16Авг

Двигатель автомобиля устройство и принцип работы: Общее устройство двигателя автомобиля, схема работы двигателя внутреннего сгорания (ДВС)

Содержание

Устройство и принцип работы двигателя легкового автомобиля

Содержание

  1. Как устроен ДВС в автомобиле. «Просто и понятно».
  2. Как работает двигатель автомобиля – «сердечные» дела вашей машины
  3. Как устроен двигатель автомобиля – изучаем схему устройства
  4. Как работает двигатель автомобиля – кратко о сложных процессах
  5. Принцип работы двигателя автомобиля – различия в моделях
  6. Двигатель внутреннего сгорания — устройство, принцип работы и классификация
  7. Что такое ДВС?
  8. Устройство двигателя внутреннего сгорания
  9. Принцип работы двигателя
  10. Классификация двигателей
  11. Классификация двигателей в зависимости от рабочего цикла
  12. Классификация двигателей в зависимости от конструкции
  13. Классификация двигателей по принципу подачи воздуха
  14. Преимущества ДВС
  15. Недостатки ДВС

Как устроен ДВС в автомобиле. «Просто и понятно».

Здравствуй, мой многоуважаемый читатель!

Как ты наверное понял, сейчас пойдёт речь об устройстве двигателя в автомобиле, но перед этим я хотел бы сказать, что я запускаю целый цикл статей, который включает в себя разбор всех устройств находящихся в автомобиле. Если интересно, то переходи на мой канал и узнай, как полностью устроен автомобиль.

Итак, начнём с простого. Двигатель внутреннего сгорания или же кратко ДВС — это самый распространённый тип двигателя, использующийся в автомобилях и не только.

Основные механизмы двигателя, которые характеризуют его производительность:

Цилиндр – это самая важная часть силового агрегата, в автомобиле их как правило 4 и более.

• Свеча зажигания — генерирует искру, которая воспламеняет топливно-воздушную смесь. Благодаря этому и происходит процесс сгорания топлива. На один цилиндр приходятся по одной свече.

• Клапаны впуска и выпуска — клапан впуска открывается, когда нужно впустить топливо, а клапан выпуска открывается тогда, когда нужно выпустить отработанные газы.

Оба клапана крепко закрыты, когда в двигателе происходят такты сжатия и сгорания. Это обеспечивает необходимую полную герметичность.

• Поршень — представляет собой металлическую деталь, которая имеет форму цилиндра. В двигателе выполняет движение вверх-вниз.

Поршневые кольца — служат уплотнителями внешней кромки поршня и внутренней поверхности цилиндра. Также они имеют две цели:

— не дают попадать горючей смеси в картер ДВС из камеры сгорания в моменты сжатия и рабочего такта.

— не дают попасть маслу из картера в камеру сгорания, ведь там оно может воспламениться. Если автомобиль начинает сжигать масло, это говорит о том, что нужно менять поршневые кольца, которые уже не обеспечивают должного уплотнения.

Шатун — служит соединительным элементом между поршнем и коленчатым валом.

• Коленчатый вал — преобразует поступательные движения поршней во вращательные

• Распределительный вал — основная деталь газораспределительного механизма (ГРМ) , служащего для синхронизации впуска или выпуска и тактов работы двигателя.

Принцип работы двигателя внутреннего сгорания:

Существует 4 такта работы ДВС:

Такт — это процесс, происходящий в цилиндре за один ход поршня.

1 такт — впуск. Открывается впускной клапан, топливо заполняет цилиндр, тем самым поршень сдвигается с верхней мёртвой точки вниз.

2 такт — сжатие. Цилиндр начинает подниматься вверх, тем самым сжимая топливо, находящиеся в цилиндре до размеров камеры сгорания.

3 такт — рабочий ход. После того, как топливо во втором такте сжалось до размеров камеры сгорания, свеча зажигания поджигает топливную смесь, тем самым заводя двигатель. Данный такт является самым ключевым, т.к. благодаря ему автомобиль начинает работать.

4 такт — выпуск. После третьего такта, в цилиндре вырабатываются газы, тем самым опуская поршень до нижней мёртвой точки. В данном такте открывается выпускной клапан и газы выходят наружу.

Ну ну этом пожалуй всё. Как ты понял, устройство двигателя не такое сложное, как кажется, и я рад, что теперь ты разбираешься в этом. Спасибо за прочтение!

P.S. Ставь лайк, если тебе понравилась моя статья. Пиши комментарий о том, хотел бы ещё увидеть статьи на подобные темы.

И не забудь подписаться на мой канал, что бы не пропустить новый интересный пост.

Источник

Как работает двигатель автомобиля – «сердечные» дела вашей машины

Прежде, чем рассматривать вопрос, как работает двигатель автомобиля, необходимо хотя бы в общих чертах разбираться в его устройстве. В любом автомобиле установлен двигатель внутреннего сгорания, работа которого основана на преобразовании тепловой энергии в механическую. Заглянем глубже в этот механизм.

Как устроен двигатель автомобиля – изучаем схему устройства

Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится поршень с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.

Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение коленчатого вала.

Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.

Как работает двигатель автомобиля – кратко о сложных процессах

Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.

Важным параметром у двигателей внутреннего сгорания является степень сжатия, напрямую влияющая на его мощность и экономичность.

Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.

Принцип работы двигателя автомобиля – различия в моделях

Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным расположением цилиндров. Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.

Много моделей используют конструкцию V-образного двигателя. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Во многих конструкциях количество цилиндров составляет от 6 до 12 и более. Это позволяет значительно сократить линейный размер двигателя и уменьшить его длину.

Источник

Двигатель внутреннего сгорания — устройство, принцип работы и классификация

Вокруг активно говорят про электокары, но двигатель внутреннего сгорания (ДВС) никуда не исчезает. Почему? О принципе работы и конструкции двигателей внутреннего сгорания , плюсах и минусах ДВС – в нашем материале.

Что такое ДВС?

ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

ДВС работает, благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).

Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т. е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

  • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
  • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
  • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  • Блок цилиндров . Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  • Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).

Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  • Система питания . В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  • Система смазки . Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  • Система охлаждения . Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.

Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС.

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

Принцип работы двигателя

Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.

При этом сам процесс преобразования энергии может отличаться.

Самый распространённый вариант такой:

  • Поршень в цилиндре движется вниз.
  • Открывается впускной клапан.
  • В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
  • Поршень поднимается.
  • Выпускной клапан закрывается.
  • Поршень сжимает воздух.
  • Поршень доходит до верхней мертвой точки.
  • Срабатывает свеча зажигания.
  • Открывается выпускной клапан.
  • Поршень начинает двигаться вверх.
  • Выхлопные газы выдавливаются в выпускной коллектор.

Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE.

Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.

Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

  • Такт выпуска.
  • Такт сжатия воздуха.
  • Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
  • Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

4 такта образуют рабочий цикл.

При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.

Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

  • Поршень двигается снизу-вверх.
  • В камеру сгорания поступает топливо.
  • Поршень сжимает топливно-воздушную смесь.
  • Возникает компрессия. (давление).
  • Возникает искра.
  • Топливо загорается.
  • Поршень продвигается вниз.
  • Открывается доступ к выпускному коллектору.
  • Из цилиндра выходят продукты сгорания.

То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

Важно! Кроме количества тактов есть отличия в механизме газообмена.

В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).

Классификация двигателей

Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.

Классификация двигателей в зависимости от рабочего цикла

В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов:

  • Ориентированные на цикл Отто . Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
  • Ориентированные на цикл Дизеля . Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.

Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.

А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.

И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.

Классификация двигателей в зависимости от конструкции
  • Поршневой . Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
  • Роторные (двигатели Ванкеля) . Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.

Классификация двигателей по принципу подачи воздуха

Подача воздуха также разделяет ДВС на два класса :

  • Атмосферные . При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
  • Турбокомпрессорные . Организована дополнительная подкачка воздуха в камеру сгорания.

Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.

Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.

Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.

Преимущества ДВС
  • Удобство . Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
  • Высокая скорость заправки двигателя топливом .
  • Длительный ресурс работы . Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе

4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.

  • Компактность . Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.
  • При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.

    Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).

    Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

    Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

    Источник

    Автомобильные датчики: определение, функции, схемы, типы, работа

    Развитие технологий упростило жизнь даже в автомобилестроении, поскольку теперь они оснащены датчиками, которые отправляют информацию о состоянии автомобиля. Технология включает искусственный интеллект и мобильную связь. Датчики теперь являются одним из основных устройств, которые должны быть включены в современные конструкции автомобилей.

    Современные автомобили теперь настолько удобны, что теперь есть доступ в Интернет, отдых в режиме автономного вождения, эффективная коммуникация и т. д. Все это является частью функционального аспекта сенсорного устройства. С компонентом у механизма есть способность и интеллект, чтобы знать и вносить изменения, когда это необходимо.

    Сегодня мы познакомимся с определением, функциями, компонентами, схемой, типами, принципом работы и симптомами неисправных или неисправных датчиков.

    Подробнее: Все, что вам нужно знать об автомобильном масляном фильтре

    Содержание

    Что такое автомобильный датчик?

    Автомобильный датчик — это интеллектуальное устройство, которое отслеживает состояние автомобиля и отправляет информацию пользователю, чтобы знать, когда следует внести изменения. В некоторых ситуациях он автоматически вносит изменения в движок. Устройство контролирует различные параметры автомобиля, в том числе температуру, систему охлаждения, давление масла, уровень выбросов и т. д.

    Автомобильные датчики настолько умны, что принимают целый ряд значений, идеально исследуют их и определяют подходящее состояние. Если компонент, содержащий датчик, неисправен, он отправляет пользователю предупреждающую информацию.

    Датчик всегда настроен на обнаружение изменений деталей автомобиля. Это означает, что датчики всегда работают, пока работает двигатель. Ранняя конструкция датчика работала только с двигателем, но теперь он контролирует каждую часть автомобиля, начиная от контроля температуры внутри двигателя и заканчивая наименьшим электрическим компонентом автомобиля.

    Функции автомобильных датчиков

    Я уверен, что из приведенного выше объяснения вы сможете вывести некоторые функции автомобильных датчиков. Поскольку они разных типов, питают различные приложения и функциональные системы в автомобиле. Функции такие широкие.

    Тем не менее, основные функции всех терминов, называемых датчиками в автомобиле, остаются неизменными при их различном применении. Информацию о приложении они отслеживают на компьютере (ЭБУ), который работает с алгоритмами. Алгоритмы уже содержат различные условия, которые может испытывать устройство, поэтому, когда это происходит, компьютер может внести изменения в правильную ситуацию. Всякий раз, когда компьютер не может выполнить настройку, он отправляет водителю предупреждающую информацию.

    Логика датчика входа и выхода в ПЛК …

    Включите JavaScript :

    Типы автомобильных датчиков:

    Ниже приведены различные типы датчиков, используемых в автомобиле для учета различных аспектов:

    Датчик массового расхода воздуха:

    Типы датчиков расхода воздуха используются для определения объема и плотность воздуха, забираемого двигателем. Эти датчики используются внутри двигателя, где происходит сгорание, он выполняет свою работу путем расчета. Устройство обеспечивает правильное количество топлива и воздуха для смеси, чтобы двигатель мог соответствовать оптимальным условиям вождения. если датчик выходит из строя, автомобиль может потреблять больше топлива, а иногда и глохнуть.

    Датчик частоты вращения двигателя:

    Датчик частоты вращения двигателя контролирует и контролирует скорость вращения коленчатого вала. это значит, что датчик крепится к коленчатому валу. если вы понимаете работу двигателя, вы будете знать, как работа преобразует возвратно-поступательное движение двигателя во вращательное движение коленчатого вала. вы можете прочитать это в конце этой статьи.

    Датчик напряжения:

    Функции датчиков напряжения в автомобильных двигателях заключаются в управлении скоростью холостого хода автомобиля. он обеспечивает увеличение или уменьшение скорости по мере необходимости.

    Датчик абсолютного давления во впускном коллекторе (датчик абсолютного давления):

    Датчики абсолютного давления в коллекторе контролируют нагрузку на двигатель, вычисляя разницу между давлением во впускном коллекторе автомобиля и внешним давлением, чтобы гарантировать, что двигатель использует топливо в зависимости от изменений давления. Выход из строя этого датчика также вызывает высокий расход топлива.

    Датчик детонации:

    Датчик детонации предназначен для обеспечения плавного сгорания топлива и предотвращения неожиданной детонации. Детонация очень опасна для двигателя, так как поршневые кольца сломаются, прокладка головки выйдет из строя и даже повредит шатунные вкладыши. Устранение проблем может быть довольно дорогим, поэтому следует серьезно относиться к информации, отправляемой датчиком.

    Подробнее: Что такое стартер двигателя

    Датчик температуры топлива:

    При постоянной скорости имеется датчик, который контролирует температуру топлива, чтобы обеспечить оптимальный расход топлива. Холодное топливо будет гореть дольше из-за его более высокой плотности, в то время как холодное топливо имеет тенденцию сгорать быстрее. Датчик следит за тем, чтобы топливо впрыскивалось при правильной температуре и скорости, чтобы двигатель мог работать бесперебойно.

    Кислородный датчик:

    Эти типы датчиков помогают определить количество кислорода в выхлопной трубе. Он определяет, горит ли автомобиль на богатой или бедной смеси, основываясь на расчетах датчика. Выход из строя устройства вызовет больший расход топлива, холостой ход и даже заставит машину дергаться.

    Различные типы датчиков и их функции в виде таблицы:
    90 122
    STT Датчик Основная функция 901 26
    1 Датчик массового расхода воздуха Рассчитывает плотность и объем воздуха, всасываемого двигателем
    2 Датчик частоты вращения двигателя Контролирует скорость вращения коленчатого вала
    3 Кислородный датчик Измеряет количество свободного кислорода в выхлопной трубе
    4 Датчик абсолютного давления в коллекторе Измеряет давление в коллекторе внутри и снаружи
    5 Датчик детонации искры Обеспечивает что топливо сгорает правильно
    6 Датчик температуры топлива Обеспечивает впрыск необходимого количества топлива для обеспечения плавного движения
    7 Датчик напряжения Управляет скоростью автомобиля и обеспечивает контроль скорости

    Подробнее: понимание системы зарядки в автомобильном двигателе

    Подпишитесь на нашу рассылку

    Принцип работы

    Принцип работы автомобильные датчики достаточно просты, интересны и понятны. Для простого понимания этих сенсоров давайте подумаем об органе чувств человека, который включает в себя нос, глаз, рот, руку, ухо. Все эти части человека получают информацию от жизненных явлений и отправляют ее в мозг, который затем принимает решение. То же самое происходит с автомобильными датчиками, они чувствуют, что происходит с автомобилем, и отправляют информацию на компьютер, который затем исправляет ситуацию.

    Работа датчиков осуществляется с помощью процесса, называемого мультиплексированием, это объединение проводов в микропроцессоре, что гарантирует, что работа никогда не выйдет из-под контроля. приведя пример системы охлаждения двигателя с датчиком, поскольку система охлаждения широкая, она может содержать один или несколько датчиков. Итак, сразу же двигатель начинает работать, датчики, которые контролируют каждый аспект системы охлаждения, начиная с радиатора и заканчивая расширительным бачком. Таким образом, всякий раз, когда какой-либо компонент системы охлаждения выходит из строя, информация отправляется водителю. Датчик заметит низкий уровень охлаждающей жидкости в системе.

    Ранние применения датчиков в автомобиле довольно интенсивны, поскольку они посылают информацию на аналоговый процессор. Процессор принимает решение на основе простых алгоритмов управления состоянием системы. Аналоговая система могла обрабатывать только предопределенные значения, то есть любые значения, кроме запрограммированных. Если произойдет неизвестная ошибка, система в конечном итоге выйдет из строя.

    Посмотрите видео, чтобы узнать больше о работе датчиков:

    Преимущества и недостатки автомобильных датчиков

    Преимущества:

    Ниже перечислены преимущества датчиков в автомобилях:

    • Датчики облегчают жизнь водителям.
    • Неисправные компоненты легко обнаруживаются
    • Автоматическое управление часто используется в автомобилях с датчиками.
    • Двигатель правильно обслуживается с помощью устройств.
    • Каждая регулировка выполняется точно с помощью датчиков.
    • Драйвер получает информацию о нагревании неисправных компонентов.

    Подробнее: Система охлаждения в двигателях внутреннего сгорания

    Недостатки:

    Несмотря на преимущества датчика, все же имеет место одно большое ограничение. Ниже приведены недостатки датчиков в автомобилях:

    • Почти все современные автомобили используют множество различных датчиков для сбора нужной информации. Недостатки использования множества различных датчиков заключаются в том, что они могут со временем выйти из строя, что может привести к дорогостоящей замене.

    В заключение мы дали определение и функции датчиков в автомобилях, одним из которых является контроль и отправка информации о компонентах двигателя. мы также видели различные типы датчиков и их функции в табличной форме. Также были объяснены работа, преимущества и недостатки датчиков.

    Надеюсь, вам понравилось чтение, если да, пожалуйста, прокомментируйте, поделитесь и проверьте некоторые другие интересные темы, чтобы получить больше знаний. Спасибо!

    Что такое БД? Понимание бортовой диагностики

    Сегодня большинство водителей знакомы с огнями и индикаторами на приборной панели, особенно со страшным индикатором проверки двигателя. Однако знаете ли вы, что эти огни являются индикаторами уровня поверхности для сложной системы диагностических сигналов, которые постоянно работают для контроля за состоянием автомобиля? От личных автомобилей до коммерческих грузовиков эти системы, называемые системами OBD, стали стандартом, упрощая диагностику и техническое обслуживание автомобилей, чем когда-либо прежде.

    OBD означает «бортовая диагностика» и представляет собой компьютерную систему внутри автомобиля, которая отслеживает и регулирует работу автомобиля. Эта бортовая компьютерная система собирает информацию от сети датчиков внутри автомобиля, которую система затем может использовать для регулирования систем автомобиля или оповещения пользователя о проблемах. Затем технический специалист может просто подключиться к системе OBD, чтобы собрать данные об автомобиле и диагностировать проблему. Системы OBD очень помогли пользователям лучше понять диагностику автомобиля.

    История OBD начинается в 1980-х годах. За это время системы мониторинга транспортных средств были разработаны в ответ на несколько факторов, в том числе:

    • Контроль выбросов:  Одной из основных причин разработки OBD было сокращение выбросов транспортных средств. Системы OBD помогают в этой области, контролируя работу основных компонентов двигателя на предмет любых системных сбоев, которые могут привести к увеличению выбросов. OBD настолько полезен в этой области, что он включен в литературу EPA по реализации Закона о чистом воздухе.
    • Электронный впрыск топлива: 
      В 1980-х годах автопроизводители начали широкое производство автомобилей с электронным впрыском топлива. В отличие от механических систем впрыска топлива, электронный впрыск топлива работает под управлением компьютера, при этом компьютерная система контролирует и определяет подачу топлива в двигатель.
    • Электронные компоненты:  По мере того, как электронный впрыск топлива набирал популярность, все больше электроники становилось обычным явлением в автомобилях, что увеличивало потребность в более сложных системах мониторинга для более точного выявления проблем.

    С момента своей первоначальной разработки системы мониторинга транспортных средств претерпели несколько итераций. Сегодня OBD служит стандартизированной системой, которая определяет используемые разъемы и коды неисправностей, что позволяет техническим специалистам быстро и точно обслуживать широкий спектр автомобилей.

    Базовая система OBD состоит из центральной системы, сети датчиков, точки подключения и индикаторов, создавая полную систему мониторинга со стандартизированным доступом и читаемостью. Система OBD состоит из следующих компонентов:

    • ECU: Центральной частью системы OBD является электронный блок управления или ECU. ЭБУ собирает информацию от различных датчиков по всему автомобилю. Затем ECU использует эти данные либо для управления частями автомобиля, такими как топливные форсунки, либо для отслеживания проблем.
    • Датчики: В автомобилях есть датчики, охватывающие каждую область от двигателя и шасси до самой электронной системы. Каждая из этих систем отправляет коды в ЭБУ, указывая источник и параметры сигнала. Затем ЭБУ «считывает» и интерпретирует этот сигнал.
    • DTC: Если датчик отправляет в ECU информацию, выходящую за пределы нормального диапазона, ECU сохраняет эту информацию в виде кода, который называется диагностическим кодом неисправности или DTC.
      Код DTC, по сути, представляет собой список букв и цифр, которые указывают на источник и характер проблемы. Коды DTC обычно стандартизированы, но могут зависеть от производителя. Когда код неисправности сохраняется, ECU отправляет сигнал на индикатор, чтобы сообщить, что проблема обнаружена. Код неисправности также можно получить, подключив датчик к разъему системы бортовой диагностики.
    • MIL: Когда ECU собирает код DTC, он отправляет сигнал на приборную панель автомобиля для включения соответствующих контрольных ламп. Эти огни, официально известные как индикаторы неисправности или MIL, обеспечивают систему раннего предупреждения о неисправностях автомобиля. Вообще говоря, если свет включается и не гаснет, проблема незначительна. Если индикатор мигает, проблема срочная.
    • DLC: Все данные и коды DTC, собранные ECU, доступны через диагностический разъем или DLC. Порт DLC является точкой доступа для автомобилей с системами OBD и часто находится под приборной панелью со стороны водителя, хотя в коммерческих автомобилях он может быть расположен в другом месте. Современные автомобили изготавливаются со стандартной системой OBDII, поэтому любой сканер с кабелем типа 2 может подключаться к разъему типа 2.

    Как изменилась бортовая диагностика за последние годы?

    БД претерпела значительные изменения с момента своего появления в 1980-х годах. Первоначально система уведомляла пользователя о проблеме с использованием MIL, но не сохраняла никакой информации о характере проблемы. По мере того, как автомобили становились все более совершенными, количество датчиков, установленных в транспортных средствах, увеличивалось, как и объем информации, хранящейся внутри системы.

    Эволюцию систем OBD можно разделить на два отдельных этапа в зависимости от типа системы, популярной в то время. Они описаны более подробно ниже:

    1) OBD-I

    Первые системы OBD были закрытыми по своей природе, поэтому они различались у разных производителей. До 1990 года коды, системы и информация, собираемая каждой системой OBD, сильно различались от производителя к производителю. Хотя эти системы оказались полезными, они были излишне сложными для техников в работе — техническим специалистам приходилось покупать новый инструмент и кабель для каждой марки автомобиля или вкладывать средства в сканер, который имел набор кабелей-адаптеров для разных марок автомобилей. Из-за проприетарного характера этих систем пользователям часто приходилось обращаться к специалистам дилерских центров для диагностики проблем.

    Стремление к стандартизации систем OBD не начиналось до тех пор, пока в 1991 году Калифорнийский совет по воздушным ресурсам не обязал использовать OBD во всех автомобилях. Однако совет не выпускал никаких стандартов для этих OBD, что создавало дополнительные трудности для производителей и пользователей транспортных средств. Когда в ответ на эту потребность в 1994 году был введен стандарт OBD-II, все предыдущие формы OBD были задним числом классифицированы как системы OBD-I.

    2) OBD-II

    В 1994 году Калифорнийский совет по воздушным ресурсам выпустил OBD-II в качестве набора стандартов для систем OBD для всех транспортных средств, продаваемых в Калифорнии.

    Этот мандат был официально реализован в 1996 модельного года и с тех пор используется. Общество автомобильных инженеров и Международная организация по стандартизации, известные как SAE и ISO соответственно, также выпустили стандарты для обмена цифровой информацией между ЭБУ и диагностическим сканером. Агентство по охране окружающей среды расширило использование OBD-II после принятия Закона о чистом воздухе — по состоянию на 2001 г. 33 штата и местные территории требуют регулярных осмотров транспортных средств, чтобы убедиться, что они соответствуют стандартам выбросов, а системы OBD-II являются ключевой частью эти проверки.

    Стандарты OBD-II характеризуются несколькими требованиями, включая следующие:

    • Разъем OBD-II: Современные системы OBD используют стандартизированные DLC, называемые разъемами типа 2. Это позволяет техническим специалистам использовать тот же кабель, кабель типа 2, для доступа к цифровым сообщениям, хранящимся в системе OBD, через порт.
      Расположение этого порта не стандартное, но обычно он находится под приборной панелью со стороны водителя автомобиля.
    • Мониторинг системы:  Агентство по охране окружающей среды требует, чтобы системы OBD отслеживали проблемы, влияющие на выбросы транспортных средств. Многие системы рассматривают другие метрики, не включенные в эту область, как способ упростить поиск и устранение проблем с транспортным средством, но установлено минимальное требование.

    Благодаря этому набору стандартов технические специалисты могут быстро и легко обслуживать самые разные автомобили без использования специальных инструментов производителя.

    Каковы применения OBD?

    OBD обычно используется в самых разных типах автомобилей как простой способ диагностики проблем с автомобилем. Однако применение OBD расширилось, чтобы охватить более конкретные области мониторинга и обслуживания транспортных средств, особенно за последние несколько лет. Некоторые более конкретные приложения OBD включают:

    • Мониторинг поведения водителя:  В автомобильной промышленности все чаще используются системы OBD как способ мониторинга поведения водителя. Например, некоторые автостраховые компании предлагают сниженные страховые взносы для водителей, которые используют регистраторы данных транспортных средств, чтобы доказать, что они придерживаются безопасного стиля вождения. Кроме того, компании могут устанавливать аналогичные регистраторы данных в своем парке или транспортных средствах доставки, чтобы следить за поведением своих водителей в режиме реального времени, что может помочь снизить их ответственность в случае аварии или нарушения правил дорожного движения.
    • Проверка выбросов: 
      Проверка OBD-II теперь является распространенным методом проверки транспортных средств на выбросы в тех частях США, где это требуется. В рамках стандарта OBD-II эти системы тщательно отслеживают выбросы, поэтому инспекторы могут просто использовать сканирующий прибор для проверки кодов неисправностей, связанных с выбросами, чтобы убедиться, что автомобиль соответствует требованиям.
    • Дополнительные приборы:  Автолюбители и профессиональные водители часто используют системы бортовой диагностики, чтобы следить за показателями, которые обычно не отображаются в стандартных автомобилях. Эти показатели могут отображаться на специальных установках в автомобиле или транслироваться на телефоны водителей.
    • Телематика коммерческого транспорта:  Компании, занимающиеся коммерческими транспортными средствами, обычно используют то, что называется Generic OBD II, для сбора информации о своем автопарке. Это включает в себя отслеживание автопарка, мониторинг эффективности использования топлива, мониторинг поведения водителя, удаленную диагностику и многое другое.

    Связь бортовой системы диагностики с коммерческими автомобилями

    Возможно, наиболее широкое применение бортовой системы диагностики было в сфере коммерческого транспорта, поскольку ключевым аспектом этой отрасли является тщательное техническое обслуживание транспортных средств. Компании, занимающиеся коммерческими транспортными средствами, широко внедрили передовые инструменты сканирования для систем OBD2, в частности, для следующих преимуществ, которые обеспечивает OBD-II:

    • Быстрая диагностика:  Стандартизированные разъемы и коды DTC, а также подробная система кодов DTC по стандарту SAE J1939 позволяют выявить проблемы с коммерческими автомобилями за считанные минуты.
      Подключив диагностическое программное обеспечение или сканер к порту разъема, технические специалисты могут получить ценную диагностическую информацию, которая может быть использована для выявления и решения проблем до того, как они станут дорогостоящим ремонтом.
    • Точная информация:  В системе OBD сбор информации осуществляется с помощью датчиков, а не технических специалистов. Это повышает точность извлекаемой информации, снижая вероятность пропуска критической системной ошибки.
    • Разнообразие метрик: БД-системы могут использоваться для сбора широкого спектра метрик, помимо тех, которые относятся к техническому обслуживанию автомобиля. Системы OBD могут отслеживать поведение водителей, чтобы убедиться, что водители соблюдают юридические требования, а также протоколы компании. Системы также можно использовать для передачи метрик по защищенной линии, что позволяет централизованному управлению легко контролировать водителей и их транспортные средства из удаленного места.