен, Р. Баранеску, Справочник по дизельным двигателям, 2-е издание, SAE International, глава 10, 1999.

[3] У. Кинке, Л. Нильсон, Автомобильные системы управления, для двигателя, трансмиссия и транспортное средство, 2-е издание, Springer

ch.5,6, 2005.

[4] П. Кундур, Устойчивость и управление энергетическими системами, Нью-Йорк МакГроу-Хилл, стр. 727-799, 1994.

[5] Р. Изерманн, Мехатронные системы, Springer, Лондон, гл. 4, 2005.

[6] SHGawande, LG Навале, М.Р. Нандгаонкар, Д.С. Бутала, Анализ частоты гармоник многоцилиндрового дизельного двигателя

для обнаружения дисбаланса, Международный обзор машиностроения

(I.RE.M.E.), Vol. 3, № 6, стр. 782-787, ноябрь 2009 г.

[7] S.H. Gawande, L.G. Навале, М.Р. Нандгаонкар, Динеш Бутала, Обнаружение дисбаланса мощности в многоцилиндровом двигателе

Рядный дизельный двигатель-генераторная установка

, IEEE Xplore 2010 / Выбрано для Journal of Electronic Science и

Technology, Китай. Vol. 8, No. 2, 2010.

[8] У. Кинке, Обнаружение пропусков зажигания двигателя, Control Engineering Practice 7, pp.203-208, 1999.

[9] Ежи Меркиш, Петр Богус, Рафаль Гжещик, Обзор Методы обнаружения пропусков зажигания в двигателе, используемые в диагностике платы

, Journal of Kones.Двигатели внутреннего сгорания, Том 8, № 1-2, стр. 326-341, 2001.

[10] Брайан Дж. Мерфи, Томас Гали, Карл Байингтон, Диагностическое обнаружение неисправностей для двигателей внутреннего сгорания

с помощью реконструкции кривой давления , Proc. аэрокосмической конференции, Государственный университет Пенсильвании, стр. 3239-

3246, октябрь 2003 г.

[11] Шарки, AJC, Чандрот, Г.О. и Шарки, штат Северная Каролина, Давление в цилиндрах и вибрация при внутреннем сгорании

Мониторинг состояния двигателя, Труды Cornadem 99, Судерленд, Великобритания, июль 1999 г.

Почему возвращается классическая компоновка двигателя

Спустя почти 70 лет с тех пор, как он был поражен высококомпрессионным двигателем Oldsmobile Rocket V8, рядный шестицилиндровый двигатель готов вернуться.

Я не первый, кто соединил эти точки, но причина возвращения рядной шестерки связана с производственной эффективностью, а не из-за неисправности двигателя V-6. По мере того, как V-8 угасают, количество V-6, которое они создали, также будет уменьшаться.

BMW, никогда не отказывавшаяся от рядного шестицилиндрового двигателя, создала шаблон для семейства современных модульных рядных двигателей, которые берут на вооружение другие автопроизводители.В BMW каждый цилиндр имеет объем 500 куб. См, а двигатели являются модульными, что означает, что они используют одно и то же базовое меню внутренних деталей, таких как клапаны, поршни, подшипники и насосы.

«Появление модульного цилиндра объемом 500 куб. См привело к появлению целого ряда 2,0-литровых двигателей I-4, 3,0-литровых двигателей V-6 и 4,0-литровых двигателей V-8. Во многом это произошло из-за стоимости», - говорит Аналитик AutoPacific Дэйв Салливан. «Возможность использовать одно и то же оборудование в нескольких приложениях помогает снизить затраты. Рядная шестерка гармонично сбалансирована, что снижает потребность в балансирах или любых дорогих системах очистки», - добавил он.

При разработке знаменитого семейства бензиновых и дизельных двигателей Ingenium компания Jaguar Land Rover использовала стратегию BMW по 500 куб. См на цилиндр и модульные компоненты, но с собственными инженерными изысками. Объявление JLR в прошлом месяце о планах прекратить закупку бензиновых двигателей на валлийском заводе Ford в 2020 году открывает двери для более крупных двигателей Ingenium. Представители JLR не подтвердят, что шестицилиндровые Ingenium уже в пути, но можно не сомневаться, что они есть.

JLR покупает двигатели V-8 и V-6 у Ford, и без этих двигателей у него были бы только четырехцилиндровые и гибридные автомобили с турбонаддувом, которые не развивали бы достаточный крутящий момент, чтобы обеспечить характеристики, необходимые для Range Rover. на Bentley и другие.Но 3,0-литровая шестерка Ingenium с наддувом могла легко заменить 5,0-литровый V-8.

План JLR по прекращению закупок бензиновых двигателей Ford V-6 и V-8 в 2020 году указывает на то, что шестицилиндровый двигатель Ingenium, вероятно, будет готов к модели 2021 года - или раньше, если JLR прекратит производство V-6 до V -8.

Поскольку трех- и четырехцилиндровые двигатели продолжают обеспечивать большую мощность и эффективность, гораздо менее затратно и разрушительно добавлять еще одну пару цилиндров для более крупного двигателя с большим крутящим моментом, чем создание V-6, который не разделяет его детали с двигателем V-8.

Новый 3,0-литровый рядный шестицилиндровый двигатель Mercedes выпускается в двух вариантах: Automotive News affiliate Autoweek сообщает о , включая двигатель мощностью 435 л.с.

Но есть проблемы, связанные с рядными шестерками. Большинство из них длиннее, чем V-6, которые они заменят, что затрудняет установку двигателя на переднеприводные автомобили, поскольку длина двигателя оставляет мало места для трансмиссии. Такая длина также может быть проблематичной для автомобилей с задним приводом, которым могут потребоваться более длинные капоты для размещения двигателя.

И еще есть безопасность.

Инженеры, похоже, близки к решению нескольких давних проблем безопасности, с которыми им не приходилось сталкиваться, когда был установлен двигатель V-6. «Одна из давних проблем [для рядного шестицилиндрового двигателя] связана с длиной двигателя и стандартами аварийности. Похоже, производители уверены, что они могут« деформировать »двигатель и не проникнуть в кабину», - говорит Салливан.

Но, если вы в последнее время водили BMW шестерку, вы знаете, какой гладкой и шелковистой может быть рядная шестерка.Теперь, с прямым впрыском, регулируемыми фазами газораспределения, электрическими нагнетателями и электрификацией, рядная шестерка может стать той конфигурацией, которая продвигает двигатель внутреннего сгорания к финишу.

Возвращение культового двигателя

Когда-то рядная шестерка была доминирующей конструкцией двигателей. Jaguar поставил их в свои лучшие автомобили, Jeep построил на них свою репутацию в конце 20-го века, и почти каждый заурядный семейный автомобиль или пикап в Америке имел один в стандартной комплектации - потом они почти вымерли.

В течение многих лет двигатели V6 убивали рядную шестерку, также известную как I6 или рядная шестерка, и весь дизайн казался обреченным на забвение. Но Mercedes-Benz воскресил. Он вернул рядную шестерку в виде M256, совершенно новую конструкцию двигателя, чтобы заменить многие из его двигателей V6.

В конце концов, низкая стоимость разработки двигателя, а не присущая ему плавность хода, позволила этой старой конструкции двигателя остаться в эксплуатации. Бензины с двигателем M256 уже осваивают международные рынки с 2017 года.S. впервые в седане CLS450 и купе AMG CLS53 grand tourer позже в этом году.

Если вновь обретенный интерес Mercedes к рядным шестеркам остановится, это может стать началом возвращения.

Что такое Стрит Шесть?
Анимация рядного шестицилиндрового двигателя.

Майкл ФрейWikimedia Commons

«Прямой» относится к расположению цилиндров в блоке цилиндров, а «шесть» - к количеству цилиндров.«V» было расположением, которое в конечном итоге заменило его, где два ряда цилиндров разделяли пространство, как сцепленные пальцы. С 1924 по 1943 год Mercedes сильно строил свой модельный ряд на рядных шестерках, пока не помешал бизнес по производству нацистских военных фургонов. А затем, с 1951 года и до 1998 года, Mercedes всегда производил по крайней мере одну шестерку подряд.

Мощные двигатели V8 захватили американскую автомобильную промышленность с 1950-х по 1970-е годы, когда автомобили стали невероятно большими, а бензин был дешевым, но если вы заказали семейный автомобиль, пикап или пони-кар в базовой комплектации, он, вероятно, шел с I6.

Но автомобили начали сокращаться в 1980-х годах, и моторные отсеки стали меньше, поскольку зоны деформации и электроника под капотом конкурировали с двигателями за космос. Двигатели V6 короче, чем двигатели I6, поскольку они смещают цилиндры в двух противоположных рядах. Двигатели также стали более дорогими в разработке, и с V8 в моделях большинства компаний имело больше смысла разделить расходы, отрубив два цилиндра, чтобы создать V6, а более короткий V6 легче поместился в моторные отсеки.

Подгонка
Шестицилиндровый двигатель Mercedes-Benz M256.

Daimler AG

Короткие капоты по-прежнему являются проблемой, но у Mercedes есть несколько уловок, чтобы укоротить M256 настолько, чтобы втиснуть его в современные курносые автомобили.

На обычном двигателе мощность двигателя приводится в действие гидроусилителем рулевого управления, генератором, воздушным насосом и компрессором кондиционера, и он приводит их в действие через систему резиновых ремней на шкивах, свисающих с передней части двигателя. Все это занимает много ценного подкапотного пространства между двигателем и решеткой радиатора.M256 избавляется от ремней и шкивов и вместо этого управляет такими аксессуарами, как кондиционер и генератор, через 48-вольтовую электрическую систему, называемую интегрированным стартер-генератором (ISG).

Пятимиллионный Jeep 4.0L, рядная шестерка.

CZmarlinWikimedia Commons

Это сделало двигатель короче, поэтому Mercedes было легче установить M256 в свои автомобили. ISG также включает в себя дополнительный электрический компрессор наряду с обычным турбонагнетателем на CLS53.В зависимости от потребляемой мощности компрессор может либо способствовать раскрутке турбонагнетателя, либо обеспечивать наддув непосредственно двигателю. Комбо устраняет турбо-задержку, задержку, которую вы чувствуете между нажатием педали газа и получением прироста мощности.

Сегодняшние шестицилиндровые двигатели часто являются производными от других двигателей, потому что вы можете легко сдвинуть или добавить цилиндры к существующей конструкции. Так что мускулистый V8 можно урезать до V6, а худощавый I4 может добавить немного мускулов и стать I6. Например, General Motors Vortec V6 был просто маленьким V8, слегка подрезанным.Такой подход позволяет избежать избыточного проектирования и, что более важно, дополнительных затрат.

Эти более компактные конструкции V6 вытесняли I6 в течение 20 лет. Когда Mercedes прекратил производство W140 S-класса в 1998 году, M104 - последний I6 компании - умер вместе с ним. К тому времени большинство автопроизводителей уже давно заменили рядные шесть бензиновых двигателей в своих легковых автомобилях.

Вступая в 21 век, вряд ли кто-нибудь сможет сделать рядные шестерки. Jeep отказался от своего 4.0L I6, производного от AMC, после 2006 года в пользу двигателей V6.Компания General Motors, уникальная для своего времени, создала I6 в 2002 году как часть своего нового семейства двигателей Atlas, просуществовавшего до 2012 года. Только BMW продолжала строить большую часть своего модельного ряда на рядной шестерке.

Двигатели меньшего размера, большая мощность
Mercedes-Benz 2019 CLS450 седан

Daimler AG

Но спрос на более мощные двигатели, который использовался в 1980-х и 90-х годах, сдерживался инженерами, которые выжимали больше мощности из меньшего количества цилиндров.Из-за растущих проблем, связанных с изменением климата, автопроизводители вынуждены разрабатывать более экономичные двигатели, а двигатели V8, как правило, потребляют и сжигают больше топлива, чем четырех- и шестицилиндровые двигатели меньшего объема. Также помогает то, что сегодняшние шестерки могут превзойти многие двигатели V8, которые были всего десять лет назад.

Таким образом, вместо того, чтобы разрабатывать чистый V6 для замены старых и устаревших V6, Mercedes создал модульное семейство двигателей, основанное на полулитровых цилиндрах, которые можно было бы встроить в два.0L четверки (M254) и 3.0L шестерки (M256). M256 развивает 362 лошадиных силы и 369 фут-фунтов крутящего момента в CLS45 и 429 лошадиных сил и 384 фут-фунт крутящего момента в CLS53 - это числа V8.

Именно уменьшение габаритов двигателей в масштабе отрасли может дать новую жизнь рядным шестеркам. Jaguar и Land Rover, с 2008 года принадлежащие индийской Tata Motors Limited, совместно разрабатывают новый I6 для замены своих двигателей V6 по тем же причинам, что и Mercedes.

Возвращение Mercedes к его бездействующим пыльным корням в качестве производителя автомобилей с рядной шестеркой - это больше, чем предварительный шаг.Автопроизводитель вложил значительную сумму денег в совершенно новое семейство двигателей, чтобы работать с большей частью своей линейки на долгие годы. Так что пока прямая шестерка никуда не денется.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Проблема с трехцилиндровым двигателем

Три горшка, которые ранее использовались в нескольких кей-карах, возвращаются во многие современные хэтчбеки.Мы решили, что пришло время взглянуть на все плюсы и минусы этих мини-силовых установок

.

Трехцилиндровые двигатели сейчас очень популярны. В эпоху сокращения размеров появилось множество вариантов с тремя горшками от VW Group, BMW, Honda и других компаний.Обычно это двигатели с турбонаддувом, мощность редко бывает проблемой, однако они не всегда самые приятные для испытания двигатели. Но почему так?

Рядный трехцилиндровый двигатель - это, по сути, рядный шестицилиндровый двигатель, разделенный пополам.Обычно в рядной шестерке два внешних цилиндра достигают верхней мертвой точки (ВМТ) одновременно, а остальные четыре цилиндра достигают определенных углов поворота, чтобы сбалансировать первичные силы, вторичные силы и крутящий момент двигателя.

В трехцилиндровом поршне один поршень (передний поршень) достигает ВМТ, а два других находятся на расстоянии 120 градусов от ВМТ или нижней мертвой точки (НМТ). Это означает, что первичные и вторичные силы уравновешены по вертикали, но крутящий момент на поршнях, совершающих возвратно-поступательное движение, не согласован в унисон, как в I6.Вместо этого двигатель пытается естественным образом вращаться и переворачиваться. Чтобы избежать этого, необходим балансировочный вал, противодействующий скручивающей силе.

2 МБ

Цикл двигателя I3

Неуравновешенность крутящего момента (общая с рядными пятью двигателями) вызывает дребезжащую трансмиссию, поскольку двигатель пытается раскачиваться из конца в конец, даже когда сбалансирован настолько, насколько это физически возможно.Это происходит из-за веса балансировочного вала, с которым приходится работать коленчатому валу, что делает эти двигатели менее свободно вращающимися, чем их более сбалансированные аналоги. Противовесы также можно врезать в сам коленчатый вал, но они также увеличивают вес, уменьшая его способность свободно вращаться.

Кроме того, из-за того, что зажигание происходит через каждые 240 градусов, шейки коленчатого вала разнесены на 120 градусов. Это означает, что при отсутствии рабочего хода коленчатый вал будет вращаться в значительной степени (60 градусов).Эта возвратно-поступательная функция приводит к недостаточной плавности передачи мощности и большому количеству вибрации, которыми печально известны трехцилиндровые двигатели. Неровная работа двигателя будет особенно заметна на более низких оборотах двигателя из-за отсутствия рабочих ходов.

Несмотря на эти недостатки, существует множество причин, по которым многие производители в наши дни выбирают трехцилиндровые двигатели.Во-первых, они легкие и компактные, что позволяет размещать их на нескольких платформах в моделях автомобилей производителя. Например, BMW использует трехцилиндровую трансмиссию от Mini в своем гибридном спортивном автомобиле i8.

С точки зрения производительности, на один цилиндр меньше, чем у стандартного рядного четырехцилиндрового двигателя, что снижает потери на трение движущихся компонентов. Этот фактор наряду с меньшими перемещениями составляет сильные экономические показатели.

BMW i8 использует трехцилиндровый двигатель IC, который обеспечивает общую мощность в 357 л.