16Июн

Крутящий момент электродвигателя формула: Как рассчитать крутящий момент электродвигателя

Мощность и вращающий момент электродвигателя. Что это такое?

Содержание

Мощность и вращающий момент электродвигателя

Данная глава посвящена вращающему моменту: что это такое, для чего он нужен и др. Мы также разберём типы нагрузок в зависимости от моделей насосов и соответствие между электродвигателем и нагрузкой насоса.

Вы когда-нибудь пробовали провернуть вал пустого насоса руками? Теперь представьте, что вы поворачиваете его, когда насос заполнен водой. Вы почувствуете, что в этом случае, чтобы создать вращающий момент, требуется гораздо большее усилие.



А теперь представьте, что вам надо крутить вал насоса несколько часов подряд. Вы бы устали быстрее, если бы насос был заполнен водой, и почувствовали бы, что потратили намного больше сил за тот же период времени, чем при выполнении тех же манипуляций с пустым насосом. Ваши наблюдения абсолютно верны: требуется большая мощность, которая является мерой работы (потраченной энергии) в единицу времени. Как правило, мощность стандартного электродвигателя выражается в кВт.



Вращающий момент (T) - это произведение силы на плечо силы. В Европе он измеряется в Ньютонах на метр (Нм).



Как видно из формулы, вращающий момент увеличивается, если возрастает сила или плечо силы - или и то и другое. Например, если мы приложим к валу силу в 10 Н, эквивалентную 1 кг, при длине рычага (плече силы) 1 м, в результате, вращающий момент будет 10 Нм. При увеличении силы до 20 Н или 2 кг, вращающий момент будет 20 Нм. Таким же образом, вращающий момент был бы 20 Нм, если бы рычаг увеличился до 2 м, а сила составляла 10 Н. Или при вращающем моменте в 10 Нм с плечом силы 0,5 м сила должна быть 20 Н.




Работа и мощность

Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила - любая сила - вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.

Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).



Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.



Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.

Приведем единицы измерения к общему виду.



Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.



Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.



Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.

Как образуется вращающий момент и частота вращения?

Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.

В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.



Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.

Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:



Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.




Потребляемая мощность электродвигателя

Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.



В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).

Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 • 0,746) = 14,92 кВт.

И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.


Момент электродвигателя

Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.

Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.



Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.

Графическое представление вращающего момента электродвигателя изображено на рисунке.



Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.

Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.

Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.

Блокировочный момент (Мблок): Максимальный вращающий момент - момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.

Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.


Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.



Постоянный вращающий момент

Как видно из названия - «постоянный вращающий момент» - подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.



Переменный вращающий момент и мощность

«Переменный вращающий момент» - эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.



Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.



На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения - мал, а потребный вращающий момент при высокой частоте вращения - велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность - кубу скорости вращения.



Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.



В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.


Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.

Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.



Если мы посмотрим на характеристику , то увидим, что при ускорении электродвигателя его пуск производится при токе, соответствующем 550% тока полной нагрузки.



Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.

Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.

Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.



Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.


Время пуска электрдвигателя

Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.



Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:



tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке

n = частота вращения электродвигателя при полной нагрузке

Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.

Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.



Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.

Мизб можно рассчитать по следующим формулам:







Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.


Число пусков электродвигателя в час

Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.

Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.


Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.

При производстве насосов используются следующие обозначения этих трёх различных типов мощности.



P1 (кВт) Входная электрическая мощность насосов - это мощность, которую электродвигатель насоса получает от источника электрического питания. Мощность P! равна мощности P2, разделённой на КПД электродвигателя.

P2 (кВт) Мощность на валу электродвигателя - это мощность, которую электродвигатель передает на вал насоса.

Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.

Р4 (кВт) Гидравлическая мощность насоса.

формула, правила расчета, виды и классификация электродвигателей

В электромеханике существует много приводов, которые работают с постоянными нагрузками без изменения скорости вращения. Их используют в промышленном и бытовом оборудовании как, например, вентиляторы, компрессоры и другие. Если номинальные характеристики неизвестны, то для расчетов используют формулу мощности электродвигателя. Вычисления параметров особенно актуальны для новых и малоизвестных приводов. Калькуляция выполняется с использованием специальных коэффициентов, а также на основе накопленного опыта работы с подобными механизмами. Данные необходимы для правильной эксплуатации электрических установок.

Электрические двигателя

Что такое электродвигатель?

Электрический двигатель представляет собой устройство, которое преобразует электрическую энергию в механическую. Работа большинства агрегатов зависит от взаимодействия магнитного поля с обмоткой ротора, которая выражается в его вращении. Функционируют они от источников питания постоянного или переменного тока. В качестве питающего элемента может выступать аккумулятор, инвертор или розетка электросети. В некоторых случаях двигатель работает в обратном порядке, то есть преобразует механическую энергию в электрическую. Такие установки находят широкое применение на электростанциях, работающие от потока воздуха или воды.

Электродвигатели переменного тока

Электродвигатели классифицируют по типу источника питания, внутренней конструкции, применению и мощности. Также приводы переменного тока могут иметь специальные щетки. Они функционируют от однофазного, двухфазного или трехфазного напряжения, имеют воздушное или жидкостное охлаждение. Формула мощности электродвигателя переменного тока

P = U х I,

где P - мощность, U - напряжение, I - сила тока.

Приводы общего назначения со своими размерами и характеристиками находят применение в промышленности. Самые большие двигатели мощностью более 100 Мегаватт используют на силовых установках кораблей, компрессорных и насосных станций. Меньшего размера используют в бытовых приборах, как пылесос или вентилятор.

Конструкция электрического двигателя

Привод включает в себя:

  • Ротор.
  • Статор.
  • Подшипники.
  • Воздушный зазор.
  • Обмотку.
  • Коммутатор.

Ротор - единственная подвижная деталь привода, которая вращается вокруг своей оси. Ток, проходя через проводники, образует индукционное возмущение в обмотке. Формируемое магнитное поле взаимодействует с постоянными магнитами статора, что приводит в движение вал. Их рассчитывают по формуле мощности электродвигателя по току, для которой берется КПД и коэффициент мощности, в том числе все динамические характеристики вала.

Ротор двигателя

Подшипники расположены на валу ротора и способствуют его вращению вокруг своей оси. Внешней частью они крепятся к корпусу двигателя. Вал проходит через них и выходит наружу. Поскольку нагрузка выходит за пределы рабочей зоны подшипников, ее называют нависающей.

Статор является неподвижным элементом электромагнитной цепи двигателя. Может включать в себя обмотку или постоянные магниты. Сердечник статора выполнен из тонких металлических пластин, которые называют пакетом якоря. Он призван снижать потери энергии, что часто происходит с твердыми стержнями.

Ротор и статор двигателя

Воздушный зазор - расстояние между ротором и статором. Эффективным является небольшой промежуток, так как он влияет на низкий коэффициент работы электродвигателя. Ток намагничивания растет с увеличением размера зазора. Поэтому его всегда стараются делать минимальным, но до разумных пределов. Слишком маленькое расстояние приводит к трению и ослаблению фиксирующих элементов.

Обмотка состоит из медной проволоки, собранной в одну катушку. Обычно укладывается вокруг мягкого намагниченного сердечника, состоящего из нескольких слоев металла. Возмущение индукционного поля происходит в момент прохождения тока через провода обмотки. В этот момент установка переходит в режим конфигурации с явными и неявными полюсами. В первом случае магнитное поле установки создает обмотка вокруг полюсного наконечника. Во втором случае, в распределенном поле рассредотачивается слотов полюсного наконечника ротора. Двигатель с экранированными полюсами имеет обмотку, которое сдерживает магнитное возмущение.

Коммутатор используют для переключения входного напряжения. Состоит из контактных колец, расположенных на валу и изолированных друг от друга. Ток якоря подается на щетки контактов ротационного коммутатора, который приводит к изменению полярности и заставляет вращаться ротор от полюса к полюсу. При отсутствии напряжения мотор прекращает крутиться. Современные установки оборудованы дополнительными электронным средствами, которые контролируют процесс вращения.

Коммутатор двигателя

Принцип действия

По закону Архимеда ток в проводнике создает магнитное поле, в котором действует сила F1. Если из этого проводника изготовить металлическую рамку и поместить ее в поле под углом 90°, то края будут испытывать силы, направленные в противоположную сторону относительно друг друга. Они создают крутящий момент относительно оси, который начинает ее вращать. Витки якоря обеспечивают постоянное кручение. Поле создается электрическими или постоянными магнитами. Первый вариант выполнен в виде обмотки катушки на стальном сердечнике. Таким образом, ток рамки генерирует индукционное поле в обмотке электромагнита, которое порождает электродвижущую силу.

Работа электродвигателя

Рассмотрим более подробно работу асинхронных двигателей на примере установок с фазным ротором. Такие машины работают от переменного тока с частотой вращения якоря, не равной пульсации магнитного поля. Поэтому их еще называют индукционными. Ротор приводится в движение за счет взаимодействия электрического тока в катушках с магнитным полем.

Когда во вспомогательной обмотке отсутствует напряжение, устройство находится в состоянии покоя. Как только на контактах статора появляется электрический ток, образуется постоянное в пространстве магнитное поле с пульсацией +Ф и -Ф. Его можно представить в виде следующей формулы:

nпр = nобр = f1 × 60 ÷ p = n1

где:

nпр - количество оборотов, которое совершает магнитное поле в прямом направлении, об/мин;

nобр - число оборотов поля в обратном направлении, об/мин;

f1 - частота пульсации электрического тока, Гц;

p - количество полюсов;

n1 - общее число оборотов в минуту.

Испытывая пульсации магнитного поля, ротор получает начальное движение. По причине неоднородности воздействия потока, он будет развиваться крутящий момент. По закону индукции, в короткозамкнутой обмотке образуется электродвижущая сила, которая генерирует ток. Его частота пропорциональна скольжению ротора. Благодаря взаимодействию электрического тока с магнитным полем создается крутящий момент вала.

Для расчетов производительности существуют три формулы мощности асинхронного электродвигателя. По сдвигу фаз используют

S = P ÷ cos (alpha), где:

S - полная мощность, измеряемая в Вольт-Амперах.

P - активная мощность, указываемая в Ваттах.

alpha - сдвиг фаз.

Под полной мощностью понимаются реальный показатель, а под активной - расчетный.

Виды электродвигателей

По источнику питания приводы разделяют на работающие от:

  • Постоянного тока.
  • Переменного тока.

По принципу работы их, в свою очередь, делят на:

  • Коллекторные.
  • Вентильные.
  • Асинхронные.
  • Синхронные.

Вентильные двигатели не относят к отдельному классу, так как их устройство является вариацией коллекторного привода. В их конструкцию входит электронный преобразователь и датчик положения ротора. Обычно их интегрируют вместе с платой управления. За их счет происходит согласованная коммутация якоря.

Синхронные и асинхронные двигатели работают исключительно от переменного тока. Управление оборотами происходит с помощью сложной электроники. Асинхронные делятся на:

  • Трехфазные.
  • Двухфазные.
  • Однофазные.

Теоретическая формула мощности трехфазного электродвигателя при соединении в звезду или треугольником

P = 3 * Uф * Iф * cos(alpha).

Однако для линейных значений напряжения и тока она выглядит как

P = 1,73 × Uф × Iф × cos(alpha).

Это будет реальный показатель, сколько мощности двигатель забирает из сети.

Синхронные подразделяются на:

  • Шаговые.
  • Гибридные.
  • Индукторные.
  • Гистерезисные.
  • Реактивные.

В своей конструкции шаговые двигатели имеют постоянные магниты, поэтому их не относят к отдельной категории. Управление работой механизмов производится с помощью частотных преобразователей. Существуют также универсальные двигатели, которые функционируют от постоянного и переменного тока.

Общие характеристики двигателей

Все моторы имеют общие параметры, которые используются в формуле определения мощности электродвигателя. На их основе можно рассчитать свойства машины. В разной литературе они могут называться по-разному, но означают они одно и то же. В список таких параметров входит:

  • Крутящий момент.
  • Мощность двигателя.
  • Коэффициент полезного действия.
  • Номинальное количество оборотов.
  • Момент инерции ротора.
  • Расчетное напряжение.
  • Электрическая константа времени.

Вышеуказанные параметры необходимы, прежде всего, для определения эффективности электрических установок, работающих за счет механической силы двигателей. Расчетные величины дают лишь приблизительное представление о реальных характеристиках изделия. Однако эти показатели часто используют в формуле мощность электродвигателя. Именно она определяет результативность машин.

Вращательный момент

Этот термин имеет несколько синонимов: момент силы, момент двигателя, Вращательный момент, вертящий момент. Все они используются для обозначения одного показателя, хотя с точки зрения физики эти понятия не всегда тождественны.

Крутящий момент

В целях унификации терминологии были разработаны стандарты, которые приводят все к единой системе. Поэтому в технической документации всегда используются словосочетание "крутящий момент". Он представляет собой векторную физическую величину, которая равна произведению векторных значений силы и радиуса. Вектор радиуса проводится от оси вращения к точке приложенной силы. С точки зрения физики разница между крутящим и вращательным моментом заключается в точке прикладывания силы. В первом случае это внутреннее усилие, во втором - внешнее. Измеряется величина в ньютон-метрах. Однако в формуле мощности электродвигателя крутящий момент используется как основное значение.

Рассчитывается он как

M = F × r, где:

M - крутящий момент, Нм;

F - прикладываемая сила, H;

r - радиус, м.

Для расчета номинального вращающего момента привода используют формулу

Мном = 30Рном ÷ pi × нном, где:

Рном - номинальная мощность электрического двигателя, Вт;

нном - номинальное число оборотов, мин-1.

Соответственно, формула номинальной мощности электродвигателя бедует выглядеть следующим образом:

Рном = Мном * pi*нном / 30.

Обычно все характеристики указаны в спецификации. Но бывает, что приходится работать с совершенно новыми установками, информацию о которых найти очень сложно. Для расчета технических параметров таких устройств берут данные их аналогов. Также всегда известны только номинальные характеристики, которые даются в спецификации. Реальные данные необходимо рассчитывать самостоятельно.

Мощность двигателя

В общем смысле данный параметр представляет собой скалярную физическую величину, которая выражена в скорости потребления или преобразования энергии системы. Он показывает, какую работу механизм выполнит за определенную единицу времени. В электротехнике характеристика отображает полезную механическую мощность на центральном вале. Для обозначения показателя используют литеру P или W. Основной единицей измерения является Ватт. Общая формула расчета мощности электродвигателя может быть представлена как:

P = dA ÷ dt, где:

A - механическая (полезная) работа (энергия), Дж;

t - затраченное время, сек.

Механическая работа также является скалярной физической величиной, выражаемой действием силы на объект, и зависящей от направления и перемещения этого объекта. Она представляет собой произведение вектора силы на путь:

dA = F × ds, где:

s - пройденное расстояние, м.

Она выражает дистанцию, которую преодолеет точка приложенной силы. Для вращательных движений она выражается как:

ds = r × d(teta), где:

teta - угол оборота, рад.

Таким образом можно вычислить угловую частоту вращения ротора:

omega = d(teta) ÷ dt.

Из нее следует формула мощности электродвигателя на валу: P = M × omega.

Коэффициент полезного действия электромотора

КПД - это характеристика, которая отражает эффективность работы системы при преобразовании энергии в механическую. Выражается отношением полезной энергии к потраченной. По единой системе единиц измерений он обозначается как "eta" и является безразмерным значением, исчисляемым в процентах. Формула КПД электродвигателя через мощность:

eta = P2 ÷ P1, где:

P1 - электрическая (подаваемая) мощность, Вт;

P2 - полезная (механическая) мощность, Вт;

Также он может быть выражен как:

eta = A ÷ Q × 100 %, где:

A - полезная работа, Дж;

Q - затраченная энергия, Дж.

Чаще коэффициент вычисляют по формуле потребляемой мощности электродвигателя, так как эти показатели всегда легче измерить.

Снижение эффективности работы электродвигателя происходит по причине:

  • Электрических потерь. Это происходит в результате нагрева проводников от прохождения по ним тока.
  • Магнитных потерь. Вследствие излишнего намагничивания сердечника появляется гистерезис и вихревые токи, что важно учитывать в формуле мощности электродвигателя.
  • Механических потерь. Они связаны с трением и вентиляцией.
  • Дополнительных потерь. Они появляются из-за гармоник магнитного поля, так как статор и ротор имеют зубчатую форму. Также в обмотке присутствуют высшие гармоники магнитодвижущей силы.

Следует отметить, что КПД является одним из самых важных компонентов формулы расчета мощности электродвигателя, так как позволяет получить цифры, наиболее приближенные к действительности. В среднем этот показатель варьирует от 10% до 99%. Она зависит от конструктивного устройства механизма.

Номинальное количество оборотов

Еще одним ключевым показателем электромеханических характеристик двигателя является частота вращения вала. Он выражается в числе оборотов в минуту. Часто его используют в формуле мощности электродвигателя насоса, чтобы узнать его производительность. Но необходимо помнить, что показатель всегда разный для холостого хода и работы под нагрузкой. Показатель представляет физическую величину, равной количеству полных оборотов за некий промежуток времени.

Расчетная формула частоты оборотов:

n = 30 × omega ÷ pi, где:

n - частота вращения двигателя, об/мин.

Для того, чтобы найти мощность электродвигателя по формуле оборотистости вала, необходимо привести ее к расчету угловой скорости. Поэтому P = M × omega будет выглядеть следующим образом:

P = M × (2pi × n ÷ 60) = M × (n ÷ 9,55), где

t = 60 секунд.

Момент инерции

Этот показатель представляет собой скалярную физическую величину, которая отражает меру инертности вращательного движения вокруг собственной оси. При этом масса тела является величиной его инертности при поступательном движении. Основная характеристика параметра выражена распределением масс тела, которая равна сумме произведений квадрата расстояния от оси до базовой точки на массы объекта.В Международной системе единиц измерения он обозначается как кг·м2 и имеет рассчитывается по формуле:

J = ∑ r2 × dm, где

J - момент инерции, кг·м2 ;

m - масса объекта, кг.

Моменты инерции и силы связаны между собой соотношением:

M - J × epsilon, где

epsilon - угловое ускорение, с-2.

Показатель рассчитывается как:

epsilon = d(omega) × dt.

Таким образом, зная массу и радиус ротора, можно рассчитать параметры производительности механизмов. Формула мощности электродвигателя включает в себя все эти характеристики.

Расчетное напряжение

Его еще называют номинальным. Оно представляет собой базовое напряжение, представленное стандартным набором вольтажа, которые определяется степенью изоляции электрического оборудования и сети. В действительности оно может отличаться в разных точках оборудования, но не должно превышать предельно допустимых норм рабочих режим, рассчитанных на продолжительное функционирование механизмов.

Для обычных установок под номинальным напряжением понимают расчетные величины, для которых они предусмотрены разработчиком в нормальном режиме работы. Перечень стандартного вольтажа сети предусмотрен в ГОСТ. Эти параметры всегда описаны в технических характеристиках механизмов. Для расчета производительности используют формулу мощности электродвигателя по току:

P = U × I.

Электрическая константа времени

Представляет собой время, необходимое для достижения уровня тока до 63 % после подачи напряжения на обмотки привода. Параметр обусловлен переходными процессами электромеханических характеристик, так как они быстротечны ввиду большого активного сопротивления. Общая формула расчета постоянной времени:

te = L ÷ R.

Однако электромеханическая константа времени tm всегда больше электромагнитной te. Первый параметр получается из уравнения динамических характеристики двигателя при сохранении условии, когда ротор разгоняется с нулевой скоростью до максимальных оборотов холостого хода. В этом случае уравнение принимает вид

M = Mст + J × (d(omega) ÷ dt), где

Mст = 0.

Отсюда получаем формулу:

M = J × (d(omega) ÷ dt).

По факту электромеханическую константу времени рассчитывают по пусковому момент - Mп. Механизм, работающий в идеальных условиях, с прямолинейными характеристиками будем иметь формулу:

M = Mп × (1 - omega ÷ omega0), где

omega0 - скорость на холостом ходу.

Такие расчеты используют в формуле мощности электродвигателя насоса, когда ход поршня напрямую зависит от оборотистости вала.

Основные формулы расчета мощности двигателей

Для вычисления реальных характеристик механизмов всегда нужно учитывать много параметров. в первую очередь нужно знать, какой ток подается на обмотки электродвигателя: постоянный или переменный. Принцип их работы отличается, следовательно, отличаются метод вычислений. Если упрощенный вид расчета мощности привода выглядит как:

Pэл = U × I, где

I - сила тока, А;

U - напряжение, В;

Pэл - подведенная электрическая мощность. Вт.

В формуле мощности электродвигателя переменного тока необходимо также учитывать сдвиг фаз (alpha). Соответственно, расчеты для асинхронного привода выглядят как:

Pэл = U × I × cos(alpha).

Кроме активной (подведенной) мощности существует также:

  • S - реактивная, ВА. S = P ÷ cos(alpha).
  • Q - полная, ВА. Q = I × U × sin(alpha).

В расчетах также необходимо учитывать тепловые и индукционные потери, а также трение. Поэтому упрощенная модель формулы для электродвигателя постоянного тока выглядит как:

Pэл = Pмех + Ртеп +Ринд + Ртр, где

Рмех - полезная вырабатываемая мощность, Вт;

Ртеп - потери на образование тепла, ВТ;

Ринд - затраты на заряд в индукционной катушке, Вт;

Рт - потери в результате трения, Вт.

Заключение

Электродвигатели находят применение практически во всех областях жизни человека: в быту, в производстве. Для правильного использования привода необходимо знать не только его номинальные характеристики, но и реальные. Это позволит повысить его эффективность и снизить затраты.

Расчет мощности и вращающего момента на валу двигателя

Для расчета мощности, кВт, и вращающего момента, Н·м, на валу двигателя следует пользоваться формулами:

вращательное движение
;
;

подъем груза

;

привод вентилятора

,

где κ — коэффициент, учитывающий действие противовеса;
v — скорость подъема груза, м/с;
Q — расход воздуха, м³/с;
р — давление на выходе вентилятора, Па;
g — ускорение свободного падения, м/с²;
η — КПД вентилятора, подъемника;
m — масса, кг;
n — частота вращения об/мин.

Полученные значения следует увеличить до ближайшего каталожного значения.

Двигатели эксплуатируются в самых разнообразных режимах.
Учет режима работы имеет большое значение при подборе двигателя. Мощности двигателей, указанные в каталогах, приведены для режима S1 и нормальных условий работы, кроме двигателей с повышенным скольжением.

Если двигатель работает в режиме S2 или , он нагревается меньше, чем в режиме S1, и поэтому он допускает большую мощность на валу. При работе в режиме S2 допустимая мощность может быть повышена на 50 % при длительности нагружения 10 мин, на 25 % — при длительности нагружения 30 мин, на 10% — при длительности нагружения 90 мин. Для режима рекомендуются двигатели с повышенным скольжением.

Подробнее, о номинальных данных электрических машин, здесь.

Источник: Кравчик А.Э. и др. Выбор и применение асинхронных двигателей.

Помощь студентам

Крутящий момент и зависимость крутящего момента

Как рассчитать крутящий момент, зная обороты и мощность двигателя?

Крутящий момент напрямую зависит от мощности и числа оборотов двигателя в минуту. Имеется общепринятая формула расчета крутящего момента, выражаемого в Ньютон-метрах ( русское обозначение Н·м, международное N·m ) 

 

M = P х 9550 / N

 

Где P - это мощность двигателя в киловаттах (кВт)

N - обороты вала в минуту

 

 

Как рассчитать мощность двигателя, зная крутящий момент и обороты?

Для такого расчета существует формула:

 

P = M х N / 9550

 

Где M - это крутящий момент двигателя

N - это обороты двигателя

 

Для скорости и простоты расчета воспользуйтесь удобным калькулятором крутящего момента. Впишите в ячейки калькулятора имеющиеся значения и калькулятор автоматически проставит результаты расчета.

 

Калькулятор крутящего момента

Вращающий момент электродвигателя — Знаешь как

Вращающий момент электродвигателяВ двигателях постоянного тока вращающий момент определяется выражением М ≡ ФIя, т.е. он пропорционален потоку и току якоря. В асинхронном двигателе момент создается вращающимся потоком Ф и током ротора I2. Он может быть выражен

М ≡ ФI2 cos Ψ2.

Следовательно, момент пропорционален потоку и активной слагающей тока ротора I2 cos Ψ2, так как только активная слагающая тока определяет мощность, а значит и момент.

На рис. 10-20 представлена схема включения короткозамкнутого двигателя. Если пустить двигатель, включив рубильник 1, то в первый момент пуска, когда п2 = 0, a = 1, наведенная в роторе э. д. с. Е2 и пусковой ток I2п максимальны. Однако, пусковой момент Мп не будет максимальным, а в 2—2,5 раза меньше максимального. Векторная диаграмма для цепи ротора (рис. 10-21), построенная подобно изображенной на рис. 9-9, показывает причину этого.

Рис 10-20. Схема включения короткозамкнутого асинхронного двигателя.

Обычно в роторе х2 во много раз больше r2 и угол Ψ2, на который ток I2п отстает от э. д. с. Е2 велик. Поэтому активная слагающая тока I2п cos Ψ2, а значит и пусковой момент Мп малы. В современных асинхронных двигателях Мп/Мп = 1 — 1,5, хотя I2пIн≈ 4,5—6,5.

Это же явление по другому объясняется на рис. 10-19 и 10-22.

Векторная диаграмма в цепи ротора

Рис. 10-21. Векторная диаграмма в цепи ротора. 

При описании принципа работы двигателя (рис. 10-19) было предположено, что ток I2 совпадает по фазе с э. д. с. Е2, т. е. что он активный (Ψ2 = 0). На рис. 10-22 представлен момент пуска, когда направление э. д. с. в проводах ротора соответствует обозначенному на рис. 10-19, а ток показан отстающим от э. д. с. на угол Ψ2. Тогда шесть проводов ротора (три под полюсом и три под полюсом S) создают усилия, действующие в направлении вращения потока, а два провода вызывают противодействующие усилия. В результате этого вращающий момент будет тем меньше, чем больше сдвиг фаз между током Iи э. д. с. E2.

Ток в роторе двигателя в момент пуска

Рис. 10-22. Ток в роторе двигателя в момент пуска.

По мере увеличения скорости вращения ротора реактивное сопротивление обмотки ротора x2s = x2уменьшается, а вместе с этим уменьшается угол Ψ2, так как сопротивление r2 ≈ const. Наступает такое положение (рис 10-21), когда при некотором скольжении sм ≈ 0,1—0,15 реактивное сопротивление x2становится равным активному r2, угол Ψ — 45° и э. д. с. E2s уравновешивает два равных падения напряжения I2r2 и I2x2s это время активная слагающая тока I2 cos Ψ2 и вращающий момент Мм становятся максимальными, несмотря на некоторое уменьшение тока I2.

Обычно Мм/Мм = 1,8—2,5 и называется способностью к перегрузкe.

При дальнейшем разгоне ротора x2s становится значительно меньшим, чем r2, им можно пренебречь и считать ток ротора активным (I2 ≈ I2 cos Ψ2). Так как E2s = E2тоже продолжает уменьшаться, то вместе с током I2 уменьшается и вращающий момент.

Максимальная скоростьn вращения будет при холостом ходе двигателя и тогда n2  n, a s ≈ 0. Зависимость вращающего момента от скольжения М = f (s) представлена на рис. 10-23.

Зависимость вращающего момента двигателя от скольжения

Рис. 10-23. Зависимость вращающего момента двигателя от скольжения.

Нормальная работа двигателя возможна только на участке кривой при скольжениях от нуля до sм, так как в этом случае при увеличении тормозного момента и значит s вращающий момент возрастает. На участке от s = sм до s = 1 работа двигателя неустойчива. Номинальный момент Мн соответствует обычно номинальному скольжению sн = 1—6%.

Поток Ф пропорционален напряжению U1, подводимому к трансформатору. Сказанное остается в силе и для асинхронного двигателя. Так как М ≡ ФI2 cos Ψ2, то можно написать, что

I2 cos Ψ2 ≡ E2s  Ф  U1

Отсюда можно сделать очень важный для асинхронных двигателей вывод

M ≡ U1U1 ≡U21

т. е. вращающий момент пропорционален квадрату подведенного к статору напряжения. Таким образом, падение напряжения в сети, например до 0,9 U, вызовет уменьшение момента до 0,9 • 0,9 Мн 0,81 Мни нагруженный двигатель может остановиться. Указанным обстоятельством и объясняется, частично, нормирование падения напряжения в распределительных сетях, питающих асинхронные двигатели.

Механическая характеристика двигателя

В практике потребителя часто интересует механическая характеристика двигателя

п2 = f (М) при U1 = const и f1 = const. Для удобства пользования по осям откладывают (n2/n1)100% и (М/Мн)100%.

Рис. 10-24. Механическая характеристика двигателя.

Эта характеристика получается простым перестроением рис, 10-23 и показана на рис. 10-24, где рабочая часть обозначена сплошной линией. Кривая 1 для двигателей нормального исполнения показывает, что асинхронный двигатель обладает жесткой характеристикой скорости, подобно двигателю постоянного тока параллельного возбуждения. Асинхронный двигатель с фазным ротором для регулирования скорости вращения, например для крановых и подъемных устройств, имеет более мягкую характеристику (кривая 2).

РАБОЧИЙ ПРОЦЕСС АСИНХРОННОГО ДВИГАТЕЛЯ

Трехфазный ток I1протекая в трехфазной обмотке статора, создает н. F1, вращающуюся со скоростью п1= (f1•60)/p (рис. 10-4, 10-5). Трехфазный ток ротора I2 создает в трехфазной обмотке ротора н. с. F2вращающуюся вокруг ротора со скоростью п3 = (f1•60)/p . Сам ротор вращается в сто-

рону н. с. со скоростью n2. Тогда скорость вращения н. с F2 относительно статора равна:

п2 + п3 п2 +(f• 60)/p = n2 + (f1• 60)/p = n2 + n1s = n2 + n1((n1 — n2)/n1) = n1

Таким образом, обе н. с. Fи F2 вращаются с одной скоростью n1, друг относительно друга неподвижны и создают сообща вращающийся магнитный поток Ф. Следовательно, все приведенное на рис. 9-8 и 9-9 справедливо и для асинхронного двигателя.

Следует отметить, что благодаря воздушному зазору между ротором и статором ток холостого хода (рис. 9-7) двигателя очень велик (20—40)% I. Поэтому для улучшения cos φ1 сети двигатель необходимо нагружать полностью.

 

Статья на тему Вращающий момент электродвигателя

Что такое крутящий момент электродвигателя

Одним из важных параметров электродвигателя, который так же важен при его выборе, является крутящий момент. Эта величина определяется произведением приложенной к плечу рычага силы и зависит исключительно от степени нагрузки. Если в двигателях внутреннего сгорания данную нагрузку задаётся коленчатым валом, то асинхронные электродвигатели получают величину крутящего момента от токов возбуждения. При этом величина этого момента будет зависеть от скорости вращающегося в магнитном поле статора устройства, называемого ротор. В зависимости от периода и способа определения, крутящий момент разделяют на:

  • статический (пусковой) – минимальный момент холостого хода;
  • промежуточный – развивает значение при работе двигателя от 0 величины оборотов до максимального значения в номинальной величине напряжения;
  • максимальный – развивающийся при эксплуатации двигателя;
  • номинальный – соответствует номинальным значениям мощности и оборотов.


Для вычисления величины крутящего момента, определяющегося в «кгм» (килограмм на метр) или «Нм» (ньютон на метр), многие электротехнические пособия предлагают специальные формулы, учитывающие кроме основного действия вращающегося магнитного поля ряд всевозможных факторов, например:

  • напряжения сети;
  • величину индуктивного и активного сопротивления;
  • зависимость от увеличения скольжения.

Но, рост скольжения не всегда приносит высокий момент. Зачастую, при достижении критических значений, наблюдается его резкое снижение. Такое явление обозначается как опрокидывающий момент. Одним из устройств, стабилизирующих скорость вращения ротора, а значит и величину момента кручения является частотный преобразователь, применение которого сейчас очень распространено во всех сферах, где от контроля работы двигателя зависит и успешность выполнения множественных производственных задач.

Выбираем электродвигатель по крутящему моменту

Для выбора, требуемого к выполнению тех или иных задач электродвигателя, берут в учёт практически все его характеристики, начиная от показателей мощности и заканчивая массогабаритными параметрами. Каждый из элементов по-своему важен в решении нюансов. Не меньшее значение припадает и на крутящий момент. Благодаря тому, что момент кручения напрямую связан с оборотами в соотношении: чем больше сами обороты, тем меньше будет момент, выбор электродвигателя будет исходить из следующих нюансов:

  • из скоростных требований. В этом случае, более полезным будет выбор двигателя по малому моменту для работающих со слабыми усилиями и на большой скорости, и со средними либо высокими показателями моментов пуска для работающих в усиленных режимах. На малых скоростях;
  • по пусковым напряжениям. Здесь учитывается первичное усилие, например, для управления лифтом следует подбирать двигатели высокого пускового момента, способного поднимать большие грузы со старта. Хотя, многие статьи про электродвигатели рекомендуют так же применять устройства плавного пуска, умеющие обезопасить от нежелательных перегрузов.

Стоит помнить, что выбор осуществляется не по одному из показателей, даже при ориентировании относительно крутящего момента, ведь каждый из показателей ориентируется по рабочей предрасположенности электротехнического приводного устройства и его рабочих нагрузок в статистических и динамических эксплуатационных условиях, задаваемых самим предприятием.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Выбор электродвигателя

Электродвигатель главная движущая сила электропривода. О том, какой электродвигатель выбрать для прямоходных механизмов рассказывается в этой статье

Вид электромеханизма Тип двигателя в комплектации
ATL 10, BSA 10

АС 1-фазный, АС 3-х фазный, DS 24/12 B

с тормозом и без

ATL 20-25-30-40

BSA 20-25-30-40

АС 1-фазный, АС 3-х фазный, DS 24/12 B

с тормозом и без

ATL 50-63-80

BSA 50-63-80

АС 3-х фазный

с тормозом и без

UAL 0 UBA 0 DS 24 B 12 B с тормозом и без

UAL 1-2-3-4

UBA 1-2-3-4

АС 1-фазный, АС 3-х фазный, DS 24/12 B

с тормозом и без

Основные технических характеристики

Перед выбором электродвигателя важно понимать следующие физические характеристики:

Номинальная мощность - механическая мощность, измеряемая на валу, выражается в единицах измерения Ватт или КилоВатт. Однако в некоторой продукции мощность исчисляют лошадинными силами. 
Номинальное напряжение - напряжение, которое должно подаваться на клеммы электродвигателя, в соответсвии со спецификациями.

Статический крутящий момент (пусковой крутящий момент) - минимальный крутящий момент, который двигатель может обеспечить, с ротором при холостом ходе и при номинальной подаче напряжения частоты.

Промежуточный крутящий момент - минимальное значение крутящего момента, который развивается от питания двигателя с номинальным напряжением и частотой, от 0 об/мин до скорости, соответствующей максимальному крутящему моменту.

Максимальный крутящий момент - максимальный момент, который двигатель может развить во время эксплуатации с номинальной подачей напряжения и частоты.

Номинальный крутящий момент - крутящий момент соответствует номинальной мощности и номинальному количеству оборотов.

Номинальный крутящий момент рассчитывается по формуле:

Pn - номинальная мощность, кВт

n- номинальное количество оборотов, об/мин

Синхронная частота вращения, вычисляется по след. формуле:

f - подача частоты, Гц
р - количество пар полюсов

Диаграмма крутящих моментов

Условия эксплуатации

Влажность - электрооборудование должно эксплуатироваться при относительной влажности от 30% до 90% (без конденсации)

Необходимо исключить негативные последствия от случайного конденсата с помощью защищенного корпуса электрооборудования или, если необходимо, посредством дополнительных мер (например, встроенного нагревательного оборудования или системы кондицинирования, дренажных отверстий).

Высота и температура указаные в каталоге мощности предназначены для регулярного использования на высоте ниже 1000 м. над уровнем моря и при комнатной температуре от +5 оС до +40оС для двигателей с номинальной мощностью ниже 0,6 кВт, или при температуре от -15 оС до 40 оС для двигателей с номинальной мощностью, равной или превышающей 0,6 кВт. При других условиях эксплуатации (большей высоте и или температуре) значения изменяются в соответсвии с коэффициентом, указанным на графике.

Двигатели трехфазные или однофазные имеют направление движения по часовой стрелке. Против часовой - по запросу.

Напряжение - Частота: максимальное изменение подачи напряжения +/-10%. С этим допуском двигатели подают номинальную мощность. При долгосрочной эксплуатации с данными ограничениями возможно повышение температуры на 10 градусов С. Стандартная обмотка рассчитана на напряжение 230/400В и частоту 50 Гц. По запросу возможны другие значения напряжения частоты.
Частота вращения - крутящий момент: за исключением исполнения с четырьмя полюсами, двигатели имеют стандартное исполнение. Не рекомендуется использовать крутящие моменты выше номинального.

Обмотка статора выполняется из эмалированного медного провода (класс Н, 200 градусов), с измененными полиамидоэфирами полиамидами.
Класс изоляции F имеет пропитку полимерами, что обеспечивает высокую степень защиты от электростатического напряжения и механических нагрузок. Обмотка плотная, без воздушных мешков и с высокой степенью теплопередачи. Другие материалы из которых делается массовое производство обмоток имеют класс изоляции В, но по запросу мы ставим класс Н.

Двигатели тропического и морского исполнения: высокая степень защиты, которая используется для моторов, эксплуатирующихся в условиях тропического климата с высокой степенью влажности и неблагоприятных условиях эксплуатации обмотка покрывается слоем высококачественого глицерофталика, который имеет превосходные защитные характеристики.

Марка Фото Тип Напряжение и частота Диапазон габаритов и мощностей Примечания
М   Асинхронные трехфазные электродвигатели общепромышленного исполенения 

В/Гц: 230/400/50 +/- 10%В

В/Гц: 266/460/60 +/- 10%В

Об/мин.: 3000/1500/1000/750

Габарит, мм: 50-160

Мощность, кВт: 0,02-18,7

Размеры 71-160 адаптированы для использования

с регулятором частоты. Вентилятор на валу, класс защиты IP 55F

DP   Асинхронные трехфазные многоскоростные электродвигатели

В/Гц: 400/50 +/- 10%В

Об./мин.: 3000/1500, 1500/1000, 1500/750,

3000/1000, 3000/750, 1000/750, 3000/750

Габарит, мм: 63-160

Мощность, кВт: 0,06-18,7

Вентилятор на валу электродвигателя, класс защиты IP55F
MQ    Асинхронные трехфазные электродвигатели с квадратным кожухом

В/Гц: 230/400/50 +/- 10%В

В/Гц: 266/460/60 +/- 10%В

Об./мин.:1500

Габарит, мм: 63-90

Мощность, кВт: 0,18-1,5

Размеры 80-90 адаптированны для использования с регулятором частоты.

Вентилятор на валу, класс защиты IP55F

MM    Асинхронные однофазные электродвигатели с встроенным конденсатором

 В/Гц: 230/50 +/- 5%В

Об/мин.: 3000/1500/1000

Габарит, мм: 50-100

Мощность, кВт: 0,045 - 2,2

Вентилятор на валу. Класс защиты IP55F. Поставка с встроенным

или пристыкованным конденсатором.

MDC

MDV

 

 Асинхронные однофазные электродвигатели с центробежным выключателем

с реле выключения подачи напряжения

 В/Гц: 230/50 +/- 5%В

Об./мин.:3000/1500/1000

Габарит, мм: 63-100

Мощность, кВт: 0,187 - 2,2

Принудительная вентиляция. Класс защиты IP55F. Поставка с встроенным или

пристыкованным конденсатором. Центробежный выключатель. Встроенное реле подачи/отключения напряжения

MDE   Асинхронные однофазные электродвигатели с встроенным электронным реле

 В/Гц: 230/50 +/- 5%В

Об/мин: 3000/1500/1000

Габарит, мм: 63-100

Мощность, кВт: 0,187 - 2,2

Вентилятор на валу. Класс защиты IP55F. Поставка с встроенным или пристыкованным конденсатором. 

Снабжены электронным пусковым реле.

 МА   Асинхронные трехфазные электродвигатели с тормозом

В/Гц: 230/400/50 +/- 10%В

В/Гц: 266/460/60 +/- 10%В

Об/мин.: 3000/1500/1000/750

Габарит, мм: 55-160

Мощность, кВт: 0,02 - 18,7

Вентилятор на валу. Класс защиты IP55F. Класс защиты тормоза IP44, по запросу IP55. Возможна

поставка с двойным тормозом и с ручным растормаживанием.

 MADP   Асинхронные трехфазные многоскоростные электродвигатели с тормозом

В/Гц: 400/50 +/- 10%В

Об./мин.: 3000/1500, 1500/1000, 1500/750,

3000/1000, 3000/750, 1000/750, 3000/500

Габарит, мм: 63-160

Мощность, кВт: 0,06 - 18,7

Вентилятор на валу. Класс защиты IP55F. Класс защиты тормоза IP44, по запросу IP55. Возможна

поставка с двойным тормозом и с ручным растормаживанием.

 MMA   Асинхронные однофазные электродвигатели с тормозом

 В/Гц: 230/50 +/- 5%В

Об/мин.: 3000/1500/1000

Габарит, мм: 50-100

Мощность, кВт: 0,09 - 2,2

Вентилятор на валу. Класс защиты IP55F. Класс защиты тормоза IP44, по запросу IP55. Возможна

поставка с двойным тормозом и с ручным растормаживанием.

MADV

MADC

 

Асинхронные однофазные электродвигатели с центробежным выключателем

с реле выключения подачи напряжения с тормозом

В/Гц: 230/50 +/- 5%В

Об/мин.: 3000/1500/1000

Габарит, мм: 63-100

Мощность, кВт: 0,187 - 2,2

Вентилятор на валу. Класс защиты IP55F. Класс защиты тормоза IP44, по запросу IP55. Возможна

поставка с двойным тормозом и с ручным растормаживанием.

MADE

 

Ассинхронные однофазные электродвигатели с встроенным электронным реле

с тормозом

В/Гц: 230/50 +/- 5%В

Об/мин.: 3000/1500/1000

Габарит, мм: 63-122

Мощность, кВт: 0,187 - 2,2

Вентилятор на валу. Класс защиты IP55F. Класс защиты тормоза IP44, по запросу IP55. Возможна

поставка с двойным тормозом и с ручным растормаживанием.

MV

 

Электродвигатели с векторным управлением (Серводвигатели)

Однофазная сеть:

В/Гц: 230/50-60 +/-10% В

Трехфазная сеть:

В/Гц: 400/50-60 +/-10% В

Об/мин.: 3000

Габарит, мм: 63 - 160

Момент, Н*м: 2,6 - 42

Сохранение момента при частоте вращения от 0 до максимальной. Высокая точность позиционирования.

Программирование через пульт или компьютер

MVC

MVS

 

Электродвигатели с встроенными энкодерами

Однофазная сеть:

В/Гц: 230/50-60 +/-10% В

Трехфазная сеть:

В/Гц: 400/50-60 +/-10% В

Об/мин.: 3000

 

Габарит, мм: 63 - 160

Момент, Н*м: 2,6 - 160

Сохранение момента при частоте вращения  от 0 до максимальной. Высокая точность позиционирования.

Принудительная вентиляция

MII

 

Электродвигатели с встроенными регуляторами частоты вращения

Однофазная сеть:

В/Гц: 230/50-60 +/- 10% В

Трехфазная сеть:

В/Гц: 400/50-60 +/-10% В

Количество полюсов: 2/4/6

Габарит, мм: 71 - 112

Момент, кВт: 0,12 - 4

Недорогой вариант электродвигателя с частотным управлением. Принудительная вентиляция Встроенный тормоз,

устройство тепловой защиты. Дистанционное управление.

 

 

 

Просмотров: 15580 | Дата публикации: Четверг, 13 июня 2013 05:41 |

Электродвигатели
- мощность и крутящий момент в зависимости от скорости

electrical motor

Движущая сила электродвигателя составляет крутящий момент - не мощность.

Крутящий момент - это крутящая сила, которая заставляет двигатель работать, а крутящий момент активен от 0% до 100% рабочей скорости.

Мощность, производимая двигателем, зависит от скорости двигателя и составляет

  • ноль при 0% скорости и
  • обычно на максимуме при рабочей скорости

electric motor speed vs. torque power

Примечание ! - полный крутящий момент с нулевой скорости является большим преимуществом для электромобилей.

Для полного стола - поворот экрана!

900 1,5 126 945 9017 9017 9017 9017 90 175 2521
    6
901 75300 14405 1603 1444 109176
Мощность Скорость двигателя (об / мин)
3450 2000 1750 1000 500
Крутящий момент
л.с. кВт (фунт f дюйм)
(фунт f фут)
(Нм) (фунт f дюйм) (фунт) f фут) (Нм) (фунт f дюйм) (фунт f фут) (Нм) (фунт на дюймов) (фунт на футов) (Нм) (фунт на дюймов) 9001 1 (фунт на футов) (Нм)
1 0.75 18 1,5 2,1 32 2,6 3,6 36 3,0 4,1 63 5,3 7,1 126 175 1,1 27 2,3 3,1 47 3,9 5,3 54 4,5 6,1 95 7.9 10,7 189 15,8 21,4
2 1,5 37 3,0 4,1 63 5,3 5,3 7,1 10,5 14,2 252 21,0 28,5
3 2,2 55 4,6 6,2 95 7.9 10,7 108 9,0 12 189 15,8 21,4 378 31,5 42,7
158 13,1 18 180 15 20 315 26,3 36 630 52,5 71
7.5 5,6 137 11 15 236 20 27 270 23 31 473 39 79176
10 7,5 183 15 21 315 26 36 360 30 41 630 142
15 11 274 23 31 473 39 53 540 45 61 158 214
20 15 365 30 41 630 53 71 720 60 81 1260 105 142 2521 210 457 38 52 788 66 89 900 75 102 1576 131 178 3151 263 263 263 548 46 62 945 79 107 1080 90 122 1891 158 214 900 30 731 61 83 1260 105 142 1441 120 163 2521 210 285 5042 420 570
50 76 131 178 1801 150 204 3151 263 356 6302 525 712
1891 158 214 2161 180 244 3781 315 427 7563 630 145 2206 184 249 210 285 4412 368 499 8823 735 997
80 60 1461 165 1461 165 1461 165 285 2881 240 326 5042 420 570 10084 840 1140
67176 236 321 3241 270 366 5672 473 641 11344 945 1282
3151 263 356 3601 407 6302 525 712 12605 1050 1425
125 93 2283 4502 375 509 7878 657 891 15756 1313 1781
150 112 534 5402 450 611 9454 788 1069 18907 1576 2137
131 460 623 6302 525 901 76 712 11029 919 1247 22058 1838 2494
200 149 3654 304 600 814 12605 1050 1425 25210 2101 2850
225 168 4110 8103 675 916 14180 1182 1603 28361 2363 3206
250
250 891 9003 750 1018 15756 1313 1781 31512 2626 3562
275 205 5024 825 1120 17332 1444 1959 34663 2889 3918
300 224 5480 10804 900 1221 18907 1576 2137 37814 3151 4275
350 1247 12605 10 50 1425 22058 1838 2494 44117 3676 4987
400 298 7307 1200 1628 25210 2101 2850 50419 4202 5699
450 336 16206 1351 1832 28361 2363 3206 56722 4727 6412
550 1959 198 08 1651 2239 34663 2889 3918 69326 5777 7837
600 448 2137 21608 1801 2443 37814 3151 4275 75629 6302 8549
Мощность двигателя

9129 можно рассчитать как

T дюйм фунт = P л.с. 63025 / n (1)

где

T дюйм фунт = крутящий момент (фунт фунт-дюйм )

P л.с. = мощность электродвигателя (л.с.)

n = оборот в минуту (об / мин)

Альтернативно

T фут-фунт = P л.с. 5252 / n (1b)

где

5 фут-фунт = крутящий момент (фунт f футов)

Крутящий момент в единицах СИ можно рассчитать как

T Нм = P W 9.549 / n (2)

где

T Нм = крутящий момент (Нм)

P W = мощность (Вт)

n = число оборотов в минуту (об / мин)

Электродвигатель - зависимость крутящего момента от мощности и скорости

мощность (кВт)

скорость (об / мин)

Электродвигатель - мощность от крутящего момента и скорости

крутящий момент (Нм)

скорость (об / мин)

Электродвигатель - Зависимость скоростиМощность и крутящий момент

мощность (кВт)

крутящий момент (Нм)

electric motor - change in speed and change in torque and power

Пример - крутящий момент электродвигателя

крутящий момент, передаваемый электродвигателем мощностью 0,75 кВт (750 Вт) при скорость 2000 об / мин можно рассчитать как

T = ( 750 Вт ) 9,549 / (2000 об / мин)

= 3,6 (Нм)

Пример - Крутящий момент электродвигателя

Крутящий момент, передаваемый электродвигателем мощностью 100 л.с. при частоте вращения 1000 об / мин можно рассчитать как

T = (100 л.с.) 63025 / (1000 об / мин)

= 6303 (фунт на дюймов)

Для преобразования в фунт-сила-фут - разделите крутящий момент на 12 9 1306.

.
Уравнение крутящего момента асинхронного двигателя - пусковой момент

Разрабатываемый крутящий момент или Уравнение индуцированного крутящего момента в машине определяется как крутящий момент, генерируемый преобразованием электрической энергии в механическую. Крутящий момент также известен как электромагнитный момент . Этот развиваемый крутящий момент в двигателе отличается от фактического крутящего момента на выводах двигателя, который почти равен моментам трения и сопротивления воздуха в машине.

Уравнение развиваемого крутящего момента составляет

Torque-equation-of-an-induction-motor-eq-1 Приведенное выше уравнение выражает развиваемый крутящий момент непосредственно через мощность воздушного зазора P g и синхронную скорость ω s . Поскольку ω s постоянна и не зависит от условий нагрузки. Если значение P g известно, то развиваемый крутящий момент можно определить напрямую. Мощность воздушного зазора P g также называется крутящим моментом в синхронных ваттах.

Синхронный ватт - это крутящий момент, который развивает мощность в 1 Вт, когда машина работает с синхронной скоростью.

Torque-equation-of-an-induction-motor-eq-2

Теперь электрическая мощность, генерируемая в роторе, определяется уравнением, показанным ниже.

Torque-equation-of-an-induction-motor-eq-3

Эти электрические мощности рассеиваются в виде потерь I 2 R или потерь меди в цепи ротора.

Мощность на входе ротора равна

.

Torque-equation-of-an-induction-motor-eq-4

Где,

Torque-equation-of-an-induction-motor-eq-5

Пусковой момент асинхронного двигателя

В начальном условии значение s = 1. Следовательно, запуск получается путем помещения значения s = 1 в уравнение (6), мы получаем

Torque-equation-of-an-induction-motor-eq-6

Пусковой крутящий момент также известен как Момент покоя.

Уравнение крутящего момента при синхронной скорости

При синхронной скорости s = 0 и, следовательно, развиваемый крутящий момент Ʈd = 0. При синхронной скорости развиваемый крутящий момент равен нулю.

Torque-equation-of-an-induction-motor-eq-7

Поскольку E 1 почти равно V 1 , уравнение (12) принимает вид

Torque-equation-of-an-induction-motor-eq-8

Пусковой крутящий момент получается положением s = 1 в уравнение (13)

Torque-equation-of-an-induction-motor-eq-9

Следовательно, из приведенного выше уравнения ясно, что пусковой крутящий момент пропорционален квадрату приложенного напряжения статора.

См. Также: Максимальный крутящий момент асинхронного двигателя

,

Расчет размеров двигателя

Правильный размер и выбор двигателя для вашего оборудования являются ключом к обеспечению производительности, надежности и стоимости оборудования. В дополнение к приведенной ниже информации по правильному подбору двигателя Oriental Motor предлагает онлайн-инструменты для выбора двигателя, а также помощь сотрудников нашей службы технической поддержки.

Наша служба технической поддержки готова помочь вам правильно определить размер и выбрать двигатель в зависимости от вашего индивидуального применения.Просто позвоните 1-800-GO-VEXTA (468-3982) (с понедельника по пятницу с 7:30 до 17:00 по тихоокеанскому стандартному времени).

Процедура выбора

Первый шаг - определить приводной механизм для вашего оборудования. Некоторые примеры - прямое вращение, шариковая винтовая пара, ремень и шкив или рейка и шестерня. Наряду с типом приводного механизма необходимо также определить размеры, массу, коэффициент трения и т. Д., Необходимые для расчета нагрузки:

  • Размеры и масса (или плотность) груза
  • Размеры и масса (или плотность) каждой детали
  • Коэффициент трения скользящей поверхности каждой подвижной части

Далее вам необходимо будет определить требуемые характеристики оборудования:

  • Скорость перемещения и время работы
  • Расстояние позиционирования и время позиционирования
  • Разрешение
  • Точность остановки
  • Удержание позиции
  • Электропитание и напряжение
  • Операционная среда
  • Особенности и требования, такие как; Разомкнутый цикл, замкнутый цикл, программируемый, обратная связь, рейтинг IP, утверждения агентов и т. Д.

Чтобы определить требуемую мощность двигателя, необходимо вычислить три фактора; Момент инерции, крутящий момент и скорость. (См. Расчеты для каждого из следующих разделов.)

После того, как вы рассчитали инерцию, крутящий момент и скорость двигателя, вы выберете тип двигателя на основе требуемых характеристик. Oriental Motor предлагает широкий ассортимент шаговых двигателей, серводвигателей, двигателей переменного тока и бесщеточных двигателей для удовлетворения конкретных потребностей вашего оборудования.

Наконец, после выбора типа двигателя вы сделаете окончательное определение двигателя, подтвердив, что спецификации выбранного двигателя (и редуктора, если применимо) удовлетворяют всем требованиям, таким как механическая прочность, время ускорения и момент ускорения.

Расчет размеров двигателя

При выборе двигателя необходимо учитывать три фактора; Момент инерции, крутящий момент и скорость.

Момент инерции

Момент инерции - это мера сопротивления объекта изменениям скорости его вращения.

Когда объект просто сидит без движения, момент инерции равен 0.

Когда вы пытаетесь заставить его двигаться, что означает, что вы хотите изменить скорость объекта с 0 на любую, возникнет эффект момента инерции.

Основная инерция (Дж) Уравнение :

Fundamental Inertia Equation

Расчет момента инерции вращающегося объекта

Moment of Inertia Calculation of Rotating Object

Расчет момента инерции цилиндра

Moment of Inertia Calculation Cylinder

Расчет момента инерции полого цилиндра

Moment of Inertia Calculation Hollow Cylinder

Расчет момента инерции для смещенной оси

Moment of Inertia Calculation for an Off-Center Axis

Расчет момента инерции для прямоугольной опоры

Moment of Inertia Calculation for a Rectangular Pillar

Расчет момента инерции для объекта, движущегося линейно

Moment of Inertia Calculation for an Object in Linear Motion

Единицы измерения момента инерции

Единицы инерции обычно используются двумя способами: унций в секунду и унций в секунду .Первое включает в себя гравитацию, второе - только массу.

Теоретически инерция - это фактор массы, поэтому он не должен включать гравитацию, однако практически мы не можем легко измерить массу на Земле.

Oriental Motor обычно обеспечивает инерцию в унциях на дюйм². Затем, когда мы вычисляем момент ускорения при расчете момента, мы делим общую инерцию на силу тяжести.

Плотность = 386 дюйм / сек²

  • унций-дюйм² = инерция в зависимости от веса
  • унций в секунду² = инерция в зависимости от массы

Расчет для унций-дюймов² в унций-дюймов²

Calculation for oz-in² to oz-in-sec²

Момент

Крутящий момент - это стремление силы вращать объект вокруг оси.Крутящий момент состоит из двух компонентов; компонент нагрузки (постоянный) и компонент ускорения.

Составляющая момента нагрузки обычно возникает из-за трения и / или силы тяжести и всегда действует на двигатель. Этот компонент обычно можно определить путем расчета или путем наложения динамометрического ключа на систему и считывания значения крутящего момента. Когда его невозможно измерить, мы используем некоторые уравнения для расчета приблизительного значения.

Однако ускоряющий момент действует на двигатель только тогда, когда он ускоряется или замедляется.Когда двигатель работает с постоянной скоростью, этот компонент уходит. Измерять составляющую ускорения сложно, не говоря уже об опасности. Если вы хотите, чтобы нагрузка набирала скорость за 50 миллисекунд, вполне вероятно, что динамометрический ключ слетит. Поэтому рассчитываем составляющую ускорения. Этот компонент является функцией инерции системы и скорости ускорения. Итак, как только мы определим эти значения, мы сможем вычислить момент ускорения.

Момент нагрузки ( T )

Нагрузка крутящего момента очень проста.

Как видите, крутящий момент в этом уравнении является произведением силы и расстояния между силой и центром вращения. Например, если вы хотите удержать силу, действующую на конец шкива, T = F x r . Таким образом, вычисление момента нагрузки определяет силу в системе и логическое расстояние между валом двигателя и местом действия силы.

Когда механика усложняется, нам нужно преобразовать F и r, чтобы они соответствовали механике.

Load torque Equation

Момент нагрузки - фактическое измерение

Если вы можете измерить силу, это наиболее точный способ ее определения, поскольку он учитывает всю эффективность и коэффициент трения каждой детали.

FB = Усилие, когда главный вал начинает вращаться

Force Main shaft Rotates

Силы

Есть три типа сил; вертикальный, горизонтальный и наклонный.Сила меняется в зависимости от того, как она действует.

Расчет вертикальной силы

Vertical Force Calculation

Расчет горизонтальной силы

Horizontal Force Calculation

Расчет силы наклона

Incline Force Calculation

Расчет момента нагрузки - шарико-винтовая передача

Load Torque Calculation - Ball Screw Drive

Расчет момента нагрузки - шкив

Load Torque Calculation - Pulley Drive

Расчет крутящего момента нагрузки - тросовый или ременной привод, реечный и шестеренный привод

Load Torque Calculation - Wire or Belt Drive, Rack and Pinion Drive

Момент ускорения

Как упоминалось ранее, момент ускорения состоит из инерции и скорости ускорения.Если нам известны эти два значения, мы можем рассчитать момент ускорения.

acceleration torque equation

Рассчитать момент ускорения ( Ta )

Если скорость двигателя изменяется, всегда необходимо устанавливать момент ускорения или момент замедления.

Основная формула одинакова для всех двигателей. Однако используйте приведенные ниже формулы при вычислении момента ускорения для шаговых или серводвигателей на основе скорости импульса.

Общая формула для всех двигателей

Acceleration Torque Common Formula

При расчете момента ускорения для шаговых или серводвигателей на основе скорости импульса

Есть два основных профиля движения.Операция разгона / замедления является наиболее распространенной. Когда рабочая скорость низкая, а инерция нагрузки мала, можно использовать режим пуска / останова.

Acceleration Torque for Stepper or Servo Motors on the basis of pulse speed

Acceleration Deceleration Start Stop Operation

Расчет необходимого крутящего момента ( TM )

Требуемый крутящий момент рассчитывается путем умножения суммы крутящего момента нагрузки и момента ускорения на коэффициент безопасности.

Required Torque

Расчет эффективного крутящего момента нагрузки ( Trms ) для серводвигателей и бесщеточных двигателей серии BX

Когда требуемый крутящий момент двигателя изменяется со временем, определите, можно ли использовать двигатель, вычислив эффективный момент нагрузки.Эффективный момент нагрузки становится особенно важным для режимов работы, таких как операции с быстрым циклом, когда ускорение / замедление является частым. Рассчитайте эффективный момент нагрузки при выборе серводвигателей или бесщеточных двигателей серии BX.

Effective Load Torque Formula

Скорость

Скорость определяется путем вычисления расстояния, разделенного на время. Для шаговых или серводвигателей необходимо также учитывать время разгона.

Расчет стандартной скорости

Скорость = Расстояние / Время

Для шаговых или серводвигателей

Скорость = Расстояние / (Время - Время разгона ( t1 )

Motor Sizing Speed

Хотите узнать больше?

Команда технической поддержки и инженеры компании

Oriental Motor будут работать с вами, чтобы определить лучшее решение для вашего приложения.Опытные члены команды ORIENTAL MOTOR знают эту технологию от и до. Мы найдем подходящее решение в соответствии с вашими потребностями и объясним альтернативы. Позвоните по телефону 1-800-GO-VEXTA (468-3982), чтобы поговорить с членом группы технической поддержки Oriental Motor.

,
Уравнение крутящего момента двигателя постоянного тока - его вывод

Когда машина постоянного тока загружается как двигатель или как генератор, по проводникам ротора проходит ток. Эти проводники лежат в магнитном поле воздушного зазора.

Таким образом, на каждый проводник действует сила. Проводники лежат у поверхности ротора на общем радиусе от его центра. Следовательно, крутящий момент создается по окружности ротора, и ротор начинает вращаться.

Когда машина работает как генератор с постоянной скоростью, этот крутящий момент равен крутящему моменту первичного двигателя и противоположен ему.

Когда машина работает как двигатель, крутящий момент передается на вал ротора и приводит в движение механическую нагрузку. Выражение то же самое для генератора и двигателя.

Когда токопроводящий ток помещается в магнитное поле, возникает сила, создающая крутящий момент или крутящий момент F x r. Этот крутящий момент создается из-за электромагнитного эффекта, поэтому он называется электромагнитным крутящим моментом .

Крутящий момент, который создается в якоре, не полностью используется на валу для выполнения полезной работы.Часть его теряется из-за механических потерь. Крутящий момент, который используется для выполнения полезной работы, известен как крутящий момент на валу .

С,

torque-equation-of-dc-motor-eq1

Умножая уравнение (1) на I a , получаем

torque-equation-of-dc-motor-eq2

Где,

VI a - электрическая мощность, подводимая к якорю.

I 2 a R a - потери в меди в якоре.

Мы знаем,

Общая электрическая мощность, подаваемая на якорь = Механическая мощность, развиваемая якорем + потери из-за сопротивления якоря

Теперь механическая мощность, развиваемая якорем, равна Pm,

torque-equation-of-dc-motor-eq3

Кроме того, механическая мощность, которая вращает якорь, может быть задана относительно крутящего момента T и скорости n.

torque-equation-of-dc-motor-eq4

Где n - оборот в секунду (об / с), а T - в Ньютон-метре.

Следовательно,

torque-equation-of-dc-motor-eq5

Но,

torque-equation-of-dc-motor-eq6

Где N - скорость в оборотах в минуту (об / мин), а

torque-equation-of-dc-motor-eq7

Где n - скорость в (об / с).

Следовательно,

torque-equation-of-dc-motor-eq8

Итак, уравнение крутящего момента имеет вид:

torque-equation-of-dc-motor-eq9

Для конкретного двигателя постоянного тока количество полюсов (P) и количество проводников на параллельном пути (Z / A) постоянны.

torque-equation-of-dc-motor-eq10

Где

torque-equation-of-dc-motor-eq11

Таким образом, из приведенного выше уравнения (5) ясно, что крутящий момент, создаваемый в якоре, прямо пропорционален магнитному потоку на полюс и току якоря.

Кроме того, направление электромагнитного момента, развиваемого в якоре, зависит от тока в проводниках якоря. Если любой из двух реверсируется, направление создаваемого крутящего момента меняется на противоположное, а следовательно, и направление вращения. Но когда оба меняются местами, и направление крутящего момента не меняется.

,