10Окт

Принцип роторного двигателя: Принципы работы, плюсы и минусы роторного двигателя — особенности роторно-поршневого ДВС — журнал За рулем

схема устройства РПД, плюсы и минусы

На чтение 8 мин. Просмотров 7.3k. Опубликовано Обновлено

Чтобы понять, почему промышленники прекратили оснащение автомобилей силовыми агрегатами этого типа, полезно ознакомиться с принципом работы роторного двигателя. Зная основные характеристики, конструкцию, достоинства и недостатки, изучив разновидности РПД, можно оценить перспективы и вероятность последующего серийного выпуска таких моделей машин.

Принцип работы роторного двигателя

Роторный мотор работает по схеме, отличающейся от технологии, характерной для стандартного ДВС с поршнями в качестве основного подвижного элемента. Кроме того, силовые агрегаты имеют различную конструкцию.

По аналогии с поршневым двигателем принцип действия РПД базируется на преобразовании энергии, получаемой в результате сгорания воздушно-топливной смеси. В первом случае давление, создаваемое в цилиндрах при сжигании горючего, вынуждает поршни двигаться. Возвратно-поступательные движения шатун и коленчатый вал преобразуют во вращательные, которые заставляют крутиться колеса.

Ротор движется во внутренней полости овальной капсулы, передавая мощность сцеплению и коробке передач. Благодаря треугольной форме, он выдавливает энергию топлива, направляя через трансмиссию на колесную систему. Обязательное условие – в качестве материала используется легированная сталь.

Внутри цилиндра, где располагается ротор, происходят следующие процессы:

  1. воздушно-топливная смесь сжимается;
  2. впрыскивается очередная доза горючего;
  3. поступает кислород;
  4. топливо воспламеняется;
  5. сгоревшие элементы направляются в выпускное отверстие.

Треугольный ротор закрепляется на особом механизме. При запуске двигателя он выполняет специфические движения, не вращаясь, а как бы бегая внутри овальной капсулы.

Благодаря своей форме, он образует в корпусе 3 изолированные камеры.

В них наблюдаются такие процессы:

  • в первую полость через впускное окно подается горючее и всасывается кислород, при перемешивании образующие воздушно-топливную смесь;
  • во втором отсеке происходит сжатие и воспламенение;
  • продукты сгорания вытесняются в выпускное отверстие из третьей камеры.

Схема устройства РПД

В конструкцию РПД входят следующие элементы:

  1. Ротор с 3 выпуклыми гранями, выполняющими функции поршня. За счет углублений увеличивается скорость вращения, образуется больше пространства для воздушно-топливной смеси.
  2. Пластины из металла, закрепленные на вершинах каждой из сторон. Их предназначение – формирование полостей в корпусе, где происходят рабочие процессы силовой установки.
  3. 2 металлических кольца на гранях ротора служат для образования камерных стенок.
  4. В центре конструкции располагаются 2 больших колеса с большим количеством зубьев, вращающихся вокруг шестерней меньшего диаметра. Зубчатая передача соединена с приводным устройством, закрепленном на выходном валу. Направление и траектория движения внутри камеры зависят от этого соединения.
  5. Корпус ротора. Изготавливается в форме условного овала. Такая конфигурация обеспечивает постоянный контакт вершин треугольника со стенками капсулы, создавая 3 изолированных объема газа.
  6. Окна впрыска и выхлопа. Клапанов не имеют. Впускное отверстие соединено с системой подачи топлива, а выпускное – с выхлопной трубой.
  7. Выходной вал с эксцентриковой конструкцией. На нем расположены особые кулачки, смещенные относительно осевой линии. На каждый из этих выступов надевается отдельный ротор. Благодаря несимметричной установке, происходит неравномерное распределение силы давления. Это приводит к образованию крутящего момента, вызывающего стабильную работу силовой установки, основанную на оборотах вала.

5 основных слоев, скрепленных по окружности длинными шурупами, составляют стандартную конструкцию двухроторного двигателя. При этом создаются условия для свободной циркуляции охлаждающей жидкости внутри системы. Движущиеся части, представленные 2 роторами и эксцентриковым выходным валом, располагаются между 2 стационарными участками.

Мощность и ресурс

По сравнению со стандартным ДВС, роторный агрегат характеризуется большей удельной мощностью, которая измеряется в л.с./кг. Это объясняется меньшей массой подвижных деталей, составляющих конструкцию РПД. Обоснование – отсутствие газораспределительного механизма, клапанной системы, коленчатого вала и шатунов.

Кроме того, однороторный двигатель преобразует энергию сгорания топлива во вращательное движение на протяжении ¾ тактов рабочего цикла. Для поршневых моторов этот показатель снижен до ¼.

В результате при вместимости цилиндров 1,3 л современный РПД серийного производства развивает мощность до 220 л.с. А если базовая конструкция дополнена турбинным надувом, то до 350 л.с.

До 2011 г. только японские промышленники концерна «Мазда» выпускали автомобили с двигателями роторного типа. А потом и они сняли агрегат с производства. Вероятная причина – заниженный ресурс силовой установки. До первого капитального ремонта транспортные средства проезжают всего 100 тыс. км. При аккуратном стиле вождения и бережном отношении пробег увеличивается до 200 тыс. км.

Уязвимое звено – уплотнители ротора, страдающие от перегрева и высоких нагрузок. Кроме этих факторов на них оказывают негативное влияние детонация и износ подшипников, расположенных на эксцентриковом валу.

Достоинства и недостатки роторного двигателя

Впервые машина с роторным силовым агрегатом вышла на трассу для тестирования в 1958 г. У истоков его создания стоит Феликс Ванкель, именем которого часто называют РПД.

Игнорируя достоинства изобретения немецкого инженера, работавшего над ним совместно с коллегой-единомышленником Вальтером Фройде, многие автопромышленники не рискнули устанавливать новинку на серийные модели своих автомобилей.

К их числу не относятся производители Mazda, выпустившие первую версию транспортного средства с роторной силовой установкой в 1967 г.

Достоинства РПД

Плюсы РПД:

  1. Высокий КПД, достигающий 40%. Обоснование – на 1 оборот эксцентрикового вала приходится 3 рабочих цикла.
  2. Упрощенная конструкция. В ней отсутствуют многие узлы, характерные для поршневых ДВС, в т.ч. газораспределительный механизм, шатуны, клапаны и т.п.
  3. Высокие обороты. Двигатель на базе треугольного роторного элемента раскручивается до 10 тыс. об/минуту.
  4. Плавная работа при полном отсутствии вибраций. Объяснение – стабильная ориентация движения ротора в одном направлении.
  5. Устойчивость перед детонацией. Это позволяет в процессе эксплуатации применять водород.
  6. Компактные размеры. По сравнению с поршневыми агрегатами габариты РПД в 2 раза меньше. Следствие этого – небольшой вес полностью укомплектованной конструкции и наличие свободного пространства для комфортного расположения водителя и пассажиров.
  7. Отсутствие дополнительных нагрузок при увеличении количества оборотов. С учетом указанного фактора можно разгонять транспортное средство до 100 км/ч на низкой передаче.
  8. Сбалансированность. Позволяет эффективнее уравновесить автомобиль, создавая стабильную устойчивость на любом дорожном покрытии.

Недостатки РПД

Конструкторы, разработавшие роторную силовую установку, так и не смогли устранить недостатки:

  1. Основной недоработкой создателей автомобилисты считают ограниченный ресурс двигателя, обоснованный особенностями конструкции. Постоянные изменения рабочего угла апексов вызывают их ускоренный износ.
  2. Срок службы заканчивается быстрее из-за перепадов температур, сопровождающих каждый такт. В комбинации с нагрузками, которым подвергаются трущиеся детали, они наносят непоправимый вред функциональным узлам и материалам. Проблему можно решить прямым впрыскиванием минеральной смазки в коллектор.
  3. Поскольку внутренние полости камер имеют серповидную форму, топливо в них сжигается не полностью. Ротор, вращаясь на скорости при ограниченной длине рабочего хода, выталкивает раскаленные газы в выхлопное отверстие. Присутствие фрагментов масла в продуктах сгорания приводит к токсичности выброса.
  4. Недостаточная герметичность конструкции, вызванная износом уплотнителей – причина утечки между отсеками с большими перепадами давления между отделениями. Результат – снижение КПД и повышение вреда окружающей природе.
  5. Высокий расход ГСМ. По сравнению с поршневым двигателем, роторный агрегат потребляет намного больше топлива (20 л на 100 км) и масла (1 л на 1 тыс. км). Забывчивость водителя, пропустившего очередную заправку смазкой, приводит к незапланированному капитальному ремонту или полной замене мотора.
  6. Для производства РПД применяется высокоточное оборудование. К качеству материалов также предъявляются повышенные требования. В результате конечная стоимость роторного двигателя увеличивается.

Машины с роторным двигателем

В разработке усовершенствованных концепций силового агрегата с базовым элементом конструкции в виде подвижного ротора участвовали и российские конструкторы, включая Зуева, Желтышева, ингушских изобретателей братьев Ахриевых.

Игнорируя инновации, на автомобили по-прежнему устанавливают двигатели Ванкеля.

В число моделей с РПД входят:

  1. Мазда RX-8. Конструкторское бюро японского концерна достигло прогресса в усовершенствовании. Их последняя разработка вместимостью 1,3 л развивает мощность 215 л.с. Более поздняя версия с аналогичным объемом выдает 231 л.с. Производство прекращено с августа 2011 г. в результате снижения спроса.
  2. ВАЗ 2109-90. Такими машинами пользовались в служебных целях сотрудники российских правоохранительных органов. Милицейские автомобили за 8 секунд могли разогнаться до 100 км/ч и развивали скорость 200 км/ч, легко догоняя преступников. Производились и агрегаты с большей мощностью. Но большая цена и малый ресурс не позволили прижиться РПД, и полицейским пришлось пересесть на транспортные средства с поршневыми моторами.
  3. Мерседес С-111. Впервые был представлен автолюбителям на женевском автосалоне в 1970 г. Спортивный автомобиль оснащался трехкамерным двигателем Ванкеля. Максимальная скорость составляла 275 км/ч. На разгон до первой сотни уходило 5 секунд.
  4. ВАЗ 21019 Аркан. Модель также закупалась для нужд МВД. Советских милиционеров на таких машинах догнать было невозможно и, тем более, уйти от погони. Большинство преследований завершалось поимкой преступников. Объяснение тому – способность служебного транспорта развивать предельную скорость 160 км/ч. Трехсекционный мотор в 1,3 л выдавал 120 л.с.

В заключение

Двигатель роторного типа – отличный вариант для спортивных и гоночных автомобилей, где не требуется большой ресурс. Высокие скоростные и мощностные показатели позволяют надеяться, что промышленники обратят на него внимание и с небольшими доработками снова начнут выпускать машины с моторами Ванкеля.

Роторный двигатель — Устройство, принцип работы

Не многие знают, что наряду с классическими поршневыми двигателями, в автомобилестроении применяются роторные агрегаты, называемые по фамилии изобретателя моторами Ванкеля. Они являются двигателями с внутренним принципом сгорания топлива, однако, его устройство и принципы работы совершенно иные. Сегодня мы поговорим роторных моторах более подробно.

Конструктивное устройство роторного двигателя

Основные части двигателя Ванкеля по своему устройству не имеют ничего общего с классическими ДВС.

Его главные части следующие:

1. Основная рабочая камера

Корпус любого роторного агрегата представляет собой овальную металлическую камеру, в которой происходят основные рабочие процессы – режим впуска, такт сжатия, процесс сгорания горючего и выпуск отработанных газов. Форма камеры неслучайна. Она выполнена таким образом, чтобы при взаимодействии с ротором, её стенки осуществляли соприкосновение со всеми его вершинами, образуя несколько закрытых контуров. Впускные и выпускные отверстия таких моторов не имеют клапанов. Они находятся непосредственно на боковых частях рабочей камеры и подключаются напрямую к выхлопной трубе и системе питания.

2. Ротор

Форма ротора чем-то напоминает треугольник, грани которого имеют выпуклое наружу закругление. Помимо этого, каждая его сторона изготовлена с небольшой выборкой, увеличивающей объем образовывающейся замкнутой камеры сгорания и повышающей скоростные показатели вращения ротора. Назначение этого компонента аналогично функциям поршней в обычном ДВС. Возникновение тактов работы происходит методом создания уже упомянутых выше трех дочерних камер. Центральная часть ротора наделена зубчатым отверстием, соединяющим ротор с приводом, закрепленным в свою очередь с выходным валом. Это звено и определяет, в каком направлении и по какой траектории будет двигаться ротор внутри основной рабочей камеры.

3. Выходной вал

Функции выходного вала роторного двигателя аналогичны функциям коленвала классических силовых агрегатов. Он наделен полукруглыми выступами-кулачками, имеющими несимметричное выстраивание с явным смещением от центральной рабочей оси. На валу размещается несколько роторов, надеваемых на свой рабочий кулачок. Их несимметричное расположение создает предпосылки для образования крутящего момента, происходящего в результате силового давления каждого из роторов.

Думаем, вы уже догадались, что роторные двигатели имеют многослойное строение, подразумевающее создание несколько рабочих камер, в которых вращаются несколько роторов. Единственным объединяющим звеном этой работы служит выходной вал, вращающийся в результате этого синхронного взаимодействия. «Слои» надежно скрепляются между собой множеством болтов, расположенных по краям. Охлаждение таких двигателей проточное. Оно подразумевает нахождение антифриза не только вокруг общего блока, но и в каждой из его частей.

Принцип работы роторного двигателя

В двигателе Ванкеля вся работа выстраивается тем же методом сгорания топливной смеси, что и у поршневых движков. Однако никаких статических камер сгорания у них не предусматривается. Давление, возникающее при сгорании горючего, создается в отдельно образуемых камерах, которые отделяются от общей рабочей камеры роторными гранями.

Сам ротор постоянно контактирует своими вершинами со стенками камеры, в каждый момент времени создавая очередной замкнутый контур. При его вращении контуры попеременно то расширяются, то осуществляет сжатие. Во время этих циклов внутрь камеры попадает воздух и топливо, которое в результате силового воздействия ротора сжимается и воспламеняется, своим расширением придавая ротору очередной вращательный импульс. Отработанные газы сквозь отверстия выбрасываются в выхлопную систему, после чего камера снова заполняется топливно-воздушным составом.

Преимущества и недостатки роторных моторов

Применение роторных моторов имеет ряд неоспоримых преимуществ.

  • Меньшее количество внутренних компонентов. Аналогичный четырехцилиндровому поршневому двигателю роторный «собрат» наделен всего четырьмя основными частями: общая камера, пара роторов и кулачковый вал. Классический ДВС со схожими тактами работы состоит минимум из сорока подвижных частей, каждая из которых подвержена износу.
  • Мягкость работы. При функционировании роторных агрегатов практически не возникает вибраций, благодаря тому, что все подвижные части осуществляют вращение лишь в одном направлении. Думаем, вы знаете, что работа поршней в обычном двигателе разнонаправленная. Она чередует поступательное движение с реверсивным ходом.
  • Невысокий ритм. Ввиду того, что каждый ротор ответственен за вращение лишь одной трети полного круга выходного вала, движение, необходимое для этого, происходит заметно медленнее, чем существенно повышает надежность мотора Ванкеля.

Отрицательные факторы применения роторных двигателей исключать, разумеется, нельзя.

  • Ни один роторный двигатель не может четко подстроиться под регламенты экологических норм различных стран. Его никак нельзя назвать экологичным из-за серьезного количества выбросов углекислого газа, снизить которые нереально.
  • Дороговизна изготовления. Производство роторных движков весьма затратно, главным образом, в силу малых серийных партий. Концерны выпускают их совсем немного, что не требует особенной оптимизации затрат при изготовлении.
  • Ограниченность ресурса. Функциональный запас роторных моторов Ванкеля весьма ограничен. Редко когда он превышает 100-150 тысяч километров, по достижении которого им требуется полная переборка (капитальный ремонт) или замена.
  • Повышенное топливное потребление. Главной причиной увеличенной «прожорливости» является их низкая степень сжатия. Двигатель, удерживая необходимую мощность, компенсирует её за счет большего количество подаваемого внутрь замкнутых камер горючего.

Итог

Подводя итоги, скажем, что роторные силовые агрегаты, конечно, имеют право на существование. Они обладают рядом неоспоримых «плюсов», которые делают возможным их, пусть и небольшое, применение в автомобильном производстве. С другой стороны, тяжесть «минусов» весьма ощутима. Во многих странах мира они попросту не могут применяться из-за существующих экологических стандартов, а серьезное топливное потребление и ограниченный рабочий ресурс делает приобретение автомобилей с роторными двигателями совершенно нерентабельным. Прогнозируем, что какое-то время они еще будут на рынке, но достаточно скоро их вытеснят гибридные силовые системы, развитие которых осуществляется совершенно грандиозными темпами.

Роторный двигатель. Каковы принципы действия, минусы и плюсы

В этой статье мы узнаем что такое роторный двигатель, рассмотрим принцип действия роторного двигателя, его устройство, узнаем о преимуществах, недостатках и сфере применения.

Роторный двигатель, принцип действия

В роторном двигателе используется давление, которое создается во время сгорания топливно-воздушной смеси в пространстве между ротором и корпусом двигателя.

Только если в поршневом моторе внутреннего сгорания это давление получают в цилиндрах, после чего через поршни, и шатуны передают на коленчатый вал, то в роторном упомянутых промежуточных звеньев нет.

Треугольный ротор в устройстве играет роль поршня, вращающегося по кругу и передающего крутящий момент непосредственно на выходной вал.

Получается, что ротор, в процессе вращения, делит камеру на 3 изолированных сегмента. В объеме каждого из них происходит один из циклов: впуск, сжатие, зажигание и выброс.

Оборот ротора, соответствует трем оборотом вала. Обычно используют два ротора. Это позволяет убрать детонацию, повысить стабильность работы движка.

Ротор устанавливается на вал с эксцентриситетом, это позволяет перенести крутящий момент непосредственно на вал.

Роторный двигатель принцип работы заключается в том, что имеет четыре такта, они изменяются в зависимости от угла расположения ротора. Рассмотрим каждый из тактов:

  • Забор смеси происходит когда одна из вершин ротора находится в районе впускного клапана в корпусе. В этот момент, объем камеры увеличивается, втягивая в свое растущее пространство смесь. А когда вторая вершина приходит ко впускному каналу, происходит очередной такт;
  • Сжатие топливно-воздушной смеси происходит при дальнейшем повороте ротора, когда объем смеси, уменьшается и приводит к росту давления. Максимальный уровень давления наблюдается в период, когда смесь поступает в зону свечей;
  • Сжигание топливно-воздушной смеси, как и в обычном бензиновом двигателе, инициируется свечами. Они синхронно поджигают смесь. Обычно, применяют 2 свечи, чтобы смесь горела с большей скоростью и равномернее. Образовавшееся давление взрывной волны, создает рабочее усилие; которое проворачивает ротор на эксцентрике вала. На выходной вал передается крутящий момент;
  • Выпуск отработавших выхлопных газов начинается как только ротор одной из вершин проходит точку выпускного отверстия. Далее он по инерции, и под воздействием второго ротора, который работает в асинхронном режиме, изменяет свой угол и приходит вершиной к впускному отверстию. Все повторяется по новой – от такта забора до такта выхлопа.

Конструктивные особенности

Теперь познакомимся с узлами и деталями двигателя. Это поможет более точно понять как работает устройство.

В его составе присутствуют: системы зажигания, питания (в том числе карбюратор), охлаждения, которые напоминают те, что используются в поршневом варианте. Но есть и уникальные элементы.

Ротор содержит три выпуклых поверхности с углублениями, которые увеличивают рабочий объем. На углах расположены однонаправленные уплотнительные пластины. Они обеспечивают герметизацию пары ротор-корпус.

Еще предусмотрены стальные кольца с каждой стороны, для отделения рабочей камеры от картера.

Также у ротора есть в центре с одной стороны зубчатый венец. Через эту зубчатую передачу снимается крутящий момент.

Корпус роторного движка напоминает многослойный пирог. Он состоит из крышек, рабочих камер, разделительных стенок. Предусмотрено две камеры, разделенные стенкой и с двух сторон крышки.

Внутри корпус представляет собой сложную форму типа овала, с компенсирующими отливами, которые отвечают за герметизацию всех трех камер разделяемых ротором.

Выходной вал имеет два эксцентрика, так как на валу установлены два ротора, работающие в противофазе – на одном цикл выброса отработавших газов, на втором цикл забора смеси.

Использование двух аналогичных узлов исключает возникновение биений и уменьшает детонацию.

При смещении эксцентриков и перемещении каждого ротора по стенкам корпуса, они проворачивают вал.

Достоинства

Главное достоинство – отсутствие шатунов. Также в конструкции не используются клапана, пружины клапанов, распредвал, ремень ГРМ и т. п. Все это уменьшает габариты и массу силовой установки.

Следующий плюс – хорошая сбалансированность деталей. Мотор более продолжительное время передает на выходной вал крутящий момент – передача мощности на вал продолжается ¾ оборота (для поршневого варианта только в течении ½ оборота).

Так как ротор делает всего 1 оборот на 3 оборота вала, это увеличивает его ресурс. Для японский моделей он достигает 300.000 километров.

Роторный двигатель, недостатки

Роторные двигатели не получили массового распространения из-за низких экологических показателей.

Также отмечается потребление большого количества топлива, вследствие невысокого рабочего давления в камере сгорания.

Так как такой тип двигателя редко встречается, при его ремонте и эксплуатации могут возникнуть проблемы.

Практически отсутствует система смазки. Моторное масло постоянно поступает в корпус к ротору из-за чего наблюдается значительный его расход.

Само масло должно иметь высокие качественные показатели и быть минеральным без присадок. Дело в том, что «синтетика» выгорает и образует на поверхности корпуса нагар.

Следует отметить что роторные моторы нагреваются намного сильнее чем поршневые.

Применение

Перспектива у этих двигателей есть. Как только остановим засилье нефтяных компаний, и мир перейдёт на водородное топливо.

К тому же роторный двигатель, работающий на водороде, не подвержен детонации.
Первый автомобиль с таким двигателем был спорткар NSU Spider, он мог двигаться со скоростью до 150 км/час, имея мощность мотора 57 лошадок.

Массово выпускался автомобиль с роторным двигателем компанией NSU – седан Ro-80. Также такими моторами оснащались: Citroen (GS Birotor), Chevrolet (Corvette), Mercedes-Benz (С111), ВАЗ (21018) и некоторые другие.

Самые массовый автомобиль японской компании Mazda, это Mazda RX8. Производство последней из них в версии Spirit R, свернуто в 2012 году из-за выбросов движка, которые не отвечали европейским стандартам.

Правда, компания уже создала современный роторный двигатель Renesis 16X, который соответствует международным экологическим стандартам. В нем значительно переработана топливная система впрыска – теперь горючее расходуется намного экономнее. Корпус движка изготовили из алюминиевого сплава. Также создан агрегат, который работает и на водороде.

Последняя разработка с роторным двигателем ‒ Premacy Hydrogen RE Hybrid в принципе ни в чем не уступает другим новинкам мирового автопрома.

Кстати, многие производители самолетов предпочитают поршневым бензиновым двигателям роторные, например, такие как Skycar и Schleicher.

Думаю, пример роторного двигателя подтверждает истину, что не популярный, не значит – плохой. Просто его время ещё не наступило.

Теперь в знаете принцип действия роторного двигателя. Расскажите об этом устройстве своим друзьям в социальных сетях, пусть подписываются на наш блог, и будут в курсе.

До новых встреч.

Принцип работы роторного двигателя — устройство, недостатки и преимущества, видео — Статьи

Мировые автомобильные концерны выпустили на рынок машины с этими силовыми агрегатами, но позднее отказались от данной продукции. Что же произошло? Предлагаем разобраться в преимуществах и недостатках роторов, рассмотреть принцип работы РПД (роторно-поршневого двигателя). 

Эти тепловые моторы не нуждаются в запчастях, преобразующих поступательный импульс во вращательный (коленчатый вал). Такая особенность конструкции приводит к сокращению потерь. При наличии поршней в цилиндре производится четыре такта:

  • впуск;

  • сжатие;

  • рабочий ход;

  • выпуск.

В роторе эти процессы происходят в разных частях камеры.

Вывод на рынок авто с высоким КПД — мечта любого автоконцерна. Почему же он так и не получил широкого распространения? Давайте разбираться.  

Узнайте стоимость ремонта роторного двигателя онлайн за 3 минуты

Не тратьте время впустую – воспользуйтесь поиском Uremont и получите предложения ближайших сервисов с конкретными ценами!

Устройство роторного двигателя

Действие всех типов моторов основано на давлении, возникающем при сгорании топлива. 

В агрегатах с поршневой группой коленчатый вал и шатуны трансформируют возвратно-поступательную энергию во вращение. В результате колеса крутятся. В движке Ванкеля (альтернативное название ДВС с ротором) используется другое техническое решение. Давление производится в камере, являющейся частью корпуса. Закрытая сторона роторного треугольника выступает в роли поршней. 

В роторном двигателе внутреннего сгорания производится вращение, похожее на кривую спирографа. При заданной траектории три вершины находятся в контакте с корпусом. Образуются три независимых объема для газа. При вращении запчасти эти камеры сжимаются/расширяются, как следствие:

  • топливно-воздушная смесь поступает в мотор;

  • сжимается;

  • производит необходимую работу в результате расширения;

  • выходит через выхлоп.

Схема роторного двигателя — особенности конструкции

В статоре предусмотрено пространство для горения. Корпусы по бокам служат для герметичности системы. Внутри рабочей камеры размещается цилиндр, а в нем — ротор. Овальная форма с прижатыми боковинами обусловлена параметрами узла. В самом статоре с одной стороны предусмотрено отверстие, впускающее воздух. С другой — окно для свечей зажигания. Ротор в цилиндре смещается относительно оси и одновременно двигается вокруг нее. Вращение в сторону обеспечивается неподвижной шестерней, зацепление с которой и определяет характер движения.   

Схема и принцип работы роторного двигателя

Мы уже описывали рабочие такты “впуск-сжатие-рабочий ход-выпуск”. 

В двухтактных агрегатах они совмещены и обычно устанавливаются на мотоциклах. 

Раньше на рынке были представлены дизели с мотором Ванкеля — сейчас они в дефиците. “Классика” представлена четырехтактными вариантами, но в этом случае в конструкции предусмотрен газораспределяющий механизм.

В роторах отсутствие поршневой системы дало возможность совместить технические характеристики 2- и 4-тактных движков. Специальное приспособление, распределяющее газ, в данном случае не нужно за счет специальных отверстий в цилиндре. 

Устройство роторно-поршневого двигателя — плюсы и минусы

Теперь о достоинствах рассматриваемого агрегата. Одна его секция сравнима по мощности с трехцилиндровым мотором, при этом занимает существенно меньше места. Например, Mazda RX8 обладает хорошей мощностью при средней компоновке движка. Это стало возможно благодаря разнесению веса автомобиля по осям. Такой автомобиль обладает хорошей управляемостью и устойчивостью.

Здесь нет ГРМ, что сильно облегчило конструкцию, благодаря меньшему количеству металла в ней. Дополнительный приятный бонус — пропадает необходимость во многих подвижных запчастях. В результате агрегат прочнее. Сам мотор вибрирует меньше, так как в нем нет разнонаправленных движений (в сравнении с классикой).  

Применение роторного двигателя имеет и недостатки. Смазочная система здесь идентична двухтактному аналогу — цилиндрическая поверхность обрабатывается одновременно с горючим. Но способ подачи здесь особенный — через форсунки. Из-за данной особенности такой тип движков требует специального полусинтетического или минерального рабочего раствора. При сгорании масла получаем чрезмерно загрязненный выхлоп, что плохо влияет на экологию.

Конструктивная простота рассматриваемого устройства имеет и обратную сторону — небольшой ресурс. Первыми “летят” апексы (альтернатива кольцам компрессии в традиционных моторах). Интересно, что, если изнашиваются посадочные места этих деталей роторного двигателя, все устройство идет под замену — восстановить его невозможно. 

Расточка статора тоже вызывает огромные трудности и считается технически неоправданной.     

В итоге получается, что по надежности подобный ДВС сильно уступает своим поршневым “братьям”, несмотря на свою конструктивную простоту. Так происходит из-за высокой сложности самих процессов в нем. 

От производства этого вида движков не отказались. Например, “Мазда” продолжает совершенствовать технологию и добилась успехов — снизился уровень токсичности почти до показателей поршневых агрегатов. Остается решить вопрос с увеличением ресурса. Это возможно за счет высокотехнологичной обработки поверхностей и применения особых материалов для производства запчастей, что неминуемо приведет к большим сложностям в ремонте (и, соответственно, к повышению стоимости).   

Куда обращаться при проблемах с движком

Некоторые проблемы можно решить самостоятельно, если вы уверены в своих силах и готовы выделить время. Опытные автовладельцы советуют тщательно оценить ситуацию. Почитайте форумы, где общаются владельцы таких же автомобилях. Найдите пошаговое видео с подробным описанием процесса. Агрегатор Uremont.com предоставляет возможность общения с профессионалами в чате. На вопросы здесь в считаные минуты отвечают специалисты партнерских СТО. Помимо указанной опции, здесь найдете:

  • интерактивную карту с адресами автомастерских;

  • отзывы и оценки пользователей;

  • онлайн-бланк заявки и пр.

устройство, принцип работы, преимущества и недостатки

Роторный двигатель (РПД или роторно-поршневой двигатель), в отличие от традиционного поршневого ДВС, проще в плане конструкции. Также данный тип силовой установки имеет более высокий КПД. Соответственно, даже при небольшом рабочем объеме «отдача» от такого мотора достаточно высокая. 

При этом РПД не получил широкого распространения в автомобильной индустрии. К сожалению, даже с учетом всех преимуществ, агрегат также имеет целый ряд недостатков. Далее мы рассмотрим, как устроен и работает роторный мотор, а также его сильные и слабые стороны.

Содержание статьи

Роторный двигатель: устройство и принцип работы РПД

Итак, роторный двигатель, который также называют двигатель Ванкеля в честь его создателя, представляет собой достаточно обособленный тип ДВС. При этом данный вид двигателей устанавливался на разные авто (например, роторный двигатель ВАЗ, роторный двигатель Мазда и т.д.), однако в большей степени популяризировали агрегат именно Mazda благодаря спорткару Мазда RX‑8 с роторным двигателем 13B-MSP.

Если коротко, в обычном поршневом моторе энергию от сгорания топлива в цилиндрах преобразует в возвратно-поступательное движение громоздкая поршневая группа, после чего происходит дальнейшее преобразование во вращательное движение (вращение коленвала).

В свою очередь, в роторном моторе нет ЦПГ, преобразование энергии происходит фактически «напрямую», то есть практически без потерь. Само собой, на Мазда роторный двигатель стал достаточно мощным «сердцем» с выдающимися характеристиками.

Примечательно то, что бензиновый атмосферный роторный мотор с рабочим объемом всего лишь 1.3 литра (13B-MSP) с 2  роторами в виде секций выдавал 192 лошадиных силы. В то же время его форсированная версия позволяла снять уже 231 «лошадку».

  • Если рассматривать конструкцию, двигатель получил 5 корпусов, в результате чего были образованы 2 камеры. Указанные камеры, подобно цилиндрам, предназначены для сгорания топливно-воздушной смеси. Энергия сгорания топлива вращает роторы, которые закреплены на эксцентриковом валу, который напоминает коленвал обычного ДВС.

При этом движение ротора сложное, так как ротор не вращается, а фактически «обкатывается» своей внутренней шестерней вокруг стационарной шестерни, которая прикреплена в центре одной из боковых стенок камеры. Сам эксцентриковый вал проходит через все корпуса и стационарные шестерни. Вращение ротора, точнее, его вращательное движение происходит так, что на 1 его оборот приходится 3 оборота эксцентрикового вала.

Еще примечательно то, что хотя в роторном моторе также есть циклы впуска, сжатия, рабочего такта и выпуска, механизм ГРМ максимально упрощен. Отсутствует привод газораспределительного механизма, нет распределительных валов, а также и самих клапанов.

Все необходимые функции реализованы счет впускных и выпускных окон,  которые выполнены в боковых стенках. На деле, ротор во время вращения открывает, а также закрывает эти окна. Чтобы было понятно, давайте рассмотрим принцип работы роторного двигателя на примере агрегата с одной секцией.

  • Итак, боковые стороны ротора вместе со стенками корпусов формируют рабочую полость. Кода ротор двигателя находится в начальном положении, по объему полость небольшая (это начало такта впуска). Далее, вращаясь, ротор, открывает впускные окна, в результате в камеру попадает рабочая топливная смесь. Когда полость достигает максимального объема, ротор перекроет впускные окна, после чего начнется такт сжатия (полость начнет уменьшаться).

В момент, когда объем полости снова минимален, за счет искры от свечи произойдет воспламенение смеси и начнется рабочий такт. Далее энергия сгорания топлива вращает ротор, после чего ротор перейдет в положение, при котором открываются выпускные окна (осуществляется выпуск отработавших газов). После выпуска весь цикл повторяется.

Другие полости будут работать точно так же. С учетом того, что полостей 3, за один оборот ротора произойдет 3 рабочих такта. Более того, эксцентриковый вал вращается быстрее ротора в 3 раза. Результат — по одному рабочему такту на один оборот вала мотора с одной секцией. Вполне очевидно, что поршневой четырехтактный ДВС с одним цилиндром имеет соотношение в 2 раза ниже по сравнению с роторным.

Получается, если сопоставить число рабочих тактов на оборот вала, тогда двухсекционный 13B-MSP напоминает обычный поршневой мотор на 4 цилиндра, однако при объеме 1.3 л двигатель такой же мощный, как и поршневой агрегат с объемом чуть более 2.5 литров. Еще добавим, что роторный мотор  имеет намного более высокую детонационную стойкость, что позволяет превратить этот мотор в двигатель на водороде.

Конструктивные особенности роторного мотора

Хотя роторный мотор конструктивно имеет меньше деталей, его принцип работы несколько сложнее. Также в устройстве роторного двигателя применены элементы из разных материалов (чугун, алюминий). Еще имеются особые покрытия (например, хром).

Статоры (корпусы роторов) имеют металлические вставки из особой стали, интегрированные в алюминиевый корпус. На деле, статор больше похож на цилиндр с хонингованной гильзой. В свою очередь, боковые корпусы выполнены из чугуна, в них сделаны впускные и выпускные окна. На крайних статорах крепятся шестерни.

Сам ротор является поршнем и шатуном, сделан из облегченного чугуна. Н каждой стороне ротора есть камера сгорания и уплотнители для сохранения герметичности. Во внутренней части ротора стоит роторный подшипник, напоминающий вкладыш коленвала.

  • На обычном поршне традиционного ДВС поршень имеет 3 кольца – пара компрессионных и маслосъемное кольцо. В свою очередь, ротор имеет апексы (уплотнители вершин ротора). Апексы играют роль компрессионных колец. Указанные элементы прижимаются к стенке статора пружиной, а также они прижаты за счет центробежной силы.

Функцию второго пояса компрессионных колец выполняют боковые, а также угловые уплотнения. Они тоже прижимаются пружинами. Эти боковые уплотнители выполнены из металлокерамики, в то же время  угловые уплотнители чугунные. Дополнительно имеются  уплотнения для изоляции, чтобы отработавшие газы не попадали во впускные окна через зазоры, которые образуются между самим ротором и боковым корпусом соответственно.

Еще с двух сторон ротора имеются особые масляные уплотнения (по аналогии с маслосъемными кольцами), которые удерживают масло, поступающее во внутреннюю полость ротора для охлаждения.

Кстати, система смазки роторного ДВС сложная, включает в себя радиатор охлаждения масла, а также целую группу из нескольких типов масляных форсунок. Форсунки интегрированы в эксцентриковый вал для охлаждения роторов, также они установлены в статоры.

Еще масло подается и в рабочую полость, смешиваясь с горючей смесью и выгорая вместе с топливным зарядом. На деле, роторный мотор весьма требователен к качеству масла. Если заливать неподходящую смазку, агрегат коксуется, возникает детонация и т.д.

Также добавим, что система питания простая, есть несколько форсунок (пара форсунок перед впускными окнами, а также во впускном коллекторе). Что касается зажигания, использованы две свечи на один ротор. Это сделано по причине того, что камеры сгорания сами по себе получились длинными. В результате, чтобы добиться равномерного и полноценного сгорания смеси,  используют две свечи, причем их электроды отличаются. При замене свечей важно обращать на это внимание.

Недостатки роторного двигателя

На старте продаж роторная Мазда пользовалась активным спросом, так как автомобиль привлекал автолюбителей своим  необычным и мощным двигателем (особенно форсированные версии с мощностью около 500 л.с.). Однако немного позже владельцы уже на относительно небольших пробегах столкнулись с первыми проблемами и минусами данного типа ДВС.    

Основные недостатки — большой расход топлива и относительно низкий ресурс роторного двигателя 13B-MSP. В идеальных условиях силовая установка данного типа способна выходить около 100 тыс. км пробега. Что касается реальной эксплуатации, часто моторы приходили в негодность уже к 50-60 тыс. км. пробега.

Обычно первыми выходят из строя уплотнения ротора. Причина вполне очевидна, так как уплотнения находятся под высокими нагрузками и сильно нагреваются. Также дает о себе знать и детонация, износ подшипников эксцентрикового вала, роторов и т.д.

  • Примечательно то, что первыми сдаются апексы (уплотнения на торцах), тогда как боковые уплотнители ходят намного дольше. В результате износа апексов, а также их установочных мест на роторе, в двигателе падает компрессия, углы уплотнителей могут отваливаться, повреждая поверхности статора.

Также следует отметить быстрый выход из строя коренных вкладышей эксцентрикового вала. С учетом того, что вал осуществляет вращение в 3 раза быстрее роторов, роторы несколько смещаются по отношению к стенкам статора, причем вершины роторов должны всегда быть удалены на одно расстояние от стенок.

Рекомендуем также прочитать статью о том, что такое гибридный двигатель автомобиля. Из этой статьи вы узнаете, как устроен и работает двигатель гибрид, а также что нужно знать о гибридном двигателе перед покупкой автомобиля с силовой установкой данного типа.

В результате, когда углы апексов выпадают, на поверхности статора неизбежно появляются задиры. При этом диагностика роторного двигателя сильно затруднена, так как, в отличие от обычного мотора, роторный двигатель не стучит в случае износа вкладышей.

Параллельно отметим, что на версиях данного мотора с наддувом работа агрегата на обедненной смеси приводит к перегреву апекса. Далее пружина, прижимающая апекс, просто гнет его и компрессия сильно снижается. Еще форсированные (роторные двигатели с наддувом) отличаются неравномерным нагревом корпуса.

В верхней части ДВС, где происходят такты впуска и сжатия, более холодные. В то же время нижняя часть, где протекает процесс сгорания смеси и выпуска раскаленных газов, нагревается намного сильнее. Результат – деформация корпуса форсированных версий.

  • Также отметим, что отдельно проявились и проблемы системы смазки. На практике, масляные форсунки в статоре часто загрязняются и перестают работать. При этом промыть клапаны форсунок не получается, то есть нужна замена. Если же вовремя проблема не была установлена, масляное голодание становится причиной сильного износа целого ряда элементов роторного двигателя.

При этом во всех случаях и независимо от причины, статор на практике восстановить практически не представляется возможным, а также следует отметить отсутствие ремонтных запчастей. Это значит, что если статор поврежден, восстановить двигатель очень сложно и дорого. То же самое касается и ротора. Если пазы под апексы повреждены, отремонтировать деталь практически невозможно.

Все это означает, что мотор фактически «одноразовый» и качественно его отремонтировать нет возможности. Единственный выход – покупка и установка нового двигателя, так как контрактные варианты в большинстве случаев тоже будут изношены и долго не прослужат. Само собой, купить роторный двигатель без пробега можно, но цена роторного двигателя будет высокой.   

Советы и рекомендации

Прежде всего, роторный двигатель необходимо «кормить» только качественным высокооктановым бензином (не ниже АИ-98). Только качественное топливо позволяет избежать детонации, а также замедляет процесс накопления нагара на электродах свечей зажигания.

Еще следует помнить, что этот мотор предельно чувствителен не только к качеству, но и типу масла. Например, не рекомендуется лить синтетику, так как быстро скапливается нагар на апексах, компрессия падает. Заливать в такой мотор следует исключительно рекомендуемое самим производителем масло или подходящую по всем допускам «минералку».

Также замену масла нужно производить часто, масло в роторном моторе меняют каждые 4-5 тыс. км.  Еще важно своевременно менять воздушный фильтр двигателя, так как его загрязнение может привести к закоксовке масляных форсунок системы смазки. Что касается свечей зажигания, лучше производить их замену каждые 10-15 тыс. км.

  • Как правило, основным признаком проблем роторного мотора является потеря компрессии, которая проявляется в затрудненном холодном пуске. Далее неполадки прогрессируют, мотор начинает плохо заводиться как на «холодную», так и на «горячую». Обычно в таком случае очевиден износ апексов, скопление отложений на электродах свечей зажигания и т.д.

В подобной ситуации необходимо срочно отправляться на диагностику к специалистам по ремонту ДВС данного типа. На практике, хотя ремонт сложный и дорогой, в последнее время  в СНГ появилось  несколько центров, специализирующихся на дефектовке и ремонте роторного двигателя  с гарантией.

Как правило, в рамках ремонта выполняется замена статоров, уплотнений роторов, самих роторов и т.д. Конечно, ремонт не дешевый, но однозначно более доступный по сравнению с покупкой нового силового агрегата.

Напоследок отметим, как и поршневой двигатель, роторный мотор нуждается в прогреве перед поездкой. При этом пока мотор не выйдет на рабочие температуры, нагружать агрегат не следует. При таком подходе, а также в сочетании с качественным бензином и маслом, а также своевременном обслуживании, есть все шансы, что роторный двигатель Mazda RX-8 пройдет без ремонта около 80 или даже 100 тыс. км.

Подведем итоги

С учетом приведенной выше информации становится понятно, почему роторный двигатель не получил широкого распространения даже с учетом целого ряда преимуществ. Прежде всего, небольшой ресурс,  необходимость частого и затратного облуживания, а также сложность ремонта РПД являются серьезными недостатками силовых установок данного типа.

Рекомендуем также прочитать статью о том, что такое двигатель на водороде. Из этой статьи вы узнаете, какие особенности имеет водородный двигатель, а также какие перспективы имеет двигатель на водороде.

По этой причине следует отдельно изучить все нюансы, рассмотренные выше, особенно если к покупке рассматривается автомобиль с роторным двигателем. Например, Мазда RX-8 на вторичном рынке может показаться  отличным вариантом, так как данные авто продаются по привлекательной цене на фоне конкурентов с аналогичными характеристиками.

Однако на практике такой автомобиль может требовать замены или серьезного и дорогостоящего ремонта силового агрегата. Более того, даже если с двигателем все в порядке, не стоит рассчитывать на большой ресурс, а также потенциальным владельцам следует готовиться к более высоким расходам на плановое обслуживание роторного двигателя по сравнению с форсированными поршневыми ДВС (как атмосферными, так и с наддувом).  

принцип работы. Плюсы и минусы роторного двигателя

Автомобильная индустрия постоянно развивается. Неудивительно, что появляются альтернативные технологии, которые тем мне менее редко появляются в массовом производстве. Именно к таким можно причислить роторные двигатели.

Важно! Бурный толчок в развитии автомобилестроения дало изобретение двигателя внутреннего сгорания. Как результат машины стали ездить на жидком топливе, и началась бензиновая эра.

Машины с роторным двигателем

Роторно-поршневой двигатель был изобретён компанией NSU. Создателем аппарата стал Вальтер Фройде. Тем не менее данное устройство в научных кругах носит имя другого учёного, а именно Ванкеля.

Дело в том что над этим проектом работал дуэт инженеров. Но основная роль в создании устройства принадлежала именно Фройде. В то время как он трудился над роторной технологией, Ванкель работал над другим проектом, который закончился ничем.

Тем не менее в результате подковёрных игр теперь мы все знаем этот аппарат как роторный двигатель Ванкеля. Первая рабочая модель была собрана в 1957 году. Автомобилем первоиспытателем стал NSU Spider. В то время он смог развить скорость в сто пятьдесят километров. Мощность мотора «Паука» составляла 57 л. с.

«Паук» с роторным двигателем выпускался с 1964 по 1967 год. Но массовым так и не стал. Тем не менее автопроизводители не поставили крест на этой технологии. Мало того, они выпустили ещё одну модель — NSU Ro-80, и она стала настоящим прорывом. Большую роль сыграл правильный маркетинг.

Обратите внимание на название. Уже в нём содержится указание на то, что машина оснащена роторным двигателем. Пожалуй, результатом этого успеха стала установка данных моторов, на такие известные автомобили, как:

  • Citroen GS Birotor,
  • Mercedes-Benz С111,
  • Chevrolet Corvette,
  • ВАЗ 21018.

Больше всего популярности роторные двигатели получили в стране «Восходящего солнца». Японская компания Mazda пошла на рисковый по тем временам шаг и стала производить автомобили с использованием данной технологии.

Первой ласточкой от компании «Мазда» стала машина Cosmo Sport. Нельзя сказать, что она снискала огромную популярность, но свою аудиторию она нашла. Тем не менее это был лишь первый шаг выхода роторных двигателей на японский рынок, а вскоре, и на мировой.

Японские инженеры не просто не отчаялись, а наоборот, стали работать с утроенной силой. Результатом их трудов стала серия, которую с благоговением вспоминают все уличные гонщика в любой стране мира — Rotor-eXperiment или сокращённо RX.

В рамках этой серии было выпущено несколько легендарных моделей, среди которых Mazda RX-7. Сказать, что эта машина с роторным двигателем была популярна, всё равно что промолчать. Миллионы фанатов уличных гонок начинали именно с неё. При относительно низкой цене, она имела просто невероятные технические характеристики:

  • разгон до сотни — 5,3 секунды;
  • максимальная скорость — 250 километров в час;
  • мощность — 250—280 лошадиных сил в зависимости от модификации.

Машина является настоящим произведением искусства, она легка и манёвренна, а её двигатель вызывает восхищение. При описанных выше характеристиках он имеет объём всего в 1,3 литра. В нём две секции, а рабочее напряжение 13В.

Внимание! Mazda RX-7 выпускалась с 1978 по 2002. За это время было произведено около миллиона машин с роторными двигателями.

К сожалению, последняя модель этой серии была выпущена в 2008 году. Mazda RX8 завершила легендарную линейку. Собственно на этом историю роторного двигателя в массовом производстве можно считать завершённой.

Принцип работы

Многие автомобильные эксперты считают, что конструкцию обычного поршневого аппарата нужно оставить в далёком прошлом. Тем не менее миллионам машин нужна достойная замена, может ли им стать роторный двигатель, давайте разберёмся.

Принцип работы роторного двигателя базируется на давлении, которое создаётся при сжигании топлива. Основной частью конструкции является ротор, который отвечает за создание движений нужной частоты. В результате энергия передаётся на сцепление. Ротор выталкивает её, передавая на колёса.

Ротор имеет форму треугольника. Материалом конструкции служит легированная сталь. Деталь находится в овальном корпусе, в котором, собственно, и происходит вращение, а также ряд важных для выработки энергии процессов:

  • сжатие смеси,
  • впрыск топлива,
  • создание искры,
  • подача кислорода,
  • слив отработанного сырья.

Главная особенность устройства роторного двигателя заключается в том, что ротор имеет крайне необычную схему передвижения. Результатом подобного конструкторского решения являются три полностью изолированные друг от друга ячейки.

Внимание! В каждой ячейки происходит определённый процесс.

В первую ячейку поступает воздушно-топливная смесь. В полости происходит перемешивание. Дальше ротор перемещает полученную субстанцию в следующий отсек. Именно здесь проходит сжатие и воспламенение.

В третьей ячейке удаляется использованное топливо. Слаженная работа трёх отсеков как раз и даёт ту удивительную производительность, которая была продемонстрирована на примере автомобилей из серии RX.

Но главный секрет устройства кроется совсем в другом. Дело в том, что эти процессы не возникают один за другим, они происходят моментально. Как результат всего за один оборот проходит три такта.

Выше была представлена схема работы базового роторного мотора. Многие производители стараются модернизировать технологию, чтобы добиться больше производительности. Некоторым это удаётся, другие же терпят поражение.

Японским инженерам удалось добиться успеха. Уже упомянутые выше двигатели «Мазда» имеют до трёх роторов. Во сколько в таком случае возрастёт производительность, вы можете себе представить.

Приведём наглядный пример. Возьмём обычный мотор РПД с двумя роторами и найдём ближайший аналог — шестицилиндровый двигатель внутреннего сгорания. Если же добавить в конструкцию ещё одни ротор, то разрыв будет и вовсе колоссальным — 12 цилиндров.

Виды роторных двигателей

Множество автокомпаний бралось за производство роторных двигателей. Неудивительно, что было создано много модификаций, каждая из которых имеет свои особенности:

  1. Роторный двигатель с разнонаправленным движением. Ротор здесь не вращается, а как бы качается вокруг своей оси. Процесс сжатия происходит между лопатками мотора.
  2. Пульсирующе-вращательный роторный двигатель. Внутри корпуса два ротора. Сжатие проходит между лопастями этих двух элементов, когда они сближаются и удаляются.
  3. Роторный двигатель с уплотнительной заслонкой — данная конструкция до сих пор широко задействуется в пневматических моторах. Для роторных двигателей внутреннего сгорания существенно переделывается камера, в которой проходит воспламенение.
  4. Роторный двигатель, работающий за счёт вращательных движений. Считается, что именно эта конструкция является наиболее технически совершенной. Здесь нет деталей, которые совершают возвратно-поступательные движения. Поэтому роторные двигатели такого типа легко достигают 10 000 оборотов в минуту.
  5. Планетарно-вращательный роторный двигатель — самая первая модификация, изобретённая двумя инженерами.

Как видите, наука не стоит на месте, немалое количество видов роторных моторов позволят надеяться на дальнейшее развитие технологии в отдалённом будущем.

Достоинства и недостатки роторного двигателя

Как видите, роторные моторы пользовались определённой популярностью в своё время. Мало того, действительно, легендарные машины были оснащены моторами такого класса. Чтобы понять, почему данный аппарат устанавливался на передовые модели японских машин, нужно узнать все его достоинства и недостатки.

Достоинства

С предыстории, представленной ранее, вы уже знаете, что роторный двигатель в своё время привлёк большое внимание производителей моторов, на то было несколько причин:

  1. Повышенная компактность конструкции.
  2. Малый вес.
  3. РПД хорошо сбалансирован и создаёт при работе минимум вибраций.
  4. Количество запчастей в моторе на порядок меньше, чем в поршневом аналоге.
  5. РПД обладает высокими динамическими качествами

Самое же главное достоинство РПД — высокая удельная мощность. Авто с роторным двигателем может разогнаться до 100 километров без переключения на высокие передачи при сохранении большого количества оборотов.

Важно! Использование роторного двигателя позволяет добиться повышенной устойчивости автомобиля на дороге благодаря идеальной развесовке.

Недостатки

Вот и пришло время больше узнать, почему, несмотря на все преимущества, большинство производителей перестали устанавливать роторные двигатели на свои автомобили. К недостаткам РПД причисляют:

  1. Повышенный расход топлива при работе на низких оборотах. В самых требовательных к ресурсам машинам он может достигать 20—25 литров на 100 километров пробега.
  2. Сложность в изготовлении. На первый взгляд конструкция роторного двигателя намного проще, чем у поршневого. Но дьявол кроется именно в деталях. Их изготовить крайне непросто. Геометрическая точность каждой запчасти должна быть на идеальном уровне, иначе ротор не сможет пройти эпитрохоидальную кривую с должным результатом. РПД требует при своём изготовлении высокоточное оборудование, которое стоит немалых денег.
  3. Роторный двигатель часто перегревается. Это связано с необычным строением камеры сгорания. К сожалению, даже спустя много лет инженерам не удалось исправить данный дефект. Избыток энергии, вырабатываемой при сгорании топлива нагревает цилиндр. Это сильно изнашивает мотор и сокращает срок его эксплуатации.
  4. Также роторный двигатель страдает перепадами давления. Результат подобного эффекта быстрый износ уплотнителей. Ресурс работы одного качественно собранного РПД лежит в диапазоне от 100 до 150 тысяч километров пробега. После прохождения данного рубежа без капитального ремонта уже не обойтись.
  5. Сложная процедура смены масла. Потребление роторным двигателем масла на 1000 километров составляет 600 миллилитров. Чтобы детали получали надлежащую смазку масло необходимо менять один раз на 5000 км. Если же этого не сделать, то становится крайне вероятным серьёзное повреждение ключевых узлов агрегата.

Как видите, несмотря на выдающиеся преимущества РПД имеет ряд весомых недостатков. Тем не менее конструкторские подразделения в ведущих автомобильных фирмах до сих пор пытаются модернизировать эту технологию, и кто знает, возможно, однажды, у них это получится.

Итоги

Роторные двигатели имеют множество весомых преимуществ, они хорошо сбалансированы, позволяют быстро наращивать обороты и обеспечивают набор скорости до 100 км за 4—7 секунд. Но есть у роторных моторов и недостатки, главный из которых маленький срок эксплуатации.

» у большинства людей вызывает ассоциации с цилиндрами и поршнями, системой газораспределения и кривошипно-шатунным механизмом. Все потому, что подавляющее большинство автомобилей снабжено классическим и ставшим наиболее популярным типом двигателей – поршневым.

Сегодня речь пойдет о роторно-поршневом двигателе Ванкеля, который обладает целым набором выдающихся технических характеристик, и в свое время должен был открыть новые перспективы в автомобилестроении, но не смог занять достойного места и массовым не стал.

История создания

Самым первым тепловым двигателем роторного типа принято считать эолипил. В первом веке нашей эры его создал и описал греческий механик-инженер Герон Александрийский.

Конструкция эолипила довольна проста: на оси, проходящей через центр симметрии, расположена вращающаяся бронзовая сфера. Водяной пар, используемый как рабочее тело, истекает из двух сопел, установленных в центре шара друг напротив друга и перпендикулярно оси крепления.


Механизмы водяных и ветряных мельниц, использующих в качестве энергии силу стихии, тоже можно отнести к роторным двигателям древности.

Классификация роторных двигателей

Рабочая камера роторного ДВС может быть герметично замкнутой или иметь постоянную связь с атмосферой, когда от окружающей среды ее отделяют лопасти роторной крыльчатки. По такому принципу построены газовые турбины.

Среди роторно-поршневых двигателей с замкнутыми камерами сгорания специалисты выделяют несколько групп. Разделение может происходить по: наличию или отсутствию уплотнительных элементов, по режиму работы камеры сгорания (прерывисто-пульсирующий или непрерывный), по типу вращения рабочего органа.


Стоит отметить, что у большинства описываемых конструкций нет действующих образцов и они существуют на бумаге.
Классифицировал их русский инженер И.Ю. Исаев, который сам занят созданием совершенного роторного двигателя. Он произвел анализ патентов России, Америки и других стран, всего более 600.

Роторный ДВС с возвратно-вращательным движением

Ротор в таких двигателях не вращается, а совершает возвратно-дуговые качания. Лопатки на роторе и статоре неподвижны, и между ними происходят такты расширения и сжатия.

С пульсирующе-вращательным, однонаправленным движением

В корпусе двигателя расположены два вращающихся ротора, сжатие происходит между их лопастей в моменты сближения, а расширение в момент удаления. Из-за того что вращение лопастей происходит неравномерно, требуется разработка сложного механизма выравнивания.

С уплотнительными заслонками и возвратно-поступательными движениями

Схема с успехом применяемая в пневмомоторах, где вращение осуществляется за счет сжатого воздуха, не прижилась в двигателях внутреннего сгорания по причине высокого давления и температур.

С уплотнителями и возвратно-поступательными движениями корпуса

Схема аналогична предыдущей, только уплотнительные заслонки расположены не на роторе, а на корпусе двигателя. Недостатки те же: невозможность обеспечить достаточную герметичность лопаток корпуса с ротором сохраняя их подвижность.

Двигатели с равномерным движением рабочего и иных элементов

Наиболее перспективные и совершенные виды роторных двигателей. Теоретически могут развивать самые высокие обороты и набирать мощность, но пока не удалось создать ни одной работающей схемы для ДВС.

С планетарным, вращательным движением рабочего элемента

К последним относится наиболее известная широкой общественности схема роторно-поршневого двигателя инженера Феликса Ванкеля.

Хотя существует огромное количество других конструкций планетарного типа:

  • Умплеби (Umpleby)
  • Грея и Друммонда (Gray & Dremmond)
  • Маршалла (Marshall)
  • Спанда (Spand)
  • Рено (Renault)
  • Томаса (Tomas)
  • Веллиндера и Скуга (Wallinder & Skoog)
  • Сенсо (Sensand)
  • Майлара (Maillard)
  • Ферро (Ferro)

История Ванкеля

Жизнь Феликса Генриха Ванкеля не была простой, рано оставшись сиротой (отец будущего изобретателя погиб в первой мировой войне), Феликс не мог собрать средства для обучения в университете, а рабочую специальность не позволяла получить сильная близорукость.

Это побудило Ванкеля на самостоятельное изучение технических дисциплин, благодаря чему в 1924 году ему пришла в голову идея создать роторный двигатель с вращающейся камерой внутреннего сгорания.


В 1929 году он получает патент на изобретение, которое и стало первым шагом к созданию знаменитого РПД Ванкеля. В 1933 году изобретатель, оказавшись в рядах противников Гитлера, проводит полгода в тюрьме. После освобождения разработками роторного двигателя заинтересовались в компании BMW и стали финансировать дальнейшие исследования, выделив для работы мастерскую в Ландау.

После войны она достается в качестве репарации французам, а сам изобретатель попадает в тюрьму, как пособник гитлеровского режима. Лишь в 1951 году, Феликс Генрих Ванкель устраивается на работу в компанию по производству мотоциклов «NSU» и продолжает исследования.


В том же году он начинает совместную работу с главным конструктором «NSU» Вальтером Фройде, который и сам давно занимается изысканиями в области создания роторно-поршневого двигателя для гоночных мотоциклов. В 1958 году первый образец двигателя занимает место на испытательном стенде.

Как работает роторный двигатель

Сконструированный Фройде и Ванкелем силовой агрегат, представляет собой ротор, выполненный в форме треугольника Рело. Ротор планетарно вращается вокруг шестерни, закрепленной в центре статора — неподвижной камеры сгорания. Сама камера выполнена в форме эпитрохоиды, которая отдаленно напоминает восьмерку с вытянутым наружу центром, она выполняет роль цилиндра.

Совершая движение внутри камеры сгорания, ротор образует полости переменного объема, в которых происходят такты двигателя: впуск, сжатие, воспламенение и выпуск. Камеры герметично отделены друг от друга уплотнителями – апексами, износ которых является слабым место роторно-поршневых двигателей.

Воспламенение топливо-воздушной смеси осуществляется сразу двумя свечами зажигания, поскольку камера сгорания имеет вытянутую форму и большой объем, что замедляет скорость горения рабочей смеси.

На роторном двигателе используется угол запоздания а не опережения, как на поршневом. Это необходимо чтобы воспламенение происходило чуть позже, и сила взрыва толкала ротор в нужном направлении.

Конструкция Ванкеля позволила значительно упростить двигатель, отказаться от множества деталей. Отпала необходимость в отдельном газораспределительном механизме , существенно уменьшились вес и размеры мотора.

Преимущества

Как говорилось ранее, роторный двигатель Ванкеля не требует такого большого количества деталей как поршневой, поэтому имеет меньшие размеры, вес и удельную мощность (количество «лошадей» на килограмм веса).

Нет кривошипно-шатунного механизма (в классическом варианте), что позволило снизить вес и вибронагруженность. Из-за отсутствия возвратно-поступательных движений поршней и малой массы подвижных частей, двигатель может развивать и выдерживать очень высокие обороты, практически мгновенно реагируя на нажатие педали газа.

Роторный ДВС выдает мощность в трех четвертях каждого оборота выходного вала, тогда как поршневой лишь на одной четверти.

Недостатки

Именно по причине того, что двигатель Ванкеля, при всех своих плюсах, имеет большое количество минусов, сегодня только Mazda продолжает развивать и совершенствовать его. Хотя патент на него купили сотни компаний, среди которых Toyota, Alfa Romeo, General Motors, Daimler-Benz, Nissan и другие.

Малый ресурс

Главный, и самый существенный недостаток – малый моторесурс двигателя. В среднем он равен 100 тысячам километров для России. В Европе, США и Японии этот показатель вдвое больше, благодаря качеству горючего и грамотному техническому обслуживанию.


Самую высокую нагрузку испытывают металлические пластины, апексы – радиальные торцевые уплотнители между камерами. Им приходится выдерживать высокую температуру, давление и радиальные нагрузки. На RX-7 высота апекса составляет 8.1 миллиметра, замена рекомендована при износе до 6.5, на RX-8 ее сократили до 5.3 заводских, а допустимый износ не более 4.5 миллиметров.

Важно контролировать компрессию, состояние масла и масляных форсунок, которые подают смазку в камеру двигателя. Основные признаки износа двигателя и приближающегося капитального ремонта – низкая компрессия, расход масла и затрудненный запуск «на горячую».

Низкая экологичность

Поскольку система смазки роторно-поршневого двигателя подразумевает прямой впрыск масла в камеру сгорания, а еще из-за неполного сгорания топлива, выхлопные газы имеют повышенную токсичность. Это затрудняло прохождение экологической проверки, нормам которой необходимо было соответствовать, чтобы продавать автомобили на американском рынке.

Для решения проблемы инженеры Mazda создали термальный реактор, который дожигал углеводороды перед выбросом в атмосферу. Впервые его установили на автомобиль Mazda R100.


Вместо того чтобы свернуть производство как другие, Mazda в 1972 году начала продажу автомобилей с системой снижения вредных выбросов для роторных двигателей REAPS (Rotary Engine Anti-Pollution System).

Высокий расход

Все авто с роторными двигателями отличает высокий расход горючего .

Кроме Mazda были еще Mercedes C-111, Corvette XP-882 Four Rotor (четырехсекционный, объем 4 литра), Citroen M35, но это в основном экспериментальные модели, да и из-за разгоревшегося в 80-х годах нефтяного кризиса их производство было приостановлено.

Малая длина рабочего хода ротора и серповидная форма камеры сгорания, не позволяют рабочей смеси прогореть полностью. Выпускное отверстие открывается еще до момента полного сгорания, газы не успевают передать всю силу давления на ротор. Поэтому и температура выхлопных газов этих двигателей такая высокая.

История отечественного РПД

В начале 80-х технологией заинтересовались и в СССР. Правда патент не был куплен, и до всего решили доходить своим умом, проще говоря – скопировать принцип работы и устройство роторного двигателя Mazda.

Для этих целей было создано конструкторское бюро, а в Тольятти цех для серийного производства. В 1976 году первый опытный образец односекционного двигателя ВАЗ-311, мощностью 70 л. с. установлен на 50 автомобилей. За очень короткий срок они выработали ресурс. Дала о себе знать плохая сбалансированность РЭМ (роторно-эксцентрикового механизма) и быстрый износ апексов.


Однако разработкой заинтересовались спецслужбы, для которых динамические характеристики мотора были куда важней ресурса. В 1982 году свет увидел двухсекционный роторный двигатель ВАЗ-411, с шириной ротора 70 см и мощностью 120 л. с., и ВАЗ-413 с ротором 80 см и 140 л. с. Позже моторами ВАЗ-414 оснащают машины КГБ, ГАИ и МВД.

Начиная с 1997 года на авто общего пользования ставят силовой агрегат ВАЗ-415, появляется Волга с трехсекционным РПД ВАЗ-425. Сегодня в России машины подобными моторами не комплектуются.

Список автомобилей с роторно-поршневым двигателем

МаркаМодель
NSUSpider
Ro80
MazdaCosmo Sport (110S)
Familia Rotary Coupe
Parkway Rotary 26
Capella (RX-2)
Savanna (RX-3)
RX-4
RX-7
RX-8
Eunos Cosmo
Rotary Pickup
Luce R-130
MercedesC-111
XP-882 Four Rotor
CitroenM35
GS Birotor (GZ)
ВАЗ21019 (Аркан)
2105-09
ГАЗ21
24
3102


Список роторных двигателей Mazda

ТипОписание
40AПервый стендовый экземпляр, радиус ротора 90 мм
L8AСистема смазки с сухим картером, радиус ротора 98 мм, объем 792 куб. см
10A (0810)Двухсекционный, 982 куб. см, мощность 110 л. с., смешение масла с топливом для смазки, вес 102 кг
10A (0813)100 л. с., увеличение веса до 122 кг
10A (0866)105 л. с., технология снижения выбросов REAPS
13AДля переднеприводной R-130, объем 1310 куб. см, 126 л. с., радиус ротора 120 мм
12AОбъем 1146 куб. см, упрочнен материал ротора, увеличен ресурс статора, уплотнения из чугуна
12A TurboПолупрямой впрыск, 160 л. с.
12BЕдиный распределитель зажигания
13BСамый массовый двигатель, объем 1308 куб. см, низкий уровень выбросов
13B-RESI135 л. с., RESI (Rotary Engine Super Injection) и впрыск Bosch L-Jetronic
13B-DEI146 л. с., переменный впуск, системы 6PI и DEI, впрыск с 4 инжекторами
13B-RE235 л. с., большая HT-15 и малая HT-10 турбины
13B-REW280 л. с., 2 последовательные турбины Hitachi HT-12
13B-MSP RenesisЭкологичный и экономичный, может работать на водороде
13G/20BТрехроторные двигатели для автогонок, объем 1962 куб. см, мощность 300 л. с.
13J/R26BЧетырехроторные, для автогонок, объем 2622 куб. см, мощность 700 л. с.
16X (Renesis 2)300 л. с., концепт-кар Taiki

Правила эксплуатации роторного двигателя

  1. замену масла производить каждые 3-5 тысяч километров пробега. Нормальным считается расход 1.5 литра на 1000 км.
  2. следить за состоянием масляных форсунок, средний срок их жизни составляет 50 тысяч.
  3. менять воздушный фильтр каждые 20 тысяч.
  4. использовать только специальные свечи, ресурс 30-40 тысяч километров.
  5. заливать в бак бензин не ниже АИ-95, а лучше АИ-98.
  6. замерять компрессию при замене масла. Для этого используется специальный прибор, компрессия должна быть в пределах 6.5-8 атмосфер.

При эксплуатации с компрессией ниже этих показателей, стандартного ремкомплекта может оказаться недостаточно – придется менять целую секцию, а возможно и весь движок.

День сегодняшний

На сегодняшний день производится серийный выпуск модели Mazda RX-8, оснащенной двигателем Renesis (сокращение Rotary Engine + Genesis).


Конструкторам удалось вдвое сократить потребление масла и на 40% расход топлива, а экологический класс довести до уровня Euro-4. Двигатель с рабочим объемом 1.3 литра выдает мощность в 250 л. с.

Несмотря на все достижения японцы не останавливаются на достигнутом. Вопреки утверждениям большинства специалистов о том, что РПД не имеет будущего, они не прекращают совершенствовать технологию, и не так давно представили концепт спортивного купе RX-Vision, с роторным двигателем SkyActive-R.

Роторный двигатель представляет собой двигатель внутреннего сгорания, устройство которого в корне отличается от обычного поршневого двигателя.
В поршневом двигателе в одном и том же объеме пространства (цилиндре) выполняются четыре такта: впуск, сжатие, рабочий ход и выпуск. Роторный двигатель осуществляет те же такты, но все они происходят в различных частях камеры. Это можно сравнить с наличием отдельного цилиндра для каждого такта, причем поршень постепенно перемещается от одного цилиндра к другому.

Роторный двигатель изобретен и разработан доктором Феликсом Ванкелем и иногда называется двигатель Ванкеля или роторный двигатель Ванкеля.

В этой статье мы расскажем о том, как работает роторный двигатель. Для начала рассмотрим принцип его работы.

Принцип работы роторного двигателя

Ротор и корпус роторного двигателя Mazda RX-7. Эти детали заменяют поршни, цилиндры, клапаны и распредвал поршневого двигателя.

Как и поршневой, роторный двигатель использует давление, которое создается при сгорании топливовоздушной смеси. В поршневых двигателях, это давление создается в цилиндрах, и приводит поршни в движение. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В роторном двигателе, давление сгорания образуется в камере, сформированной частью корпуса, закрытой стороной треугольного ротора, который используется вместо поршней.

Ротор вращается по траектории, напоминающую линию, нарисованную спирографом. Благодаря такой траектории, все три вершины ротора контактируют с корпусом, образуя три разделенных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Это обеспечивает поступление топливовоздушной смеси в двигатель, сжатие, полезную работу при расширении газов и выпуск выхлопа.

Mazda RX-8


Mazda стала пионером в массовом производстве автомобилей с роторным двигателем. RX-7, который поступил в продажу в 1978 году, был, пожалуй, наиболее успешным автомобилем с роторным двигателем. Но ему предшествовал целый ряд автомобилей, грузовиков и даже автобусов с роторным двигателем, начиная с Cosmo Sport 1967 года. Однако RX-7 не производится с 1995 года, но идея роторного двигателя не умерла.

Mazda RX-8 оснащена роторным двигателем под названием RENESIS. Этот двигатель был назван лучшим двигателем 2003 г. Он является атмосферным двухроторным и производит 250 л.с.

Строение роторного двигателя


Роторный двигатель имеет систему зажигания и систему впрыска топлива, схожие с используемыми в поршневых двигателях. Строение роторного двигателя в корне отличается от поршневого.

Ротор

Ротор имеет три выпуклых стороны, каждая из которых выполняет роль поршня. Каждая сторона ротора имеет углубление, что повышает скорость вращения ротора, предоставляя больше пространства для топливовоздушной смеси.

На вершине каждой грани расположена металлическая пластина, которая разделяет пространство на камеры. Два металлических кольца на каждой стороне ротора формируют стенки этих камер.

В центре ротора расположено зубчатое колесо с внутренним расположением зубьев. Оно сопрягается с шестерней, закрепленной на корпусе. Такое сопряжение задает траекторию и направление вращения ротора в корпусе.

Корпус (статор)


Корпус имеет овальную форму (форму эпитрохоиды, если быть точным). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три изолированных объемах газа.

В каждой части корпуса происходит один из процессов внутреннего сгорания. Пространство корпуса разделено для четырех тактов:

  • Впуск
  • Сжатие
  • Рабочий такт
  • Выпуск
Порты впуска и выпуска расположены в корпусе. В портах отсутствуют клапаны. Выпускной порт непосредственно соединен с выхлопной системой, а впускной порт — с дросселем.

Выходной вал


Выходной вал (обратите внимание на эксцентриковые кулачки)

Выходной вал имеет закругленные выступы-кулачки, расположенные эксцентрично, т.е. смещены относительно центральной оси. Каждый ротор сопряжен с одним из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. При вращении ротор толкает кулачки. Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Сбор роторного двигателя

Роторный двигатель собирается слоями. Двухроторный двигатель состоит из пяти слоев, удерживаемых длинными болтами, установленными по кругу. Охлаждающая жидкость проходит через все части конструкции.

Два крайних слоя имеют уплотнения и подшипники для выходного вала. Они также изолируют две части корпуса, в которых расположены роторы. Внутренние поверхности этих частей являются гладкими, что обеспечивает надлежащее уплотнение роторов. Впускной порт подачи расположен в каждой из крайних частей.

Часть корпуса, в которой расположен ротор (обратите внимание на расположение выпускного порта)

Следующий слой включает корпус ротора овальной формы и выпускной порт. В этой части корпуса установлен ротор.

Центральная часть включает два впускных порта — по одному для каждого ротора. Она также разделяет роторы, поэтому ее внутренняя поверхность является гладкой.

В центре каждого ротора расположено зубчатое колесо с внутренним расположением зубьев, которое вращается вокруг меньшей шестерни, установленной на корпусе двигателя. Она определяет траекторию вращения ротора.

Мощность роторного двигателя

В центральной части расположен впускной порт для каждого ротора

Как и поршневые двигатели, в роторном двигателе внутреннего сгорания используется четырехтактный цикл. Но в роторном двигателе такой цикл осуществляется иначе.

За один полный оборот ротора эксцентриковый вал выполняет три оборота.

Основным элементом роторного двигателя является ротор. Он выступает в роли поршней в обычном поршневом двигателе. Ротор установлен на большом круглом кулачке выходного вала. Кулачок смещен относительно центральной оси вала и выступает в роли коленчатой рукояти, позволяя ротору вращать вал. Вращаясь внутри корпуса, ротор толкает кулачок по окружности, поворачивая его три раза за один полный оборот ротора.

Размер камер, образованных ротором, изменяется при его вращении. Такое изменение размера обеспечивает насосное действие. Далее мы рассмотрим каждый из четырех тактов роторного двигателя.

Впуск

Такт впуска начинается при прохождении вершины ротора через впускной порт. В момент прохождения вершины через впускной порт, объем камеры приближен к минимальному. Далее объем камеры увеличивается, и происходит всасывание топливовоздушной смеси.

При дальнейшем повороте ротора, камера изолируется, и начинается такт сжатия.

Сжатие

При дальнейшем вращении ротора, объем камеры уменьшается, и происходит сжатие топливовоздушной смеси. При прохождении ротора через свечи зажигания, объем камеры приближен к минимальному. В этот момент происходит воспламенение.

Рабочий такт

Во многих роторных двигателях установлено две свечи зажигания. Камера сгорания имеет достаточно большой объем, поэтому при наличии одной свечи, воспламенение происходило бы медленнее. При воспламенении топливовоздушной смеси образуется давление, приводящее ротор в движение.

Давление сгорания вращает ротор в сторону увеличения объема камеры. Газы сгорания продолжают расширяться, вращая ротор и создавая мощность до момента прохождения вершины ротора через выпускной порт.

Выпуск

При прохождении ротора через выпускной порт, газы сгорания под высоким давлением выходят в выхлопную систему. При дальнейшем вращении ротора, объем камеры уменьшается, выталкивая оставшиеся выхлопные газы в выпускной порт. К тому моменту, как объем камеры приближается к минимальному, вершина ротора проходит через впускной порт, и цикл повторяется.

Необходимо отметить, что каждая из трех сторон ротора всегда вовлечена в один из тактов цикла, т.е. за один полный оборот ротора осуществляется три рабочих такта. За один полный оборот ротора, выходной вал совершает три оборота, т.к. на один оборот вала приходится один такт.

Различия и проблемы

По сравнению с поршневым двигателем, роторный двигатель имеет определенные отличия.

Меньше движущихся деталей

В отличие от поршневого двигателя, в роторном двигателе используется меньше движущихся деталей. Двухроторный двигатель включает три движущиеся детали: два ротора и выходной вал. Даже в простейшем четырехцилиндровом двигателе используется не менее 40 движущихся деталей, включая поршни, шатуны, распредвал, клапаны, клапанные пружины, коромысла, ремень ГРМ и коленвал.

Благодаря уменьшению количества движущихся деталей, повышается надежность роторного двигателя. По этой причине некоторые производители вместо поршневых двигателей используют роторные на своих воздушных судах.

Плавная работа

Все части роторного двигателя вращаются непрерывно в одном направлении, а не постоянно меняют направление движения, как поршни в обычном двигателе. В роторных двигателях используются сбалансированные вращающиеся противовесы, предназначенные для гашения вибраций.

Подача мощности также обеспечивается более плавно. В связи с тем, что каждый такт цикла протекает за поворот ротора на 90 градусов, и выходной вал совершает три оборота на каждый оборот ротора, каждый такт цикла протекает за поворот выходного вала на 270 градусов. Это значит, что двигатель с одним ротором обеспечивает подачу мощности при 3/4 оборота выходного вала. В одноцилиндровом поршневом двигателе, процесс сгорания происходит на 180 градусах каждого второго оборота, т.е. 1/4 каждого оборота коленвала (выходной вал поршневого двигателя).

Медленная работа

В связи с тем, что ротор вращается со скоростью, равной 1/3 скорости вращения выходного вала, основные движущиеся детали роторного двигателя движутся медленнее, чем детали в поршневом двигателе. Благодаря этому, также обеспечивается надежность.

Проблемы

Роторные двигатели имеют ряд проблем:
  • Сложное производство в соответствии с нормами состава выбросов.
  • Затраты на производство роторных двигателей выше по сравнению с поршневыми, так как количество производимых роторных двигателей меньше.
  • Расход топлива у автомобилей с роторным двигателей выше по сравнению с поршневыми двигателями, в связи с тем, что термодинамический КПД снижен из-за большого объема камеры сгорания и низкого коэффициента сжатия.

Система газораспределения которого реализована за счёт вращения цилиндра. Цилиндр совершает вращательное движение попеременно проходя впускной и выпускной патрубок, поршень при этом совершает возвратно-поступательные движения.

Британская компания RCV Engines была создана в 1997 году специально для проработки, испытаний и, наконец, продвижения на рынок всего одного изобретения. Оно, собственно, и зашифровано в названии фирмы: «Вращающийся цилиндр-клапан» — Rotary Cylinder Valve — RCV. К настоящему времени базирующаяся в Вимборне компания не только отладила технологию, но доказала работоспособность этой новой концепции. Она уже наладила серийный выпуск линейки маленьких четырёхтактных моторчиков с рабочим объёмом от 9,5 до 50 «кубиков», предназначенных для авиамоделей, газонокосилок, ручных мотопил и подобной техники. Но вот 1 февраля 2006 года компания презентовала первый образец 125-кубового двигателя для скутеров , благодаря чему дала многим людям повод впервые познакомиться с этой мало известной пока технологией — RCV.

Авторы изобретения заявляют о снижении себестоимости двигателей (на несколько процентов) за счёт сокращения числа деталей, и повышении их удельной мощности как на единицу объёма, так и на единицу веса, по сравнению с аналогами того же класса (процентов на 20).

Принцип работы

Итак, перед нами четырёхтактный двигатель , в котором нет привычных клапанов и всей системы их привода. Вместо них британцы заставили работать распределителем газов сам рабочий цилиндр двигателя, который в моторах RCV вращается вокруг своей оси.

Поршень при этом совершает точно те же движения, что и раньше. А вот стенки цилиндра вращаются вокруг поршня (цилиндр закреплён внутри мотора на двух подшипниках).

С края цилиндра устроен патрубок, который попеременно открывается к впускному или выпускному окну. Предусмотрено тут и скользящее уплотнение, работающее аналогично поршневым кольцам — оно позволяет цилиндру расширяться при нагревании, не теряя герметичность.

Свеча расположена по центру и вращается вместе с цилиндром. Судя по всему, тут применён скользящий графитный контакт, хорошо знакомый автомобилистам по старым механическим распределителям зажигания.

Приводят цилиндр во вращение всего три шестерёнки: одна на цилиндре, одна на коленчатом валу и одна — промежуточная. Естественно, скорость вращения цилиндра — вдвое меньше оборотов коленвала.

См. также

Источники

Напишите отзыв о статье «Роторно-цилиндро-клапанный двигатель»

Отрывок, характеризующий Роторно-цилиндро-клапанный двигатель

С приближением неприятеля к Москве взгляд москвичей на свое положение не только не делался серьезнее, но, напротив, еще легкомысленнее, как это всегда бывает с людьми, которые видят приближающуюся большую опасность. При приближении опасности всегда два голоса одинаково сильно говорят в душе человека: один весьма разумно говорит о том, чтобы человек обдумал самое свойство опасности и средства для избавления от нее; другой еще разумнее говорит, что слишком тяжело и мучительно думать об опасности, тогда как предвидеть все и спастись от общего хода дела не во власти человека, и потому лучше отвернуться от тяжелого, до тех пор пока оно не наступило, и думать о приятном. В одиночестве человек большею частью отдается первому голосу, в обществе, напротив, – второму. Так было и теперь с жителями Москвы. Давно так не веселились в Москве, как этот год.
Растопчинские афишки с изображением вверху питейного дома, целовальника и московского мещанина Карпушки Чигирина, который, быв в ратниках и выпив лишний крючок на тычке, услыхал, будто Бонапарт хочет идти на Москву, рассердился, разругал скверными словами всех французов, вышел из питейного дома и заговорил под орлом собравшемуся народу, читались и обсуживались наравне с последним буриме Василия Львовича Пушкина.
В клубе, в угловой комнате, собирались читать эти афиши, и некоторым нравилось, как Карпушка подтрунивал над французами, говоря, что они от капусты раздуются, от каши перелопаются, от щей задохнутся, что они все карлики и что их троих одна баба вилами закинет. Некоторые не одобряли этого тона и говорила, что это пошло и глупо. Рассказывали о том, что французов и даже всех иностранцев Растопчин выслал из Москвы, что между ними шпионы и агенты Наполеона; но рассказывали это преимущественно для того, чтобы при этом случае передать остроумные слова, сказанные Растопчиным при их отправлении. Иностранцев отправляли на барке в Нижний, и Растопчин сказал им: «Rentrez en vous meme, entrez dans la barque et n»en faites pas une barque ne Charon». [войдите сами в себя и в эту лодку и постарайтесь, чтобы эта лодка не сделалась для вас лодкой Харона.] Рассказывали, что уже выслали из Москвы все присутственные места, и тут же прибавляли шутку Шиншина, что за это одно Москва должна быть благодарна Наполеону. Рассказывали, что Мамонову его полк будет стоить восемьсот тысяч, что Безухов еще больше затратил на своих ратников, но что лучше всего в поступке Безухова то, что он сам оденется в мундир и поедет верхом перед полком и ничего не будет брать за места с тех, которые будут смотреть на него.

С изобретением двигателя внутреннего сгорания прогресс в развитии автомобилестроения шагнул далеко вперед. Несмотря на то, что общее устройство ДВС оставалось одинаковым, данные агрегаты постоянно усовершенствовались. Наряду с этими моторами появлялись более прогрессивные агрегаты роторного типа. Но почему они так и не получили широкого распространения в автомобильном мире? Ответ на этот вопрос мы рассмотрим в статье.

История возникновения агрегата

Двигатель роторного типа был сконструирован и испытан разработчиками Феликсом Ванкелем и Вальтером Фройде в 1957 году. Первый автомобиль, на который был установлен данный агрегат, — спорткар NSU «Спайдер». Исследования показали, что при мощности мотора в 57 лошадиных сил данная машина имела возможность разогнаться до колоссальных 150 километров в час. Производство автомобилей «Спайдер» в комплектации с 57-сильным роторным двигателем длилось около 3-х лет.

После этого данным типом двигателей стали оснащать автомобиль NSU Ro-80. Впоследствии роторные моторы устанавливались на «Ситроены», «Мерседесы», ВАЗы и «Шевроле».

Одним из самых распространенных автомобилей с роторным двигателем является японский спорткар «Мазда» модели Cosmo Sport. Также японцы стали оснащать данным мотором модель RX. Принцип работы роторного двигателя («Мазда» RX) заключался в постоянном вращении ротора с переменой тактов работы. Но об этом немного позже.

В нынешнее время японский автопроизводитель не занимается серийным выпуском машин с роторными двигателями. Последней моделью, на которую ставился такой мотор, стала «Мазда» RX8 модификации Spirit R. Однако в 2012 году производство данной версии автомобиля было прекращено.

Устройство и принцип работы

Какой имеет роторный двигатель принцип функционирования? Данный тип моторов отличается 4-тактным циклом действия, как и на классическом ДВС. Однако принцип работы роторно-поршневого двигателя немного отличается от такового у обычных поршневых.

В чем главная особенность данного мотора? Роторный двигатель Стирлинга имеет в своей конструкции не 2, не 4 и не 8 поршней, а всего один. Называется он ротором. Вращается данный элемент в цилиндре специальной формы. Ротор насаживается на вал и соединяется с зубчатым колесом. Последнее имеет шестеренчатое сцепление со стартером. Вращение элемента происходит по эпитрохоидальной кривой. То есть лопасти ротора попеременно перекрывают камеру цилиндра. В последней происходит сгорание топлива. Принцип работы роторного двигателя («Мазда» Cosmo Sport в том числе) заключается в том, что за один оборот механизм толкает три лепестка жестких кругов. В то время как деталь вращается в корпусе, три отсека внутри меняют свой размер. Благодаря изменению размеров в камерах создается определенное давление.

Фазы работы

Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:

  1. Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
  2. Сжатия . Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
  3. Воспламенения . Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
  4. Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.

Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.

Недостатки и преимущества

Не зря данный мотор привлек внимание столь многих автопроизводителей. Его особый принцип работы и конструкция имеют целый ряд преимуществ по сравнению с другими типами ДВС.

Итак, какие имеет роторный двигатель плюсы и минусы? Начнем с явных преимуществ. Во-первых, роторный двигатель имеет наиболее сбалансированную конструкцию, а потому практически не вызывает высоких вибраций при работе. Во-вторых, данный мотор имеет более легкий вес и большую компактность, а потому его установка особо актуальна для производителей спорткаров. Кроме того, небольшой вес агрегата дал возможность конструкторам добиться идеальной развесовки нагрузок по осям. Таким образом, автомобиль с данным двигателем становился более устойчивым и маневренным на дороге.

Ну и, конечно же, простора конструкции. Несмотря на то же самое количество тактов работы, устройство данного двигателя гораздо проще, чем у поршневого аналога. Для создания роторного мотора требовалось минимальное количество узлов и механизмов.

Однако главный козырь данного двигателя заключается не в массе и низких вибрациях, а в высоком КПД. Благодаря особому принципу работы роторный мотор имел большую мощность и коэффициент полезного действия.

Теперь о недостатках. Их оказалось намного больше, чем преимуществ. Основная причина, по которой производители отказывались покупать такие моторы, заключалась в их высоком расходе топлива. В среднем на сто километров такой агрегат тратил до 20 литров горючего, а это, согласитесь, немалый расход по сегодняшним меркам.

Сложность производства деталей

Кроме того, стоит отметить высокую стоимость производства деталей данного двигателя, которая объяснялась сложностью изготовления ротора. Для того чтобы данный механизм правильно прошел эпитрохоидальную кривую, нужна высокая геометрическая точность (для цилиндра в том числе). Поэтому при изготовлении роторных двигателей невозможно обойтись без специализированного дорогостоящего оборудования и особых знаний в технической области. Соответственно, все эти затраты заранее закладываются в цену автомобиля.

Перегревы и высокие нагрузки

Также из-за особой конструкции данный агрегат был часто подвержен перегреву. Вся проблема заключалась в линзовидной форме камеры сгорания.

В отличие от нее, классические ДВС имеют сферическую конструкцию камеры. Топливо, которое сгорает в линзовидном механизме, превращается в тепловую энергию, расходуемую не только на рабочий ход, но и на нагрев самого цилиндра. В конечном итоге частое «закипание» агрегата приводит к быстрому износу и выходу его из строя.

Ресурс

Не только цилиндр терпит большие нагрузки. Исследования показали, что при работе ротора значительная часть нагрузок ложится на уплотнители, расположенные между форсунками механизмов. Они подвергаются постоянному перепаду давления, потому максимальный ресурс двигателя составляет не более 100-150 тысяч километров.

После этого мотору требуется капитальный ремонт, стоимость которого порой равносильна покупке нового агрегата.

Расход масла

Также роторный двигатель очень требователен к обслуживанию.

Расход масла у него составляет более 500 миллилитров на 1 тысячу километров, что заставляет заливать жидкость каждые 4-5 тыс. километров пробега. Если вовремя не произвести замену, мотор попросту выйдет из строя. То есть к вопросу обслуживания роторного двигателя нужно подходить более ответственно, иначе малейшая ошибка чревата дорогостоящим ремонтом агрегата.

Разновидности

На данный момент существует пять разновидностей данных типов агрегатов:

Роторный двигатель (ВАЗ-21018-2108)

История создание ВАЗовских роторных ДВС датируется 1974 годом. Именно тогда было создано первое конструкторское бюро РПД. Однако первый разработанный нашими инженерами двигатель имел схожую конструкцию с мотором Ванкеля, который укомплектовывался на импортные седаны NSU Ro80. Советский аналог получил название ВАЗ-311. Это самый первый советский роторный двигатель. Принцип работы на ВАЗовских автомобилях данного мотора имеет одинаковый алгоритм действия РПД Ванкеля.

Первым автомобилем, на который стали устанавливать данные двигатели, стал ВАЗ модификации 21018. Машина практически ничем не отличалась от своего «предка» — модели 2101 — за исключением используемого ДВС. Под капотом новинки стоял односекционный РПД мощностью в 70 лошадиных сил. Однако в результате исследований на всех 50 образцах моделей были обнаружены многочисленные поломки мотора, которые заставили Волжский завод отказаться от применения данного типа ДВС на своих автомобилях на ближайшие несколько лет.

Основная причина неисправностей отечественного РПД заключалась в ненадежных уплотнениях. Однако советские конструкторы решили спасти данный проект, презентовав миру новый 2-секционный роторный двигатель ВАЗ-411. Впоследствии был разработан ДВС марки ВАЗ-413. Основные их различия заключались в мощности. Первый экземпляр развивал до 120 лошадиных сил, второй — порядка 140. Однако в серию данные агрегаты снова не вошли. Завод принял решение ставить их только на служебные автомобили, использовавшиеся в ГАИ и КГБ.

Моторы для авиации, «восьмерок» и «девяток»

В последующие годы разработчики пытались создать роторный мотор для отечественной малой авиации, однако все попытки оказались безрезультатными. В итоге конструкторы снова занялись разработкой двигателей для легковых (теперь уже переднеприводных) автомобилей ВАЗ серии 8 и 9. В отличие от своих предшественников новоразработанные моторы ВАЗ-414 и 415 являлись универсальными и могли использоваться на заднеприводных моделях авто типа «Волга», «Москвич» и так далее.

Характеристики РПД ВАЗ-414

Впервые данный двигатель появился на «девятках» лишь в 1992 году. По сравнению со своими «предками» данный мотор имел следующие преимущества:

  • Высокую удельную мощность, которая давала возможность машине набрать «сотню» всего за 8-9 секунд.
  • Большой коэффициент полезного действия. С одного литра сгоревшего топлива удавалось получить до 110 лошадиных сил мощности (и это без какой-либо форсировки и дополнительной расточки блока цилиндров).
  • Высокий потенциал для форсирования. При правильной настройке можно было увеличить мощность двигателя на несколько десятков лошадиных сил.
  • Высокооборотистость мотора. Такой двигатель способен был работать даже при 10 000 об./мин. При таких нагрузках мог функционировать только роторный двигатель. Принцип работы классических ДВС не позволяет их эксплуатировать долго на высоких оборотах.
  • Относительно малый расход топлива. Если прежние экземпляры «съедали» на «сотню» порядка 18-20 литров топлива, то данный агрегат потреблял всего 14-15 в среднем режиме эксплуатации.

Сегодняшняя ситуация с РПД на Волжском автозаводе

Все вышеописанные двигатели не получили большой популярности, и вскоре их производство было свернуто. В дальнейшем Волжский автозавод пока не планирует возрождать разработку роторных двигателей. Так что РПД ВАЗ-414 так и останется скомканным клочком бумаги в истории отечественного машиностроения.

Итак, мы выяснили, какой имеет роторный двигатель принцип работы и устройство.

Роторный двигатель, устройство, принцип работы, достоинства и недостатки

Роторный двигатель достоинства и недостатки

В этой статье Вы узнаете достоинства и недостатки роторных двигателей. Кроме того рассмотрим автомобили на которые устанавливался роторный двигатель.

Первый кто придумал роторный двигатель внутреннего сгорания это Феликс Ванкель. Именно поэтому нередко этот двигатель ассоциируется с ним и носит его имя. Первый роторный двигатель заработал в уже 1958 году. Но большинство автопроизводителей так и не решились устанавливать роторный двигатель на свои автомобили.

Единственный кто решился на массовое производство автомобилей с роторным двигателем это Mazda. Один из таких автомобилей RX 8. Советские инженеры тоже создали некоторое ограниченное количество автомобилей с роторным двигателем. Но об этом немного позже.

Вероятней всего от роторных двигателей отказались из-за низкого ресурса. Ресурс роторного двигателя в силу конструкции редко превышает 100 тысяч.км.

Устройство

Принцип работы роторного двигателя схож с поршневым двигателем. Также работа двигателя состоит из 4 тактов. Впуск, сжатие, воспламенение и выпуск. Но есть серьезные отличия у роторного двигателя отсутствует ГРМ, поршни, шатуны, коленвал. Так как в них необходимости.

Цилиндр в роторном двигателе выполнен в овальной форме. Роль поршня выполняет ротор который, имеет треугольную форму. Он же выполняет и роль ГРМ так как в зависимости от момента вращения, то открывает впускное окно для подачи воздуха, то закрывает. Также присутствует выпускное окно через которое выводятся выхлопные газы. Топливо в роторном одно секционном двигателе воспламеняется двумя свечами зажигания.

Достоинства

1) Более высокий КПД в районе 40 %. Это происходит за счёт того, что за одно вращение происходит 3 цикла работы.

2) Более простая конструкция за счёт отсутствия многих деталей которые присуще поршневому двигателю.

3) Более лёгкий вес.

4) Роторный двигатель высок оборотистый его можно раскручивать более 10 000 об/мин. Редко какой поршневой двигатель сможет похвастаться такими высокими оборотами.

5) Более мягкая работа и отсутствие вибраций, так как ротор постоянно движется в одном направлении.

К сожалению роторный двигатель не лишён недостатков.

Недостатки

1) Автомобили с роторным двигателем расходуют больше топлива чем его поршневые собратья.

2) Роторный двигатель менее экологичен.

3) Трудоемкий ремонт. Зачастую ротор приходится менять целиком.

4) Низкий ресурс около 100 тыс.км

Некоторые автомобили с роторным двигателем

1) Mazda RX 8

Компания Mazda одна из немногих кто живо занимался усовершенствованием роторного двигателя вплоть до 21 века. Им удалось достичь немалого прогресса. Двигатель с мизерным объемом 1,3 литра выдавал 215 л.с. Был и еще более мощный вариант с 231 л.с таким же объемом. Это харизматичное заднеприводное купе стало представителем автомобилей с роторным двигателем. К сожалению продажи начали падать поэтому в Августе 2011 года производство автомобилей Mazda RX-8 были вынуждены закрыть.

2) Ваз 2109-90

В России был создан образец с роторным двигателем характеристики которого на тот момент были впечатляющими. Этот двигатель устанавливался на полицейские автомобили. Роторный двигатель на ваз 2109 выдавал 140 л.с благодаря этому мотору разгон до 100 км/ч занимал всего 8 секунд, а максимальная скорость составляла 200 км/ч. Из-за высокой стоимости агрегата и его невысокой надежности автомобили не прижились. Были и более мощные образцы, но их ресурс оставлял желать лучшего. Тем не менее этот автомобиль отлично выполнял роль догонялки и мог обогнать любой советский автомобиль, даже многие не спортивные иномарки.

3)Mercedes C111

Mercedes C111 показался публике в Женеве в 1970 году. На этот автомобиль устанавливался трех-секционный роторный двигатель объемом 1,8 литра, который имел 280 л.с. При этом разгон до первой сотни занимал всего 5 сек. Максимальная скорость 275 км/ч.

4)Ваз 21019 Аркан

С виду ваз 21011, но внутри располагался ваз-411 это двух-секционный роторный двигатель который выдавал мощность 120 л.с. Максимальная скорость такого автомобиля была 160 км/ч. На практике скорее всего больше. Несомненно в советское время укрыться от такого автомобиля было не просто.

Итог

Роторный двигатель очень хорош для гонок так как он высок оборотистый и обладает хорошей мощность при этом обладает более легким весом и занимает меньше места под капотом. Для гонок ресурс двигателя не является самым важным показателем. Если увеличить ресурс, экономичность и экологичность роторного двигателя, то он будет устанавливаться на автомобили гораздо чаще.

dr]ems украина отслеживание

Что такое двигатель Ванкеля? | Как работает роторный двигатель?

Двигатели наиболее распространены во всем мире. Они стали важной частью всех транспортных средств. Существуют разные типы двигателей в зависимости от потребностей различных областей применения. Двигатель Ванкеля — самый известный тип двигателя внутреннего сгорания. В предыдущей статье мы обсуждали различные типы двигателей внутреннего сгорания (ДВС). В этой статье речь пойдет в основном о движке Ванкеля.

Что такое двигатель Ванкеля?

Двигатель Ванкеля — это тип роторного двигателя IC, который использует вращательное движение треугольного ротора, установленного в эллиптической камере, для преобразования тепловой энергии в вращательное движение без использования традиционного возвратно-поступательного поршня.Двигатель Ванкеля также известен как роторный двигатель , потому что он имеет все вращающиеся части.

По сравнению с поршневыми двигателями роторные двигатели Ванкеля имеют небольшой вес, небольшие размеры и более компактные размеры. Напротив, поршневой двигатель имеет поршень, совершающий возвратно-поступательное движение, который движется вверх и вниз внутри цилиндра.

Роторный двигатель Ванкеля имеет меньшую вибрацию и более равномерный крутящий момент, чем поршневой двигатель.

История двигателя Ванкеля
  • В 1924 году Феликс Генрих Ванкель создал небольшую лабораторию и начал разработку и исследование двигателя своей мечты, который мог вращаться, всасывать, сжиматься, гореть и выхлопывать.
  • В 1951 году компания NSU Motorenwerke AG приступила к разработке двигателя Ванкеля.
  • В 1957 году инженер Феликс Генрих Ванкель сконструировал первый роторный двигатель Ванкеля вместо обычного поршневого двигателя.
  • Инженер Ханнс Дитер Пашке разработал второй двигатель KKM , следуя некоторым технологическим изменениям и усовершенствовав технологию двигателя Ванкеля.
  • Роторный двигатель Ванкеля был впервые представлен специалистам и прессе на конференции Союза инженеров Германии в Мюнхене в 1960 году.
  • В 1960-х годах, благодаря простоте, отличному соотношению прочности и веса, плавности работы и очень высокой эффективности работы роторных двигателей, они были у всех на слуху в автомобильной и мотоциклетной промышленности.
  • В августе 1967 года компания NSU Motorenwerke AG получила широкую известность в связи с появлением нового NSU Ro 80, оснащенного 115-часовым двигателем Ванкеля с двумя роторами. Это был первый немецкий автомобиль в 1968 году, который был выбран «Автомобилем года».
  • Благодаря отличным характеристикам двигателя Ванкеля, многие крупные производители автомобилей (Ford, Toyota, Mercedes-Benz, Porsche, Rolls-Royce и Mazda) подписали среди них лицензионные соглашения на производство роторных двигателей Ванкеля в течение следующего десятилетия.

Конструкция роторного двигателя

Роторный двигатель работает по принципу оттоцикла . В отличие от поршневого двигателя с возвратно-поступательным движением, 4-тактный двигатель стандартного двигателя с циклом Отто организован последовательно вокруг эллиптического ротора в двигателе Ванкеля. Роторный двигатель имеет один ротор и одну эллиптическую коробку, окруженную треугольным ротором (трехсторонним у Reuleaux), который вращается и перемещается в коробке.Сторона уплотнения ротора соединена с тремя камерами сгорания на стороне корпуса и углами уплотнения ротора по периметру основной коробки.

По мере того, как ротор вращается, вращение и форма корпуса толкают ротор ближе к стенке корпуса, а камеру сгорания двигателя ближе и дальше вниз по «ходам» возвратно-поступательного поршня. Но эти 4-тактные двигатели производят такт сгорания после двух оборотов поршня внутри цилиндра.

Камеры сгорания двигателя Ванкеля производят один «ход сгорания » за каждый оборот.Поскольку приводной вал Ванкеля вращается со скоростью, в три раза превышающей частоту вращения ротора, он становится одним «тактом» сгорания на один оборот выходного вала ротора, что в два раза больше, чем у четырехтактного поршневого двигателя, и эквивалентно таковому у двухтактного двигателя. Эти двигатели имеют большую выходную мощность по сравнению с четырехтактными бензиновыми двигателями с аналогичным двигателем.

Двигатель Ванкеля в рабочем состоянии

Роторный двигатель Ванкеля — это известный тип двигателя внутреннего сгорания, который работает по основному принципу оттоцикла .

Двигатель Ванкеля четырехтактный и работает по следующей схеме:

  1. Всасывание
  2. Сжатие
  3. Сгорание
  4. Выхлоп
Двигатель Ванкеля работает

1) Ход всасывания или всасывания: —

  • Когда кончик ротора проходит через впускное отверстие, свежий воздух начинает поступать в первый цилиндр, как показано на диаграмме выше.
  • Цилиндр 1 st продолжает всасывать свежий воздух до тех пор, пока кончик ротора 2 и не достигнет впускного отверстия и не закроет его.
  • После этого впускной канал закрывается, и свежая топливно-воздушная смесь улавливается в первом цилиндре для сжатия и сгорания.

2) Степень сжатия: —

  • После завершения такта впуска начинается такт сжатия захваченной топливовоздушной смеси.
  • Когда ротор начинает вращаться, зазор между углом 1 и углом 2 первого цилиндра (как показано на диаграмме выше) уменьшается за счет уменьшения объема смеси и ее сжатия.
  • По мере того, как топливно-воздушная смесь сжимается в соответствии с требованиями, она отправляется на процесс сгорания.

3) Сгорание: —

  • Когда смесь в первом цилиндре (от 1 до 2 углов) сжимается в соответствии с требованием, свеча зажигания создает искру внутри цилиндра, которая воспламеняет топливовоздушную смесь.
  • Из-за возгорания смесь превращается в газы с высокой температурой и давлением. Энергия сгоревшей смеси заставляет ротор двигаться вперед.Этот процесс продолжается до тех пор, пока угол 1 st не пройдет мимо выпускного отверстия.

4) Выхлоп: —

  • Когда угол 1 касается выпускного или выпускного отверстия, горючие газы под высоким давлением выходят из двигателя.
  • После выпуска отработавших газов выпускное отверстие закрывается, и снова весь цикл повторяется.

Для лучшего понимания посмотрите следующее видео:

Детали роторного двигателя Ванкеля

Роторный двигатель может иметь сложную конструкцию, но в нем не так много движущихся частей или компонентов, как в поршневом двигателе.Ниже мы рассмотрим основные компоненты роторного двигателя Ванкеля, чтобы вы лучше поняли, как все работает.

Роторный двигатель состоит из следующих основных частей:

  1. Ротор
  2. Свеча зажигания
  3. Выходной вал
  4. Кожух
  5. Впускные и выпускные отверстия

1) Ротор

Ротор представляет собой треугольную вогнутую часть, которая обеспечивает плотное уплотнение при нажатии на кожух двигателя. На каждой стороне ротора есть воздушный карман или воздухозаборник, чтобы пропускать больше газа в корпус.Эти впускные отверстия или карманы эффективно увеличивают рабочий объем двигателя Ванкеля.

Ротор вращается на нескольких шестернях, соединенных с валом. Этот вал устанавливается в центре корпуса. Шестерни позволяют краям ротора вращаться таким образом, что они всегда контактируют с корпусом, поддерживая три отдельных камеры сгорания.

2) Корпус или кожух

Кожух — самая важная часть двигателя. Он также известен как корпус двигателя.Эллиптическая конструкция корпуса помогает увеличить рабочий объем двигателя при вращении ротора. Во время вращения ротора края ротора находятся в постоянном контакте с внутренней стенкой корпуса.

Когда ротор вращается в кожухе, каждая воздушная полость проходит через четыре части цикла сгорания:

  1. Всасывание до сжатия
  2. Сгорание до выхлопа.

Топливная форсунка и свеча зажигания вставляются непосредственно в камеру сгорания через стенку корпуса.Внешние каналы позволяют охлаждающей жидкости и маслам проходить через систему для поддержания температуры и целостности системы.

Корпус также защищает внутренние части двигателя. Это предохраняет внутренние детали от повреждений, вызванных падением любой внешней нагрузки на двигатель.

3) Выходной вал

Выходной вал передает энергию, образующуюся в результате сжатия и сгорания, в систему трансмиссии, которая приводит в движение колесо транспортного средства.Он оснащен круглым выступом, который касается ротора и вращает вал.

4) Впускные и выпускные патрубки

Впускной канал позволяет свежей смеси поступать в камеру сгорания, а выхлопные газы выводят газы через выпускное или выпускное отверстие.

5) Свеча зажигания

Свеча зажигания — это часть двигателя, используемая для передачи электрического тока от системы зажигания в камеру сгорания двигателя SI для сжигания сжатой топливовоздушной смеси с помощью электрической искры.Он имеет металлический корпус с резьбой, который электрически изолирован от центрального электрода керамическим изолятором.

Этот штекер соединяется с катушкой зажигания, которая генерирует высокое напряжение. Когда ток проходит через катушку, между боковым электродом и центральным электродом возникает напряжение. Когда напряжение превышает диэлектрическую прочность газа, газ ионизируется. Ионизированный газ работает как проводник, пропускающий ток через комнату.

Экономия топлива и уровень выбросов роторного двигателя Ванкеля

Когда роторный двигатель сжигает бензин, возникает множество проблем с выбросами и эффективностью.По сравнению с водородом диаметром 0,6 мм бензин воспламеняется медленнее, имеет меньшую скорость распространения пламени и большую дистанцию ​​гашения с циклом сжатия 2 мм. Из-за этих факторов двигатель потребляет больше топлива, и его КПД снижается.

Когда роторный двигатель Ванкеля использует бензин, зазор (в цикле сжатия) между корпусом и ротором становится очень узким, в то время как этот зазор достаточно широк для водорода. Двигателю требуется этот узкий зазор для сжатия.

Когда в двигателях используется бензин вместо дизельного топлива, оставшийся бензин выбрасывается в атмосферу через выпускной клапан.Но этой проблемы не возникает, когда двигатель использует водород в качестве топлива. Это связано с тем, что вся топливная смесь сгорает внутри камеры сгорания, которая имеет очень низкие выбросы, а топливная эффективность также повышается до 23%.

Конструкция камеры сгорания двигателя Ванкеля более устойчива к предварительному воспламенению на бензине с более низким октановым числом, чем в аналогичном поршневом двигателе. Конструкция камеры сгорания может стать причиной недостаточного горения топливовоздушной смеси при использовании бензина. Из-за этого неполного сгорания выделяется большое количество несгоревших углеводородов в выхлопных газах.Хотя температура сгорания роторного двигателя Ванкеля ниже, чем у других двигателей, ранние двигатели также имеют рециркуляцию выхлопных газов (EGR). Таким образом, выброс выхлопных газов двигателей Ванкеля относительно невелик.

Роторный двигатель транспортного средства может работать на высокой скорости. Это происходит из-за высокого эксцентриситета ротора, более длинных всасывающих каналов и раннего открытия всасывающего клапана, увеличивающего крутящий момент на низкой скорости — положение и конструкция выемки ротора влияют на расход топлива и выбросы.Уровень расхода топлива и выбросы зависят от конструкции камеры сгорания, которая определяется положением свечи зажигания внутри камеры двигателя.

Преимущества и недостатки роторного двигателя

Роторный двигатель Ванкеля имеет следующие основные преимущества и недостатки:

Преимущества двигателей Ванкеля
  • Эти типы двигателей имеют простую конструкцию.
  • Роторный двигатель не имеет клапана для работы.
  • Для этих двигателей не требуются коленчатые валы, шатуны и т. Д. Удаление этих компонентов делает двигатель Ванкеля легче.
  • Они имеют широкий диапазон скоростей.
  • Они также могут сжигать топливо с высоким октановым числом без детонации.
  • Эти двигатели обладают множеством преимуществ в плане безопасности, что делает их полезными в самолетах.
  • Загрязнение отстойника топлива не проявляется на некоторых двигателях Ванкеля, что означает, что нет необходимости в замене топлива.
  • Двигатель Ванкеля не имеет проблем с детонацией.Проблемы детонации возникают из-за неполного сгорания топливовоздушной смеси.
  • Эти двигатели имеют значительно более высокое соотношение мощности и массы, чем колонные.
  • Более простая упаковка в ограниченном пространстве двигателя, чем поршневой двигатель.
  • Этим двигателям не требуются возвратно-поступательные детали.
  • Роторный двигатель Ванкеля имеет более высокое передаточное число по сравнению с поршневым двигателем.
  • Эти двигатели не производят большого шума во время работы.
  • Поскольку двигатель Ванкеля имеет очень низко движущиеся компоненты, его производственная цена невысока.
  • Эти двигатели более чем поршневые.
  • Высокая скорость этих двигателей обеспечивает превосходную адаптивность.
  • Они лучше всего подходят для использования водородного топлива.

Недостатки двигателей Ванкеля
  • Высокая потеря уплотнения: Это также незначительная проблема, поскольку кожух двигателя Ванкеля имеет немного разные температуры в каждом отдельном сегменте камеры. Различные коэффициенты расширения вещества способствуют несовершенному экранированию.Следовательно, эти двигатели имеют высокие потери на герметичность.
  • Подъем уплотнения верхушки: Центробежная сила заставляет уплотнение верхушки на поверхности корпуса двигателя создать прочное уплотнение. При работе с малой нагрузкой зазоры между верхним уплотнением и корпусом могут образоваться в случае центробежной силы и дисбаланса давления газа.
  • Высокий уровень выбросов: Поскольку несгоревшее топливо находится в потоке выхлопных газов при использовании топлива, стандарты выбросов трудно выполнить. Прямой впрыск топлива в камеру сгорания двигателя решит эту проблему.
  • Низкая экономия бензинового топлива: Это обусловлено движущейся камерой сгорания, что способствует плохому сгоранию и хорошему давлению при частичной нагрузке и низких оборотах. Это приводит к присоединению несгоревшего топлива к выхлопному потоку; топливо, не используемое для производства электроэнергии, теряется.
  • Иногда роторный двигатель Ванкеля имеет проблемы с расходом топлива и сжиганием масла.
  • Топливно-воздушная смесь не может быть предварительно сохранена, потому что у этого двигателя нет впускного отверстия.
  • Эти двигатели требуют сложной технологии впрыска топлива.
  • Эти двигатели имеют низкую степень сжатия. По этой причине у них низкая экономия топлива и тепловой КПД.
  • В выхлопном потоке двигателя Ванкеля могут быть высокие выбросы несгоревших углеводородов и оксида углерода.
  • Роторный двигатель очень склонен к пропускам зажигания, так как потеря хода приводит к тому, что двигатель теряет импульс, а затем снова начинает двигаться при следующем запуске камеры сгорания. Чтобы избежать этой проблемы, необходимо техническое обслуживание системы зажигания.

Приложения двигателя Ванкеля
  • Крошечный двигатель Ванкеля все чаще используется в других целях, в том числе в картингах, личных водных судах и вспомогательных силовых установках самолетов.
  • Некоторые люди используют двигатели Ванкеля в версиях, которые в основном использовались с 1970 года. Даже с большим глушителем весь комплект весит всего 13,4 унции (380 граммов).
  • Универсальность двигателей Ванкеля делает их пригодными для малых, микро- и микро-мини-приложений.
  • Самый большой двигатель Ванкеля доступен с ротором мощностью 550 л.с. (410 кВт) и двумя версиями ротора по 1100 л.с. (820 кВт), смещает примерно 41 литр ротора в диаметре. За счет снижения частоты вращения двигателя до 1200 об / мин и использования природного газа в качестве топлива двигатели были хорошо выбраны для привода насосов на газопроводах.
  • Эти двигатели используются в самолетах.
  • Эти двигатели используются в автомобилях Mazda.
  • Малые двигатели Ванкеля также используются в мотоциклах.
  • Эти типы двигателей также используются на лодках.

В чем разница между поршневым двигателем и двигателем Ванкеля?
Двигатель Ванкеля Поршневой двигатель
Он имеет вращающийся ротор, который используется для преобразования тепловой энергии во вращательное движение. Имеет возвратно-поступательный поршень, который перемещается вверх и вниз для преобразования тепловой энергии в механическую.
Роторный двигатель Ванкеля легче поршневого двигателя. Поршневой двигатель тяжелее двигателя Ванкеля.
Эти двигатели имеют меньшие размеры. Они имеют большой размер.
Они сжигают больше топлива. Они сжигают меньше топлива, чем двигатели Ванкеля.
Они производят меньшую мощность, чем поршневые двигатели, при том же количестве топлива. Они производят большую мощность.
Двигатели Ванкеля производят больше выбросов. Эти двигатели производят меньше выбросов.
У них меньше движущихся частей, чем у поршневых насосов. У них много движущихся частей.
Имеет плавную работу. У него нет такой плавной работы, как у двигателя Ванкеля.

Раздел часто задаваемых вопросов

Кто изобрел двигатель Ванкеля?

В 1957 году инженер Феликс Генрих Ванкель сконструировал первый двигатель Ванкеля.

Почему роторный двигатель известен как двигатель Ванкеля?

Ванкель был изобретен Феликсом Генрихом Ванкелем. Таким образом, он известен как двигатель Ванкеля по имени его основателя.

Почему роторные двигатели такие мощные?

Благодаря революционному движению роторные двигатели имеют меньшую рабочую вибрацию, чем поршневые двигатели. Это позволяет настроить двигатель Ванкеля так, чтобы он работал быстрее и мог генерировать больше мощности.

Какие автомобили имеют двигатель Ванкеля?

Двигатели Ванкеля можно найти в следующих режимах автомобилей:

  • 1969 Citroen M35.
  • Концепт Mazda RX-500 1970 года.
  • 1973 Citroen GS Birotor.
  • Mercedes-Benz C111-II 1970 года выпуска.
  • 1975 Mazda Roadpacer AP.
  • Концепт Chevrolet Corvette XP897 GT 1973 года.
  • 1974 Mazda Parkway RE13 Rotary 26 Superdeluxe.
  • 2003 Mazda RX-8 Hydrogen RE.

Почему вышел из строя двигатель Ванкеля?

Двигатель Ванкеля выходит из строя по следующим причинам:

  • Двигатели Ванкеля имеют проблемы с расходом топлива и сжиганием масла.
  • Им нужна сложная технология впрыска топлива.
  • Расход топлива: Двигатель Ванкеля имеет тонкую и длинную камеру сгорания, приводимую в движение ротором. Это замедляет сгорание топлива. В двигателе эту проблему пытались решить с помощью двойных свечей зажигания (начало и конец).
  • Выбросы: В случае роторного двигателя несгоревшее топливо и масло для сгорания вызывают ужасные выбросы.
Заключение

Двигатели этих типов не горят очень чисто и, как следствие, имеют высокий уровень выбросов.Роторные двигатели также имеют более высокий износ по сравнению с поршневыми двигателями и не служат так долго.

Кроме того, они ужасные двигатели для людей, которые ездят на короткие расстояния. Если бы вы могли завести их, переместить машину с проезжей части на дорогу и выключить их, эти двигатели сильно затопятся. Затем вам нужно пройти процесс удаления наводнения. Я думаю, что этот процесс может занять от 20 до 30 минут, чтобы перезапустить машину. Часто приходится подключать дополнительное питание, чтобы не разрядить аккумулятор.Это также может произойти, если вы едете на небольшое расстояние. Эти преимущества роторных двигателей или двигателей Вакеля делают их очень плохими для автомобилей на короткие расстояния.

Двигатели Ванкеля также используются в транспортных средствах / машинах, вращающихся на высоких оборотах в течение длительного времени, например в самолетах. Это связано с тем, что пиковая мощность обнаруживается при этих высоких оборотах, и всем им не хватает крутящего момента, что приводит к очень большим расходам топлива для достижения этого высокого диапазона мощности.

См. Также:

  1. Какие бывают типы двигателей?
  2. Двигатель внутреннего сгорания (ДВС) различных типов

Роторная революция • СОСТОЯНИЕ СКОРОСТИ

За 140 с лишним лет с момента изобретения современного двигателя внутреннего сгорания появилось бесчисленное множество различных конструкций; 2-, 4- и даже 6-тактные циклы, рядные, V-образные, W, X, H и горизонтально расположенные цилиндры, формы камеры сгорания от плоской до полусферической и всевозможные конфигурации клапанов и распределительных валов.Технологическая скороварка военного времени привела к появлению таких странностей, как роторно-поршневые двигатели времен Великой войны, которые вращали весь картер и цилиндры вокруг кривошипа, прочно прикрученного к носовой части самолета. Они превратились в радиальные двигатели со стационарными картерами, кульминацией которых стали массивные 28-цилиндровые «звери» с рабочим объемом более 4000 кубических дюймов и мощностью 4300 лошадиных сил к концу Второй мировой войны. Затем была поистине странная конструкция «Deltic», в которой три коленчатых вала располагались в углах треугольника, каждый приводился в движение поршнями, которые двигались друг против друга, без головки блока цилиндров вообще.

Фото: Джаред Аусландер

Это тот механизм, который кажется, будто он был реконструирован из разбившегося НЛО или взят прямо из книги Ветхого Завета Иезекииля по сравнению с поршневым двигателем .

Но какую бы форму ни принимал даже самый странный из этих двигателей, все они имели одну конструктивную особенность, которую Николаус Отто, создатель первого современного двигателя внутреннего сгорания, сразу узнал бы: поршень, совершающий возвратно-поступательное движение, движется вперед и назад в отверстии цилиндра, что соответствует линейному движению. движение во вращение через шатун и коленчатый вал.Эта концепция настолько проста и элегантна, но настолько хорошо подходит для поставленной задачи, что подавляющее большинство двигателей внутреннего сгорания используют ее. Несмотря на то, что с годами они совершенствовались с использованием новых материалов и технологий производства, приличные поршневые двигатели могут быть изготовлены с использованием самых элементарных навыков проектирования и довольно простых станков. Из-за того, насколько сложно построить «мышеловку лучше», чем поршневой двигатель, почти все попытки в той или иной мере терпели неудачу и были забыты, за одним заметным исключением: роторным двигателем Ванкеля.

Фото: Ральф Плейфер через Wikimedia Commons

МЫШЛЕНИЕ ВНЕ КОРОБКИ (ИЛИ ТРУБКИ, В ЭТОМ СЛУЧАЕ)

Впервые задуманный в конце 1920-х годов немецким инженером Феликсом Ванкелем, роторный двигатель, несмотря на наличие только двух основных движущихся частей, на первый взгляд не интуитивно понятен, как обычный поршневой двигатель. Ванкель проходит те же четыре этапа, что и поршневой двигатель — впуск, сжатие, сгорание и выпуск — с использованием изогнутого треугольного ротора, который вращается вокруг овального корпуса (технически это форма «эпитрохоида», что означает «вы не сделали») Я достаточно хорошо успеваю в своем классе Trig, чтобы понять, что здесь происходит ») на эксцентриковом валу.Фиксированная шестерня на стороне корпуса входит в зацепление с коронной шестерней внутри ротора, так что за каждый полный оборот ротора эксцентриковый вал поворачивается три раза.

Фото: Fred The Oyster через Wikimedia Commons

Это своего рода механизм, который выглядит так, как будто он был реконструирован из разбившегося НЛО или взят прямо из книги Ветхого Завета Иезекииля по сравнению с поршневым двигателем. Но важно то, что движение ротора внутри корпуса приводит к полезному изменению объема между поверхностью ротора и корпусом, точно так же, как подъем и опускание поршня в отверстии цилиндра.Хотя Ванкель подал свой первый патент на роторный двигатель в 1929 году, ему потребовалось до 1957 года, чтобы разработать рабочий прототип, работая в немецкой автомобильной компании NSU. Его первоначальный прототип, использующий тот же общий принцип, что и роторные двигатели, с которыми мы знакомы сегодня, был несколько более сложным с корпусом ротора, который вращался внутри внешнего корпуса, а также с движущимся ротором внутри.

Автомобиль: Mercedes C111 с трехроторным двигателем.
Фото предоставлено: Detectandpreserve через Wikimedia Commons

Работая параллельно (и без ведома Ванкеля), инженер NSU Ханс Дитер Пашке в 1957 году также разработал рабочий прототип стационарного роторного двигателя, и именно эта конструкция превратилась в практический автомобильный двигатель. .Заинтригованные потенциалом Ванкеля, автопроизводители со всего мира, включая AMC, Ford, General Motors, Citroën, Mercedes-Benz и даже Rolls-Royce, лицензировали дизайн для разработки своих собственных версий, но в конце концов, Mazda была единственной компанией, производившей роторы Ванкеля в значительных количествах. Хотя роторный двигатель имел некоторые существенные преимущества по сравнению с обычными поршневыми двигателями, он также имел ряд недостатков, присущих конструкции, плюс несколько нетривиальных технических препятствий, которые необходимо было преодолеть, прежде чем он стал пригодным для массового производства.

ЧТО-ТО ВЫ ВЫИГРЫВАЕТЕ, ЧТО-ТО ТЕРЯЕТЕ

Положительным моментом является то, что Ванкель работал с плавностью, с которой не мог сравниться ни один поршневой двигатель. В телевизионных рекламных роликах Mazda использовала запоминающуюся народную песню с припевом: «Двигатель работает (боинг, боинг, боинг), двигатель Mazda идет« хм »», чтобы подчеркнуть этот атрибут. Отсутствие деталей, совершающих возвратно-поступательное движение, также означало, что Ванкельс мог безопасно изменять число оборотов в минуту, при котором клапаны смещались бы на любом стандартном поршневом двигателе производственной линии, ограниченном только прочностью ротора и неподвижных шестерен, а также необходимыми принадлежностями с приводом от двигателя, такими как генератор переменного тока и вода. помпа могла терпеть.

По размеру и весу роторы чрезвычайно компактны и легки для своей выходной мощности. Хотя их рабочий объем обычно описывался в терминах одной камеры в объеме каждого ротора (что делало вездесущие роторы Mazda 12A и 13B номинально 1,2 или 1,3 литра), тот факт, что было три таких камеры для каждого ротора, заставлял их работать больше как двигатель с удвоенным рабочим объемом.

Фотография предоставлена: Mazda

… Борьба NSU по созданию производственных роторных двигателей, не допускающих выдувания верхних частей выхлопа, была главной причиной, по которой Wankel быстро завоевал репутацию ненадежного двигателя .

Что касается недостатков, то первая проблема, с которой сталкивается каждый, кто пытается сделать двигатель Ванкеля практичным в качестве двигателя серийного автомобиля, — это создание эффективных и долговечных уплотнений. В обычном поршневом двигателе зазор между поршнем и стенкой цилиндра герметизирован кольцевым пакетом, который использует комбинацию давления газа, направленного на контактные площадки кольца, и разность давлений между областью выше и ниже самого кольца для динамической нагрузки на кольцо. верхнее кольцо и держите его с нужным натяжением.Хотя современная конструкция поршневых колец и используемые материалы стали очень сложными и изощренными, простые железные кольца с квадратным профилем отлично справятся с этой задачей, если вы не пытаетесь выжать последние несколько процентов мощности и эффективности. В качестве бонуса круглые кольца также легко производить с точными допусками.

Фото: Mazda

Это не относится к Ванкелю. Взглянув на то, как ротор колеблется в корпусе, вы узнаете, что вам понадобятся три длинных, слегка изогнутых уплотнения по обе стороны от ротора, а также три уплотнения на вершине каждой точки треугольника ротора, чтобы отделить отдельные части. камеры сгорания »друг от друга.В то время как боковые уплотнения не имели большого значения, создание уплотнений вершины, которые были бы достаточно прочными для серийного автомобиля, оказалось настоящей проблемой. Фактически, усилия NSU по созданию производственных роторных двигателей, которые не допускали бы выдувания верхних частей выхлопа, были основной причиной, по которой Wankel быстро завоевал репутацию ненадежного двигателя.

Автомобиль: Mazda Cosmo, первый серийный автомобиль компании с роторным двигателем Ванкеля.
Фотография предоставлена: Mazda

Mazda смогла разработать надежные верхние уплотнения для своих собственных роторных двигателей, но еще одна проблема возникла из-за того, что в отличие от поршневого двигателя, в котором цилиндры расточены. постоянно смазываются маслом из шатунных подшипников во время вращения коленчатого вала, поэтому нет удобного способа получить смазку для верхних уплотнений.Решение было получено путем впрыска небольшого количества моторного масла во всасываемый воздушный поток, что дало тот же конечный результат, что и предварительно смешанное топливо и масло для двухтактного мотоцикла или бензопилы.

В конце концов, роторные двигатели оказались больше проблем, чем они того стоили, даже для Mazda, по крайней мере, с точки зрения использования серийных автомобилей.

К сожалению, примерно в то же время, когда Mazda разобралась с этой проблемой, нефтяной кризис 1973 года привел к резкому росту цен на топливо, и в США к нормам выбросов стали относиться серьезно.Этот двойной удар поразил Ванкеля там, где он жил — хотя двигатели были эффективны с точки зрения размера и веса для их выходной мощности, их удельный расход топлива на тормоз (количество газа, необходимое для выработки определенного количества лошадиных сил) было низким по сравнению с двигателями. обычного поршневого двигателя, и необходимость постоянно впрыскивать немного масляного тумана в двигатель неизбежно ведет к неизбежно более высоким выбросам углеводородов.

Автомобиль: Mazda RX7 FC

THERMODYNAMICS IS A HARSH MISTRESS

Оказывается, поршневой двигатель с цилиндрическими отверстиями представляет собой наилучшую практическую форму для удержания тепла, содержащегося внутри камеры сгорания, поскольку он имеет наименьшую площадь поверхности для любого заданного объема.Загадочное геометрическое волшебство, которое делает Ванкеля даже возможным, также диктует, что постоянно меняющаяся форма камеры сгорания будет иметь большую площадь поверхности для перемещения двигателя, а это означает, что непропорционально большое количество тепловой энергии от сжигания топлива скоро исчезнет. вместо того, чтобы выполнять полезную работу, соскользнет в роторы, боковые кожухи или торцевые пластины. Этот неизбежный факт означал, что роторные двигатели никогда не смогут сравниться с пони экономии топлива обычного поршневого двигателя для пони, даже если они будут установлены в автомобиле, оптимизированном для легкого веса Ванкеля.

Фото: Энциклопедия Бриттаника

Есть и другие особенности конструкции роторного двигателя — из-за камеры сгорания странной формы Mazda использовала две свечи зажигания на ротор с шахматной синхронизацией зажигания, чтобы обеспечить максимально полное сгорание топливно-воздушной смеси. . Кроме того, регулируемые фазы газораспределения и / или подъем клапана могут динамически изменять характеристики цикла сгорания поршневого двигателя, но синхронизация впуска и выпуска двигателя Ванкеля является фиксированной, как и в бесклапанном двухтактном двигателе, что определяется положением портов на боковые корпуса и периферия центрального корпуса.

Автомобиль: Mazda RX7 Шины: Milestar MS932 Sport

НАСЛЕДИЕ ВАНКЕЛЯ

В конце концов, роторные приводы оказались больше проблем, чем они того стоили, даже для Mazda, по крайней мере, с точки зрения использования серийных автомобилей. Конец линии почтенного оригинального 13B, производившегося в течение поразительных трех десятилетий, пришел с окончанием производства FD RX-7 после 2002 модельного года. К тому времени 13B-REW превратился в кошмар водопроводчика с двойным турбонаддувом мощностью 280 лошадиных сил с вакуумными линиями и оборудованием для контроля выбросов, который был далек от простоты, обещанной первоначальной конструкцией Ванкеля.Его преемник, безнаддувный 13B-REW RENESIS, установленный в RX-8 2003-2013 гг., Отличается улучшенными выбросами и экономией топлива за счет радикальной переделки расположения выхлопного отверстия и поистине героических усилий по калибровке системы управления двигателем, но в конечном итоге этого не произошло. — тем не менее, более жесткие ограничения выбросов в США и Европе.

Автомобиль: Mazda RX8
Фото: Mazda

Mazda RX-8, 2004 г. Мировая премьера

Mazda RX-8, 2004 Всемирное введение

… Настоящее наследие вдохновленной г-ном Ванкелем конструкции двигателя — это безошибочно узнаваемый звук трехроторного двигателя с периферийным портом, ударяющего о ограничитель оборотов на гоночной трассе, что звучит как нечто среднее между пулеметом и концом света.

Фото: Джаред Аусландер

Mazda продолжает экспериментировать с конструкцией двигателя Ванкеля, демонстрируя такие вещи, как роторные двигатели, работающие на водороде, которые горят намного чище, чем конструкции с бензиновым двигателем в концептуальных автомобилях, но маловероятно, что мы когда-либо увидим широко распространенный энтузиазм по этому поводу. другой тип двигателя внутреннего сгорания, как мы это делали в конце 1960-х и снова в начале 1970-х. Для нишевых приложений, где критически важны высокое соотношение мощности к весу и компактные размеры, роторный двигатель сохранит свою популярность, но настоящее наследие вдохновленной конструкции двигателя г-на Ванкеля — это безошибочный звук трехроторного двигателя с периферийным портом, ударяющегося о корпус. Ограничитель оборотов на гоночной трассе звучит как нечто среднее между автоматом и концом света.

Автомобиль: Mazda RX-7 FD
Шины: Milestar MS932 Sport

Роторный двигатель

: основные части и работа

Роторный двигатель является альтернативой поршневому двигателю. Он разработан Ванкелем в 1957 году. В двигателе роторного типа сила давления, создаваемая сгоранием топлива, действует на ротор. Таким образом, ротор вращается и преобразует химическую энергию топлива в механическую. Этот двигатель компактен и имеет большую удельную мощность, поэтому он широко используется на подводных лодках и вертолетах.

Основные части роторного двигателя Ванкеля:

В роторном двигателе Ванкеля некоторые части работают вместе и достигают цели преобразования энергии. Эти детали:

Ротор:

В роторном двигателе используется ротор треугольной формы. У него три выпуклые грани. Каждая грань действует как поршень. Ротор работает как первичный двигатель в роторном двигателе. Сила, возникающая при сгорании топлива, действует непосредственно на ротор, поэтому он вращается эксцентрично. Ротор имеет внутреннюю синхронизирующую шестерню на одной стороне, которая взаимодействует с фиксированной синхронизирующей шестерней, расположенной на боковом корпусе, для поддержания правильного соотношения между ротором и эксцентриковым валом.

Корпус:

Ротор вращается в камере овальной формы, известной как корпус. Функция корпуса такая же, как и функция цилиндра в поршневом двигателе. Корпус содержит впускной и выпускной патрубки, свечу зажигания, водяную рубашку и т. Д. Основной корпус закрывается боковым кожухом. Боковой корпус содержит фиксированную зубчатую передачу, которая сцепляется с внутренней зубчатой ​​передачей и поддерживает правильное соотношение между ротором и эксцентриковым валом. Обычно он изготавливается из алюминиево-кремниевого сплава.

Эксцентриковый вал:

Эксцентриковый вал, также известный как выходной вал, используется для преобразования эксцентрикового движения ротора в концентрическое движение и вывода его из двигателя.

Уплотнение вершины

Все стороны треугольного ротора работают как поршень. Поэтому необходимо скрепить всю эту камеру друг с другом. Для выполнения этой функции на каждом углу ротора используется верхнее уплотнение. Это газонепроницаемое уплотнение между ротором и корпусом. Обычно его делают из чугуна, а иногда из высокоуглеродистой стали.

Работа роторного двигателя Ванкеля:

Процесс преобразования энергии в роторном двигателе Ванкеля разделен на четыре процесса. Это впуск, компрессия, мощность и выпуск. Все процессы происходят одновременно вокруг каждого ротора при работающем двигателе. Двигатель трехлопастный. Ротор приводится в действие эксцентрично в кожухе таким образом, что между ротором и кожухом находятся три отдельных объема. Эти три тома последовательно выполняют процессы индукции, сострадания, сгорания и выхлопа.

Процесс впуска:

Впуск — это впуск топливовоздушной смеси в двигатель. Когда доля A движется, пространство между долей A и C увеличивается. Это приводит к тому, что воздушно-топливная смесь попадает в двигатель через впускное отверстие, заполняя пространство. Когда лепесток C проходит через впускной канал, пространство между A и C закрывается.

Процесс сжатия:

Когда ротор вращается, пространство между лепестками A и B значительно уменьшается. Таким образом, смесь между долей A и B сжимается.

Процесс горения:

Когда смесь между A и B полностью сжимается, на свече зажигания образуется искра, которая воспламеняет смесь. Он сгорает и заставляет вращаться ротор. Это также известно как процесс выработки энергии.

Процесс выпуска отработавших газов:

Когда лепесток В проходит через выпускное отверстие, смесь сгорает выпускается. Эти ходы впуска, сжатия, сгорания и выпуска следуют непрерывно в каждой камере ротора. Это происходит, пока двигатель работает.

Сегодня мы обсудили роторный двигатель: основные части и работа. Если у вас есть какие-либо вопросы, задавайте их в комментариях.

Взлет, падение и возвращение роторного двигателя (двигатель Ванкеля)

Роторные двигатели можно назвать побочным продуктом популярного типа двигателей. Они были сильными, но неэффективными, легкими, но сильно загрязняющими окружающую среду и, прежде всего, небезопасными. Так почему же кто-то в здравом уме хочет, чтобы роторные двигатели вернулись? Потому что теперь у нас есть технология, позволяющая противодействовать вредным воздействиям роторного двигателя и улучшать их.Давайте погрузимся в мир роторных двигателей .

Роторный двигатель | Рождение Ванкель со своим изобретением

В лаборатории немецкого инженера-механика в 1954 году был изобретен роторный двигатель. За этим стоял Феликс Генрих Ванкель. Он хотел создать двигатель, у которого не было бы сильных вибраций, как у поршневого двигателя. И он добился успеха, роторный двигатель Ванкеля (DKM54) был запущен и работал, но не использовался в автомобилях до 1956 года, когда он был модифицирован другим инженером Хансом Дитером Пашке, который удешевил его, сделав возможным массовое производство.

Итак, какое влияние роторные двигатели оказали на старые автомобили и почему о них забыла каждая компания, кроме той, которая не откажется от них? Давайте посмотрим, что роторные сделали правильно, а где — большие ошибки.

Роторный двигатель | Власть воплощенного

В то время как двигатель внутреннего сгорания может обеспечивать большую мощность, роторный двигатель может делать то же самое, но лучше. Что-то вроде 1,3-литрового роторного двигателя может производить 228 л.с., в то время как двигатель внутреннего сгорания может производить максимальную мощность 170 л.с.Не забывайте, что роторные двигатели очень малы по сравнению с двигателем внутреннего сгорания.

Роторные двигатели обладают высокой мощностью. Они не используют топливо для питания себя. Пьют . Была причина, по которой роторные двигатели вышли из строя. Давайте посмотрим, как они работали.

Роторный двигатель | Основной принцип работы

Роторные двигатели преобразуют давление во вращательное движение, как и любой другой двигатель, ориентированный на топливо. Так что же сделало их лучше? Это было количество деталей, необходимых им для этого вращательного движения.Им не потребовались никакие «аксессуары» вроде поршневого двигателя

.

Поршневой двигатель, преобразующий давление в поступательное движение, которое затем преобразуется во вращение с помощью кривошипов. Роторный двигатель непосредственно генерирует вращение. Это означало меньшие потери мощности, а практическое правило гласит, что чем больше деталей, тем больше потерь будет.

Роторный двигатель | Детали

Rotary состоит только из трех основных частей. Есть и другие детали, но мы сравниваем его с поршневым двигателем, поэтому мы будем говорить только о деталях, которые используются для выработки энергии, а наши части немного отличаются от поршневых.

Ротор | Вид очевидно Роторы

Треугольник с выпуклой гранью посередине называется ротором. Это эквивалент поршня. Он вращается, и вот как это работает, спасибо за чтение блога. А если серьезно, то он вращается вокруг камеры, в которой он находится, и запускает четыре цикла двигателя: впуск, сжатие, сгорание и выпуск. Все эти шаги происходят в отдельной части камеры, которая им посвящена.

Камера | Заставляем все работать Зал

Зал — это место, где происходит волшебство. В нем находится ротор, как мы уже говорили выше, но он также имеет множество других вещей, которые помогают запускать двигатель.

Во-первых, топливная форсунка. Довольно простые вещи, если вы изучали двигатели IC. Инжектор во роторном работает так же. Место, где вводится топливовоздушная смесь в камеру, это также та часть, где происходит такт сжатия после впуска топливовоздушной смеси

Предлагаемое чтение: Форд против Феррари | Эпическое соперничество | Правдивая история

Во-вторых, две свечи зажигания.Ага, у поворотного есть две свечи зажигания. Из-за формы камеры двигателю требуется более одной свечи зажигания. Эти две свечи зажигания обеспечивают равномерное распространение огня по ходу зажигания.

Третий — это выхлопное отверстие, через которое несгоревшее топливо и газы выбрасываются из двигателя.

После этого ротор возвращается в исходное положение, и цикл продолжается.

Использование поворотного устройства

От двигателей спортивных автомобилей до истребителей времен Первой мировой войны, дисковые пилы используются во всем.Все, что требовало скорости и производительности, использовало роторные двигатели. Наиболее распространенными автомобилями с роторными двигателями были серии Mazda RX.

Но если они такие разносторонние и хорошие, почему они начали их уменьшать и в конечном итоге убивать?

Роторные двигатели | Что их убило Смерть роторных двигателей

Как показано на изображении выше, роторные двигатели покончили с собой. И в прямом, и в переносном смысле. Поскольку они могли просто взорваться в любое время, когда захотят, и, образно говоря, потому что они были грубыми.Как бы я ни любил роторные двигатели, они были плохим оборудованием.

EXPLOOOOOOSIOOOOONNNNN Взрыв роторного двигателя

Самой большой проблемой роторного двигателя была MAD RAW POWER, которую они производили. Подождите, это должно быть положительно, верно? Ну да, но на самом деле нет. высокая мощность достигается за счет высоких оборотов, что означает проблемы. Если вы хотите иметь представление о том, насколько сложно было управлять автомобилем с роторным двигателем, мы перечислим некоторые моменты ниже.

  • Заведите автомобиль и включите медленный оборот, не достигая высоких уровней, максимум на 20 минут в зависимости от температуры наружного воздуха.
  • Затем вам нужно нагреть масло в двигателе и убедиться, что указатель уровня воды на приборной панели не выходит за борт, так как он быстро нагревается.
  • Когда вышеуказанные условия выполнены, вы начинаете гонку, потому что единственная причина получить роторный двигатель — это гонка с ним.
  • Кроме того, вам нужно как можно сильнее увеличить обороты, чтобы убедиться, что двигатель смазан.

Если вы выполнили все эти шаги и вам повезло, вы сможете поехать на своей машине в другой день.Хотя это не было обычным явлением, мы не допускаем даже небольшой вероятности взрыва двигателя из-за отсутствия шанса взорваться.

Популярное чтение: основные моменты индийской автомобильной промышленности за 2019 год

Rotary Не используйте топливо, которое они пьют Роторный двигатель имел действительно плохую экономию топлива.

Как видно из названия, роторный двигатель был неэффективен. Он имел экономию топлива 19,7 км / л. Это была лучшая экономия, которую мы когда-либо получали от роторного двигателя.Так что от этого только идет вниз. Это было серьезной проблемой для людей, которые хотели машину просто по личным причинам, вместо того, чтобы использовать ее для гонок или дрифта.

Дыхание — это весело | Ротари Сайс №

Выбросы роторного двигателя были за пределами графика. Когда уровень NOx достиг высокого уровня, Rotary загрязнял окружающую среду. Это привело к тому, что роторные двигатели умирали в Европейском Союзе, когда они ввели новую норму выбросов, с которой ротационные двигатели не могли справиться.

Возвращение?

Итак, если у них есть такие большие красные флажки, зачем даже Mazda возить их обратно.Речь идет не об альтернативном варианте трансмиссии, а о сохранении наследия. При всех этих проблемах роторного типа быть не должно, так почему же мы думаем, что роторный вернется?

Не называйте это возвращением Rotary Never Left

Несмотря на то, что каждая компания, которая пыталась заняться роторными двигателями, отказалась от них, Mazda этого не сделала. Они продолжали внедрять новые возможности и технологии для вращательной работы. Медленно и неуклонно они осознали, что это не имеет значения, поскольку существует слишком много недостатков, чтобы заставить его работать.Но они по-прежнему сильны: отчеты Mazda о патентовании новых технологий, касающихся роторных двигателей, по-прежнему сильны для роторных двигателей.

Небо — предел, когда тебе наплевать | Технология SkyActiv X

Mazda создала двигатель под названием SkyActic X. Работа двигателя с этой технологией — действительно умная вещь, поскольку она устраняет проблему двигателя внутреннего сгорания, а именно его выбросы и эффективность.

SkyActiv X Рабочий Skyactiv X работает Источник: Mazda

Эти двигатели представляют собой смесь дизельного и бензинового двигателей.Он использует концепцию, которую используют эти двигатели, а именно зажигание свечи зажигания и зажигание от сжатия.

В камерах Skyactiv X используется бедная топливная смесь 16: 1. Это позволяет снизить тепловыделение за счет большего количества воздуха. Эта бедная смесь затем сжимается поршнем, и когда она почти достигает точки самовоспламенения из-за давления, свеча зажигания зажигает ее. Эта смесь обоих обеспечивает более низкую температуру, что снижает выбросы NOx, и меньшее количество тепла, что означает, что больше энергии используется для запуска автомобиля, а не тратится впустую.

Так почему мы обсудили технологию, которая используется в поршневом двигателе? Благодаря сочетанию SkyActiv X и роторных двигателей, роторные могут занять рынок высокопроизводительных автомобилей, которые, к счастью, не взорвутся, пока вы находитесь вне дома.

Слияние Rotary и SkyActiv X

Есть несколько моментов в том, как использование SkyActiv X и Rotary может радикально изменить две основные проблемы: выбросы и эффективность. Взрывающиеся роторные двигатели могли быть проблемой, но они не были обычным явлением.

Высокая степень сжатия | Контроль выбросов

SkyActiv X использует действительно высокую степень сжатия 16: 1. И исследования показали, что с этой технологией можно достичь такого же соотношения на роторном двигателе. Это означает, что меньше выбросов имеет больше воздуха, что приводит к более низким температурам, что еще больше снижает выбросы NOx, поскольку выбросы NOx напрямую связаны с температурой

S.P.C.C.I (зажигание от сжатия, управляемое свечой зажигания) | Эффективность управления

Как мы уже обсуждали выше, смесь двигателя сжатия и зажигания — это то, что делает SkyActiv X хорошим.Это обеспечивает более низкую температуру и меньшее количество выбросов. Это также увеличивает эффективность, поскольку более бедные смеси легко сгорают, а при использовании SPCCI они сгорают полностью, не оставляя следов.

ПЕРЕЗАРЯДКА

Наддув роторного двигателя SkyActiv X — идеальное решение. Поскольку нам нужно сделать рацион 16: 1 возможным, нам нужно больше воздуха, и в этом нам поможет нагнетатель. Здесь особо нечего добавить, так как это обычная вещь, используемая во многих двигателях.

Заключение

Rotary вернется.Их хочет каждый фанатик роторного типа. Mazda дала нам некоторую надежду, когда некоторые патенты намекнули на то, что они работают над новым роторным двигателем. Они также были замечены, говоря, что они не откажутся от мечты создать суперкар с роторным двигателем, и RX9 придет с таким. Слухи о том, что RX9 будет иметь двигатель мощностью 400+ л.с., который будет чисто роторным, будет в центре внимания, и как долго это будет время, чтобы решить.

Более информативные материалы: стоит ли покупать электромобиль или автомобиль BS6 в 2020 году?

Беспоршневой роторный двигатель | Autopedia

Бес поршневой роторный двигатель — это двигатель внутреннего сгорания, в котором не используются поршни, как в поршневом двигателе, а вместо этого используется один или несколько роторов, иногда называемых роторными поршнями .Примером беспоршневого роторного двигателя является двигатель Ванкеля.

Термин роторный двигатель внутреннего сгорания был предложен в качестве альтернативного названия для этих двигателей, чтобы отличать их от ранних (обычно до начала 1920-х годов) авиационных двигателей и двигателей мотоциклов, также известных как роторные двигатели . Однако оба продолжают называться роторными двигателями , и только контекст определяет, какой тип имеется в виду. В частности, единственный коммерческий производитель (беспоршневых) автомобильных роторных двигателей. По состоянию на 2005 год Mazda постоянно называет свои двигатели Ванкеля роторными двигателями .ОПЕРАЦИОННЫЕ СИСТЕМЫ. Двигатели, которые производят авиамодель Ванкеля, называют его роторным двигателем Ванкеля .

Двигатели без поршневые роторные

Основная концепция роторного двигателя (без поршня) позволяет избежать возвратно-поступательного движения поршня с присущей ему вибрацией и механическим напряжением, связанным с частотой вращения. По состоянию на 2006 год двигатель Ванкеля является единственным успешным беспоршневым роторным двигателем, но было предложено множество аналогичных концепций, которые находятся на различных стадиях разработки.Примеры роторных двигателей включают:

Стадия производства
Стадия разработки
Концептуальный этап

Преимущества

Все такие двигатели могут быть улучшены по сравнению с поршневыми двигателями в следующих областях:

  • Повышенная удельная мощность.
  • Механическая простота.
  • Меньше вибрации.
  • Система уплотнения не имеет предела оборотов; поршневые кольца выходят из строя после предела оборотов двигателя.

Хотя обычно он больше поршня двигателя соответствующей мощности, ротор может совершать много ходов за оборот. Ванкель производит двенадцать ходов за один оборот ротора (четыре хода на камеру умножить на три камеры) (хотя шпиндель вращается в три раза быстрее, чем ротор, или в три раза за двенадцать тактов), в отличие от двух тактов на каждый оборот коленчатого вала на валу. одноцилиндровый поршневой двигатель одностороннего действия или четырехтактный для цилиндра двустороннего действия, как в некоторых паровых двигателях.Квазитурбина и двигатель MYT обеспечивают шестнадцать тактов на каждый оборот ротора (и шпинделя).

Недостатки

Хотя в двух измерениях система уплотнений Ванкеля выглядит даже проще, чем у соответствующего многоцилиндрового поршневого двигателя, в трех измерениях все обстоит наоборот. Не только уплотнения верхушки ротора, видимые на концептуальной схеме, но также и уплотнение ротора по концам камеры.

Поршневые кольца не являются идеальным уплотнением. Фактически, в каждом есть зазор для расширения.Кроме того, уплотнение на вершинах Ванкеля менее критично, поскольку утечка происходит между соседними камерами на соседних тактах цикла, а не в картере. Однако менее эффективное уплотнение Ванкеля является одним из факторов, снижающих его эффективность и ограничивающего его успех в основном такими приложениями, как гоночные двигатели и спортивные автомобили, где ни эффективность, ни длительный срок службы двигателя не являются основными соображениями. В более ранних моделях двигатели Ванкеля никогда не следует запускать и запускать, если двигатель не достиг рабочей температуры — запуск автомобиля и перемещение его на несколько ярдов, например.грамм. из гаража на подъездную дорожку может привести к заклиниванию двигателя. В таких ситуациях лучше толкать машину, а не заводить двигатель. Это происходит из-за заливки двигателя топливом, что может привести к гидрозатвору двигателя. Это «затопление» вызвано избыточным количеством топлива, впрыснутого в двигатель в его «холодном» рабочем контуре. Проблема затопления была в значительной степени решена за счет изменений в программировании ЭБУ и более быстрого стартера.

Продолжительность хода поршневого двигателя на 50% больше, чем у поршневого двигателя (двигатель Ванкеля).

Квазитурбина имеет аналогичные недостатки с вогнутой камерой сгорания, а в конструкции переменного тока острые углы носителей препятствуют распространению фронта пламени, что приводит к неполному сгоранию. Продолжительность хода слишком мала для полного сгорания.

Сравнения

Ванкель

Самая простая конструкция, предлагаемая или используемая, — это Ванкель. Его единственные движущиеся части — это трехсторонний ротор, вращающийся на эксцентриковом валу; нет ни распредвала, ни клапанов.Ротор не прикреплен к эксцентриковому валу, а поворачивает его с помощью внутренней шестерни на внутренней стороне ротора, зацепляющейся с меньшей обычной шестерней на боковой пластине. Ротор положительно расположен за счет эксцентрикового вала и геометрии ротора и камеры двигателя. Двигатель Ванкеля запускается трижды на каждый оборот ротора, и каждый оборот ротора соответствует трем оборотам эксцентрикового вала. Двигатель Ванкеля можно идеально сбалансировать с помощью противовесов.

В самом популярном семействе двигателей Mazda, 13B, он состоит из двух роторов с рабочим объемом 654 кубических сантиметра на каждую поверхность ротора, всего 1308 кубических сантиметров или 1,3 литра). У двигателя Ванкеля нет холостого хода, как у поршневого четырехтактного поршневого двигателя, поэтому двигателю Ванкеля требуется только половина объема поршневого четырехтактного двигателя.

Существуют различные методы расчета рабочего объема двигателя Ванкеля; Японские правила расчета смещения для номинальных характеристик двигателя рассчитываются на основе объемного смещения только одной поверхности ротора.Это широко признано в качестве стандартного метода расчета смещения роторного двигателя, однако сравнение поршневого двигателя с роторным двигателем Ванкеля с использованием этого соглашения о смещении является ошибочным и приводит к значительному дисбалансу удельной мощности в пользу мотора Ванкеля. Многие считают, что Mazda сделала это в маркетинговых целях.

Если вы ищете максимально возможный рабочий объем, то двухроторный роторный двигатель Ванкеля с рабочим объемом 654 куб. См на камеру сгорания (например, Mazda 13B) имеет максимальный рабочий объем 3924 куб.9 литров). Это связано с тем, что на каждом роторе имеется три возможных камеры сгорания, каждая из которых имеет объем 654 куб. См при полном расширении. 654 куб. См на лицо, три поверхности на ротор (1962 куб. См / 2 литра), два ротора на двигатель (3924 куб. См / 3,9 литра). Другие известные роторные двигатели, такие как «2-литровая» 3-роторная Mazda 20b в Eunos Cosmo (полный рабочий объем: 5886 куб. 7,8 литра) можно рассчитать таким же образом максимальный рабочий объем.Принимая объем камеры сгорания и умножая на общее количество возможных камер сгорания на двигатель. Однако сравнивать роторные и поршневые двигатели с помощью этого метода бесполезно, так как двигатель Ванкеля подвергает свой полный рабочий ход силовому такту после трех полных оборотов эксцентрикового вала. Это означает, что сравнение гипотетического поршневого двигателя объемом 3,9 литра с «1,3-литровым» роторным двигателем Ванкеля (с максимально возможным рабочим объемом 3,9 литра) с использованием этого метода приведет к тому, что теоретическая удельная мощность поршневого двигателя будет примерно на 50% выше, чем у роторного двигателя Ванкеля, поскольку поршневой двигатель вытеснит его 3.9 литров за счет рабочего хода на один оборот (50%) раньше, чем у ротора Ванкеля.

Для сравнения между роторным двигателем Ванкеля и поршневым двигателем рабочий объем (и, следовательно, выходная мощность) можно более точно сравнить на основе рабочего объема на оборот (эксцентрикового вала). Это означает, что двухроторный двигатель Ванкеля с объемом двигателя 654 куб. См на каждую поверхность будет иметь рабочий объем 1,3 литра на каждое вращение эксцентрикового вала (только две полные поверхности, по одной поверхности на ротор, совершающий полный рабочий ход) и 2.6 литров после двух оборотов (четыре полные грани, две грани на ротор, совершающий полный рабочий ход). Это прямо сопоставимо с 2,6-литровым поршневым двигателем с четным числом цилиндров в обычном порядке работы, который также будет вытеснять 1,3 литра за счет рабочего хода после одного оборота коленчатого вала и 2,6 литра за счет рабочего хода после двух оборотов коленчатого вала. коленчатый вал. Измерение роторного двигателя Ванкеля таким образом более точно объясняет его конкретные значения выходной мощности, поскольку объем его воздушно-топливной смеси, проходящей рабочий ход за один оборот, напрямую отвечает за крутящий момент и, следовательно, производимую мощность в лошадиных силах.

Сарыч

Орбитальный двигатель Sarich имеет большее количество движущихся частей, чем двигатель Ванкеля. Шестикамерная конструкция, использованная для прототипа, концептуально имеет восемь движущихся частей в камере двигателя, в отличие от двух у Ванкеля. Однако для этого также требуется шесть свечей зажигания, по одной на камеру сгорания, в отличие от одной на ротор для Ванкеля (хотя на практике обычно используются две из соображений производительности). Sarich был разработан до такой степени, что его можно было ненадолго продемонстрировать в качестве стендовых испытаний без нагрузки, прежде чем от проекта отказались.

Квазитурбина

Конструкция квазитурбинного переменного тока еще сложнее, чем у Sarich. Даже при наличии только двух колес на каретку в камере двигателя имеется не менее девятнадцати движущихся частей, включая вал и дифференциал, и, возможно, больше, в зависимости от конструкции дифференциала. Как и в случае с Ванкелем, для квазитурбины требуется только одна свеча зажигания. Прототип конструкции квазитурбинного переменного тока был сконструирован и вращался внешним двигателем в течение 40 часов, но зажигание так и не было достигнуто.

Конструкция Quasiturbine SC значительно упрощена по сравнению с AC, но все еще имеет по крайней мере семь движущихся частей внутри камеры, включая вал и, возможно, больше, в зависимости от конструкции дифференциала. Конструкция СК была продемонстрирована как паровой и пневматический двигатель, но с 2005 года не как двигатель внутреннего сгорания. Опытные паровые машины проработали до нескольких часов. Недостатком квазитурбины является малая продолжительность хода, что ограничивает максимальные обороты.

Rand кулачок

В кулачковом двигателе Rand используются скользящие лопатки для реализации четырехтактного цикла. В первую очередь он разрабатывается Reg Technology.

Роторный Аткинсон

Роторный двигатель с циклом Аткинсона имеет только три движущихся части внутри камеры и имеет один рабочий ход на оборот. Однако в отличие от двигателя Ванкеля, который использует цикл Отто, этот двигатель использует более эффективный цикл Аткинсона. Можно использовать разные виды топлива, включая бензин, дизельное топливо и водород.

Трохилики

Trochilics, наука о вращающихся механических устройствах, описывает ряд TrochilicEngines, начиная от цикла Стирлинга, внутреннего сгорания, до газа или пара высокого давления и с адаптивными изменениями перекачки газа или жидкости.Поршень состоит из двух зеркально отображаемых сегментов крыла чайки, которые сцеплены и вращаются вокруг общей центральной оси. Изменяя относительные скорости сегментов при вращении, можно получить четыре переменных квадранта. Квадранты функционально представляют собой четырехцилиндровый двигатель, не требующий клапанов с механическим приводом. Каждый сегмент интегрально соединен с вращающейся обоймой шестерен, которая преобразует волнообразное движение поршня в линейно вращающийся выходной вал. Сегментированный поршень имеет предпочтительное направление вращения, определяемое механическим усилием зубчатой ​​коробки.В трехцилиндровых двигателях не используются компрессионные кольца , как в обычных двигателях. Такой подход к конструкции повышает эффективность за счет снижения потерь на трение и уменьшения износа двигателя. Топливно-воздушная смесь всасывается, сжимается, воспламеняется и сжигается между передней и задней сторонами каждого ротора, когда каждый ротор продвигается или отступает относительно другого во время работы, непрерывно изменяя объем камеры. В настоящее время разрабатывается командой разработчиков двигателей Trochilic.

В двигателе MYT поворотные поршни представляют собой тороидальные секции (изогнутые цилиндры, скользящие внутри тороидального статора) и соединены с одним из двух внутренних дисков.Этот принцип работы восходит к двигателю Tschudi 1968 года выпуска. Основная проблема этого типа двигателя заключается в обеспечении постоянного вращения выходного вала от двух противоположно ускоряющих и замедляющих роторов (планетарные шестерни используются на некоторых версиях двигателей Trochilic, в то время как MYT использует более сложную систему соединения с использованием распределительных валов. ) и предотвращает вращение роторов в неправильном направлении. С другой стороны, эти конструкции не страдают от проблем уплотнения двигателя Ванкеля или квазитурбины и используют очень мало движущихся частей (5 в более простой модели Trochilic Engine).

Двигатель Воздух

Двигатель Engineair, изобретенный Анджело Ди Петро в Австралии в 1999 году и с тех пор разрабатываемый Engineair, основан на цилиндрическом роторно-поршневом двигателе. Поршень катится по цилиндрической стенке статора, смягченной тонкой пленкой воздуха. Шесть камер расширения образованы изогнутыми лопатками в пазах статора, контактирующими с поверхностью поршня (или привода вала). Давление воздуха на его внешнюю стенку вынуждает привод вала двигаться эксцентрично, тем самым вращая вал двигателя с помощью двух тел качения, установленных на валу с подшипниками.Скорость и крутящий момент двигателя просто регулируются путем дросселирования впуска и выпуска воздуха с помощью регулируемого таймера с прорезями, установленного на выходном валу. Большой крутящий момент мгновенно доступен при нулевых оборотах и ​​может точно контролироваться для обеспечения плавного пуска и управления ускорением. Около десятка движущихся частей.

См. Также

Энергии | Бесплатный полнотекстовый | Численный анализ характеристик сгорания роторного двигателя с пластинчатой ​​пружиной

1. Введение

В данной статье представлен новый роторный двигатель «Роторный двигатель с пластинчатой ​​рессорой».Роторный двигатель с листовой рессорой представляет собой беспоршневую конструкцию на основе двигателя Ванкеля. Безпоршневой роторный двигатель — это двигатель внутреннего сгорания, в котором поршни не используются, как в поршневом двигателе, а вместо этого используется один или несколько роторов, иногда называемых роторными поршнями. Примером беспоршневого роторного двигателя является двигатель Ванкеля. Основная концепция роторного двигателя (без поршня) позволяет избежать возвратно-поступательного движения поршня с присущей ему вибрацией и механическим напряжением, связанным с частотой вращения.По состоянию на 2006 год двигатель Ванкеля является единственным успешным бесшумным роторным двигателем, но было предложено множество подобных концепций, которые находятся на разных стадиях разработки. Опытный образец двигателя Hamilton Walker был построен в 1968 году [1,2]. Двигатель Уокера считается вторым рабочим роторным двигателем после двигателя Ванкеля. Quasitubine, или Qurbine, двигатель — это предложенный безпоршневой роторный двигатель, использующий ромбовидный ротор, стороны которого шарнирно соединены в вершинах в 1996 году. Помимо двигателя внутреннего сгорания, Quasitubine был предложен в качестве возможной конструкции насоса и возможного варианта Стирлинга. двигатель [3].Он был продемонстрирован как пневматический двигатель, использующий накопленный сжатый воздух, и как паровой двигатель [4]. Основная концепция, двигатель Ramgen, заключается в установке одного или нескольких ПВРД на обод ротора таким образом, чтобы тяга ПВРД действовала по касательной, заставляя его вращаться со сверхзвуковой ударной скоростью. В основе двигателя лежит прямоточный воздушно-реактивный двигатель, создающий движущую силу за счет увеличения количества движения рабочего тела за счет сгорания и расширения через сверхзвуковое сопло [5].Роторно-поршневая машина (РКМ) — это предлагаемая форма машины. Его можно использовать для преобразования давления во вращательное движение или обратное вращательное движение в давление. Он все еще находится в разработке и предлагает очень высокий потенциал на рынке насосов [6]. Одно из применений RKM — это миниатюризация, как двигатель Ванкеля. Орбитальный двигатель Сарича — это тип двигателя внутреннего сгорания, изобретенный в 1972 году Ральфом Саричем. Теоретическое преимущество состоит в том, что отсутствует зона контакта на высоких скоростях со стенками двигателя, в отличие от двигателя Ванкеля, в котором износ кромок является проблемой.Однако камеры сгорания разделены лопастями, которые контактируют как со стенками, так и с ротором, и, как утверждается, их трудно герметизировать из-за перпендикулярного пересечения с движущейся крыльчаткой. Двигатель с волновым диском — это тип безпоршневого роторного двигателя, разрабатываемый в Мичиганском государственном университете и Варшавском технологическом институте. Двигатель имеет вращающийся диск с изогнутыми лопастями. Когда топливо и воздух попадают в двигатель, вращение диска создает ударные волны, сжимающие смесь.Также была разработана концепция волнового диска Micro-Engine [7]. Двигатель Jonova — это тип безпоршневого роторного двигателя, разработанный Новаковски в Университете Аризоны. Состоит всего из четырех движущихся частей; новый двигатель Jonova не теряет энергию из-за вибрации и имеет широкий рабочий ход более 240 градусов вращения, в отличие от четырехтактных двигателей, которые имеют рабочий ход 180 градусов при попеременном вращении или двухтактных двигателей с рабочим ходом 180 градусов на каждый оборот.В этой статье расчетный рабочий объем двигателя составляет 1,77 см 3 , а теоретическая степень сжатия составляет 7,3. Размер камеры сгорания очень мал, поэтому двигатель можно отнести к микро- или мезомасштабным двигателям. С быстрым развитием технологии MEMS (Micro Electro Mechanic system) постоянно появляются различные микро- и мезомасштабные устройства и системы, включая микротурбины, роботов, спутники и портативные электрические устройства. Поскольку у электрохимических батарей есть некоторые недостатки, такие как короткий срок службы, длительные периоды перезарядки и низкая плотность энергии, предполагается, что сжигание на основе микрогенераторов энергии является потенциальной альтернативой из-за гораздо более высокой плотности энергии углеводородного топлива по сравнению с батареями [8 , 9,10].Микрокамер сгорания является важным компонентом, в котором химическая энергия углеводорода преобразуется в тепловую энергию посредством сгорания. Таким образом, за последние несколько лет разработка микрокамеры сгорания с широким рабочим диапазоном привлекла все большее внимание. Epdtein et al. впервые спроектировали камеру сгорания высотой 2 мм и объемом камеры 3 высотой 2 мм, о которой сообщили Mehra и Waitz et al. [11] с тремя кусками кремниевых пластин. Mehra et al. [12] разработали новую камеру сгорания размером 3 с объемом камеры 195 мм и шестью слоями кремниевых пластин на основе предыдущей конструкции.Исследователи [13,14] из Массачусетского технологического института начали изучать микрогазовые турбины длиной 21 мм и высотой 3 мм. Кельвин и др. [15] предложили три микрогазовые микротурбины с различным рабочим объемом. Очоа и др. [16,17] сконструировали швейцарскую камеру сгорания из материала Bi 2 Te 3 . Исследователи [18] из Мичиганского университета разработали микровентиляторный двигатель внутреннего сгорания (MICSE) с размерами 61 (В) × 61 (Ш) × 34 (Г) мм. Технологический центр Джорджии Ханиуэлл и исследовательская лаборатория ВВС (AFRL) [19] изучали двигатели со свободным поршнем и детонацией на основе микротехнологий, основанные на энергетических и химических системах (MECS).Минотти и Скиубба [20] спроектировали цилиндрическую камеру сгорания 29 см 3 , чтобы обеспечить 2 кВт тепловой мощности. Среди различных конструктивных соображений при разработке микрогенерирующих систем на основе сжигания ядро ​​должно гарантировать стабильное горение в микрокамерах сгорания во время работы. . Поэтому сообщалось об исследованиях микропламен, чтобы предоставить фундаментальные данные для проектирования стабильных горючих камер сгорания [21,22]. Однако есть некоторые проблемы при исследовании устойчивого горения в микрокамерах сгорания.Во-первых, повышенные тепловые потери и захват радикалов стенки из-за большого отношения площади поверхности к объему, что затрудняет поддержание стабильного пламени в небольших масштабах [23,24,25]. Другой критической проблемой является сокращенное время пребывания смеси топливо / окислитель в камере сгорания. Для большинства углеводородных топлив расстояние гашения составляет около нескольких миллиметров, что примерно того же порядка величины, что и толщина пламени. Предыдущие экспериментальные исследования показали, что стабильное пламя смеси CH 4 –O 2 может быть достигнуто при 0.Трубка диаметром 5 мм. Между тем численный метод, который может дать подробную информацию о параметрах в небольшом пространстве, широко используется для исследования процессов микрогорения. Raimondeau et al. [26] использовали двумерное параболическое моделирование для моделирования распространения пламени в микроканалах. Было обнаружено, что в очень маленьких реакторах радиальные градиенты и скачки температуры на стенке были незначительными, но становились значительными по мере увеличения диаметра. Карагианнидис и др. [27] численно исследовали гетеро- / гомогенное устойчивое горение и пределы устойчивости каталитических микрореакторов на метановом топливе в канале с зазором 1 мм при давлениях 1 и 5 бар соответственно.Полноэллиптическая двумерная модель использовалась для исследования связи гетеро- / гомогенного горения, механизмов теплопередачи, влияния теплопроводности твердых тел, поверхностного излучения и ограничения потока. Нортон и др. [28] изучали влияние проводимости стенок микрогорелки, внешних тепловых потерь, размеров горелки и условий эксплуатации на характеристики горения и установившуюся самоподдерживающуюся стабильность пламени смесей пропан / воздух путем решения модели вычислительной гидродинамики (CFD). микрогорелка.Нортон и др. [29] изучали влияние размеров микрогорелки, проводимости и толщины материалов стенок, внешних тепловых потерь и рабочих условий на характеристики горения и стабильность пламени с использованием вычислительной гидродинамической модели микрогорелки. CFD, основанный на численном моделировании [30,31], оказался эффективным подходом для анализа работы микрокамеры сгорания в различных условиях. Было обнаружено, что химическая кинетика и механизм теплопередачи в микрокамерах сгорания имеют важное значение для разработки силовых МЭМС-устройств на основе горения.Kaisare et al. [32] использовали одномерную (1D) модель для исследования характеристик пламени и стабильности гомогенного горения в микромасштабных (1 мм) каналах, а также роли рециркуляции тепла и потерь тепла на механизмах гашения и выброса пламени. Ли и др. [33] провели численное исследование H 2 — горение предварительно смешанной смеси с воздухом в микроканалах с подробным механизмом химической реакции путем решения двумерных полностью эллиптических определяющих уравнений неразрывности, количества движения, энергии и частиц в сочетании с уравнением энергии в прочной стене.Результаты показали, что различные граничные и физические условия, включая размер и геометрию камеры сгорания, профиль скорости на входе, осевую теплопроводность в твердой стенке и стенку скольжения, а также скачок температуры на границе раздела газ-твердое тело, в разной степени влияют на температуру пламени. . Ли и др. [34] также исследовали влияние размера камеры сгорания, геометрии и граничных условий на температуру пламени для смеси CH 4 – воздух с помощью численной модели. Ли и др. [35] использовали двумерное моделирование CFD с сокращенным кинетическим механизмом и детальной транспортной моделью для предсказания распределения температуры, топлива и радикалов для одиночных микропламен вблизи пределов устойчивости и в стабильной области.Shih et al. [36] компьютерно изучали сжигание топлива, смешанного с водородом и метаном, для микрогазовых турбин. Моделирование проводилось с трехмерной сжимаемой κ − ε модель турбулентного потока и предполагаемая функция плотности вероятности химической реакции. Ван и др. В [37] численно исследованы характеристики горения смеси H 2 / воздух в микрокамере сгорания со стенками. Были изучены эффекты входной скорости, отношения эквивалентности и отношения длины к глубине полости.

На основе предыдущих методов известно, что численное моделирование обеспечивает удобный, надежный и экономичный подход к исследованию явлений микрогорения и лежащих в их основе механизмов. Таким образом, в настоящем исследовании влияние скорости вращения, воздушно-топливного отношения, начального давления и температуры на характеристики сгорания роторного двигателя с пластинчатой ​​пружиной было исследовано с использованием 3D CFD-модели. В этом документе концентрация смеси бензин / воздух указывается на входе.Механизм реакции представляет собой одностадийную глобальную реакцию (O 2 = 21%, N 2 = 78%).

2. Конструкция и принцип, режим применения

Роторный двигатель с листовой рессорой похож на роторный двигатель Ванкеля, который по конструкции и принципу работы представляет собой четырехтактный двигатель. Энергия, выделяемая топливовоздушной смесью, приводит в движение ротор и выходной вал. Центральная линия ротора совпадает с центральной линией корпуса, что отличается от роторных двигателей Ванкеля, упомянутых выше.Конец пружины прикреплен к ротору, а другой конец зависит от его эластичности при контакте со стенкой сгорания. Химическая энергия преобразуется в механическую посредством процессов сжатия, сгорания и выхлопа. По сравнению с традиционным поршневым двигателем, роторный двигатель с листовой рессорой не требует кривошипа и сложного шатунного механизма. Двигатель работает плавно, а сила удара мала, когда в камеру добавлены листовые рессоры. По сравнению с традиционным двигателем Ванкеля, роторный двигатель с листовой рессорой удаляет эксцентриковые детали, так что эффект шума и вибрации из-за дисбаланса может быть устранен.Гибкая пластинчатая пружина обеспечивает лучшую герметичность камеры, чем двигатель Ванкеля. Уплотнение Apex гарантируется плотной посадкой между цилиндром и пружиной из-за ее гибкости. Утечка в основном возникает в области между поршнем и корпусом. Более простая конструкция роторного двигателя с листовой пружиной приводит к меньшей утечке массы, чем двигатель Ванкеля между ротором и цилиндром. Кроме того, выбирается соответствующая степень сжатия, что также снижает массу роторного двигателя с листовой рессорой [38].Роторный двигатель с листовой рессорой состоит из передней крышки цилиндра, задней крышки цилиндра, ротора, листовой рессоры, цилиндра, выходного вала, маховика и т. Д. (Рисунок 1a).

Рисунок 1. ( a ) Эскиз роторного двигателя с листовой рессорой; ( b ) эскиз узла ротор – пружина – цилиндр; ( c ) эскиз ротора; ( d ) впускной тракт двигателя; ( e ) компрессия двигателя; ( f ) процесс сгорания двигателя; и ( г, ) выхлопная система двигателя.

Рисунок 1. ( a ) Эскиз роторного двигателя с листовой рессорой; ( b ) эскиз узла ротор – пружина – цилиндр; ( c ) эскиз ротора; ( d ) впускной тракт двигателя; ( e ) компрессия двигателя; ( f ) процесс сгорания двигателя; и ( г, ) выхлопная система двигателя.

Камера сгорания окружена ротором, передней и задней рессорами, а также передней и задней крышками цилиндров.Один конец пластинчатой ​​пружины закреплен в канавке ротора, а другой конец контактирует с цилиндром, полагаясь на его эластичность (рис. 1b). Пластинчатая пружина деформируется силой между цилиндром и пластинчатой ​​пружиной, чтобы изменить объем камеры сгорания, который является импульсом такта впуска, такта сжатия, хода сгорания и такта выпуска. Показан рабочий процесс роторного двигателя с пластинчатой ​​пружиной. на Рисунке 1d – g. Разработанный роторный двигатель содержит симметричные двойные камеры сгорания.В этой работе на примере камеры 1 для описания рабочего процесса: (1) В фазе всасывания высвобождение накопленной энергии от пружины и мощности расширения газа в камере 2 вместе приводит во вращение ротор. Объем камеры сгорания 1 увеличивается, затем образуется отрицательное давление, таким образом свежий воздух поступает в камеру сгорания 1 из-за разницы давлений между внутренним и внешним. (2) В фазе сжатия под действием инерции маховика свежий заряд в камере сгорания 1 сжимается, а отработанный газ выпускается.Инерция маховика преобразуется в энергию сжатия. (3) В фазе сгорания свеча электрического нагревателя воспламеняет смесь, вызывая расширение газа и высвобождение накопленной энергии вместе, чтобы продвигать герконовый ротор и вдыхать газ в камеру 2. (4) В фазе выхлопа пружина в камере 1 сжимается под действием силы инерции, чтобы нагнетать газ. Основываясь на конструкции роторного двигателя с пластинчатой ​​пружиной, ротор заключен в два круга. Исходная точка абсолютной координаты находится в центре поперечного сечения выходного вала.Центр одной окружности, обозначенной l 1 , помещен в исходную точку, а ее радиус равен 25 мм, тогда как центр другой окружности, обозначенной l 2 , расположен в точке (2.2, 0) и радиус 26,6 мм. Если взять в качестве примера листовую часть системы координат, уравнение контура ротора показано как Уравнение (1).

{(x − 2,2) 2 + y2 = 26,62 x1

(1)

Контур цилиндра симметричен относительно исходной точки.Взяв в качестве примера сегмент цилиндра во втором квадранте системы координат, он окружен дугами arcl 1 , arcl 2 и касательной к двум дугам l 4 . Центр дуги окружности 3 расположен в точке (-10, 0), а радиус составляет 19,5 мм. Формованная линия цилиндра показана как Уравнение (2).

{(x + 10) 2 + y2 = 19,52 x3

(2)

где x 3 — координата точки пересечения между l 3 и осью абсцисс, x 4 — абсцисса точки пересечения l 3 и l 4 , а x 5 — абсцисса точки пересечения между l 1 и l 4 .

Впускной канал расположен на верхней стороне дуги l 1 и примыкает к точке пересечения l 1 и l 4 . Впускной канал полностью закрыт ротором во время сжатия, чтобы предотвратить попадание горючей смеси в пространство, отличное от горения. Кроме того, отсутствует зазор для выхода воздуха из цилиндра, поскольку конструкция цилиндра соответствует ротору.

Современное состояние аккумуляторных технологий серьезно ограничивает развитие чисто электрических устройств.До тех пор, пока не будут достигнуты значительные успехи в аккумуляторных технологиях, гибридные двигательные установки представляют собой временное решение [39]. Роторный двигатель с листовой рессорой является потенциальным источником энергии для выработки электроэнергии из-за высокой плотности, что делает его удобным для транспортировки. Целью проекта MEMS Rotary Engine Power System (REPS) является разработка автономной переносной энергосистемы, способной производить электроэнергию порядка ватт с плотностью энергии лучше, чем у обычных батарей [40].Такая система увеличивает удельное энергетическое преимущество жидких углеводородных топлив по сравнению с существующими портативными источниками энергии. MEMS REPS — это междисциплинарный проект, разделенный на исследовательские области, такие как изготовление двигателей, герметизация двигателей, доставка топлива, упаковка и испытания. Блок MEMS REPS будет спроектирован для выработки энергии от роторного двигателя с листовой пружиной, который будет интегрирован с внешним небольшим электрическим генератором. Роторный двигатель с листовой рессорой похож на двигатель Ванкеля, который работает по 4-тактному циклу.Топливо-воздушная смесь втягивается в двигатель через карбюратор. Электрический генератор отбирает механическую энергию из двигателя с соединенным валом. В последовательной гибридной конфигурации устройства, включая портативную электронику и оборудование, используемое в удаленных настройках, получают мгновенную производительность от системы накопления энергии, но ее стабильная работа зависит от вспомогательного энергоблока (APU). Двигатель работает в газовом режиме с искровым зажиганием. В этом двигателе вал будет использоваться для преобразования химической энергии в механическую.Соединенный вал потребуется для извлечения механической энергии для привода электрического генератора, используемого для выработки электроэнергии. Выходной вал роторного двигателя центрирован относительно корпуса ротора и может быть легко соединен с генератором для производства электроэнергии. Электроэнергия будет храниться в батареях, которые можно использовать для обеспечения энергией небольших устройств, таких как небольшие самолеты, спутники, роботы, транспортные устройства и так далее. В то же время устройства будут обеспечивать обратную связь по энергии с APU.Новый генератор может потребоваться спроектировать так, чтобы он соответствовал роторному двигателю с листовой рессорой из-за его характеристик. Ранее были разработаны и исследованы линейные генераторы для двигателей со свободным поршнем [41]. Следовательно, роторный двигатель с листовой рессорой является очень эффективной и разумной силовой установкой для электрического оборудования. Роторный двигатель с листовой рессорой может быть потенциальным источником энергии для будущего применения в небольших электрических устройствах. При использовании в качестве расширителя диапазона для серии PHEV роторный двигатель внутреннего сгорания показал лучшие характеристики, чем поршневой двигатель.Роторный двигатель имеет преимущество в виде высокого отношения мощности к весу, более компактных размеров и упаковки, а также меньшего шума, вибрации и резкости (NVH) по сравнению с поршневым двигателем. Сниженный шумовой шум особенно важен при расширении диапазона электромобилей, так как пассажиры транспортного средства будут привыкать к плавной и бесшумной работе системы электрической тяги и могут не любить шум, создаваемый обычным силовым агрегатом с расширителем диапазона поршневого двигателя. . Эти преимущества достигаются за счет более низкой экономии топлива [42].В серийном гибриде двигатель внутреннего сгорания может работать с максимальной эффективностью, поддерживая определенную постоянную скорость. Электронный блок управления двигателем (ЭБУ) также необходим для управления временем подачи топлива и зажигания на покцикловой основе для управления частотой вращения и ходом двигателя.

7. Выводы

В этой работе новый роторный двигатель с листовой рессорой в качестве нового объекта исследования был использован для исследования свойств горения внутри малогабаритного двигателя. Трехмерная численная модель разработана для изучения влияния нескольких рабочих параметров на характеристики горения.Эквивалентный метод моделирования был представлен для моделирования реальных граничных условий. Скорость двигателя, коэффициент избытка воздуха, начальное давление и начальная температура контролировались для моделирования условий работы двигателя.

(1) В процессе сжатия на движение жидкости в основном влияет деформация язычка. При деформации вблизи пружины образуется завихрение. После горения постоянного объема движение жидкости в основном проявляется в виде ламинарных характеристик.

(2) В процессе горения увеличение скорости приводит к сокращению продолжительности горения, устойчивому увеличению угла тепловыделения, уменьшению пикового давления и скорости выделения; при уменьшении коэффициента избытка воздуха продолжительность горения сокращается, кривая тепловыделения смещается в сторону уменьшения коленчатого вала, пиковое давление и скорость выделения повышаются.

(3) При тех же температурных условиях, когда начальное давление увеличивается, продолжительность горения уменьшается, но амплитуда меньше, пиковое давление и скорость выброса увеличиваются. При разных температурных условиях тенденция продолжительности горения такая же, как и для разных условий давления. Однако по мере того, как кривая тепловыделения и давление сдвигаются к верхней мертвой точке, давление одновременно увеличивается.

Новый подход к более высокой плотности мощности

Энергия 2019,12, 4096 21 из 22

14.

Zhang, Y .; Liu, J .; Цзо, З. Исследование характеристик турбулентной флуктуации в небольшом роторном двигателе

с периферийным портом на основе усовершенствованного метода переноса сдвигового напряжения

(IDDES-SST) для имитации отсроченных вихрей. Энергия 2018,11, 642. [CrossRef]

15.

Warren, S .; Ян, округ Колумбия Конструкция роторных двигателей из профиля торцевого уплотнения. Мех. Мах. Теория

2013

, 64,

200–209. [CrossRef]

16.

Wang, W .; Zuo, Z .; Лю Дж. Ограничения миниатюризации роторных двигателей внутреннего сгорания. Energy Convers.

Манаг. 2016, 112, 101–114. [CrossRef]

17.

Amrouche, F .; Erickson, P .; Park, J .; Варнхаген, С. Экспериментальное исследование обогащенного водородом бензина

в роторном двигателе Ванкеля. Int. J. Hydrogen Energy 2014, 39, 8525–8534. [CrossRef]

18.

Вентилятор, Б .; Pan, J .; Liu, Y .; Чжу, Ю. Влияние параметров зажигания на процесс сгорания роторного двигателя

, работающего на природном газе.Energy Convers. Manag. 2015, 103, 218–234. [CrossRef]

19.

Май, Х. Стирн fl achendictung Für Innenachsige Rotationskolbenbrennkraftmaschinen. Патент Германии

, заявка № 1300123, 31 июля 1969 г.

20.

Westland, M.W. Двухтактный роторный двигатель внутреннего сгорания. Заявка на патент США № 1300123, 12,

,

, октябрь 1993 г.,

,

, 21. Такаши, Х. Двухтактный роторный двигатель. Заявка на патент Японии № 1300123, 30 июня 1997 г.

22.

Малказ, Ф. Анализ двухтактного роторного двигателя типа Ванкеля. Магистерская работа, Институт науки и технологий

, Стамбульский технический университет, Стамбул, Турция, 2011.

23.

Сараджоглу, Ф. Усовершенствование анализа цикла двухтактного двигателя Ванкеля. Магистерская работа, Институт

науки и технологий, Стамбульский технический университет, Стамбул, Турция, 2012.

24.

Таскиран, О.О .; Calik, A.T .; Кутлар, О.А. Сравнение поля потока и сгорания в одностороннем и двухстороннем роторном двигателе

.Топливо 2019,254, 115651. [CrossRef]

25.

Finkelberg, L .; Костюченков, А .; Зеленцов, А .; Минин В.В. Совершенствование процесса сгорания искрового авиационного двигателя Ванкеля

. Энергия 2019,12, 2292. [CrossRef]

26. Блэр, Г.П. Проектирование и моделирование двухтактных двигателей; SAE International: Warrendale, PA, USA, 1996.

27.

Kutlar, O.A .; Арслан, Х. Альтернативные системы зажигания; Книжная глава; Lackner, M., Ed .; ProcessEng Engineering

GmbH: Вена, Австрия, 2009 г.

28.

Fleck, B.J .; Fleck, R .; Kee, R.J .; Торнхилл, Д.Дж. Оценка коэффициентов нагнетания в цилиндрах высокопроизводительных двухтактных двигателей

. Документ SAE №: 2003-32-0029. Доступно в Интернете: https://doi.org/10.

4271 / 2003-32-0029 (по состоянию на 1 октября 2019 г.).

29.

Akca, Y.E .; Biricik, S .; Исик, А. Расчет коэффициента расхода и проектирование экспериментальной установки

двигателей Ванкеля. Бакалаврская работа, Стамбульский технический университет, Стамбул, Турция, 2012 г.

30.

Horlock, J.H .; Уинтербоун, Д. Термодинамика и газовая динамика двигателей внутреннего сгорания; Oxford

University Press: Оксфорд, Великобритания, 1986; Том II.

31.

Woschni, G. Универсально применимое уравнение для мгновенного коэффициента теплопередачи во внутреннем двигателе внутреннего сгорания

; Документ SAE №: 670931. Доступен в Интернете: https://doi.org/10.4271/670931 (доступ 1

октября 2019 г.).

32.

Вилмерс, Г.Berechnung der Gasseitigen Vorgange в Kreiskolbenmotor System NSU-Wankel. Кандидат наук. Диссертация,

Штутгартский университет, Штутгарт, Германия, 1971.

33.

Vibe, I.I., II. Brennverlauf und Kreisprozess von Verbrennungsmotoren; Veb Verlag Technik: Берлин, Германия,

1970.

34. Froede, W .; Jungbluth, G. Der Kreiskolbenmotor des NSU-Spider. АТЗ 1966,68, 150–155.

35.

Danieli, G.A .; Ferguson, C.R .; Heywood, J.B .; Кек, Дж. К. Прогнозирование выбросов и рабочих характеристик

Характеристики двигателя Ванкеля; Документ SAE № 740186.Доступно в Интернете: https://doi.org/10.4271/740186

(по состоянию на 1 октября 2019 г.).

36.

Tsao, K.C .; Лозингер, Д. Скорость горения массы в роторном двигателе; Документ SAE № 741089. Доступен онлайн:

https://doi.org/10.4271/741089 (по состоянию на 1 октября 2019 г.

26Сен

Как устроен двигатель: Как устроен двигатель

Как работает двигатель автомобиля?

03.02.2019 Автомобильный двигатель: большой, грозный, но не такой уж сложный

Если бы кто-то сказал заглянуть под капот и найти там мотор, у большинства из нас не было бы больших проблем с ним. Вы просто показываете на самую большую деталь, здесь сомнений нет – силовой агрегат – самая огромная часть автомобиля. Но что на самом деле скрыто под этим чугунным или алюминиевым корпусом? Достижение поколений — это точно. Говорят, что двигатель — это сердце автомобиля — и это правильно — без него машина не поедет.

Так как же это работает и почему? Что заставляет автомобиль воспроизводить приятную симфонию звуков после поворота ключа в замке зажигания? Как получилось, что двигатель способен привести в движение колеса? Было бы сложно описать последовательно все существующие типы двигателей в мире. Однако существует схема, которая, за исключением нескольких случаев, остается неизменной и на которой проще всего объяснить, как работает двигатель автомобиля, то есть тот тип моторов, который сжигает бензин, дизельное топливо или масло.

Поршень: отсюда начинается всё

Вообще всю работу в двигателе выполняет поршень. Именно он движется в цилиндре по принципу «скольжения» — прямолинейно и поступательно. Последовательно — один раз вверх, один раз вниз. Задача поршня, как следует из названия, заключается в нажатии. Если не один, то другой путь.

Чтобы выполнить работу, привести к появлению полезной энергии (КПД больше нуля), поршень должен немного поработать и сделать четыре движения в цилиндре — первоначально он всасывает воздух или смесь через открытый всасывающий клапан, скользя вниз до самого дна цилиндра. Когда он располагается на дне цилиндра, наполненного воздухом, клапан закрывается. Когда цилиндр наполняется воздухом «до зубов», поршень крепко сжимает его, поднимаясь вверх. Специально для такого сжатого воздуха топливо впрыскивается сверху (в дизельном двигателе) или возникает искра (вариант с бензиновым вариантом), которая вызывает взрыв. Независимо от силы взрыва (бывает, что из-за простоя автомобиля, первая искра недостаточно сильна) поршень отправляется вниз. Когда поршень заканчивает свой путь, цикл может считаться оконченным, затем он совершает еще один ход — вверх. Его уже ждет открытый выпускной клапан, через который поршень выталкивает весь этот ненужный мусор (выхлопной газ) наружу.

Поршневой цикл: схема

Это тот самый дым, который в конечном итоге выходит из выхлопной трубы под вашей машиной. И так продолжается снова и снова: всасывание воздуха — поршень опускается, сжатие воздуха – поршень уходит вверх. Взрыв — поршень опущен, выталкивание выхлопа — поршень вверх. И все время снова и снова.

Таким образом, энергия взрыва превращается в работу, потому что движение поршня, соединенного с шатуном, вызывает вращение коленчатого вала, что приводит в движение силовой агрегат, который перемещает колесо автомобиля. Конечно, двигатель обычно имеет несколько поршней и цилиндров. В целом, чем они больше, тем больше работа двигателя и чем больше мощность этих цилиндров, тем больше потенциал двигателя и, следовательно, — лучшее ускорение, лучшая динамика, но также и большая потребность в топливе.

Предлагаем вам посмотреть занимательное видео, в котором подробно рассказывается и показывается каким именно образом работаем двигатель внутреннего сгорания автомобиля:

Например, когда указатель тахометра в вашей машине приближается к 2000 об./мин. (2 тысячи оборотов коленвала), это означает, что поршень совершает 4000 ходов в это время, и смесь попадает в цилиндр 1000 раз! Все это за минуту. И всего на один цилиндр. Теперь подумайте, сколько топлива нужно двигателю, если вы «стреляете» в него все время, разгоняя до 6000 оборотов при нажатой педали газа в пол!

Важность моторного масла

Чтобы двигатель работал исправно, очень важно наличие в картере масла. Каждый из нас отлично знает, что, чем лучше скольжение, тем более плавным является движение (вспомните фигурное катание). В принципе, там, где есть движение в двигателе, где одна деталь соприкасается с другой, туда и попадает масло. Его путь начинается с масляного поддона, который расположен под двигателем, масло всасывается специальным насосом, затем масляный насос вдавливает его в трубчатую сборку, которая направляет смазочный растовр в множество мест двигателя.

Представьте, что случилось бы, если бы в течение длительного времени все компоненты двигателя двигались «всухую». Теперь вы, наверное, понимаете, почему так важно время от времени проверять уровень масла в двигателе.

Бензиновый и дизельный моторы: в чем принципиальные отличия?

В чем главное отличие бензинового двигателя от дизельного? Речь идет о принципе зажигания. Бензиновые двигатели имеют искровое зажигание, дизель является самоходным. Что означают эти слова?

Бензиновые двигатели для взрыва в цилиндре используют искру, генерируемую на свече зажигания. В дизельных двигателях всё совсем иначе. В дизельном моторе воздух в цилиндре сжимается поршнем гораздо сильнее. Настолько, что внутри создается высокая температура, достаточная для взрыва смеси в цилиндре без искры. Бензин не возгорается из-за большого давления, соляра (дизельное топливо), наоборот, не горит при нормальных условиях от обычной искры.

Двигатели также различаются по расположению и количеству цилиндров. В Европе наиболее популярными являются рядные двигатели — как можно заключить из названия, цилиндры, в которых движутся поршни, в них расположены в ряд. Рядный четырехцилиндровый двигатель будет отмечается символом R4, шестицилиндровый R6 и т. д. Теперь представьте, что Lamborghini собирается смонтировать большой 12-цилиндровый двигатель под капотом своей модели. Если бы производитель хотел установить все цилиндры в один ряд, двигатель занял бы много места. Таким образом, было изобретено другое решение — разветвленное расположение цилиндров в два ряда, под углом 60, 90 и даже 180 градусов (оппозитный мотор). Все двигатели этого типа обозначены буквой V, в данном случае это будет двигатель V12. Однако более популярными являются установки V6 и V8. Такие автомобили изготавливались в середине прошлого века в США, после финансового кризиса их посчитали недостаточно оправданными.

Эти «демонические», действительно мощные, производительные моторы, встречаются реже, их можно обнаружить, чаще всего, в Subaru или Porsche. Здесь поршни расположены с обеих сторон коленчатого вала, лицом друг к другу, что делает весь двигатель, по сравнению с другими, очень плоским, но не менее объемным.

Рядный двигатель

Когда дело доходит до поршневого устройства, существует еще один тип двигателя, который сильно отличается от остальных. Это двигатель с одним вихревым поршнем, так называемый Двигатель Ванкеля. Также существуют специальные роторные моторы (цилиндры расположены по кругу), сферические моторы (поршень двигается не поступательно, а описывает сферу) и многие другие изобретения.

Как устроен двигатель автомобиля


Как работает двигатель автомобиля – «сердечные» дела вашей машины

Прежде, чем рассматривать вопрос, как работает двигатель автомобиля, необходимо хотя бы в общих чертах разбираться в его устройстве. В любом автомобиле установлен двигатель внутреннего сгорания, работа которого основана на преобразовании тепловой энергии в механическую. Заглянем глубже в этот механизм.

Как устроен двигатель автомобиля – изучаем схему устройства

Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится поршень с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.

Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение коленчатого вала.

Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.

Как работает двигатель автомобиля – кратко о сложных процессах

Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.

Важным параметром у двигателей внутреннего сгорания является степень сжатия, напрямую влияющая на его мощность и экономичность.

Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.

Газы совершают полезную работу, благодаря которой поршень перемещается вниз. Далее через кривошипно-шатунный механизм действие передается на трансмиссию, а затем на автомобильные колеса. Отработанные продукты удаляются из цилиндра через систему выхлопа, а на их место поступает новая порция топлива. Весь процесс, от подачи топлива до вывода отработанных газов, называется рабочим циклом двигателя.

Принцип работы двигателя автомобиля – различия в моделях

Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным расположением цилиндров. Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.

Много моделей используют конструкцию V-образного двигателя. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Во многих конструкциях количество цилиндров составляет от 6 до 12 и более. Это позволяет значительно сократить линейный размер двигателя и уменьшить его длину.

Таким образом, разнообразие двигателей позволяет успешно их использовать в автомобилях самого разного назначения. Это могут быть стандартные легковые и грузовые машины, а также спортивные авто и внедорожники. В зависимости от типа двигателя вытекают и определенные технические характеристики всей машины.

Оцените статью: Поделитесь с друзьями!

Как работают двигатели за 10 минут

Двигатель является частью каждого легкового и грузового автомобиля на планете. Является ли двигатель на бензине или электричестве ваш автомобиль не двигался бы, если бы не двигатель. газ приводимые в движение двигатели бывают двух видов, бензиновые или дизельные. Оба замечательно похоже с единственной реальной разницей, являющейся степенью сжатия и зажигания система, которая зажигает топливо внутри камеры сгорания. Давайте начнем глубоко внутри двигателя в центре, где производится мощность, сгорание камера.Эта камера состоит из поршня, в цилиндре двигателя внутри блока цилиндров цилиндр голова вместе с впускными и выпускными клапанами. Пока поршень движется вниз в цилиндре заряд эмульгированного топлива отправляется в сгорание камера через топливо инжектор.

Как только это произойдет, поршень начнет двигаться вверх в отверстии цилиндра. при этом впускной клапан закрывается. Это уплотняет камеру сгорания, чтобы поршень может сделать сжатие при движении вверх, которое затем воспламеняется системой зажигания когда поршень приближается к вершине своего хода.Это вызывает заряд топлива / воздуха зажигать, вызывая взрыв, который ведет поршень вниз, что создает сила. В руководстве ниже мы покажем вам каждую часть двигателя и как мощность передается на передачу, которая затем подключается к задние или передние колеса.

СПОНСОРНЫЕ ССЫЛКИ

Вот видео двигателя в действии, чтобы вы могли понять, что происходит внутри двигателя во время его работы.Это видео показывает каждый цикл обработать; впуск, сжатие, сгорание и выхлоп. Требуется поршень два вверх и вниз, чтобы завершить цикл, поэтому мы называем это четыре Велосипедный двигатель.

Смотреть видео!

Что не так?

Двигатель работает с невероятной силой и теплом при каждой тяге. поршня. Есть несколько вспомогательных систем, которые должны работать такой порядок, как смазка и система охлаждения чтобы двигатель работал.Кроме того, есть множество быстро движущихся внутренних движущихся частей, которые ставятся через стресс и напряжение от толчка и натяжения при экстремальных давлениях. Когда есть небольшая внутренняя проблема, такая как с частями клапана клапана, такими как ведомый кулачок это может привести к тикающий или щелкающий шум вместе с осечка цилиндра. Когда происходят более экстремальные отказы, такие как поршень или шток отказ может привести к более серьезной проблеме двигателя, такой как вибрация или двигатель полностью заблокируется.

Сколько это стоит?

При выходе из строя двигателя существует три способа решения проблемы, каждый из которых будет связан с разницей затрат. Когда двигатель имеет проблемы, Первым шагом является оценка ущерба и возможных сценариев такой ремонт. Например; двигатель сбросил седло клапана с цилиндра голову, и это заставило клапан оставаться открытым, который затем контактирует с поршнем. Один диагноз может быть снять головку и закрепить клапан.Дополнительный ремонт, который должен быть Мысль о том, что с поршнем он контактировал и в какой степени повреждения это вызвало? В некоторых случаях есть незначительный ущерб, который больше не причинит проблемы в то время как в других случаях кольцо было скомпрометировано на поршне, который будет Требуется дальнейшая разборка, чтобы исправить с дополнительной стоимостью, а также.

Если двигатель имеет просто изношен или поврежден до момента замены, затем новый, восстановленный или Подержанный двигатель может быть установлен.Эти расходы будут значительно варьироваться из-за производитель и как двигатель вместе, когда он прибывает для установки такие как впускной и выпускной коллекторы. Для замены типичного автомобиля вы можете ожидайте, что заплатите от 1400,00 до 2500,00 долларов США за рабочую силу и от 2500,00 долларов США. и 5000 долларов США (США) за восстановленный заводской двигатель. Подержанные двигатели будут стоить дешевле между 800,00 и 1800,00 долл. США (США). Если вы решили пойти с подержанным трудом снимите двигатель в случае, если он неисправен, как правило, не распространяется, так что это хорошая идея, чтобы получить двигатель с низким пробегом на нем.

СПОНСОРНЫЕ ССЫЛКИ

Давайте начнем

1. Камера сгорания

На изображении ниже — камера сгорания (выреза), где находится топливно-воздушная смесь сжатый и воспламененный. В нижнем центре вы можете увидеть поршень и поршневые кольца, когда они движутся вверх и вниз внутри отверстия цилиндра. Впускной и выпускной клапаны находятся в верхняя часть вместе с электродом свечи зажигания, где искра генерируется для воспламенения горючей воздушно-газовой смеси.Это тоже хорошо посмотрите на впускной и выпускной клапаны и порты. Многие двигатели имеют два впускных и два выхлопных клапаны, чтобы помочь работе двигателя.

2. Поршни и отверстие цилиндра

Вот изображение в разрезе двигателя V8, которое показывает, как поршни прикреплен к коленчатому валу, который вращается внутри блока цилиндров вместе с головками цилиндров прикручен к верхней части блока колод. Прямо шесть, пять или четыре цилиндра имеет только одна головка цилиндра.

СПОНСОРНЫЕ ССЫЛКИ

3. Шатуны поршневые

На этом изображении показано, как поршень крепится к коленчатому валу с помощью поршень или шатун. Этот стержень имеет крышку, расположенную в нижней части стержня который разделяется на две части, так что его можно прикрутить к коленчатому валу с помощью двух стержней болты. (Трудно увидеть линию, где отделяется крышка штока.) Это место, где расположен подшипник штока, который позволяет коленчатому валу поворачивайте при смазке масляным насосом и системой смазки.На вершине На штоке есть штырь, который расположен через поршень и может поворачиваться в нижней части корпуса поршня.

4. Коленвал

Коленчатый вал — это то, где все поршни и шатуны тоже соединены и часть, которая прикреплена болтами к маховику и трансмиссии. Вся сила двигатель создает переданный через коленчатый вал, который сидит в нижней середина блока двигателя.Он удерживается на месте благодаря использованию крышек коренных подшипников. которые крепятся болтами к блоку, в котором находятся главные подшипники коленчатого вала. Эти подшипники также смазывается моторным маслом и системой смазки. Передняя часть коленчатого вала выступает наружу из двигателя, чтобы обеспечить власть, чтобы включить автомобильные аксессуары такой как генератор, вода насос и воздух кондиционер. Задняя часть коленчатого вала выходит из задней части двигателя в подключиться к маховик, а затем трансмиссия для обеспечения питания автомобиля.Утечки масла контролируются фронт главное уплотнение и заднее главное уплотнение.

СПОНСОРНЫЕ ССЫЛКИ

5. Главные подшипники и блок двигателя

Вот как выглядят главные подшипники коленчатого вала двигателя, когда коленчатый вал устранен. На изображении ниже приведен пример одной половины или подшипник. Оставшаяся половина находится в крышке подшипника, которая крепится болтами к блок двигателя.Подшипники штока поршня выглядят одинаково, за исключением того, что они немного меньше по размеру. Вы можете увидеть отверстие в середине подшипника, где моторное масло предоставляется для смазки.

6. Распределительный вал и головка цилиндра

Распределительный вал — длинный цилиндрический металлический вал, который сделан с очень специфическим лепестки, которые предназначены для открытия и закрытия впускных и выпускных клапанов, которые вовремя с положением поршня.Этот вал расположен в цилиндр головка или блок двигателя в зависимости от конструкции двигателя. Это важная часть двигателя — это то, что контролирует впускные и выхлопные газы от проникновения и покидая камеру сгорания во время процессов сгорания. На этом изображении Головка цилиндров была частично снята, чтобы вы могли увидеть, как работают распределительные валы с клапанами.

Вот разрез головки блока цилиндров, на котором показаны впускной и выпускной патрубки которые контролируются клапаном в каждом порту.Эти клапаны герметизируют горение камера, поэтому, когда поршень движется вверх, это может создать сжатие для процесс сгорания.

СПОНСОРНЫЕ ССЫЛКИ

7. Цепь или ремень ГРМ

Цепь или ремень ГРМ используется для поворота распределительных валов, которые открывают и закрывают клапаны. Эта цепь или ремень предназначены для идеального сохранения распредвала корреляция с коленчатым валом и повороты распредвала один раз на каждые два раз коленчатый вал крутится.Эта цепь или ремень проходит от коленчатого вала до распределительные валы.

Натяжитель используется для предотвращения провисания цепи привода ГРМ или ремня, которая необходимо удерживать цепь или ремень от времени прыжка, пока двигатель Бег. Цепь ГРМ или ремень приводится в движение коленчатым валом с помощью привода рядом с передним главным уплотнением и гармонический балансировщик.

СПОНСОРНЫЕ ССЫЛКИ

, где все начинается

8.Дроссельная заслонка

Двигатель в основном большой воздушный насос, который сжигает топливо. Процесс начинается в отверстии дросселя, которое связано с впускным коллектором. Это где двигатель воздуха регулируется. Частота вращения и мощность двигателя контролируются этим устройство, которое открывается, чтобы дать больше воздуха внутри, создавая дополнительный питание, а затем закрывается, чтобы отключить питание. Этот воздушный поток контролируется датчик массового расхода воздуха и очищается воздушный фильтр.

9.Впускной коллектор

Как только воздух прошел через дроссель Привод он поступает во впускной коллектор, где он разделен и разделен между отдельными цилиндрами впускные отверстия внутри головки цилиндров. Затем воздух контролируется впускным клапаном. Этот коллектор болтов прямо на головки цилиндров и могут быть изготовлены из пластика или алюминия.

10. Топливная форсунка

СПОНСОРНЫЕ ССЫЛКИ

А топливная форсунка используется для контроля и измерения количества поступающего топлива двигатель в любой момент времени.Пока двигатель находится под нагрузкой и больше мощности Необходимая команда для большего количества топлива дается автомобилем компьютер (PCM). Топливная форсунка является частью топливо Система впрыска. На изображении ниже представлен комплект с непосредственным впрыском топлива инжекторы, которые распыляют топливо непосредственно в камеру сгорания вблизи времени воспламенение в отличие от традиционных топливных форсунок, которые распыляют во впускной канал сразу за впускным клапаном.

11.Катушка зажигания

После сжатия топливно-воздушной смеси катушка зажигания подает заряд высокого напряжения с малой силой тока на свеча зажигания. Этот процесс также управляется компьютером машины, который получает ссылку на каждый поршень положение с помощью Датчик угла поворота коленчатого вала.

12. Масляный насос

Масляный насос используется для сбора масла из масляного поддона и его накачки двигатели внутренних движущихся частей.Этот насос может приводиться в движение различными способами, этот конкретный насос приводится в действие цепью в передней части коленчатого вала. масляный насос определяет величину давления масла в двигателе, используя пружина давления установлена ​​в предохранительном клапане насоса.

СПОНСОРНЫЕ ССЫЛКИ

Охлаждающая жидкость двигателя используется для охлаждения двигателя во время работы с помощью система охлаждения. Эта охлаждающая жидкость циркулирует внутри блока двигателя и головок цилиндров, чтобы сохранить тепло двигателя от внутреннего повреждения.Водяной насос используется для перемещения охлаждающей жидкости в радиатор охлаждаться и затем возвращаться обратно в двигатель, чтобы процесс мог начаться снова.

Есть вопросы?

Если у вас есть двигатель пожалуйста, посетите наш форум. Если тебе надо совет по ремонту авто, пожалуйста спросите наше сообщество механиков с радостью вам помогу и это всегда 100% свободно.

Мы надеемся, что вам понравилось это руководство и видео. Мы создаем полный набор руководства по ремонту автомобилей.пожалуйста подписаться на наш 2CarPros Канал YouTube и часто проверяйте наличие новых видео, которые загружены почти каждый день.

СПОНСОРНЫЕ ССЫЛКИ

Статья опубликована 2018-09-06

,

двигатель | Как автомобиль работает

двигатель это сердце твоей машины. Это сложная машина, созданная для преобразования тепла от горения газ в сила что крутит дорожные колеса.

Цепочка реакций, которые достигают этой цели, приводится в движение искра , который воспламеняет смесь паров бензина и сжатого воздуха внутри на мгновение загерметизированный цилиндр и заставляет его быстро гореть. Вот почему машина называется двигатель внутреннего сгорания , Когда смесь горит, она расширяется, обеспечивая мощность для управления автомобилем.

Чтобы выдержать большую нагрузку, двигатель должна быть надежная структура. Он состоит из двух основных частей: нижняя, более тяжелая часть — блок цилиндров, кожух для основных движущихся частей двигателя; съемная верхняя крышка является крышка цилиндра ,

Головка блока цилиндров содержит клапанные каналы, через которые проходит воздух и топливо смесь поступает в цилиндры и другие, через которые выделяются газы сгорание исключены.

Блок дома коленчатый вал , который преобразует возвратно-поступательное движение из поршни в вращательное движение на коленвал.Часто в блоке также находится распределительный вал , который работает механизмы, которые открывают и закрывают клапаны в головке цилиндров. Иногда распределительный вал находится в головке или установлен над ней.

Самый простой и распространенный тип двигателя состоит из четырех вертикальных цилиндров, расположенных рядом друг с другом. Это известно как Линейный двигатель , Автомобили с объемом более 2000 куб. См часто имеют шесть цилиндров в ряд.

Чем компактнее V-образный двигатель устанавливается на некоторых автомобилях, особенно на автомобилях с восемью или двенадцатью цилиндрами, а также на некоторых с шестью цилиндрами.Здесь цилиндры расположены напротив друг друга под углом до 90 градусов.

Некоторые двигатели имеют горизонтально расположенных цилиндров , Они являются продолжением V-образного двигателя, угол которого увеличен до 180 градусов. Преимущества заключаются в экономии высоты, а также в определенных аспектах баланса.

Цилиндры, в которых работают поршни, отлиты в блок, так же как и крепления для вспомогательного оборудования, такого как фильтр для масла, которое смазывает двигатель, и насос для топлива.Масло резервуар , называется отстойник болт под картер ,

Как работают автомобили — Как работает автомобильный двигатель

Процесс, с помощью которого работает автомобиль, намного проще, чем вы думаете. Когда водитель поворачивает ключ в замке зажигания:

  • Аккумулятор включается при отправке
  • Мощность на стартер, который
  • крутит коленвал, который
  • получает поршни движущиеся
  • При движении поршней двигатель загорается и останавливается на
  • Вентилятор втягивает воздух в двигатель через воздушный фильтр
  • Воздушный фильтр удаляет грязь и песок из воздуха
  • Очищенный воздух подается в камеру, в которую добавляется топливо (бензин или дизельное топливо)
  • Эта топливно-воздушная смесь (испаренный газ) хранится в камере
  • .
  • водитель нажимает педаль акселератора
  • Дроссельная заслонка открыта
  • Газовоздушная смесь проходит через впускной коллектор и распределяется через впускные клапаны в цилиндры.Распределительный вал контролирует открытие и закрытие клапанов.
  • Распределитель зажигает свечи зажигания, которые воспламеняют топливно-воздушную смесь. В результате взрыва поршень движется вниз, что, в свою очередь, приводит к вращению коленчатого вала.

То, что происходит в цилиндрах, — это магия, которая дает мощность и движение колесам автомобиля. Большинство автомобильных двигателей используют четырехтактный цикл сгорания. Этот цикл начинается с поршня в верхней части цилиндра. Тогда:

внутри автомобильного цилиндра

Четырехтактный цикл сгорания

Поступление впуска: впускной клапан открывается, и поршень движется вниз, позволяя топливно-воздушной смеси проникать в открытое пространство.

Ход сжатия: поршень движется вверх. Это сжимает топливно-воздушную смесь, вытесняя ее в меньшее пространство. Сжатие заставляет топливно-воздушную смесь взрываться с большей силой.

Силовой цикл: Искра от свечи зажигания зажигает топливно-воздушную смесь. Взрыв заставляет поршень опускаться на цилиндр.

Цикл выпуска: открывается выпускной клапан, и поршень возвращается к верхней части цилиндра, вытесняя выхлопные газы.

Нижняя часть каждого поршня прикреплена к коленчатому валу.

При подъеме и опускании поршней они вращают коленчатый вал, который после передачи мощности через трансмиссию вращает колеса.

Большинство автомобилей имеют по крайней мере четыре цилиндра. Более мощные автомобили имеют больше. Например, V6 имеет шесть цилиндров, а V8 — восемь.

Чем сильнее водитель нажимает на педаль акселератора, тем больше топливно-воздушной смеси поступает в цилиндры и вырабатывается больше энергии.

Что такое обороты в минуту?

Четырехтактный цикл повторяется тысячу раз в минуту. Эти повторения более известны как Revs.

Счетчик оборотов показывает, сколько раз в минуту цикл повторяется.

Коробка передач

Управляет мощностью, содержащейся в коленчатом валу, прежде чем он попадает на колеса, и позволяет водителю контролировать скорость / мощность автомобиля, обеспечивая различные соотношения скорости / мощности, известные как передачи.

Итак, первая передача дает много мощности, но мало скорости, тогда как пятая передача дает мало мощности, но много скорости.

Коленчатый вал подключается к коробке передач только тогда, когда автомобиль включен, а сцепление включено. Если нажать на сцепление, коленчатый вал отсоединится от коробки передач.

Коробка передач соединена с выходным валом, который соединен с осями, которые соединены с колесами. Когда трансмиссия вращает выходной вал, это поворачивает оси, которые, в свою очередь, вращают колеса.

Прочие ключевые компоненты автомобилей и автомобильных двигателей

Генератор : превращает механическую энергию в электрическую энергию. Эта энергия питает электрику автомобиля, от фонарей до дворников. Он также заряжает автомобильный аккумулятор. Ремень, который вращается, когда двигатель включен, приводит его в действие.

Тормоза : автомобили используют барабанные или дисковые тормоза. Дисковые тормоза с помощью штангенциркуля нажимают на диск колеса, чтобы замедлить колесо. Барабанные тормоза работают по тому же принципу, однако барабанный тормоз давит на внутреннюю часть барабана.

Распредвал : управляет открытием и закрытием впускного и выпускного клапанов.

Система охлаждения : автомобильные двигатели выделяют много тепла. Это тепло необходимо контролировать. Для этого вода прокачивается через проходы, которые окружают цилиндры, а затем через радиаторы для охлаждения.

Распределитель : приводит в действие катушку зажигания, которая зажигает ее в нужный момент. Он также распределяет искру в нужный цилиндр и в нужное время.Если время отключено на долю, то двигатель не будет работать должным образом.

Система выпуска отработавших газов : после сжигания топливовоздушной смеси оставшийся газ поступает в систему выпуска отработавших газов и удаляется из автомобиля. Если имеется каталитический нейтрализатор, через него проходит выхлопной газ и удаляются все неиспользованное топливо и другие определенные химические вещества.

Ручной тормоз : это отдельная система от ножного тормоза. Как правило, он монтируется на полу автомобиля и соединяется кабелем с двумя задними колесами.

Прокладка головки блока цилиндров : головка блока цилиндров (блок, который герметизирует все верхние части цилиндров) и блок двигателя (который содержит основные корпуса цилиндров) — это отдельные компоненты, которые должны плотно прилегать друг к другу. Прокладка головки представляет собой кусок металла, который сидит между ними и соединяет их.

Масло : двигатель автомобиля состоит из множества движущихся частей. Масло смазывает эти детали и позволяет им двигаться плавно. В большинстве автомобильных двигателей масло выкачивается из масляного поддона через фильтр, который удаляет грязь, а затем под высоким давлением впрыскивается на подшипники и стенки цилиндров.Затем масло стекает в отстойник, где процесс начинается заново.

Регулятор : регулирует количество энергии в генераторе.

Амортизаторы : также известные как демпферы, устанавливаются между кузовом и осью автомобиля для предотвращения чрезмерного скатывания и подпрыгивания кузова во время движения.

Система подвески : противодействует ударам о неровности дороги. Без такой системы автомобиль, конечно, поворачивал бы каждый раз, когда шины ударялись об выбоину или выбоину.Система состоит из пружин и амортизаторов. Пружины поглощают любую энергию, выделяемую, когда шины катятся по кочку, а амортизаторы поглощают энергию из пружин. Это сохраняет основной корпус автомобиля устойчивым и устойчивым.

Ремень ГРМ : ремень, соединенный с распределительным валом и коленчатым валом, обеспечивающий их своевременную работу друг с другом.

Какая разница между бензиновым и дизельным двигателем?

В бензиновых двигателях топливо смешивается с воздухом и затем подается в цилиндры, где топливно-воздушная смесь сжимается поршнями и зажигается свечами зажигания.В дизельном двигателе воздух сжимается до того, как в него добавляется топливо. Когда воздух сжимается, он нагревается. Это означает, что когда топливо добавляется в сжатый воздух, оно очень горячее, и топливно-воздушная смесь автоматически воспламеняется. Таким образом, в дизельном двигателе нет свечей зажигания, поскольку давление используется для воспламенения топливовоздушной смеси.


,

Как работает двигатель внутреннего сгорания?

Если вы похожи на большинство водителей, ваше понимание того, как работает автомобильный двигатель, сводится к простому ощущению, что вы заправляете бензин, начинается какой-то пожар, и вы двигаетесь вперед.

Для большинства водителей это вся информация, которую они хотят знать. Но любопытному читателю всегда нужно больше.

Итак, как работает автомобильный двигатель?

Думайте о двигателе вашего автомобиля как о большом воздушном насосе, потому что это именно то, чем он является. Бензин, поршни, свечи зажигания — все это облегчает прокачку воздуха через двигатель, генерируя тем самым мощность. Существует множество различных типов воздушных насосов, но в случае двигателя внутреннего сгорания энергия, необходимая для прокачки, генерируется путем смешивания воздуха с топливом и поджигания этой смеси.

Все начинается с воздуха снаружи машины. Этот воздух фильтруется воздушным фильтром, а затем немедленно смешивается с топливом либо через карбюратор (в старых автомобилях), либо через систему впрыска топлива. Эта смесь топлива и воздуха идет через впускной коллектор, который направляет ее к головке(ам) цилиндров.

Головка цилиндров действует как своего рода привратник между впускной камерой и камерой сгорания (цилиндрами). При этом в большинстве автомобилей стоит четыре, шесть или восемь камер сгорания, и если все эти камеры одновременно воспламенят свою воздушно-топливную смесь, двигатель не может работать плавно или генерировать достаточно энергии. Поэтому, чтобы мотор работал бесперебойно и эффективно, подача топливной смеси и искра, которая вызывает взрыв, должны быть точно рассчитаны по тайм-ауту.

Чтобы это произошло, требуются клапаны, и важно, чтобы эти клапаны открывались в нужный момент. В автомобильном двигателе эти клапаны являются частью головки цилиндров, и они открываются и закрываются вращением распределительного вала, который работает внутри двигателя, используя удлиненные лепестки, чтобы толкать клапаны в открытое положение. При открытом впускном клапане цилиндр заполнен топливной смесью. Далее автомобилю нужно распределить искру в камере сгорания — для этого используется дистрибьютор. Распределительный вал и распределитель соединены шестернями, чтобы распределитель всегда «знал», какой цилиндр нуждается в искре.

Когда впускной клапан открывается, распределитель посылает искру через провод свечи зажигания к свече зажигания. Это создает искру внутри цилиндра, которая, в свою очередь, вызывает взрыв. Этот взрыв опускает поршень вниз, толкая его к коленвалу, что приводит к вращению коленвала. Это вращение, в свою очередь, заставляет работать трансмиссию, которая вращает карданный вал и тот в свою очередь передает крутящий момент на колеса. На крейсерской скорости коленчатый вал будет вращаться со скоростью около 3000 оборотов в минуту (об/мин).

Одновременно выпускные клапаны выпускают остатки сгоревшей топливной смеси, направляя их через выхлопную систему и фильтруя их по пути.

Это так все просто. Чем больше воздуха вы прокачиваете, тем больше энергии вы производите.

Примечание: бензиновые и дизельные двигатели с искровым зажиганием отличаются тем, как они подают и поджигают топливо. В двигателе с искровым зажиганием топливо смешивается с воздухом и затем вводится в цилиндр во время процесса впуска. После того, как поршень сжимает топливовоздушную смесь, искра зажигает ее, вызывая сгорание. Расширение газов сгорания толкает поршень во время рабочего хода.

В дизельном двигателе в двигатель вводится только воздух и затем сжимается. Далее в дизельном двигателе топливо распыляется в горячий сжатый воздух с подходящей, измеренной скоростью, вызывая его воспламенение.

Важно: за последние 30 лет научные исследования и разработки помогли производителям сократить выбросы ДВС в загрязняющие вещества, такие как оксиды азота (NOx) и твердые частицы (ТЧ), более чем на 99% в соответствии со стандартами выбросов EPA. При этом исследования привели к улучшению характеристик ДВС (лошадиных сил и времени разгона 0-100 км/ч) и эффективности, помогая производителям поддерживать и увеличивать экономию топлива.

Количество клапанов варьируется от двигателя к двигателю

Общее количество клапанов в двигателе будет варьироваться. Старые двигатели имеют 1 впускной и 1 выпускной клапан на цилиндр. Для 8-цилиндрового двигателя двигатель имеет всего 16 клапанов (2 x 8). Некоторые двигатели имеют 2 впускных клапана и 1 выпускной клапан на цилиндр. 6-цилиндровый двигатель с такой установкой 3 клапана на цилиндр будет иметь 18 клапанов (3 x 6). Многие современные двигатели имеют 2 впускных и 2 выпускных клапана для каждого цилиндра. Четырехцилиндровый двигатель с 4 клапанами на цилиндр, конечно, будет иметь в общей сложности 16 клапанов (4 х 4).

Как вы можете видеть из этих примеров, общее количество клапанов НЕ говорит вам, сколько цилиндров в двигателе.

Конфигурации с одним или двумя распределительными валами

Все двигатели с верхним расположением клапанов (кулачок в блоке) имеют один распределительный вал для двигателя. Двигатели с верхним расположением кулачков с распределительными валами в головках могут иметь один цилиндр на головку или два на головку. Если их два, каждый распределительный вал предназначен для работы впускного или выпускного клапанов.

Терминология двигателя говорит нам, что двигатель с одним распределительным валом PER HEAD является двигателем SOHC (с одним верхним кулачком). Аналогично, двигатель с двумя кулачками на головку называется двигателем DOHC (двойной верхний кулачок). Будьте осторожны при подсчете распредвалов! V-образный двигатель DOHC с двумя головками цилиндров имеет четыре распределительных вала (по два на голову).

Как сила от поршней движет машину?

Итак, как двигатель преобразует это движение вверх-вниз во вращательное движение? Для начала опишем как все это технически выглядит: нижний конец шатуна крепится к коленчатому валу, который служит выходным валом для всего двигателя. Эта точка крепления на коленчатом валу смещена от осевой линии коленчатого вала. Когда шатун движется вверх и вниз с поршнем, он вращает коленчатый вал. Представьте работу ног велосипедиста. Движение вверх-вниз на шарнирном колене очень похоже на то, что происходит с поршнем и верхней частью шатуна. Движение вверх и вниз ноги велосипедиста преобразуется во вращательное движение.

Сам коленчатый вал находится в нижней части блока цилиндров. Поскольку коленчатый вал вынужден поворачиваться от мощности, вырабатываемой в течение 4-тактного цикла, он создает крутящее движение или крутящий момент. Задний конец кривошипа выходит из блока цилиндров сзади, и оттуда он соединяется с маховиком, трансмиссией, приводным и осевым валами, в конечном итоге достигая ведущих колес. Это сила, которая заставляет автомобиль двигаться.

В задней части двигателя, где коленчатый вал выходит из блока цилиндров, прикреплен маховик.

Важно: теперь, когда у вас появилось хотя бы примерное представление о том, как работает двигатель внутреннего сгорания, вы наверняка оцените важность регулярного технического обслуживания, особенно замены масла, которое обеспечивает смазку всех движущихся частей.

Откуда клапаны «знают», когда открываться и закрываться?

Впускной и выпускной клапаны приводятся в движение отдельными распределительными валами. Эти клапаны выполняют важную функцию, и их движение точно синхронизировано.

Назначение клапанов

Двигатель должен иметь как минимум один впускной клапан и один выпускной клапан для каждого цилиндра. Для того чтобы 4-тактный цикл был успешным, открытие и закрытие этих клапанов точно контролируется — синхронизируется с движением поршней, чтобы каждый клапан выполнял свою работу именно тогда, когда это необходимо.

Открытие и закрытие всех клапанов двигателя осуществляется распределительным валом. Каждый распределительный вал содержит несколько «лепестков», которые представляют собой части неправильной формы, расположенные на центральном валу. По мере того, как распределительный вал вращается, эти лепестки соприкасаются с другими компонентами для перемещения клапанов.

Сами клапаны обычно закрыты и удерживаются пружинами клапанов. При этом лепестки должны преодолевать давление пружины, чтобы открыть клапаны. Поскольку лепесток продолжает вращаться, пружины снова закрывают клапаны.

Примечание: в двигателях с верхним расположением клапанов распределительные валы установлены в блоке двигателя и соединены с клапанами подъемниками, толкателями и коромыслами (в зависимости от конструкции двигателя). В двигателях с верхним распредвалом распределительные валы находятся в головке цилиндров.

Строение двигателя автомобиля — как устроен и из чего состоит двигатель

Все мы передвигаемся на автомобилях совершенно разных марок и моделей. Но, немногие из нас даже задумываются над тем, как устроен двигатель нашего автомобиля. По большому счёту, знать на все 100% устройство двигателя автомобиля и не обязательно. Ведь мы все пользуемся, например, мобильными телефонами, но это не означает, что мы обязаны быть гениями радиоэлектроники. Есть кнопка «Вкл», нажал и говори. Но с автомобилем немного другая история.

Ведь неисправный телефон – это всего лишь отсутствие связи с друзьями. А неисправный двигатель автомобиля – это наша жизнь и здоровье. От правильного обслуживания двигателя автомобиля зависят многие моменты движения автомобиля вообще и безопасности людей в частности. Поэтому, скорее всего, будет правильно уделить десять минут, чтобы понять из чего состоит двигатель автомобиля и принцип работы двигателя.

Пара шагов в историю создания двигателя автомобиля

Мотор (двигатель) в переводе с латыни motor, значит – приводящий в движение. В современном понимании, двигатель – это устройство, которое преобразует какую-либо энергию в механическую. В автомобилестроение наиболее распространенными двигателями являются ДВС (двигатели внутреннего сгорания) различных типов. Годом рождения первого ДВС считается 1801 г. тогда француз Филипп Лебон запатентовал первый двигатель, работающий на светильном газе. Затем были Жан Этьен Ленуар и Август Отто. Именно Август Отто в 1877 г. получил патент на двигатель с четырёхтактным циклом работы. И до сегодняшнего дня работа двигателя автомобиля, в основе своей работает по этому принципу.

В 1872 г. американцем Брайтоном был представлен первый двигатель на жидком топливе –  керосине. Попытка была неудачной. Керосин не хотел активно взрываться внутри цилиндров. А в 1882 г. появился двигатель Готлиба Даймлера, бензиновый и работоспособный.

А теперь давайте разберемся какие все таки бывают типы двигателя автомобиля и к какому типу, прежде всего, можно отнести ваш автомобиль.

Какой у вас тип двигателя автомобиля?

С учетом того, что наиболее массовым в автомобилестроении является ДВС, рассмотрим, какие же типы двигателей установлены на наших автомобилях. ДВС не является самым совершенным типом двигателя, но благодаря своей 100% автономности, именно он и применяется в большинстве современных авто. Традиционные типы двигателей автомобиля:

  • Бензиновые двигатели. Делятся на инжекторные и карбюраторные. Существуют разные типы карбюраторов и системы впрыска. Вид топлива – бензин.
  • Дизельные двигатели. Дизельное топливо попадает в цилиндры через форсунки. Преимуществом дизельных двигателей является то, что им не нужно электричество для работы. Только для запуска двигателя.
  • Газовые двигатели. Топливом может служить, как сжиженные и сжатые природные газы, так и генераторные газы, полученные путем преобразования твердого топлива (уголь, дерево, торф) в газообразное.

Разбираем устройство и принцип работы двигателя автомобиля

Как работает двигатель автомобиля? При первом взгляде на разрез двигателя, несведущему человеку хочется убежать. Настолько всё кажется сложным и запутанным. На самом деле, при более глубоком изучении, строение двигателя автомобиля просто и понятно для того, чтобы знать принцип его работы. Знать, и при необходимости применять эти знания в жизни.

  • Блок цилиндров – его можно назвать рамой или корпусом двигателя. Внутри блока устроена система каналов для смазки и охлаждения двигателя. Он служит основой для навесного оборудования: головка блока цилиндров, картер и т.д.
  • Поршень – пустотелый металлический стакан. Верхняя часть поршня (юбка) имеет специальные канавки для поршневых колец.
  • Поршневые кольца. Верхние кольца – компрессионные, для обеспечения высокой степени сжатия воздушно-топливной смеси (компрессия). Нижние кольца – маслосъёмные. Кольца выполняют две функции: обеспечивают герметичность камеры сгорания и играют роль уплотнителей для того, чтобы масло не попадало в камеру сгорания.
  • Кривошипно-шатунный механизм. Передаёт возвратно-поступательную энергию движения поршня  на коленвал.
  • Принцип работы ДВС достаточно прост. Из форсунок топливо подается в камеру сгорания и обогащается там воздухом. Искра от свечи зажигания воспламеняет воздушно-топливную смесь и происходит взрыв. Образовавшиеся газы толкают поршень вниз, тем самым заставляя его передавать своё поступательное движение коленвалу.  Коленвал, в свою очередь, передаёт вращательное движение трансмиссии. Далее система шестерён передаёт движение колесам.

А уже колеса автомобиля везут несущий кузов вместе с нами в том направлении, куда нам необходимо. Вот такой принцип работы двигателя, мы уверены, будет вам понятен. И вы будете знать, что ответить, когда в автосервисе недобросовестные работники скажут, что вам нужно поменять компрессию, но на складе осталась одна, и та — импортная. Удачи вам в понимании устройства и принципа работы двигателя автомобиля.

Бесколлекторный двигатель постоянного тока: особенности и принцип работы

Как работает бесколлекторный двигатель?

Бесколлекторный двигатель постоянного тока имеет на статоре трёхфазную обмотку, и постоянный магнит на роторе. Вращающееся магнитное поле создаётся обмоткой статора, при взаимодействии с которым магнитный ротор приходит в движение. Для создания вращающегося магнитного поля на обмотку статора подаётся система трёхфазных напряжений, которая может иметь различную форму и формируется различными способами. Формирование питающих напряжений (коммутация обмоток) для бесколлекторного двигателя постоянного тока производиться специализированными блоками электроники – контроллером двигателя. 

Заказать бесколлекторный двигатель в нашем каталоге

В простейшем случае обмотки попарно подключаются к источнику постоянного напряжения и по мере того как ротор поворачивается в направлении вектора магнитного поля обмотки статора производится подключение напряжения к другой паре обмоток. Вектор магнитного поля статора при этом занимает другое положение и вращение ротора продолжается. Для определения нужного момента подключения следующих обмоток используется датчик положения ротора, чаще других используются датчики Холла. 


Возможные варианты и специальные случаи

Выпускаемые сейчас бесколлекторные двигатели могут иметь самую разную конструкцию. 

По исполнению статорной обмотки можно выделить двигатели с классической обмоткой, намотанной на стальной сердечник, и двигатели с полой цилиндрической обмоткой без стального сердечника. Классическая обмотка обладает значительно большей индуктивностью, чем полая цилиндрическая обмотка, и соответственно большей постоянной времени. Из-за этого с одной стороны, полая цилиндрическая обмотка допускает более динамичное изменение тока (а, следовательно, и момента), с другой стороны при работе от контроллера двигателя, использующего ШИМ-модуляцию невысокой частоты для сглаживания пульсаций тока, требуются фильтрующие дроссели большего  номинала (а соответственно и большего размера). Кроме того, классическая обмотка, как правило, имеет заметно больший момент магнитной фиксации, а также меньший КПД, чем полая цилиндрическая обмотка.


Ещё одно отличие, по которому разделяются различные модели двигателей – это взаимное расположение ротора и статора – существуют  двигатели с внутренним ротором и двигатели с внешним ротором. Двигатели с внутренним ротором, как правило, имеют более высокие скорости и меньший момент инерции ротора, чем модели с внешним ротором. Благодаря этому двигатели с внутренним ротором имеют более высокую динамику. Двигатели с внешним ротором часто имеют несколько больший номинальный момент при том же наружном диаметре двигателя. 

Отличия от других типов двигателей

Отличия от коллекторных ДПТ. Размещение обмотки на роторе позволило отказаться от щёток и коллектора и избавиться тем самым от подвижного электрического контакта, который значительно снижает надёжность ДПТ с постоянными магнитами. По этой же причине  скорость у бесколлекторных двигателей, как правило, значительно выше, чем у ДПТ с постоянными магнитами. С одной стороны это позволяет увеличить удельную мощность бесколлекторного двигателя, с другой стороны не для всех применений такая высокая скорость является действительно необходимой

Отличия от синхронных двигателей с постоянными магнитами. Синхронные двигатели с постоянными магнитами на роторе очень похожи на бесколлекторные ДПТ по конструкции, однако есть и ряд различий. Во-первых термин синхронный двигатель объединяет в себе много различных видов двигателей, часть из которых предназначены для непосредственной работы от стандартной сети переменного тока, другая часть (например синхронные серводвигатели) может работать только от преобразователей частоты (контроллеров двигателей). Бесколлекторные двигатели, хотя и имеют на статоре трёхфазную обмотку, не допускают непосредственную работу от сетевого напряжения, и обязательно требуют наличия соответствующего контроллера. Кроме того синхронные двигатели предполагают питание напряжением синусоидальной формы в то время как бесколлекторные двигатели допускают питание переменным напряжением ступенчатой формы (блочная коммутация) и даже предполагают его использование в номинальных режимах работы.

Когда нужен бесколлекторный двигатель?

Ответ на этот вопрос достаточно прост – в тех случаях, когда он имеет преимущество перед остальными типами двигателей. Так, например, практически невозможно обойтись без бесколлекторного двигателя в применениях, где требуются большие скорости вращения: свыше 10000 об/мин. Оправдано применение бесколлекторных двигателей также и в тех случаях, когда требуется высокий срок службы двигателя. В тех случаях, когда требуется применять сборку из двигателя с редуктором, однозначно оправдано применение низкоскоростных бесколлекторных двигателей (с большим числом полюсов). Высокоскоростные бесколлекторные двигатели в этом случае будут иметь скорость выше, чем предельно допустимая скорость редуктора, и по этой причине не будет возможности использовать их мощность полностью. Для  применений, где требуется максимально простое управление двигателем (без использования контроллера двигателя) естественным выбором будет коллекторный ДПТ. 

С другой стороны, в условиях повышенной температуры или повышенной радиации проявляется слабое место бесколлекторных двигателей – датчики Холла. Стандартные модели датчиков Холла имеют ограниченную стойкость к радиации и диапазон рабочих температур. Если в подобном применении всё же имеется необходимость использовать бесколлекторный двигатель, то неизбежными становятся заказные исполнения с заменой датчиков Холла на более стойкие к указанным факторам, что увеличивает цену двигателя и сроки поставки.

Что такое ДВС и как работает двигатель внутреннего сгорания? |

На сегодняшний день двигатель внутреннего сгорания (ДВС) или как его еще называют «атмосферник» — основной тип двигателя, который широко применяется в автомобильной индустрии. Что такое ДВС? Это — многофункциональный тепловой агрегат, который при помощи химических реакций и законов физики преобразует химическую энергию топливной смеси в механическую силу (работу).

Двигатели внутреннего сгорания делятся на:

  1. Поршневой ДВС.
  2. Роторно-поршневой ДВС.
  3. Газотурбинный ДВС.

Поршневой двигатель внутреннего сгорания — самый популярный среди вышеперечисленных двигателей, он завоевал мировое признание и уже много лет лидирует в автоиндустрии. Предлагаю более детально рассмотреть устройство ДВС, а также принцип его работы.

К преимуществам поршневого двигателя внутреннего сгорания можно отнести:

  1. Универсальность (применение на различных транспортных средствах).
  2. Высокий уровень автономной работы.
  3. Компактные размеры.
  4. Приемлемая цена.
  5. Способность к быстрому запуску.
  6. Небольшой вес.
  7. Возможность работы с различными видами топлива.

Кроме «плюсов» имеет двигатель внутреннего сгорания и ряд серьезных недостатков, среди которых:

  1. Высокая частота вращения коленвала.
  2. Большой уровень шума.
  3. Слишком большой уровень токсичности в выхлопных газах.
  4. Маленький КПД (коэффициент полезного действия).
  5. Небольшой ресурс службы.

Двигатели внутреннего сгорания различаются по типу топлива, они бывают:

  1. Бензиновыми.
  2. Дизельными.
  3. А также газовыми и спиртовыми.

Последние два можно назвать альтернативными, поскольку на сегодняшний день они не получили широкого применения.

Спиртовой ДВС работающий на водороде — самый перспективный и экологичный, он не выбрасывает в атмосферу вредный для здоровья «СО2», который содержится в отработанных газах поршневых двигателей внутреннего сгорания.

Поршневой ДВС состоит из следующих подсистем:
  1. Газораспределительный механизм (ГРМ).
  2. Кривошипно-шатунный механизм (КШМ).
  3. Система впуска.
  4. Топливная система.
  5. Система смазки.
  6. Система зажигания (в бензиновых моторах).
  7. Выпускная система.
  8. Система охлаждения.
  9. Система управления.

Корпус двигателя состоит из нескольких частей, в которые входят: блок цилиндров, а также головка блока цилиндров (ГБЦ). Задача КШМ — преобразовать возвратно-поступательные движения поршня во вращательные движения коленвала. Газораспределительный механизм необходим ДВС для обеспечения своевременного впуска в цилиндры топливно-воздушной смеси и такой же своевременный выпуск отработанных газов.

Статья в тему: Причины перегрева двигателя. Как не допустить перегрев двигателя?

Впускная система служит для своевременной подачи воздуха в двигатель, который необходим для образования топливно-воздушной смеси. Топливная система осуществляет подачу в двигатель топлива, в тандеме две этих системы работают над образованием топливно-воздушной смеси после чего она подается посредством системы впрыска в камеру сгорания.

Воспламенение топливно-воздушной смеси происходит благодаря системе зажигания (в бензиновых ДВС), в дизельных моторах воспламенение происходит за счет сжатия смеси и свечей накала.

Система смазки как уже понятно из названия служит для смазки трущихся деталей, снижая тем самым их износ, увеличивая срок их службы и отводя тем самым от их поверхностей температуру. Охлаждение нагревающихся поверхностей и деталей обеспечивает система охлаждения, она отводит температуру при помощи охлаждающей жидкости по своим каналам, которая проходя через радиатор — охлаждается и повторяет цикл. Система выпуска обеспечивает вывод отработанных газов из цилиндров ДВС посредством выхлопной системы, которая входит в состав этой системы, снижает шум сопровождаемый выброс газов и их токсичность.

Система управления двигателем (в современных моделях за это отвечает электронный блок управления (ЭБУ) или бортовой компьютер) необходима для электронного управление всеми вышеописанными системами и обеспечения их синхронности.

Как работает двигатель внутреннего сгорания?

Принцип работы ДВС базируется на эффекте теплового расширения газов, которое возникает во время сгорания топливно-воздушной смеси, за счет чего осуществляется движение поршня в цилиндре. Рабочий цикл двигателя внутреннего сгорания  происходит за два оборота коленвала и состоит из четырех тактов, отсюда и название — четырехтактный двигатель.

  1. Первый такт — впуск.
  2. Второй — сжатие.
  3. Третий — рабочий ход.
  4. Четвертый — выпуск.

Во время первых двух тактов — впуска и рабочего такта, поршень движется вниз, за два других сжатие и выпуск – поршень идет вверх. Рабочий цикл каждого из цилиндров настроен таким образом чтобы не совпадать по фазам, это необходимо для того чтобы обеспечить равномерность работы двигателя внутреннего сгорания. Есть в мире и другие двигатели, рабочий цикл которых происходит всего за два такта – сжатие и рабочий ход, этот двигатель называется двухтактным.

На такте впуска топливная система и впускная образуют топливно-воздушную смесь, которая образуется во впускном коллекторе или непосредственно в камере сгорания (все зависит от типа конструкции). Во впускном коллекторе в случае с центральным и распределенным впрыском бензиновых ДВС. В камере сгорания в случае с непосредственным впрыском в бензиновых и  дизельных моторах. Топливно-воздушная смесь или воздух во время открытия впускных клапанов ГРМ подается в камеру сгорания за счет разряжения, которое возникает во время движения поршня вниз.

Актуально: Как определить состояние дизельного двигателя по выхлопным газам

Впускные клапаны закрываются на такте сжатия, после чего топливно-воздушная смесь в цилиндрах двигателя сжимается. Во время такта «рабочий ход» смесь воспламеняется принудительно или самовоспламеняется. После возгорания в камере возникает большое давление, которое создают газы, это давление воздействует на поршень, которому ничего не остается как начать двигаться вниз. Это движение поршня в тесном контакте с кривошипно-шатунным механизмом приводят в движение коленчатый вал, который в свою очередь образует крутящий момент, приводящий колеса автомобиля в движение.

Такт «выпуск» открывает выпускные клапаны газораспределительного механизма, после чего отработанные газы освобождают камеру сгорания, а после и выпускную систему, уходя охлажденными и частично очищенными в атмосферу.

Короткое резюме

После того как мы рассмотрели принцип работы двигателя внутреннего сгорания можно понять почему ДВС обладает низким КПД, который составляет примерно 40%. В то время как в одном цилиндре происходит полезное действие, остальные цилиндры грубо говоря бездействуют, обеспечивая работу первого тактами: впуск, сжатие, выпуск.

На этом у меня все, надеюсь вам все понятно, после прочтения данной статьи вы легко сможете ответить на вопрос, что такое ДВС и как устроен двигатель внутреннего сгорания. Спасибо за внимание!

Рекомендую посмотреть данное видео в нем вы найдете очень много для себя полезного!

Как работает двигатель внутреннего сгорания, описание процессов

Цикл работы двигателя замкнутый. Возможна организация работы ДВС с кривошипно-шатунным механизмом по двух и четырехтактному циклу. Но подавляющее большинство автомобильных двигателей внутреннего сгорания работает по четырехтактному циклу. Рассмотрим, каким образом происходит эта работа.

Но для начала немного терминологии

Коленчатый вал вращается. Соединенный с ним поршень совершает в цилиндре движение вверх — вниз. Крайние положения поршня в цилиндре называют мёртвыми точками. Это верхняя мёртвая точка (сокращенно ВМТ) и нижняя мёртвая точка (НМТ).

Перемещение поршня от одного крайнего положения до другого называется тактом. Следовательно у четырехтактного двигателя цикл работы выполняется за четыре движения поршня вверх-вниз, что соответствует двум оборотам коленчатого вала.

Если умножить площадь торца (днища) поршня на расстояние между ВМТ и НМТ получим, так называемый, рабочий объем цилиндра, обозначаемый Vh.

Если умножить рабочий объем цилиндра на количество цилиндров в двигателе получается тот самый рабочий объем двигателя. Эта цифра в литрах всегда фигурирует среди технических параметров автомобиля. Многие автопроизводители гордо выносят эту цифру на шильдик, располагая его на задней части автомобиля (часто цифру привирают).

Цифра указывающая на рабочий объем двигателя

Объем над поршнем, когда он замер в ВМТ, называют объемом камеры сгорания (Vс). Именно в этом объеме начинается горение смеси паров топлива и воздуха. Сумма объема камеры сгорания и рабочего объема цилиндра называется полным объемом цилиндра :Va = Vh + Vс.

Следующий важный параметр двигателя, это геометрическая степень сжатия. Обозначается ε. Она показывает, во сколько раз изменяется объем над поршнем, когда он перемещается от НМТ к ВМТ, ε = Va/Vc. Чем больше ε, тем выше температура и давление в смеси газов над поршнем при приближении его к ВМТ. Повышение степени сжатия делает двигатель экономичнее и увеличивает его мощность.

Но величина ε зависит от топлива, на которое рассчитан двигатель. Для двигателя, работающего на бензине ε = 6 – 10, для газовых ε = 7 – 9, для дизельных ε = 15 – 20. Отсюда видно, почему бензиновый двигатель легко переоборудовать для работы на газе. У дизелей такое высокое значение ε необходимо для того, чтобы обеспечить самовоспламенение топлива.

Ну а теперь непосредственно о рабочем цикле

Первый такт цикла носит название «впуск». Поршень движется от ВМТ к НМТ. Впускной клапан открыт, и через него в цилиндр поступают пары бензина смешанные с воздухом, так называемая горючая смесь (у дизельного двигателя – чистый воздух).

Второй такт – сжатие. Клапаны закрыты. Поршень движется от НМТ к ВМТ, рабочая смесь (горючая смесь и остатки продуктов горения от предыдущего цикла) сжимается. Когда поршень приближается в ВМТ, у бензиновых двигателей между контактами свечи зажигания проскакивает электрическая искра для поджигания смеси.

Почему искра подается не в ВМТ, а раньше?

Дело в том, что перед началом горения должны пройти реакции, подготавливающие смесь к горению. Интенсивное горение смеси должно начаться только когда поршень достигнет ВМТ. Время на подготовительные реакции всегда одинаковое, а скорость перемещения поршня изменяется при изменении оборотов коленчатого вала. Поэтому приходиться изменять момент подачи искры, изменять, так называемый «угол опережения зажигания».

Меняется угол опережения зажигания

У дизельных двигателей при приближении поршня к ВМТ через специальную форсунку в надпоршневое пространство под высоким давлением впрыскивается топливо. Пока поршень дойдет до ВМТ, топливо должно испариться, перемешаться с воздухом, приготовиться к горению и начать гореть, когда поршень окажется в ВМТ.

Время на подготовку также постоянное, поэтому на высоких оборотах топливо впрыскивается раньше. Изменяется так называемый «угол опережения впрыска».

Третий такт – рабочий ход. Клапаны закрыты. Смесь интенсивно горит, её давление, и температура резко повышаются. Под действием давления поршень движется от ВМТ к НМТ и подталкивает коленчатый вал, подпитывая его энергией.

Четвертый такт – выпуск. Выпускной клапан открыт. Поршень движется от НМТ к ВМТ и отработанные газы выдавливаются из цилиндра.

Цикл закончился и начинается следующий. Следует заметить, что подпитка энергией коленчатого вала происходит только во время такта рабочего хода. Во время всех остальных тактов поршень перемещается (так называемые насосные ходы) за счет энергии, накопленной коленчатым валом от предыдущих рабочих циклов.

Как работает двигатель внутреннего сгорания — видео:

Как работает двигатель внутреннего сгорания, описание процессов

Цикл работы двигателя замкнутый. Возможна организация работы ДВС с кривошипно-шатунным механизмом по двух и четырехтактному циклу. Но подавляющее большинство автомобильных двигателей внутреннего сгорания работает по четырехтактному циклу. Рассмотрим, каким образом происходит эта работа.

Но для начала немного терминологии

Коленчатый вал вращается. Соединенный с ним поршень совершает в цилиндре движение вверх — вниз. Крайние положения поршня в цилиндре называют мёртвыми точками. Это верхняя мёртвая точка (сокращенно ВМТ) и нижняя мёртвая точка (НМТ).

Перемещение поршня от одного крайнего положения до другого называется тактом. Следовательно у четырехтактного двигателя цикл работы выполняется за четыре движения поршня вверх-вниз, что соответствует двум оборотам коленчатого вала.

Если умножить площадь торца (днища) поршня на расстояние между ВМТ и НМТ получим, так называемый, рабочий объем цилиндра, обозначаемый Vh.

Если умножить рабочий объем цилиндра на количество цилиндров в двигателе получается тот самый рабочий объем двигателя. Эта цифра в литрах всегда фигурирует среди технических параметров автомобиля. Многие автопроизводители гордо выносят эту цифру на шильдик, располагая его на задней части автомобиля (часто цифру привирают).

Цифра указывающая на рабочий объем двигателя

Объем над поршнем, когда он замер в ВМТ, называют объемом камеры сгорания (Vс). Именно в этом объеме начинается горение смеси паров топлива и воздуха. Сумма объема камеры сгорания и рабочего объема цилиндра называется полным объемом цилиндра :Va = Vh + Vс.

Следующий важный параметр двигателя, это геометрическая степень сжатия. Обозначается ε. Она показывает, во сколько раз изменяется объем над поршнем, когда он перемещается от НМТ к ВМТ, ε = Va/Vc. Чем больше ε, тем выше температура и давление в смеси газов над поршнем при приближении его к ВМТ. Повышение степени сжатия делает двигатель экономичнее и увеличивает его мощность.

Но величина ε зависит от топлива, на которое рассчитан двигатель. Для двигателя, работающего на бензине ε = 6 – 10, для газовых ε = 7 – 9, для дизельных ε = 15 – 20. Отсюда видно, почему бензиновый двигатель легко переоборудовать для работы на газе. У дизелей такое высокое значение ε необходимо для того, чтобы обеспечить самовоспламенение топлива.

Ну а теперь непосредственно о рабочем цикле

Первый такт цикла носит название «впуск». Поршень движется от ВМТ к НМТ. Впускной клапан открыт, и через него в цилиндр поступают пары бензина смешанные с воздухом, так называемая горючая смесь (у дизельного двигателя – чистый воздух).

Второй такт – сжатие. Клапаны закрыты. Поршень движется от НМТ к ВМТ, рабочая смесь (горючая смесь и остатки продуктов горения от предыдущего цикла) сжимается. Когда поршень приближается в ВМТ, у бензиновых двигателей между контактами свечи зажигания проскакивает электрическая искра для поджигания смеси.

Почему искра подается не в ВМТ, а раньше?

Дело в том, что перед началом горения должны пройти реакции, подготавливающие смесь к горению. Интенсивное горение смеси должно начаться только когда поршень достигнет ВМТ. Время на подготовительные реакции всегда одинаковое, а скорость перемещения поршня изменяется при изменении оборотов коленчатого вала. Поэтому приходиться изменять момент подачи искры, изменять, так называемый «угол опережения зажигания».

Меняется угол опережения зажигания

У дизельных двигателей при приближении поршня к ВМТ через специальную форсунку в надпоршневое пространство под высоким давлением впрыскивается топливо. Пока поршень дойдет до ВМТ, топливо должно испариться, перемешаться с воздухом, приготовиться к горению и начать гореть, когда поршень окажется в ВМТ.

Время на подготовку также постоянное, поэтому на высоких оборотах топливо впрыскивается раньше. Изменяется так называемый «угол опережения впрыска».

Третий такт – рабочий ход. Клапаны закрыты. Смесь интенсивно горит, её давление, и температура резко повышаются. Под действием давления поршень движется от ВМТ к НМТ и подталкивает коленчатый вал, подпитывая его энергией.

Четвертый такт – выпуск. Выпускной клапан открыт. Поршень движется от НМТ к ВМТ и отработанные газы выдавливаются из цилиндра.

Цикл закончился и начинается следующий. Следует заметить, что подпитка энергией коленчатого вала происходит только во время такта рабочего хода. Во время всех остальных тактов поршень перемещается (так называемые насосные ходы) за счет энергии, накопленной коленчатым валом от предыдущих рабочих циклов.

Как работает двигатель внутреннего сгорания — видео:

То есть в течение двух оборотов коленчатого вала подпитка его энергией происходит только пол-оборота. Это одна из причин невысокого коэффициента полезного действия четырехтактных двигателей.

Загрузка…

Как работает автомобильный двигатель

Я никогда не был автолюбителем. Мне просто не было никакого интереса копаться под капотом, чтобы понять, как работает моя машина. За исключением замены воздушных фильтров или замены масла время от времени, если у меня когда-либо возникала проблема с моей машиной, я просто отнес ее к механику, и когда он вышел, чтобы объяснить, что случилось, я вежливо кивнул и притворился. как будто я знал, о чем он говорил.

Но в последнее время мне не терпелось изучить основы работы автомобилей.Я не планирую становиться полноценной обезьяной, но я хочу иметь базовое представление о том, как все в моей машине действительно работает. Как минимум, эти знания позволят мне понять, о чем механик говорит в следующий раз, когда я сяду в машину. Кроме того, мне кажется, что мужчина должен уметь понимать основы технологии, которую он использует. ежедневно. Что касается этого веб-сайта, я знаю, как работают кодирование и SEO; пора мне изучить более конкретные вещи в моем мире, например, что находится под капотом моей машины.

Я полагаю, что есть и другие взрослые мужчины, похожие на меня — мужчины, которые не занимаются машинами, но им немного интересно, как работают их машины. Так что я планирую поделиться тем, что я узнал в ходе собственного исследования, и время от времени возьмусь за серию статей, которые мы назовем Gearhead 101. Цель состоит в том, чтобы объяснить самые основы того, как работают различные части в автомобиле, и предоставить ресурсы о том, где вы можете узнайте больше самостоятельно.

Итак, без лишних слов, мы начнем наш первый урок Gearhead 101 с объяснения всех тонкостей сердца автомобиля: двигателя внутреннего сгорания.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания называется «двигателем внутреннего сгорания», потому что топливо и воздух сгорают внутри двигателя для создания энергии для перемещения поршней, которые, в свою очередь, перемещают автомобиль (мы покажем вы как это происходит подробно ниже).

Сравните это с двигателем внешнего сгорания, где топливо сжигается за пределами двигателя, и энергия, создаваемая при этом сгорании, является его движущей силой. Паровые двигатели — лучший тому пример.Уголь сжигается за пределами двигателя, который нагревает воду для производства пара, который затем приводит в действие двигатель.

Большинство людей думает, что в мире механизированного движения паровые двигатели внешнего сгорания появились раньше, чем двигатели внутреннего сгорания. Реальность такова, что двигатель внутреннего сгорания был первым. (Да, древние греки возились с паровыми двигателями, но из их экспериментов ничего практического не вышло.) поршней.На самом деле, их двигал не порох. Принцип работы этого раннего двигателя внутреннего сгорания заключался в том, что вы вставляли поршень до верхней части цилиндра, а затем зажигали порох под поршнем. После взрыва образовался вакуум, который засосал поршень в цилиндр. Поскольку этот двигатель полагался на изменения давления воздуха для перемещения поршня, они назвали его атмосферным двигателем. Это было не очень эффективно. К 17 годам паровые двигатели были многообещающими, поэтому от двигателей внутреннего сгорания отказались.

Только в 1860 году был изобретен надежный, работающий двигатель внутреннего сгорания. Бельгийский парень по имени Жан Жозеф Этьен Ленуар запатентовал двигатель, который впрыскивал природный газ в цилиндр, который впоследствии воспламенялся постоянным пламенем рядом с цилиндром. Он работал аналогично пороховому атмосферному двигателю, но не слишком эффективно.

Основываясь на этой работе, в 1864 году два немецких инженера по имени Николаус Август Отто и Ойген Ланген основали компанию, которая производила двигатели, аналогичные модели Ленуара.Отто отказался от управления компанией и начал работать над конструкцией двигателя, над которым он играл с 1861 года. Его конструкция привела к тому, что мы теперь знаем как четырехтактный двигатель, и базовая конструкция двигателя до сих пор используется в автомобилях.

Анатомия автомобильного двигателя

Двигатель V-6

Я немного покажу вам, как работает четырехтактный двигатель, но прежде чем я это сделаю, я подумал, что было бы полезно пройти через различные части двигателя, чтобы вы имели представление о том, что и что делает в четырехтактном процессе.В этих объяснениях используется терминология, основанная на других терминах из списка, поэтому не беспокойтесь, если вы сначала запутаетесь. Прочтите все, чтобы получить общее представление, а затем прочтите еще раз, чтобы иметь общее представление о каждой части, о которой идет речь.

Блок цилиндров (блок цилиндров)

Блок двигателя является основой двигателя. Большинство блоков цилиндров отлиты из алюминиевого сплава, но некоторые производители по-прежнему используют железо.Блок двигателя также называют блоком цилиндров из-за большого отверстия или трубок, называемых цилиндрами, которые залиты в интегрированную конструкцию. В цилиндре поршни двигателя скользят вверх и вниз. Чем больше цилиндров в двигателе, тем он мощнее. Помимо цилиндров, в блок встроены другие каналы и каналы, которые позволяют маслу и охлаждающей жидкости течь к различным частям двигателя.

Почему двигатель называется «V6» или «V8»?

Отличный вопрос! Это связано с формой и количеством цилиндров в двигателе.В четырехцилиндровых двигателях цилиндры обычно устанавливаются по прямой линии над коленчатым валом. Эта компоновка двигателя называется рядным двигателем .

Еще одна четырехцилиндровая компоновка называется «плоская четверка». Здесь цилиндры расположены горизонтально двумя рядами, коленчатый вал идет посередине.

Когда двигатель имеет более четырех цилиндров, они делятся на два ряда цилиндров — по три (или более) цилиндра на каждую сторону. Разделение цилиндров на два ряда делает двигатель похожим на букву V.”V-образный двигатель с шестью цилиндрами = двигатель V6. V-образный двигатель с восемью цилиндрами = V8 — по четыре в каждом ряду цилиндров.

Камера сгорания

В камере сгорания двигателя происходит волшебство. Здесь топливо, воздух, давление и электричество объединяются, чтобы создать небольшой взрыв, который перемещает поршни автомобиля вверх и вниз, создавая таким образом силу для движения автомобиля. Камера сгорания состоит из цилиндра, поршня и головки блока цилиндров.Цилиндр действует как стенка камеры сгорания, верхняя часть поршня действует как дно камеры сгорания, а головка цилиндра служит потолком камеры сгорания.

Головка блока цилиндров

Головка блока цилиндров представляет собой кусок металла, который находится над цилиндрами двигателя. В головке блока цилиндров отлиты небольшие закругленные углубления для создания пространства в верхней части камеры сгорания. Прокладка головки герметично закрывает стык между головкой блока цилиндров и блоком цилиндров.Впускные и выпускные клапаны, свечи зажигания и топливные форсунки (эти детали будут объяснены позже) также установлены на головке блока цилиндров.

Поршень

Поршни перемещаются вверх и вниз по цилиндру. Они похожи на перевернутые суповые банки. Когда топливо воспламеняется в камере сгорания, сила толкает поршень вниз, который, в свою очередь, перемещает коленчатый вал (см. Ниже). Поршень прикреплен к коленчатому валу через шатун, он же шатун. Он соединяется с шатуном через поршневой палец, а шатун соединяется с коленчатым валом через шатунный подшипник.

На верхней части поршня вы найдете три или четыре канавки, отлитые в металле. Внутри канавок вставляются поршневые кольца . Поршневые кольца — это часть, которая фактически касается стенок цилиндра. Они сделаны из железа и бывают двух видов: компрессионные кольца и масляные кольца. Компрессионные кольца — это верхние кольца, они прижимаются наружу к стенкам цилиндра, обеспечивая прочное уплотнение камеры сгорания. Масляное кольцо — это нижнее кольцо на поршне, которое предотвращает просачивание масла из картера в камеру сгорания.Он также вытирает излишки масла со стенок цилиндров и обратно в картер.

Коленчатый вал

Коленчатый вал преобразует движение поршней вверх и вниз во вращательное движение, которое позволяет автомобилю двигаться. Коленчатый вал обычно входит в блок цилиндров вдоль дна. Он простирается от одного конца блока двигателя до другого. В передней части двигателя коленчатый вал соединяется с резиновыми ремнями, которые соединяются с распределительным валом и передают мощность другим частям автомобиля; в задней части двигателя распределительный вал соединяется с трансмиссией, которая передает мощность на колеса.На каждом конце коленчатого вала вы найдете сальники или «уплотнительные кольца», которые предотвращают утечку масла из двигателя.

Коленчатый вал находится в так называемом картере двигателя. Картер находится под блоком цилиндров. Картер защищает коленчатый вал и шатуны от посторонних предметов. Область в нижней части картера называется масляным поддоном, и именно здесь хранится масло вашего двигателя. Внутри масляного поддона вы найдете масляный насос, который прокачивает масло через фильтр, а затем это масло разбрызгивается на коленчатый вал, шатунные подшипники и стенки цилиндра, чтобы обеспечить смазку для движения поршня.В конце концов масло стекает обратно в масляный поддон, но процесс начинается снова.

Вдоль коленчатого вала вы найдете балансировочные выступы, которые действуют как противовесы, чтобы уравновесить коленчатый вал и предотвратить повреждение двигателя из-за колебаний, возникающих при вращении коленчатого вала.

Также вдоль коленчатого вала находятся коренные подшипники. Коренные подшипники обеспечивают гладкую поверхность между коленчатым валом и блоком двигателя для вращения коленчатого вала.

Распределительный вал

Распределительный вал — это мозг двигателя.Он работает вместе с коленчатым валом через ремень ГРМ, чтобы впускные и выпускные клапаны открывались и закрывались в нужное время для оптимальной работы двигателя. Распределительный вал использует овальные выступы, которые проходят поперек него, чтобы контролировать время открытия и закрытия клапанов.

Большинство распределительных валов проходят через верхнюю часть блока цилиндров непосредственно над коленчатым валом. В рядных двигателях один распределительный вал управляет как впускным, так и выпускным клапанами. На V-образных двигателях используются два отдельных распредвала.Один управляет клапанами на одной стороне V, а другой — клапанами на противоположной стороне. Некоторые V-образные двигатели (например, тот, что на нашей иллюстрации) будут иметь даже два распределительных вала на ряд цилиндров. Один распределительный вал управляет одной стороной клапанов, а другой распределительный вал — другой стороной.

Система синхронизации

Как упоминалось выше, распределительный вал и коленчатый вал координируют свое движение через ремень или цепь ГРМ. Цепь ГРМ удерживает коленчатый вал и распределительный вал в одном и том же положении относительно друг друга все время во время работы двигателя.Если распредвал и коленчатый вал по какой-либо причине рассинхронизируются (например, цепь ГРМ пропускает зубчатый венец), двигатель не будет работать.

Клапанный механизм

Клапанный механизм — это механическая система, которая установлена ​​на головке блока цилиндров и управляет работой клапанов. Клапанный механизм состоит из клапанов, коромысел, толкателей и подъемников.

Клапаны

Клапаны бывают двух типов: впускные и выпускные. Впускные клапаны подают смесь воздуха и топлива в камеру сгорания, чтобы создать сгорание для питания двигателя.Выпускные клапаны позволяют выхлопным газам, образовавшимся после сгорания, выходить из камеры сгорания.

В автомобилях обычно есть один впускной клапан и один выпускной клапан на цилиндр. Большинство высокопроизводительных автомобилей (Ягуары, Мазерати и др.) Имеют четыре клапана на цилиндр (два впускных, два выпускных). Хотя Honda не считается «высокопроизводительным» брендом, она также использует в своих автомобилях четыре клапана на цилиндр. Есть даже двигатели с тремя клапанами на цилиндр — двумя впускными клапанами, одним выпускным клапаном. Многоклапанные системы позволяют автомобилю лучше «дышать», что, в свою очередь, улучшает характеристики двигателя.

Коромысла

Коромысла — это маленькие рычаги, которые касаются кулачков или кулачков распределительного вала. Когда лепесток поднимает один конец коромысла, другой конец коромысла давит на шток клапана, открывая клапан, чтобы впустить воздух в камеру сгорания или выпустить выхлоп. Это работает как качели.

Толкатели / подъемники

Иногда кулачки распределительного вала непосредственно касаются коромысла (как вы видите в двигателях с верхним распределительным валом), открывая и закрывая клапан.В двигателях с верхним расположением клапана кулачки распределительного вала не контактируют напрямую с коромыслами, поэтому используются толкатели или толкатели.

Топливные форсунки

Чтобы создать сгорание, необходимое для перемещения поршней, нам нужно топливо в цилиндрах. До 1980-х годов автомобили использовали карбюраторы для подачи топлива в камеру сгорания. Сегодня все автомобили используют одну из трех систем впрыска топлива: прямой впрыск топлива, впрыск топлива через отверстия или впрыск топлива через корпус дроссельной заслонки.

При непосредственном впрыске топлива каждый цилиндр имеет собственную форсунку, которая впрыскивает топливо прямо в камеру сгорания в самый подходящий момент для сгорания.

При распределенном впрыске топлива вместо того, чтобы распылять топливо непосредственно в цилиндр, оно распыляется во впускной коллектор сразу за клапаном. Когда клапан открывается, воздух и топливо попадают в камеру сгорания.

Системы впрыска топлива с дроссельной заслонкой работают как карбюраторы, но без карбюратора. Вместо того, чтобы каждый цилиндр получил свою собственную топливную форсунку, есть только одна топливная форсунка, которая идет к корпусу дроссельной заслонки. Топливо смешивается с воздухом в корпусе дроссельной заслонки, а затем распределяется по цилиндрам через впускные клапаны.

Свеча зажигания

Над каждым цилиндром находится свеча зажигания. Когда он загорается, он воспламеняет сжатое топливо и воздух, вызывая мини-взрыв, который толкает поршень вниз.

Четырехтактный цикл

Итак, теперь, когда мы знаем все основные части двигателя, давайте взглянем на механизм, который на самом деле заставляет нашу машину двигаться: четырехтактный цикл.

На приведенном выше рисунке показан четырехтактный цикл в одном цилиндре. То же самое происходит и с другими цилиндрами.Повторите этот цикл тысячу раз в минуту, и вы получите движущуюся машину.

Ну вот. Основы работы автомобильного двигателя. Загляните сегодня под капот вашего автомобиля и посмотрите, сможете ли вы указать на детали, которые мы обсуждали. Если вам нужна дополнительная информация о том, как устроен автомобиль, посмотрите книгу How Cars Work. Это очень помогло мне в моих исследованиях. Автор отлично справляется с переводом вещей на язык, понятный даже новичку.

Теги: Автомобили

Как работает ваш двигатель

Как работает ваш двигатель и как с ним «лечить»

Джеймс Уильямс

Источник: Брифинг по безопасности FAA, январь / февраль 2020 г.

Двигатель самолета — это самое близкое к сердцу.Двигатель обеспечивает энергию, которая не только приводит в движение самолет, но и приводит в действие все другие системы. Двигатель вращает генератор, вырабатывающий электричество. На нем работают различные насосы, питающие системы, такие как гидравлика, наддува и т. Д.

Для большинства из нас, работающих в авиации общего назначения, двигатель означает двигатель внутреннего сгорания. В частности, это означает поршневой двигатель, термин, который просто обозначает возвратно-поступательное движение поршней. Цель двигателя — преобразовать потенциальную энергию, хранящуюся в топливе, в механическую энергию, которая питает ваш самолет, с помощью небольшого количества воздуха.

Базовая анатомия

Двигатель состоит из нескольких основных компонентов. Во-первых, это цилиндр, в котором происходит горение. Далее идет поршень, который вставляется в цилиндр снизу и обеспечивает сжатие и поглощение энергии от сгорания. Поддерживает поршень шатун, который передает энергию вниз к коленчатому валу, передавая ее из двигателя, обычно на гребной винт.

Как следует из названия, головка блока цилиндров находится наверху цилиндра и содержит важные компоненты, такие как клапаны и свечи зажигания.Клапаны открываются, позволяя воздуху и топливной смеси попасть в цилиндр (впускной клапан) и выпустить отработавшие газы (выпускной клапан). Свеча зажигания воспламеняет сжатое топливо и воздух, преобразовывая эту химическую энергию в механическую энергию, которая вращает коленчатый вал и вращает пропеллер. Теперь, когда мы знаем основы, давайте посмотрим, как эти части работают вместе.

И один, два, три, четыре, повторить!

Авиационные двигатели — это, за некоторыми исключениями, четырехтактные двигатели с четырьмя отдельными фазами: впуском, сжатием, мощностью и выпуском.Во время такта впуска поршень опускается из верхней части цилиндра, в то время как впускной клапан открывается, впуская топливно-воздушную смесь. Такт сжатия начинается, когда впускной клапан закрывается, и поршень начинает подниматься к верхней части цилиндра. Рабочий ход начинается, когда свеча зажигания воспламеняет сжатую топливно-воздушную смесь, вызывая сгорание, которое с силой толкает поршень вниз. Такт выпуска начинается, когда поршень достигает нижней мертвой точки и снова начинает подниматься, выталкивая сгоревшие газы через открытый выпускной клапан.Затем мы начинаем все сначала. Хотя мы разбиваем процесс на отдельные этапы, в действительности это более непрерывный процесс.

Поддерживающий состав

Охлаждение двигателя — одна из систем, помогающих вашему двигателю работать. Двигатели внутреннего сгорания превращают большую часть энергии сгорания в отходящее тепло. Хотя большая часть тепла уходит через выхлоп, остается значительное количество тепла. Наши двигатели обычно имеют воздушное охлаждение, поэтому логика подсказывает, что чем больше воздуха, тем лучше охлаждение.Следовательно, гондола содержит каналы и перегородки, которые направляют воздушный поток равномерно через охлаждающие поверхности двигателя, таким образом поддерживая баланс рабочей температуры двигателя. Если эти перегородки снять или повредить, чрезмерное нагревание части двигателя может привести к дополнительному износу и, возможно, поломке.

Помимо охлаждения двигателю необходимы воздух и топливо. Впускной коллектор направляет смесь в цилиндр, и топливо добавляется через карбюратор или топливные форсунки.Карбюратор остается наиболее распространенным решением. Карбюраторы — это более старая технология, но их преимущество состоит в том, что они являются хорошо протестированным, менее сложным и очень надежным решением.

Впрыск топлива обеспечивает больший контроль и большую эффективность, но является более сложным. У карбюраторов есть один явный недостаток: обледенение карбюратора может заглушить двигатель. Подогрев углеводов — простое решение этой конкретной проблемы, но вы должны активировать его.

Еще есть выхлопная система, отводящая отработанные газы и тепло из цилиндра.Выхлопная система безопасно выводит горячие газообразные продукты сгорания из моторного отсека в глушитель. Несмотря на свое скромное описание, выхлопная система абсолютно безопасна.

Один из способов получить больше мощности от двигателя — увеличить количество воздуха и топлива в цилиндре во время сгорания. Это можно сделать с помощью принудительной индукции, обычно называемой турбонаддувом или наддувом. Турбонаддув более распространен в современных самолетах GA, но оба метода, по сути, делают одно и то же.Они сжимают всасываемый воздух, чтобы нагнетать в двигатель больше воздуха и топлива, чем позволяют нормальные атмосферные условия. Разница в том, что турбонаддув использует выхлопные газы двигателя для питания компрессора, в то время как нагнетатель регулирует выходную мощность двигателя.

Здоровье сердца

Теперь, когда мы знаем, как работает двигатель самолета, давайте посмотрим, как это «сердце» может попасть в беду. Во время предполетной подготовки важно найти все признаки утечки или повреждения топливопроводов или маслопроводов.В максимально возможной степени визуально проверьте соединения; ослабленные провода или провода могут натереться и быстро превратить незначительную проблему в серьезную аварию.

Никогда не забывайте проверять масло, которое является источником жизненной силы двигателя. Он помогает передавать тепло от горячих частей двигателя к областям, где оно может безопасно рассеиваться. Что еще более важно, он смазывает двигатель, чтобы он мог эффективно работать. Масляное голодание, будь то утечка, возгорание или просто поломка, является одной из частых причин «сердечных» нарушений в самолетах.Также имейте в виду, что масло со временем разлагается, становясь менее эффективным. Независимо от причины недостаточная смазка может привести к серьезным повреждениям. Контроль не только за количеством масла, но и за его состоянием во время предполетной подготовки имеет решающее значение.

Современная авионика и системы слежения за двигателем сделали обнаружение проблем более проактивным. Анализ данных может позволить вмешаться до возникновения чрезвычайной ситуации. В сочетании с лучшим пониманием двигателя и тщательной предполетной подготовкой они могут стать большой положительной силой.Всегда лучше найти проблему в данных, а не в воздухе.

Узнать больше

Справочник пилотов по аэронавигационным знаниям — Глава 7 bit.ly/354k5ex

Джеймс Уильямс — помощник редактора и фоторедактор FAA Safety Briefing. Он также является пилотом и наземным инструктором.

Как работает автомобильный двигатель?

Если вы похожи на большинство водителей, ваше понимание того, как работает автомобильный двигатель, сводится к смутному ощущению, что вы заправляете бензин, происходит какой-то пожар и вы продвигаетесь вперед.

Ford Mustang Motor (Ford Motor Company)

Для многих это вся необходимая информация. Но любопытным нужно больше, и вот оно.

Так работает автомобильный двигатель:

Думайте о двигателе вашего автомобиля как о большом воздушном насосе, потому что это именно то, чем он является. Бензин, поршни, свечи зажигания — все это здесь, чтобы облегчить прокачку воздуха через двигатель и, тем самым, выработку энергии. Существует множество различных типов воздушных насосов, но в случае с двигателем внутреннего сгорания энергия, необходимая для перекачивания насоса, вырабатывается путем смешивания воздуха с топливом и поджигания этой смеси.

Все начинается с воздуха за пределами машины. Этот воздух фильтруется воздушным фильтром, а затем сразу же смешивается с топливом либо через карбюратор (в старых автомобилях), либо через систему впрыска топлива. Эта смесь топлива и воздуха затем проходит через впускной коллектор, который направляет ее к головке (головкам) цилиндров.

Головка блока цилиндров выполняет роль своего рода привратника между впуском и камерами сгорания (цилиндрами). Большинство автомобилей имеют четыре, шесть или восемь камер сгорания, и если бы все эти камеры одновременно воспламеняли топливно-воздушную смесь, двигатель не работал бы плавно и не генерировал бы большую мощность.Чтобы насос работал плавно и эффективно, подача топливной смеси и искра, вызывающая взрыв, должны быть точно задержаны по таймауту.

Для того, чтобы это произошло, вам нужны клапаны, и вам нужно, чтобы эти клапаны открывались в нужный момент. В двигателе автомобиля эти клапаны являются частью головки блока цилиндров, и они открываются и закрываются за счет вращения распределительного вала, который вращается внутри двигателя, используя продолговатые выступы, чтобы толкать клапаны. При открытом впускном клапане цилиндр заполняется топливной смесью.Теперь вам нужно что-то, чтобы раздать искру в камеру сгорания. Сюда входит дистрибьютор. Распределительный вал и распределитель — это друг друга, соединенные шестернями, так что распределитель всегда знает, какой цилиндр нуждается в искре.

Когда впускной клапан открывается, распределитель посылает искру через провод свечи зажигания к свече зажигания. Это вызывает искру внутри цилиндра, которая, в свою очередь, вызывает взрыв. Этот взрыв толкает поршень вниз, толкая его к коленчатому валу, что приводит к вращению коленчатого вала.Это вращение, в свою очередь, вращает трансмиссию, которая вращает карданный вал, который вращает колеса. На скорости по шоссе коленчатый вал будет вращаться со скоростью около 3000 оборотов в минуту (об / мин).

Одновременно выпускные клапаны выпускают остатки сгоревшей топливной смеси, направляя их через выхлопную систему и попутно фильтруя.

Это так просто. Чем больше воздуха вы накачиваете, тем больше мощности вырабатываете.

Похожие сообщения:

Как Turbo работает в автомобиле?

Нагнетатель vs.Турбокомпрессор

Как работает гибридный автомобиль?

Как работают автомобильные двигатели — не базовое руководство для четырехтактных двигателей — Tech

Просмотреть все 17 фотографий

В тот или иной момент все мы чувствовали боль от неправильно примененных модификаций. Даже самые уважаемые имена в тюнинг-индустрии были по крайней мере один раз перехвачены. Тем, кто продвинулся вперед, чтобы творить историю власти, несомненно, была короткая и прямая кривая обучения, но некоторые из нас, кажется, никогда не учатся и просто изо всех сил пытаются добиться власти.

Устали проигрывать перед толпой? Гуру местного тюнингового цеха пугает вас квазинаучной ерундой? Как узнать, хороша ли эта мелодия ПЗУ или последняя китайская подделка, соблазняющая вас на eBay? Что такое распредвал большего размера? Вы огорчены неприятными сюрпризами на динамометрических стенах или вас накрывают на форумах?

Посмотреть все 17 фотографий Манипулирование четырехтактным циклом необходимо при поиске большей мощности, поэтому важно полностью понимать различные части и то, как они влияют на общую выходную мощность.

Если вы попадаете в любую из этих категорий, продолжайте читать. Информация проста, но вам важно понять, является ли ваша цель работать в наполненном жаргоном мире моддинга двигателей. Кроме того, если вы хотите ехать быстрее, вы должны понимать, как работают двигатели.

Автомобили, за исключением роторных, приводятся в движение четырехтактным двигателем Отто. Название происходит от четырех тактов силового цикла: такта впуска, такта сжатия, рабочего такта и такта выпуска.Цикл объясняет, как взрыв бензина и воздуха можно плавно преобразовать в полезную мощность, отбросив вас на четверть мили или просто доставив на работу.

Детали двигателя работают слаженно и точно, используя химическую энергию бензина, преобразуя небольшие взрывы воздуха и топлива во вращательное движение. Поклонники Honda могут считать, что им повезло. Компания предлагает одни из самых современных двигателей для автомобилей. Просто имея Honda, вы впереди всех.

Блок
Блок содержит возвратно-поступательные компоненты, которые используют взрывчатые свойства бензина. Поршни скользят вверх и вниз по отверстиям цилиндрической формы, количество отверстий равно количеству цилиндров. Блок также содержит каналы для охлаждения и смазки для воды и масла. Внутри находятся опоры коренных подшипников коленчатого вала. Блоки обычно изготавливаются из чугуна, а Honda — из легкого алюминия. Четырехцилиндровые двигатели используются в большинстве Honda, хотя Accord, NSX и различные типы внедорожников предлагают шестицилиндровые силовые установки.

Посмотреть все 17 фотографий Поршни представляют собой алюминиевые цилиндры, которые скользят вверх и вниз по отверстию блока. Для эффективной работы им требуются тонкие кольца круглой формы, которые изолируют камеру и предотвращают прохождение давления сгорания через поршень, теряя давление, генерирующее энергию.

Поршни
Проще говоря, поршни представляют собой цилиндры из алюминия, которые скользят вверх и вниз по отверстиям блока, причем верхняя часть отверстий блокируется головкой блока цилиндров. Чтобы создать движущую силу, воспламеняющийся заряд сжатого бензина и воздуха воспламеняется в отверстии, вынуждая поршень опускаться к открытому концу цилиндра от головки цилиндра.Это основная предпосылка того, как работает двигатель.

Поршни также имеют кольца, которые представляют собой тонкие круглые пружинящие металлические уплотнения, которые входят в канавки вокруг их вершин. Кольца помогают предотвратить прорыв давления сгорания через поршень и потерю давления, производящего энергию. Кольца также помогают соскребать смазочное масло со стенок цилиндра, чтобы предотвратить горение масла внутри цилиндра. Без колец было бы невозможно развить компрессию, достаточную для работы, а также сжечь все это масло всего за несколько минут работы.

Посмотреть все 17 фотографий Шатуны передают силу взрыва, необходимую для проталкивания поршней вниз по отверстиям к коленчатому валу. Шатуны выглядят как металлические собачьи кости, соединенные с вашими поршнями.

Шатуны
Шатуны передают силу взрыва, толкая поршни вниз по своим отверстиям к коленчатому валу. Шатуны выглядят как металлические собачьи кости и прикреплены к поршням с помощью пальцев на запястье — это был бы маленький конец шатуна. Другой конец стержня прикреплен к кривошипу.Это называется большой головкой, поскольку шейки кривошипа намного больше, чем шейки булавки на запястье. Цапфы кривошипа должны быть больше, поскольку кривошип вращается с высокой скоростью, в отличие от простого качательного движения пальца. Это высокоскоростное вращение требует дополнительной опорной поверхности, чтобы предотвратить повреждение штока и кривошипа от трения. Большой конец штока плавно вращается на шейке кривошипа над масляной пленкой под давлением и подшипником скольжения — это подшипники штока. На типичном двигателе Honda на малом конце стержня есть бронзовая втулка для пальца на запястье, которая смазывается разбрызгиванием масла по всему блоку.

Коленчатый вал
Коленчатые валы двигателя похожи на коленчатые валы велосипеда, потому что они передают восходящие и опускающиеся силы — поршни, проталкиваемые через отверстие в результате взрыва воздуха / топлива, — во вращательное движение, вызывающее вращение ваших колес. Кривошипы имеют смещенный ход, точно так же, как и кривошип вашего велосипеда, за исключением того, что стержни и поршни выполняют ту же функцию, что и ваши ноги: они толкают восходящий ход вниз, поскольку поршень проталкивается в том же направлении через канал ствола за счет взрыва воздуха / топлива.Это то, что заставляет вашу машину ездить. Как только поршень опускается, кривошип вращается, и поршень снова перемещается вверх, пока не достигнет вершины, где его можно снова толкнуть вниз в результате еще одного взрыва воздуха / топлива. Кривошип вращается на своих главных шейках на подшипнике скольжения с масляной пленкой (главные подшипники), точно так же, как шатуны на их больших концах.

Просмотреть все 17 фотографий Просмотреть все 17 фотографий Камеры сгорания головки блока цилиндров содержат силы взрыва, необходимые для воспламенения топливно-воздушной смеси, которая в конечном итоге приводит к опусканию поршней.

Головка блока цилиндров
Головки блока цилиндров Honda представляют собой алюминиевые отливки, закрывающие верхнюю часть блоков цилиндров. В них находятся свечи зажигания, камеры сгорания, клапаны и клапанный механизм. Головка должна выдерживать взрывную силу для воспламенения топливно-воздушной смеси, чтобы поршни опускались вниз и не вылетали. Камеры сгорания интегрированы в головку блока цилиндров, где расположены клапаны и свечи зажигания. Если смотреть на нижнюю часть головки блока цилиндров (сторона, которая сопрягается с блоком), камеры сгорания представляют собой углубления, которые совпадают с отверстиями.Именно внутри этих камер, когда поршень находится в верхней точке своего хода, воспламеняется топливно-воздушная смесь, начиная рабочий ход. Головка блока цилиндров также имеет рубашки охлаждения, заполненные циркулирующей водой, что помогает предохранить камеры сгорания от перегрева. Головка блока цилиндров содержит впускные и выпускные отверстия, которые представляют собой каналы, через которые проходит впускной воздух и выхлопные газы, когда они входят в цилиндры и выходят из них.

Просмотреть все 17 фото

Клапанный механизм
Современные головки двигателя с верхним распределительным валом (верхним распределительным валом) содержат впускные и выпускные клапаны; оба являются подпружиненными тарельчатыми клапанами.Пружины удерживают клапаны закрытыми, но позволяют им открываться при нажатии. Впускные клапаны открываются, пропуская взрывоопасную топливно-воздушную смесь в камеру сгорания. Они закрываются, позволяя двигателю создавать сжатие, когда поршень, приводимый в движение кривошипом, достигает ВМТ (верхней мертвой точки) — точки, в которой поршень достигает верхней точки своего хода. Когда свеча зажигания воспламеняет смесь и последующий взрыв толкает поршень вниз, выпускные клапаны открываются в нижней части хода поршня, позволяя сгоревшим газам выходить, подготавливая камеру сгорания для следующего заряда свежего воздуха и топлива.

Посмотреть все 17 фото Клапаны открываются и закрываются с помощью распредвалов. Распределительные валы в основном представляют собой стержни со смещенными от центра выступами или выступами, которые вращаются внутри головки блока цилиндров на половине скорости коленчатого вала.

Клапаны открываются и закрываются с помощью распределительных валов, которые в основном представляют собой штоки со смещенными от центра выступами или выступами, которые вращаются внутри головки блока цилиндров на половине скорости коленчатого вала. Лепестки распределительного вала открывают и закрывают клапаны для впуска воздуха и топлива и удаления выхлопных газов. Некоторые кулачки работают непосредственно на клапанах, как на многих мотоциклетных и некоторых гоночных двигателях.Обычно распределительный вал приводит в движение клапаны через коромысло, которое похоже на миниатюрную качельку. Один конец коромысла трется о вращающийся распределительный вал, а другой конец толкает клапаны, открывая и закрывая их. Знакомые вам двигатели Honda используют коромысла.

Посмотреть все 17 фотографий В двигателях Lucky Honda используется высокоэффективная система изменения фаз газораспределения VTEC-Honda. Система имеет два набора кулачков впуска и выпуска, один из которых оптимизирован для эффективности на низких оборотах, а другой — для работы на высоких оборотах.Honda i-VTEC похожа, но также позволяет регулировать фазу впускного распредвала на лету для еще более широкого диапазона мощности. Двигатели

Honda — это двигатели с верхним расположением распредвала, что означает, что распределительный вал находится внутри головки цилиндров наверху клапанов. Это отличается от двигателей с верхним расположением клапанов, таких как низкооборотный отечественный V-8 с расположенным в блоке распределительным валом, который соединяется с его клапанами с помощью толкателей, толкателей и коромысел. Двигатели OHC лучше подходят для высокоскоростных спортивных компактных двигателей небольшого рабочего объема, потому что они имеют более простые, легкие и клапанные механизмы прямого действия.Эти клапанные механизмы лучше работают на более высоких оборотах двигателя, поскольку их меньшая инерционная масса позволяет им более точно следовать за кулачками распределительного вала.

Посмотреть все 17 фотографий Двигатели SOHC оснащены одним распредвалом, который управляет всеми клапанами, но многие двигатели Honda имеют конфигурации DOHC, что означает, что для впускных и выпускных клапанов имеется отдельный распредвал. Преимущество здесь состоит в том, что распределительные валы могут быть размещены ближе к клапанам, что позволяет их выступам работать либо непосредственно на клапанах, либо через меньшие коромысла.Это сводит к минимуму инерционную массу клапанного механизма, что еще больше способствует работе на высоких оборотах. Двигатели

SOHC (с одним верхним распредвалом) имеют только один распределительный вал, который управляет как впускными, так и выпускными клапанами, но многие силовые установки Honda оснащены двумя верхними распредвалами, что означает, что для впускных и выпускных клапанов имеется отдельный распредвал. Преимущество здесь состоит в том, что распределительные валы могут быть размещены ближе к клапанам и позволяют их выступам работать либо непосредственно на клапанах, либо через меньшие коромысла.Это сводит к минимуму инерционную массу клапанного механизма, что еще больше способствует работе на высоких оборотах. В большинстве высокопроизводительных двигателей Honda используются клапанные механизмы с двумя верхними распредвалами, также известная как конфигурация DOHC.

Select Двигатели Honda — это одна из величайших инноваций для экономичных двигателей малого рабочего объема — VTEC. VTEC — это уникальная и высокоэффективная система изменения фаз газораспределения Honda. Система имеет два набора кулачков впуска и выпуска: один оптимизирован для эффективности на низких оборотах, другой — для работы на высоких оборотах.Это дает двигателю более широкий рабочий диапазон, позволяя создать что-то, что будет достаточно послушным на более низких оборотах двигателя, но сохранит способность кричать на высоких оборотах. Honda i-VTEC похожа, но также позволяет регулировать фазу впускного распредвала, продвигая и замедляя его, чтобы изменить перекрытие кулачков для более широкого диапазона мощности.

Посмотреть все 17 фотографий Впускная система состоит из впускного коллектора с открытой камерой или камерой статического давления, прикрепленных к серии труб, идущих от камеры статического давления к впускным каналам головки блока цилиндров.Корпус дроссельной заслонки служит клапаном для дозирования воздуха и крепится к концу камеры статического давления.

Система впуска
Система впуска состоит из впускного коллектора с открытой камерой или камерой статического давления, прикрепленных к серии труб, которые простираются от камеры до впускных отверстий головки блока цилиндров. Корпус дроссельной заслонки служит клапаном для дозирования воздуха и крепится к концу камеры статического давления. Корпус дроссельной заслонки контролирует количество воздуха, всасываемого двигателем, таким образом регулируя частоту вращения двигателя и мощность в лошадиных силах.Когда он закрыт, воздух ограничен, поэтому двигатель вынужден работать на холостом ходу. Когда он широко открыт, двигатель поглощает все, что может, чтобы обеспечить максимальную мощность, на которую он способен. Коллектор содержит топливные форсунки, которые представляют собой электромеханические клапаны, управляемые ЭБУ — мозгом двигателя. ЭБУ контролирует количество впрыскиваемого топлива, регулируя время открытия и закрытия крошечных клапанов форсунок. В режиме холостого хода впрыскивается только небольшое количество топлива, но при полностью открытой дроссельной заслонке, позволяющей всасывать дополнительный воздух, ЭБУ сигнализирует инжекторам, чтобы они оставались открытыми дольше, чтобы впрыснуть пропорционально большее количество топлива.Чем больше топлива и больше воздуха, тем больше взрывы и мощность колес.

Система зажигания
Электрическая искра, синхронизируемая ЭБУ и проходящая через электроды свечи зажигания, воспламеняет горючую топливно-воздушную смесь в цилиндрах. Искра зажигается непосредственно перед тем, как поршень достигает ВМТ, около пика самого высокого давления сжатия в цилиндре. Это наиболее эффективное время для зажигания искры. Обычно синхронизация зажигания увеличивается вместе с частотой вращения двигателя, потому что при более высоких оборотах двигателя меньше времени для возникновения событий сгорания, поэтому для поддержания надлежащей работы необходимо запускать зажигание раньше в цикле.

Просмотреть все 17 фотографий

Выхлопная система
Выхлопная система отводит отработавшие выхлопные газы от двигателя. Сюда входят выпускной коллектор, каталитический нейтрализатор и выпускной трубопровод. Коллектор собирает выхлопные газы каждого из выпускных отверстий головки цилиндров и собирает их в единую трубу. Это приводит к каталитическому нейтрализатору, где ядовитые компоненты выхлопного газа, такие как оксид азота, различные несгоревшие углеводороды и моноксид углерода, превращаются в нетоксичный диоксид углерода и водяной пар.Оттуда газы попадают в выхлопную трубу, где проходят через глушитель, снижая уровень шума до приемлемого уровня, а затем выбрасываются в атмосферу.

Ход впуска
Имея базовое представление о движущихся частях двигателя, находящихся под вашим поясом, сейчас самое время объяснить четырехтактный процесс и выяснить, как все работает вместе. Манипулирование циклом важно при поиске дополнительной мощности, поэтому важно полностью понимать различные части и то, как они влияют на общую выходную мощность, начиная с такта впуска.

Посмотреть все 17 фото

Начнем с поршня в ВМТ. Впускной клапан начинает открываться, когда выпускной клапан закрывается. Когда коленчатый вал поворачивается, шатун начинает тянуть поршень вниз, от ВМТ. Имейте в виду, что кривошип соединен с распределительным валом цепью или ремнем, поэтому при повороте кривошипа впускной клапан открывается до полного открытия. Движущийся вниз поршень создает всасывание в цилиндре, поэтому воздух и впрыскиваемый бензин из впускного коллектора втягиваются внутрь.Это продолжается до тех пор, пока поршень не достигнет НМТ (нижней мертвой точки). Из-за формы распределительного вала впускной клапан почти полностью закрывается к тому времени, когда поршень достигает НМТ. К концу такта впуска остается цилиндр, полный смеси свежего воздуха и топлива.

Ход сжатия
К этому моменту поршень начинает движение вверх, толкаемый коленчатым валом и шатуном. Впускной клапан полностью закрыт, и по мере того, как поршень движется вверх, воздушно-топливная смесь сжимается.Это сжатие заставляет молекулы воздуха и топлива сближаться, пока они не превратятся в высокореактивную взрывчатую смесь. Чем ближе молекулы друг к другу, тем легче вызвать взрыв. Когда поршень снова приближается к ВМТ, система зажигания зажигает свечу зажигания, что вызывает еще один взрыв внутри цилиндра.

См. Все 17 фотографий На приведенной выше диаграмме показаны события клапана в зависимости от вращения коленчатого вала. Обратите внимание, что требуется два оборота коленчатого вала — всего 720 градусов вращения — для каждого полного оборота распределительного вала или 360 градусов вращения.

Рабочий ход
К тому времени, когда поршень находится в ВМТ, взрыв воздуха / топлива внутри плотно закрытого цилиндра уже идет полным ходом. Теплота и давление взрыва быстро возрастают, и поршень с большой силой толкается вниз по цилиндру. Это движущая сила, которая раскручивает ваши колеса и толкает вас по трассе. По мере того как поршень толкается вниз и объем цилиндра увеличивается, давление в цилиндре уменьшается. Как только поршень приближается к дну отверстия, распределительный вал начинает открывать свой выпускной клапан.

Ход выхлопа
Здесь не происходит ничего особенного. Когда поршень снова перемещается от НМТ вверх, выпускной клапан открывается, и сгоревшие газы вытесняются из цилиндра в систему выпуска. К тому времени, когда поршень достигает верха своего отверстия, выпускной клапан почти закрыт, а впускной клапан начинает открываться, и цикл повторяется.

Посмотреть все 17 фотографий

Каждый цилиндр любого четырехтактного двигателя совершает четыре хода на каждые два оборота коленчатого вала.Так как распределительные валы имеют по одной выпуклости для каждого выступа и приводятся во вращение на половине скорости коленчатого вала, клапаны открываются с каждым вторым оборотом коленчатого вала. Представьте, что это происходит даже при консервативных 7000 об / мин, когда цикл повторяется примерно 60 раз в секунду на цилиндр. На таких скоростях легко представить себе более непрерывный поток энергии, исходящий от этой, казалось бы, дерганной системы.

Как работает автомобильный двигатель

В словаре двигатель определяется как машина с движущимися частями, которая преобразует мощность в движение.Поэтому, когда мы рассматриваем, как работает автомобильный двигатель, мы можем игнорировать многие дополнительные детали (водяной насос, генератор переменного тока, стартер и т. Д.), Которые многие люди также сочли бы частью двигателя.

Они существуют в том смысле, что помогают продлить срок службы двигателя автомобиля, но они не участвуют напрямую в производстве мощности.

Как двигатель автомобиля вырабатывает мощность?

Последовательность строго контролируемых взрывов толкает вниз поршни (они выглядят как перевернутые кружки), прикрепленные к металлическим стержням, называемым шатунами.Эти стержни прикреплены к гораздо большему и чрезвычайно прочному куску металла в нижней части двигателя, который лежит под прямым углом к ​​ним. Это коленчатый вал.

Движение поршней и шатунов вверх и вниз преобразуется во вращательное движение вращающимся коленчатым валом. К коленчатому валу подключено все, что угодно, включая коробку передач и трансмиссию.

Что вызывает взрывы?

В бензиновом двигателе они вызываются свечами зажигания (по одной на поршень, но иногда по две).Когда через них проходит электрический заряд, они генерируют искру, воспламеняющую смесь бензина и воздуха.

Все это происходит в камере сгорания, небольшом пространстве между верхней частью поршня и цилиндром. Цилиндр — это то, в чем поршень движется вверх и вниз. Двигатели часто известны по количеству цилиндров, которые у них есть. Наиболее распространен четырехцилиндровый двигатель с расположенными в одну линию цилиндрами.

Горячие газы, выделяемые свечой зажигания, воспламеняющей топливно-воздушную смесь, быстро расширяются внутри камеры сгорания, толкая поршень вниз по цилиндру.

В дизельном двигателе нет свечей зажигания. Вместо этого взрыв вызван поршнем, сжимающим воздух в камере сгорания до такой степени, что он становится очень горячим. В этот момент в него впрыскивается дизельное топливо, которое самовоспламеняется, вызывая взрыв, который снова заставляет поршень опускаться.

Как работает современный двигатель

Вы поворачиваете ключ в замке зажигания, и двигатель заводится. Вы нажимаете на газ, и машина движется вперед. Вы вынимаете ключ, и двигатель глохнет.Так работает твой двигатель, верно? Он намного более подробный, чем многие из нас думают, и закулисные процессы происходят каждую секунду.

Внутреннее устройство вашего двигателя

Двигатель вашего автомобиля состоит из двух основных компонентов: блока цилиндров и головки блока цилиндров.

Блок двигателя

Блок составляет основную часть размера и веса вашего двигателя. Скорее всего, это цельный кусок чугуна или алюминия. В рядном двигателе все цилиндры расположены по прямой линии, чаще всего в четырехцилиндровых двигателях и в некоторых конфигурациях с шестью цилиндрами.V-образный блок используется в некоторых шестицилиндровых двигателях и практически во всех восьмицилиндровых двигателях. Эта конструкция разделяет ряд цилиндров на две группы, которые образуют V-образную форму.

В блоке двигателя находится коленчатый вал. Коленчатый вал представляет собой прочный вращающийся кусок металла, подвергнутого прецизионной механической обработке. В нем есть ступеньки, называемые каналами, которые соответствуют количеству цилиндров в двигателе. Это места крепления шатунов поршня к коленчатому валу. Мощность, генерируемая в двигателе, заставляет коленчатый вал вращаться, начиная процесс передачи мощности на колеса автомобиля.

Поршни входят в цилиндры блока цилиндров. Они перемещаются вверх и вниз в цилиндрах во время работы двигателя для передачи энергии коленчатому валу. Поршневые кольца создают уплотнение в цилиндре, предотвращая потерю мощности в блоке цилиндров. Позже мы рассмотрим работу поршней.

Головка блока цилиндров

Верхняя часть двигателя называется головкой блока цилиндров. Он содержит клапаны, которые открываются и закрываются для регулирования потока топливовоздушной смеси и выхлопных газов из отдельных цилиндров.На каждом цилиндре должно быть не менее двух клапанов: один для впуска (впускание несгоревшей топливовоздушной смеси в цилиндр) и один для выпуска (для выхода отработанной топливовоздушной смеси из двигателя). Многие двигатели используют несколько клапанов для впуска и выпуска.

Распределительный вал прикреплен либо через середину, либо вверху головки блока цилиндров для управления работой клапанов. Распределительный вал имеет выступы, называемые лепестками, которые заставляют клапаны точно открываться и закрываться.

Распределительный вал и коленчатый вал тесно связаны.Они должны работать в идеальное время, чтобы двигатель вообще работал. Они соединяются с помощью цепи или ремня ГРМ для поддержания этого времени. Распредвал должен совершать два полных оборота на каждый оборот коленчатого вала. Один полный оборот коленчатого вала — это два хода поршня в его цилиндре. Энергетический цикл — процесс, который фактически производит мощность, необходимую для движения вашего автомобиля, — требует четырех ходов поршня. Давайте подробнее рассмотрим работу поршня внутри двигателя и четыре различных этапа:

  • Впуск : Чтобы начать энергетический цикл, первое, что требуется двигателю, — это воздушно-топливная смесь, которая поступает в цилиндр.Впускной клапан открывается в головке блока цилиндров, когда поршень начинает двигаться вниз. В цилиндр поступает топливовоздушная смесь примерно в соотношении 15: 1. Когда поршень доходит до конца своего хода, впускной клапан закрывается и герметизирует цилиндр.

  • Компрессия : Поршень движется вверх в цилиндре, сжимая топливно-воздушную смесь. Поршневые кольца уплотняют стороны поршня в цилиндре, чтобы предотвратить потерю сжатия. Когда поршень достигает вершины этого хода, содержимое цилиндра находится под чрезмерным давлением.Нормальное сжатие составляет от 8: 1 до 10: 1. Это означает, что смесь в цилиндре сжата примерно до одной десятой своего первоначального несжатого объема.

  • Мощность : Когда содержимое цилиндра сжимается, свеча зажигания воспламеняет топливовоздушную смесь. Происходит управляемый взрыв, который толкает поршень вниз. Это называется рабочим ходом, потому что это сила, которая вращает коленчатый вал.

  • Выпускной клапан : Когда поршень находится в нижней части рабочего хода, выпускной клапан в головке блока цилиндров открывается.Когда поршень снова движется вверх (приводимый в действие одновременными циклами включения питания, происходящими в других цилиндрах), сгоревшие газы в цилиндре вытесняются вверх и выходят из двигателя через выпускной клапан. Когда поршень достигает вершины этого хода, выпускной клапан закрывается, и цикл начинается снова.

  • Рассмотрим этот : если ваш двигатель работает на холостом ходу со скоростью 700 об / мин или оборотов в минуту, это означает, что коленчатый вал полностью вращается 700 раз в минуту. Поскольку цикл питания происходит каждый второй оборот, в каждом цилиндре каждую минуту на холостом ходу происходит 350 взрывов.

Как смазывается двигатель?

Масло — незаменимая жидкость в работе двигателя. Во внутренних компонентах двигателя есть небольшие каналы, называемые масляными каналами, через которые проходит масло. Масляный насос всасывает моторное масло из масляного поддона и заставляет его циркулировать по двигателю, позволяя плотно закрытым металлическим компонентам двигателя работать плавно. Этот процесс не просто смазывает компоненты. Он предотвращает трение, которое вызывает чрезмерное нагревание, охлаждает внутренние детали двигателя и создает плотное уплотнение между деталями двигателя, например, между стенками цилиндра и поршнями.

Как создается топливно-воздушная смесь?

Воздух засасывается в двигатель вакуумом, создаваемым при работе двигателя. Когда воздух поступает в двигатель, топливная форсунка распыляет топливо, которое смешивается с воздухом в соотношении примерно 14,7: 1. Эта смесь втягивается в двигатель во время каждого цикла впуска.

Это объясняет основные внутренние механизмы современного двигателя. Десятки датчиков, модулей и других систем и компонентов работают во время этого процесса, что позволяет двигателю работать.Подавляющее большинство автомобилей на дорогах имеют двигатели, работающие таким же образом. Если вы примете во внимание точность, необходимую для того, чтобы сотни компонентов вашего двигателя могли работать плавно, эффективно и надежно на протяжении тысяч миль в течение многих лет использования, вы можете начать ценить работу, которую инженеры и механики делают, чтобы доставить вас туда, где вам нужно. идти.

Двигатели

Что такое аэронавтика? | Динамика полета | Самолеты | Двигатели | История полета | Какие такое UEET?
Словарь | Веселье и игры | Образовательные ссылки | Урок ланы | Индекс сайта | Дом

Двигатели

Как работает реактивный двигатель?


НОВИНКА!
Видео «Как работает реактивный двигатель».

Мы считаем само собой разумеющимся, насколько легко самолет весом более половины миллион фунтов отрывается от земли с такой легкостью. Как это бывает? Ответ прост. Это двигатели.

Позвольте Терезе Бенио из NASA Glenn Research Center объяснить подробнее …

Как показано на НАСА Пункт назначения завтра.


Реактивные двигатели перемещают самолет вперед с большой силой, создаваемой огромная тяга и заставляет самолет лететь очень быстро.

Все реактивные двигатели, которые также называются газовые турбины, работают по тому же принципу. Двигатель всасывает воздух спереди с помощью вентилятора. Компрессор повышает давление воздуха. Компрессор сделан с множеством лезвий, прикрепленных к валу. Лезвия вращаются на высокой скорости и сжимают или сжимают воздух. Сжатый затем воздух распыляется с топливом, и электрическая искра зажигает смесь. В горящие газы расширяются и выбрасываются через сопло в задней части двигателя.Когда струи газа летят назад, двигатель и самолет движутся вперед. Когда горячий воздух попадает в сопло, он проходит через другую группу лопастей. называется турбина. Турбина прикреплена к тому же валу, что и компрессор. Вращение турбины вызывает вращение компрессора.

На изображении ниже показано, как воздух проходит через двигатель. Воздух проходит ядро двигателя, а также вокруг ядра.Это вызывает некоторую часть воздуха чтобы было очень жарко, а некоторым было прохладнее. Затем более холодный воздух смешивается с горячим воздух на выходе из двигателя.

Это изображение того, как воздух проходит через двигатель

Что такое тяга?

Тяга это передовая сила, которая толкает двигатель и, следовательно, самолет вперед. Сэр Исаак Ньютон обнаружил, что «каждому действию соответствует и противоположная реакция. «Двигатель использует этот принцип. Двигатель принимает в большом объеме воздуха. Воздух нагревается, сжимается и замедляется. Воздух проходит через множество вращающихся лопастей. Смешивая этот воздух со струей топлива, температура воздуха может достигать трех тысяч градусов. В сила воздуха используется для вращения турбины. Наконец, когда воздух уходит, он выталкивается из двигателя назад.Это заставляет самолет двигаться вперед.

Детали реактивного двигателя

Поклонник — Вентилятор — это первый компонент в ТРДД. Большой вращающийся вентилятор всасывает большое количество воздуха. Большинство лезвий Вентиляторы изготовлены из титана. Затем он ускоряет этот воздух и разбивает его на две части. Одна часть продолжается через «ядро» или центр двигателя, где на него действуют другие компоненты двигателя.

Вторая часть «обходит» ядро ​​двигателя. Проходит через воздуховод который окружает ядро ​​до задней части двигателя, где он производит большую часть сила, которая толкает самолет вперед. Этот более прохладный воздух помогает успокоить двигатель, а также добавление тяги к двигателю.

Компрессор — Компрессор первый компонент в ядре двигателя. Компрессор состоит из вентиляторов с множеством лопастей. и прикреплен к валу.Компрессор сжимает попадающий в него воздух в постепенно уменьшаются площади, что приводит к увеличению давления воздуха. Этот приводит к увеличению энергетического потенциала воздуха. Сдавленный воздух попадает в камеру сгорания.

Камера сгорания — В камере сгорания воздух перемешивается с топливом, а затем воспламеняется. Имеется до 20 форсунок для впрыска топлива. воздушный поток. Смесь воздуха и топлива загорается.Это обеспечивает высокую температура, высокоэнергетический воздушный поток. Топливо горит вместе с кислородом в сжатом состоянии. воздух, производящий горячие расширяющиеся газы. Внутри камеры сгорания часто делают из керамических материалов для создания термостойкой камеры. Жара может достигать 2700 °.

Турбина — Приближается высокоэнергетический воздушный поток из камеры сгорания попадает в турбину, в результате чего лопатки турбины вращаются. Турбины соединены валом для вращения лопаток компрессора и для вращения впускного вентилятора спереди.Это вращение забирает некоторую энергию из поток высокой энергии, который используется для привода вентилятора и компрессора. Газы вырабатываемые в камере сгорания движутся через турбину и раскручивают ее лопатки. Турбины реактивного самолета вращаются тысячи раз. Они закреплены на валах между которыми установлено несколько комплектов шарикоподшипников.

Сопло — Форсунка — вытяжной канал двигатель. Это часть двигателя, которая на самом деле создает тягу для самолет.Поток воздуха с пониженным энергопотреблением, который проходил через турбину, в дополнение к более холодный воздух, проходящий мимо сердечника двигателя, создает силу при выходе из сопло, которое толкает двигатель и, следовательно, самолет вперед. Комбинация горячего и холодного воздуха удаляется и производит выхлоп, который вызывает прямую тягу. Соплу может предшествовать смеситель , который сочетает в себе высокотемпературный воздух, поступающий из сердечника двигателя, с более низкая температура воздуха, обводимого вентилятором.Миксер помогает сделать двигатель тише.

Первый реактивный двигатель — А Краткая история первых двигателей

Сэр Исаак Ньютон в 18 веке был первым предположил, что взрыв, направленный назад, может привести в движение машину вперед с большой скоростью. Эта теория была основана на его третьем законе движение. Когда горячий воздух проходит через сопло назад, самолет движется вперед.

Анри Жиффар построил дирижабль, который приводился в движение первым авиадвигателем — паровым двигателем мощностью три лошадиные силы. Это было очень тяжелый, слишком тяжелый, чтобы летать.

В 1874 г. Феликс де Темпл, , построил моноплан. который пролетел всего лишь короткий прыжок с холма с помощью угольного парового двигателя.

Отто Даймлер , в конце 1800-х изобрел первый бензиновый двигатель.

В 1894 году американец Хирам Максим пытался привести свой трехместный биплан в движение двумя угольными паровыми двигателями.Это только пролетел несколько секунд.

Первые паровые машины приводились в действие нагретым углем и, как правило, слишком тяжело для полета.

Американец Сэмюэл Лэнгли изготовил авиамодель. которые приводились в действие паровыми двигателями. В 1896 году он успешно пилотировал беспилотный самолет с паровым двигателем, получивший название Aerodrome . Он пролетел около 1 мили, прежде чем выдохся. Затем он попытался построить полную размерный самолет Aerodrome A, с газовым двигателем.В 1903 г. разбился сразу после спуска с плавучего дома.

В 1903 году братья Райт летал, Flyer , с бензиновым двигателем мощностью 12 лошадиных сил. двигатель.

С 1903 года, года первого полета братьев Райт, до конца 1930-х гг. газовый поршневой двигатель внутреннего сгорания с воздушным винтом был единственное средство, используемое для приведения в движение самолетов.

Это был Фрэнк Уиттл , британский пилот, который разработал и запатентовал первый турбореактивный двигатель в 1930 году.Двигатель Уиттла впервые успешно полетел в мае 1941 года. Этот двигатель имел многоступенчатый компрессор и систему внутреннего сгорания. камера, одноступенчатая турбина и сопло.

В то время, когда Уиттл работал в Англии, Ганс фон Охайн работал над подобным дизайном в Германии. Первый самолет, который успешно использовать газотурбинный двигатель был немецкий Heinkel He 178, август 1939 года. Это был первый в мире турбореактивный двигатель. полет.

General Electric построила первый американский реактивный двигатель для ВВС США Реактивный самолет . Опытный самолет XP-59A впервые поднялся в воздух в октябре 1942 года.

Типы реактивных двигателей

Турбореактивные двигатели

Основная идея турбореактивный двигатель это просто.Воздух забирается из отверстия в передней части двигателя сжимается до 3-12 раз от исходного давления в компрессоре. Топливо добавляется в воздух и сжигается в камере сгорания, чтобы повысить температуру жидкой смеси примерно до 1100-1300 ° F. Образующийся горячий воздух проходит через турбину, которая приводит в действие компрессор. Если турбина и компрессор эффективны, давление на выходе из турбины будет почти вдвое выше атмосферного давления, и это избыточное давление отправляется к соплу для создания высокоскоростного потока газа, создающего тягу.Существенного увеличения тяги можно добиться, если использовать форсаж. Это вторая камера сгорания, расположенная после турбины и перед сопло. Форсажная камера увеличивает температуру газа перед соплом. Результатом этого повышения температуры является повышение температуры примерно на 40 процентов. по тяге на взлете и гораздо больший процент на высоких скоростях, когда самолет в воздухе.

Турбореактивный двигатель является реактивным.В реактивном двигателе расширяющиеся газы сильно надавите на переднюю часть двигателя. Турбореактивный двигатель всасывает воздух и сжимает или сжимает его. Газы проходят через турбину и заставляют ее вращаться. Эти газы отскочить назад и выстрелить из задней части выхлопной трубы, толкая самолет вперед.

Изображение турбореактивного двигателя

Турбовинтовые

А турбовинтовой двигатель это реактивный двигатель, прикрепленный к пропеллеру.Турбина на спина поворачивается горячими газами, и это вращает вал, который приводит в движение пропеллер. Некоторые небольшие авиалайнеры и транспортные самолеты оснащены турбовинтовыми двигателями.

Турбореактивный двигатель, как и турбореактивный, состоит из компрессора, камеры и турбины, давление воздуха и газа используется для запуска турбины, которая затем создает мощность для привода компрессора. По сравнению с турбореактивным двигателем, турбовинтовой двигатель имеет лучшую тяговую эффективность на скоростях полета ниже примерно 500 миль в час.Современные турбовинтовые двигатели оснащены гребными винтами, которые иметь меньший диаметр, но большее количество лопастей для эффективной работы на гораздо более высоких скоростях полета. Чтобы приспособиться к более высоким скоростям полета, лопасти имеют форму ятагана со стреловидными передними кромками на концах лопастей. Двигатели с такими гребными винтами называются пропеллеры .

Изображение турбовинтового двигателя

Турбореактивные двухконтурные двигатели

А турбовентиляторный двигатель имеет большой вентилятор спереди, который всасывает воздух.Большая часть воздуха обтекает двигатель снаружи, что делает его тише. и дает больше тяги на низких скоростях. Большинство современных авиалайнеров оснащены двигателями турбовентиляторными двигателями. В турбореактивном двигателе весь воздух, поступающий во впускное отверстие, проходит через газогенератор, состоящий из компрессора, камеры сгорания и турбина. В турбовентиляторном двигателе только часть поступающего воздуха попадает в камера сгорания. Остальное проходит через вентилятор или компрессор низкого давления, и выбрасывается непосредственно в виде «холодной» струи или смешивается с выхлопом газогенератора. для получения «горячей» струи.Целью такой системы байпаса является увеличение тяга без увеличения расхода топлива. Это достигается за счет увеличения общий массовый расход воздуха и снижение скорости при той же общей подаче энергии.

Изображение турбовентиляторного двигателя

Турбовалы

Это еще одна разновидность газотурбинного двигателя, работающая как турбовинтовой. система.Он не управляет пропеллером. Вместо этого он обеспечивает питание вертолета. ротор. Турбовальный двигатель устроен так, чтобы скорость вертолета ротор не зависит от скорости вращения газогенератора. Это позволяет скорость ротора должна оставаться постоянной, даже если скорость генератора варьируется, чтобы регулировать количество производимой мощности.

Изображение турбовального двигателя

Ramjets

ПВРД — это Самый простой реактивный двигатель и не имеет движущихся частей.Скорость реактивного «тарана» или нагнетает воздух в двигатель. По сути, это турбореактивный двигатель, в котором вращающийся оборудование было опущено. Его применение ограничено тем, что его степень сжатия полностью зависит от скорости движения. ПВРД не развивает статического электричества. тяга и тяга вообще очень маленькая ниже скорости звука. Как следствие, ПВРД требует некоторой формы вспомогательного взлета, например другого самолета. Он использовался в основном в ракетных комплексах.Космические аппараты используют это тип струи.

Изображение ПВРД

К началу

Что такое аэронавтика? | Динамика полета | Самолеты | Двигатели | История полета | Что такое UEET?
Словарь | Веселье и игры | Образовательные ссылки | Урок Планы | Индекс сайта | Дом

.
5Сен

Принцип работы двигателя внутреннего сгорания: Принцип работы ДВС. Рабочие циклы двигателя

Как работает двигатель внутреннего сгорания [простым языком]

Что такое цилиндры, турбонаддув, как расшифровывать характеристики двигателя без технической документации

Двигатель внутреннего сгорания работает за счет сжигания бензина и дизельного топлива. Независимо от вида топлива, на котором работает движок, принципы его работы, термины и названия запчастей одинаковы.

Как работает?

Принцип работы двигателя внутреннего сгорания похож на принцип работы насоса: на одном конце в него втягивается воздух и воспламеняется (внутреннее сгорание), затем, через выхлопную трубу вытесняются отработанные (выхлопные) газы. Движок преобразует энергию сгорания в механическую энергию для движения машины.  Детальная работа «сердца машины» разобрана здесь, а в этой статье обсудим из чего состоит мотор машины и как устроен.

Для описания размера и мощности мотора автомобиля пользуются устоявшимися терминами и маркерами. Правда, не разобравшись в каждом, не сообразишь, что они означают.  Если не до конца понимаете, что собой представляет 1,8-литровый, 4-цилиндровый, V-образный двигатель на 20 клапанов и с турбонаддувом эта статья для вас.

Что означает «1,8-литровый»?

Значение «1,8-литровый», «2-х литровый», «3-х литровый» указывает на объем движка. Объем двигателя влияет на объем воздуха, который тот может переработать в течение одного цикла. Эта величина обычно отображается в литрах или в кубических сантиметрах, в зависимости от производителя, но измерение в сантиметрах встречается крайне редко.

Чем больший объем мотора, тем больше он производит энергии. Больше энергии — больше расход топлива. Правда, инженеры автоконцернов пытаются сломать этот стереотип. О том, как им это удается, читайте в статье журнала Zap-Online.ru: «Топ 10 улучшений в конструкции мотора автомобиля».

Характеристика «4-цилиндровый» означает количество цилиндров в движке

Цилиндром называют камеру двигателя цилиндрической формы, в которой смешиваются и сгорают воздух, и топливо. Каждая такая камера считается одним цилиндром. Чем больше цилиндров, тем больше мощность автомобиля и расход топлива. Для экономии топлива, некоторые современные 8-цилиндровые движки разработаны так, чтобы цилиндры оставались закрытыми, когда их работа не принципиально важна. Эта технология применена в последних моделях Mercedes. На светофоре движок будет работать на холостом ходу, отключив 6 цилиндров и оставив в работе 2, чтобы машина не заглохла. Движок будет смешивать топливо и воздух в двух цилиндрах вместо восьми, перекрыв подачу бензина или солярки в ненужные.

Также будет и на загородной трассе, где водитель, включив круиз-контроль, двигается с одной скоростью до 90 км/ч.

V-образный или рядный двигатель означает угол расположения цилиндров друг к другу — это называется конфигурация мотора

У автомобильных моторов бывают разные конфигурации: разные расположения цилиндров по отношению друг к другу. Размещение цилиндров в один ряд создает «линию» двигателя: 4-рядный– 4 цилиндра в линию, или 6-рядный — 6 цилиндров и т.д. —это общая и простая конфигурация классической силовой установки внутреннего сгорания.

Когда цилиндры расположены противоположно друг другу в угловых блоках, они имеют вид латинской буквы «V». Цифра, следующая за этим символом, опять-таки, обозначает количество цилиндров в одном ряду, например: V-4, V-6, V-8 и т.д.

Три блока цилиндров располагают в форме латинской буквы «W». По количеству цилиндров в одном ряду различают движки W-8, W-12 или W-16. От конфигурации цилиндров зависит физический размер движка и то, как ровно он работает. V – образная форма облегчает ход цилиндров, т.к. сила тяжести распределяется под наклоном, а не вертикально, как на обычных автомобильных моторах. Все эти разработки стали результатом тщательнейших испытаний, которые привели к совершенствованию внутреннего КПД (коэффициента полезного действия) мотора и к его экономичности.

Клапаны

Воздух входит в цилиндры и выходит из них через клапаны, работающие по принципу работы клапанов сердца. Раньше цилиндры имели только два клапана: один для воздуха, который поступает в цилиндр, второй — для выхода отработанных газов. Современные двигатели имеют по три, четыре и даже пять клапанов в каждом цилиндре, что более эффективно перемещает воздух по двигателю, увеличивает мощность автомобиля и сокращает расход топлива. Обычно автопроизводители сообщают общее число клапанов в движке. Разделите это число на количество цилиндров и узнаете, сколько клапанов в каждом из них.

Наддув и турбонаддув

Нагнетание воздуха в двигатель под давлением называется «принудительная индукция». Нагнетанием воздуха можно резко увеличить мощность автомобиля. Наддув работает на ременном приводе от мотора автомобиля и разработан, чтобы немедленно давать дополнительную мощность, когда отработанный газ выходит из движка. Турбонаддув приводится в действие выхлопными газами и требует меньших затрат мощности самого двигателя, что делает его более экономным, чем просто наддув. При этом у турбонаддува реакция на дроссель гораздо медленнее. Еще есть электрический турбонаддув, о нем подробно писали здесь, различия с классическим незначительные. Хотя при увеличении скорости наддувом и турбонаддувом сжигается больше топлива — они позволяют маленьким экономным моторам показывать те же результаты, что и их более большие собратья.  

Остались вопросы по терминологии принципам работы мотора автомобиля? Задавайте их в комментариях, будем рады ответить.

 

Принцип работы ДВС. Рабочие циклы двигателя внутреннего сгорания. —

Рассмотрим принцип устройства и работы двигателя внутреннего сгорания, а также его рабочие циклы.

Рабочий цикл четырехтактного бензинового двигателя

1234

Рабочий цикл двигателя — ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.Автомобильные двигатели работают, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня. Состоит из: такта впуска, сжатия, расширения (рабочего хода) и выпуска.Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.
Принцип работы ДВС 

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).

  • Впуск. Коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.
  • Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.
  • Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал. При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.
  • Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

  • Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.
  • Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.
  • Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.
  • Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).
Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.


Диаграмма работы двигателя по схеме 1-2-4-3


Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

 

Двигатель внутреннего сгорания — устройство и принцип работы

 

Двигатель внутреннего сгорания представляет собой силовой агрегат, который уже ни один десяток лет используется в разного рода транспортных средствах. В начале XX в. он заменил собой паровые двигатели. Но даже сегодня в XXI в. он остается очень актуальным. Рассмотрим, что такое устройство и принцип работы двигателя внутреннего сгорания.

Определение

Двигатель имеет приставку «внутреннего сгорания» по одной простой причине. Дело в том, что топливо воспламеняется внутри рабочей камеры, а не внешне. Сгорая, топливо выделяет энергию, которая преобразуется в механическую работу для ее передачи остальным «органам» автомобиля.

Существуют разные виды двигателей, но большей популярностью пользуется поршневой. Данная разновидность мотора позволяет хранить топливо компактно, при этом много не затрачивать его при больших пробегах.

Устройство

Устройство ДВС включает в себя разнообразные системы с механизмами. Главными элементами мотора являются кривошипно-шатунный механизм (КШМ), который также состоит из нескольких элементов, блок цилиндров и его головка с ГРМ.

В процессе вращения коленвала КШМ помогает преобразовывать работу поршней. Энергия, сгорающая в цилиндрах, «запускает» поршни. Без функционирования механизма газораспределения невозможна работа этой системы. ГРМ помогает впускным и выпускным клапанам вовремя открываться. Они запускают рабочую смесь и выпускают отработанный газ.

Распределительные валы, из которых в разных количествах состоит ГРМ, обладают кулачками. Они, в свою очередь, толкают клапаны с возвратными пружинами. Если вспомогательная система функционирует правильно, то и все устройство двигателя внутреннего сгорания будет работать также.

Вспомогательная система состоит из других систем, каждая из которых имеет свое назначение. Подробнее о них будет информация дальше.

Внутренние системы

Охлаждение, питание и смазка — этими словами можно объяснять принцип работы двигателя внутреннего сгорания. Без данных составляющих невозможно правильно функционировать мотору.

Первое время внутренние системы являлись механическими. Сегодня каждая из них содержит в себе долю «электроники». Двигатель работает более эффективно, если над ним ведется электронное управление. Системы же становятся «гибкими», за ними не нужен пристальный уход и бесконечное обслуживание.

Охлаждение

Когда в двигателе возникает процесс воспламенения, температура повышается до +2500 градусов (в камере). Соответственно, из-за высокой температуры есть риск перегрева поршней, цилиндров и остальных важных элементов. Это приводит, в конечном счете, к утере мощности, выгоранию масла и неполадкам в «движке». Чтобы ликвидировать излишнее тепло, была создана система охлаждения. Ее принцип работы заключается в том, что она с помощью жидкости (воздуха) отводит тепло принудительно.

Воздушная система в автомобилях не применяется. Ее используют в газонокосилках, либо мопедах. Что касается жидкостной системы, то она построена сложным образом, но при этом максимально эффективно отводит излишки тепла. Теплоносителем выступает «незамерзайка», т.е. антифризная жидкость, имеющая низкую температуру замерзания.

Канал для прохождения «незамерзайки» называется рубашкой охлаждения. Она соединена с радиатором с помощью патрубков. Радиатор принимает на себя тепловую массу и перенаправляет ее. В системе за ним находится вентилятор, помогающий быстрее пройти воздушным массам.

В процессе работы «движка» хладагент перемещается от насоса. Он же приходит в действие от коленчатого вала, либо электродвигателя. Для того, чтобы охлаждающая система могла создавать нужный режим температуры, контур охлаждения оснащают термостатом, соединенным с блоком управления.

Подача топлива

Система подачи топлива также подразделяется на виды: инжекторный и карбюраторный. Первый тип является самым востребованным. Инжекторная система подразделяется еще на несколько систем: подача (очистка) топлива, воздуха, дожигание и выпуск отработанного газа. Также подсистемы функционируют на сжигание и улавливание бензиновых паров.

Топливо из бака помогает «влить» электробензонасос, который включается при запуске ДВС. Горючее поступает к рампе с форсунками, проходя через топливный фильтр. Воздух, который наполняет цилиндры, и его количество регулируется дроссельной заслонкой. Она, в свою очередь, функционирует от электропривода, либо троса.

Шаговый электродвигатель осуществляет регулировку оборотов. Чтобы система работала слаженно, в электронный блок поступает информация с датчиков расхода воздуха, частоты и положения коленчатого вала и др.

Кроме распределенного впрыска есть система впрыска непосредственного. Это дорогостоящие агрегаты со сложным устройством. Сотрудниками фирмы «Митцубиси» удалось создать систему, которая получилась более сбалансированной. С ее помощью повысилась мощность «движка», а также улучшилась топливная экономичность.

Смазка

Смазочная система автомобиля защищает элементы от трения, а также не дает образоваться на деталях коррозии, смывает грязь и охлаждает полностью конструкцию. ДВС обычно оснащены комбинированным типом системы, где масло поставляется под давлением и разбрызгиванием.

Через горловину в поддон картера заливается масло в систему. В процессе функционирования «движка» насос с помощью маслозаборника всасывает смазку, после чего оно перенаправляется в основную магистраль.

Магистраль — это ответвленные каналы. Масло по ним переходит к подшипникам коленчатого вала, поршневой группе и т.д. Смазка льется из зазоров у подшипников, а потом начинается разбрызгивание (каплевидное и туманное). Затем масло поступает в поддон, смазывая привод ГРМ.

Смазочная система с сухим картером применима в отношении спортивных машин или тракторов. Масляная жидкость перекачивается в бак, оттуда подается в систему смазки. Подобная конструкция предотвращает перемещение жидкости во время резких движений.

Помимо всего перечисленного, смазочная система играет роль вентилирования от газов картера. Газы поступают через поршневые кольца, а затем комбинируются с парами воды и тем самым преобразуются в токсичные кислоты. Они провоцируют развитие коррозии. Именно поэтому их легче всего вывести в атмосферу.

ГРМ

ГРМ представляет собой газораспределительный механизм, главной функцией которого является своевременная подача смеси в цилиндры и выпуск из них продуктов горения. Чтобы ГРМ могла слаженно работать, для этого нужно на каждый цилиндр по одному впускному и выпускному клапану. У впускного клапана больше диаметр тарелки. Именно эта особенность улучшает наполняемость цилиндра.

В системе также есть распределительный вал, который запускается цепью или ремнем от коленчатого вала. Также он работает на закрытие и открытие клапанов.

Привод клапанов подразделяется на следующие разновидности:

 1. ОНV — распределительный вал находится в блоке цилиндров, но клапаны управляются с помощью штанги и доп.толкателей.

 2. ОНС — распределительный вал находится в головке, клапаны приводятся в действие рычажными толкателями.

 3. DОНС — два распределительных вала находятся в головке. Первый применяется для впускных, а второй, соответственно, для выпускных клапанов.

Открытие и закрытие клапанов происходит в определенные моменты, которые называются фазами. Отличное наполнение и очистка цилиндров обеспечиваются за счет грамотно подобранных цилиндров.

Выхлопная система

На мощность двигателя внутреннего сгорания сильно влияет выхлопная система. Помимо этого, она оказывает небольшое влияние на расход горючего и объема вредных выбросов. Каталитический нейтрализатор — это то, что помогает снизить содержание токсических веществ в газах. Нейтрализатор имеет окислительный и восстановительный катализаторы, способные углеводороды преобразовывать в водяной пар. Прибор ставят рядом с выпускным коллектором.

Нейтрализатор будет функционировать лучше в случае, когда ДВС начнет работу на воздушно-топливной смеси, соединенной в пропорции 14,7 к 1. Специальный датчик будет следить за уровнем воздуха в газах.

Классификация

Выяснив принцип работы двс, водитель может приступать к изучению классификации устройства. Каждый производитель старается его по-своему усовершенствовать. Кто-то пытается увеличить мощность, другие — уменьшить выход токсичных веществ в атмосферу, третьи — оптимизировать стоимость. Рассмотрим, какие на сегодняшний день существуют ДВС и по каким критериям их подразделяют.

Тип конструкции

Двигатели внутреннего сгорания подразделяются на виды по типу конструкции: роторные, поршневые и газовые турбины.

Как работает двигатель внутреннего сгорания роторного типа? На ротор действует давление газов, при этом мотор не имеет ГРМ. Его роль выполняют выпускные (впускные) окна в стенках корпуса по бокам.

Поршневой тип функционирует от поршня, который приводится в действие от сгорающих газов. Поршень толкает коленчатый вал. Что касается газовых турбин, то в ДВС газы на большой скорости влетают на лопатки турбины. Компрессор, установленный в моторе, в свою очередь, предназначается для нагнетания воздуха.

Тип топлива

ДВС функционирует за счет сжигания смеси воздуха с дизелем, газом либо бензином. Если водитель предпочитает газовое топливо, то в его качестве используется сочетание пропана и бутана, сжиженного газа, метана или водорода.

Рабочий цикл

Двигатель внутреннего сгорания имеет рабочий цикл. Он представляет собой последовательность процессов в цилиндрах, которые превращают топливную энергию в механическую.

Существует 2-х тактный и 4-х тактный цикл, каждый из которых работает по своему принципу. В первом случае впуск и сжатие происходят одновременно, а во втором — по четырем тактам (сжатие, впуск, выпуск, рабочий ход).

Нельзя выделить из этих двух ДВС лучший, поскольку 2-х тактный по рабочему циклу является более компактным, а 4-х тактный считается лучше по экономичности.

Работа ГРМ

ГРМ устанавливается по одной из четырех схем, описанных выше по тексту. Каждая компоновка влияет на работу «движка». Помимо этого, приводы клапанов подразделяются по способу регулировки зазоров. Их настройка проводится ручным методом. Для этого меняют в коромыслах винты, либо устанавливают гидрокомпенсаторы для авторегулировки.

Количество цилиндров

Существует одноцилиндровые моторы, которые функционируют не столь равномерно, но это не сильно сказывается на их работе в мопедах и мотоциклах. «Движок» для авто устроен по-другому, здесь требуется более высокая мощность и большой объем цилиндров. В легковые машины по большей части ставят моторы с 4-мя цилиндрами, а в грузовики: 6-ти или 8-ми цилиндровые двигатели. В элитные автомобили марки Ауди могут быть установлены 12-ти цилиндровые «движки».

Расположение цилиндров

Поршневые двигатели подразделяются по схемам блока цилиндров. Они могут быть представлены в виде разного рода конструкций. Их около 5 разновидностей. В зависимости от компоновки под капот мотор ставят под разными углами.

Создание рабочей смеси

Способ смесеобразования — еще один критерий, по которому классифицируются ДВС. Существует внешнее и внутреннее смесеобразование. Первый тип присутствует в карбюраторных моторах, а также в агрегатах с впрыском во впускной коллектор. Второй тип находится в дизельных «движках», а также в бензиновых, имеющих впрыск в камеру сгорания.

Принцип работы ДВС

Поняв, как работает двс, водителям стоит рассмотреть подробнее его принцип работы. Разберем работу двухтактного и четырехтактного двигателя.

Двигатель 2-х тактный

Газораспределительный механизм вместе с КШМ для двухтактного двигателя довольно сильно отличается от четырехтактного. В некоторых участках на цилиндрах вместо клапанов находятся небольшие отверстия, которые именуются как продувочные окна. В цилиндровой головке присутствуют свечи зажигания.

При наступлении первого такта поршень направляется от НМТ в ВМТ. Заполняя собой цилиндр, смесь поступает через впускное окошко. Выпускное окно, в свою очередь, остается открытым для выпуска остатков газов. Двигаясь, поршень создает окнам перекрытие, при этом смесь в этот момент сжимается. Около ВМТ возникает искра зажигания, запуская собой второй такт.

Под влиянием газового давления поршень смещается вниз. Начинается открытие впускного и выпускного окна. Через выпускное уходят отработанные газы, а через впускное поступает смесь.

Таким образом становится ясно, что 2-х тактный «движок» обладает высоким КПД. Рабочий цикл поршня совершает всего 2 хода, при этом коленвал делает единственный полный оборот. К недостаткам системы можно причислить тот момент, что часть ТПС растворяется с газами, что создает низкую топливную экономичность. При этом поршневые кольца довольно быстро подвергаются износу.

Двигатель 4-х тактный

Что касается четырехтактного устройства двс, то здесь работа строится немного по другому принципу. Поршень перемещается внутри цилиндра. Через шатун он соединен в коленвалом. Поднимаясь вверх, поршень остается в таком положении, которое называется верхней «мертвой точкой». Соответственно, после перемещения вниз он становится в положение нижней «мертвой точки» НМТ. Данный ход зовется «тактом». Таким образом, весь рабочий цикл состоит из 4-х тактов, последовательных друг за другом. Изучим каждый такт по отдельности.

 1. Впуск. При включении первого такта открывается впускной клапан. После этого поршень переход от ВМТ, а в цилиндр поступает смесь.

 2. Пройдя НМТ, поршень идет вверх, параллельно сжимая остаточные газы со смесью. Клапаны остаются закрытыми, при этом давление и температура газов возрастает. Свеча зажигания создает искру, помогающую воспламенить смесь.

 3. Смесь возгорается и в процессе горения толкает поршень вниз прямо от ВМТ, при этом клапаны по-прежнему остаются закрытыми.

 4. Выпускной клапан открывается только на выпуске, поршень движется наверх, одновременно толкая газы из цилиндра.

Что касается многоцилиндровых блоков, то в них одинаковые такты осуществляются в разном порядке. Если двигатель имеет 4-цилиндровый блок, то очередность его функционирования бывает в порядке 1-3-2-4. Иными словами, это означает, что впуск произойдет в первую очередь в 1, затем в 3, а потом 2 и 4 цилиндрах.

Плюсы и минусы

ДВС, как и любой тип двигателя, имеет свои преимущества и недостатки.

К плюсам относятся следующие особенности:

 1. Небольшой вес. Обычно такие устройства занимают мало места и имеют низкий вес.

 2. Высокая мощность. На сегодняшний день почти все ДВС обладают высоким значением лошадиных сил. Чем «сильнее» «движок», тем дороже он стоит и больше потребляет топлива.

 3. Есть возможность преодолеть большие расстояния. Эта проблема особо актуальна для тех, кто ездит в другие города ежедневно.

 4. Быстрая заправка. Сегодня заправки расположены повсеместно, поэтому автолюбителям не придется бояться за пустой бак. Заправка длится не более 10 минут.

 5. Простота эксплуатации. Большинство моторов, независимо от их типа, имеют схожую систему. Поэтому разобраться в работе двигателя сможет каждый водитель.

 6. Доступность. Сегодня автомобилем с ДВС никого не удивишь, они эксплуатируются повсеместно. На вторичном рынке их стоимость еще дешевле, так что каждый человек может позволить себе купить такое авто.

 7. Большой ресурс работы. Моторы, выпускаемые сегодня, способны функционировать ни один год подряд, а десятки лет. Возможно, кто-то скажет, что их надежность все же снижается, но это не исключает тот факт, что качество по-прежнему остается «на уровне».

Перечислив все преимущества ДВС, перейдем к недостаткам, которые, к сожалению, также встречаются у данного типа двигателя.

Минусы у ДВС следующие:

 1. Высокая степень выбросов в атмосферу во время езды автомобиля. Дело в том, что топливо не до конца сгорает, и в этом заключается главная проблема. Чтобы авто двигалось, требуется всего лишь 15% горючего, а все остальное уходит в воздух. Отработанный газ содержит множество вредных и токсичных веществ, а также тяжелых металлов.

 2. Требуется коробка переключения передач. Устройство обязательно, так как нужно, чтобы менялось передаточное число. Оно регулирует обороты двигателя, который перенаправляет энергию на колеса, а они вращаются либо быстро, либо медленно.

 3. Регулярная замена масла. Менять масло нужно каждые 10 000 км. Это нужно обязательно делать, так как жидкость загрязняется, а мелкие частицы грязи попадают в «движок».

 4. Высокая цена на топливо. Бензин и солярка с каждым годом возрастают в цене, соответственно, совсем скоро передвижение на авто с ДВС станет роскошью. Чтобы сэкономить на топливе, можно установить газовое оборудование, так как цена газа вдвое ниже остального горючего.

 5. Низкий КПД. Этот параметр наглядно показывает эффективность работы двигателя относительно вырабатываемой энергии. Показатель выражается в процентах. К примеру, электродвигатели имеют КПД около 95%, но в ДВС такие значения невозможны.

 6. Ограниченный ресурс дешевых моторов. Изготовители, выпускающие двигатели по низкой стоимости, используют некачественные детали. Они быстро изнашиваются и «выходят из строя». Но если водитель будет использовать смазку, а также вовремя менять расходные материалы, то «движок» прослужит дольше.

Таким образом, мы выяснили, что ДВС имеет как много преимуществ, так и много недостатков. Несмотря на это, он является одним из самых эффективных устройств на сегодняшний день.

Заключение

Двигатели, производимые сегодня, являются самыми лучшими, поскольку выгодно отличаются от своих предшественников. Сейчас у них нет конкурентов, и в ближайшее время не намечается. Возможно, в течение будущих 10 лет, будет придумано что-то более новое. Многим хотелось бы, чтобы ДВС эксплуатировались вечно, но их существование завершиться, как только в мире закончится нефть и придет эпоха электрических двигателей. Сейчас тенденция к этому уже давно идет вперед.

Устройство и принцип работы двигателя внутреннего сгорания. Motoran.ru

С момента изобретения первого мотора, работающего за счет горения топливной смеси прошло уже больше ста пятидесяти лет. Человечество продвинулось в техническом прогрессе, однако заменить двигатель внутреннего сгорания так и не удаётся. Этот тип силовой установки используется как привод на технике. За счет мотора работают мопеды, автомобили, трактора, и другие самоходные агрегаты.

За время эксплуатации, изобретено и применено к использованию больше десяти видов и типов моторов. Однако, принцип работы не поменялся. В сравнении с паровым агрегатом, который предшествовал установке, двигатель, преобразующий тепловую энергию сгорания в механическую работу, экономичней с большим коэффициентом полезного действия. Эти свойства, залог успеха мотора, который полтора века остаётся востребованным и пользуется популярностью.

Поршневой двигатель внутреннего сгорания в разрезе

Особенность работы

Особенность, делающая мотор не похожим на другие установки, заключается в том, что работа двигателя внутреннего сгорания сопровождается воспламенением топливной смеси непосредственно в камере. Само пространство, где происходит горение, внутри установки, это легло в основу названия классификации моторов. В процессе сложной экзотермической реакции, когда исходная рабочая смесь превращается в продукты сгорания с выделением тепла, выполняется преобразование в механическую работу. Работа за счет теплового расширения, движущая сила, без которой было бы не возможно существование установки. Принцип завязан на давлении, газов в пространстве цилиндра.

Виды моторов

В процессе технического прогресса разрабатывались и испытывались виды агрегатов, в которых горючее сжигалось во внутреннем пространстве, не все доказали свою целесообразность. Выделены распространенные типы двигателей внутреннего сгорания:

Поршневая установка.

Составная часть агрегата выполнена в виде блока с вмонтированными внутрь цилиндрическими полостями. Часть цилиндра служит для сжигания горючего. Посредством поршня, кривошипа и шатуна происходит трансформация энергии горения в энергию вращения вала. В зависимости от того, как готовится горючая смесь, агрегаты делят:

  • Карбюраторные. В таких установках, горючее готовится за счет карбюрации. Атмосферный воздух и топливо транспортируются в механизм в пропорции, после чего смешивается внутри установки. Готовая смесь подается в камеру и сжигается;
  • Инжектор. В установку рабочая смесь подаётся при помощи распылителя. Впрыск осуществляется в коллектор и контролируется электроникой. По коллектору горючее поступает в камеру, где поджигается свечой;
  • Дизель. Принцип коренным образом отличается от предыдущих оппонентов. Процесс протекает за счёт давления. В объём через распылитель впрыскивается порция топлива (солярка), температура воздуха выше температуры горения, горючее воспламеняется.

Поршневой мотор:

  • Роторно-поршневой мотор. Преобразование энергии расширения газов в механическую работу происходит за счет оборотов ротора. Ротор представляет собой деталь специального профиля, на которую давят газы, заставляя совершать вращательные движения. Траектория движения ротора по камере объёмного вытеснения сложная, образована эпитрохоидой. Ротор выполняет функции: поршня, распределителя газов, вала.

Роторно-поршневой мотор:

  • Газотурбинные моторы. Процесс выполняется за счёт преобразования тепла в работу. Непосредственное участие принимают лопатки ротора. Вращение деталей от потока газов передаётся на турбину.

Сегодня, поршневые моторы окончательно вытеснили остальные типы установок и заняли доминирующее положение в автомобильной отрасли. Процентное соотношение роторно-поршневых моторов мало, поскольку производством занимается только Mazda. К тому же выпуск установок ведётся в ограниченном количестве. Газотурбинные агрегаты так же не прижились, поскольку имели ряд недостатков для гражданского использования, основной, это повышенный расход топлива.

Классификация двигателей внутреннего сгорания так же возможна и по потребляемому горючему. Моторы используют: бензин, дизель, газ, комбинированное топливо.

Газотурбинный мотор:

Устройство

Несмотря на разнообразие установок, виды двигателей внутреннего сгорания компонуются из нескольких узлов. Совокупность компонентов размещается в корпусе агрегата. Чёткая и слаженная работа каждой составной части в отдельности, в совокупности представляет мотор единым неделимым организмом.

  • Блок мотора.Блок цилиндров объёдиняет в себе полости цилиндрической формы, внутри которых происходит воспламенение, и сгорание топливовоздушной смеси. Горения приводит к тепловому расширению газов, а цилиндры мотора служат направляющей, не дающей тепловому потоку выйти за пределы нужных рамок;

Блок цилиндров мотора:

  • Механизм кривошипов и шатунов мотора.Совокупность рычагов, посредством которых на коленчатый вал передается сила, заставляющая совершать вращательные движения;

Кривошипно-шатунный механизм мотора:

  • Распределитель газа мотора.Приводит в движение клапана впуска и выпуска, способствует процессу газообмена. Выводит отработку из полости агрегата, наполняет её нужной порцией с целью продолжить работу механизма;

Газораспределительный механизм мотора:

  • Подвод горючего в моторе.Служит для приготовления порции горючего в нужной пропорции с воздухом, передаёт эту порцию в полость посредством распыления или самотёком;

Карбюратор:

  • Система воспламенения в моторе.Механизм поджигает поступившую порцию в полости камеры. Выполняется посредством свечи зажигания или свечи накаливания.

Свеча зажигания:

  • Система вывода отработанных продуктов из мотора.Механизм предназначен для эффективного удаления сгоревших продуктов и излишков тепла.

Приёмная труба:

Запуск силовой установки внутреннего сгорания сопровождается подачей горючего в агрегат, в полости камеры объёмного вытеснения субстанция сгорает. Процесс сопровождается выделением тепла и увеличением объёма, что провоцирует перемещение поршня. Перемещаясь, деталь преобразует механическую работу в кручение коленчатого механизма.

По завершению действие повторяется снова, таким образом, не прерываясь ни на минуту. Процессы, в течении которых совершается работа установки:

  • Такт.Перемещение поршня из крайнего нижнего положения в крайнее верхнее положение и в обратном порядке. Такт считается одним перемещением в одну сторону.
  • Цикл.Суммарное количество тактов, необходимое при совершении работы. Конструктивно, агрегаты в состоянии выполнять цикл за 2 (один оборот вала) или 4 (два оборота) такта.
  • Рабочий процесс.Действие, подразумевающее: впуск смеси, сдавливание, окисление, рабочий ход, удаление. Рабочий процесс характерен как для двухтактных моторов, так и для четырёхтактных двигателей.

Двухтактный мотор

Принцип работы двигателя внутреннего сгорания, использующего в качестве рабочего процесса два такта прост. Отличительная особенность мотора, выполнение двух тактов: сдавливание и рабочий ход. Такты впуска и очистки интегрированы в сдавливание и рабочий ход, поэтому вал проворачивается на 360° за рабочий процесс.

Выполняемый порядок таков:

  1. Сдавливание.Поршень из крайнего нижнего положения уходит в крайнее верхнее положение. Перемещение создает разряжение под поршнем, благодаря чему через продувочные отверстия просачивается горючее. Дальнейшее перемещение провоцирует перекрытие отверстия впуска юбкой поршня и отверстий выпуска, выводящих отработку. Замкнутое пространство способствует росту напряжения. В крайней верхней точке заряд поджигается.
  2. Расширение.Горение создает давление внутри камеры, заставляя посредством расширения газов перемещаться поршень в низ. Происходит поочередное открытие выпускных и продувочных окон. Напряжение в области днища провоцирует поступление горючего в цилиндрическую полость, одновременно очищая её от отработки.

Устройство агрегата на два такта исключает механизм распределяющий газы, что сказывается на качестве процесса обмена. Кроме того, невозможно исключить продувку, а это сильно увеличивает расход топлива, поскольку часть смеси выбрасывается наружу с отработанными газами.

Принцип работы двухтактного мотора:

Четырёхтактный мотор

Моторами, которые выполняют 4 такта работы двигателя внутреннего сгорания за рабочий процесс, оснащена используемая сегодня техника. В этих моторах, ввод и вывод горючего и отработки, выполняются отдельными тактами. Двигатели используют механизм распределения газов, что синхронизирует клапана и вал. Преимущество мотора на четыре такта, подача горючего в очищенную от отработанных газов камеру при закрытых клапанах, что исключает утечку топлива.

Порядок таков:

  • Ввод.Перемещение поршня из крайнего верхнего положения в крайнее нижнее. Происходит разряжение в полости, что открывает клапана впуска. Горючее заходит в камеру объёмного вытеснения.
  • Сдавливание.Перемещение поршня снизу вверх (крайние положения). Отверстия входа и выхода перекрыты, что способствует нарастанию давления в камере объёмного вытеснения.
  • Рабочий ход.Смесь загорается, выделяется тепло, резкое увеличение объёма и рост силы, давящей на поршень. Движение последнего в крайнее нижнее положение.
  • Очистка.Отверстия выпуска открыты, поршень перемещается снизу вверх. Избавление от отработки, очистка полости перед следующей порцией рабочей смеси.

Механический КПД двигателя внутреннего сгорания, с циклом на 4 такта ниже, в сравнении с агрегатом на 2 такта. Это обусловлено сложным устройством и наличием механизма распределения газов, который забирает часть энергии на себя.

Принцип работы четырёхтактного мотора:

Механизм искрообразования

Цель механизма, своевременное искрение в полости цилиндра мотора. Искра помогает воспламениться горючему и совершить агрегату рабочий ход. Механизм искрообразования, составная часть электрического оборудования автомобиля, куда входят:

  • Источник хранения электрической энергии, аккумулятор. Источник, вырабатывающий электрическую энергию, генератор.
  • Механическое или электрическое устройство, подающее электрическое напряжение в сеть автомобиля, его еще называют зажигание.
  • Накопитель и преобразователь электрической энергии, трансформатор, или катушка. Механизм обеспечивает достаточный заряд на свечах мотора.
  • Механизм распределения зажигания, или трамблёр. Устройство предназначено для распределения и своевременной подачи в нужный цилиндр электрического импульса на свечи зажигания.

Система зажигания:

Механизм впуска

Цель механизма, бесперебойное образование в цилиндрах двигателя внутреннего сгорания автомобиля, нужного количества воздуха. Впоследствии, воздух смешивается с топливом, и всё это воспламеняется для рабочего процесса. Устаревшие, карбюраторные моторы для впуска использовали элемент для фильтрации воздуха и воздуховод. Современные установки укомплектованы:

  • Механизм забора воздуха мотором.Деталь выполнена в виде патрубка, определённого профиля. Задача конструкции, подать в цилиндр как можно больше воздуха создав при этом меньшее сопротивление на входе. Всасывание воздушной массы происходит за счет разницы давлений при движении поршня в положение нижней мёртвой точки.
  • Воздушный фильтрующий элемент мотора.Деталь применяется для очистки воздуха, попадающего в мотор. Работа элемента влияет на ресурс и работоспособность силовой установки. Фильтр относится к расходным материалам, и меняется через промежуток времени.
  • Заслонка дросселя мотора.Перепускной механизм, находящийся во впускном коллекторе и регулирующий количество подаваемого в мотор воздуха. Деталь работает за счёт электроники, или механическим путём.
  • Коллектор впуска мотора.Предназначение механизма, распределить количество воздуха равномерно по цилиндрам мотора. Процесс регулируется заслонками впуска и усилителями потока.

Система впуска:

 

Механизм питания

Назначение, бесперебойная подача горючего для последующего смешивания с воздухом и приготовлением гомогенной стехиометрической смеси. Механизм питания включает:

  • Бак мотора.Ёмкость замкнутого типа, в которой хранится топливо (бензин, солярка). Бак оборудован устройством забора горючего (помпа) и устройством, заправляющим ёмкость (заливная горловина).
  • Топливная проводка мотора.Патрубки, шланги, по которым транспортируется или перенаправляется топливо.
  • Механизм, смешивающий горючее в моторе.Изначально силовые установки оборудовались карбюратором, в современных двигателях применяют инжектор. Задача, подать приготовленную смесь внутрь камеры сгорания.
  • Блок управления.Назначение механизма, управлять смесеобразованием и впрыском. В установках, оборудованных инжектором, устройство синхронизирует работу для увеличения эффективности процесса.
  • Помпа мотора.Устройство, создающее напряжение в топливном проводе мотора и способствующее движению горючей жидкости.
  • Элемент фильтрации.Механизм очищает поступающее топливо от примесей и грязи, что увеличивает ресурс силовой установки.

Механизм питания:

Механизм смазки

Назначение механизма, обеспечить детали силовой установки необходимым количеством масла для создания на поверхностях защитной плёнки. Применение жидкости уменьшает воздействие силы трения в точках соприкосновения деталей, удаляет продукты износа, защищает агрегат от коррозии, уплотняет узлы и механизмы. Система смазки состоит:

  • Поддон мотора.Ёмкость, в которой помещается, хранится и охлаждается смазочная жидкость. Для нормального функционирования мотора важно соблюдать требуемый уровень масла, поэтому поддоны укомплектованы щупом, для контроля.
  • Масляная помпа мотора.Механизм, перекачивающий жидкость из поддона двигателя и направляющий масло к точкам, нуждающимся в смазке. Движение масла происходит по магистралям.
  • Масляный фильтрующий элемент.Назначение детали, очистить масло от примесей и продуктов износа, которые циркулируют в моторе. Элемент меняют при каждой замене масла, поскольку работа влияет на износ механизма.
  • Охладитель масла мотора.Назначение механизма, отбор излишков тепла, из системы смазки. Поскольку масло, отводит тепло от перегретых поверхностей, то само масло так же подвержено перегреву. Характерная особенность механизма смазки, обязательное использование, не зависимо, от того, какова модель двигателя внутреннего сгорания применяется. Происходит это по той причине, что на сегодня эффективней этого метода защиты мотора нет.

Система смазки:

Механизм выпуска

Механизм предназначен для отвода отработанных газов и уменьшения шума в процессе работы двигателя. Состоит из следующих компонентов:

  • Коллектор выпуска мотора.Набор патрубков, выполненных из жаропрочного материала, поскольку они первыми соприкасаются с раскалёнными газами, выходящими из камеры сгорания. Коллектор гасит колебания и переправляет газы далее в трубу;
  • Труба мотора.Приёмная труба предназначена для получения газов и транспортировки далее по системе. Материал, из которого выполнена деталь, обладает высокой стойкостью к температурам.
  • Резонатор.Устройство, позволяющее разделить газы и снизить их скорость.
  • Катализатор.Устройство очистки и нейтрализации газов.
  • Глушитель мотора.Резервуар с вмонтированными перегородками, благодаря перенаправлению отработанных газов, позволяет снизить шум.

Система выпуска мотора:

Механизм охлаждения

На маломощных двигателях внутреннего сгорания применяется охлаждение мотора встречным потоком. Современные агрегаты, автомобильные, судовые, грузовые используют жидкостное охлаждение. Задача жидкости, забрать на себя часть избыточного тепла и снизить тепловую нагрузку на узлы и механизмы агрегата. Механизм охлаждения включает:

  • Радиатор мотора.Задача устройства передать избыточное тепло от жидкости окружающей среде. Деталь включает в себя набор алюминиевых трубок с отводящими ребрами;
  • Вентилятор мотора.Задача вентилятора, увеличить эффект от охлаждения за счёт принудительного обдува радиатора и отвода с его поверхности излишков тепла.
  • Помпа мотора.Задача водяной помпы обеспечить циркуляцию охлаждающей жидкости по системе. Циркуляция проходит по малому кругу (пока двигатель не разогрет), после чего, клапан переключает движение жидкости на большой круг.
  • Перепускной клапан мотора.Задача механизма, обеспечить переключение циркуляции жидкости с малого круга обращения на большой круг.

Система охлаждения мотора:

Несмотря на многочисленные попытки уйти от двигателя внутреннего сгорания, в ближайшем обозрим будущем, такой возможности не предвидится. Поэтому силовые установки данного типа еще долго будут радовать нас своей слаженной работой.

Принципы работы простейшего одноцилиндрового двигателя внутреннего сгорания

В этой статье будут рассмотрены принципы работы простейшего одноцилиндрового двигателя внутреннего сгорания. Этот двигатель взят для простоты понятия физических процессов, для того чтобы понять, как работают все подобные двигатели. На самом деле всё намного сложнее каждый процесс имеет столько особенностей, что и у специалистов, хорошо знающих работу двигателя, часто возникают споры по многим вопросам. Но все бензиновые двигатели (двигатели с принудительным зажиганием) работают на основе принципов, впервые описанных немецким инженером Отто.

Двигатель нужен для обеспечения автомобиля (если это не стационарный двигатель) механической энергией. Двигатель создаёт эту энергию. Но из школьного курса физики известно, что энергия не возникает из ничего и не исчезает бесследно. Что же является источником механической энергии, вырабатываемой двигателем, какую энергию он преобразует в механическую? Источником энергии двигателя внутреннего сгорания является энергия межмолекулярных связей углеводородного топлива, сгорающего в цилиндрах двигателя. Во время сгорания углеводородного топлива происходит разрыв этих связей с большим выделением тепловой энергии, которую двигатель и преобразует в механическую энергию в форме вращательного движения.

Для химических реакций, происходящих при сгорании топлива, требуется окислитель. Для этого используется кислород, содержащийся в окружающем атмосферном воздухе. Воздух это смесь газов, кислорода в этой смеси приблизительно 21%. В цилиндрах двигателя сгорает смесь топлива с воздухом. В идеальном случае все молекулы углеводородов, поданные в цилиндр, сгорая, соединяются со всеми молекулами кислорода, поданными в цилиндр во время одного рабочего цикла. То есть после процесса сгорания в цилиндре двигателя не должно остаться не одной молекулы топлива, и не одной свободной молекулы кислорода.

Химические реакции, во время которых полностью используются все активные вещества, называются стехиометрическими. Во время стехиометрического процесса для полного сгорания всех молекул 1-го килограмма топлива необходимо использовать приблизительно 14,7 килограммов воздуха. Это идеальный процесс, но реально при работе двигателя на различных режимах обеспечить его достаточно трудно, тем более что на некоторых режимах двигатель будет работать устойчиво, только если смесь отличается от стехиометрической.

Разобравшись, откуда берётся механическая энергия, приступим к изучению принципов работы двигателя. Как уже было отмечено ранее, здесь будет рассматриваться работа четырёхтактного двигателя внутреннего сгорания, работающего по циклу Отто. Основным признаком цикла Отто можно назвать то, что перед воспламенением топливовоздушная смесь предварительно сжимается, а зажигание смеси происходит от постороннего источника – в современных двигателях только при помощи электрической искры.

За время становления и развития двигателя внутреннего сгорания было изобретено очень много различных конструкций и, разумеется, двигатель, работающий на принципах цикла Отто, был далеко не единственный. Из двигателей с возвратной поступательным движением поршня можно назвать двигатель, работающий по циклу Аткинсона, а из двигателей с круговым движением поршня наиболее известен роторно-поршневой двигатель Ванкеля. Существует большое количество вообще экзотических конструкций. Но все они не получили широкого практического применения. Более 99,9% используемых в настоящее время двигателей внутреннего сгорания работают по циклу Отто, (в данной статье сюда будут отнесены и дизельные двигатели) которые в свою очередь подразделяются на двигатели с электрическим воспламенением смеси и дизельные двигатели, с компрессионным воспламенением смеси.

Принципы работы таких двигателей и будут рассмотрены в этой статье.

И бензиновые и дизельные двигатели могут быть не только четырёхтактными, но и двухтактными. В настоящее время двухтактные двигатели на автомобиле не применяются, поэтому в данной главе они рассматриваться не будут.

Прежде чем рассматривать принципы работы двигателя рассмотрим, из каких основных деталей он состоит.

Основные детали простейшего ДВС

  1. Цилиндр.
  2. Поршень.
  3. Камера сгорания.
  4. Шатун.
  5. Коленчатый вал.
  6. Впускной канал.
  7. Впускной клапан.
  8. Впускной распределительный вал.
  9. Выпускной канал.
  10. Выпускной клапан.
  11. Выпускной распределительный вал.
  12. Свеча зажигания.
  13. Топливная форсунка (не показана).
  14. Маховик двигателя (не показан).

1. Цилиндр – основа двигателя, именно в нём происходит процесс сгорания топлива, цилиндр является направляющим элементом для движения поршня.

2. Поршень – деталь, перемещающаяся в цилиндре под воздействием расширяющихся газов или под воздействием кривошипно-шатунного механизма. Условно примем, что скользящее соединение, между поршнем и стенками цилиндра абсолютно герметично, то есть, ни какие газа не могут просочиться через это соединение.

3. Камера сгорания – пространство над поршнем, когда поршень находится в самой верхней точке своего хода (ВМТ).

4. Шатун – это стержень, передающий усилие от поршня к кривошипу коленчатого вала и, наоборот, от коленчатого вала к поршню.

5. Коленчатый вал – служит для преобразования возвратно-поступательного движения поршня во вращательное, именно такое движение наиболее удобно для использования.

6. Впускной канал – канал, по которому топливовоздушная смесь поступает в цилиндр двигателя.

7. Впускной клапан – соединяет впускной канал с цилиндром двигателя. Условно принимаем, что в закрытом состоянии клапан полностью герметичен, а в открытом состоянии он не оказывает сопротивление проходу топливовоздушной смеси в цилиндр двигателя.

8. Впускной распределительный вал – открывает и закрывает впускной клапан в нужное время.

9. Выпускной канал – канал, по которому отработавшие газы выводятся из двигателя в атмосферу.

10. Выпускной клапан – соединяет выпускной канал с цилиндром двигателя. Условно принимаем, что в закрытом состоянии клапан полностью герметичен, а в открытом состоянии он не оказывает сопротивление проходу отработавших газов из цилиндра двигателя.

11. Выпускной распределительный вал – открывает и закрывает выпускной клапан в нужное время.

12. Свеча зажигания – служит для воспламенения сжатой топливовоздушной смеси в необходимое время.

13. Топливная форсунка – служит для распыления топлива в воздухе, поступающем в цилиндр двигателя.

14. Маховик двигателя – служит для необходимого перемещения поршня за счёт сил инерции во время всех тактов, кроме рабочего.

Далее придётся понять и запомнить довольно много специальных терминов, но сейчас упомянем, без полного объяснения, только некоторые.

1 — Верхняя мёртвая точка (ВМТ) – точка в которой поршень останавливается при изменении направления своего движения вверх цилиндра на движение вниз.

2 — Нижняя мёртвая точка (НМТ) – точка в которой поршень останавливается при изменении направления своего движения вниз цилиндра на движение вверх.

3 — Ход поршня – расстояние, проходимое поршнем при перемещении от ВМТ к НМТ или наоборот.

4 — Такт двигателя – перемещение поршня от одной мёртвой точки к другой. Во время каждого такта коленчатый вал двигателя совершает половину оборота (180?).

5 — Цикл – периодичное повторение четырёх тактов двигателя во время работы. Полный цикл двигателя состоит из четырёх тактов и совершается за два полных оборота коленчатого вала (720?).

Принципы работы простейшего одноцилиндрового четырёхтактного двигателя:

1 — Такт всасывания

(поступления топливовоздушной смеси в цилиндр).

Впускной клапан открыт.
Выпускной клапан закрыт.

Под воздействием внешнего усилия (стартёра двигателя, заводной ручки или инерции маховика), передаваемого поршню шатуном, поршень перемещается от ВМТ к НМТ. Поскольку соединение между поршнем и цилиндром полностью герметично, в пространстве над поршнем образуется пониженное давление (разрежение). Под воздействием атмосферного давления воздух через впускной канал, и открытый впускной клапан, начинает поступать в цилиндр двигателя. В это время топливная форсунка распыляет в поступающем воздухе необходимое количество топлива, в результате чего в цилиндр поступает горючая топливовоздушная смесь.

При достижении поршнем НМТ впускной клапан закрывается.

2 — Такт сжатия.

Оба клапана закрыты.

Под воздействием внешнего усилия поршень перемещается из НМТ к ВМТ. При этом в цилиндре происходит сжатие топливовоздушной смеси. По окончании такта сжатия, когда поршень встаёт в положении ВМТ, вся топливовоздушная смесь находится в сжатом состоянии в камере сгорания.

В это время свеча зажигания при помощи электрической искры воспламеняет сжатую топливовоздушную смесь. В дизельном двигателе в камеру сгорания при помощи топливной форсунки впрыскивается мелко распылённое топливо. В результате чего в обоих случаях происходит воспламенение смеси.

3 — Рабочий такт.

Оба клапана закрыты.

При сгорании топливовоздушной смеси в цилиндре резко поднимается температура и, главное, давление. Это давление равномерно давит во все стороны, но стенки камеры сгорания и цилиндра рассчитаны на это давления. А вод давление, оказываемое расширяющимися газами на поршень, днище которого является нижней частью камеры сгорания, заставляет поршень перемещаться вниз от ВМТ к НМТ. Это усилие через шатун передаётся на кривошип коленчатого вала, который преобразует поступательное движение поршня во вращательное движение.

При достижении поршнем НМТ открывается выпускной клапан.

4 — Такт выпуска.

Впускной клапан закрыт.
Выпускной клапан закрыт.

Под воздействием внешнего усилия, передаваемого на поршень через шатун, поршень перемещается из положения НМТ в положение ВМТ. Во время этого перемещения поршень вытесняет из цилиндра отработавшие газы через открытый выпускной клапан в выпускной канал и далее в атмосферу.

И так, мы рассмотрели полный цикл двигателя, состоящий из четырех тактов. Далее этот цикл повторяется бесконечно, пока двигатель не будет выключен или не закончится бензин в баке автомобиля.

Наверное, Вы обратили внимание, что из четырёх тактов полезным является только один – рабочий такт. Именно во время этого такта вырабатывается необходимая энергия. Все другие такты являются вспомогательными. Возможно, такая конструкция может показаться не эффективной, но лучшего, по всем показателям, пока ничего не изобретено. Да, существуют двухтактные двигатели, в которых полный цикл осуществляется за один поворот коленчатого вала. Существует роторно-поршневой двигатель Ванкеля, в котором вообще нет деталей, совершающих возвратно-поступательное движение, но этим конструкциям, при некоторых преимуществах, присущи свои недостатки, поэтому двигатели, работающие по четырёхтактному циклу Отто, в настоящее время имеют практически монопольное распространение в мире. И какой-либо замены им, в обозримом будущем, реально не предвидится.

Дизельный двигатель.

Двигатель, изобретённый немецким изобретателем Рудольфом Дизелем, очень похож и по конструкции и принципам работы на двигатель, работающий на бензине, описанный ранее. Но есть одно существенное различие. В этом двигателе воспламенение топливовоздушной смеси происходит не при помощи электрической искры, а за счёт контакта топлива с горячим воздухом находящемся в цилиндре. Такое воспламенение рабочей смеси называется компрессионным зажиганием. А откуда в цилиндре взялся горячий воздух, где его подогрели? Разумеется, никто его нарочно не грел. Если Вам когда-либо приходилось накачивать ручным насосом шину велосипеда, или автомобиля, вы могли обратить внимание, что довольно быстро насос начинает нагреваться. И вообще из школьного курса физики известно, что при сжатии все газы нагреваются, а воздух есть ничто иное, как смесь газов. Сжатие воздуха в двигателе происходит очень быстро, поэтому к концу такта сжатия воздух, находящийся в цилиндре дизельного двигателя, имеет очень высокую температуру (700 ? 900?С).

Поскольку физический процесс немного отличается от описанного ранее бензинового двигателя, в конструкции дизельного двигателя имеются некоторые отличия. Главное отличие в более высокой степени сжатия. У дизельного двигателя отсутствует свеча зажигания, вместо неё непосредственно в головку блока цилиндров вставлена топливная форсунка, разумеется, во впускном канале топливная форсунка отсутствует. В отличие от бензинового двигателя, в цилиндры которого во время такта всасывания поступает смесь бензина с воздухом, цилиндры дизельного воздуха поступает чистый воздух. При достижении поршнем ВМТ во время такта сжатия, в камере сгорания дизельного двигателя находится сжатый воздух, имеющий высокую температуру. И в то время, когда в бензиновом двигателе происходит воспламенение смеси при помощи электрической свечи, в камеру сгорания дизельного двигателя под большим давлением впрыскивается мелко распылённое дизельное топливо. Соприкасаясь с горячим воздухом, находящимся в камере сгорания, топливо воспламеняется.

Запомните основные отличия дизельного двигателя от бензинового.

1 – Топливо в дизельном двигателе воспламеняется не при помощи электрической искры, а за счёт контакта топлива с воздухом, имеющим высокую температуру.

2 – Регулировка крутящего момента и мощности двигателя осуществляется за счёт изменения качества, а не количества топливовоздушной смеси, поэтому в дизельном двигателе отсутствует дроссельная заслонка, регулирующая количество поступающего в цилиндры двигателя воздуха. То есть крутящий момент изменяется количеством впрыскивания топлива без изменения объёма всасываемого воздуха.

Не путайте дизельный двигатель с современными бензиновыми двигателями, с непосредственным впрыском. В этих двигателях топливная форсунка перенесена из впускного канала на головку двигателя, но не вместо свечи зажигания, а установлена совместно с ней. В этом случае топливная форсунка впрыскивает топливо непосредственно в цилиндр. Топливовоздушная смесь в таком двигателе воспламеняется не при помощи компрессионного зажигания, а при помощи электрической искры. А имеющаяся во впускном тракте дроссельная заслонка регулирует количество воздуха, поступающего в цилиндр.

Мы рассмотрели принципы работы простейшего одноцилиндрового двигателя, поняли, как возникает необходимая нам механическая энергия, но для простоты объяснения пришлось прибегнуть очень ко многим упрощениям. Например, клапаны открываются или закрываются не точно в ВМТ или НМТ. Свеча бензинового двигателя воспламеняет смесь или топливная форсунка дизельного двигателя нагнетает топливо в цилиндр не совсем точно при нахождении поршня в ВМТ. Да и двигатель, чаще всего имеет не один, а несколько цилиндров, от 1-го до 16, в автомобильной промышленности, а авиации или на флоте встречались двигатели, имеющие 64 цилиндра. Но основой любого двигателя является цилиндр.

Ранее были рассмотрены некоторые термины, имеющие отношение к цилиндру двигателя, теперь придётся их рассмотреть более подробно и познакомиться с некоторыми новыми.

1. Радиус кривошипа.

Расстояние между осями коренных и шатунных шеек коленчатого вала.
Коренными называются шейки коленчатого вала, в которых вал вращается в блоке цилиндров двигателя.
Шатунными называются шейки, к которым подсоединены шатуны поршней.
Для образования кривошипа ось коренных шеек смещена относительно оси шатунных шеек.
Радиус кривошипа является очень важным конструкционным параметром двигателя. Изменяя радиус кривошипа можно подобрать необходимое соотношение между крутящим моментом и максимальными оборотами двигателя, при неизменном объёме цилиндра.
(Обычно измеряется в миллиметрах)

2. Ход поршня:
Ход поршня, то есть расстояние между НМТ и ВМТ, равен удвоенной величине радиуса кривошипа.

3. Диаметр цилиндра:

Это диаметр внутреннего отверстия цилиндра. Условно принимаем, что диаметр поршня равен диаметру цилиндра.
(Обычно измеряется в миллиметрах)

4. Рабочий объём цилиндра:
Рабочим объёмом цилиндра называется объём, вытесняемый поршнем при перемещении от НМТ к ВМТ.
(Обычно измеряется в кубических сантиметрах (см?) или литрах.)
Рабочий объём цилиндра равен произведению хода поршня на площадь днища поршня.

5. Объём камеры сгорания.
Это объем пространства, находящегося над поршнем, во время нахождения поршня в ВМТ.
(Обычно измеряется в кубических сантиметрах.)
Камера сгорания большинства двигателей имеет сложную форму, поэтому определить её точный объём расчётным методом сложно. Для определения объёма камеры сгорания применяются различные методы прямого измерения.

6. Полный объём цилиндра.
Это сумма объёма камеры сгорания и рабочего объёма цилиндра.
(Обычно измеряется в кубических сантиметрах или литрах.)
Полный объём многоцилиндрового двигателя равен полному объёму одного цилиндра умноженному на количество цилиндров двигателя.

7. Степень сжатия.
Это соотношение полного объёма цилиндра к объёму камеры сгорания. Другими словами это соотношение объёма цилиндра в сумме с объёмом камеры сгорания, когда поршень находится НМТ к объёму пространства, расположенному над поршнем, когда поршень находится в положении ВМТ.
(Безразмерная единица)

8. Соотношение диаметра цилиндра к величине хода поршня:
Является очень важным параметром при конструировании двигателя внутреннего сгорания. Двигатели, в которых ход поршня больше диаметра цилиндра называются длиноходными, двигатели, в которых ход поршня меньше диаметра цилиндра, называются короткоходными.

Значение степени сжатия.

Степень сжатия это один из очень важных технических показателей двигателя внутреннего сгорания, поэтому рассмотрим его более подробно. В общем, повышение степени сжатия поднимает эффективность работы двигателя внутреннего сгорания, то есть при сгорании равного объёма топлива двигатель производит больше механической энергии. При повышенной степени сжатия молекулы топлива физически приближаются друг к другу. При этом топливовоздушная смесь имеет более высокую температуру, в результате чего достигается лучшее испарение частичек топлива и их более равномерное перемешивание с воздухом. Для каждого типа бензина имеется предельное значение степени сжатия. Чем выше октановое число бензина, тем выше степень сжатия, при которой может работать двигатель. При превышении допустимой степени сжатия и, соответственно температуры в камере сгорания, двигатель начинает работать с детонацией (самопроизвольное воспламенение смеси). Процесс детонации достаточно сложный, поэтому, на данном этапе, ограничимся пониманием, что причиной детонации является неправильное сгорание топливовоздушной смеси. При работе двигателя с детонацией резко уменьшается эффективность работы двигателя, и более того, возросшие ударные нагрузки могут привести к разрушению двигателя. Сильные стуки во время работы двигателя являются признаком детонации. Этот режим работы очень вреден для двигателя.

Современные электронные системы управления двигателем практически исключили работу двигателя с детонацией, но те, кому пришлось ездить на автомобилях с двигателями, не имеющих электронных систем управления, помнят, что режим детонации возникал довольно часто.

Раньше для повышения октанового числа бензина применялись специальные присадки на основе свинца. Применение этих присадок позволяло поднять степень сжатия до 12,5:1, но сейчас, в соответствии с законодательными нормами по охране окружающей среды, по причине того, что свинец наносит большой вред окружающей среде, применение присадок на основе свинца запрещено.

Степень сжатия современных бензиновых двигателей равна 10:1 ? 11:1. Величина степени сжатия может изменяться не только от качества предполагаемого к использованию бензина, но и от конструкции двигателя. Современные двигатели, имеющие систему управления двигателя с датчиком детонации, позволяют поднять степень сжатия до 13:1. Такие системы управления, регулируя угол опережения зажигания в каждом отдельном цилиндре, на основе информации, полученной от датчика детонации, позволяют двигателю работать на грани возникновения детонации, но не допускают её. Двигатели с непосредственным впрыском бензина в камеру сгорания из-за особенностей процессов, протекающих в цилиндре, тоже могут работать с повышенной степенью сжатия.

Поскольку воспламенение топлива в дизельных двигателях происходит за счёт нагрева воздуха, находящегося в цилиндре, степень сжатия дизельных двигателей выше, чем бензиновых. Степень сжатия дизельных двигателей лежит в диапазоне 14:1 ? 23:1.

Двигатели с принудительным нагнетанием воздуха в цилиндры (турбокомпрессор или механический нагнетатель), как бензиновые, так и дизельные, имеют более низкую степень сжатия по сравнению с атмосферными двигателями. Это вызвано тем, что перед началом такта сжатия в цилиндре находится большая масса воздуха (и топлива). Слишком высокое давление в цилиндре в конце такта сжатия может привести к разрушению двигателя.

Ранее отмечалось, что повышение степени сжатия явление, в целом, очень желательное, но в действительности всё несколько сложнее. Двигатель внутреннего сгорания, особенно автомобильный, постоянно работает на различных режимах скорости вращения и нагрузок. Научные исследования в данной области показали, что на некоторых режимах двигатель эффективней работает с более низкой степенью сжатия, а на других режимах степень сжатия может быть повышена без риска нанесения повреждений двигателю. Некоторые производители попытались создать двигатель с изменяемой во время работы степенью сжатия. Пионером в этой области, добившимся заметных результатов, был шведский производитель автомобилей SAAB. Работы в этом направлении проводились и другими производителями автомобилей. Но до настоящего времени серийные автомобили с изменяемой степенью сжатия на рынке отсутствуют. Очевидно, это будет следующим направлением повышения эффективности двигателя внутреннего сгорания.

Ранее были рассмотрены некоторые термины, определяющие геометрические показатели двигателя. Далее запомним некоторые термины, определяющие работу двигателя внутреннего сгорания, как простейшего одноцилиндрового, так более сложных двигателей.

  1. Мощность двигателя. Измеряется в киловаттах (кВт) или в старых, для некоторых более привычных единицах измерения, лошадиных силах (л.с.)
  2. Крутящий момент. Измеряется в ньютонах на метр (Н•м).
  3. Удельная литровая мощность. Измеряется отношением максимальной мощности двигателя к рабочему объёму цилиндров двигателя (кВт/литр)
  4. Удельная весовая мощность. Измеряется отношением максимальной мощности двигателя к весу двигателя (кВт/Кг).
  5. Топливная эффективность. Измеряется массой топлива, которое необходимо потратить на выработку мощности в один киловатт в течение часа (гр/кВт*час)
  6. Скорость вращения. В автомобилестроении, как и во многих других областях техники, скорость (частота) вращения коленчатого вала измеряется в оборотах в минуту (об/мин).

За прошедшие более чем сто лет с момента изобретения двигателя внутреннего сгорания (ДВС) количество его конструкций было столь велико, что их не только описать невозможно, их просто никто даже перечислить не сможет, да и задачи такой, в общем, нет. Четко понимая общие принципы работы ДВС (кратко описанные в данной статье), можно разобраться в любой конструкции.

Е.Н. Жарцов

Принцип работы ДВС современного типа простыми словами

Современные двигатели работают по достаточно простой схеме, которая была изобретена целый век назад. Единственное, что подверглось сильному изменению после производства первого двигателя внутреннего сгорания, это система питания. С карбюраторов и прочих не слишком эффективных средств подачи топлива промышленность перешла на инжектор для бензиновых двигателей. Дизельные агрегаты обладают отдельным типом впрыска через систему с повышенным давлением. Все последние разработки в технологиях работы ДВС являются мелочными дополнениями к уже известной конструкции, которые призваны обеспечить либо автоматическую регулировку определенных параметров работы, либо определенную экономию топлива.

Тем не менее, суть двигателя остается прежней. По части работы двигателя внутреннего сгорания сегодня мы обсудим отдельно службу бензинового и дизельного силового агрегата, а также обсудим некоторые особенности использования бензинового двигателя в гибридных устройствах. Также затронем тему турбины в различных агрегатах, ее типов и смысла использования. Ознакомившись со всеми тонкостями работы современных силовых агрегатов внутреннего сгорания, вы поймете, что нынешние ДВС фактически ничем не отличаются от классических устройств.

Содержание

Бензиновый двигатель внутреннего сгорания — тонкости работы

Двигатель на бензиновом топливе представляет собою классический вариант силового агрегата, который может работать только на очищенном и качественном бензине, производимом из нефти. Современные двигатели работают только на бензине с октановым числом 95 или даже 98. Залив в хороший агрегат бензин плохого качества, вы можете приобрести массу проблем.

Топливо подается в агрегат с помощью бензонасоса, а количество подачи регулируется специальной системой впрыска. Инжекторы обладают тонкими форсунками, которые распыляют топливо в системе, позволяя его полностью сжечь в камерах сгорания. После подачи топлива по трубке на систему инжектора происходят следующие процессы:

  • инжектор распыляет бензин, превращая его в облако пара, а также смешивает получившиеся частицы с воздухом;
  • смесь бензина и кислорода попадает дальше в камеру сгорания, где в верхней части поджигается свечей зажигания;
  • подожженный бензин быстро воспламеняется, формируя определенной мощности взрыв с конкретным давлением и усилием;
  • камера сгорания исключительно герметична, потому сила этого взрыва направляется на рабочую плоскость поршня;
  • от мощности удара поршень опускается вниз и приводит в движение коленчатый вал, на котором закреплены другие поршни;
  • с помощью неоднократного повторения такого процесса происходит постоянное вращение двигателя.

Если топливо не распыляется должным образом, поскольку форсунки забиты или поломаны, один из цилиндров не будет давать нужной мощности, поскольку топливо не сможет поджигаться и нормально выполнять свои функции. В таком случае двигатель теряет мощность и значительно увеличивает расход. Также в таком агрегате крайне важна фильтрация воздуха.

Турбина в бензиновых двигателях представляет собой механизм усиленной подачи воздуха, за счет чего на определенных режимах работы увеличивается мощность агрегата без увеличения потребления топлива. Интенсивная подача воздуха с разными значениями позволяет компаниям достигать невероятных технических характеристик вполне стандартных бензиновых агрегатов.

Дизельный силовой агрегат — второй тип ДВС

Еще один важный тип двигателя, который стал прекрасной альтернативой бензиновому агрегату в обыденной и коммерческой эксплуатации, — это дизельный силовой агрегат. Его стандартными преимуществами считается менее активный расход топлива и очень ощутимая тяга. Такие выгоды дают возможность полностью переформатировать стиль поездки, изменить привычки управления автомобилем.

Дизельный силовой агрегат подает топливо также через форсунки со значительным распылением. Это требует высокой чистоты дизельного топлива и значительной безопасности работы системы подачи топлива, поскольку жидкость подается на форсунки в достаточно большом давлении. Принцип работы агрегата несколько отличается от бензинового:

  • топливо подается на распыление в гораздо большем давлении, оно прогревается еще до входа в камеры сгорания;
  • под воздействием значительного давления поршней в камерах сгорания топливо самовоспламеняется;
  • создаваемая при этом энергия производит толчок поршня в нижнее положение, выводя при этом другие поршни вверх;
  • для работы двигателя требуется меньше топлива, а вот подача воздуха имеет большое значение;
  • по данной причине в дизельных двигателях практически всегда присутствует турбина, распространены только турбодизели;
  • агрегат создает очень завидную мощность поршней, потому даже на низких оборотах он обладает большой тягой.

Определенная специфика работы дизельного двигателя вызывает и некоторые особенности его эксплуатации. В частности, водителю придется научиться раньше переключать передачи, довольствоваться низкими оборотами и контролировать тягу машины. Современные турбодизели потребляют на 15-20 процентов меньше топлива на ту самую мощность, чем бензиновые агрегаты.

Объемистые и тяговитые дизельные двигатели в промышленности могут работать не только на продуктах нефтеобработки. Многие агрегаты приспособлены даже на сжигание сырой нефти, а также принимают в качестве топлива природные биомасла, которые воспламеняются при сильном давлении. Это может стать одним из будущих перспективных моментов автомобилестроения.

Бензиновый гибридный двигатель — электричество в моде

Не так давно на рынок начали поступать гибридные автомобили. Это машины, у которых силовой агрегат состоит из двух частей. Первая часть не отличается от стандартных бензиновых агрегатов, но зачастую не столь объемистая и мощная. А вторая часть представлена электродвигателями в разных количествах и расположениях.

Батареи для электродвигателя оснащены отдельным генератором, который заряжается от работы бензинового агрегата. Также энергия берется из рекуперации энергии торможения и прочих процессов, которые обычно теряются в стандартном исполнении. Гибрид работает по следующей схеме:

  • в стандартных ситуациях городской поездки используются только электромоторы, вы ведете электромобиль;
  • когда энергия батарей на исходе, в дело включается бензиновый двигатель, нагнетающий запас в аккумуляторах;
  • также при резком нажатии на педаль газа включаются сразу все двигатели, давая огромную энергию;
  • при полной разрядке батарей ДВС продолжает работать и весьма экономично везет вас в нужном направлении;
  • у некоторых гибридных автомобилей есть выход для зарядки батарей от обычной электрической сети.

Такие технологии являются дыханием будущего, поскольку экономия на гибридных автомобилях ощутима. Большой внедорожник с такой установкой может затрачивать всего 5-6 литров топлива, независимо от выбранного режима поездки. Хороший двигатель внутреннего сгорания обеспечивает быструю зарядку батарей.

Сегодня активно развивается применение гибридных установок на основе дизельного двигателя. В таком случае расход опускается до невероятных 2-3 литров на 100 километров. Впрочем, технологии гибридного использования знают и расход в 1 литр на 100 километров, который является эталонным для современных производителей автомобилей. Предлагаем изучить принцип работы гибридного двигателя на следующем видео:

Подводим итоги

Сегодня покупатель автомобилей имеет большой выбор технологий, которые для него будут оптимальными во всех отношениях. Подобрать лучшее решение будет непросто, поскольку производители расписывают преимущества своих предложений в самых неожиданных аспектах. Иногда правильно преподнесенная технология кажется нам самым важным элементом автомобиля, но на самом деле не занимает и части технического потенциала транспорта.

Потому многие покупатели просто становятся жертвами рекламного влияния, покупая те или иные технологии и оплачивая их в полной мере. Сегодня лучше отказаться от рекламы при выборе типа машины. Положитесь на собственные впечатления и ощущения, на решения, которые вам нравятся больше всего. В каждом типе двигателя и силовой установки есть свои преимущества и недостатки. Расскажите о главных преимуществах двигателя в вашем автомобиле.

Двигатель внутреннего сгорания | Физика

Двигатель внутреннего сгорания был изобретен в 1860 г. французским механиком Э. Ленуаром. Свое название он получил из-за того, что топливо в нем сжигалось не снаружи, а внутри цилиндра двигателя. Аппарат Ленуара имел несовершенную конструкцию, низкий КПД (около 3 %) и через несколько лет был вытеснен более совершенными двигателями.

Наибольшее распространение среди них получил четырехтактный двигатель внутреннего сгорания, сконструированный в 1878 г. немецким изобретателем Н. Отто. Каждый рабочий цикл этого двигателя включал в себя четыре такта: впуск горючей смеси, ее сжатие, рабочий ход и выпуск продуктов сгорания. Отсюда и название двигателя — четырехтактный.

Двигатели Ленуара и Отто работали на смеси воздуха со светильным газом. Бензиновый двигатель внутреннего сгорания был создан в 1885 г. немецким изобретателем Г. Даймлером. Примерно в это же время бензиновый двигатель был разработан и О. С. Костовичем в России. Горючая смесь (смесь бензина с воздухом) приготовлялась в этом двигателе с помощью специального устройства, называемого карбюратором.


Современный четырехцилиндровый двигатель внутреннего сгорания изображен на рисунке 88. Поршни, находящиеся внутри цилиндров двигателя, соединены с коленчатым валом 1. На этом валу укреплен тяжелый маховик 2. В верхней части каждого цилиндра имеется два клапана: один из них называется впускным, другой — выпускным. Через первый из них горючая смесь попадает в цилиндр, а через второй продукты сгорания топлива уходят наружу.

Принцип действия одноцилиндрового двигателя внутреннего сгорания иллюстрирует рисунок 89.

1-й    такт — впуск. Открывается клапан 1. Клапан 2 закрыт. Движущийся вниз поршень 3 засасывает в цилиндр горючую смесь.
2-й    такт — сжатие. Оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь. Смесь при сжатии нагревается.
3-й    такт — рабочий ход. Оба клапана закрыты. Когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи 4. В результате сгорания смеси образуются раскаленные газы, давление которых составляет 3—6 МПа, а температура достигает 1600—2200 °С. Сила давления этих газов толкает поршень вниз. Движение поршня передается коленчатому валу с маховиком. Получив сильный толчок, маховик будет вращаться дальше по инерции, обеспечивая тем самым перемещение поршня и при последующих тактах.
4-й    такт — выпуск. Открывается клапан 2. Клапан 1 закрыт. Поршень движется вверх. Продукты сгорания топлива уходят из цилиндра и через глушитель (на рисунке не показан) выбрасываются в атмосферу.

Мы видим, что в одноцилиндровом двигателе полезная работа совершается лишь во время третьего такта. В четырехцилиндровом двигателе (см. рис. 88) поршни укреплены таким образом, что во время каждого из четырех тактов один из них находится в стадии рабочего хода. Благодаря этому коленчатый вал получает энергию в 4 раза чаще. При этом увеличивается мощность двигателя и в лучшей степени обеспечивается равномерность вращения вала.

Частота вращения вала у большинства двигателей внутреннего сгорания лежит в пределах от 3000 до 7000 оборотов в минуту, а в некоторых случаях достигает 15 000 оборотов в минуту и более.

В 1897 г. немецкий инженер Р. Дизель сконструировал двигатель внутреннего сгорания, в котором сжималась не горючая смесь, а воздух. В процессе этого сжатия температура воздуха поднималась настолько, что при попадании в него топлива оно самовозгоралось. Специального устройства для воспламенения топлива в этом двигателе уже не требовалось; не нужен был и карбюратор. Новые двигатели стали называть дизелями.

Двигатели Дизеля являются наиболее экономичными тепловыми двигателями: они работают на дешевых видах топлива и имеют КПД 31—44 % (в то время как КПД карбюраторных двигателей составляет обычно 25-30 %). В настоящее время они применяются на тракторах, тепловозах, теплоходах, танках, грузовиках, передвижных электростанциях.

Судьба самого изобретателя нового двигателя оказалась трагической. 29 сентября 1913 г. он сел на пароход, отправлявшийся в Лондон. Наутро его в каюте не нашли. Талантливый инженер бесследно исчез. Считается, что он покончил с собой, бросившись ночью в воды Ла-Манша.

Изобретение двигателя внутреннего сгорания сыграло огромную роль в автомобилестроении. Первый автомобиль с бензиновым двигателем внутреннего сгорания был создан в 1886 г. Г. Даймлером. Одновременно с этим Даймлер запатентовал установку своего двигателя на моторной лодке и мотоцикле. В том же году, но чуть позже появился трехколесный автомобиль К- Бенца. Громоздкие и трудноуправляемые паровые автомобили стали вытесняться новыми машинами. Последующие годы явились началом промышленного производства автомобилей.
В 1892 г. свой первый автомобиль построил Г. Форд (США). Через 11 лет его автомобили (рис. 90) были запущены в массовое производство.

В 1908 г. автомобили начали производить на Русско-Балтийском заводе в Риге. Один из первых русских автомобилей «Руссо-Балт» показан на рисунке 91.

Важную роль в развитии и распространении нового вида транспорта сыграли автомобильные гонки, которые стали устраиваться с 1894 г. В первой из них средняя скорость автомобилей составляла лишь 24 км/ч. Однако уже через пять лет она достигла 70 км/ч, а еще через пять лет— 100 км/ч.

После 1900 г. началось производство специальных гоночных автомобилей. С каждым годом их скорость возрастала. В 60-х гг. скорость автомобилей с поршневым двигателем превысила 600 км/ч, а после установки на автомобиле газотурбинного двигателя она перевалила за 900 км/ч. Наконец, в 1997 г. Э. Грин (Великобритания) на своем ракетном автомобиле «Траст SSC» достиг скорости 1227,985 км/ч, что превысило скорость звука в воздухе!

1. Опишите принцип действия четырехтактного двигателя внутреннего сгорания. Из каких тактов состоит каждый его рабочий цикл? 2. Какую роль в двигателе играет маховик? 3. Чем отличается дизельный двигатель внутреннего сгорания от карбюраторного? 4. Кто создал первые автомобили с двигателем внутреннего сгорания?

Integrated Publishing — Ваш источник военных спецификаций и образовательных публикаций

Integrated Publishing — Ваш источник военных спецификаций и образовательных публикаций

Администрация — Навыки, процедуры, обязанности военнослужащих и т. Д.

Продвижение — Военное продвижение по службе книги и др.

Аэрограф / Метеорология — Метеорология основы, физика атмосферы, атмосферные явления и др.
Руководство по аэрографии и метеорологии ВМФ

Автомобили / Механика — Руководства по техническому обслуживанию автомобилей, механика дизельных и бензиновых двигателей, руководства по автомобильным запчастям, руководства по запчастям дизельных двигателей, руководства по запчастям для бензиновых двигателей и т. Д.
Автомобильные аксессуары | Перевозчик, Персонал | Дизельные генераторы | Механика двигателя | Фильтры | Пожарные машины и оборудование | Топливные насосы и хранилище | Газотурбинные генераторы | Генераторы | Обогреватели | HMMWV (Хаммер / Хаммер) | и т.п…

Авиация — Принципы полета, авиастроение, авиационная техника, авиационные силовые установки, руководства по авиационным деталям, руководства по деталям самолетов и т. д.
Руководства по авиации ВМФ | Авиационные аксессуары | Общее техническое обслуживание авиации | Руководства по эксплуатации вертолетов AH-Apache | Руководства по эксплуатации вертолетов серии CH | Руководства по эксплуатации вертолетов Chinook | и т.д …

Боевой — Служебная винтовка, пистолет меткая стрельба, боевые маневры, органическое вспомогательное оружие и т. д.
Химико-биологические, маски и оборудование | Одежда и индивидуальное снаряжение | Инженерная машина | и т.д …

Строительство — Техническое администрирование, планирование, оценка, календарное планирование, планирование проекта, бетон, кладка, тяжелые строительство и др.
Руководства по строительству военно-морского флота | Агрегат | Асфальт | Битуминозный распределитель кузова | Мосты | Ведро, раскладушка | Бульдозеры | Компрессоры | Обработчик контейнеров | Дробилка | Самосвалы | Земляные двигатели | Экскаваторы | и т.п…

Дайвинг — Руководства по дайвингу и утилизации разного оборудования.

Чертежник — Основы, приемы, составление проекций, эскизов и др.

Электроника — Руководства по обслуживанию электроники для базового ремонта и основ. Руководства по компьютерным компонентам, руководства по электронным компонентам, руководства по электрическим компонентам и т. Д.
Кондиционер | Усилители | Антенны и мачты | Аудио | Аккумуляторы | Компьютерное оборудование | Электротехника (NEETS) (самая популярная) | Техник по электронике | Электрооборудование | Электронное общее испытательное оборудование | Электронные счетчики | и т.п…

Инженерное дело — Основы и приемы черчения, черчение проекций и эскизов, деревянное и легкое каркасное строительство и др.
Военно-морское дело | Программа исследования прибрежных заливных отверстий в армии | так далее…

Еда и кулинария — Руководства по рецептам и оборудованию для приготовления пищи.

Логистика — Логистические данные для миллионов различных деталей.

Математика — Арифметика, элементарная алгебра, предварительное исчисление, введение в вероятность и т. д.

Медицинские книги — Анатомия, физиология, пациент уход, оборудование для оказания первой помощи, аптека, токсикология и др.
Медицинские руководства военно-морского флота | Агентство регистрации токсичных веществ и заболеваний

MIL-SPEC — Государственные стандарты MIL и другие сопутствующие материалы

Музыка — мажор и минор масштабные действия, диатонические и недиатонические мелодии, ритм биения, пр.

Ядерные основы — Теории ядерной энергии, химия, физика и др.
Справочники DOE

Фотография и журналистика — Теория света, оптические принципы, светочувствительные материалы, фотографические фильтры, копия редактирование, написание статей и т. д.
Руководства по фотографии и журналистике военно-морского флота | Армейская фотография Полиграфия и пособия по журналистике

Религия — Основные религии мира, функции поддержки поклонения, венчания в часовне и т. д.

Как работает 4-тактный бензиновый двигатель или цикл искрового зажигания?

Разъяснение принципа действия и рабочего цикла бензинового двигателя:

Что такое двигатель?

Прежде чем узнать, как работает бензиновый двигатель, давайте сначала разберемся, что такое двигатель.Это характерно как для бензиновых, так и для дизельных двигателей. Двигатель — это машина, вырабатывающая энергию, которая преобразует потенциальную энергию топлива в тепловую, а затем в движение. Он производит энергию, а также работает от своей собственной энергии.

Двигатель вырабатывает свою мощность за счет сжигания топлива в процессе саморегулируемого и управляемого «сгорания» . Процесс сгорания включает в себя множество подпроцессов, которые эффективно сжигают топливо и приводят к плавной работе двигателя.

Эти процессы включают:

  1. Всасывание воздуха (также известное как дыхание или аспирация).
  2. Смешивание топлива с воздухом после превращения жидкого топлива в сильно распыленную / туманную форму.
  3. Воспламенение топливовоздушной смеси искрой (бензиновый двигатель) или самовоспламенением после повышения температуры воздуха путем его сжатия (дизельный двигатель).
  4. Сжигание сильно распыленных частиц топлива, приводящее к выделению / выбросу тепловой энергии.

Как работает двигатель?

Двигатель преобразует тепловую энергию в кинетическую энергию в форме «возвратно-поступательного движения , ». Расширение нагретых газов и их силы действуют на поршни двигателя. Газы толкают поршни вниз, что приводит к возвратно-поступательному движению поршней.

Это движение поршня позволяет коленчатому валу вращаться. Таким образом, он, наконец, преобразует возвратно-поступательное движение в « Вращательное движение » и переходит на колеса.

Работа / Принцип работы двигателя:

Обычный двигатель внутреннего сгорания работает по двум основным принципам:

.
  1. Цикл Отто и
  2. Дизельный цикл

Что такое «цикл Отто»? Как работает бензиновый двигатель?

Цикл Отто

также известен как четырехтактный цикл искрового зажигания . Он был назван в честь немецкого инженера Николауса Отто , который изобрел, разработал и запатентовал первый четырехтактный бензиновый двигатель.Четырехтактный бензиновый двигатель работает по следующему циклу, который включает —

.

1. Ход всасывания — При движении поршней вниз и открытии впускного клапана происходит всасывание топливовоздушной смеси.

Ход всасывания бензина

2. Ход сжатия — При закрытии впускного клапана он закрывает область над поршнем. Поршень движется вверх, что приводит к сжатию топливовоздушной смеси в ограниченном пространстве.

Такт сжатия бензина

Процесс сгорания — На этом этапе свеча зажигания зажигает искру, что приводит к мгновенному горению бензина, вызывающему взрыв.Это вызывает выделение тепла, которое генерирует расширяющие силы, известные как мощность.

Схема процесса сгорания бензина

3. Рабочий ход — Кроме того, эти силы снова толкают поршни вниз, вызывая их возвратно-поступательное движение.

Бензиновый ход поршня

4. Ход выхлопа — По пути вверх поршни проталкивают выхлопные газы над собой через выпускной клапан, который открывается во время такта выпуска.

Ход выхлопа бензина

Таким образом, этот цикл повторяется до тех пор, пока двигатель не будет выключен, что приведет к продолжению его работы.

Смотрите анимацию работы 4-тактного бензинового двигателя здесь:

Анимация 4-тактного бензинового двигателя

В бензиновом двигателе более раннего поколения для подачи бензина в двигатель использовался карбюратор. В бензиновых двигателях нового поколения используется сложная технология «впрыска топлива» (как и в дизельных двигателях) с «системой управления двигателем» для повышения производительности и снижения выбросов. Тем не менее, он по-прежнему использует свечу зажигания для зажигания бензина, как это было в бензиновых двигателях более раннего поколения.

Продолжайте читать: Принцип работы и принцип действия дизельного двигателя >>

О компании CarBikeTech

CarBikeTech — технический блог. Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBikeTech

Современный двигатель внутреннего сгорания

Современный двигатель внутреннего сгорания

Джоаб Камарена


7 декабря 2015 г.

Представлено как курсовая работа для Ph340, Стэнфордский университет, осень 2015 г.

Введение

Двигатель внутреннего сгорания (ДВС) — вот что движет большинство автомобилей сегодня и существует уже много лет.ICE имеет подвергся многочисленным изменениям исключительно с целью улучшения выходная мощность и минимизация потерь энергии. Как работает процесс что есть впуск через отверстия портов, который толкает поршень вниз начало его цикла сжатия и декомпрессии, с энергией от этого передается на коленчатый вал, позволяя движение автомобиль. Более распространенный двигатель внутреннего сгорания основан на четырех ход поршня для завершения своего цикла и высвобождения энергии для перемещения транспортное средство.[1-3]

Как это работает

В этом цикле четыре этапа: 1) прием, 2) компрессия, 3) сгорание и рабочий ход, и, наконец, 4) выхлоп (Рисунок 1). Вот как это работает:

  1. Впуск: Топливо-воздушная смесь входит в цилиндр, когда поршень опускается и впускной открывается.

  2. Сжатие: При закрытии на впуске топливно-воздушная смесь увеличивается по давлению и температура, поскольку поршень сжимает газ, перемещая вверх.

  3. Горение и удар: Энергия высвобождается в результате реакции горения, вызванной зажигание свечи зажигания, воспламеняющей топливно-воздушную смесь и доводит до высокой температуры. По мере увеличения смеси по температуре и давлению он давит на поршень, следовательно, вызывая рабочий ход, который вращает коленчатый вал.

  4. Выхлоп: Побочные продукты, образующиеся затем реакция горения выпускается через выхлоп трубу, и цикл повторяется, когда впускное отверстие открывается и выпускается клапан закрывается.[2,3]

Энергетический анализ

Хотя это обычно используемый двигатель в транспортных средствах сегодня это не значит, что он самый эффективный. Горение неэффективность измеряет часть энергии, которая не используется из топливо. Установлено, что тепловые потери теплоносителя и тепловые потери энергии выхлопных газов являются самыми большими источниками тепловых потерь, что способствует отсутствию оборота энергии. Постоянно утверждается, что Второй закон Термодинамика не позволяет всем двигателям достигать максимальной температуры. эффективность, но это не означает, что мы не можем улучшить коэффициент конверсии энергии.Постоянные инновации и модернизация внутреннего сгорания двигатель позволили улучшить преобразование энергии топлива. [4]

Заключение

Знать, как работает двигатель внутреннего сгорания и в чем заключается его неэффективность, правильная технология и дизайн двигатель внутреннего сгорания позволит нам лучше использовать энергию в топливе. Хотя цены на газ постоянно колеблются, наиболее вероятной тенденцией в будущем будет повышение цен на газ, что только заставит двигаться к разработке высокоэффективных автомобилей сильнее.Это возможно даже при постоянном диалоге о отказ от ископаемого топлива и последствия изменения климата, что, наряду с нашим нынешним технологическим бумом, мы больше не будем полагаться на двигатель внутреннего сгорания для транспортных средств будущего.

© Жоаб Камарена. Автор дает разрешение копировать, распространять и демонстрировать эту работу в неизменном виде, с ссылка на автора, только в некоммерческих целях. Все остальные права, в том числе коммерческие, принадлежат автору.

Список литературы

[1] J. R. Clarke et al. , «Индукционный двигатель» Система и метод », Патент США 4860709, 29 августа 89 г.

[2] Д. К. Джанколи, Физика: принципы с Приложения, 7-е изд. (Addison-Wesley, 2013), стр. 421.

[3] Б. Кроу, «Внутренний Двигатель внутреннего сгорания, Physics 240, Стэнфордский университет, осень 2012 г.

[4] М. Баглионе, М.Дьюти и Г. Панноне, «Автомобиль». Методология системного энергетического анализа и инструмент для определения транспортного средства Подсистема энергоснабжения и спроса », Технический документ SAE 2007-01-0398, г. 16 апреля 07.

Электрооборудование двигателя

В течение сорока лет после первый полет братьев Райт использовались самолеты двигатель внутреннего сгорания повернуть пропеллеры генерировать толкать. Сегодня большинство самолетов гражданской авиации или частных самолетов все еще находятся в эксплуатации. с пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель.Мы обсудим основы двигатель внутреннего сгорания с использованием Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера. Дизайн братьев очень прост по сегодняшним меркам, так что это хороший двигатель для студентов, чтобы изучить и изучить основы двигателей и их операция. На этой странице мы представляем компьютерный чертеж электрической системы Райта Авиадвигатель братьев 1903 года.

Механическое управление

На рисунке вверху показаны основные компоненты электрической системы двигателя Wright 1903.В любом двигателе внутреннего сгорания топливо и кислород объединяются в процесс горения произвести силу, чтобы повернуть коленчатый вал двигателя. Задача электрической системы — обеспечить искру, которая инициирует горение.

Электроэнергия вырабатывается магнето в задней части двигателя. Магнето полагается на физический принцип , электрическая индуктивность для производства электричества; когда провод проходит через магнитное поле, электрический ток индуцировал в проводе.Магнето имеет большой U-образный постоянный магнит вверху. Между плечами магнита намотана проволока. вал, который вращается фрикционным приводом трение колеса о маховик двигателя. В движущемся проводе индуцируется электрический ток. Мощность для поворота магнето обеспечивается работающим двигатель. Магнето очень похоже на генератор переменного тока или генератор на современный автомобиль. Братья Райт купили свой магнето, и он обеспечивал очень скромные 10 вольт при 4 амперах в работе.Два провода подключают магнето к двигателю; заземляющий провод к нога картер, и силовой провод к шине снаружи четырех камер сгорания двигателя.

В каждой камере сгорания электрическая шина проводит электричество к Свеча зажигания ввинчивается через стенку камеры. В заглушка изолирована от стенки камеры. Внутри камеры там представляет собой подвижный контактный переключатель .Когда переключатель замкнут, создается цепь, и через нее проходит электричество. провода, шину и вилку. При быстром размыкании переключателя возникает искра. сгенерировано. Вы можете увидеть этот эффект, если отключите работающий прибор в домашних условиях. Пружинные рычаги , установленные снаружи камеры, являются используется для размыкания и замыкания контактного переключателя с помощью изолированного вала, проходящего через через стенку камеры сгорания. Пружинные рычаги прикреплены к картеру двигателя, который заземлен на магнето.Рычаги активируются кулачками которые включают кулачковый вал под двигатель. Кулачковый вал соединен шестернями с кулачковым валом выпускного клапана. который превращается временная цепь. Шестерни и кулачки гарантируют, что контактный выключатель размыкается, и искра зажигания возникает как раз при подходящий момент двигателя цикл. Вот компьютерная анимация действия рычагов и контактного переключателя:

В этой анимации мы вырезали открытый цилиндр №3, чтобы вы могли наблюдать движение клапанов, кулачков, коромысел, электрических контактов и переключателей.Пружина, которая перемещает электрический контакт внутри цилиндра №3 частично скрыт самим цилиндром. Весна еле видна за синей пружиной выпускного клапана. Вы можете лучше увидеть действие электрический кулачок и пружина на соседнем цилиндре №4 справа. Но обратите внимание что синхронизация движения переключателей и клапанов различается между соседние цилиндры. В анимации мы разрезали шину, чтобы чтобы увидеть цилиндр №3 изнутри; штанга оборачивается вокруг цилиндра №3 в таким же образом, как он оборачивается вокруг цилиндра №2 слева.

Как это работает?

Чтобы понять, как работает электрическая система, мы нарисовали Упрощенная схема подключения двигателя :

Мы пронумеровали цилиндры (и камеры сгорания) от 1 до 4. идёт от передней части двигателя к задней. Магнито, провода, контактные выключатели и заземленные цилиндры производят электрическая цепь , о которой вы слышали в школе. Этот конкретный тип схемы называется параллельной схемой . потому что есть параллельные линий , проходящие через четыре цилиндры.Контактный выключатель на любом цилиндре может быть открыт или закрыт не затрагивая соседние цилиндры. (Если бы цилиндры были подключен к серии , размыкание любого переключателя отключит ток ко всем цилиндрам.)

На протяжении почти всего цикла для данного цилиндра контактный выключатель удерживается разомкнутым, и через систему не течет ток. Но когда кулачок нажимает на рычаги, контактный переключатель в одном цилиндре изначально замкнут, что производит ток электричество от магнето через шину, выключатель и рычаги, к картеру и обратно к магнето.Это состояние для цилиндра №1 показано в верхней части рисунка. Поскольку кулачок продолжает двигаться, контактный переключатель внезапно размыкается, как показано внизу рисунка. Небольшая искра возникает, когда выключатель открыт (вы можете увидеть этот эффект, если выдернете вилку из операционная лампа в вашем доме.) Внутри камеры сгорания эта искра используется для воспламенения топлива / воздуха. смесь в конце ход сжатия. Контактный выключатель остается разомкнутым внутри цилиндр до следующего обжига. Открытие переключателя называется электрический разрыв (цепи) и эта техника зажигания называется системой «сделать и сломать».Четыре цилиндра этого двигателя горят по одному в порядке стрельбы , который повторяется. Братья использовал порядок стрельбы 1 — 3 — 4 — 2, чтобы сбалансировать стрельбы и сделать двигатель работает максимально плавно.

Историческая справка — Обратите внимание, что в системе «сделать и сломать» есть подвижные части, расположенные внутри камеры сгорания. Современное внутреннее сгорание двигатели не используют этот метод, а вместо этого используют свечу зажигания, чтобы произвести искра зажигания.Свеча зажигания не имеет движущихся частей, что намного безопаснее, чем у свечи зажигания. метод, используемый братьями. В современных системах также используется очень высокое напряжение по сравнению с системой братьев. Но у братьев было одно преимущество перед современными системами. Их контактные данные перемещались во время цикла двигателя, поэтому оставались относительно чистыми. Современные свечи зажигания могут засорять из-за масла и грязи, присутствующих в камера сгорания собирается в зазоре свечи . «Сделать и break «система не имеет этой проблемы.


Действия:

Экскурсии с гидом

Навигация ..


Руководство для начинающих Домашняя страница
Модель дизельного двигателя

Принцип работы Физический эксперимент Инструмент для испытания двигателя внутреннего сгорания

Модель дизельного двигателя Принцип работы Физический эксперимент Инструмент для испытания двигателя внутреннего сгорания


Характеристики:

.Простое управление: Включите питание и медленно поверните ручку в направлении, указанном стрелкой

. Наблюдать за режимом работы: Процесс вдоха: впускной клапан открывается, выпускной клапан закрывается, и поршень перемещается из верхней мертвой точки в нижнюю мертвую точку. смесь топлива и воздуха поступает в цилиндр через впускной патрубок

. Процесс сжатия: Впускной и выпускной клапаны закрывают поршень для движения сверху вниз, и топливо сжимается в цилиндре, и температура быстро повышается.

.Рабочий процесс: Когда поршень достигает мертвой точки, газ в цилиндре быстро расширяется из-за воспламенения, заставляя поршень двигаться

. Процесс выпуска: Из-за инерции вращающегося механизма выпускной клапан открывается, и отработанный газ выпускается из выпускной трубы

. Циркуляция: выпускной клапан закрыт, впускной клапан открыт, поршень движется вниз, и цикл

.Сильная играбельность: Изысканные детали, изысканные изгибы, могут быть полноценными украшениями для дома и офиса. Изделие подходит для людей старше 8 лет и является отличным подарком для мальчиков.

Технические характеристики:

. Цвет: Как показано
. Материал: Металл + Пластик
. Размеры изделия: 16,5 x 10,5 x 30 см
. Вес изделия: 800 г
. Размеры упаковки: 20 x 12 x 35 см
. Вес упаковки: 820 г
. Упаковка: Коробка

Содержание упаковки:

.1 х дизельный двигатель модели

Советы:

1. Бесплатная доставка всех заказов

2.Если у вас возникли проблемы с продукцией набора для стирлинга, пожалуйста, свяжитесь с нами )

Политика доставки:

1. Бесплатная доставка всех заказов.

2. Вы получите электронное письмо с подтверждением после размещения заказа и еще одно электронное письмо после того, как ваш заказ будет отправлен. Второй будет содержать информацию об отслеживании и некоторые инструкции по отслеживанию вашей посылки.

3. Узнать больше

Политика возврата:

1. Все продукты могут быть запрошены для разрешения на возврат товара в рамках гарантии возврата.

2. Гарантия возврата: 30 дней с момента получения посылки

3. Узнать больше

(Советы: Если у вас есть какие-либо проблемы с политикой стирлинга, пожалуйста, свяжитесь с нами )

Q1: Если мой пароль забыли, что делать?
A1: Отправьте электронное письмо по адресу: service @ sterlingkit.com . с тем же адресом электронной почты, что и учетная запись sterlingkit. Наши сотрудники сбросят ваш пароль в кратчайшие сроки.

Q2: Где мой заказ?
A2: Вы можете отслеживать свой заказ на 17track.net. Или, если вам нужна помощь членов команды, свяжитесь с нашей службой поддержки, и мы свяжемся с вами, чтобы обновить статус.

Q3: Возврат
A 3: Возврат средств осуществляется в течение 1-5 рабочих дней. отмена.

Q4: Как отменить заказ?
A4: Вы можете отменить свой заказ только в том случае, если он не был отправлен. Свяжитесь с нами [email protected] , , мы отменим ваш заказ и полностью вернем вам деньги.

Q5: Возврат
A5: При заказе в магазине и через Интернет предоставляется 30-дневная гарантия возврата.

Q6: Как вернуть неисправный продукт?
A6: Если вы приобрели в магазине неисправный продукт, вы можете вернуть его в магазин для тестирования, обмена или возврата денег. Иногда продукт, купленный в Интернете, может прибыть с дефектом, в этом случае, пожалуйста, свяжитесь с нашей дружелюбной службой поддержки клиентов

.

Q7: Я хочу купить большое количество определенных продуктов, вы предлагаете оптовые скидки?
A7: Свяжитесь с нами, чтобы узнать цену.

Типы двигателей

Двигатели — это машины, которые преобразуют источник энергии в физическую работу. Если вам нужно что-то передвигать, двигатель — это то, что вам нужно. Но не все двигатели сделаны одинаково, и разные типы двигателей определенно не работают одинаково.

Изображение предоставлено Little Visuals / Pixabay.

Вероятно, наиболее интуитивно понятный способ различить их — это тип энергии, который каждый двигатель использует для выработки мощности.

  • Тепловые двигатели
    • Двигатели внутреннего сгорания (двигатели внутреннего сгорания)
    • Двигатели внешнего сгорания (ЕС-двигатели)
    • Двигатели реакции
  • Электродвигатели
  • Физические машины

Тепловые двигатели

В самом широком смысле этим двигателям требуется источник тепла для перехода в движение. В зависимости от того, как они выделяют указанное тепло, это могут быть двигатели внутреннего сгорания (которые сжигают материал) или негорючие двигатели.Они действуют либо за счет прямого сгорания топлива, либо за счет преобразования жидкости для создания работы. Таким образом, большинство тепловых двигателей также частично пересекаются с химическими системами привода. Это могут быть двигатели с воздушным дыханием (которые забирают окислитель, например кислород из атмосферы) или двигатели без дыхания (с окислителями, химически связанными в топливе).

Двигатели внутреннего сгорания

Двигатели внутреннего сгорания (двигатели внутреннего сгорания) сегодня довольно распространены.Они приводят в действие автомобили, газонокосилки, вертолеты и так далее. Самый большой двигатель внутреннего сгорания может генерировать 109 000 л.с. для корабля, перевозящего 20 000 контейнеров. Двигатели внутреннего сгорания получают энергию из топлива, сжигаемого в специальной области системы, называемой камерой сгорания. В процессе горения образуются продукты реакции (выхлоп), общий объем которых намного превышает общий объем реагентов, вместе взятых (топливо и окислитель). Это расширение и есть хлеб с маслом для двигателей внутреннего сгорания — это то, что на самом деле обеспечивает движение.Тепло является лишь побочным продуктом сгорания и представляет собой потраченную впустую часть запаса энергии топлива, поскольку фактически не обеспечивает никакой физической работы.

Рядный 4-цилиндровый двигатель внутреннего сгорания.
Изображение предоставлено НАСА / Исследовательским центром Гленна. Двигатели

IC различаются по количеству «ходов» или циклов, которые каждый поршень делает для полного вращения коленчатого вала. Сегодня наиболее распространены четырехтактные двигатели, в которых реакция сгорания разбита на четыре этапа:

  1. Индукция или впрыск топливовоздушной смеси (карбюрата) в камеру сгорания.
  2. Сжатие смеси.
  3. Зажигание свечой или сжатием — топливо идет штанга .
  4. Выброс выхлопных газов.
Этот радиальный паровозик похож на самого забавного человечка, которого я когда-либо видел.
Изображение предоставлено Дук / Викимедиа.

На каждом шаге 4-тактный поршень попеременно опускается или поднимается. Зажигание — это единственный этап, на котором в двигателе генерируется работа, поэтому на всех остальных этапах каждый поршень полагается на энергию от внешних источников (другие поршни, электростартер, ручной запуск или инерция коленчатого вала) для перемещения.Вот почему вам нужно тянуть за шнурок газонокосилки, и почему вашему автомобилю нужен исправный аккумулятор, чтобы начать работать.

Другими критериями для дифференциации двигателей внутреннего сгорания являются тип используемого топлива, количество цилиндров, общий рабочий объем (внутренний объем цилиндров), распределение цилиндров (рядные, радиальные, V-образные двигатели и т. Д.), А также мощность и мощность. -весовой выход.

Двигатели внешнего сгорания

Двигатели внешнего сгорания (двигатели ЕС) хранят топливо и продукты выхлопа отдельно — они сжигают топливо в одной камере и нагревают рабочую жидкость внутри двигателя через теплообменник или стенку двигателя.В эту категорию попадает и этот великий отец промышленной революции, паровая машина.

В некоторых отношениях двигатели ЕС работают так же, как и их аналоги на ИС — им обоим требуется тепло, которое получается при сжигании материала. Однако есть и несколько отличий.

В двигателях

EC используются жидкости, которые подвергаются тепловому расширению-сжатию или сдвигу по фазе, но чей химический состав остается неизменным. Используемая жидкость может быть газообразной (как в двигателе Стирлинга), жидкостью (двигатель с органическим циклом Ренкина) или претерпевать изменение фазы (как в паровом двигателе) — для двигателей внутреннего сгорания почти всегда жидкость представляет собой жидкое топливо. и воздушная смесь, которая воспламеняется (меняет свой химический состав).Наконец, двигатели могут либо выпускать жидкость после использования, как двигатели внутреннего сгорания (двигатели с открытым циклом), либо постоянно использовать одну и ту же жидкость (двигатели с закрытым циклом).

Паровоз Стефенсона работает

Удивительно, но первые паровые машины, получившие промышленное применение, генерировали работу за счет создания вакуума, а не давления. Эти машины, получившие название «атмосферные двигатели», были громоздкими и очень неэффективными. Со временем паровые двигатели приобрели форму и характеристики, которые мы ожидаем от двигателей сегодня, и стали более эффективными — с поршневыми паровыми двигателями, в которых была введена поршневая система (которая до сих пор используется двигателями внутреннего сгорания) или составные системы двигателей, в которых повторно использовалась жидкость. в цилиндрах при понижении давления для создания дополнительной «мощности».

Сегодня паровые двигатели вышли из широкого использования: они тяжелые, громоздкие, имеют гораздо меньшую топливную эффективность и удельную мощность, чем двигатели внутреннего сгорания, и не могут менять мощность так быстро. Но если вас не беспокоит их вес, размер и вам нужен постоянный запас работы, они великолепны. Таким образом, ЕС в настоящее время с большим успехом используется в качестве паротурбинных двигателей для морских операций и электростанций.

Применение

для атомной энергетики отличается тем, что называется негорючими или внешними тепловыми двигателями , поскольку они работают на тех же принципах, что и двигатели с электронным управлением, но не получают энергию от сгорания.

Реакционные двигатели

Реакционные двигатели , в просторечии известные как реактивные двигатели , создают тягу за счет вытеснения реакционной массы. Основным принципом реактивного двигателя является третий закон Ньютона: в основном, если вы ударите чем-то с достаточной силой через заднюю часть двигателя, он вытолкнет переднюю часть вперед. И реактивные двигатели действительно хороши в этом.

Безумно хорошо в этом.
Изображение предоставлено thund3rbolt / Imgur.

То, что мы обычно называем «реактивным» двигателем, прикрепленное к пассажирскому самолету Boeing, строго говоря, является воздушно-реактивным двигателем и относится к классу двигателей с турбинным двигателем. Прямоточные воздушно-реактивные двигатели, которые обычно считаются более простыми и надежными, поскольку они содержат меньше (или почти не содержат) движущихся частей, также являются воздушно-реактивными двигателями, но относятся к классу таранных двигателей. Разница между ними заключается в том, что прямоточные воздушно-реактивные двигатели полагаются на чистую скорость для подачи воздуха в двигатель, тогда как турбореактивные двигатели используют турбины для втягивания и сжатия воздуха в камеру сгорания.В остальном они функционируют в основном одинаково.

В турбореактивных двигателях воздух втягивается в камеру двигателя и сжимается вращающейся турбиной. Ramjets рисуют и сжимают его, двигаясь очень быстро. Внутри двигателя он смешивается с мощным топливом и воспламеняется. Когда вы концентрируете воздух (и, следовательно, кислород), смешиваете его с большим количеством топлива и взрываете его (таким образом, генерируя выхлоп и термически расширяя весь газ), вы получаете реакционный продукт, который имеет огромный объем по сравнению с всасываемым воздухом. Единственное место, через которое может пройти вся эта масса газов, — это задняя часть двигателя, что она и делает с огромной силой.По пути он приводит в действие турбину, втягивая больше воздуха и поддерживая реакцию. И, чтобы добавить оскорбления к травмам, в задней части двигателя есть метательное сопло.

Здравствуйте, я метательная форсунка. Я буду твоим проводником.

Этот элемент оборудования заставляет весь газ проходить через еще меньшее пространство, чем он первоначально прошел, таким образом, еще больше ускоряя его, превращая его в «струю» материи. Выхлоп выходит из двигателя с невероятной скоростью, в три раза превышающей скорость звука, толкая самолет вперед.

Реактивные двигатели, не работающие на воздухе, или ракетные двигатели , работают так же, как реактивные двигатели без переднего долота — потому что им не нужен внешний материал для поддержания горения. Мы можем использовать их в космосе, потому что в них есть весь необходимый окислитель, упакованный в топливо. Это один из немногих типов двигателей, в которых постоянно используется твердое топливо.

Тепловые двигатели могут быть невероятно большими или очаровательно маленькими. Но что, если все, что у вас есть, — это розетка, и вам нужно запитать свои вещи? Что ж, в таком случае вам нужно:

Электродвигатели

Ах да, чистая банда.Классические электрические двигатели бывают трех типов: магнитные, пьезоэлектрические и электростатические.

И, конечно же, привод Duracell.

Магнитная, как и батарея там, наиболее часто используется из трех. Он основан на взаимодействии магнитного поля и электрического потока для создания работы. Он работает по тому же принципу, что и динамо-машина для выработки электроэнергии, но наоборот. Фактически, вы можете выработать немного электроэнергии, если вручную провернете электромагнитный двигатель.

Чтобы создать магнитный двигатель, вам понадобятся несколько магнитов и намотанный провод. Когда к обмотке подается электрический ток, он индуцирует магнитное поле, которое взаимодействует с магнитом, создавая вращение. Важно, чтобы эти два элемента были разделены, поэтому электродвигатели состоят из двух основных компонентов: статора, который является внешней частью двигателя и остается неподвижной, и ротора, который вращается внутри него. Они разделены воздушной прослойкой. Обычно магниты встроены в статор, а проводник намотан на ротор, но они взаимозаменяемы.Магнитные двигатели также оснащены коммутатором для переключения электрического потока и модуляции индуцированного магнитного поля, когда ротор вращается для поддержания вращения.

Пьезоэлектрические приводы — это типы двигателей, в которых используется свойство некоторых материалов генерировать ультразвуковые колебания под действием электрического тока для создания работы. Электростатические двигатели используют одинаковые заряды, чтобы отталкивать друг друга и вызывать вращение ротора. Поскольку в первом используются дорогие материалы, а во втором для работы требуется сравнительно высокое напряжение, они не так распространены, как магнитные приводы.

Классические электрические двигатели обладают одними из самых высоких показателей энергоэффективности среди двигателей, преобразуя до 90% энергии в работу.

Ионные приводы

Ионные приводы представляют собой смесь реактивного и электростатического двигателей. Этот класс приводов ускоряет ионы (плазму), используя электрический заряд для создания движения. Они не работают, если вокруг корабля уже есть ионы, поэтому они бесполезны за пределами космического вакуума.

Подруливающее устройство Холла.
Изображение предоставлено NASA / JPL-Caltech.

Они также имеют очень ограниченную выходную мощность. Однако, поскольку в качестве топлива они используют только электричество и отдельные частицы газа, они были тщательно изучены для использования в космических кораблях. Deep Space 1 и Dawn успешно использовали ионные двигатели. Тем не менее, эта технология кажется наиболее подходящей для малых кораблей и спутников, поскольку след электронов, оставляемый этими двигателями, отрицательно влияет на их общую производительность.

Приводы EM / Cannae

EM / Cannae Приводы используют электромагнитное излучение, содержащееся в микроволновом резонаторе, для создания доверия.Это, наверное, самый необычный из всех типов двигателей. Его даже называют «невозможным» побуждением, поскольку это нереакционный побудительный мотив, то есть он не производит никакого разряда для создания тяги, по-видимому, в обход Третьего закона.

«Вместо топлива он использует микроволны, отражающиеся от тщательно настроенного набора отражателей, для достижения небольшой силы и, следовательно, тяги без топлива», — сообщил Андрей о поездке.

Было много споров о том, работает ли этот тип двигателя на самом деле или нет, но испытания НАСА подтвердили, что он функционально исправен.В будущем его даже обновят. Поскольку он использует только электрическую энергию для создания тяги, хотя и в небольших количествах, он кажется наиболее подходящим двигателем для исследования космоса.

Но это в будущем. Давайте посмотрим, с чего все началось. Давайте посмотрим на:

Физические механизмы

Эти двигатели работают за счет накопленной механической энергии. Заводные двигатели , пневматические и гидравлические двигатели — все физические приводы.

Модель Ле Плонжера с огромными баллонами с воздухом.
Изображение предоставлено Национальным морским музеем.

Они не очень эффективны. Они также обычно не могут использовать большие запасы энергии. Например, заводные двигатели хранят упругую энергию в пружинах, и их необходимо заводить каждый день. Пневматические и гидравлические двигатели должны иметь на себе огромные трубки со сжатой жидкостью, которые, как правило, не работают очень долго. Например, Plongeur , первая в мире подводная лодка с механическим приводом, построенная во Франции между 1860 и 1863 годами, несла поршневой воздушный двигатель, снабженный 23 танками на 12.5 баров. Они занимали огромное пространство (153 кубических метра / 5 403 кубических фута), и их хватало только для того, чтобы корабль пролетел 5 морских миль (9 км / 5,6 миль) при скорости 4 узла.

Тем не менее, физические диски, вероятно, использовались впервые. Катапульты, требушеты или тараны полагаются на этот тип двигателей. То же самое и с кранами, приводимыми в движение человеком или зверем — все они использовались задолго до любых других типов двигателей.

Это далеко не полный список всех двигателей, созданных человеком.Не говоря уже о том, что биология тоже создала побуждения — и они являются одними из самых эффективных, которые мы когда-либо видели. Но если вы прочтете все это, я почти уверен, что у вас к этому моменту заканчивается топливо. Так что отдохните, расслабьтесь, и в следующий раз, когда вы встретите двигатель, смазывайте руки и нос, исследуя его — мы рассказали вам основы.

КОНСТРУКТИВНЫЕ ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ IC

Тепловой двигатель — это машина, которая преобразует тепловую энергию в механическую.Модель
при сжигании топлива, такого как уголь, бензин, дизельное топливо, выделяется тепло. Это тепло подается на
рабочее вещество при высокой температуре. Путем расширения этого вещества в пригодный
машин, тепловая энергия превращается в полезную работу. Тепловые двигатели можно разделить на
два типа:
(i) Внешнее сгорание и
(ii) Внутреннее сгорание.
В паровом двигателе сгорание топлива происходит вне двигателя, а пар
сформированный таким образом используется для запуска двигателя.Таким образом, он известен как двигатель внешнего сгорания. В
В случае двигателя внутреннего сгорания сгорание топлива происходит внутри двигателя
сам цилиндр.
Двигатель внутреннего сгорания может быть дополнительно классифицирован как: (i) стационарный или мобильный, (ii) горизонтальный или вертикальный
и (iii) низкая, средняя или высокая скорость. Два разных типа двигателей IC, используемых для
мобильные или стационарные операции: (i) дизельное топливо и (ii) карбюратор.

Искровое зажигание (карбюраторного типа) Двигатель IC

В этом двигателе жидкое топливо распыляется, испаряется и смешивается с воздухом в правильной пропорции
перед подачей в цилиндр двигателя через впускные коллекторы.Воспламенение смеси
вызывается электрической искрой и называется искровым зажиганием.
Компрессионное зажигание (дизельный) Двигатель IC

В этом случае в цилиндр впрыскивается только жидкое топливо под высоким давлением.

КОНСТРУКТИВНЫЕ ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ IC:

Поперечное сечение двигателя внутреннего сгорания показано на рис. 1. Краткое описание этих частей приведено ниже
.

Цилиндр:

Цилиндр двигателя внутреннего сгорания составляет основную и поддерживающую часть силового агрегата
двигателя.Его основная функция заключается в обеспечении пространства, в котором поршень может работать, всасывая смесь топлива
или воздуха (в зависимости от искрового зажигания или воспламенения от сжатия), сжимая его, позволяя ему расширяться
и, таким образом, вырабатывать мощность. Цилиндр обычно изготавливается из высококачественного чугуна. В некоторых случаях в чугуне
для придания большей прочности и износостойкости при меньшем весе в чугун добавляют хром, никель
и молибден.

Поршень:

Поршень двигателя — это первая деталь, которая начинает движение и передает мощность на коленчатый вал
в результате давления и энергии, генерируемых при сгорании топлива.Поршень
закрыт с одного конца и открыт с другого конца, чтобы обеспечить прямое присоединение шатуна
и его свободное действие.


Поршни изготовлены из серого чугуна, литой стали и алюминиевого сплава. Однако
современная тенденция — использовать в двигателе трактора только поршни из алюминиевого сплава.

Поршневые кольца:

Они изготовлены из чугуна, так как обладают способностью сохранять подшипниковые качества и эластичность
на неопределенный срок. Основная функция поршневых колец — поддерживать сжатие и в то же время
уменьшить площадь контакта стенки цилиндра и стенки поршня до минимума, таким образом уменьшая потери на трение и чрезмерный износ.Другими важными функциями поршневых колец являются управление
смазочным маслом, смазка цилиндра и передача тепла от поршня
и стенок цилиндра. Поршневые кольца классифицируются как компрессионные кольца и масляные кольца
в зависимости от их функции и расположения на поршне.

Компрессионные кольца обычно представляют собой простые цельные кольца и всегда размещаются в канавках
, ближайших к головке поршня. Масляные кольца имеют канавки или прорези и расположены либо в самой нижней канавке
над поршневым пальцем, либо в канавке рядом с юбкой поршня.Их функция — контролировать
распределение смазочного масла по цилиндру и поверхности поршня, чтобы предотвратить
ненужный или чрезмерный расход масла.

Поршневой палец:

Шатун соединен с поршнем через поршневой палец. Он изготовлен из закаленной легированной стали
с прецизионной обработкой. Существует три различных метода соединения поршня
с шатуном.

Шатун:

Это соединение между поршнем и коленчатым валом.Конец, соединяющий поршень,
известен как малый конец, а другой конец известен как большой конец. Большой конец имеет две половинки подшипника
, скрепленные вместе болтами. Шатун изготовлен из штампованной стали, сечение
двутаврового типа.

Коленчатый вал:

Он соединен с поршнем через шатун и преобразует поступательное движение
поршня во вращательное движение маховика. Шапки коленчатого вала
опираются на коренные подшипники, размещенные в картере.Противовесы и маховик
, прикрепленный болтами к коленчатому валу, помогают плавной работе двигателя.

Подшипники двигателя:

Коленчатый и распределительный валы опираются на подшипники качения. Эти подшипники должны быть
, способными выдерживать высокие скорости, большие нагрузки и высокие температуры. Обычно стальную заднюю часть покрывают кадмием, серебром марки
или медно-свинцовым покрытием, чтобы придать вышеуказанные характеристики. Для одноцилиндровых двигателей
с вертикальным / горизонтальным расположением цилиндров современной тенденцией является использование шариковых подшипников вместо основных подшипников
с тонким кожухом.

Клапаны:

Чтобы воздух попадал в цилиндр или выхлоп, а газы выходили из цилиндра, предусмотрены клапаны
, известные как впускной и выпускной клапаны соответственно. Клапаны
устанавливаются либо на головку блока цилиндров, либо на блок цилиндров.

Распределительный вал:

Клапаны приводятся в действие за счет действия распределительного вала, который имеет отдельные кулачки для впускного,
и выпускного клапанов. Кулачок поднимает клапан против давления пружины, и как только он
меняет положение, пружина закрывает клапан.Кулачок получает привод через шестерню или звездочку
и цепную систему от коленчатого вала. Он вращается на половину скорости распределительного вала.

Маховик

Обычно он изготавливается из чугуна, и его основная функция заключается в поддержании равномерной скорости вращения двигателя
, перемещая коленчатый вал через промежутки времени, когда он не получает мощность от поршня.
Размер маховика зависит от количества цилиндров, а также от типа и размера двигателя
. Это также помогает в уравновешивании вращающихся масс.

В четырехтактных двигателях имеется четыре такта, совершающих два оборота двигателя
. коленчатый вал. Это соответственно такты всасывания, сжатия, мощности и выпуска. В
г. На рис. 3 поршень показан опускающимся на такте всасывания. В
втягивается только чистый воздух. цилиндр во время этого хода через впускной клапан, тогда как выпускной клапан закрыт. Эти
Клапаны могут управляться кулачком, толкателем и коромыслом. Следующий штрих —
такт сжатия, при котором поршень движется вверх, при этом оба клапана остаются закрытыми.Модель
воздух, втянутый в цилиндр во время такта всасывания, постепенно сжимается
когда поршень поднимается. Степень сжатия обычно варьируется от 14: 1 до 22: 1. Модель
давление в конце такта сжатия колеблется от 30 до 45 кг / см2. Как воздух
постепенно сжимается в цилиндре, его температура увеличивается, пока ближе к концу
такта сжатия, он становится достаточно высоким (650-80 ° C), чтобы мгновенно воспламенить любое топливо
который впрыскивается в цилиндр.Когда поршень находится в верхней части своего такта сжатия,
жидкое углеводородное топливо, такое как дизельное топливо, распыляется в камеру сгорания под номером
высокое давление (140-160 кг / см2), более высокое, чем в самом баллоне. Это топливо
затем воспламеняется, сжигаясь кислородом сильно сжатого воздуха.

Во время периода впрыска топлива поршень достигает конца своего такта сжатия, и
начинает возвращаться в свой третий последовательный такт, а именно рабочий такт.Во время этого хода
горячие продукты сгорания, состоящие в основном из диоксида углерода, вместе с азотом
, оставшимся от сжатого воздуха, расширяются, заставляя поршень опускаться. Это всего лишь
рабочего хода цилиндра.

Во время рабочего хода давление падает с максимального значения сгорания (47-55
кг / см2), которое обычно выше, чем большее значение давления сжатия (45
кг / см2), примерно до 3,5-5 кг. / см2 ближе к концу хода.Затем выпускной клапан открывается, обычно
, немного раньше, чем когда поршень достигает самой нижней точки хода. Выхлопные газы
удаляются при следующем движении поршня вверх. Выпускной клапан остается открытым на
в течение всего хода и закрывается в верхней части хода.

Возвратно-поступательное движение поршня преобразуется во вращательное движение коленчатого вала
посредством шатуна и коленчатого вала. Коленчатый вал вращается в коренных подшипниках
, которые установлены в картере.Маховик установлен на коленчатом валу, чтобы сгладить
неравномерный крутящий момент, который создается в поршневом двигателе.

.
2Авг

Как проявляется детонация в двигателе: Детонация двигателя: причины, способы устранения | SUPROTEC

почему происходит и как устранить

Начнем с того, что ряд неисправностей двигателя опытные автомеханики и сами водители могут определить по звуку работы ДВС. Как правило, появление «звона» при резком нажатии на газ на повышенных передачах или «бубнящий» звук после выключения зажигания не сильно пугает начинающих автолюбителей, однако зачастую это звук детонации двигателя.

При этом в ряде случаев такие звуки поголовно списывают на стук поршневых пальцев. Однако важно понимать, что зачастую дело не в пальцах, а в детонации, которая в скором времени может обернуться серьезными неприятностями и дорогостоящим ремонтом мотора.

Нужно учесть, что поршневые пальцы обычно стучат на сильно изношенных моторах, в которых уже давно имеются проблемы с поршнями, кольцами и т.д. При этом звонкие постукивания в относительно «свежем» силовом агрегате с нормальной ЦПГ никак не являются звуками ударов металла по металлу.

В этом случае металлический звон появляется в результате нарушения процесса сгорания топлива в цилиндрах. Далее мы поговорим о том, по каким причинам возникает детонация двигателя на холостых оборотах,  при резком нажатии на педаль газа в движении и т.д. Также мы рассмотрим, что  делать водителю для сохранения моторесурса и самого ДВС в исправном состоянии.

Содержание статьи

Детонация двигателя: основные признаки

Итак, детонация представляет собой неконтролируемый хаотичный процесс сгорания топлива, который больше похож на взрывы в цилиндре. Причем эти условные взрывы происходят несвоевременно (например, на такте сжатия, когда поршень еще движется вверх). В результате ударная волна и высокое давление становятся причиной сильнейших нагрузок на элементы ЦПГ и КШМ, буквально разрушая мотор.

Детонацию определяют не только по звуку, но и по ряду других признаков. Прежде всего, двигатель теряет мощность при нажатии на газ, также мотор может немного дымить в момент резкого нажатия на педаль акселератора серовато-черным дымом. Обычно сильная детонация сопровождается перегревом двигателя, на холостых и под нагрузкой работа ДВС может быть крайне неустойчивой, скачут обороты и т.д.

Почему возникает детонация в цилиндрах двигателя

Специалисты выделяют несколько главных причин, по которым топливо детонирует в двигателе.

  • Прежде всего, стоит сразу выделить использование низкооктанового бензина в агрегатах с высокой степенью сжатия. Если просто, октановое число бензина (
    АИ-92, 95 или 98) фактически указывает на его детонационную стойкость, а не на качество, как многие ошибочно полагают.

Использование топлива с неподходящим октановым числом для конкретного двигателя закономерно приводит к тому, что топливно-воздушный заряд детонирует при сильном сжатии. Еще добавим, что простые двигатели, которые не имеют ЭСУД и датчика детонации, подвержены большему риску.

  • Закоксовка двигателя. Важно понимать, что современные моторы не только на иномарках, но и на отечественных авто сильно отличаются от аналогов времен СССР. В двух словах, если моторы на модели «Москвич» 2141 имели степень сжатия около 7 единиц и нормально работали на любом топливе, то сегодня агрегаты имеют от 9 до 11 и более единиц.

При этом уменьшение физического объема камеры сгорания в результате образования слоя нагара приведет к тому, что топливный заряд в цилиндре будет сжиматься сильнее, при этом появляется детонация. Если к этому добавить и низкое качество топлива на отечественных АЗС, тогда риски еще более возрастают.

  • Нарушение процесса смесеобразования. В этом случае может начать детонировать слишком «богатая» смесь, в которой много топлива по отношению к количеству воздуха.

Отметим, что такая детонация может быть кратковременной и часто остается незамеченной для водителя, однако об отсутствии вреда для двигателя при этом говорить никак нельзя.

  • Угол опережения зажигания (УОЗ). Простыми словами, угол зажигания определяет, в какой момент будет подана искра в камеру сгорания. Если учесть, что в норме топливо не взрывается, а горит, тогда становится понятно, что процесс сгорания также занимает некоторое время.

При этом важно сделать так, чтобы максимум давления газов на поршень, которые образуются в результате сгорания порции топлива, приходился именно на момент рабочего хода поршня. Только так можно эффективно передать через поршень энергию расширяющихся газов на коленвал.

Для этого искру можно подать немного раньше того момента, пока поршень дойдет до верхней мертвой точки (ВМТ). За это время топливо успеет воспламениться, а расширение газов и рост давления на поршень как раз произойдет в тот момент, когда поршень уже достигнет ВМТ и затем пойдет вниз.

При этом нужно понимать, что неправильная регулировка УОЗ (сдвиг момента воспламенения ближе к ВМТ), когда смесь воспламеняется практически тогда, когда поршень уже поднялся верхнюю мертвую точку, часто становится причиной появления детонации. Опять же, традиционно добавим к этому еще и низкое качество топлива.
  • Конструктивные особенности камеры сгорания. Бывает так, что некоторые двигатели изначально склонны к детонации. В ряде случаев причиной является само устройство камеры сгорания, реализация ее охлаждения и т.д.

Еще виновником могут оказаться и поршни, у которых отмечен неудовлетворительный тепловой баланс (например, днище поршня утолщено ближе к центру, что заметно ухудшает качество отведения избытков тепла). Так или иначе, но риск возникновения детонации на подобных моторах намного выше.

  • Перегрев двигателя. Если обратить внимание на предыдущий пункт, становится понятно, что повышение температуры в камере сгорания является причиной детонации. Вполне очевидно, что снижение эффективности работы системы охлаждения может привести к тому, что двигатель перегревается.

В подобных условиях вполне вероятно возникновение детонации, при этом сама детонация также дополнительно приводит к локальным и общим перегревам. По этой причине детонация мотора в результате неисправной системы охлаждения особо опасна, так как силовой агрегат может быть не только сильно поврежден, но и в дальнейшем не подлежать восстановлению.

Как устранить детонацию двигателя

Итак, рассмотрев основные причины детонации мотора и разобравшись с тем, что это такое, можно перейти к тому, как избавиться от этого явления. Начнем со старых ДВС. В самом начале следует исключить перегрев мотора, а также заправку некачественным или неподходящим топливом, проверить свечи зажигания.

Далее, если на двигателе не установлен датчик детонации, тогда проявление ее признаков указывает на необходимость регулировки УОЗ. Для этого нужно уменьшить угол опережения зажигания, покрутив трамблер. Главное, добиться того, чтобы двигатель стабильно работал в режиме холостого хода.

Решение является временным, так как долго с уменьшенным углом зажигания ездить нельзя (прогорят выпускные клапана в результате роста температуры отработавших газов), но добраться до сервиса своим ходом вполне реально.

Однако во время езды нужно постоянно следить за тем, чтобы в двигателе не было характерного «звона». Еще на старый ДВС можно установить так называемый электронный октан-корректор, чтобы избежать манипуляций с трамблером. Еще добавим, как показывает практика, многие владельцы карбюраторных авто предпочитают установить электронное зажигание.

Что касается более современных двигателей, на инжекторных агрегатах штатно реализованы решения, позволяющие избежать или свести к минимуму риск детонации. Речь идет о датчике детонации двигателя (ДД), который фиксирует ее возникновение. Затем соответствующий сигнал поступает на ЭБУ.

Затем блок управления самостоятельно корректирует угол опережения зажигания с учетом тех данных, которые были получены от ДД. При этом возможность такой корректировки составляет, в среднем, сдвиг угла на 2 – 5 градусов. Если же избавиться от детонации таким способом не удается, ЭБУ фиксирует ошибку и прописывает к себе в память, на панели приборов может загореться «чек»,  двигатель переходит в аварийный режим и т.д.

То же самое происходит и тогда, когда сам датчик детонации вышел из строя или топливо оказалось слишком неподходящим, то есть контроллер попросту не способен убрать детонацию путем запрограммированного сдвига угла опережения зажигания.

Становится понятно, что в этом случае водителю на начальном этапе нужно начать с проверки датчика детонации, а также считать ошибки из памяти ЭБУ. Сделать это можно в рамках компьютерной диагностики двигателя. Также проверку можно выполнить и самостоятельно (при наличии специального диагностического адаптера-сканера в разъем OBD и смартфона/планшета или ноутбука с предварительно установленным программным обеспечением).

Читайте также

Детонация двигателя — причины и советы по устранению

Детонация двигателя является одной из самых тревожных проблем транспортного средства, но не многие знают, что это такое и с чем связано. В принципе, она возникает, когда смесь воздух/топливо внутри цилиндра неправильно распределяется, что делает неравномерным горение. В нормальных условиях топливо сгорает в цилиндре в процессе смешивания с воздухом и необходимой энергией. Когда начинается взрыв внутри цилиндра, оно горит неравномерно, что может повредить стенки цилиндра и сам поршень.

Базовое понимание детонации

Детонация мотора появилась одновременно с рождением двигателя внутреннего сгорания и описывается как автоматическое зажигание газа в камере сгорания. В первое время не было возможности проверить её действие и бытовало мнение, что всё дело в зажигании. Тем не менее только в 1940 годах была проверена теория её возникновения, возможность обнаружения и последующие действия устранения этого явления.

Датчик детонации

На современных агрегатах установлен датчик детонации, который способен контролировать уровень опасности. Это устройство воспринимает, а в дальнейшем преобразовывает механическую энергию колебаний цилиндров в электрический импульс. По сути, датчик постоянно посылает сигналы в электронный блок управления двигателем, а сам блок следит за изменениями состава смеси и угла опережения зажигания. С его помощью также можно достигнуть более экономичной работы при максимальной мощности двигателя.

С чего начинается детонация

На видео показано, что такое детонация двигателя:

Когда двигатель переходит в детонацию, слышится громкий шум. Поскольку её последствия очень печальны, важно определить, что является причиной такого взрывного горения горючей смеси. Чтобы устранить проблему, возможно, нужно изменить работу двигателя, в противном случае она может его разрушить в короткий промежуток времени.

Характерный звук от двигателя в процессе этого явления обусловлен давлением волны в случае сгорания от вибрации стенок цилиндра. Газ и форма, размеры и толщина камеры сгорания и стенки цилиндра определяют высоту звуковой волны.

Детонация двигателя на холостом ходу может произойти после прохождения транспортным средством условий, которые способствуют повышению нагрева деталей силового агрегата. Даже если выключить зажигание, под воздействием энергии коленчатый вал продолжает движение, что приводит к попаданию топлива в цилиндр мотора, а там оно успевает нагреться до такой температуры, что само по себе воспламеняется.

Причины детонации

На видео рассказано о причинах детонации двигателя:

Детонация двигателя имеет один из самых разрушительных эффектов в любом агрегате. Поэтому нужно немедленно узнать, как устранить её, обнаружив следующие причины взрывного горения в цилиндрах:

Обратите внимание, что каждая из этих возможных причин является относительной. То есть нет абсолютного времени, смещения силы или опережения зажигания, что гарантируют появление детонации. Равным образом не существует никаких абсолютных параметров, которые гарантируют, что такого явления не произойдёт.

Причин много, остановимся на более распространённых из них.

Слишком низкое октановое число топлива в автомобиле

Октановое число топлива

Одной из причин детонации двигателя является низкое качество и низкое октановое число топлива, которое может вызвать целый кластер проблем, таких как повышенная температура камеры сгорания и более высокое давление в цилиндрах.

Октановое число показывает, какую степень сжатия может переносить бензин — чем выше рейтинг, тем топливо более устойчиво к возгоранию. Вот почему более сложные двигатели высокого давления требуют более дорогого топлива.

Октановое число бензина иногда называют антидетонационным индексом. Производители рекомендуют определённый вид смеси для достижения максимальной производительности в своих транспортных средствах.

Эти проблемы могут привести к предварительному зажиганию, а это приводит к тому, что топливо сгорает в двигателе раньше, чем следовало бы. Есть два способа, когда бензин может воспламениться в камере сгорания: от свеч зажигания или от неправильной степени сжатия. Это хрупкое равновесие и любой фактор может испортить весь процесс. Если сжатие двигателя является слишком низким, это приводит к тому, что топливо не сгорает полностью, а оставшиеся компоненты прилипают к внутренним частям камеры. Это накопление отрицательно влияет на цилиндры, что является распространённой причиной взрывного горения.

Нагар на стенках цилиндра

Нагар на стенках цилиндра

Все виды топлива должны иметь определённый уровень очистки, однако этого может быть недостаточно, чтобы остановить отложения нагара. Когда образуются отложения, объём цилиндра эффективно уменьшается, что увеличивает сжатие, которое может вызвать детонацию. Для борьбы с ним сначала попробуйте приобрести моющие присадки в магазине автозапчастей, а затем изменить топливо.

Неправильные свечи зажигания

Использование неправильных свечей зажигания является ещё одной причиной детонации двигателя. Водители часто не понимают рекомендаций производителя, покупая неправильные приборы зачастую с целью экономии. Поскольку свечи зажигания помогают контролировать внутреннюю среду двигателя и работают в довольно точных условиях, неправильно подобранные создают условия для неправильного сжигания топлива. Они могут привести к наращиванию сгорания в камере и повышению температур ходовых частей, которые являются одними из причин возникновения детонации.

Эти три причины являются наиболее распространёнными, а в плане исправления ситуации — наименее дорогостоящими. Если ваш автомобиль по-прежнему имеет детонацию в двигателе после устранения этих причин, оправляйтесь в автосервис.

Как устранить детонацию

На видео рассказано, как можно устранить детонацию двигателя:

http://www.youtube.com/watch?v=ig4F4bx5QOk

Разобравшись, что такое детонация и какие наиболее вероятные причины её возникновения, займёмся тем, как устранить это взрывное горение горючей смеси.

Более высокая скорость помогает снизить вероятность её появления, потому что она сокращает время сжигания. Максимальное давление, следовательно, уменьшается и смесь воздух/топливо не будет подвержена воздействию высоких температур. Примером этому является тот случай, когда вы ведёте свой автомобиль по прямой ровной дороге с холма. Когда вы снова едете в гору, вы начинаете терять скорость и иногда можете услышать, как ваш двигатель детонирует. Таким образом, чтобы получить ускорение, вы переключаетесь на одну-две передачи ниже и ускоряетесь снова, тем самым убирая такое явление.

Повышение влажности на самом деле также снижает риск детонации. Высокое содержание воды в воздухе способствует снижению температуры горения.

Наиболее распространённые трюки (и простые варианты), используемые водителями для получения максимальной производительности без детонации:

  1. Использование более высокооктанового топлива.
  2. Торможение на опережение зажигания.
  3. Снижение температуры в камере сгорания. Эта задача может быть решена посредством интеркулера или с помощью нагнетания воды. Охладитель принимает входящий нагнетённый воздух и передаёт его через серию воздушных охладителей, таким образом уменьшая температуру.

На видео показано, как происходит детонация дизельного двигателя:

Детонация двигателя не новая проблема, производители пытались устранить или уменьшить её возникновение на протяжении многих лет. Это сложный процесс, что включает в себя множество различных факторов, но чтобы по-настоящему понять, как работает двигатель, вы должны понять, отчего происходит детонация, и изучить шаги, которые ей способствуют.

Всегда обращайте пристальное внимание на все посторонние шумы и стуки, которые исходят от мотора вашего автомобиля, потому что они могут указать на это явление в камере сгорания и должны быть немедленно убраны.

Хотя детонация может быть потенциально опасной для двигателя, ею легко управлять, как только вы поймёте причину возникновения.

Как определить детонацию двигателя – АвтоТоп

Здравствуйте, дорогие друзья! Сегодня у нас не самая приятная тема, поскольку обсуждать мы будем такой вопрос как детонация двигателя, причины, возможные последствия и советы по устранению.

Подобные явления характерны для бензинового и дизельного двигателя, в составе которого присутствует инжектор или карбюратор. Происходить детонация может на холостых оборотах, непосредственно при разгоне и даже после выключения зажигания, то есть уже не при нагрузке. Также детонация характерна для горячего и холодного ДВС.

Многих автомобилистов сильно беспокоит этот вопрос, поскольку зачастую ничего хорошего для мотора детонация не сулит. Важно не только знать причины, но также разобрать признаки и понимать, как действовать в той или иной ситуации. Постараюсь ответить на основные вопросы. Если вам будет, чем дополнить, либо останутся вопросы, просто оставляйте отзывы и пишите в комментариях. А мы поехали!

Как появляется детонация

Наверняка каждый автолюбитель знает, что для процесса горения, который происходит внутри камеры сгорания мотора, требуется два основных условия. Это создание смеси из топлива и кислорода, а также искра от свечи зажигания. Детонацией называют ситуацию, когда смесь сгорает самопроизвольно, не дожидаясь момента активации свечи.

Если двигатель работает нормально, никаких сбоев не наблюдается, то скорость распространения горючего составляет порядка 20-30 метров за секунду. Когда же происходит детонация, этот показатель может увеличиваться в десятки раз. Распознать появление такого явления довольно просто, поскольку возникает соответствующий металлический звук со стороны ДВС. Среди автомобилистов используется довольно распространенное понятие стук пальцев. Причина такого шума обусловлена тем, что взрывные волны контактируют со стенками внутри камеры сгорания. Это способствует падению мощности ДВС с параллельным стремительным ростом расхода.

Детонация может происходить и в ситуации, когда мотор уже заглушили и зажигание выключили. Мотор не сразу останавливается, а все еще работает около 20-25 секунд, и только потом глохнет. В такой ситуации ждать, пока двигатель сам остановиться, не стоит. Нужно помочь уменьшить температуру внутри, подав дополнительное количество топлива. Для этого достаточно просто нажать на педаль газа.

Риски и разновидности

Столкнуться с детонацией в жару и на газу, при холодном моторе и даже выключенном двигателе, как оказалось, не проблема. Но автомобилист должен понимать, с чем именно он имеет дело, и чем подобные явления могут обернуться.

Фактически речь идет о сильном взрыве внутри двигателя. Как вы понимаете, ничего хорошего в нем нет. Это очень опасно для ДВС. Самая большая нагрузка приходится на цилиндры, что в итоге может повлечь за собой полный выход из строя всего силового агрегата. Первой обычно срывает прокладку ГБЦ. Поскольку она не может выдерживать повышенные нагрузки механического и термического типа, в лучшем случае при детонации придется ее заменить. Если ситуация более сложная, тогда выйдет из строя коленвал, головка блока, цилиндро-поршневая группа и пр.

Как вы понимаете, намеренного желания столкнуться с подобным нет ни у кого. Но порой не всем удается предотвратить возникновение такой ситуации.

Причем не так важно, какой автомобиль у вас в распоряжении. Это может быть старенький ВАЗ 2109, более свежая Лада Гранта, или вовсе какой-нибудь Фольксваген Пассат или Форд Экоспорт последнего поколения.

Еще стоит учесть наличие 2 разновидностей детонации.

  • Допустимая. Большинство автомобилистов даже не замечают, когда она возникает. И в этом ничего страшного нет. Такая детонация актуальна в ситуациях, когда существенно повышаются обороты. Причем сразу же эффект взрыва пропадает. Подобное явление актуально в моторах с повышенным крутящим моментом, большим объемом двигателя и высоким уровнем мощности;
  • Недопустимая. Именно о ней и идет речь в рамках нашего материала. Проявляется в условиях повышенной нагрузки на мотор и высоких оборотах. Порой хватает буквально несколько секунд, чтобы мотор вышел из строя под воздействием детонации.

Думаю, теперь всем стало понятно, насколько это плохо, когда двигатель детонирует. Можно переходить к следующим вопросам.

Основные причины

Если знать возможные причины, предотвратить появление эффекта детонации в ДВС будет намного проще.

Проблема лишь в том, что причин существует довольно много. Зачастую все происходит из-за:

  • низкого качества горючего;
  • неправильной эксплуатации транспортного средства;
  • загрязненного топливного фильтра;
  • использования бензина с низким октановым числом;
  • неисправностей и некорректной работы топливного насоса;
  • несоответствующих свечей зажигания;
  • загрязнения или поломки форсунок;
  • проблем с датчиком кислорода;
  • неисправностей системы охлаждения;
  • конструктивных особенностей и пр.

Но как определить, с какой именно причиной столкнулся автомобиль в конкретной ситуации? Для этого стоит подробнее рассмотреть причин.

Подробнее о факторах детонации

Можно выделить несколько наиболее распространенных и вероятных причин, из-за которых мотор начинает детонировать.

  • Качество топлива. Порой от безысходности или с целью сэкономить водители заезжают на сомнительные АЗС, не зная, какого качества топлива они предлагают. Часто на заправках искусственно повышает октановое число, добавляя метан или пропан. Это становится причиной детонации, поскольку газ испаряется быстрее, нежели чистый бензин. В итоге на стенках формируется нагар, который затем провоцирует так называемое калильное зажигание. Это есть смесь воспламеняется из-за прогретых электродов и нагара на внутренних стенках. Как результат, зажигание отключается, но двигатель все еще работает;
  • Октановое число. Есть и другие ситуации, когда водитель намеренное экономит на топливе, покупая горючее с меньшим октановым числом. Потому не удивляйтесь, когда вместо рекомендуемого 95-го вы льете 92 и уж тем более 80 бензин, появляется детонация;
  • Свечи зажигания. Часто автомобилисты попросту не знают, как их правильно выбирать, покупая самая дешевые или те, которые посоветует продавец. Потому свечи выбирают строго в соответствии с рекомендациями автопроизводителя под конкретный двигатель;
  • Особенности конструкции. К ним относят давление в камеры, структуру поршневого дна, конструкцию камеры сгорания, место расположения свечей и пр. Практика показывает, что при большем создаваемом давлении в цилиндрах риск детонации увеличивается.

Если вы сами не можете определить причину, то тянуть время и ждать, что все вдруг пройдет само, не стоит. Отправляйтесь в автосервис, проводите диагностику и решайте проблему максимально быстро.

Борьба против детонации

Есть несколько советов, которых можно придерживаться в подобных ситуациях. Но не забывайте, что принятие конкретных мер напрямую зависит от того, в чем конкретно была причина детонации.

  • Если до посещения АЗС все было хорошо, а затем появились проблемы, причина наверняка в топливе. Его лучше слить и заправиться более качественным горючим;
  • Когда машина долго эксплуатируется без нагрузки, то в цилиндрах зачастую появляется нагар. Именно он провоцирует детонацию. Тут самым верным решением будет дать мотору нагрузку. То есть просто разгоните авто до максимальной скорости на сколько минут, выбрав безопасную дорогу;
  • Если это дизельный мотор, при работе которого из трубы выходит черный или зеленый выхлоп, поршни в цилиндрах наверняка разрушились. Такой дым говорит о выходе алюминия. Придется менять всю поршневую группу;
  • При нарушении работы свечи зажигания ее можно попробовать почистить. А лучше просто взять новую и качественную деталь;
  • Проверьте и откорректируйте при необходимости угол зажигания. Раннее зажигание провоцирует перегрев ДВС. Как результат, появляется детонация.

С детонацией ДВС шутить точно нельзя. Это серьезный признак, требующий от автомобилиста незамедлительных действий, направленных на обнаружение причин внутренних взрывов в моторе, а также на их устранение.

Порой будет правильно обратиться к специалистам сразу, а не пытаться методом тыка разобраться в причинах своими силами. Не бойтесь просить помощи и консультироваться с более опытными автомобилистами. Только так можно получить солидный багаж знаний, обучаясь на чужих, и не на своих ошибках.

Всем спасибо за внимание! Обязательно подписывайтесь, оставляйте комментарии и задавайте актуальные вопросы по теме!

(1 оценок, среднее: 5,00 из 5)

Понравилась статья?

Подпишитесь на обновления и получайте статьи на почту!

Гарантируем: никакого спама, только новые статьи один раз в неделю!

Процесс беспорядочного воспламенения горюче-воздушной смеси в камере цилиндра двигателя внутреннего сгорания называется детонацией.

Что такое детонация двигателя

Такое явления, как детонация ДВС появилась после создания таких двигателей, принцип работы которых основан на создании воспламенении топливно-воздушной смеси в цилиндрах, за счет чего ударной волной происходит толчок поршней и шатунов, которые вращают коленчатый вал мотора.

Хорошая качественная работа двигателя сопровождается воспламенением перемешанного подаваемого топлива с необходимым количеством воздуха. А при детонации двигателя топливная смесь взрывается и работает вне заданного цикла.

А автомобилях старых образцов проверку работоспособности мотора определяли, по большей части, на слух.

Датчик детонации ДВС

В современных машинах установлены датчики детонации ДВС, которые имеют возможность контролировать и управлять уровнем опасности, возникающим вследствие беспорядочного самовоспламенения топливно-воздушной смеси.

Принцип работы датчика детонации основан на том, что он фиксирует колебания цилиндров и передает электрический импульс электронному блоку управления (ЭБУ). Дальнейший контроль по предотвращению детонации двигателя берет на себя ЭБУ. Исходя из полученных электрических импульсов, он знает, надо обеднить смесь или обогатить, и, следит за углом опережения зажигания. Благодаря датчику детонации ДВС работает экономично при максимальной мощности.

Причины возникновения детонации

Ресурс двигателей зависит от правильной эксплуатации. А правильность эксплуатации — это, значит, что при малейших появлениях неполадок, шумов, расхода, ненормальной вибрации сразу принимать меры по их устранению.

Причин детонации ДВС много:
  1. Плохой бензин или дизтопливо (для дизелей).
  2. Октановой число топлива ниже нормы по ГОСТу.
  3. Закупоренные топливный и масляный фильтры.
  4. Не рабочие форсунки.
  5. Неправильная работа топливных инжекторов.
  6. Разрегулирован топливный насос.
  7. Неисправный датчик кислорода — лямбда зонд.
  8. Свечи зажигания не подходят для этой ДВС конкретной марки и модели авто.
  9. Нарушение циркуляции в системе охлаждения.
  10. Наличие проблем с управлением двигателем.
Октановое число топлива

К частой причине возникновения детонации в ДВС относится — эксплуатация мотора бензином с низким октановым числом.

Октановое число — это показатель степени сжатия. Чем выше октановое число, тем сильнее надо сжать топливо в цилиндре, чтобы оно воспламенилось. Чем ниже октановый показатель, тем меньше требуется компрессии для воспламенения топливно-воздушной смеси.

Современные автомобили с двигателями высокого давления должны эксплуатироваться топливом с высоким октановым числом.

Октановое число является, своего рода, антидетонацией, если компрессия двигателей соответствует заливаемому топливу.

Если залить топливо с малым октановым числом в авто с мощным мотором высокой компрессии, то оно будет сгорать в нем раньше положенного времени, что уже создаст антициклическую работу.

Оптимальная работа двигателя внутреннего сгорания осуществляется за счет нахождения «золотой» середины, то есть, чтобы топливно-воздушная смесь не самовоспламенялась от неправильной степени сжатия, а происходила за счет подачи свечами зажигания искр.

Нагар в цилиндрах

Если в цилиндре низкая компрессия, то горючая смесь будет сгорать не полностью, что также приводит к дальнейшим неисправностям — закоксовке. Потом придется делать раскоксовку двигателя своими руками или в сервисе. При образовании слоя нагара на стенках цилиндра, диаметр, соответственно, уменьшается, а компрессия повышается, что приводит к возникновению детонации ДВС.

Чем чище топливо, тем дольше межремонтный период ДВС и тем больше времени до капиталки ДВС. По частоте замены топливного фильтра можно определить, какого качества топливо, в основном, используется.

Не соответствуют свечи зажигания

Игнорируя рекомендации производителей двигателей и свечей зажигания можно установить не подходящие свечи. Часто, на производителей свечей не обращают внимания, при покупке только разделяют для инжекторных двигателей и для карбюраторных. Свечи, которые не подходят, будут воспламенять горючую смесь в неположенное время, что также приведет к детонации двигателя.

Рассмотренные выше 3 причины возникновения детонации — самые часто встречающиеся, но самые легко устраняемые.

Как защитить ДВС от детонации

Защитить двигатель внутреннего сгорания от детонации можно при недопущении вышеперечисленных причин. При обнаружении первых признаков детонации следует принять меры по их устранению.

  1. Устанавливать рекомендованные свечи зажигания для конкретного мотора.
  2. Заливать соответствующее для автомобиля топливо. Например, по рекомендации завода-изготовителя машины рекомендованным для заправки требуется только бензин с октановым числом 95, но, если заливать 92-й бензин, то может появиться детонация ДВС, потому что компрессии требуется поменьше и воспламеняется быстрее.
  3. Своевременно менять фильтры, по мере их загрязнения.
  4. Не перегревать мотор.
  5. Следить за исправностью датчиков и сигналами бортового компьютера.

Как устранить детонацию

Детонацию ДВС, то есть взрывное горение топливно-воздушной смеси в цилиндре можно устранить зная все причины возникновения такого явления.

Убрать детонацию двигателя во время движения можно изменяя скорость и давление. Увеличение скорости уменьшит детонацию, так как максимально создаваемое давление уменьшается и, следовательно, на нагрев смеси уходит меньше времени и уменьшается время сжигания смеси.

Если при нагрузке автомобиль начинает детонировать, например, при подъеме на гору начинает слышаться звуки детонации, тогда надо переключить коробку переключения переда на 1-2 ступени ниже, чтобы был запас мощности.

Последствия детонации

Как уже было описано выше, детонация — это разрушительная сила, приводящая к сильной вибрации деталей кривошипно-шатунного механизма, головки блока цилиндров и других деталей, непосредственно связанных в работой ДВС.

Что конкретно происходит при детонировании ДВС

При детонации, то есть при взрыве топливно-воздушной смеси в цилиндре, появляется ударная волна, которая разрушает гладкие стенки цилиндра, уничтожает защитную пленку на поверхностях трущихся деталей.

К последствиям детонации относится и перегрев цилиндров мотора, из-за того, что высокой температуры газы нагревают соприкасаемые детали.

А при перегреве цилиндров в результате взрыва подаваемого горючего начинают крошиться кромки поршней.

Перегретый двигатель разрушает прокладку головки блока цилиндров, приводит к прогару клапанов газораспределительного механизма, свечи зажигания перегорают, возможно появление микротрещин на самом блоке или головке блока.

Отсюда делаем вывод, что детонация ДВС с сопровождающимися высокими термическими и ударными нагрузками, приводит к разрушению как отдельных деталей, так и двигателя в целом. Эксплуатация автомобиля с детонацией двигателя уменьшает работоспособный ресурс и межремонтный период.

Приобретаем полезные знания по видео: Теория ДВС.

Как детонирует двигатель на видео (шум).

Точное определение слову «детонация», которое можно найти сейчас, есть в энциклопедии журнала «За рулём». Правда, там само определение называют «причиной», чтобы подчеркнуть важность явления детонации. Итак, детонация двигателя – это самовоспламенение топлива в тех зонах, которые наиболее удалены от свечи. Вот так, просто и понятно – никаких «взрывов» или «стука пальцев». Правда, в действительности детонация проявляет себя характерным металлическим призвуком. Его ещё можно назвать «цокотом». Причины детонации инжекторного двигателя рассматриваются дальше.

Что точно не может быть причиной детонации на «инжекторе»

До сих пор считалось, что детонацию топлива в двигателе могут вызывать три фактора:

  1. Низкое качество самого топлива;
  2. Слишком низкое октановое число;
  3. Неправильная установка угла опережения зажигания.

Интересно то, что к инжекторным моторам всё сказанное не относится. Угол опережения выставляется автоматически, причём подбирается он как раз под октановое число. Ну а грязное топливо, в котором есть сор, будет сгорать так же, как любое низкооктановое. Правда, косвенно его использование ведёт к засору форсунок, но проявится этот эффект далеко не сразу. В общем, все указанные пункты – не актуальны.

Форсунка, проработавшая с засорённым фильтром тонкой очистки

Ещё в 50-х годах при изучении детонации двигателя причины были найдены и озвучены:

  • Используя топливо с фиксированным октановым числом, можно повышать угол опережения зажигания до строго определённого предела. Пройдя его, обычно наблюдают детонацию;
  • Пусть угол опережения является постоянным. Будем постепенно уменьшать октановое число. Тогда можно будет получить детонацию, преодолев некий «порог качества». В общем, низкооктановый бензин – это плохо.

В конструкции инжекторных двигателей есть датчик детонации (ДД) (подробнее о нём написано здесь). Блок ЭБУ, в свою очередь, меняет угол опережения, отслеживая сигнал с этого датчика. Неисправность самого ДД тоже не будет фатальной – процессор, хотя и не сразу, понизит угол опережения до минимума. Мощность после этого снизится, но детонация будет исключена.

Когда датчик ДД выходит из строя, лампа Check Engine включается обязательно. До замены датчика лучше выполнять рекомендацию – число стартов двигателя нужно свести к минимуму. Просто, контроллер после включения не сразу понимает, что именно вышло из строя. Лучше перестраховаться.

Чем грозит появление нагара

Использование топлива с большим количеством вредных примесей ведёт к образованию нагара. Это – аксиома. Если же говорить о причинах детонации, нужно различать два понятия – нагар на поверхности цилиндра и отложения на корпусе свечи.

Поршни и поверхность цилиндров

Слой нагара на внутренней поверхности цилиндров есть всегда, а его количество постоянно меняется. Можно заправить авто некачественным топливом, а затем пусть мотор поработает на малой мощности. Суммарное количество нагара в результате возрастёт, что приведёт к увеличению степени сжатия и к ухудшению отвода тепла. В общем, может появиться детонация, а решают проблему так:

  • Автомобиль останавливают, уменьшают угол опережения зажигания, заводят двигатель снова. Регулировку производят только на трамблёре;
  • На инжекторном двигателе трамблёра нет, а угол опережения регулирует блок ЭБУ. Вмешательство оператора не требуется – нужен лишь исправный датчик детонации. Но даже с испорченным датчиком вызвать детонацию не получится – система среагирует на наличие неисправности мгновенно и правильно.

Здесь не было сказано о нагаре на корпусе свечи. Его появление действительно представляет опасность – речь идёт о «калильном зажигании». Подробней об этом явлении рассказывается ниже.

Число настоящих причин равно трём

Причин детонации инжекторного двигателя мы так и не назвали. Можно спокойно заливать любое топливо, даже с примесями, и можно полностью отключить датчик детонации – мотор будет продолжать работать, но ЭБУ соответствующим образом отрегулирует зажигание. К появлению устойчивой детонации ведут три фактора: работа на обеднённой смеси, калильное зажигание, перегрев стенок камеры сгорания. Последний из факторов вызывается только одной причиной – поломкой датчика температуры (ДТОЖ).

Датчики ДТОЖ автомобилей Lifan

Ниже перечислены датчики, исправность которых тоже важна.

Шпаргалка по отказам датчиков

Инжекторный бензиновый двигатель снабжён набором элементов, позволяющих контролировать работу системы в каждый момент времени. Все эти элементы называются датчиками. Перечислим те из них, отказ которых ведёт к появлению детонации:

  • ДПДЗ, или датчик положения дроссельной заслонки. Симптомы отказа – снижение мощности, рывки и провалы при разгоне, а также неустойчивый холостой ход. Результат – работа двигателя на обеднённой смеси, но только при больших нагрузках. А детонация проявится, если управление ведётся в стиле «педаль в пол». Лампа Check Engine обычно не срабатывает.
  • ДТОЖ, то есть датчик температуры тосола. Если мотор нагрет до критической температуры, блок ЭБУ должен об этом «знать». Угол опережения зажигания затем должен быть скорректирован. А иначе, и довольно быстро, начнётся устойчивая детонация.
  • ДД, датчик детонации. Этот элемент выходит из строя редко, но может повреждаться проводка. При поломке именно датчика, а не при обрыве или замыкании проводов, лампа Check Engine не загорается на низких оборотах. Если неисправность уже есть, вызвать детонацию можно так: надо заглушить двигатель, скинуть и снова подключить клемму АКБ, выполнить старт. Детонация появится, а затем исчезнет до следующего запуска.

Ломается датчик ДТОЖ – получаем детонацию в критических режимах. А при поломке ДПДЗ детонация наблюдается на высоких оборотах. Появление и быстрое пропадание детонации – результат отказа ДД.

причины, как устранить, последствия, видео

Неконтролируемое воспламенение топливно-воздушной смеси способно привести к разрушению деталей цилиндропоршневой группы. В статье рассмотрим, что такое детонация двигателя, причины, которые ее провоцируют, и последствия.

Горение топливно-воздушной смеси

Невозможно понять, почему происходит детонация, без представления о нормальном воспламенении топливно-воздушной смеси (далее ТПВС):

  • за несколько градусов до ВМТ свеча подает искру, воспламеняя ТПВС;
  • фронт пламени начинает расходиться от электрода, где был первоначальный очаг, к стенкам камеры сгорания;
  • если угол опережения зажигания (далее УОЗ) был подобран верно, то примерно к 10º после ВМТ в камере сгорания образуется максимальное давление горения. В этот момент поршень занимает позицию, при которой воздействие энергии на плечо сформирует максимальную вращательную силу кривошипа.

Несмотря на то что поджигание смеси происходит до ВМТ, следовательно, на поршень действует замедляющая его энергия, положительная сторона гораздо более значительна. Ведь самый важный момент – приложить усилие к поршню в момент, когда рычаг позволит получить максимальный крутящий момент. Именно плавное возгорание смеси позволяет достигнуть такого эффекта.

Определение

Детонация двигателя – самопроизвольное воспламенение ТПВС, характеризующееся высокой скоростью распространения фронта пламени. Как вы можете теперь увидеть, «детон» имеет противоположную нормальному горению природу.

Основная характеристика детонационного воспламенения – скорость распространения волны (в этом случае очень удачно сравнение со взрывной волной). После подачи искры средняя скорость розростания горения 20-30 м/с. Скорость взрывной волны в момент, когда топливо детонирует, достигает 2000 тыс. м/с.

Разумеется, ничем хорошим для двигателя это не кончиться. Ударная волна «сносит» очаг воспламенения, спровоцированный свечей зажигания, ударяясь о стенки камеры сгорания. Взрывная волна создает резонирующее воздействие, которое проявляет себя звонким звуком во время работы двигателя. Именно по этому звуку можно понять, что в одном либо сразу нескольких цилиндрах происходит детонирование.

Природа возникновения

С тем, что такое детонация двигателя, мы разобрались. Но что служит предпосылкой для ее возникновения?

Детонирует в камере сгорание не только топливо, но и масло, которые при неполном сгорании топливно-воздушной смеси остаются в камере сгорания. Вернемся к процессу горения. Во время начала воспламенения топливно-воздушной смеси от искры, пропорционально распространению фронта пламени, происходит повышение давления в камере сгорания. Также неминуемо повышается температура. В этот момент на периферии, то есть в полости камеры сгорания, куда еще не дошла волна горения смеси, начинаются предпламенные реакции. Иными словами, молекулы бензина начинают распадаться под действием температуры и давления. Распавшиеся частицы топлива очень легко поджечь. Поэтому, если в каком-то месте камеры сгорания температура слишком высока, это провоцирует самопроизвольное воспламенение частиц топлива.

Теперь нам ясны причины детонации двигателя. Но почему скорость ударной волны в процессе детонации намного больше той, что мы имеем после подачи искры? В гражданском двигателе давление в надпоршневом пространстве в момент достижения поршнем ВМТ – порядка 12 атм. Распространяющийся от искры фронт пламени, приводит к увеличению давления оставшейся полости. Поэтому давление, к примеру, около верхней стенки цилиндра может достигать 50-60 Атм. Именно поэтому скорость самовоспламеняющихся частиц гораздо больше тех, которые поджигаются искрой.

Причины

Факторы, провоцирующие появление детонации:

  • несоответствие октанового числа топлива;
  • несоответствие степени сжатия. Если вследствие проведения ремонтных работ, была увеличена степень сжатия, то заправка прежней маркой бензина может привести к детонации. Допустить такую оплошность очень легко, если шлифовать ГБЦ либо сам блок, а затем установить прежнюю по толщине прокладку ГБЦ. Если вы не хотите «умертвить» мотор, к вопросу степени сжатия стоит подходить очень серьезно. Учтите, что детонация двигателя может проявляться в жаркую погоду либо в определенном диапазоне оборотов;
  • УОЗ. Слишком ранний угол может привести к «паразитному» давлению в некоторых местах камеры сгорания, что приведет к самопроизвольным взрывам;
  • неправильное соотношение топлива и воздуха. Детонация мотора может возникнуть как в случае обедненной смеси, так и при переобогащении;
  • нагар в камере сгорания. Образование отложений способствует закреплению частиц, которые после такта выпуска не покидают камеру сгорания. Сохраняя высокую температуру, они способствуют появлению в цилиндре детонации. Большое количество нагара приводит к заполнению полезного объема камеры сгорания, что может привести к появлению детонации.

Методы борьбы

Учитывая приведенные выше причины детонации, вам нужно следить за состоянием систем питания и зажигания. А также помнить о правилах выбора бензина.

Важнейшие составляющие топлива: изооктан и гептан. Изооктан, на противовес гептану, чрезвычайно устойчив к детонации. Именно соотношение изооктана к гептану и называют октановым числом бензина. Для большинства водителей выбор топлива стоит между АИ 92 либо АИ 95. Так вот 95 либо 92 и есть тем самым соотношением (к примеру, 92% изооктана и 8% гептана). Заправлять автомобиль нужно лишь той маркой бензина, которая рекомендована заводом-изготовителем. На рынке вы можете найти «Октан-корректор» либо «Октан-Бустер». Предназначение этих средств – повысить детонационную устойчивость топлива.

Среди прочих рекомендаций – периодически крутить двигатель до высоких оборотов. Постоянная езда «внатяг» либо работа двигателя  в диапазоне до 2 тыс. км приводит к ускоренному образованию нагара.

Последствия

К основным поломкам можно отнести:

  • прогорание либо частичное оплавление поршня, вследствие аномально большой температуры. Также может произойти поломка перегородок между кольцами. Устранить неисправность поможет дорогостоящая капиталка;
  • ускоренный износ ЦПГ. Детонация разрушает масляную пленку на стенках цилиндра, что приводит к сухому трению поршней;
  • прогорание выпускных клапанов;
  • перегрев двигателя;
  • повышение температуры турбины, что может привести к ее поломке;
  • высокая температура стенок цилиндра и поршня требует от колец проводить через себя большее количество тепла. Слишком высокая температура пагубно влияет на эластичность колец;
  • оплавление электрода. Ситуация редкая и случается лишь в крайне запущенном состоянии.

Любителям экономить

Если вы заправляете современный автомобиль 92 бензином, в надежде сэкономить, то вас приятно удивит информация о системе зажигания инжекторного двигателя. Регистрируя возникновение детонации, ЭБУ «отодвигает» УОЗ. Такие меры помогают устранить детонацию, но приводят к потере динамических характеристик автомобиля. Соответственно, повышается расход, что сводит на нет все попытки экономии.

Тюнерам

Также будьте аккуратны с расчетами при форсировании мотора. В особенности детонации подвержены неправильно построенные турбированные моторы. Но не обходит стороной эта проблема и атмосферные ДВС. На отечественных просторах есть любители устанавливать 16-клапанные ГБЦ в моторы с поршневой от 8-клапанных двигателей. Многие даже не подозревают, что 16-клапанные Вазовские моторы имеют масляное охлаждение поршней. Поэтому установка одной лишь ГБЦ чревата увеличением температуры в цилиндре.

Езда внатяг

Движение внатяг – езда под нагрузкой на повышенной передаче. Случается такое, когда водитель резко добавляет газ, будучи на повышенной передаче, когда обороты двигателя не превышают 2500 тыс. Спровоцировать такую ситуацию может затяжной подъем, при котором водитель не сбрасывает скорость, а сильнее нажимает на педаль.

Езда внатяг, особенно на турбированном ДВС с малым объемом, создает благоприятные условия для возникновения детонации. Именно поэтому от такого способа вождения лучше отказаться.

Датчик детонации

Именно этот сенсор регистрирует посторонние резонансные частоты в цилиндре. Ориентируясь на показания датчика детонации, ЭБУ принимает решение о корректировании УОЗ. Если двигатель в исправном состоянии, а в баке правильный вид топлива, то поломка датчика не приведет к появлению детонации. Просто теперь ЭБУ не сможет адекватно реагировать на появление столь негативного явления.

Почему возникает детонация на холодном и горячем двигателе: основные причины

Дальше рассматривается только один тип двигателей – инжекторные. А у них, как известно, всем управляет блок ЭБУ: он регулирует подачу топлива, а также переключает ток в катушках зажигания. Главное, что под контролем ЭБУ находятся две важных цифры – угол опережения зажигания и насыщенность смеси. Интересно то, что других параметров, влияющих на появление детонации, назвать будет нельзя (их нет). А сама детонация – это горение, но проходящее в таком режиме, когда очаг воспламенения находится вдали от свечи. Проще говоря, если «нештатные» очаги есть, то есть и детонация. Ниже рассказывается о том, чем она, то есть детонация, может быть вызвана.

Признаки и последствия детонации двигателя

Все детали, составляющие конструкцию мотора, рассчитаны только на определённую температуру и давление. А не рассчитаны они на повышенные ударные нагрузки, которые сопровождают детонацию всегда. Снаружи двигателя слышится характерный звон (стук), а внутри происходит следующее: на деталях образуются очаги разрушения. Такие дефекты со временем не уменьшаются, а как раз наоборот. Срезанные, сорванные кромки поршней – это и есть результат детонации, которая появлялась регулярно.

Боковая поверхность и верхние кромки страдают в первую очередь

Её результатом может быть и пробой прокладки ГБЦ. Заметим, что само явление детонации сопровождается изменением выхлопа: состав меняется, цвет темнеет, температура понижается. Впрочем, всё это заметить сложно – детонация может появляться и исчезать. Остаётся надеяться на чуткость слуха, да на лампу Check Engine.

Даже появление устойчивой детонации не всегда приводит к срабатыванию индикатора. Например, при выходе из строя датчика дроссельной заслонки получается следующее: ЭБУ «думает», что всё нормально, а мотор «шпарит» на обеднённой смеси и при этом, конечно же, он будет «звенеть».

Почему «звенит» холодный двигатель

Детонация на холодном двигателе, если она действительно возникает, чаще будет обусловлена одним фактором – слишком обеднённой смесью в одном или нескольких цилиндрах. И тут надо смотреть, что стало причиной. Наиболее частой из этих причин становится засорение форсунок. Объём топлива, подаваемого на такте впуска, должен соответствовать числам, рассчитанным программой контроллера. В случае появления засора это правило не выполняется.

Форсунки иногда нужно чистить

Надо сказать, по мере прогрева эффект может исчезать полностью. Проверять нужно фильтр грубой очистки, затем фильтры на всех форсунках, ну а засорение самой форсунки – неприятность довольно серьёзная. И бороться с ней будет накладно с финансовой точки зрения.

Блок ЭБУ стремится компенсировать засор, варьируя разные параметры. Детонация при этом не возникает, однако снижается мощность. Но «регулирование», о котором шла речь, тоже имеет свои пределы – при значительной степени засорённости оно не помогает. Тогда зажигается лампа Check, а двигатель начинает «звенеть».

Пусть наблюдается детонация при запуске горячего двигателя – она появляется и сразу исчезает. Тот же эффект может обнаруживаться и при «холодном» запуске. В таком случае можно утверждать, что неисправен датчик детонации. Сам датчик выходит из строя редко, и скорее всего, проблема – в проводке. О наличии неисправности скажет включение лампы Check. Но пока обороты остаются низкими, на некоторых двигателях лампочка не срабатывает.

Появление детонации контролирует именно такой датчик

Блок ЭБУ, как мы говорили, регулирует два параметра: угол опережения зажигания, степень насыщенности смеси. Если сигнал, считываемый с датчика, полностью отсутствует, то ЭБУ выставляет значения на «разумный минимум». Смесь не будет слишком обеднённой, чтобы исключить детонацию. Но в первую секунду блок ЭБУ «не знает», что сигнал с датчика отсутствует, и параметры доводятся «до предела».

Проведите опыт: отключите, а через 5 минут снова подключите любую клемму АКБ, выполните старт. Затем обороты двигателя нужно повысить до 3000 об/мин. Детонация, продолжающаяся 1-2 секунды, должна наводить на одну мысль: неисправности в цепи датчика – есть, их надо искать.

Детонация может возникнуть и после прогрева

Если говорить об «инжекторе», а не о карбюраторном ДВС, нужно заметить, что детонация на горячем двигателе – явление трудноуловимое. Она может возникать только под нагрузкой, то есть стоять и «газовать», пытаясь услышать звон, будет бесполезно. Одной из причин появления детонации является поломка датчиков – это датчик температуры, а также датчик положения заслонки дросселя. Рассмотрим оба вопроса подробнее.

Чтобы заметить эффект от поломки температурного датчика (ДТОЖ), нужно прогреть двигатель до 90-100 Гр. C. Возможно, это удастся сделать, не выезжая с парковки, но в зимнее время такой прогрев займёт ровно час. Дальше, принимая значение температуры равным 80 градусам, блок ЭБУ продолжит корректировать угол опережения в соответствии с этим «усреднённым» значением. А оно является заниженным, и поэтому возникнет детонация. Сам угол опережения затем будет сразу уменьшен. Но такая регулировка, конечно же, имеет пределы.

Любой датчик ДТОЖ – обычный терморезистор

Неисправный датчик может проявлять себя по-разному: до прогрева он ведёт себя нормально, затем начинает «чудить». И вот тогда, то есть в таких случаях, неисправность не определяется и лампа не загорается. А детонация может исчезать и снова появляться. Тут нужен БК: надо смотреть, чему равны «цифровые» показания температуры.

При отсутствии датчика ДТОЖ блок ЭБУ считает, что температура равна 80-ти градусам. Превысив этот предел, легко добиться появления устойчивой детонации.

Пусть будет неисправен датчик положения дроссельной заслонки. И допустим, считываемое с него значение – меньше, чем «настоящее». Тогда смесь будет слишком обеднённой, и детонация на горячем двигателе возникнет обязательно. Кстати, пока мотор не прогрет, эффект не проявится. Ещё одним важным фактором считается наличие нагрузки.

Датчик считывает угол отклонения дроссельной заслонки

Выше сказано, что к детонации приводит сочетание трёх факторов:

  1. Поломка датчика заслонки;
  2. Значительная нагрузка на двигатель;
  3. Достаточный уровень прогрева.

Устранять нужно, конечно же, именно первый фактор. Тогда мотор можно будет эксплуатировать в любых режимах.

Пытаясь газовать на стоянке, нет смысла ждать появления детонации по причине неисправности датчика. Речь идёт, разумеется, только о датчике положения заслонки. Смотрите, что указано в «пункте 2» – мотору нужна нагрузка. Это значит, что эффект не проявит себя, если передача не включена.

Пара слов о калильном зажигании

В 50-е годы явление детонации только начинали изучать. Тогда был обнаружен следующий эффект: воспламенение могло происходить раньше, чем появлялась искра. Выяснилось, что очагом воспламенения являлись частички нагара. Сам эффект, о котором идёт речь, был назван «калильным зажиганием». И этот эффект, оказывается, приводит к детонации всегда.

Не путать с детонацией при выключении зажигания!

Такой нагар становится причиной калильного зажигания

Логика здесь состоит в следующем: детонация появляется в случаях, когда зажигание является «ранним». Но калильное зажигание, как многие знают, всегда предшествует «штатному». Блок ЭБУ исправно контролирует момент появления искры, но в этом не всегда будет смысл – горение может идти уже тогда, когда ток в катушке ещё отсутствует.

Допустим, появляется детонация при запуске горячего двигателя, и она не исчезает через секунду или две. Как известно, так может проявляться калильное зажигание. А вот на «холодном» двигателе калильное зажигание не возникает никогда. Это утверждение в совокупности с первым позволяет выполнять диагностику.

Заметим ещё раз – здесь говорится о причинах появления детонации. Одной из них принято считать эффект «калильного зажигания». Его, в свою очередь, вызывает наличие любого из факторов:

  • Появление характерного нагара на плоском электроде либо на корпусе свечи;
  • Полное или частичное выгорание центрального электрода;
  • В редких случаях очагами воспламенения могут быть отложения на клапанах, ещё реже – копоть на поршне. Но в каждом таком случае оказывается, что центральный электрод прогорел полностью.

Третий пункт соответствует фактору, очень редко встречающемуся на практике. Так что делайте выводы правильно.

Вопрос-ответ

Возможно, прочитав сотни форумов и перелопатив гору специальной литературы, читатель так и не найдёт ответ на свой вопрос. Но прежде чем везти авто на диагностику, можно ознакомиться с наиболее распространёнными вопросами, касающимися работы двигателей. Ответы здесь приводятся тоже:

  • В: Может ли детонация быть связана с появлением нагара?
  • О: В моторах с водяным охлаждением нагар образуется в любом случае. Толщина слоя всё время меняется, но контроллер нужен затем, чтобы подстраиваться под любые изменяющиеся условия. Что верно и для карбюраторных двигателей, если ими управляет блок ЭБУ.
  • В: Как влияет калильное число свечей на появление калильного зажигания?
  • О: Если установите «слишком холодную» свечу – получите нагар на электроде и на корпусе. Установка «горячих» свечей – случай более сложный. Если калильное число будет меньше рекомендованного, то не обязательно перегрев корпуса свечи приведёт к калильному зажиганию. Однако розжиг смеси раскалённой керамикой – процесс вероятный. На практике следует обращать внимание и на правильность выполнения монтажа (см. рис.).
  • В: Раньше возникала детонация на горячем двигателе. После смены заправки всё прошло. Наверное, неисправен контроллер?
  • О: Скорее неисправен датчик детонации, его проводка и т.д. Повысьте обороты до 3500 об/мин – лампа Check должна включиться сразу.

Иллюстрация ко второму вопросу приводится ниже:

Ошибки при монтаже свечей зажигания

Может быть, читатели дополнят список, оставляя грамотные комментарии и отзывы.

Звук детонации двигателя на видео

Детонация двигателя- Причины и последствия. Советы по устранению

Водителям приходится сталкиваться с эффектом неконтролируемого возгорания топлива в цилиндрах силовых агрегатов в виде взрывов. В результате сверхвысоких температур и огромного давления, возникает мощная взрывная ударная волна, которая называется «детонация двигателя». Она сопровождается мгновенным выбросом большого количества энергии и разрушениями различной степени тяжести.

Причины детонации дизельного двигателя

При нормальной работе ДВС смесь возгорается, когда поршня находится в верхней точке ВМТ, при опережении угла зажигания в 2 – 3 °. Догорание смеси продолжается и после ВМТ при движении поршня в обратную сторону. Расчетная скорость перемещения языка пламени равна 30 м/сек. Во время взрыва данный параметр резко возрастает, достигая значения 2 тысячи метров за одну секунду.

Детонация двигателя возникает при:

  • постоянном движении машины;
  • возрастании нагрузок;
  • при работе на различных передачах;
  • в т. ч. на холостом ходу.

Она вызвана нарушениями параметров при сгорании топлива. Плавный процесс мгновенно сменяется сильным взрывом, что приводит к негативным последствиям:

  • разрушения поршней, цилиндров;
  • деталей кривошипно-шатунного механизма;
  • резкое возрастание температурного режима;
  • уменьшение мощностных характеристик;
  • возрастание потребления горючего.

 

Наиболее частые причины детонации двигателя:

  1. Нарушение регулировок.
  2. Некачественное смешение горючего с кислородом.
  3. Недостаточная эффективность охлаждающей системы.
  4. Нарушение эксплуатационных требований.
  5. Применение бензина низкого октанового числа.
  6. Конструктивные недоработки двигателя.

Последствия детонации двигателя

Для осуществления разгона транспортного средства, водитель резко вдавливает педаль газа. При попадании топлива в условия с повышенным давлением, сверхвысокими температурами, происходит воспламенение. Внутри камеры генерируется дополнительное давление, создается взрывная волна с возрастающей амплитудой, возникает цепная реакция, не поддающаяся контролю, коленвал вращается с огромной скоростью.

Детонация приносит огромные разрушения элементам двигателя:

  1. Срываются и обламываются кромки поршней.
  2. Нарушается целостность цилиндров, разрушаются стенки.
  3. Прокладка головки ГБЦ полностью разрывается.
  4. Датчики дроссельные выходят из строя.

В отличие от детонации, при нормальном функционировании топливо равномерно сгорает и передает энергию движения на поршни, затем на коленчатый вал и т.д.

Влияние особенностей эксплуатации на силу детонации

Даже в исправном механизме велика вероятность, что произойдет детонация двигателя при разгоне или при эксплуатации машины с повышенными нагрузками. Топливо начинает детонировать при длительных подъемах, особенно если скорость превышает установленную передачу. Выражаясь иначе, водитель не должен давить на газ при преодолении подъема, пока не осуществит переход на понижение скорости.

В это время коленчатый вал имеет низкие обороты, не хватает мощности на подъем автомобиля в гору. В общее звучание работающего двигателя добавляются отчетливые детонационные стуки, вызванные высокочастотной взрывной волной.

Топливовоздушные смеси вызывают детонацию при недостаточном охлаждении и неисправностях в системе:

  • преждевременное раннее зажигание;
  • перегревание мотора;
  • наличие большого количества нагара в камерах;
  • закоксованность стенок цилиндров, приводящая к увеличению степени сжатия.

Интересно: Известны случаи, когда мастера тюнинга искусственно устраивают раннее преждевременное зажигание. Этим способом пытаются улучшить реакцию движка на нажатие педали газа при работе на уменьшенных оборотах. Смесь воспламеняется раньше, чем поршень достигает ВМТ, т. е. препятствует его движению. Здесь главное – не допустить перегрева.

Если накопилось много нагара, объем камеры резко уменьшается, а значит степень сжатия возрастает. Вредные отложения способствуют значительному повышению температурного режима . Случается, что нагар тлеет, в результате чего смесь самовоспламеняется в самый неподходящий момент (эффект калильного зажигания). Это неконтролируемое явление – детонация двигателя при выключении зажигания. При несанкционированном возгорании топлива двигатель несет серьезный ущерб, его моторесурс значительно сокращается.

Прошивки и детонация

Помимо причин, описанных выше, также имеют влияние изменения, направленные на повышение экономичности топлива. «Экономичная прошивка» заключается в следующих усовершенствованиях:

  1. Установка неподходящего калильного числа свечей зажигания.
  2. Изменения в топливной аппаратуре.
  3. Чип-тюнинг электронного блока ЭБУ с целью внесения корректировок топливных карт.

После проведения данных мероприятий смеси для разных режимов обедняются, что влечет снижение динамических характеристик авто.

Родные настройки ЭБУ рассчитаны на нормальное воспламенение смесей при номинальном температурном режиме в камерах. Детонация чаще всего случается после проведения прошивки при использовании смесей обедненного состава, автомобиль при этом испытывает серьезные нагрузки. На таких смесях детали двигателя быстро перегреваются и при впрыске возникает бесконтрольное возгорание.

Детонация при запуске двигателя

Холодный инжектор при запуске может детонировать при поступлении обедненного топлива в цилиндры. Как правило, это обусловлено засорением отверстий распыляющих форсунок. При их засоре топливо подается в ненадлежащем объеме. После прогрева детонация исчезает. Чтобы избавиться от негативного эффекта, рекомендуется регулярно проверять и очищать топливные фильтры. Засорение форсунок считается серьезным дефектом, избавиться от которого трудно без демонтажа.

Детонация дизельного двигателя

В отличие от инжекторов, в дизелях топливо не поджигается, оно самовоспламеняется при впрыске в цилиндр с раскаленным сжатым воздухом. Если объем горючего превышает установленную величину, в камере сгорания развивается ударная волна. Детонация двигателя на холостых оборотах сопровождается громким звуком, считается, что данный эффект не представляет опасности и постепенно исчезает с увеличением нагрузки.

Причины детонации дизельного двигателя на холостых оборотах – задержка возгорания топлива. Этот временной промежуток сокращается по мере возрастания температуры в системе.

Как снизить вероятность возникновения детонации:

  1. Уменьшить количество, впрыскиваемого горючего.
  2. Разделить камеры сгорания (предварительный отсек, рабочий).
  3. Впрыскивать топливо по методу MAN.
  4. Добавлять специальные присадки в дизтопливо, за счет которых происходит ускорение возгорания.

Детонация дизельного двигателя после выключения зажигания возникает по следующим причинам:

  • засорение отверстий форсунок;
  • отказ насоса ТНВД;
  • отложения нагара.

Основные признаки детонации

От сильных взрывов при работе двигателя слышны звонкие металлические постукивания, отработавшие газы изменяются по оттенкам. Многие рабочие элементы деформируются и выходят из строя.

Внешние проявления детонации:

  1. Дым темного цвета, выходящий из системы выхлопа.
  2. Снижение мощности.
  3. Вибрации усиливаются по мере возрастания амплитуды взрывной волны.
  4. Двигатель не реагирует на управление со стороны водителя (неустойчивая работа).
  5. Детали и узлы перегреты до критических температур.

Рекомендации опытных автомобилистов

При изготовлении автомобильных двигателей все детали имеют определенные параметры, рассчитанные на эксплуатацию в номинальных температурных режимах. При детонации двигателя транспортное средство подвергается ударным нагрузкам, превышающим допустимые значения. Неравномерное распределение горючего и кислородных масс приводит к неожиданным сильным взрывам.

Чтобы выявить и предотвратить случаи детонации, рекомендуется прислушиваться к равномерности звуков работающего двигателя. При выявлении нестандартных постукиваний, шумов, необходимо остановиться и выключить мотор. Далее нужно определить источник неизвестных звуков и попытаться ее устранить.

Во избежание разрушительных последствий, детонация должна быть под постоянным контролем. Главное помнить: при нормальной работе не должны возникать даже небольшие изменения в звучании мотора.

ДЕТОНАЦИЯ

На некоторых режимах работы автомобиля, обычно связанных с большой нагрузкой, при использовании бензина, качество которого не полностью отвечает требованиям двигателя, может возникнуть особый вид сгорания рабочей смеси, так называемое детонационное сгорание. Такое сгорание сопровождается появлением характерного звонкого металлического стука, повышением дымности выхлопа и увеличением температуры в цилиндрах двигателя.
Все внешние признаки и проявления детонации хорошо известны, однако, причины возникновения и механизм этого явления до сего времени выяснены не полностью. Существует несколько теорий, объясняющих сущность детонационного сгорания, но наиболее общепризнанной из них в настоящее время является так называемая перекисная теория.
В основе этой теории лежат труды выдающегося русского ученого акад. А.Н. Баха, который установил, что при окислении углеводородов первичными продуктами являются перекисные соединения типа гидроперекиси R—О—О—Н или диалкилперекиси R—О—О—R. Перекиси относятся к разряду весьма нестойких соединений, обладающих большой избыточной энергией. При определенных температурах и давлении перекисные соединения могут самопроизвольно разлагаться с выделением большого количества тепла и образованием новых активных частиц.                      
Процесс окисления углеводородов бензина кислородом воздуха начинается с момента производства бензина на заводе и продолжается вплоть до сгорания бензина в двигателе. Скорость окисления зависит от температуры. При повышении температуры бензина на 10° С скорость его окисления возрастает в 2, 2—2, 4 раза.
При хранении и транспортировке бензина температура его обычно невысока, поэтому окисление углеводородов и образование перекисных соединений происходит весьма медленно. Перекисные соединения в таких условиях не накапливаются, а подвергаются дальнейшему окислению с образованием смолистых веществ.
Энергичное окисление углеводородов бензина начинается в камере сгорания в конце такта сжатия рабочей смеси. При движении поршня к в.м.т. непрерывно повышается температура и давление в рабочей смеси и возрастает не только скорость окисления углеводородов, но в процесс окисления вовлекается все большее и большее количество различных соединений. Процессы окисления приобретают особенно большую скорость после воспламенения смеси и образования фронта пламени. По мере сгорания рабочей смеси температура и давление в камере сгорания быстро нарастают, что способствует дальнейшей интенсификации процессов окисления в несгоревшей части рабочей смеси. На последние порции несгоревшего топлива, находящиеся перед фронтом пламени, высокие температура и давление действуют наиболее длительно. Вследствие этого в них особенно интенсивно накапливаются перекисные соединения, поэтому наиболее благоприятные условия для перехода нормального сгорания в детонационное создаются при сгорании именно последних порций рабочей смеси.
Описанные выше процессы окисления углеводородов с образованием перекисных соединений протекают в двигателе всегда, независимо от того, какое сгорание имеет место: нормальное или детонационное.
Если в двигателе используется такой бензин, в составе которого преобладают углеводороды, не образующие при окислении большого количества перекисных соединений, то концентрация перекисей в последних порциях смеси не достигает критических значений, и сгорание заканчивается нормально, без возникновения детонации.
Если при окислении бензина в последних порциях смеси накапливается много перекисных соединений, то свыше некоторого критического значения происходит их взрывной распад с образованием так называемого «холодного пламени». Продуктами сгорания в этом пламени являются главным образом альдегиды и СО, так что и энергия, выделяемая в «холодном пламени», составляет лишь малую часть от полной теплоты сгорания топлива (5—10%) с соответственно незначительным повышением температуры. Свечение холодного пламени обязано оптическому возбуждению молекул формальдегида непосредственно при их образовании, т. е. возникает за счет энергии химической реакции (хемилюминесценция).
Распространение холодного пламени по рабочей смеси, в отличие от -нормальных горячих пламен, осуществляется исключительно диффузией в свежую смесь активных частиц, радикалов, образующихся при распаде перекисей. Результатом холоднопламенной стадии является замена исходного, относительно инертного углеводорода химически активной смесью органических перекисей, альдегидов и свободных радикалов. Эта активная смесь подвергается дальнейшему окислению и после некоторого периода индукциипроисходит новый взрывной распад перекисных соединений, аналогичный прежнему, но с вовлечением большей массы исходной смеси и с участием большего количества перекисных соединений.
При этом возникает особый тип пламени, промежуточный между холодным и горячим, названный А. С. Соколиком [ ] «вторичным холодным пламенем». Реакция идет в нем так же, как в холодном пламени, не до конечных продуктов СО2 и Н2О, а до СО, но степень разогрева в этом пламени уже велика и соответствует выделению примерно половины полной энергии сгорания, поэтому «вторичное холодное пламя» распространяется с большей скоростью не только за счет диффузии активных центров, но и за счет теплопередачи. После прохождения «вторичного холодного пламени» остается на гретая до высокой температуры смесь СО и неиспользованного кислорода. При достаточно высокой концентрации активных центров происходит цепочечно-тепловой взрыв этой смеси, рождающий настоящее горячее пламя, т. е. происходит самовоспламенение [1].
Вначале самовоспламенение и образование нового фронта горячего пламени происходит в одном или нескольких местах несгоревшей части рабочей смеси. Одновременно с новым фронтом горячего пламени возникает новый фронт ударной волны. Ударные волны, распространяясь по нагретой активной смеси, в которой предпламенные реакции близки к завершению, стимулируют самовоспламенение остальной несгоревшей части рабочей смеси. При этом скорость распространения фронта горячего пламени в оставшейся части смеси становится такой же, как и скорость распространения ударных волн, т. е. появляется детонационная волна сгорания, имеющая скорость до 2000—2500 м/сек.
Таким образом, сущность явления детонации состоит в весьма быстром завершении процесса сгорания в результате многостадийного самовоспламенения части рабочей смеси перед фронтом пламени, сопровождающегося возникновением ударных волн, которые, в свою очередь, стимулируют сгорание всей оставшейся рабочей смеси со сверхзвуковой скоростью.
Изложенные выше представления о цепном механизме детонационного сгорания основаны на трудах акад. Н. Н. Семенова и подтверждаются многочисленными экспериментальными данными.
Рисунок 1 иллюстрирует исследования, перемещения фронта пламени при нормальном и детонационном сгорании смеси в специальном двигателе, оборудованном аппаратурой для скоростной фотосъемки. Очаг детонационного сгорания отмечен в наиболее удаленном от свечи зажигания месте. Весь процесс детонационного сгорания завершился при повороте коленчатого вала на 6—7° после в. м. т., тогда как нормальное сгорание в этих условиях протекало значительно дольше и заканчивалось при повороте коленчатого вала более чем на 14° после в. м. т. (Рисунок 1).
В пользу многостадийного воспламенения несгоревшей порции рабочей смеси говорит тот факт, что в спектре испускания пла-


Рисунок 1 . Распространение фронта пламени в цилиндре двигателя. Сплошными ли-
ниями обозначены мгновенное положение фронта пламени через каждые 2° поворота
коленчатого вала:

А — при угле опережения зажигания 20° до ВМТ и нормальном сгорании; Б — при угле опе-
режения зажигания 19, 2° до ВМТ и сгорании с детонацией; Х— искра; Д — место возникно-
вения детонации.


мени в детонационной зоне исчезают характерные для углеводородных пламен полосы С—С и С—Н. Это обстоятельство свидетельствует о том, что горячее пламя возникает в данном случае не в исходной углеводородо-воздушной смеси, а в продуктах ее превращения, содержащих главным образом СО. При помощи спектров поглощенияв смеси перед детонационным воспламенением обнаружены органические перекиси и альдегиды и, наконец, специфические для холодных пламен возбужденные молекулы формальдегида [1].
Установлено, что введение в камеру сгорания небольших количеств диэтилперекиси (С2H5ООС2H5) или этилгидроперекиси (С2Н5ООН) вызывает очень сильную детонацию. Резкую детонацию вызывало введение гидроперекиси ацетила (СНзСООН). В последней порции рабочей смеси в двигателе перед началом детонации были обнаружены органические перекиси, аналогичные гидроперекиси ацетила, в таких количествах, которые по опытам с чистой перекисью необходимы для вызова детонации [ ].
Внешние признаки детонационного сгорания мы уже отмечали: характерный стук, дымный выхлоп и перегрев двигателя. Металлический стук является результатом многократных периодических отражений ударных волн от стенок камер сгорания. При этом на индикаторных диаграммах в конце сгорания регистрируются вибрации давления в виде ряда постепенно затухающих острых пиков (рис. Рисунок 2). Частота вибраций давления примерно такая же, как и основная частота слышимых стуков — порядка нескольких тысяч гц. В связи с этим при детонации мы слышим звонкий металлический стук высоких тонов.

Рисунок 2 . Типичные индикаторные диаграммы двигателя с искровым зажиганием при работе
с детонацией.

 

Само по себе повышение давления, возникающее во фронте ударных волн, с точки зрения механической прочности деталей двигателя, не представляет особой опасности, так как эти пики давления действуют в виде крайне коротких импульсов, длящихся менее одной десятитысячной доли секунды.
Однако ударные волны при своем многократном отражении от стенок могут механически    «сдирать» масляную пленку с поверхности   гильзы, что приводит к увеличению износа цилиндров и поршневых колец. Кроме того, вибрационный характер нагрузки на поршень при наличии детонации может вызывать разрушение антифрикционного слоя в шатунных подшипниках [ ].
В результате большой скорости и взрывного характера сгорания при детонации часть топлива и промежуточных продуктов сгорания «разбрасывается» по объему камеры, перемешивается с конечными продуктами сгорания и не успевает полностью сгореть. Следствием неполноты сгорания смеси при детонации является увеличение дымности выхлопа.
Главная опасность детонации заключается в повышенной отдаче тепла от сгоревших газов в стенки камеры сгорания и днище поршня из-за более высоких температур в детонационной волне и увеличения коэффициента теплоотдачи в результате срыва пограничного слоя более холодного газа [3].
Увеличенная теплоотдача в стенки приводит к перегреву двигателя и может вызвать местные разрушения поверхности камеры сгорания и днища поршня, первоначально выражающиеся в появлении на поверхности металла небольших щербин. Часто в первую очередь происходит разрушение кромок прокладки между цилиндром и головкой, завершающееся ее прогоранием. Характерно расположение таких разрушений во вполне определенных для дан ного двигателя местах, зависящих от конфигурации камеры сгорания, что связано с зонами преимущественного возникновения детонации и условиями отражения ударных волн от стенок [3].
Следует отметить, что еще до появления каких-либо видимых разрушений работа двигателя с детонацией ведет к повышенному износу деталей [ ]. Так, в Таблица 1 приведены результаты исследования [ ] влияния детонации на износ цилиндров. Опыты проводились на шестицилиндровом двигателе таким образом, что три цилиндра работали с детонацией, а три других — без детонации.
Через 200 ч испытаний проводился второй этап, во время которого три цилиндра, ранее работавшие без детонации, переводились на детонационный режим, и наоборот. Исследования показали, что при работе двигателя с детонацией, в тех случаях, когда не наблюдается аварийных разрушений, происходит снижение его долговечности в 1, 5—3 раза.


Таблица 1 . Влияние детонации на износ (в мк) цилиндров [30]

Условия испытаний

Средний
макси-
мальный
износ

Средний
износ в
верхнем
поясе

Средний
износ по
всем
поясам

Работа с детонацией

 

 

 

в течение 100 ч

 

 

 

I этап

11, 0

5, 0

2, 7

II этап

13, 3

5, 3

2, 5

в течение 200 ч

 

 

 

I этап

19, 4

9, 7

4. 6

II этап

21, 1

10, 9

4, 8

Работа без детонации

 

 

 

в течение 100 ч

4, 6

2, 4

1, 8

I этап

4, 1

1, 1

1, 3

II этап

 

 

 

в течение 200 ч

8, 1

4, 1

3, 1

I этап

5, 5

2, 0

2, 9

II этап

 

 

 

 

Распределение износов по высоте цилиндра видно из данных, приведенных на Рисунок 3. Они свидетельствуют о том, что длительная работа двигателя с детонацией совершенно недопустима.
Основные положения перекисной теории детонации позволяют объяснить влияние различных факторов на возникновение детонационного сгорания в двигателе и помогают наметить пути борьбы с этим явлением.
Согласно перекисной теории детонации повышение температур и давления в цилиндрах двигателя должно способствовать ускорению образования перекисных соединений и быстрейшему достижению критических концентраций, приводящих к детонации. Увеличение продолжительности пребывания последних порций топлива в камере сгорания также должно вести к образованию критических концентраций перекисных соединений и возникновению детонации.
Эти положения хорошо объясняют влияние на возникновение детонационного сгорания таких показателей, как степень сжатия двигателя, форма камеры сгорания, диаметр цилиндра, материал поршней и головки блока цилиндров, наличие отложений нагара, угол опережения зажигания, число оборотов коленчатого вала, температура и влажность окружающего воздуха, состав смеси, температура охлаждающей жидкости и т. д. [ , , , , ].

Рисунок 3 . Радиальный износ цилиндра при работе двигателя [16].

Детонация в двигателе с цилиндром увеличенного диаметра при всех прочих равных условиях возникает быстрее, поскольку в таком двигателе ухудшаются условия отвода тепла. Форма  камеры  сгорания должна быть такой, чтобы в ней не было мест, значительно удаленных от источника зажигания, и обеспечивался наилучший отвод тепла от той части рабочей смеси, которая догорает в последнюю очередь.
Алюминиевые   поршни и головка блока цилиндров лучше отводят тепло, чем чугунные, поэтому условия для возникновения детонации в двигателях с алюминиевыми поршнями и головкой блока цилиндров менее благоприятны. Отложения нагара в камере сгорания затрудняют отвод тепла и тем самым способствуют возникновению детонации. При увеличении числа оборотов коленчатого вала сокращается время пребывания топлива в камере до сгорания за счет повышения скорости распространения фронта пламени, что приводит к снижению конечных концентраций перекисных соединений и затрудняет  возникновение детонации.
Детонация в двигателе ослабевает или совсем исчезает при уменьшении угла опережения зажигания вследствие того, что при этом снижаются температура и давление газов в цилиндре двигателя и остается меньше времени на образование перекисных соединений. Наиболее эффективное средство предотвращения детонации в двигателе — это применение топлива, имеющего достаточную химическую стойкость в условиях камеры сгорания, т. е. обладающего необходимыми антидетонационными свойствами.

Список литературы:


Соколик А.С., Сгорание в транспортных поршневых двигателях. Изд. АН СССР, 1951, стр. 37. Льюис Б., Химические основы работы двигателя, Издатинлит, 1948, стр. 152. Воинов А. Н., Процессы сгорания в быстроходных поршневых двигателях, Изд. «Машиностроение», 1965. Berry R., Auto Forics, 66,  № 7, 48(1966). Аpонов Д.М., Маст В.С., Автомобильный транспорт, № 12, 19 (1956). Коenig G. F., Me Lean I. R., SAE J., 69, № 3, 77, (1961). Ваpшавский И.Л., Труды Института двигателей АН СССР, вып. 6, Изд. АН СССР, 1962, стр. 94. Stern А.С., J. Air Pollution Control Assoc., 13, № 2, 91 (1963). Маpкова И.В., Полухин Е. С., Автом. пром., № 9 (1964). Гуреев А.А., Аронов Д.М., Автом. пром., № 5 (1965).

Детонация и предварительное зажигание — Savvy Aviation Resources

Эти два аномальных явления горения, которые часто путают и неправильно понимают, столь же различны, как ночь и день.

Майка Буша

Хотя мы часто слышим, как люди описывают то, что происходит внутри цилиндров двигателя с циклом Отто, как взрыв, то есть насильственное, почти мгновенное событие, это не так. Воздушно-топливный заряд не взрывается при воспламенении от свечей зажигания, а скорее горит упорядоченным образом, начиная от свечей зажигания и продвигаясь по камере сгорания, пока он не гаснет при достижении стенок цилиндра и днища поршня в воздушно-топливном режиме. заряд полностью израсходован и гореть больше нечего.Событие возгорания занимает значительный период времени — примерно 6 миллисекунд или 90 ° вращения коленчатого вала, плюс-минус.

Очень важно, чтобы пиковое давление происходило за пределами ВМТ, потому что геометрия коленчатого вала и шатуна около ВМТ не позволяет преобразовать давление сгорания в полезную работу (например, вращение коленчатого вала), а просто создает чрезмерное напряжение в цилиндре, поршне , шатун и коленчатый вал. Рисунок 2 пытается драматизировать этот момент.

Детонация

Но если процесс сгорания протекает слишком быстро и пик давления возникает слишком рано, результатом может быть избыточное давление, чрезмерные температуры и нестабильные импульсы давления, известные как «детонация».«Это потому, что, когда поршень находится в непосредственной близости от ВМТ, он не может двигаться вниз в цилиндре, чтобы сбросить давление (и выполнить при этом некоторую полезную работу). Неровный вид верхнего следа на Рисунке 4 с шипами является характерным признаком давления детонации.

В автомобиле мы обычно слышим детонацию в виде слышимого «стука». В самолете мы не можем — слишком много шума — но мы можем наблюдать его на мониторе двигателя в виде чрезмерного CHT и пониженного EGT.

Детонация — это то, что происходит около точки пикового давления в событии сгорания, после того, как воздушно-топливный заряд нормально воспламенился свечами зажигания. Он характеризуется аномальными скачками давления около точки пикового давления, вызванными самовозгоранием конечного газа из-за чрезмерной температуры и давления.

Вопреки тому, что вам сказали CFI или A&P, детонация не обязательно опасна. Многие двигатели довольно регулярно работают в режиме легкой детонации, а некоторые могут выдерживать умеренную детонацию в течение продолжительных периодов времени без повреждений.Детонация — не оптимальная ситуация, но она не обязательно разрушительна. Чем выше удельная мощность двигателя, тем больше вероятность, что он получит повреждения от детонации. Двигатель, который производит 0,5 л.с. / дюйм3 (лошадиных сил на кубический дюйм рабочего объема) — что типично для большинства карбюраторных авиационных двигателей — обычно может выдерживать умеренные уровни детонации без повреждений, но двигатели с турбонаддувом с большим наддувом мощностью 0,625 л.с. / дюйм3 или более может быть быстро поврежден детонацией.

Когда происходит детонационное повреждение, оно обычно проявляется в виде трещин (электродов и изоляторов свечей зажигания, а иногда и поршневых колец и площадок), точечной коррозии (обычно головки поршня) и / или теплового повреждения (часто юбки поршня). задиров и оплавление углов поршня).

Как пилоты, мы обычно можем избежать таких повреждений, если будем предупреждать о чрезмерном CHT и пониженном EGT, которые характерны для детонации, и быстро реагировать снижением мощности и переходом на полностью обогащенную смесь. Здесь очень важен контроль двигателя — иначе вы не сможете увидеть CHT пяти из шести цилиндров, а программирование сигнала CHT на срабатывание при 400 ° поможет привлечь ваше внимание и предпринять соответствующие действия.

Предварительное зажигание

«Предварительное возгорание» — это еще одно событие ненормального возгорания, которое часто путают с детонацией, но на самом деле это совершенно другое.Предварительное зажигание — это зажигание топливовоздушной смеси перед зажиганием свечи зажигания. Каждый раз, когда что-то вызывает воспламенение смеси в камере до возгорания свечей зажигания, это классифицируется как преждевременное зажигание. Источником воспламенения может быть перегретый наконечник свечи зажигания, нагар или свинец в камере сгорания или (редко) сгоревший выпускной клапан — любая из этих вещей может действовать как свеча накаливания, преждевременно воспламеняя заряд.

Такое горячее пятно в камере может воспламенить заряд, в то время как поршень находится на очень ранней стадии сжатия.Результат: значительную часть всего такта сжатия двигатель пытается сжать горячую массу расширяющегося газа. Это, очевидно, создает огромную механическую нагрузку на двигатель и передает большое количество тепла алюминиевой головке поршня и головке блока цилиндров. Существенный ущерб почти неизбежен.

Детонация вызывает очень быстрый скачок давления около точки пикового давления на очень короткий период времени. Предварительное зажигание вызывает огромное давление, которое присутствует в течение очень долгого времени — возможно, на всем такте сжатия.Мало того, что преждевременное возгорание гораздо опаснее, его гораздо труднее обнаружить. Фактически, обычно вы узнаете об этом только после того, как двигатель будет катастрофически поврежден.

Двигатели могут выдерживать детонацию в течение значительных периодов времени, но не существует двигателя, который мог бы прожить очень долго при преждевременном воспламенении. Двигатель не будет работать более нескольких секунд с предварительным зажиганием. Если вы видите коронку поршня, которая выглядит обработанной пескоструйным аппаратом, или трещину на кольце, вероятно, это было вызвано сильным детоатом.Если вы видите расплавленное отверстие в середине днища поршня, это, вероятно, было вызвано преждевременным зажиганием. Другими признаками преждевременного воспламенения являются свечи зажигания с расплавленными электродами или изоляторы, забрызганные расплавленным металлом. На рис. 5 показан пример серьезных повреждений, вызванных преждевременным зажиганием.

Предварительное зажигание, вызванное детонацией

Хотя детонация и преждевременное зажигание — это два совершенно разных явления, сильная детонация может вызвать преждевременное зажигание. Если двигатель работает в режиме сильной детонации в течение значительного периода времени, чрезмерные температуры и скачки давления (которые нарушают обычный защитный пограничный слой) могут вызвать перегрев электродов свечей зажигания и других предметов в камере сгорания до точки, при которой они запустятся. раскалиться докрасна.В этот момент светящийся предмет может вызвать преждевременное зажигание и быстрое разрушение цилиндра. После разборки судебно-медицинский анализ выявит явные признаки как детонационного, так и предварительного воспламенения повреждений, хотя в конечном итоге именно предварительное зажигание привело к неисправности двигателя.

В другой статье мы более подробно рассмотрим процесс нормального сгорания и исследуем, как использование нами элементов управления двигателем — дроссельной заслонки, смеси и пропуска — влияет на то, что происходит внутри цилиндра.

© 2007-2013 — Майкл Д.Busch — Все права защищены.

Непонятые причины детонации в высокопроизводительных приложениях

В мире настройки двигателей детонация определяется как одно из следующих: возгорание, вызывающее повреждение двигателя; горение, вызывающее стук или звон; или возгорание, которое вызывает потерю мощности, раскачивание или толчки. Детонация не контролируется и часто нежелательна. Это происходит, когда топливо в цилиндре самовоспламеняется за пределами предполагаемого фронта пламени искрового зажигания.

Детонация не всегда наносит урон. При более низких нагрузках на двигатель при частичном открытии дроссельной заслонки или на низких оборотах может потребоваться детонация. Например, в конце 70-х и 80-х годах стук во время нормальной работы был обычным явлением для карбюраторных двигателей. Определенные компромиссы конструкции впускного коллектора в сочетании с дымовым оборудованием приводили к тому, что обедненные топливные смеси горели за пределами контролируемого фронта пламени от свечи зажигания.

Иногда возникает небольшая детонация, которую не слышно через глушители при низкой нагрузке или даже при громком открытом выхлопе.Сильная детонация вызывает более сильный шум во время загрузки двигателя, когда дроссельная заслонка открыта и двигатель сильно крутится при большой нагрузке.

Детонация и преждевременное зажигание

Предварительное зажигание — это самовоспламенение топливно-воздушной смеси перед воспламенением свечи зажигания. Самовоспламенение происходит в месте цилиндра за пределами контролируемого фронта пламени от искрового зажигания.

Точно так же детонация — это самовоспламенение топлива, обычно после возгорания свечи зажигания.Подобно преждевременному зажиганию, детонация происходит за пределами контролируемого фронта пламени от свечи зажигания. Термин детонация часто используется гонщиками как предварительное зажигание (до искры), так и неконтролируемое горение после искры. Такое же соглашение используется в этой статье.

Этот рисунок взят из 5000 лошадиных сил на метаноле (Боб Сабо, Szabo Publishing, 2006), на котором показаны температуры самовоспламенения для различных видов топлива для гонок.

И преждевременное зажигание, и детонация связаны с самовоспламенением топлива.У них есть общие характеристики, такие как очень высокая скорость горения, которые сопоставимы со скоростями взрывоопасного пламени. К ним относятся дульные скорости огнестрельного оружия или скорости сгорания взрывчатых веществ — обычно значительно превышающие 1000 футов в секунду. Высокая скорость вызывает шум из-за столкновения фронтов давления внутри цилиндра.

Детонация и частота вращения

Детонация может быть замаскирована на более высоких оборотах высокочастотным шумом, например, при открытии выпускного клапана. Это может быть настолько кратковременным явлением, что оно не приведет к повреждению до открытия выпускного клапана, сброса давления в цилиндре и прекращения детонации.

При более низких оборотах двигателя время между детонацией и открытием выпускного клапана больше, поэтому детонация более заметна. По мере увеличения числа оборотов может показаться, что детонация уходит из-за более коротких интервалов между детонацией и открытием выпускного клапана.

Двигатели

Racing в 30-40-х годах работали на бензине с более низким октановым числом, поскольку бензин с более высоким октановым числом еще не был разработан. Топливо с более низким октановым числом было восприимчиво к детонации, поскольку гонщики повышали степень сжатия двигателя для большей мощности.Детонация была особенно заметна при низких оборотах двигателя. Чтобы бороться с низкоскоростной детонацией, эти ранние гоночные двигатели постоянно увеличивали частоту вращения на более высоких оборотах, чтобы подавить эффекты детонации.

Если двигатель по ошибке был затянут буксиром, детонация может привести к снижению производительности и возможному повреждению двигателя. В результате водители, приходящие в боксы для обслуживания, постоянно гасили свои двигатели. Для многих успешных гонщиков отключение сцепления при запуске из боксов стало настоящим искусством.При запуске в ямах был большой риск остановки двигателя из-за недостаточного пробуксовки сцепления, низкого крутящего момента двигателя на низких оборотах и ​​детонации на низких оборотах.

Наилучшие характеристики современных бензиновых двигателей достигаются при использовании смеси гоночных бензинов с октановым числом достаточно высоким, чтобы избежать детонации. Смесь бензина с более высоким октановым числом обычно не увеличивает производительность сама по себе. Вместо этого более низкая скорость горения высокооктанового бензина часто фактически снижает производительность двигателя без других изменений, сделанных для использования более высокого октанового числа.

Требуемое октановое число

бензина является характеристикой конкретного рабочего диапазона оборотов. Если этот диапазон изменить, может потребоваться гоночный бензин с другим октановым числом. Например, если двигатель проводит больше времени под нагрузкой при более низких оборотах двигателя, двигатель может столкнуться с детонацией, тогда как он не будет детонировать при той же нагрузке выше в диапазоне оборотов. Гоночный бензин с более высоким октановым числом может потребоваться для борьбы с потенциальной детонацией при работе в более низком диапазоне оборотов.

Иллюстрации из 5000 лошадиных сил на метаноле , показывающие давление в баллоне в зависимости отУгол поворота коленчатого вала для хорошего сгорания слева и детонации справа.

Диссоциация от горения

Топливо диссоциирует или распадается на различные промежуточные химические вещества во время сжатия, нагрева и сгорания. Эти промежуточные химические вещества могут изменить температуру самовоспламенения смеси по сравнению с исходным топливом. Часто неправильный запрос на настройку делается из-за детонации, предполагая, что данные основаны только на свойствах основного топлива, когда следовало учитывать изменения температуры самовоспламенения из-за диссоциации.

В дрэг-рейсинге с обдувом спиртом участники с более высоким статическим сжатием обычно должны использовать более богатую смесь, чем участники с более низким статическим сжатием, чтобы предотвратить детонацию. Однако есть момент, когда потребность в дополнительном обогащении снижается. Один из конкурентов сообщил, что после определенного момента увеличения компрессии дальнейшее обогащение не требуется, в то время как двигатель выдает больше мощности с большей степенью сжатия. Он продолжил улучшать компрессию и достиг национального рекорда.В какой-то момент сверхвысокое сжатие фактически предотвращало образование чувствительных к детонации диссоциатов.

Диссоциировать Причины детонации

При использовании различных видов гоночного топлива некоторые из ранее описанных диссоциированных образований могут быть более подвержены детонации, чем другие. Настройка может повлиять на сжатие и нагрев, что повлияет на то, какие диссоциаты образуются, даже с тем же топливом. Эти диссоциаты влияют на чувствительность к детонации.Кроме того, изменения плотности воздуха влияют на настройку, что, опять же, влияет на диссоциацию в порочном круге.

Например, изменение точки закрытия впускного клапана в гоночном двигателе с искровым зажиганием изменит эффективное динамическое сжатие. Изменение сжатия изменяет адиабатический нагрев и давление от сжатия. Чувствительность к детонации или от нее может быть вызвана чем-то столь же простым, как замена распредвала или даже просто замедление или опережение фаз газораспределения.

На этой иллюстрации из 5000 л.с. на метаноле показана взаимосвязь между степенью сжатия и соотношением воздух / топливо для работы без детонации для гоночного топлива на метаноле. Точки данных от (a) до (e) были получены для различных гоночных двигателей. Эта кривая также зависит от надлежащего уровня обогащения для замедления самовоспламенения, что дополнительно описано в справочной информации.

Изменения давления, вызывающие зажигание

Давление изменяет температуру самовоспламенения топлива и его диссоциации, что может вызвать детонацию.Температура самовоспламенения диссоциированного топлива может быть ниже, чем температура самовоспламенения топлива перед его разрушением, что может сбивать с толку при просмотре данных только для топлива.

Во время сжатия, допустим, температура смеси воздуха и диссоциированного топлива ниже температуры самовоспламенения. Волна давления, генерируемая в цилиндре, может препятствовать воспламенению этой смеси. Однако когда волна давления проходит через цилиндр, она может вызвать изменение температуры самовоспламенения смеси.Самовоспламенение может происходить по мере прохождения волны давления из-за сопутствующего падения температуры самовоспламенения, строго из-за изменения химической чувствительности. Кроме того, изменения в головке блока цилиндров из-за сдавливания поршня или снятия кожуха впускного клапана могут изменить формирование волны давления и повлиять на общую чувствительность комбинации к детонации.

Выемка для уплотнительного кольца на этой использованной медной прокладке головки вокруг отверстия цилиндра показывает начало прожога на плотной сопрягаемой поверхности уплотнительного кольца непосредственно перед детонацией от топливной смеси нитрометан-метанол.Обогащение этого цилиндра и новая прокладка головки позволили избежать повторения проблемы. Фото: Blown Nitro Racing с бюджетом (Боб Сабо, Szabo Publishing, 2013).

Диссоциация с различными видами топлива

Бензин

Согласно записям покойного Гарри Рикардо (Высокоскоростной двигатель внутреннего сгорания, 3-е издание, Blackie & Son Limited, 1950), который был экспертом в области технологий сгорания, нестабильные пероксиды образуются в виде промежуточных диссоциатов при сгорании бензина, что и происходит. быть очень подверженным детонации.Тетраэтилсвинец — это химически активная металлическая добавка, которая подавляет детонацию этих нестабильных пероксидов. Кроме того, различные компоненты бензинового топлива, используемые в обычных смесях, обладают разными диссоциативными свойствами, что помогает бороться с образованием нестабильных пероксидов. Примерами используемых компонентов являются пентан, гексан и толуол.

Смешивание топлива в современных бензинах выполняется для достижения детонационной стойкости, помимо других характеристик. Некоторые марки бензина для гонок также смешаны с тетраэтилсвинцом с той же целью.Другие характеристики, такие как химическая стабильность, легкость испарения, позволяющая запускать двигатель, и стоимость производства, часто ограничивают добавки и соотношения в смеси. Эти ограничения могут поставить под угрозу способность одних марок бензина к детонации по сравнению с другими при данных обстоятельствах. Идеальный результат — это смесь, идеально подходящая для конкретных гоночных требований, и почему существует так много различных вариантов гоночного бензина.

Бензиновые смеси, продаваемые на заправочной станции, чаще всего имеют сезонные изменения в соотношении компонентов смеси и содержании топлива.Зимний бензин смешивается для облегчения запуска, а летний бензин предназначен для предотвращения образования паровых пробок. Различные сезонные смеси изменяют характеристики диссоциации и детонации, и их необходимо учитывать в прикладной программе. Бензин для насосов, приобретенный в одном сезоне, может столкнуться с проблемами детонации, если он будет использоваться в другом сезоне, из-за разницы в смеси.

Смеси этанола и бензина (E85)

E85 — это преимущественно (85%) этанол с небольшим количеством (15%) бензина.Высокое эффективное октановое число, содержащееся в этаноле, подавляет детонацию в гоночном двигателе с высокой степенью сжатия, если соотношение воздух / топливо богатое. Это будет лямбда меньше единицы в компьютерном мире EFI. Богатая спиртовая топливная смесь также охлаждает цилиндр от температуры самовоспламенения. Такое богатое соотношение воздух / топливо может работать с преобладающим спиртовым топливом, поскольку спирт не загрязняет свечу зажигания, как это может делать другие виды топлива. Однако чрезмерное богатство снижает выходную мощность, поэтому настройка соотношения воздух / топливо имеет жизненно важное значение.С другой стороны, чрезмерно богатые смеси могут слишком сильно охладить воздухозаборник, подавляя испарение и вызывая детонацию из состояния обедненного пара. Это результат избыточной конденсации топлива при охлаждении.

Метанол

Метанол, а также этанол будут диссоциировать на водород и окись углерода во время компрессионного нагрева. Метанол и этанол также частично диссоциируют на водород и окись углерода во время наддува в двигателе с достаточно большим давлением от принудительной индукции до сжатия поршня и в дополнение к нему.Однако давление сжатия замедляет происходящую диссоциацию. Поэтому тепло вызывает диссоциацию, идущую в одном направлении, а давление от сжатия (или наддува) заставляет диссоциацию идти в другом. В этом случае горение представляет собой комбинацию водорода, окиси углерода и любых оставшихся паров метанола, которые не диссоциировали.

Funnycar Dragster запускает гонки на скорость 300 миль в час в парке Norwalk Raceway, штат Огайо, во время национального мероприятия IHRA с настройками для борьбы с детонацией из топливных смесей с высоким содержанием нитрометана и метанола

Различия в компрессии, температуре двигателя, фазах газораспределения и наддуве в двигателях с принудительным впуском — все это влияет на величину диссоциации, которая происходит.Затем степень диссоциации влияет на характеристики горения заряда. Например: водород имеет очень низкую температуру воспламенения и более склонен к обратному воспламенению во впускном канале, поскольку ему не обязательно нужен традиционный источник воспламенения. Это часто ошибочно принимают за детонацию, когда на самом деле происходит диссоциация избыточного водорода.

Настройка или изменение плотности воздуха может изменить диссоциацию водорода и вызвать обратный взрыв двигателя или избежать его. Когда возникает обратная вспышка от диссоциации водорода, последующая разборка двигателя часто не выявляет никаких повреждений двигателя.Изменение температуры самовоспламенения метанола происходит из-за разной степени диссоциации в результате настройки и изменений плотности воздуха.

В топливе метанол содержится кислород, а в традиционном бензине его нет. Таким образом, метанол может взорваться с меньшим количеством воздуха в смеси, чем бензин. Весовое соотношение воздух / топливо 8: 1 было бы слишком богатым для бензина и не взорвалось бы, но могло бы взорваться с метанольным топливом. Этот порог изменяется с изменением содержания кислорода в воздухе из-за изменения плотности воздуха.

Данные, представленные в отчете 5000 HP на метаноле от Germane и Lovell, указывают на взаимосвязь между количеством углерода в молекуле топлива и температурой самовоспламенения. (Джерман, Джефф Дж., Университет Бригама Янга, Технический обзор автомобильного гоночного топлива, SAE 1985, публикация № 852129) (Ловелл, В.Г., Детонационные характеристики углеводородов, Промышленная и инженерная химия, том 40, стр. 2388-2438 , Декабрь 1948 г.)

Нитрометан

Нитрометан диссоциирует на разные фазы.На короткое время некоторые из этих фаз являются последовательными, а некоторые даже одновременными в процессе воспламенения и горения. Однако многие фазы диссоциации нитрометана происходят просто в результате компрессионного нагрева и сгорания.

Первая фаза — эндотермическая. Он поглощает тепло и действует так, как будто его трудно воспламенить. Вот почему магнитное зажигание с длительным временем пребывания искры более эффективно с нитрометановыми топливными смесями, чтобы пройти первую фазу диссоциации сгорания. Вторая и оставшиеся фазы диссоциации при сгорании нитрометана могут быть экзотермическими, то есть горением и выделением тепла (Паспорт безопасности материалов Chem-Supply, нитрометан, 1CHOP, декабрь 2000 г.).

При горении возникают множественные фазы диссоциации с различными промежуточными соединениями и с разными характеристиками самовоспламенения (детонации). Различные смеси нитрометана и метанола еще больше усложняют изменения чувствительности к детонации, поскольку метанол имеет свой собственный набор диссоциаций и поведения. В результате направления настройки могут быть проблемными и непоследовательными от цикла к запуску.

Некоторые настройки нитро могут быть более подвержены детонации при обедненной смеси (более высокое соотношение воздух / топливо).Некоторые настройки нитро могут быть более подвержены детонации при обогащении смеси (более низкое соотношение воздух / топливо). Лучшая процедура настройки — внести как можно меньше изменений в компрессию двигателя, наддув, топливную смесь, температуру топлива и другие параметры, чтобы установить мощность двигателя в соответствии с диапазоном рабочих характеристик. Внесение нескольких изменений от цикла к запуску делает практически невозможным контроль над настройкой из-за блуждающей характеристики температуры самовоспламенения. В результате могут произойти серьезные отказы двигателя.

Недавняя фотография дрэг-гоночных автомобилей Nitro Funnycar со скоростью 300 миль в час, представленных для запуска во время дрэг-рейсинга IHRA National Event с чувствительными к детонации настройками из 90-процентных нитрометановых смесей.

Изменения соотношения воздух / топливо

Изменения в соотношении воздух / топливо также изменяют характеристики чувствительности самовоспламенения. Это изменение сложно в зависимости от степени обогащения. Обогащение до определенного значения имеет тенденцию к снижению чувствительности самовоспламенения. Обогащение метанолом или этанолом может снизить температуру цилиндра до такой степени, чтобы двигатель не взорвался.Однако чрезмерное обогащение этих видов топлива сверх определенного соотношения воздух / топливо может повысить чувствительность к самовоспламенению. Вызывая чрезмерное охлаждение и конденсацию топлива из входящего воздушного заряда, создается обеднение паром, и может произойти самовоспламенение. Он также может замедлить скорость пламени, увеличивая сгорание до такта выпуска. Это может привести к возгоранию на впуске при открытии впускного клапана.

В другом направлении, меньшее обогащение сверх определенного оптимального отношения воздух / топливо имеет тенденцию к увеличению чувствительности к самовоспламенению.В случае метанола или этанола меньшее обогащение не будет достаточно охлаждать температуру цилиндра, повышая температуру до такой степени, что двигатель может взорваться, особенно при использовании высоких степеней сжатия.

Уникальный трюк гоночной настройки — запустить двигатель до предела детонации, затем разобрать двигатель и измерить толщину подшипников верхней тяги. Подшипник слева не показал истончения после пробега. Подшипник справа от того же цилиндра после другого прогона с некоторым утонением из-за детонации.Некоторые изготовители двигателей / тюнеры используют утончение подшипников как показатель степени детонации. Некоторые ранние производители / тюнеры двигателей для гонок с нитро-дрэг-рейсингом освоили этот метод утонения определенного количества стержневых подшипников в качестве индикатора хорошей настройки.

Чрезмерное снижение обогащения может снизить мощность, поскольку сжигается меньше топлива. Продолжающееся снижение обогащения сверх определенной точки может не привести к детонации, поскольку состояние крайней бедности приводит к нехватке топлива для сжигания, и скорость пламени замедляется.Где-то в этом наклонном направлении скорость пламени может быть снижена, продолжая после такта выпуска. Это может, как и чрезмерно богатые условия, вызвать обратный эффект при приеме.

Комбинированные эффекты сложны

Топливная смесь из нитрометанола с содержанием нитро-нитрометана до 87 процентов с повышенной насыщенностью менее подвержена детонации. Это то же самое, что и большинство других видов топлива, особенно спиртосодержащего топлива. Однако смесь нитрометанола с более чем 87% нитро с повышенной насыщенностью становится более склонной к детонации.Это из-за избытка кислорода в топливе. Этот избыток кислорода в более высоком процентном содержании повышает чувствительность смеси к более низкой температуре самовоспламенения. Более богатая смесь нитросмесей с высоким процентным содержанием имеет больший избыток кислорода и большую чувствительность к детонации.

Если есть что-то, что можно убрать из всего этого, так это то, что в гоночной среде причина детонации может быть сложной проблемой, и не так проста, как «Если произойдет X, выполните Y, чтобы исправить». Когда вы находитесь на этом уровне производительности, ряд факторов, которые могут повлиять на вашу проблему детонации с лишением мощности и потенциально повреждающей двигатель, требует тщательного понимания того, что происходит с вашим топливом между моментом его первого попадания в атмосферу и открытие выпускного клапана.

Окунь пеликана # 43: Мифы о детонации — AVweb

Прежде чем перейти к колонке этого месяца, я хотел бы попытаться ответить на один из наиболее частых вопросов, который я получаю от читателей моей серии статей о работе поршневых двигателей:

«Джон, вы говорите о двигателях с впрыском топлива, но у меня его нет. Что я могу делать в моей Cessna 182 с карбюраторным двигателем O-470? »

Ребята, я хотел бы помочь.Большинство карбюраторных плоских двигателей имеют такое ужасное распределение топлива / воздуха, что им уже не помочь. Это одна из причин, по которой промышленность в первую очередь перешла на впрыск топлива, и даже это было лишь постепенным улучшением, пока не появились GAMIjectors! В обычной шестёрке у вас есть шесть разных двигателей, каждый из которых работает по-своему, со своими настройками смеси. Некоторые могут быть LOP, другие ROP. В большинстве карбюраторных Cessna 182 разница в смеси между самым богатым и бедным цилиндрами невероятна и безнадежна.

Это одна из основных причин, по которой в игру вступила установка круизной мощности «65%». Если вы установите MP и RPM на 65%, а смесь на «лучшую мощность» (как это установлено маркетинговым отделом большинства производителей самолетов), это означает, что самый горячий цилиндр не будет выходить за пределы, и TBO будет приемлемым. . Запустите его сильнее, и по крайней мере один цилиндр станет слишком горячим, вероятно, не выполнив TBO. Чем тяжелее вы его бежите, тем меньше цилиндров будет на время выполнения TBO.

Но при этих 65% некоторые цилиндры будут иметь LOP (и с большей вероятностью будут производить TBO и более), в то время как другие будут иметь очень высокую скорость проходки, работая очень «грязными», загрязняя направляющие клапана несгоревшими продуктами сгорания, что ограничивает их срок службы.Я твердо верю, что по прошествии многих лет и появлении данных мы увидим, что двигатели будут НАМНОГО выше TBO при LOP на всех цилиндрах, даже при гораздо более высоких настройках мощности. Время покажет.

А что лучше для карбюраторных плоских двигателей? Практически все, что вы можете сделать, это установить MP и RPM на 65%, обеднить смесь, пока двигатель не заработает резко, а затем обогатить ровно настолько, чтобы она снова работала плавно. Независимо от того, где работают отдельные цилиндры, вы, вероятно, не повредите их.

Если вы находитесь достаточно высоко, чтобы двигаться на полном газу, есть одна хитрость, которая может помочь с некоторыми двигателями. Наклонитесь, как указано выше, затем очень медленно потяните дроссельную заслонку, пока не увидите малейшее заметное падение на MP. Это немного взволнует дроссельную заслонку в карбюраторе, и это может вызвать достаточную турбулентность для лучшего перемешивания топлива и воздуха. Оставьте дроссельную заслонку в этом положении и попробуйте снова наклониться. Возможно, вам удастся немного наклонить его, прежде чем двигатель начнет работать с перебоями.

При полете в холодных OAT даже немного тепла карбюратора может помочь выровнять распределение смеси за счет улучшения распыления топлива. Этот трюк особенно полезен с карбюраторными двигателями Continentals, такими как O-470 в Cessna 182s. Еще раз, это может позволить вам немного более агрессивно наклоняться до появления неровностей двигателя.

Стоит ли приобретать монитор двигателя, такой как JPI, если вы не можете запустить LOP? Да, я так думаю. Однозначно на крупнокалиберном двигателе. Может быть, и с четырьмя бомбами — это менее ясно и может зависеть от вашей типичной миссии.Информация, которую он предоставит вам о вашем двигателе, очень полезна, и одно только устранение неполадок может окупиться. Очень весело подъехать к любимому магазину и сказать: «Эй, мой цилиндр №2, нижняя пробка не работает». Одна замена вилки, и вы уже в пути. В противном случае ваш механик, скорее всего, вытащит их всех. Большинство других проблем также отображаются на JPI, что дает вам раннее предупреждение о надвигающихся проблемах. Это может вызвать смену кувшина вместо вынужденной посадки.

Тысячи деревьев были убиты, написав на бумаге слова о взрыве, но этот предмет до сих пор широко не изучен, и новая информация продолжает поступать.

Есть некоторые основания полагать, что один двигатель, используемый в высокопроизводительном самолете авиации общего назначения, может часто работать в режиме непрерывной легкой детонации одного или нескольких цилиндров, даже если он работает точно так, как рекомендует завод. Честно говоря, мне интересно, как это вообще было сертифицировано. Несмотря на комментарии завода-изготовителя, работа LOP при той же выходной мощности (добавление MP) полностью устраняет детонацию, а также дает большой запас.

Я всегда думал, что детонация — это довольно просто.Классическое объяснение звучит примерно так:

«Событие возгорания начинается с искры, быстро повышается давление в еще не сгоревшей части топливно-воздушной смеси, и по мере нарастания этого давления температура увеличивается. Как только температура становится достаточно высокой, оставшаяся смесь «взрывается», вызывая удар, подобный молотку, по поршню.

«Детонация может вызвать катастрофический отказ двигателя в течение нескольких секунд».

Ну, может быть.Но есть несколько тревожных вопросов, которые возникают из этого достаточно правильного, но ужасно упрощенного объяснения.

(О, и ребята? Пожалуйста, не спорьте со мной по поводу того, действительно ли это «взрыв». Как бы вы это ни называли, это ненормально быстрое горение, и для меня это достаточно близко к «взрыву».)

Для полноты картины стоит упомянуть, что «детонация» относится к аномальному взрыву (ям) ПОСЛЕ нормального возгорания. Если самовозгорание происходит до того, как загорится свеча зажигания, это другое и гораздо более опасное состояние: «преждевременное зажигание.«Любое условие может привести к другому, и как только они начнут работать вместе, катастрофический отказ двигателя произойдет всего в нескольких секундах.

На один вопрос, как насчет «пинга» в старых автомобилях? Большинство из вас слышали этот звук, довольно частый и пронзительный стук автомобильного двигателя. Обычно это происходит при подъеме в гору, когда механическая коробка передач находится на слишком высокой передаче (низкие обороты двигателя), а педаль газа сильно опущена (высокое давление в коллекторе). Это детонация. Вы не услышите его в самолете по нескольким причинам.Во-первых, в самолетах нет глушителей (см. Ниже), а высокий уровень шума маскирует звук. Во-вторых, слышимая «высота» звука напрямую связана с размером отверстия цилиндра, поскольку «крупнокалиберные» авиационные двигатели издают гораздо более низкий звук. Этот звук гораздо чаще теряется в шуме самого двигателя. Некоторые старые автомобили сильно стучат при подъеме в гору и, кажется, пробегают десятки тысяч миль без явных проблем.

(Да, в самолетных двигателях есть «муфты», похожие на глушители, но в первую очередь это теплообменники воздух-воздух.Они предназначены для отвода тепла снаружи горячих выхлопных труб для обогрева карбюратора или кабины и практически не влияют на шум.)

Несколько лет назад некоторые исследования, проведенные General Aviation Modifications Inc. (GAMI) в Аде, штат Оклахома, начали вызывать у меня новые вопросы о детонации. Джордж Брэйли, гений-основатель и главный инженер, начал запускать высокоинтенсивный двигатель в глубину детонации и записывать данные, которые никто никогда раньше не видел.

То, что он обнаружил, подтвердило маленькие грязные секреты, открытые так давно, во времена расцвета больших радиалов, и которые сегодня почти забыты. Гонщики много знают об этом, но, как правило, очень скрытны, не желая передавать свои драгоценные знания участникам.

Старые книги и даже публикации FAA говорят о «легкой» детонации, «средней» детонации и «тяжелой» детонации.

Но подождите! Как такое может быть, если детонация — это мгновенный «взрыв» оставшегося заряда, и этот взрыв может вызвать почти немедленное разрушение двигателя? Это не вычисляет!

Как обычно, это еще не все.

То, что я собираюсь описать для вас, является составной частью моего понимания явления детонации. Вы не найдете этого описания ни в одном учебнике. Вы найдете отрывки и кусочки этого в разных учебниках, но, насколько мне известно, приведенное ниже описание объединяет кусочки и кусочки из множества разных мест. Некоторые из них, вероятно, никогда не описывались так точно, по крайней мере, насколько мне известно.

Оказывается, даже при хорошо сбалансированном заряде топлива и воздуха на «локальном уровне» существуют сильно локализованные «карманы» различных смесей.Под «локальным уровнем» вы должны понимать группу маленьких молекул топлива, сбивающихся вместе «здесь» и «там» в разных местах внутри цилиндра, когда поршень поднимается вверх к верхней мертвой точке и начинает опускаться. Некоторые из этих карманов могут быть настолько тощими (или настолько богатыми), что они вообще не горят, некоторые могут быть в пределах горючей смеси, а некоторые могут быть идеально перемешаны, так сказать, «готовы к работе».

Кстати, это объясняет еще одну маленькую загадку. Теоретически «идеальная» смесь для наших двигателей — это примерно 15 частей воздуха и 1 часть топлива (по весу), что не должно приводить к выходу кислорода и несгоревших молекул топлива из выхлопной трубы.Но мы давно знаем, что немного более богатая смесь даст немного больше энергии. Почему? Потому что теория немного нарушается, когда заряд содержит эти маленькие карманы с различными топливно-воздушными смесями. Некоторые молекулы кислорода не находят молекулы топлива достаточно быстро, чтобы сгореть, и они остаются неиспользованными или несгоревшими в идеальном соотношении. Подавая немного больше топлива для одиноких молекул кислорода, сгорает больше топлива, генерируется немного больше тепла и меньше кислорода выходит из выхлопной трубы, не имея возможности спариться.

Вы можете убедиться в этом сами, так как все старые радиальные диаграммы показывают это, и Lycoming, и TCM создают диаграммы, которые показывают пики CHT на скорости около 30 ROP, в то время как максимальная мощность достигается при скорости около 80 ROP. Соотношение 15: 1 происходит, по сути, на том уровне, который мы все знаем как наш знакомый «пиковый» EGT на наших мониторах двигателя.

Теперь, примерно за 20-25 градусов до того, как поршень достигнет верхней мертвой точки (ВМТ) хода поршня, свеча зажигания зажигает огонь. Фронт пламени начинает распространяться от каждой свечи зажигания, сначала медленно, затем более быстро внутри цилиндра.Этот фронт пламени играет во всем этом важную роль. Вы когда-нибудь подносили руку к раскаленному пламени? Не в пламени, просто рядом? Быстро становится жарко. Этот фронт пламени излучает МНОГО инфракрасного тепла. Он движется со скоростью света. Может быть, в несколько миллионов раз (или около того) быстрее, чем фронт пламени проходит через цилиндр. Это инфракрасное излучение нагревает эти маленькие местные карманы с топливом и воздухом.

Кроме того, поскольку поршень в цилиндре быстро поднимается, эти маленькие удаленные местные карманы с топливом и воздухом также испытывают внезапное повышение давления.

Более того, поскольку фронт пламени представляет собой процесс горения, он также вызывает дальнейшее и гораздо большее повышение давления в цилиндре.

Задержите эту мысль на мгновение, пока мы упоминаем шкалу времени для всего этого.

Во время сгорания скорость звука (при более высоких температурах газа в объеме) такова, что звуковая волна может отскочить от цилиндра и обратно примерно за 1/5000 -й секунды или примерно за 1/5 -й секунды. миллисекунды.Это легко измерить и измерить. Вы видите доказательство этого в небольших детонационных ударных волнах, отражающихся взад и вперед от датчика давления на обратной стороне нисходящего склона события давления сгорания на графиках, изображающих среднюю и тяжелую детонацию.

Коленчатый вал вращается примерно 45 раз в секунду, что составляет примерно 22 миллисекунды на каждый оборот коленчатого вала или примерно 16 градусов вращения коленчатого вала за каждую миллисекунду. Таким образом, за время, необходимое для того, чтобы ударная волна прошла вперед и назад по внутренней части цилиндра, коленчатый вал переместился всего на три градуса.

Итак, теперь, когда у нас есть четкая шкала времени, мы возвращаемся назад и резюмируем происходящее:

  1. У нас есть хороший холодный впускной воздух и топливо, поступающие в цилиндр;
  2. У цилиндра очень горячие стенки. Эти горячие стены заставляют часть этого приятного прохладного воздуха на впуске нагреваться. И не все это происходит равномерно.
  3. Кроме того, вскоре после того, как искры погасли, у нас есть пара фронтов пламени, излучающих много инфракрасного тепла, что увеличивает продолжающуюся тепловую нагрузку, поглощаемую некоторыми из тех маленьких удаленных карманов с топливом и воздухом, которые ждут пламени. фронт, чтобы прибыть и поглотить их;
  4. Несгоревшая смесь испытывает очень быстрое повышение давления по двум причинам: A) Поршень быстро поднимается во время такта сжатия; и B) продукты сгорания фронта пламени создают огромное увеличение выделяемой энергии и результирующего объемного давления газа, все это точно измеряется по кривым давления, которые вы видите на прилагаемых графиках.
  5. По крайней мере, в некоторых из этих маленьких «локальных очагов» несгоревших горючих смесей есть именно та смесь топлива и воздуха, чтобы до взрыва оставалось всего лишь волосок.
  6. И… если топливо с неправильным октановым числом, или опережение зажигания было установлено слишком рано, или давление в коллекторе было слишком высоким, или температура головки цилиндров была слишком высокой… тогда один или несколько из этих маленьких «локальных карманов» несгоревших топливо просто так… они «взрываются».

Это то, что мы называем «детонацией».

Каждый взрыв создает ударную волну, которая распространяется со скоростью звука (помните, скорость звука внутри цилиндра, где-то около 4000 градусов, намного быстрее, чем в обычный день!) И отражается от стенок горения. камеры каждые 1/5 миллисекунды или около того (испускает «пинг» с частотой 5 кГц, который вы не услышите в кабине). Каждый из этих взрывов вызывает очень резкое повышение давления и вызывает ударную волну, которая колеблется взад и вперед по цилиндру.Эта ударная волна может быть как раз той величиной дополнительного давления, которая заставит какой-то другой маленький удаленный локальный карман топлива и воздуха, в свою очередь, взорваться, что усугубит проблему.

По мере того, как детонация становится более серьезной, она становится слышной, и это звук, который вы услышите от старого автомобильного двигателя на подъеме. Помните, вы НЕ услышите этого на авиационном двигателе.

Мы знаем, что температура сгорания находится в диапазоне от 3000F до 4000F, но TIT и EGT «только» работают около 1600F, а CHT опускаются примерно на 400F.Как это может быть? 4,000F более чем достаточно для плавления стали, так как же выживает внутренняя облицовка цилиндра? Почему мы не видим более высокие температуры на наших приборах? Почему алюминиевый поршень не плавится, когда алюминий плавится при температуре ниже 1000F?

Существует «термический пограничный слой» толщиной порядка миллиметра или около того, который действует как буфер для защиты стенок стального цилиндра и поверхности алюминиевого поршня. Думайте об этом как о тепловом эквиваленте аэродинамического пограничного слоя на вашем крыле.Металл и молекулы рядом с ним будут иметь примерно показания CHT или немного выше, следующие слои будут все горячее и горячее, пока слой рядом с событием горения не будет иметь температуру горения. Этот очень тонкий тепловой пограничный слой действует как хороший изолирующий барьер, ограничивая скорость, с которой тепло может передаваться от основных газов сгорания к внутренним стенкам головки цилиндров, цилиндра цилиндра и поршня.

Теплопередача является непрерывной, так как тепло сначала проходит через пограничный слой, а затем через стенку цилиндра и, наконец, уносится охлаждающим воздушным потоком вокруг ребер цилиндров.Каждый такт впуска приносит новый прохладный заряд, который запускает процесс заново. Есть еще вопрос времени выдержки. Часть процесса сгорания, связанная с высоким давлением, занимает всего около 40 градусов вращения коленчатого вала, а самая горячая часть этого события — всего около 20 градусов, поэтому во время других 700 градусов вращения кривошипа преобладают более низкие температуры. Многие пилоты ошибочно сосредотачиваются на температуре выхлопных газов, измеряемой их знакомыми датчиками EGT. EGT показывает только число, которое представляет собой мгновенную вспышку тепла во время небольшой части цикла сгорания (когда выпускной клапан открывается и выхлопной газ течет через датчик EGT), и при этом быстро падающая температура.

Это НЕ главный фактор, определяющий, насколько нагревается их выпускной клапан во время работы. События, которые происходят на несколько градусов раньше поворота коленчатого вала, гораздо более значительны, потому что температуры НАМНОГО выше, чем незначительные 1500F, измеренные датчиком EGT.

Как только детонация становится достаточно серьезной, она разрушает ранее хорошо организованный тепловой пограничный слой и позволяет значительно увеличить скорость передачи тепла от очень горячих газообразных продуктов сгорания (до 4000F) в головку блока цилиндров и поршень.Этот последний этап процесса — это то, что вызывает повреждение и приводит в движение CHT.

Есть недавно предложенные «стандарты», определяющие «легкую», «среднюю» и «тяжелую» детонацию. Как это происходит, слишком сложно вдаваться в подробности (что означает «я не знаю»), но достаточно сказать, что небольшая легкая детонация, даже в течение нескольких часов, может не быть вредной, и на самом деле , может быть полезно. Например, он прекрасно очищает от отложений верхнюю часть поршней!

По правде говоря, большинство этих двигателей могут работать в условиях легкой детонации, как показано на графике, в течение нескольких сотен часов без обнаруживаемых повреждений, ПРИ условии, что CHT остаются холодными, и вы не испытываете чрезмерную температуру головки блока цилиндров во время процесс.

Проблема в том, как его обнаружить и предотвратить ухудшение, потому что «легкий» может довольно быстро перерасти в «средний» и хуже. Это процесс «положительной обратной связи» с очень отрицательным результатом!

Механизм, вызывающий его самоподвод, заключается в том, что ударные волны от легкой детонации имеют тенденцию «очищать» тепловой пограничный слой внутри цилиндра. По мере того как это происходит, скорость теплопередачи от основной массы продуктов сгорания в цилиндр увеличивается.Это начинает рост CHT. Когда CHT повышается, он имеет тенденцию нагревать поступающий заряд нового воздуха и топлива немного быстрее, чем предыдущее вращение кривошипа, и это увеличивает вероятность того, что в следующем цикле сгорания будет больше легкой детонации, что увеличивает нарушение работы двигателя. еще больше термический пограничный слой, который нагревается… ну вы поняли. Если цилиндр не очень хорошо охлаждается и не имеет некоторого запаса охлаждения, весь процесс в спешке может превратиться в снежный ком, и у вас возникнут проблемы с глубокой детонацией.

Это было бы плохо, потому что в какой-то момент детонация определенно вредна в долгосрочной перспективе. Брэли часами работал на своем «Маленьком двигателе, который мог» глубоко взорваться, и столько же времени потратил на бедный старый IO-470 и IO-520, пытаясь уничтожить двигатели. Они по-прежнему работают довольно хорошо (ну, вроде как, неплохо!), Но вы действительно не хотели бы, чтобы эти двигатели были в вашем самолете.

Теперь я рекомендую детонацию? Точно нет! Но в то же время это не совсем то устрашающее чудовище, в которое нас всех заставляли верить.Подход к детонации постепенный, и даже когда он начинается, он не развивается так быстро, чтобы его нельзя было поймать и контролировать. По большей части небольшая детонация не приведет к немедленному отказу. Даже кратковременная (несколько секунд?) Средняя детонация, вероятно, не вызовет отказ двигателя «прямо сейчас», но вполне может нанести некоторый ущерб, который приведет к отказу в будущем.

Я думаю, мы все согласимся, что лучше держаться подальше от взрыва.Намного лучше!

Детонация — очень серьезная проблема на гонках в Рино. Эти двигатели работают при давлении в коллекторе, вдвое превышающем нормальные пределы (которые и так уже довольно высоки). Некоторые из них работают на несколько сотен оборотов в минуту выше проектных пределов, со всевозможными причудливыми устройствами, которые вводят странные вещи в процесс. При таких настройках любой сбой или просчет может вызвать почти мгновенный сильный взрыв и вывести двигатель из строя за секунды.

Но в нашем мире очень сложно вызвать детонацию в любом двигателе без нагнетателя.Даже с наддувом довольно легко избежать этого, обладая небольшими знаниями.

Джордж Брэйли пишет:

«Истина в том, что если провести очень, очень тщательный анализ всех отчетов о проблемах обслуживания, всех отчетов об авариях NTSB и отсортировать данные, можно прийти к выводу, что почти все детонация, которую испытывают пилоты, является результатом следующего:

  1. Проблемы с качеством топлива;
  2. Перекрестное зажигание магнето и ремня безопасности или неправильная синхронизация магнето;

«Есть несколько сообщений о детонации, которые, вероятно, были ошибочно классифицированы как события до воспламенения из-за повреждения свечей зажигания или проблем с геликоидальной катушкой в ​​цилиндре.

«И, наконец, да, есть некоторые, несколько случаев детонации, которые являются« настоящими »и были вызваны очень неверной техникой управления двигателем со стороны пилота. Если вы сядете в Cessna P-210 под давлением и решите наклонить двигатель в горах для короткого взлета, потому что именно так вы делали это, когда у вас был свой C-210 без наддува, вы можете уничтожить двигатель с чистой детонацией к моменту поворота встречного ветра в схеме движения.Это полностью испортит вам день.

«Однако, как правило, детонация — очень редкое явление и обычно вызывается проблемами с топливом или зажиганием».

Хотя ненадлежащее обслуживание или установка магнето и загрязнение топлива являются наиболее часто наблюдаемыми прямыми причинами детонации, существует ряд факторов, которые вступают в игру, создавая, вызывая или предотвращая детонацию. Дальнейший неполный список может включать октановое число топлива, настройку смеси, температуру всасываемого воздуха, число оборотов в минуту, давление в коллекторе, температуру головки цилиндров, степень сжатия и, возможно, многое другое, о чем я здесь забыл.

Я полагаю, что это был Джимми Дулиттл, который сказал, что наиболее важным фактором победы во Второй мировой войне было использование свинца в бензине, что позволило производить топливо с октановым числом 100/130 и 115/145. Это, в свою очередь, обеспечило более мощные двигатели. Конечно, этот великий человек принимал участие в исследованиях, которые привели к использованию свинца, поэтому он, возможно, был немного предвзято. Все знают, что Бетти Грейбл, вероятно, имела к этому большее отношение.

Серьезно, при прочих равных, более высокое октановое число означает больший запас от детонации.Предполагая, что мы заправляемся надлежащим топливом, мы не можем контролировать октановое число из кабины.

Степень сжатия фиксированная, из кабины ничего не поделаешь.

Большинство других факторов прямо или косвенно контролируются из кабины, поэтому давайте рассмотрим их.

Для начала вот что происходит во время идеального сгорания. Искра зажигается под углом от 20 до 25 градусов перед верхней мертвой точкой (ВМТ), в зависимости от двигателя (фиксированная синхронизация всегда является компромиссом, идеальным для ничего).Пожар начинается, и требуется немного времени, чтобы разгореться. Сначала фронт пламени движется очень медленно, всего около 35 кадров в секунду. Он начинает серьезно гореть примерно в ВМТ и достигает максимального давления (примерно 800 фунтов на квадратный дюйм) и максимальной скорости фронта пламени (примерно 150 FPS) где-то на 15-20 градусах выше ВМТ. Как только происходит это пиковое давление, давление и температура быстро падают. В какой-то момент до открытия выпускного клапана сгорание завершается, огонь гаснет и остаются только холодные газы.

Да. КРУТО. Что ж, 1500F EGT, который вы измеряете своим JPI, ЯВЛЯЕТСЯ «крутым» по сравнению с тем, что происходило внутри цилиндра всего несколькими миллисекундами раньше!

Эта идеальная комбинация может возникнуть при любых настройках мощности, если правильно контролировать многие факторы.

Возьмем, к примеру, об / мин. Уменьшая обороты, вы замедляете двигатель, поэтому коленчатый вал вращается медленнее. Процесс возгорания по-прежнему занимает примерно столько же времени (дайте мне здесь немного места), но рукоятка не повернулась так далеко.В результате пиковое давление и температура достигаются ближе к ВМТ, уменьшая запас по детонации.

Это несколько усложняется в двигателе с наддувом, потому что нагнетатель (с зубчатым приводом) будет вращаться медленнее, создавая меньшее давление в коллекторе, что снижает вероятность детонации. Но будьте осторожны, чтобы отличить двигатель с наддувом от двигателя с турбонаддувом, с регулятором абсолютного давления, который будет поддерживать давление в коллекторе на том же уровне или даже увеличивать его, при некоторых обстоятельствах на больших высотах, когда частота вращения снижается.

Mixture играет важную роль во всем этом. При изменении смеси изменяется скорость горения (скорость фронта пламени), а также температура и давление горения. Для любых данных условий отклонение от скорости около 50 МСП в ЛЮБОМ направлении (богатое или обедненное) обычно увеличивает запас от детонации. Это НЕ означает, что детонация может произойти только при 50 ROP, только то, что она, скорее всего, там. Если детонация не происходит при 50 ROP, практически невозможно получить детонацию с любым изменением только в смеси, все остальное остается постоянным.

Например, если вы уже настроили смесь со скоростью 50 ROP и начинается детонация, перемещение смеси в ЛЮБОМ направлении приведет к уменьшению детонации. Если у вас 100 ROP и вы получаете детонацию, наклон к 50 ROP увеличит детонацию, после чего дальнейшее наклонение снова уменьшит ее. С другой стороны, большее обогащение от 100 ROP уменьшит детонацию.

Время зажигания, пожалуй, самый важный фактор из всех, и испытания доказали, что время зажигания может даже преодолеть проблему свинца и октанового числа, а также исправить неправильную обедненную смесь.Проводится много исследований и есть убедительные доказательства того, что все эти двигатели будут хорошо работать на нашем нынешнем испытанном и надежном газе 100LL — без всякого свинца. В результате октановое число будет около 92, и мы могли бы назвать его 92UL (это звучит знакомо?). Но для этого абсолютно необходимо, чтобы время зажигания можно было контролировать в реальном времени. Предварительные результаты не показывают какого-либо значительного снижения производительности, а в некоторых случаях вполне может быть прирост производительности!

CHT в значительной степени управляем из кабины.Смесь, закрылки капота, общая мощность и указанная воздушная скорость регулируются пилотом и должны использоваться по мере необходимости для управления CHT на желаемом уровне или ниже.

Вот новая презентация, подготовленная GAMI старой диаграммы Кертиса-Райта, опубликованной в 1957 году. Такая же диаграмма была ранее опубликована в аналогичной форме Pratt & Whitney и, вероятно, другими.

Эта новая диаграмма представляет собой просто переориентацию старой диаграммы Кертиса-Райта с использованием параметров, которые преобразовали шкалу соотношения «топливо-воздух» старой диаграммы CW в более полезную пилотную диаграмму «богатый пик» — «наклон пика». »Шкала, знакомая пилотам, летающим с датчиками EGT.

Как уже отмечалось, MP находится снизу, а поток топлива вверх по левой стороне. Желтая пунктирная линия — линия пика EGT. Обратите внимание, что вдоль этой линии примерно при 36 ″ MP и 22 GPH мы начинаем рисковать детонацией, но только если мы находимся на красной линии CHT. Если мы продвинемся до 37–38 ″ и 23–24 галлонов в час, мы рискуем взорваться, даже когда CHT охлаждаются примерно на 50 F ниже красной линии CHT. Наконец, если мы можем удерживать CHT на уровне 100 F под красной линией (высокая скорость полета, открытые заслонки капота и т. Д.), Вам придется действительно поработать над этим, чтобы найти комбинацию MP и расхода топлива, которая может вызвать детонацию.

Глядя на зеленую линию, мы видим, что если мы склоняемся чуть ниже пикового EGT с некоторым запасом, начиная, может быть, с 50 LOP и увеличиваясь до 100F LOP при более высоких настройках давления в коллекторе, детонация становится практически невозможной, особенно если CHTs поддерживаются на разумном уровне.

Кстати, специалисты по изготовлению оборудования для планеров и производители двигателей в 60-х и 70-х годах действительно не оказали никому из нас никакой услуги, когда они приняли возмутительно высокие значения CHT «красной черты», которые используются для сертификации.Им следовало потратить немного больше времени на работу по перегородке и охлаждению этих двигателей, а затем снизить красную черту CHT примерно на 50F. Это принесло бы им большие долларовые выгоды при сокращении гарантийных проблем!

Теперь посмотрите на область справа вверху, где есть только пик EGT (чуть выше желтой пунктирной линии). Это как раз тот район, который так любим Лайкомингом, где, по их мнению, лучше всего работать.

Наконец, есть красная линия, которая довольно точно соответствует тому, что мы всегда делали при запуске ROP.По мере увеличения мощности (MP) мы вливаем в смесь большое количество дополнительного топлива (делая смесь очень грязной), чтобы замедлить фронт пламени, чтобы пиковое давление возникло позже. При очень высокой мощности на некоторых из этих двигателей с турбонаддувом необходимо поддерживать очень высокую (250 или 300 F или более) пиковую нагрузку, чтобы избежать детонации на полной мощности, особенно при работе CHT при очень высоких значениях.

Почему бы не запустить LOP, который также замедляет фронт пламени и заставляет двигатель работать холоднее и чище, с более низкими внутренними напряжениями компонентов при любой заданной мощности?

По мере того, как мы будем писать об этом, есть несколько очень интересных событий.Тестирование продолжается в GAMI, австралийцы представили очень интересную «Рекомендацию» в результате фатального сбоя и еще несколько вещей, о которых у меня нет разрешения раскрывать в настоящее время. Также нужно немного поговорить о предзарядке. Если чтение о детонации вызывает у вас нервозность, то чтение о предварительном зажигании и просмотр реальных данных вызовут кошмары!

Будь осторожен там, наверху!

Детонационное сгорание в двигателях с искровым зажиганием

Детонационное сгорание топлива имеет решающее значение, поскольку оно определяет долговечность двигателя, расход топлива и удельную мощность, а также характеристики шума и выбросов.Современные двигатели с искровым зажиганием (SI) страдают как от обычной детонации, так и от сверхдетонации. Обычные пределы детонации увеличивают степень сжатия для улучшения теплового КПД за счет самовоспламенения конечных газов, в то время как супердетонация ограничивает желаемый наддув для повышения удельной мощности современных бензиновых двигателей из-за детонации. Обычное горение широко изучается в течение многих лет. Хотя основные характеристики ясны, корреляция между индексом детонации и химией топлива, колебаниями давления и теплопередачей, а также распространением фронта самовоспламенения все еще находится на ранних стадиях понимания.Сверхдетонационное сгорание в двигателях с искровым зажиганием с сильным усилением и случайными событиями преждевременного зажигания интенсивно изучается в последнее десятилетие как в академических кругах, так и в промышленности. Эти работы в основном были сосредоточены на взаимосвязи между преждевременным зажиганием и супердетонацией, анализе источников преждевременного зажигания и влиянии свойств масла / топлива на супердетонацию. Механизм супердетонации был недавно обнаружен в машинах быстрого сжатия (RCM) в условиях, подобных двигателю. Было обнаружено, что детонация может происходить в современных двигателях внутреннего сгорания в условиях высокой плотности энергии.Термодинамические условия и ударные волны влияют на режимы волны горения и инициирования детонации. Три режима волны горения в отходящем газе были визуализированы как дефлаграция, последовательное самовоспламенение и детонация. Наиболее часто наблюдаемым режимом инициирования детонации является детонация, вызванная отражением ударной волны (SWRID). По сравнению с влиянием ударного сжатия и горения с отрицательным температурным коэффициентом (NTC) на задержку воспламенения, отражение ударной волны является основной причиной самовоспламенения / детонации у стенки.Наконец, рассмотрены методы подавления обычных детонаций и супердетонаций в двигателях SI, включая использование рециркуляции выхлопных газов (EGR), стратегию впрыска и интеграцию цикла высокого давления — высокого давления EGR-Аткинсона / Миллера. Эта статья дает глубокое понимание процессов, происходящих при детонационном сгорании в двигателях с искровым зажиганием. Кроме того, кратко описаны стратегии управления детонацией и режимы волн горения, а также обсуждаются будущие направления исследований, такие как теория взаимодействия турбулентности, ударной волны и реакции, подавление и использование детонации, а также решения для сверхдетонационных эффектов.

GIZZMO Electronics K-Lite Датчик детонации

Детонация. Кто там? Ваш взорванный двигатель. Четырехтактный двигатель внутреннего сгорания прошел довольно долгий путь в своей эволюции и благодаря технологиям; оно выросло до точной науки. Хотя точность велика, она также оставляет мало места для ошибки, особенно при экстремальном давлении наддува и высоких оборотах двигателя. Может произойти любое количество событий, которые могут привести к повреждению двигателя. Одно из наихудших событий — детонация двигателя, не такой уж тихий убийца двигателей.Подобно высокому кровяному давлению и некоторым формам рака, раннее обнаружение детонации можно лечить с помощью правильной настройки управления двигателем, чтобы обеспечить исправный, сильный и долговечный двигатель. Текст Ричарда Фонга // Фото Джун Чена и Ричарда Фонга

СТУК: ВЕЛИКОЕ ЗЛО

[pullquote] (ДВИГАТЕЛЬ) ДЕТОНАЦИЯ ПРОЯВЛЯЕТСЯ САМ В КАЧЕСТВЕ Слышимого стука [/ pullquote] Что такое стук? Детонация или детонация двигателя — это возгорание от одного до нескольких карманов несгоревшей топливовоздушной смеси за пределами запланированного окна сгорания.Когда это происходит, несвоевременный взрыв посылает потенциально разрушительную ударную волну и увеличивает давление в цилиндрах. Результатом такого события может быть что угодно, от ускоренного износа камер сгорания до катастрофического отказа двигателя.

ТЕГОВАЯ КОМАНДА НАСТРОЙКИ

Тюнеры управления двигателем полагаются на две ключевые переменные при настройке двигателя: соотношение воздух-топливо и обнаружение детонации. Правильный широкополосный измеритель будет контролировать соотношение воздух-топливо, чтобы гарантировать, что сгорает идеальное количество топлива для объема воздуха в цилиндре для сгорания.Он также сообщит вам, когда топлива слишком много или слишком мало. С другой стороны, мониторинг детонации может указывать на ряд других потенциальных проблем, включая высокие температуры на впуске, проблемы с зажиганием и плохое топливо, и это лишь некоторые из них.

МОНИТОР ОБНАРУЖЕНИЯ

Так как же отслеживать и обнаруживать детонацию? Стук проявляется как слышимый «стук». Однако для неподготовленного уха или в случае более высоких оборотов двигателя детонация становится очень трудной для обнаружения.Некоторые заводские ЭБУ используют датчик детонации типа «пончик», прикрепленный болтами к блоку для обнаружения детонации. При обнаружении детонации электронный блок управления двигателем определяет угол опережения зажигания, чтобы устранить любой возникший детонаж. В случае настройки на более высокие уровни мощности тюнер будет использовать стетоскоп двигателя или автономную электронную систему контроля детонации для целей настройки. Но ни одно из этих решений не помогает владельцу транспортного средства отслеживать стук при движении по улице или трассе. Войдите в сигнальную лампу контроля детонации Gizzmo Electronics K-Lite.

НЕБОЛЬШОЕ СТРАХОВАНИЕ ВАШИХ БОЛЬШИХ ИНВЕСТИЦИЙ

Gizzmo Electronics давно осознала важность обнаружения детонации, разработав в 2007 году точную и сложную систему мониторинга детонации KMon. На основе этой технологии компания Gizzmo Electronics объединила точность мониторинга детонации KMon в доступное устройство размером с компьютер. Батарейка AA, Gizzmo Electronics K-Lite. Простой в установке K-Lite оснащен двумя процессорами, шестью светодиодными индикаторами, функцией отзыва пиков и возможностью контролировать до 64 частот.Как и KMon, в K-Lite используется датчик детонации Bosch типа «пончик», прикрученный к блоку. Если в двигателе уже есть датчик детонации, просто купите более длинный болт и установите датчик K-Lite поверх заводского. Двухпроводной жгут соединяет датчик с блоком K-Lite. K-Lite не только мал по размеру, но и по цене. Рекомендуемая производителем розничная цена $ 199.00 — это доступное решение, без которого никто не может остаться.

СЕНСОРНАЯ КАЛИБРОВКА

В корпусе K-Lite используется чистый цилиндрический дизайн с яркими светодиодами, утопленными в корпусе, создающими кожух вокруг фонарей.На устройстве нет видимой кнопки, так как K-Lite оснащен сенсорным датчиком, расположенным под надписью ZMO логотипа Gizzmo на корпусе. Эта виртуальная кнопка используется для перевода K-Lite в режим калибровки, а также служит кнопкой возврата пикового значения. В комплект входит пара кронштейнов для облегчения установки на приборную панель или рулевую колонку.

НАЗНАЧЕНИЕ И ФОРМА

K-Lite обслуживает и предупреждает как в D’Garage Project Silvia, так и в Project 240SX, претендентах на KA vs.SR Battle. Учитывая агрессивную настройку и изнурительные битвы, которые еще предстоит вести, отслеживать детонацию двигателя просто необходимо. Поскольку дополнительные испытания на динамометрическом стенде, тормозной полосе и дорожной трассе еще не завершены, обеспечение того, чтобы эти автомобили выдержали конкуренцию, крайне важно. С K-Lite на дежурстве вероятность незаметного проскальзывания стука резко снижается.

Характеристики сгорания во вращающихся детонационных двигателях

Было проведено множество исследований вращающихся детонационных двигателей из-за более высокого теплового КПД.Однако количество, направления вращения и интенсивность вращающихся детонационных волн изменяются, когда меняются скорость потока, коэффициент эквивалентности, условия притока и схемы двигателя. Настоящие экспериментальные результаты показали, что на режим горения вращающегося детонационного двигателя влияет схема камеры сгорания. Кольцевой канал детонации имел внешний диаметр 100 мм и внутренний 80 мм. Воздух и водород вводились в камеру сгорания из 60 цилиндрических отверстий диаметром 2 мм и круглого канала шириной 2 мм соответственно.Когда массовый расход воздуха увеличивали за счет поддержания постоянного расхода водорода, режим горения менялся. Возникли дефлаграция и диффузное горение, множественные встречные детонационные волны, продольная импульсная детонация и одна вращающаяся детонационная волна. И продольная импульсная детонация, и одиночная вращающаяся детонационная волна произошли в разное время в одной и той же операции. Они могли меняться между собой, и направление эволюции зависело от скорости воздушного потока. Операции с одной вращающейся детонационной волной происходили при коэффициентах эквивалентности меньше 0.60, что было полезно для охлаждения двигателя и инфракрасной невидимости. Разработан механизм генерации продольной импульсной детонации.

1. Введение

Детонационные двигатели теоретически имеют более высокий тепловой КПД, чем дефлаграционные двигатели (то есть обычные двигатели, такие как ракетные двигатели и воздушно-реактивные двигатели), поскольку при детонации производство энтропии ниже, чем при дефлаграции. Вращающийся детонационный двигатель (ВДД) — один из широко изучаемых типов детонационных двигателей [1–6].Может быть одна или несколько вращающихся детонационных волн (ВДВ), движущихся по касательной в камере сгорания ВДЭ [7]. Химические реакции в основном происходят внутри детонационной волны, хотя еще может происходить дефлаграционное горение у стенок [8] или между реагентами и продуктами [9]. Вращающееся распространение и горение с увеличением давления вместе делают детонационную волну непрерывной. Предварительные испытания RDE без сопла были проведены для оценки характеристик тяги и удельного импульса вакуума 341.Для водородно-кислородной смеси было получено 7 с [10]. Теоретически RDE может иметь на 20-25% более высокий тепловой КПД, чем дефлаграционные двигатели, за счет использования преимуществ детонационного сгорания [11]. Испытания на горение ВДЭ с использованием этилена и кислорода были продемонстрированы в ходе зондирования ракетного эксперимента в космосе, и от 73% до 90% оптимального удельного импульса были достигнуты для ВДЭ с сужающимся соплом [12]. До 2014 года компания Aerojet Rocketdyne провела 524 горячих огневых испытания, включая использование нескольких топлив (как газообразного, так и жидкого топлива), нескольких форсунок и нескольких форсунок, с переходным плазменным усилением и без него [13].

Исследовательская лаборатория ВВС и компания Innovative Scientific Solutions Inc. получили значительный объем экспериментальных данных от RDE, включая удельный импульс, изображения хемилюминесценции OH, измерения высокочастотного теплового потока и точные измерения давления внутри детонационного канала. Работа с газообразным углеводородным / воздушным топливом обеспечила ожидаемые уровни пропульсивных характеристик, хотя существует еще множество технических проблем, которые необходимо решить, если более тяжелые углеводородные топлива будут взорваны в RDE [14].По изображениям хемилюминесценции ОН исследовано влияние массового расхода воздуха, степени эквивалентности, площади впрыска воздуха и схемы впрыска топлива на вращающуюся детонационную структуру [15, 16]. В условиях обеднения топлива высокие выбросы OH от детонации были распределены в космосе более широко. Фронт волны был более вогнутым по сравнению с областью заправки горючим перед детонацией, так как прорезь для впрыска воздуха была увеличена от низких до промежуточных значений. Угол между фронтом волны и поверхностью впрыска топлива перед детонацией увеличивался по мере увеличения щели для впрыска воздуха.Уменьшение количества отверстий для впрыска топлива оказало значительное влияние на структуру детонации, включая переход от одной волны к двум. Пик теплового потока может составлять менее 1 МВт / м 2 у основания детонационного канала и более 25 МВт / м 2 вокруг фронта детонационной волны [17, 18]. Была предпринята попытка измерения давления с использованием структуры недорасширенной струи, внешней по отношению к RDE, и пиковое давление в канале детонации было оценено в среднем около МПа [19], что было более точным, чем полученное с помощью динамических датчиков.Исследовательская лаборатория ВВС также разработала первый успешный предварительно приготовленный RDE с воздушным дыханием, для которого требовалась технология подавления обратного огня [20]. Смешивание топлива с воздухом сильно повлияло на работу RDE, как известно из различных операций между предварительно смешанными и не предварительно смешанными RDE. Различные операции между предварительно смешанными и не предварительно смешанными RDE были связаны с тем, что диффузионное смешивание могло обеспечить небольшой диапазон сильно взрываемой смеси в более широком диапазоне глобальных массовых расходов.

Есть несколько видов вращающихся детонационных волн, включая вращающиеся детонационные волны, встречные детонационные волны и одиночный RDW [21–24].Одиночный RDW можно рассматривать как особый вид коротационных детонационных волн, которые примерно стабильны. Встречные волны детонации обычно делают детонацию слабой или сильной, а иногда и нестабильной. Это условие нежелательно для работы RDE, так как оно вызвано неполным перемешиванием [15]. Более высокие массовые расходы воздуха приводят к появлению большего количества RDW, а при заданном расходе количество волн зависит от общего коэффициента эквивалентности [25]. Для RDW существует четыре различных режима горения: одна волна, две короткие волны, одна пара в режиме встречного вращения и две пары в режиме встречного вращения [26].Продольная импульсная детонация (LPD) также может происходить в RDE и распространяться в осевом направлении [27, 28]. Ананд и др. пришел к выводу, что LPD был вызван своеобразным механизмом инициирования детонации, включенным отраженной ударной волной от выхода RDE, и LPD перемещался вниз по потоку. Частота LPD зависела от начального давления в камере сгорания и степени эквивалентности, причем более высокая частота наблюдалась с увеличением противодавления и степени эквивалентности. Они также пришли к выводу, что LPD не существовало, когда на выходе из RDE не было горловины.Однако Фролов и соавт. думал, что LPD переместился вверх по потоку, так как реактивные ударные волны возникли возле выхода из камеры сгорания. Более того, в этом исследовании LPD был обнаружен в RDE без горла на выходе. Следовательно, механизм генерации LPD требует дальнейшего изучения. В других исследованиях были отмечены три режима работы. В работе [29] обнаружены срабатывания детонации, акустических пульсаций и дефлаграции. Акустические пульсации на самом деле были продольной импульсной детонацией, о которой говорилось выше.Гармоническая осевая пульсация предшествовала каждому наблюдаемому переходу от дефлаграции к детонации.

В этом исследовании скорость потока воздуха при постоянном расходе водорода 10 г / с была изменена для изучения особенностей горения RDE. В ходе испытаний также моделировалось влияние изменчивого воздушного потока на двигатели во время полета. Он показал, что на сгорание в RDE, как правило, влияет структура камеры сгорания, поскольку эта структура оказывает большое влияние на смешивание топлива и окислителя. Стабильная одиночная RDW с коротким выхлопным шлейфом произошла в условиях обеднения топлива с коэффициентами эквивалентности ниже 0.6, рабочие условия, которые выгодны для использования RDE в качестве двигателя с воздушным дыханием. Множественные коротационные детонационные волны никогда не возникали в диапазоне расходов воздуха 72-740 г / с при расходе водорода 10 г / с.

2. Экспериментальная установка и методология

Экспериментальная установка и ее схема показаны на рисунке 1. Экспериментальная система в основном состоит из секции подачи газа, секции сбора данных, секции управления, секции зажигания и камеры сгорания.Магистральный поток — это поток реагентов непосредственно в камеру сгорания, а второстепенный поток — это поток в камеру сгорания через предетонатор. Система газоснабжения, подающая водород и кислород в предетонатор, а водород-воздух в камеру сгорания, включает источники газа, редукционные клапаны, обратные клапаны, соленоидные клапаны, массовые расходомеры и трубы. Источники газа включают в себя один баллон с кислородом, шесть баллонов с водородом и один большой баллон со сжатым воздухом. Источник водорода может обеспечивать поток при максимальном общем давлении 12 МПа.Источник воздуха может обеспечивать поток при максимальном общем давлении 10,5 МПа. Редукционные клапаны способны поддерживать постоянное давление на выходе клапана. Обратные клапаны предотвращают обратный поток. Электромагнитные клапаны управляются компьютерной программой. Массовые расходомеры измеряют массовый расход с помощью звуковых сопел и датчиков давления.


Секция сбора данных, собирающая сигналы давления, состоит из датчиков 113B24 динамического давления печатной платы, датчиков давления Келлера PA-23SY, высокоскоростной камеры и регистратора данных.Два датчика давления на печатной плате, обозначенные как S1 и S2 на рисунке 1, установлены в камерах сгорания в том же осевом положении, что и предетонатор. Угол между ними по окружности камеры сгорания составляет 180 °. Датчики покрыты силиконом для защиты от высокой температуры продуктов детонации. Частота дискретизации 1 МГц. Секция зажигания состоит из высокоэнергетической свечи зажигания и предетонатора длиной 200 мм и внутренним диаметром 10 мм. Частота зажигания составляет 28 Гц, а время зажигания составляет 50 мс.Предетонатор тангенциально соединен с камерой сгорания, чтобы волна детонации перемещалась в камеру сгорания асимметрично. На этапе запуска водород и кислород из системы подачи газа поступают в предетонатор, которые воспламеняются свечой зажигания, установленной в головке предетонатора. Волна дефлаграции возникает в результате воспламенения и постепенно превращается в волну детонации в предетонаторе, этот процесс называется переходом от дефлаграции к детонации (DDT). Затем детонационная волна движется в камеру сгорания по касательной и, наконец, продолжает вращаться вокруг кольцевой камеры сгорания.Камера сгорания имеет следующие основные геометрические параметры: внешний диаметр кольцевого канала 100 мм, длина канала 117 мм, ширина канала 10 мм. Воздух нагнетается в канал в осевом направлении через 60 отверстий диаметром 2 мм. Водород вводится в канал центростремительно через периферийную щель шириной 2 мм. Водород и кислород составляют соответственно 1 г / с и 8 г / с для притока.

Временная последовательность обеспечивает наличие основного потока реагентов в камере сгорания до того, как волна детонации будет введена из предетонатора.Также перед зажиганием в предетонаторе достаточно реагентов для формирования детонационной волны. Приток используется для взрыва магистрального потока, и после возгорания он перекрывается. Зажигание, приток и магистральный поток длятся 0,050 с, 0,100 с и 0,700 с соответственно.

3. Результаты и обсуждение

Таблица 1 показывает соотношение эквивалентности, режим горения и скорость RDW для различных массовых расходов воздуха во время установившейся фазы. MCRDW, SRDW и LPD обозначают множественные RDW встречного вращения, одну RDW со скоростью около 1200 м / с и продольную импульсную детонацию соответственно.Один RDW давал примерно регулярные и периодические следы давления, тогда как множественные противоположно вращающиеся RDW создавали нерегулярные следы давления, потому что столкновения RDW часто делали RDW нестабильными и сами снова становились стабильными. Режим горения, обсуждаемый в настоящем исследовании, был для установившейся фазы, если не указан. NA означает «не применимо», что означает отсутствие детонации при вращении. Скорость RDW рассчитывалась по внешнему диаметру канала детонации 100 мм и среднему циклу между двумя соседними пиками давления, зарегистрированными датчиками давления печатной платы во время установившейся фазы.Поле течения было примерно устойчивым в установившейся фазе. Переходной фазой был процесс запуска, во время которого поле потока сильно изменяется. Эта переходная фаза также сделала RDW нестабильным. Процесс выключения здесь не обсуждался.

78 NA 9097

Расход воздуха (г / с) Коэффициент эквивалентности Режим сгорания RDW скорость (м / с)

Дефлаграция и диффузионное горение NA
103 3,35 Дефлаграция и диффузионное горение NA
135 2,56 MCRDWs
MCRDW 970
215 1,60 MCRDWs 949
255 1,35 MCRDW 959 284

21
MCRDWs916
350 0,99 MCRDWs 872
398 0,87 MCRDWs 659 MCRDWs
469 0,74 LPD NA
510 0,68 LPD NA
541 0.64 SRDW 1210
573 0.60 LPD NA
605 0,57 SRDW 1222
676 0,51 SRDW 1215
708 0,49 SRDW 1208
740 0.47 SRDW 1194

3.1. Дефлаграция и диффузионное горение

Дефлаграция и диффузное горение происходили за пределами камеры сгорания в диапазоне массового расхода воздуха 72-103 г / с (условие A). Например, здесь был проанализирован расход воздуха 72 г / с. Кривая давления на Рисунке 2 была неравномерной, а давление было очень низким, что указывало на то, что RDW не образовывались. Кроме того, выхлопной шлейф для расхода воздуха 72 г / с был очень длинным и имел длину около 1.5 м, что указывает на то, что горение имело место вне камеры сгорания. Конец камеры сгорания, действуя как обтекание, стабилизировал дефлаграцию, а диффузное горение было вызвано несгоревшим топливом, смешанным с окружающим воздухом. Это было диффузное горение, которое привело к длинному шлейфу выхлопных газов. Поскольку сгорание происходило вне камеры сгорания, тяга была низкой и не соответствовала условиям, необходимым для работы двигателя. Легко понять, что детонация не может образоваться при слишком высоком уровне эквивалентности.Фактически, датчики давления измеряли установившийся поток без горения в камере сгорания, но датчики динамического давления печатной платы не могли уловить статическое давление. Таким образом, давление на Рисунке 2 было почти нулевым. Было отмечено, что детонация произошла во время процесса пуска, но не сохранялась. Неизвестные сигналы были случайными и могли быть электромагнитными помехами.


(a) Общий вид
(b) Крупный план
(a) Общий вид
(b) Крупный план
3.2. Множественные RDW встречного вращения

Множественные RDW встречного вращения (MCRDW) имели место для диапазона массового расхода воздуха 135–430 г / с (условие B). Столкновения между несколькими RDW привели к тому, что средняя скорость RDW была ниже 1000 м / с. Типичные кривые давления для таких условий показаны на рисунке 3 для массового расхода воздуха 350 г / с. Пики давления все время существенно менялись и большую часть времени не были периодическими из-за столкновений RDW. Событие столкновения RDW было дополнительно подтверждено высокоскоростными изображениями на Рисунке 4 (время экспозиции 1/50000 с).Было три RDW на 400,34 мс, но один ниже не наблюдался после 400,34 мс, возможно, потому, что он стал слишком слабым для захвата. Стрелки указали направление движения RDW. Когда два RDW сталкивались друг с другом в течение 400,36–400,40 мс, скорость реакции и температура увеличивались, и зона столкновения становилась очень светлой. После столкновения RDW стали устойчивыми и слегка темными. Столкновения вызвали потерю механической энергии и более низкие средние скорости MCRDW, чем SRDW, показанные в таблице 1.Фактически, состояние B было почти стехиометрическим или слегка богатым водородом. Следовательно, энергия воспламенения реагентов была ниже для этого условия, и взрывы легче инициировались ударными волнами, которые были обычными для RDE [22]. Взрывы вызвали появление двух новых RDW, вращающихся в противоположных направлениях, одна из которых встретила старую RDW. Взрывы были частыми, как и столкновения RDW, что привело к нерегулярным пикам давления, таким как те, что показаны на Рисунке 3. Хотя пики давления не имели хорошей периодичности, преобладающая частота по-прежнему составляла 2786 Гц, показанная на Рисунке 3 (d).Поле течения в условиях было неустойчивым, а детонация не развивалась полностью из-за столкновений. Следовательно, эффективность детонации была недостаточно высокой, что не могло полностью использовать преимущества детонационного горения.


3.3. Продольная импульсная детонация

Продольная импульсная детонация (LPD) произошла в камере сгорания в диапазоне массового расхода воздуха 469-510 г / с (состояние C). Например, пики давления S1 и S2 для 510 г / с на Фигуре 5 (c) совпадали, указывая на то, что волна детонации перемещалась аксиально, а не тангенциально, поскольку S1 и S2 имели разные азимутальные положения, но одинаковые осевые положения.Цикл LPD 0,443 мс на рисунке 5 (a) приблизительно соответствует частоте 2244 Гц на рисунке 5 (d). Однако переходная фаза имела немного более высокое давление детонации и более короткий цикл, чем установившаяся фаза, потому что во время переходной фазы существовала одна вращающаяся детонационная волна (SRDW). SRDW был подтвержден чередующимися пиками S1 и S2 на Рисунке 5 (b). Пики S1 были примерно средними точками между двумя соседними пиками S2, как согласовано с соотношением, что датчики S1 и S2 имели угол 180 градусов.LPD обычно представлял собой слабую детонационную волну, недостаточно развитую, поскольку длина детонационного канала составляла всего 117 мм, а DDT (переход от дефлаграции к детонации) занимал только часть длины, тогда как RDW обычно был стабильным и достаточно сильным, поскольку длина вращения была бесконечной. Когда одиночный RDW был ослаблен неизвестными ударными волнами и унесен, произошел LPD. LPD был вызван отраженной волной от заглушенного выхода RDC (вращающейся детонационной камеры сгорания) и не существовал, когда на выходе RDC не было горловины [27].Тем не менее, LPD был также обнаружен в ссылке [26], в которой не было горла на выходе RDC, но механизм генерации не был подробно описан. Кроме того, в настоящем исследовании не было горла на выходе RDC. Таким образом, необходимо дополнить механизм генерации LPD. LPD вызывает обратный поток и большие потери потока, снижая ходовые качества. LPD вреден для вращающихся детонационных двигателей.

Продольная импульсная детонация произошла во время установившейся фазы при массовом расходе воздуха 573 г / с, как показано на Рисунке 6 (c).Было трудно понять, почему это произошло в диапазоне расхода из условия D, который был для одного RDW со скоростью около 1200 м / с. Фактически, скорости воздушного потока 541, 573 и 605 г / с были тремя точками, в которых режим горения изменился с LPD на SRDW, как известно в таблице 1. Таким образом, прогоны для трех скоростей потока не были надежными и как правило, подвержены влиянию неизвестных возмущений, вызывающих изменение режимов горения.

3.4. Одиночный RDW

Одиночный RDW (SRDW) возник и имел скорость около 1200 м / с для диапазона массового расхода воздуха 541-740 г / с (условие D).Скорости RDW составляли 72% -75% от значений CJ. Снижение эффективной скорости реакции, предположительно вызванное увеличением зоны реакции, вызванной турбулентностью, привело к низкой скорости волны [30]. Результаты показаны на рисунках 7 и 8. Операции с более высокими массовыми расходами воздуха не проводились, так как они были ограничены экспериментальной установкой. Было трудно воспламенить реагенты в условиях обеднения топлива, а новые RDW не могли быть вызваны ударными волнами. Следовательно, одна RDW поддерживалась стабильно вращающейся в камере сгорания для условия D.Скорость RDW была уменьшена с уменьшенным отношением эквивалентности для условия D. Расходящаяся RDW образовалась, когда волна детонации двигалась в канал детонации от предетонатора, потому что канал детонации был заполнен реагентами во время воспламенения. Расходящаяся RDW содержала два встречных фронта и два фронта, движущихся соответственно вверх и вниз по потоку. Два встречно вращающихся фронта RDW столкнулись друг с другом. Фронт, движущийся вверх по потоку, столкнулся со стенкой головки камеры сгорания и вызвал отраженную ударную волну.Столкновения RDW и отраженная ударная волна вместе сделали пики давления нерегулярными и непериодическими во время пуска на Рисунке 8 (b). Одиночная RDW образовалась навсегда после того, как событие столкновения RDW закончилось, но она все еще была нестабильной и в основном зависела от ударных волн, возникающих во время пуска. Когда ударные волны не выдержали, стабильный SRDW на рисунке 8 (c) был сформирован. Это была устойчивая фаза. Как несколько RDW столкнулись друг с другом, чтобы создать одну RDW, было численно объяснено в ссылке [22].Кратковременное преобразование Фурье на рисунке 8 (d) для кривой давления S1 было проведено, показав, что частота RDW составляла 3920 Гц. Цикл RDW 0,255 мс был получен из частоты, очень близкой к циклу RDW 0,256 мс, полученному непосредственно из кривой давления.

Некоторые пики давления S1 и S2 во время переходной фазы на Рисунке 7 (b) совпадали, что указывает на возникновение LPD. Цикл LPD составлял около 0,410 мс. Предполагалось, что неизвестная ударная волна усиливает LPD, вызывая взрыв и высокий пик перехода на рисунке 7 (d).Затем образовалась RDW из-за взрыва внутри реагента. Причина прогона, включающая переходную фазу с LPD и установившуюся фазу с одним RDW, была хорошо понятна, поскольку расход был в точке, где режим горения изменился с LPD на SRDW, как показано в таблице 1. Переход режима в критических точках также объяснили, почему как переходная фаза для массового расхода воздуха 605 г / с, так и установившаяся фаза для 573 г / с имели режим горения LPD, как показано на рисунках 6 (c) и 7 (b).Однако не было LPD, а скорее было нестабильное SRDW во время переходной фазы для работы с массовым расходом воздуха 636 г / с, что дополнительно подтверждается взаимосвязью между высоким расходом воздуха и SRDW. Был сделан вывод, что одна RDW была сформирована из LPD или нескольких RDW, вращающихся в противоположных направлениях.

Непрерывные высокоскоростные изображения (20000 кадров в секунду, время экспозиции 1/20000 с) во время установившейся фазы на Рисунке 9 дополнительно указали на существование одного RDW, вращающегося против часовой стрелки с расходом воздуха 708 г / с.Одиночный RDW был стабильным, что обеспечивало хорошие характеристики сгорания и тяги. Одиночный RDW в условиях обеднения топлива, в частности, может быть применен к воздушно-реактивным двигателям, потому что температура внутри камеры сгорания низкая, а выхлопной шлейф очень короткий, что может быть полезно для невидимости в инфракрасном диапазоне.


Циклы RDW или LPD, полученные из кривых давления для некоторых скоростей воздушного потока, показаны на рисунке 10. Циклы для условия B было трудно вычислить из-за нестабильных RDW, и они не показаны на рисунке 10.Один RDW был произведен после зажигания при расходах воздуха 510 и 573 г / с, что привело к более короткому циклу. Затем циклы были увеличены, так как нестабильная RDW превратилась в случай продольной импульсной детонации. Однако продольная импульсная детонация сформировалась во время переходной фазы, а затем превратилась в одиночную RDW, что привело к уменьшению циклов динамического давления для скоростей воздушного потока 541 и 605 г / с.


3.5. Испытания при других скоростях потока водорода

Кроме того, были проведены испытания при других скоростях потока водорода, и критическое отношение эквивалентности для одного RDW показано в таблице 2.Когда коэффициент эквивалентности был меньше критического, возникала единичная RDW, и это был устойчивый прогон. Казалось, что стабильная работа одного RDW имеет более высокий критический коэффициент эквивалентности при более высоких расходах водорода. Интенсивность RDW увеличивается с увеличением расхода. Более сильный RDW более стабилен при нестабильном потоке и, следовательно, имеет более высокий критический коэффициент эквивалентности. Массовый расход водорода и коэффициент эквивалентности лишь незначительно повлияли на скорость стабильного RDW для настоящего RDE.


Расход водорода (г / с) Критический коэффициент эквивалентности Скорость RDW (м / с)

10,0
12,1 0,64 1217
17,8 0,84 1212

3.6. Новый механизм для LPD

Механизм генерации LPD предложен и показан на рисунке 11. Противовращающаяся детонационная волна имеет тенденцию инициироваться ударной волной, поскольку коэффициент эквивалентности для LPD близок к таковому для нескольких встречно вращающихся RDW. Вначале после зажигания обычно образуется нестабильная RDW, как показано на Рисунке 6 (b). Когда RDW ослабляется встречной детонационной волной, он распадается до дефлаграции, продуваемой вниз по потоку к выпускному отверстию. Смешивание топлива и окислителя становится лучше на выходе, поскольку для смешивания требуется время и расстояние.Когда горение достигает положения, в котором перемешивание достаточно хорошее для возникновения детонации, происходит переход от горения к детонации, и горение или детонация перемещается вверх по потоку, как показано на рисунках 11 (a) и 11 (b). Волна детонации постепенно ослабевает на пути к входу, поскольку смешивание топлива и окислителя становится менее полным. Высокотемпературные продукты будут уноситься вниз по потоку после столкновения между детонацией и входной стенкой, потому что плохое перемешивание не может выдержать фронт детонации.Дефлаграция между реагентом и продуктом на Рисунке 11 (c) сдувается. Переход от горения к детонации происходит снова по той же причине, что и выше, как показано на Рисунке 11 (d). Один цикл LPD происходит между рисунками 11 (a) и 11 (d). Следует отметить, что волна детонации всегда движется вверх по потоку, поскольку реагент находится рядом с входным отверстием, что вызывает большие потери тяги. В заключение, столкновения встречно вращающихся детонационных волн не дают исходной детонации, а плохое перемешивание выше по потоку и хорошее перемешивание ниже по потоку поддерживают LPD.

Этот механизм поддерживается высокоскоростными изображениями и анализом в частотной области кривой давления на Рисунке 12 [31]. В испытании на рисунке 12 использовалась экспериментальная установка в настоящем исследовании. Детонация и дефлаграция происходили поочередно, создавая LPD. При детонации образовывались белые зоны, а на черных изображениях на Рисунке 12 (а) детонация отсутствовала. Фактически, дефлаграция имела более низкую температуру, чем детонация, поэтому изображения получались чисто черными. Событие дефлаграции с более низкой температурой не было зафиксировано высокоскоростной камерой из-за короткого времени экспозиции.Если бы на черных изображениях не было горения, детонация все равно не могла бы быть инициирована. Очевидно, что на Рисунке 12 (а) время горения было намного больше, чем время детонации, что хорошо согласуется с показателем на Рисунке 11. В конце концов, детонация занимала только часть времени, в течение которого волна горения двигалась вверх по потоку. Однако дефлаграция существовала все время, когда волна горения была направлена ​​вниз по потоку. Как видно на рисунке 12, время круга LPD соответствовало 8 изображениям, которые занимали 400 микросекунд, что примерно соответствует частоте 2364 Гц на рисунке 12 (b).Разница во временном разрешении датчиков давления и высокоскоростной камеры вызвала погрешность частоты.


(a) Непрерывные высокоскоростные изображения
(b) Анализ кривой давления в частотной области
(a) Непрерывные высокоскоростные изображения
(b) Анализ частотной области кривой давления
4. Выводы. Были проведены испытания

RDE для изучения влияния соотношения эквивалентности и расхода воздуха на наблюдаемые режимы горения.Скорость потока водорода была зафиксирована равной 10 г / с. В ходе испытаний моделировалось влияние изменения воздушного потока на двигатели во время полета. (1) Когда коэффициент эквивалентности был больше 3,35, происходило дефлаграция и диффузное горение за пределами камеры сгорания, и тяговые характеристики были плохими. Когда коэффициент эквивалентности составлял 0,80–2,56, возникали множественные RDW, вращающиеся в противоположных направлениях, что было нежелательным рабочим условием, поскольку детонация была нестабильной. Когда коэффициент эквивалентности составлял 0,60-0,80, происходила продольная импульсная детонация (2) LPD не был полностью развит и вызывал большие потери потока.Плохое перемешивание на входе и хорошее перемешивание на выходе в камере сгорания поддерживало режим продольной импульсной детонации. Детонация и дефлаграция происходили поочередно во время круга LPD, и дефлаграция стоила большую часть времени круга. ДПД образовывался возле выхода из камеры сгорания в результате перехода от горения к детонации и перемещался на вход в камеру сгорания. LPD вышел из строя около входа в камеру сгорания из-за плохого перемешивания, и дефлаграция, образовавшаяся в результате отказа LPD, была унесена вниз по потоку. ДПД снова образовался возле выхода из камеры сгорания.Это один круг LPD (3). Когда коэффициент эквивалентности был меньше 0,60, была получена стабильная одиночная RDW, что обеспечивает лучшую производительность из всех. Одиночный RDW формировался за счет продольной импульсной детонации или множественных RDW встречного вращения. Одиночный RDW в условиях обеднения топлива был особенно применим к воздушно-реактивным двигателям, потому что температура внутри камеры сгорания была низкой, а выхлопной шлейф был очень коротким, рабочие условия полезны для инфракрасной невидимости

Номенклатура
Вращающаяся детонационная волна
DDT: Переход от дефлаграции к детонации
LPD: Продольная импульсная детонация
MCRDWs: Множественные волны детонации встречного вращения
RDE:204

Вращающийся двигатель детонации

RDC: Вращающаяся детонационная камера сгорания
SRDW: Одиночная вращающаяся детонационная волна.
Доступность данных

Данные доступны по запросу.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Эта работа была поддержана Национальным фондом естественных наук Китая (номера грантов 11702229, 11602207) и фондами фундаментальных исследований для центральных университетов (номер гранта buctrc201913).

MatheO: Хариш Раджан — Заключительная работа: Моделирование в уменьшенном порядке вращающихся детонационных двигателей с использованием динамической декомпозиции мод

Факультет прикладных наук

МАСТЕР ТЕЗИС

ПРОСМОТР 16 | СКАЧАТЬ 0

Заключительная работа: Моделирование вращающихся детонационных двигателей в уменьшенном порядке с использованием динамической декомпозиции мод

Хариш Раджан
Промотор (и): Террапон, Винсент
Дата защиты: 22.01.2021 • Постоянная ссылка:
http: // hdl.handle.net/2268.2/11225
Детали
Факультет
Название: Заключительная работа: Моделирование вращающихся детонационных двигателей в уменьшенном порядке с использованием динамической декомпозиции мод
Автор: Хариш Раджан
Дата защиты : 22 января 2021 года
Советник (и): Террапон, Винсент
Член (и) комитета: Хиллеваерт, Коэн
Оркини, Алессандро
Бохон, Майлз Д.
Язык: Английский
Количество страниц: 78
Ключевые слова: [en] Декомпозиция динамического режима, вращающиеся детонационные двигатели, моделирование сокращенного порядка
Discipline s): Инженерия, вычисления и технологии> Аэрокосмическая и авиационная инженерия
Целевая аудитория: Исследователи
Студент
Другое
Учреждения: Université de Liège, Льеж, Бельгия
TU , Берлин, Германия
Степень: Магистр в области гражданской авиации в аэрокосмической сфере, окончательная специализация в области турбомашинной аэромеханики (THRUST)
Факультет:3 Магистерская диссертация

Абстрактные

[en] Вращающиеся детонационные двигатели (RDE) — это новый метод сжигания с увеличением давления.В этом типе сгорания невозможно достичь теоретического повышения эффективности с использованием традиционных методов сгорания. Динамика вращающихся детонационных двигателей сложна и многомерна. Моделирование с уменьшенным порядком — это инструменты, которые можно использовать для уменьшения многомерности этих систем. Разложение динамического режима — одна из таких техник. Динамика вращающегося детонационного двигателя проявляется в двух основных формах. Первый — это вращающаяся волна, в которой одиночная волна детонации распространяется по кольцевому пространству двигателя с очень высокой скоростью.Второй — форма волны хлопка, которая получается, когда две встречные волны взаимодействуют друг с другом вокруг кольцевого пространства. Разработан надежный алгоритм декомпозиции динамического режима, и он протестирован с использованием синтетических данных, сгенерированных с использованием математических формулировок. Синтетические данные генерируются для имитации динамики вращающегося детонационного двигателя. После того, как алгоритм был в достаточной степени протестирован и утвержден, он применяется к экспериментальным данным. Используются высокоскоростные изображения задней части вращающегося детонационного двигателя, затем к этим данным применяется алгоритм разложения по динамическому режиму, и демонстрируется, что динамику системы можно предсказать, используя несколько динамических режимов и частот.Однако было обнаружено, что ошибка все еще велика и ее необходимо уменьшить, чтобы создать надежную и точную модель двигателя пониженного порядка. Затем изображения модифицируются, чтобы изолировать область действия детонационной волны. DMD на уменьшенном наборе изображений производит вырожденные режимы. Было показано, что количество снимков, взятых для анализа, влияет на точность и наличие так называемых вырожденных мод. Было показано, что наилучшее значение точности достигается, когда количество снимков равно количеству сделанных режимов.Далее было показано, что для этого тестового примера наилучшая точность была получена при использовании всего 50 снимков и 50 сингулярных режимов. Продемонстрирована долговременная достоверность полученных параметров, т. Е. Количества снимков и количества сохраненных режимов. Было видно, что частоты и ошибка восстановления сходятся и колеблются вокруг среднего значения. Максимальное отклонение этих параметров было в допустимых пределах. Формы мод также сходятся, что указывает на то, что параметры действительны для всего тестового примера.Это также доказало, что в тестовом примере нет переходных процессов.


Файл (ы)

Документ (ы)

Masters_Thesis_Harish.pdf
Описание :
Размер : 6,3 МБ
Формат : Adobe PDF

Приложение (а)

Masters_Thesis_Harish.pdf
Описание :
Размер : 6,3 МБ
Формат : Adobe PDF

Автор

  • Хариш Раджан Université de Liège> Магистр Инге.civ. aérospat., à fin. (УПОР)

Промотор (и)

Член (ы) комитета

  • Хиллеваерт, Коэн Université de Liège — ULiège> Département d’aérospatiale et mécanique> Дизайн турбомашин
    Посмотреть его публикации на ORBi
  • Оркини, Алессандро ТУ Берлин
  • Бохон, Майлз Д. ТУ Берлин
  • Общее количество просмотров 16
  • Общее количество загрузок 0


Процитируйте эту магистерскую диссертацию

Все документы, доступные на MatheO, защищены авторским правом и подчиняются обычным правилам добросовестного использования.
Льежский университет не гарантирует научное качество работ этих студентов или точность всей содержащейся в них информации.

.
10Апр

Какая деталь соединяет коленвал двигателя с поршнем: Какая деталь соединяет коленчатый вал двигателя с поршнем

Какая деталь соединяет коленчатый вал двигателя с поршнем

Механизмы двигателя

Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и, наоборот.

Устройство КШМ

Поршень

Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения.

Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.

Шатун

Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся (плавающий) поршневой палец, а нижняя головка – разборная, позволяя, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.

Коленчатый вал

Изготовленный из стали или чугуна высокой прочности коленчатый вал состоит из шатунных и коренных шеек, соединенных щеками и вращающихся в подшипниках скольжения. Щеки создают противовес шатунным шейкам. Основная функция коленчатого вала состоит в восприятии усилия от шатуна для преобразования его в крутящий момент. Внутри щек и шеек вала предусмотрены отверстия для подачи под давлением масла системой смазки двигателя.

Маховик

Маховик устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.

Блок и головка цилиндров

Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.В целом, поршень, гильза цилиндров и шатун формируют цилиндр или цилиндропоршневую группу кривошипно-шатунного механизма. Современные двигатели могут иметь до 16 и более цилиндров.

Понравилась статья?

Ставь лайк и подписывайся на канал !

Так ты будешь получать больше интересной и полезной информации.

Источник

Автомобиль от А до Я: устройство двигателя внутреннего сгорания

Новая рубрика, готовьтесь! Будет много познавательного текста с картинками.

Двигатель внутреннего сгорания (ДВС) является сердцем автомобиля. Главная особенность этих двигателей заключается в том, что воспламенение топлива происходит внутри камеры сгорания (КС), а не в сторонних внешних агрегатах.

В процессе работы тепловая энергия, выделяемая, вследствие, сгорания топлива, преобразуется в механическую.

По применяемому топливу

— легкие жидкие (газ, бензин)

— тяжелые жидкие (дизельное топливо)

— Бензиновые двигатели

Бывают двух типов: бензиновые карбюраторные и бензиновые инжекторные.

В первом случае смесеобразование (смешивания топлива с воздухом) происходит в карбюраторе или во впускном коллекторе с помощью форсунок. Далее, смесь попадает в цилиндр, сжимается и поджигается искрой от свечи.

Во втором же случае, топливо впрыскивается во впускной коллектор или в цилиндр с помощью инжекторов (распыляющие форсунки).

— Дизельные двигатели

Специальное дизельное топливо (ДТ) подается в определенный момент (не доходя до мертвых точек) в цилиндр под высоким давлением с помощью форсунки.

Движение поршня сжимает смесь еще сильнее, топливо нагревается, с последующим воспламенением горючей смеси (за счет высокого давления).

Такие двигатели характеризуются малыми оборотами и высоким крутящим моментом.

— Газовые двигатели

В качестве топлива, двигатель использует углеводороды. В основ, такие двигатели работают на пропане, но встречаются и другой газ в качестве топлива.

Главное отличие от других двигателей — высокая степень сжатия. Такие двигатели меньше изнашиваются благодаря тому, что топливо уже подается в газообразном состоянии. Также, экономичность газовых двигателей на лицо — газ дешевле бензина.

Стоит отметить и экологичность — отсутствует дымность двигателя.

По способу воспламенения

— от искры (бензиновые)

— от сжатия (дизельные)

По числу и расположению цилиндров

— Рядный двигатель

Наиболее распространенная компоновка, цилиндры расположены в один ряд перпендикулярно коленчатому валу. Такие двигатели просты в конструкции, но при большом количестве цилиндров — увеличивается размер двигателя в длину.

— V-образный

Для уменьшения длины агрегата, цилиндры располагают под углом от 60 до 120 градусов, при этом, продольные оси цилиндров совпадают с продольной осью коленчатого вала.

Двигатель получается довольно небольших размеров в продольном отношении (короткий).

Из минусов: довольно большая ширина двигатели и раздельные головки блока, что приводит к увеличению себестоимости при изготовлении.

— Оппозитный

Горизонтально-оппозитный двигатель имеет меньшие габариты по высоте, что позволит снизить центр тяжести всего автомобиля. Из плюсов можно выделить: компактность, симметричность компоновки.

— VR-образный

За счет 6-ти цилиндров, расположенных под углом 150 градусов, образуется весьма компактный (узкий и короткий) двигатель. А также, этот двигатель имеет всего одну головку блока.

— W-образный

В этих двигателях соединены два ряда цилиндров в VR-исполнении.

Угол расположения цилиндров равен — 150 градусам, а сами ряды — под углом 720 градусов.

Штатный автомобильный двигатель состоит из 2-х механизмов и 5-ти систем.

Механизмы
  • кривошипно-шатунный механизм;
  • газораспределительный механизм.

Системы
  • охлаждение
  • смазка
  • питание
  • зажигание
  • выпуска отработавших газов

Рассмотрим механизмы двигателя подробнее.

Кривошипно-шатунный механизм

Данный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

В свою очередь, кривошипно-шатунный механизм состоит из:

1) блока цилиндров с картером;

2) головки блока цилиндра;

3) поддона картера двигателя;

6) коленчатого вала;

Блок цилиндров

Представляет собой цельноотлитую деталь, объединяющей цилиндры двигателя. На нем располагаются опорные поверхности для установки коленчатого вала, а к верхней части, как правило, крепится головка блока цилиндров.

Цилиндры в блоке делаются либо отлитыми заедино с блоком, либо представляют собой отдельные сменные втулки.

Также, блок отрабатывает еще, не менее важную, функцию — по отверстия в блоке под давлением подается масло для смазки.

Внутренние стенки цилиндров служат направляющими для поршней во время их перемещения.

Головка блока цилиндров

Непосредственно в головке цилиндров располагается камера сгорания, свечи, клапаны, также в ней, на подшипниках, вращается распределительный вал с кулачками. Присутствуют отверстия, как и в блоке цилиндров, для смазывающих веществ.

Головка крепится к блоку цилиндра, образуя основной агрегат двигателя.

Поддон картера

Картер отливается вместе с блоком цилиндров. Его прямое назначение — резервуар для масла. В нижней части присутствует пробка для того, чтобы была возможность слить старое масло при его замене. Поддон крепится к картеру болтами, а во избежания утечки масла — ставится прокладка.

Поршень

Цилиндрическая деталь, которая совершает возвратно поступательное движение внутри цилиндра.

Поршень состоит из: днища, уплотняющей части, направляющей части (юбка).

Форма днища зависит от возложенных на поршень задач. Вогнутое днище позволяет создать более рациональную камеру сгорания. Выгнутое — делает поршень прочнее, но уменьшается рациональность камеры сгорания.

Днище с уплотняющей частью образуют головку поршня. В уплотняющей части располагаются маслосъемные и компрессионные кольца.

Юбка поршня служит для направления движения в цилиндре.

Шатун

Именно шатун соединяет поршень (с помощью поршневого «пальца») с коленчатым валом (с помощью шатунной шейки коленчатого вала). Предназначен для передачи возвратно поступательного движения.

Для того, чтобы снизить износ шатунных шеек коленчатого вала, между ними и шатунами помещаются антифрикционные вкладыши.

Коленчатый вал

Деталь сложной формы, имеющая шейки для крепления шатунов, от которых воспринимает усилия и преобразует их в крутящий момент.

Коленчатый вал имеет сложную форму и выполняется из сталей или чугунов.

Маховик

Маховик — зубчатое колесо, предназначенное для: запуска двигателя, соединения двигателя с трансмиссией, передачи крутящего момента с двигателя на коробку передач и стабилизирует работу коленчатого вала.

Газораспределительный механизм

— впускных и выпускных клапанов.

Распределительный вал

Как правило (в современных автомобилях) расположен в верхней части головки цилиндров.

Неотъемлемой частью распредвала являются его кулачки. Их ровно столько, сколько впускных и выпускных клапанов. Эти кулачки надавливая на рычаг толкателя клапана, открывают его, а «сбегая» с рычага, клапан закрывается от действия возвратной пружины.

Клапана

Клапан состоит из плоской шляпки (головки) и стержня. Причем, диаметр головки впускного клапана делают несколько больше, чем диаметр головки выпускного клапана (это делается для лучшего наполнения топливом цилиндров).

Принцип работы двигателя

Определения

Верхняя мертвая точка – крайнее верхнее положение поршня в цилиндре.

Нижняя мертвая точка – крайнее нижнее положение поршня в цилиндре.

Ход поршня – расстояние, которое поршень проходит от одной мертвой точки до другой.

Камера сгорания – пространство между головкой блока цилиндров и поршнем при его нахождении в верхней мертвой точке.

Рабочий объем цилиндра – пространство, освобождаемое поршнем при его перемещении из верхней мертвой точки в нижнюю мертвую точку.

Рабочий объем двигателя – сумма рабочих объемов всех цилиндров двигателя. Выражается в литрах, поэтому часто называется литражом двигателя.

Полный объем цилиндра – сумма объема камеры сгорания и рабочего объема цилиндра.

Степень сжатия – показывает во сколько раз полный объем цилиндра больше объема камеры сгорания.

Компрессия – давление в цилиндре в конце такта сжатия.

Такт – процесс (часть рабочего цикла), который происходит в цилиндре за один ход поршня.

Источник

Тест «Кривошипно-шатунный механизм»

Содержимое публикации

Бюджетное профессиональное образовательное учреждение

«Седельниковский агропромышленный техникум»

МДК.01.02 «Устройство, техническое обслуживание и ремонт автомобилей»

ПМ. 01 Техническое обслуживание и ремонт автотранспорта

по профессии 23.01.03 Автомеханик

Составил: Баранов Владимир Ильич мастер производственного обучения

Седельниково, Омская область, 2017

Целью настоящих тестов является закрепление студентами знаний, полученных при изучении теоретического материала по теме «Кривошипно-шатунный механизм», входящей в состав МДК 01.02 «Устройство, техническое обслуживание и ремонт автомобильного транспорта» профессии 23.01.03 «Автомеханик».
Тесты составлены в соответствии с требованиями программы профессионального модуля ПМ.01 «Техническое обслуживание и ремонт автомобильного транспорта», по профессии 23.01.03 «Автомеханик», 1 курс.

1.Какие детали КШМ относятся к неподвижной группе?

а) блок цилиндров, картер, крышка блок-картера, маховик

б) блок цилиндров, картер, крышка блок-картера, коленчатый вал, гильза цилиндров

в ) блок цилиндров, картер, крышка блок картера, гильза цилиндров, прокладка блок-картера

2.Из каких материалов изготавливают блок-картер современного двигателя?

а) из легированной стали

б) из бронзы или латуни

в) из чугуна или алюминиевых сплавов

3.Чем закрывается блок-картер двигателя сверху и снизу?

а) сверху и снизу специальными кожухами

б) сверху крышкой цилиндров, снизу кожухом маховика

в) сверху крышкой цилиндров, снизу поддоном картера

4.Как закрывается блок цилиндров на двигателе КамАЗ-740 сверху?

а) двумя головками из чугуна

б ) каждый цилиндр отдельной головкой из алюминиевого сплава

в) двумя головками из алюминиевого сплава

г) одной головкой из алюминиевого сплава

5.Какие детали КШМ относятся к подвижной группе?

а) коленчатый вал, маховик, поршень, поршневые кольца, шатун, коренные подшипники

б ) коленчатый вал, маховик, поршень, поршневые кольца, шатун, шатунные подшипники

в) коленчатый вал, маховик, поршень, поршневые кольца, шатун, поддон картера.

6.Что является направляющей для поршня при его перемещениях в двигателе?

б ) гильза цилиндра

в) коленчатый вал

7.Что называют зеркалом цилиндра?

а) установочные пояски гильзы

б) внутреннюю поверхность гильзы цилиндров

в) наружную поверхность гильзы цилиндров.

г) специальное устройство на торце гильзы

8.Что означает выражение: «На двигателе установлены мокрые гильзы?»

а) гильза, внутренняя поверхность которой смазывается маслом б) гильза, наружная поверхность которой омывается охлаждающей жидкостью

в) гильза, которая охлаждается воздухом

9.Что такое камера сгорания?

а ) объем между днищем поршня и головкой цилиндра, когда поршень находится в ВМТ

б) весь объем расположенный под поршнем

в) объем, в котором происходят рабочие процессы двигателя.

10.Сколько головок цилиндров имеет двигатель ЗиЛ-508?

11.Как затягивают болты или шпильки крепления головок цилиндров?

а) в такой последовательности как работает двигатель с применением удлинителя ключа

б) затяжку проводят, прилагая к ключу как можно большее усилие

в ) затяжку проводят равномерно в определенной последовательности в 2-3 приема, с определенным усилием

12.Почему головку поршня выполняют меньшего диаметра, чем юбку?

а) для удобства установки компрессионных и маслосъемных колец б) для равномерного распределения давления газов на поршень

в) для предотвращения заклинивания поршня при нагреве его во время работы

13.Из какого материала изготавливают поршни?

а) из бронзового сплава

б) из алюминиевого сплава

14.Каким способом фиксируется поршневой палец в поршне?

а ) стопорными кольцами

б) стопорными штифтами

в) установочными болтами

15.По назначению поршневые кольца делятся на:

а) уплотнительные и маслосъемные

б) компрессионные и уплотнительные

в) к омпрессионные и маслосъемные.

г) уплотнительные и стопорные

16.Какое компрессионное кольцо работает в самых тяжелых условиях?

17. Какая деталь соединяет коленчатый вал двигателя с поршнем?

А поршневой палец

в) шатунный подшипник.

18. Сколько шатунов крепится на 1 шатунной шейке коленчатого вала 8-ми цилиндрового V -образного двигателя?

19. Рядный четырехцилиндровый двигатель имеет коленчатый вал на котором

а) 4коренных и 4шатунных шеек

б ) 5коренных и 4шатунных шеек

в) 4коренных и 5шатунных шеек

г) 5коренных и 5шатунных шеек.

20. Для чего предназначена нижняя головка шатуна с крышкой?

а) для соединения шатуна с поршнем

б) для соединения шатуна с коленчатым валом

в) для соединения шатуна с поршневым пальцем.

Критерии оценок тестирования:

Оценка «отлично» 18-20 правильных ответов из 20 предложенных вопросов;

Оценка «хорошо» 14-17 правильных ответов из 20 предложенных вопросов;

Оценка «удовлетворительно» 10-13 правильных ответов из 20 предложенных вопросов;

Оценка неудовлетворительно» 0-9 правильных ответов из 20 предложенных вопросов.

Кузнецов А.С. Техническое обслуживание и ремонт автомобилей: в 2 ч. – учебник для нач. проф. образования / А.С. Кузнецов. — М.: Издательский центр «Академия», 2012.

Кузнецов А.С. Слесарь по ремонту автомобилей (моторист): учеб. пособие для нач. проф. образования / А.С. Кузнецов. – 8-е изд., стер. – М.: Издательский центр «Академия», 2013.

Автомеханик / сост. А.А. Ханников. – 2-е изд. – Минск: Современная школа, 2010.

Виноградов В.М. Техническое обслуживание и ремонт автомобилей: Основные и вспомогательные технологические процессы: Лабораторный практикум: учеб. пособие для студ. учреждений сред. проф. образования / В.М. Виноградов, О.В. Храмцова. – 3-е изд., стер. – М.: Издательский центр «Академия», 2012.

Петросов В.В. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.В. Петросов. – М.: Издательский центр «Академия», 2005.

Карагодин В.И. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.И. Карагодин, Н.Н. Митрохин. – 3-е изд., стер. – М.: Издательский центр «Академия», 2005.

Коробейчик А.В. к-68 Ремонт автомобилей / Серия «Библиотека автомобилиста». Ростов н/Д: «Феникс», 2004.

Коробейчик А.В. К-66 Ремонт автомобилей. Практический курс / Серия «Библиотека автомобилиста». – Ростов н/Д: «Феникс», 2004.

Чумаченко Ю.Т., Рассанов Б.Б. Автомобильный практикум: Учебное пособие к выполнению лабораторно-практических работ. Изд. 2-е, доп. – Ростов н/Д: Феникс, 2003.

Слон Ю.М. С-48 Автомеханик / Серия «Учебники, учебные пособия». – Ростов н/Д: «Феникс», 2003.

Жолобов Л.А., Конаков А.М. Ж-79 Устройство и техническое обслуживание автомобилей категорий «В» и «С» на примере ВАЗ-2110, ЗИЛ-5301 «Бычок». Серия «Библиотека автомобилиста». – Ростов-на-Дону: «Феникс», 2002.

Источник

Тест №1 «Кривошипно-шатунный механизм»

Бюджетное профессиональное образовательное учреждение

Омской области

«Седельниковский агропромышленный техникум»


 


 


 


 


 

ТЕСТ

«Кривошипно-шатунный механизм»

МДК.01.02 «Устройство, техническое обслуживание и ремонт автомобилей»

ПМ. 01 Техническое обслуживание и ремонт автотранспорта

по профессии 23.01.03 Автомеханик


 


 


 


 

Составил: Баранов Владимир Ильич мастер производственного обучения


 


 


 


 


 

Седельниково, Омская область, 2017

Целью настоящих тестов является закрепление студентами знаний, полученных при изучении теоретического материала по теме «Кривошипно-шатунный механизм», входящей в состав МДК 01.02 «Устройство, техническое обслуживание и ремонт автомобильного транспорта» профессии 23.01.03 «Автомеханик».
Тесты составлены в соответствии с требованиями программы профессионального модуля ПМ.01 «Техническое обслуживание и ремонт автомобильного транспорта», по профессии 23.01.03 «Автомеханик», 1 курс.


 

ТЕСТ

«Кривошипно-шатунный механизм»

 

1. Какие детали КШМ относятся к неподвижной группе?

а) блок цилиндров, картер, крышка блок-картера, маховик

б) блок цилиндров, картер, крышка блок-картера, коленчатый вал, гильза цилиндров

в) блок цилиндров, картер, крышка блок картера, гильза цилиндров, прокладка блок-картера


 

2. Из каких материалов изготавливают блок-картер современного двигателя?

а) из легированной стали

б) из бронзы или латуни

в) из чугуна или алюминиевых сплавов


 

3. Чем закрывается блок-картер двигателя сверху и снизу?

а) сверху и снизу специальными кожухами

б) сверху крышкой цилиндров, снизу кожухом маховика

в) сверху крышкой цилиндров, снизу поддоном картера


 

4. Как закрывается блок цилиндров на двигателе КамАЗ-740 сверху?

а) двумя головками из чугуна

б) каждый цилиндр отдельной головкой из алюминиевого сплава

в) двумя головками из алюминиевого сплава

г) одной головкой из алюминиевого сплава


 

5. Какие детали КШМ относятся к подвижной группе?

а) коленчатый вал, маховик, поршень, поршневые кольца, шатун, коренные подшипники

б) коленчатый вал, маховик, поршень, поршневые кольца, шатун, шатунные подшипники

в) коленчатый вал, маховик, поршень, поршневые кольца, шатун, поддон картера.


 

6. Что является направляющей для поршня при его перемещениях в двигателе?

а) блок-картер

б) гильза цилиндра

в) коленчатый вал


 


 

7. Что называют зеркалом цилиндра?

а) установочные пояски гильзы

б) внутреннюю поверхность гильзы цилиндров

в) наружную поверхность гильзы цилиндров.

г) специальное устройство на торце гильзы

 

8. Что означает выражение: «На двигателе установлены мокрые гильзы?»

а) гильза, внутренняя поверхность которой смазывается маслом б) гильза, наружная поверхность которой омывается охлаждающей жидкостью

в) гильза, которая охлаждается воздухом

 

9. Что такое камера сгорания?

а) объем между днищем поршня и головкой цилиндра, когда поршень находится в ВМТ

б) весь объем расположенный под поршнем

в) объем, в котором происходят рабочие процессы двигателя.

 

10. Сколько головок цилиндров имеет двигатель ЗиЛ-508?

а) 8головок

б) 4головки

в) 2головки

г) 1головку.

 

11. Как затягивают болты или шпильки крепления головок цилиндров?

а) в такой последовательности как работает двигатель с применением удлинителя ключа

б) затяжку проводят, прилагая к ключу как можно большее усилие

в) затяжку проводят равномерно в определенной последовательности в 2-3 приема, с определенным усилием

 

 

12. Почему головку поршня выполняют меньшего диаметра, чем юбку?

а) для удобства установки компрессионных и маслосъемных колец б) для равномерного распределения давления газов на поршень

в) для предотвращения заклинивания поршня при нагреве его во время работы

 

13. Из какого материала изготавливают поршни?

а) из бронзового сплава

б) из алюминиевого сплава

в) из стали

г) из титана

14. Каким способом фиксируется поршневой палец в поршне?

а) стопорными кольцами

б) стопорными штифтами

в) установочными болтами

 

15. По назначению поршневые кольца делятся на:

а) уплотнительные и маслосъемные

б) компрессионные и уплотнительные

в) компрессионные и маслосъемные.

г) уплотнительные и стопорные

  

16. Какое компрессионное кольцо работает в самых тяжелых условиях?

а) верхнее

б) нижнее

в) среднее.

 

17. Какая деталь соединяет коленчатый вал двигателя с поршнем?

А поршневой палец

б) шатун

в) шатунный подшипник.

 

18. Сколько шатунов крепится на 1 шатунной шейке коленчатого вала 8-ми цилиндрового V-образного двигателя?

а) один

б) два

в) четыре.

г) восемь

 

19. Рядный четырехцилиндровый двигатель имеет коленчатый вал на котором

а) 4коренных и 4шатунных шеек

б) 5коренных и 4шатунных шеек

в) 4коренных и 5шатунных шеек

г) 5коренных и 5шатунных шеек.

 

20. Для чего предназначена нижняя головка шатуна с крышкой?

а) для соединения шатуна с поршнем

б) для соединения шатуна с коленчатым валом

в) для соединения шатуна с поршневым пальцем.

 

Эталон ответов:

Вопрос

1

2

3

4

5

6

7

Ответ

в

в

в

б

б

б

б

Вопрос

8

9

10

11

12

13

14

Ответ

б

а

в

в

в

б

а

Вопрос

15

16

17

18

19

20

 

ответ

в

а

б

б

б

б

 


 

Критерии оценок тестирования:

Оценка «отлично» 18-20 правильных ответов из 20 предложенных вопросов;

Оценка «хорошо» 14-17 правильных ответов из 20 предложенных вопросов;

Оценка «удовлетворительно» 10-13 правильных ответов из 20 предложенных вопросов;

Оценка неудовлетворительно» 0-9 правильных ответов из 20 предложенных вопросов.

Список литературы

Кузнецов А.С. Техническое обслуживание и ремонт автомобилей: в 2 ч. – учебник для нач. проф. образования / А.С. Кузнецов. — М.: Издательский центр «Академия», 2012.

Кузнецов А.С. Слесарь по ремонту автомобилей (моторист): учеб. пособие для нач. проф. образования / А.С. Кузнецов. – 8-е изд., стер. – М.: Издательский центр «Академия», 2013.

Автомеханик / сост. А.А. Ханников. – 2-е изд. – Минск: Современная школа, 2010.

Виноградов В.М. Техническое обслуживание и ремонт автомобилей: Основные и вспомогательные технологические процессы: Лабораторный практикум: учеб. пособие для студ. учреждений сред. проф. образования / В.М. Виноградов, О.В. Храмцова. – 3-е изд., стер. – М.: Издательский центр «Академия», 2012.

Петросов В.В. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.В. Петросов. – М.: Издательский центр «Академия», 2005.

Карагодин В.И. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.И. Карагодин, Н.Н. Митрохин. – 3-е изд., стер. – М.: Издательский центр «Академия», 2005.

Коробейчик А.В. к-68 Ремонт автомобилей / Серия «Библиотека автомобилиста». Ростов н/Д: «Феникс», 2004.

Коробейчик А.В. К-66 Ремонт автомобилей. Практический курс / Серия «Библиотека автомобилиста». – Ростов н/Д: «Феникс», 2004.

Чумаченко Ю.Т., Рассанов Б.Б. Автомобильный практикум: Учебное пособие к выполнению лабораторно-практических работ. Изд. 2-е, доп. – Ростов н/Д: Феникс, 2003.

Слон Ю.М. С-48 Автомеханик / Серия «Учебники, учебные пособия». – Ростов н/Д: «Феникс», 2003.

Жолобов Л.А., Конаков А.М. Ж-79 Устройство и техническое обслуживание автомобилей категорий «В» и «С» на примере ВАЗ-2110, ЗИЛ-5301 «Бычок». Серия «Библиотека автомобилиста». – Ростов-на-Дону: «Феникс», 2002.


 

Контроль знаний: тест «Кривошипно-шатунный механизм»

Бюджетное профессиональное образовательное учреждение

Омской области

«Седельниковский агропромышленный техникум»

ТЕСТ

«Кривошипно-шатунный механизм»

МДК.01.02 «Устройство, техническое обслуживание и ремонт автомобилей»

ПМ. 01 Техническое обслуживание и ремонт автотранспорта

по профессии 23.01.03 Автомеханик

Составил: Баранов Владимир Ильич мастер производственного обучения

Седельниково, Омская область, 2017

Целью настоящих тестов является закрепление студентами знаний, полученных при изучении теоретического материала по теме «Кривошипно-шатунный механизм», входящей в состав МДК 01.02 «Устройство, техническое обслуживание и ремонт автомобильного транспорта» профессии 23.01.03 «Автомеханик».
Тесты составлены в соответствии с требованиями программы профессионального модуля ПМ.01 «Техническое обслуживание и ремонт автомобильного транспорта», по профессии 23.01.03 «Автомеханик», 1 курс.

ТЕСТ

«Кривошипно-шатунный механизм»

 

1. Какие детали КШМ относятся к неподвижной группе?

а) блок цилиндров, картер, крышка блок-картера, маховик

б) блок цилиндров, картер, крышка блок-картера, коленчатый вал, гильза цилиндров

в) блок цилиндров, картер, крышка блок картера, гильза цилиндров, прокладка блок-картера

2. Из каких материалов изготавливают блок-картер современного двигателя?

а) из легированной стали

б) из бронзы или латуни

в) из чугуна или алюминиевых сплавов

3. Чем закрывается блок-картер двигателя сверху и снизу?

а) сверху и снизу специальными кожухами

б) сверху крышкой цилиндров, снизу кожухом маховика

в) сверху крышкой цилиндров, снизу поддоном картера

4. Как закрывается блок цилиндров на двигателе КамАЗ-740 сверху?

а) двумя головками из чугуна

б) каждый цилиндр отдельной головкой из алюминиевого сплава

в) двумя головками из алюминиевого сплава

г) одной головкой из алюминиевого сплава

5. Какие детали КШМ относятся к подвижной группе?

а) коленчатый вал, маховик, поршень, поршневые кольца, шатун, коренные подшипники

б) коленчатый вал, маховик, поршень, поршневые кольца, шатун, шатунные подшипники

в) коленчатый вал, маховик, поршень, поршневые кольца, шатун, поддон картера.

6. Что является направляющей для поршня при его перемещениях в двигателе?

а) блок-картер

б) гильза цилиндра

в) коленчатый вал

7. Что называют зеркалом цилиндра?

а) установочные пояски гильзы

б) внутреннюю поверхность гильзы цилиндров

в) наружную поверхность гильзы цилиндров.

г) специальное устройство на торце гильзы

8. Что означает выражение: «На двигателе установлены мокрые гильзы?»

а) гильза, внутренняя поверхность которой смазывается маслом б) гильза, наружная поверхность которой омывается охлаждающей жидкостью

в) гильза, которая охлаждается воздухом

9. Что такое камера сгорания?

а) объем между днищем поршня и головкой цилиндра, когда поршень находится в ВМТ

б) весь объем расположенный под поршнем

в) объем, в котором происходят рабочие процессы двигателя.

10. Сколько головок цилиндров имеет двигатель ЗиЛ-508?

а) 8головок

б) 4головки

в) 2головки

г) 1головку.

11. Как затягивают болты или шпильки крепления головок цилиндров?

а) в такой последовательности как работает двигатель с применением удлинителя ключа

б) затяжку проводят, прилагая к ключу как можно большее усилие

в) затяжку проводят равномерно в определенной последовательности в 2-3 приема, с определенным усилием

12. Почему головку поршня выполняют меньшего диаметра, чем юбку?

а) для удобства установки компрессионных и маслосъемных колец б) для равномерного распределения давления газов на поршень

в) для предотвращения заклинивания поршня при нагреве его во время работы

 

13. Из какого материала изготавливают поршни?

а) из бронзового сплава

б) из алюминиевого сплава

в) из стали

г) из титана

14. Каким способом фиксируется поршневой палец в поршне?

а) стопорными кольцами

б) стопорными штифтами

в) установочными болтами

 

15. По назначению поршневые кольца делятся на:

а) уплотнительные и маслосъемные

б) компрессионные и уплотнительные

в) компрессионные и маслосъемные.

г) уплотнительные и стопорные

  

16. Какое компрессионное кольцо работает в самых тяжелых условиях?

а) верхнее

б) нижнее

в) среднее.

 

17. Какая деталь соединяет коленчатый вал двигателя с поршнем?

А поршневой палец

б) шатун

в) шатунный подшипник.

 

18. Сколько шатунов крепится на 1 шатунной шейке коленчатого вала 8-ми цилиндрового V-образного двигателя?

а) один

б) два

в) четыре.

г) восемь

 

19. Рядный четырехцилиндровый двигатель имеет коленчатый вал на котором

а) 4коренных и 4шатунных шеек

б) 5коренных и 4шатунных шеек

в) 4коренных и 5шатунных шеек

г) 5коренных и 5шатунных шеек.

 

20. Для чего предназначена нижняя головка шатуна с крышкой?

а) для соединения шатуна с поршнем

б) для соединения шатуна с коленчатым валом

в) для соединения шатуна с поршневым пальцем.

 

Список литературы

Кузнецов А.С. Техническое обслуживание и ремонт автомобилей: в 2 ч. – учебник для нач. проф. образования / А.С. Кузнецов. — М.: Издательский центр «Академия», 2012.

Кузнецов А.С. Слесарь по ремонту автомобилей (моторист): учеб. пособие для нач. проф. образования / А.С. Кузнецов. – 8-е изд., стер. – М.: Издательский центр «Академия», 2013.

Автомеханик / сост. А.А. Ханников. – 2-е изд. – Минск: Современная школа, 2010.

Виноградов В.М. Техническое обслуживание и ремонт автомобилей: Основные и вспомогательные технологические процессы: Лабораторный практикум: учеб. пособие для студ. учреждений сред. проф. образования / В.М. Виноградов, О.В. Храмцова. – 3-е изд., стер. – М.: Издательский центр «Академия», 2012.

Петросов В.В. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.В. Петросов. – М.: Издательский центр «Академия», 2005.

Карагодин В.И. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.И. Карагодин, Н.Н. Митрохин. – 3-е изд., стер. – М.: Издательский центр «Академия», 2005.

Коробейчик А.В. к-68 Ремонт автомобилей / Серия «Библиотека автомобилиста». Ростов н/Д: «Феникс», 2004.

Коробейчик А.В. К-66 Ремонт автомобилей. Практический курс / Серия «Библиотека автомобилиста». – Ростов н/Д: «Феникс», 2004.

Чумаченко Ю.Т., Рассанов Б.Б. Автомобильный практикум: Учебное пособие к выполнению лабораторно-практических работ. Изд. 2-е, доп. – Ростов н/Д: Феникс, 2003.

Слон Ю.М. С-48 Автомеханик / Серия «Учебники, учебные пособия». – Ростов н/Д: «Феникс», 2003.

Жолобов Л.А., Конаков А.М. Ж-79 Устройство и техническое обслуживание автомобилей категорий «В» и «С» на примере ВАЗ-2110, ЗИЛ-5301 «Бычок». Серия «Библиотека автомобилиста». – Ростов-на-Дону: «Феникс», 2002.

Как работает и устроен кривошипно-шатунный механизм двигателя


Двигатели внутреннего сгорания, используемые на автомобилях, функционируют за счет преобразования энергии, выделяемой при горении горючей смеси, в механическое действие – вращение. Это преобразование обеспечивается кривошипно-шатунным механизмом (КШМ), который является одним из ключевых в конструкции двигателя автомобиля.

Устройство механизма

Классический кривошипно-шатунный механизм был известен ещё в Древнем Риме. Использовался похожий принцип в Римской пилораме, только там вращение, под воздействием течения реки, водяного колеса превращалось в возвратно-поступательное движение пилы.
В паровых машинах также использовался КШМ, похожий на использующийся сейчас в автомобильных двигателях внутреннего сгорания (ДВС). Только в нём поршень был соединён с шатуном через шток и цилиндр низкого давления. Схожая конструкция используется иногда в ДВС и по сей день.

В так называемых крейцкопфных двигателях поршень жёстко соединён с крейцкопфом – деталью, движущейся по неподвижным направляющим в одном измерении, как и поршень, через шток, а далее по привычной схеме – шатун с коленвалом. Это позволяет увеличить рабочий ход поршня, а иногда делает цилиндр двусторонним, в таких конструкциях добавлена ещё одна камера сгорания. Такой тип КШМ применяется чаще всего в судовых дизелях и другой крупной технике.

Возможно, вас также заинтересует статья нашего специалиста, в которой он рассказывает подробно о шлифовке коленвала.

Также прочитайте интересную статью нашего эксперта, в которой подробно описан роторно-поршневой двигатель Ванкеля.

Дополнительно советуем прочитать статью нашего специалиста, посвящённую подробному описанию двигателя Ибадуллаева.

Кривошипно-шатунный механизм состоит из двух основных групп деталей – подвижных и неподвижных.

  1. К подвижным частям КШМ относятся следующие детали: поршни, которые вместе с кольцами и пальцами объединены в поршневую группу, шатуны, коленчатый вал (в просторечном сокращении — коленвал), подшипники коленвала и маховик.
  2. Неподвижные – это картер, объединённый с блоком цилиндров, гильзы цилиндров, головка блока цилиндров. Также к ним относятся поддон (нижний картер), полукольца коленвала, картер маховика и сцепления, а также кронштейны и детали крепежа.

Иногда выделяют и цилиндропоршневую группу, в которую входит поршневая и гильза цилиндра.

Блок цилиндров

Блок цилиндров сейчас неотделим от картера блока. Так, кстати, было не всегда – на старых двигателях (у «Запорожца», например) они могли быть изготовлены раздельно. Именно картер вместе с блоком цилиндров – основной узел конструкции двигателя автомобиля.

Внутри блока и происходит вся полезная работа двигателя. К блоку цилиндров крепятся внизу — нижний картер (поддон), сверху — головка блока, сзади — картер маховика, топливная, выпускная системы и другие детали двигателя. Сам блок прикреплён к шасси автомобиля через специальные «подушки».

Материал, из которого изготовлена эта важная часть двигателя – чаще всего либо алюминий, либо чугун. На спортивных автомобилях могут применяться и композитные материалы. В блок запрессованы съёмные гильзы, которые облегчают ход поршней и ремонтопригодность блока – то есть его расточку под «ремонтные» поршни и кольца. Гильзы делают из чугуна, стали или композитных сплавов. Существует два вида гильз:

  • «сухие» — когда внешняя поверхность гильз не омывается охлаждающей жидкостью;
  • «мокрые» — когда гильзу снаружи охлаждает поток жидкости.

Каждый вариант имеет свои достоинства и недостатки.

Поршни

Поршень – это металлическая деталь, которая имеет форму стакана, и в некоторых автопредприятиях водители и автослесари со стажем старые поршни, очищенные от нагара, в качестве стаканов и использовали. Однако основное его предназначение, естественно, не в этом, а для того, чтобы преобразовывать потенциальную энергию давления и термическую энергию температуры газов в кинетическую энергию вращения коленчатого вала в момент рабочего хода.

Во время тактов впуска он служит в качестве насоса, затягивающего воздух или горючую смесь, в ходе такта сжатия сжимает её, а в ходе такта выпуска — помогает удалению отработанных газов. Во время рабочего хода (точнее, чуть раньше) смесь воспламеняется (или форсунка впрыскивает топливо на дизельных двигателях), и горящие газы давят на поршень, заставляя его выполнять работу по преобразованию термической энергии в кинетическую.

Поршень современного автомобильного двигателя выполнен чаще всего из сплавов на основе алюминия. Они обеспечивают хороший отвод лишнего тепла, к тому же довольно лёгкие.

Составные части поршня автомобильного двигателя – это днище, уплотняющяя часть и юбка. Поршень соединяется с шатуном при помощи находящегося в юбке пальца. Для обеспечения плотности соединения поршня со стенкой цилиндра применяются поршневые кольца.

Поршневые кольца

Это плоские незамкнутые (с разъёмом в несколько десятых долей миллиметра) стальные или чугунные кольца, надеваемые в специальные канавки на уплотнительную часть поршня. Они служат для нескольких целей:

  1. Уплотнение. Качественные, неизношенные кольца повышают компрессию (давление в цилиндре).
  2. Теплопередача. Компрессионные кольца передают лишнее тепло гильзе цилиндра, предотвращая перегрев двигателя.
  3. Не пропускают моторное масло из картера в камеру сгорания, но оставляют на стенках гильзы небольшой слой масла для смазки цилиндра. Самое нижнее кольцо называется маслосъёмным. Его конструкция специально разработана под эту задачу.

Поршневые пальцы

Поршневой палец нужен для того, чтобы связать поршень с шатуном. Он находится во внутренней части юбки поршня и представляет собой металлический цилиндр, отдалённо похожий на палец (отсюда и название). Шатун не крепится жёстко на пальце, ведь надо обеспечивать максимально ровную передачу крутящего момента от поршня к шатуну и далее. Выполнены пальцы обычно из легированной стали.

Пальцы делятся на фиксированные и плавающие. Фиксированный жёстко прикреплён к юбке поршня, и двигается на нём только шатун, а плавающий палец как в поршневой юбке, и на шатуне может крутиться. Сейчас в конструкциях автомоторов преобладают плавающие пальцы, обеспечивающие более полную и плавную передачу крутящего момента и снижающие нагрузку на детали КШМ.

Шатун

Для того, чтоб передать крутящий момент с поршня на коленвал, служит шатун, соединяющий две этих важных детали. Для того, чтобы ремонт шатуна не вызывал особых трудностей, в нём применяются специальные вкладыши, фактически разборный подшипник скольжения, хотя в некоторых двигателях с малой скоростью вращения коленвала по-прежнему применяются баббитовые вкладки, а в быстроходных моторах в обеих головках шатуна (как нижней, так и верхней) установлены подшипники качения. По форме шатун похож на рычаг или гаечный ключ с двутавровым сечением. Его верхняя, обычно неразъёмная головка соединяет его с пальцем поршня, а нижняя, разъёмная соединяет шатун с коленчатым валом. Делают шатуны чаще всего из легированной, иногда из углеродистой стали.

Коленчатый вал

Коленчатый вал, или сокращённо коленвал – одна из важнейших деталей мотора, впрочем, лишних деталей не бывает. Он имеет форму вала с «искривлениями» в сторону, к которой через оси прикреплены шатуны двигателя. Он состоит из следующих деталей:

  1. Шейки. Они нужны для того, чтобы закрепить коленвал на картере и шатуны на нём. Подразделяются на коренные и шатунные. На коренных крепится к картеру сам коленчатый вал, на шатунных шейках к коленвалу крепятся шатуны (

Попадание охлаждающей жидкости в масло

Уровень жидкости в расширительном бачке постоянно понижается, а уровень масла повышается. Масло изменяет цвет от серого до молочно-белого.

Причины неисправности — раковины, пористость или трещины в стенках охлаждающей рубашки блока цилиндров. Для проверки этого дефекта необходимо разобрать двигатель и проверить герметичность охлаждающей рубашки блока цилиндров в ванне с водой, подводя в рубашку сжатый воздух под давлением 2. 3 кгс/см 2 .

Если травление воздуха не наблюдается, то необходимо проверить герметичность головки цилиндров (см. главу «Основные неисправности механизма газораспределения»).

В процессе эксплуатации автомобиля нормальная работа кривошипно-шатунного механизма может быть нарушена в результате появления некоторых неисправностей. Основные из них: износ коренных и шатунных подшипников коленчатого вала, шеек вала, поршневых пальцев, отверстий в бобышках поршней или бронзовых втулок в верхних головках шатунов, поршней и гильз цилиндров, уменьшение компрессии в цилиндрах.

Признаками износа коренных и шатунных подшипников коленчатого вала, шеек вала являются глухие стуки, которые прослушиваются при переходе на большую частоту вращения. Причинами этой неисправности могут быть: ослабление крепления крышек подшипников, применение масла несоответствующего сорта, ослабление крепления маховика на валу.

Коренные и шатунные подшипники следует подтянуть или заменить вкладыши, болты крепления маховика затянуть и зашплинтовать, заменить масло.

Принцип работы кривошипно-шатунного механизма

Во время основного такта работы автомобильного двигателя – рабочего хода (расширения), горящие газы давят на поршень, а тот двигается вниз — от верхней мёртвой точки к нижней, тем самым передавая энергию посредством пальца и шатуна на коленчатый вал. Шатун может ограниченно поворачиваться и вокруг оси пальца поршня, и вокруг шатунной шейки коленвала, и таким образом поступательное движение поршня превращается во вращательное.

Стоит заметить, что при остальных тактах коленчатый вал через шатун, наоборот, сообщает возвратно-поступательное движение поршню. Где он его берёт? Из «рабочих» цилиндров, энергии коленвала и маховика, а при запуске – стартера.

К

атегория:

1Отечественные автомобили

П

убликация:

Техническое обслуживание и устранение простейших неисправностей механизмов двигателя

Ч

итать далее:

Устранение простейших неисправностей системы охлаждения и смазочной системы

Техническое обслуживание и устранение простейших неисправностей механизмов двигателя

Неисправности кривошипно-шатунного механизма. Снижение мощности двигателя, повышенный расход масла, топлива, дымление и увеличение стуков при работе двигателя — вот основные неисправности кривошипно-шатунного механизма.

Двигатель не развивает полной мощности при снижении компрессии из-за износа гильз цилиндров, поршней, поломки или пригорания поршневых колец.

Значительные силы трения, высокие температуры и давление газов в сопряжении поршень — поршневые кольца — гильза цилинд; ров создает большую нагрузку на поршень, вызывают газовую коррозию гильз цилиндров. Пригорание поршневых колец нарушает герметичность надпоршневого пространства, газы прорываются в картер и мощностные характеристики двигателя ухудшаются. Отложение нагара на днищах поршней и в камере сгорания снижает их теплопроводность, что вызывает перегрев двигателя, падение его мощности и повышение расхода топлива.

Рекламные предложения на основе ваших интересов:

Расход масла и топлива, дымление двигателя увеличиваются при изнашивании деталей шатунно-поршневой группы, поломке поршневых колец, закоксовывании поршневых колец в канавках, прорезей в маслосъемных кольцах, отверстий в канавке под масло-съемные кольца.

Стук коленчатого вала вызывается либо недостаточными давлением и подачей масла, либо недопустимо увеличившимися зазорами между шейками коленчатого вала и вкладышами коренных и шатунных подшипников из-за изнашивания этих деталей. Стуки поршней и поршневых пальцев свидетельствуют об изнашивании деталей шатунно-поршневой группы.

Способы выявления неисправностей кривошипно-шатунного механизма. Состояние сопряжения поршень — поршневые кольца — гильза цилиндра можно оценить по количеству газов, прорывающихся в картер. Этот диагностический параметр измеряют при помощи расходомера КИ-4887-1, предварительно прогрев двигатель до нормального теплового режима. Прибор имеет трубу с входным и выходным дроссельными кранами. Входной патрубок присоединяют к мас-лозаливной горловине двигателя, эжектор для отсоса газов устанавливают внутри выхлопной трубы или присоединяют к вакуумной установке. В результате разрежения в эжекторе картер-ные газы поступают в расходомер. Устанавливая при помощи кранов жидкость в столбиках манометров на одном уровне, добиваются, чтобы давление в полости картера было равно атмосферному. Перепад давления Л/г устанавливают по манометру одинаковым для всех замеров при помощи крана. По шкале прибора определяют количество газов, прорывающихся в картер, и сравнивают erovc номинальным:

Мощность и экономичность двигателя зависят от компрессии в цилиндрах. Компрессия снижается при значительном износе или поломке деталей цилиндропоршневой группы. Перед измерением компрессии промывают воздушный фильтр, контролируют фазы газораспределения и регулируют тепловые зазоры клапанов.

Перед проверкой компрессии в. цилиндрах карбюраторного двигателя его прогревают до нормального теплового режима, останавливают, полностью открывают дроссельную и воздушную заслонки карбюратора, отсоединяют провода от свечей зажигания, очищают и продувают сжатым воздухом углубления для свечей в головках цилиндров и выворачивают все свечи зажигания.

Компрессию оценивают по давлению в камерах сгорания двигателя при такте сжатия и замеряют компрессометром модели 179 (для карбюраторных двигателей) или компрессометром модели КН 1125 (для дизельных двигателей).

Перед проверкой компрессии в цилиндрах дизельного двигателя его прогревают до нормального теплового режима, отсоединяют топливопровод высокого давления от форсунки проверяемого цилиндра и надевают на конец топливопровода шланг для отвода топлива в специальный сосуд, снимают форсунку и вставляют в отверстие для нее наконечник компрессометра. Компрессию замеряют при частоте вращения коленчатого вала 450… 550 об/мин.

Техническое состояние цилиндропоршневой группы также определяют по утечке воздуха, замеряемой прибором К-69М:

Рис. 1. Схема расходомера КИ-4887-1

Если значение утечки воздуха при положении поршня в в. м. т. больше предельного, следует проверить стетоскопом утечку воздуха через клапаны и убедиться в отсутствии утечки воздуха через прокладку головки цилиндров двигателя. Если при смачивании прокладки головки цилиндров мыльной водой на ней или в наливной горловине радиатора появляются пузырьки воздуха, это свидетельствует о слабой затяжке гаек головки цилиндров или о начале разрушения прокладки. Возможно наличие трещины в блоке цилиндров или камере сгорания.

При отсутствии указанных дефектов и больших значениях утечки воздуха при положении поршня в в. м. т. следует продолжить замеры при положении поршня в н. м. т. Результаты замеров следует сравнить с предельными значениями. Если показания прибора нестабильны, а утечки воздуха велики, это свидетельствует о неисправностях механизма газораспределения.

Стуки двигателя прослушивают при помощи стержневого или трубчатого стетоскопов, прикасаясь концом стержня или к зонам прослушивания на двигателе.

Состояние коренных подшипников коленчатого вала определяют, прослушивая нижнюю часть блока цилиндров при резком открытии и закрытии дроссельной заслонки. Изношенные коренные подшипники издают сильный глухой стук низкого тона, усиливающийся при резком увеличении частоты вращения коленчатого вала.

Состояние шатунных подшипников коленчатого вала определяют аналогично. Изношенные шатунные подшипники издают стук среднего тона, по характеру схожий со стуком коренных подшипников, но менее сильный и более звонкий, исчезающий при выключении свечи зажигания или форсунки прослушиваемого цилиндра.

Рис. 2. Стетоскопы: 1 — слуховая шайба; 2 — стержень; 3 — наконечники; 4 — слуховой стержень

Работу сопряжения поршень — гильза цилиндра прослушивают по всей высоте цилиндра при малой частоте вращения коленчатого вала с переходом на среднюю. Появление звука, напоминающего дрожащий звук колокола, усиливающегося с увеличением нагрузки на двигатель и уменьшающегося по мере прогрева двигателя, указывает на возможное увеличение зазора между поршнем и гильзой цилиндра, изгиб шатуна, перекос оси шатунной шейки или поршневого пальца, особенно, если у двигателя наблюдается повышенный расход топлива и масла. Скрипы и шорохи в сопряжении поршень — гильза цилиндра свидетельствуют о начинающемся заедании в этом сопряжении, вызванном малым зазором или недостаточным смазыванием.

Состояние сопряжения поршневой палец — втулка верхней головки шатуна проверяют, прослушивая верхцюю часть блока цилиндров при малой частоте вращения коленчатого вала с резким переходом на среднюю. Резкий металлический’ стук, напоминающий частые удары молотком по наковальне и пропадающий при отключении свечей зажигания или форсунок, указывает на увеличение зазора между поршневым пальцем и втулкой, недостаточное смазывание или чрезмерно большое опережение начала подачи топлива.

Сопряжение поршневое кольцо — канавка поршня проверяют на уровне н. м. т. хода поршня при средней частоте вращения коленчатого вала. Слабый, щелкающий стук высокого тона, похожий на звук от ударов колец одно о другое, свидетельствует об увеличенном зазоре между кольцами и поршневой канавкой либо об изломе колец.

Еще одним эффективным методом проверки состояния кривошипно-шатунного механизма является измерение суммарных зазоров в верхней головке шатуна и шатунном подшипнике. Проверку проводят при неработающем двигателе при помощи устройства КИ-11140.

Наконечник с трубой устройства устанавливают на место снятой свечи зажигания или форсунки проверяемого цилиндра. К основанию 4 через штуцер присоединяют компрессорно-вакуумную установку. Поршень устанавливают за 0,5… 1,0 мм от в. м. т. на такте сжатия, стопорят коленчатый вал от проворачивания и с помощью компрессорно-вакуумной установки попеременно создают в цилиндре давление 200 кПа и разрежение 60 кПа. При этом поршень, поднимаясь и опускаясь, выбирает зазоры, сумма которых фиксируется индикатором.

Рис. 3. Устрой ство КИ-11140

Способы устранения неисправностей кривошипно-шатунного механизма. При значительных изнашиваниях и поломках детали кривошипно-шатунного механизма восстанавливают или заменяют. Эти работы, как правило, выполняют, отправляя двигатель в централизованный ремонт.

Закоксовывание поршневых колец в канавках можно устранить без разборки двигателя. Для этого в конце рабочего дня, пока двигатель не остыл, в каждый цилиндр через отверстие для свечи зажигания заливают по 20 г смеси равных частей денатурированного спирта и керосина. Утром двигатель пускают и после его работы в течение 10…15 мин на холостом ходу останавливают и заменяют масло.

Для удаления нагара на днищах поршней и камере сгорания снимают с двигателя головку цилиндров. Слив охлаждающую жидкость, снимают узлы и приборы, укрепленные на головке цилиндров, а у V-образных двигателей, кроме того, все приборы с впускного трубопровода и сам трубопровод, отсоединяют трубки, шланги, тяги и провода высокого напряжения. Вывернув болты крепления, снимают ось коромысел и вынимают штанги толкателей, а затем, отвернув гайки, осторожно, стараясь не повредить прокладки, снимают головку цилиндров. Для отделения прокладки от блока или головки цилиндров пользуются тупым ножом или широкой тонкой металлической полосой.

Нагар удаляют скребками из мягкого материала (меди, дерева или текстолита), стараясь не повредить днище поршней или стенки камеры сгорания. Соседние цилиндры закрывают чистой ветошью. Для размягчения и облегчения снятия нагара на него предварительно кладут ветошь, смоченную в керосине или дизельном топливе.

Перед установкой головки цилиндров сопрягаемые плоскости блока и головки цилиндров протирают чистой ветошью, а прокладку натирают порошкообразным графитом. При этом необходимо обратить внимание на правильность установки прокладки. У двигателя ЗИЛ-645 она имеет маркировку «Верх».

При установке головок цилиндров гайки (болты) затягивают, начиная от центра и постепенно перемещаясь к краям. Болты крепления головок цилиндров двигателя ЗИЛ-645 следует затягивать в 3 приема: сначала с моментом затяжки 30 Н- м, затем с моментом затяжки 70…80 Н- м и, наконец, с моментом затяжки 140… 160 Н- м. Перед ввертыванием резьбу болтов смазывают тонким слоем графитовой смазки.

Техническое обслуживание кривошипно-шатунного механизма. При ЕО двигатель очищают от грязи, проверяют его состояние визуально и прослушивают работу на разных режимах.

При ТО-1 проверяют герметичность соединения поддона картера и сальника коленчатого вала (отсутствие потеков масла), а также крепление двигателя к раме. Крепление проверяют без рас-шплинтовки гаек. При необходимости соединения расшплинтовы-вают, подтягивают гайки и вновь зашплинтовывают. Резиновые элементы не должны иметь отслоений и разрушений резины. При наличии указанных дефектов их заменяют.

Рис. 4. Последовательность затяжки гаек (болтов) крепления головки цилиндров: а — двигателй 3M3-53-11; б — двигателя ЗИЛ-130; в — двигателя ЗИЛ-645

При ТО-2 и СО выполняют и все работы перечня ТО-1.

Неисправности механизма газораспределения проявляются в снижении мощности двигателя, неравномерности его работы, повышенном расходе топлива, стуке клапанов.

Двигатель не развивает полной мощности при повреждении (прогаре) прокладки головки цилиндров, нарушении регулировки тепловых зазоров в механизме газораспределения, неплотном прилегании клапанов к их седлам.

Увеличение зазоров в приводе клапанов вызывает увеличение ударных нагрузок на сопряжение седло — клапан. Уменьшение зазоров в результате нарушения регулировок.или отложения нагара приводит к неполной посадке клапанов в седло и нарушению герметичности цилиндров, что проявляется в повышенном стуке клапанов.

При значительной негерметичности цилиндров сильно снижается давление в конце такта-сжатия и при такте расширения, что вызывает увеличение расхода топлива, снижение мощности двигателя, затрудняет его пуск и приводит к неравномерной работе. Неравномерность работы двигателя также может вызываться потерей упругости или поломкой пружин механизма газораспределения, заеданием клапанов в направляющих втулках, износом шестерен распределительного вала, толкателей, направляющих втулок и осей коромысел. В двигателях ЗИЛ-130 и -645 возможно заедание шариков и пружин механизма поворота клапанов.

Способы выявления неисправностей механизма газораспределения. Техническое состояние механизма газораспределения оценивают по наличию и характеру стуков, герметичности клапанов, упругости клапанных пружин и изменению давления во впускном и выпускном трубопроводах.

Если на холостом ходу при малой частоте вращения коленчатого вала прослушивается тихий стук в местах расположения втулок клапанов, это указывает на обеднение горючей смеси, и заедание впускных клапанов. Частые стуки, сливающиеся в общий шум, характерны при большом износе распределительных шестерен и возможной поломке их зубьев.

Увеличивая частоту вращения коленчатого вала, прослушивают двигатель в местах расположения подшипников распределительного вала. Ровный стук среднего тона, по характеру схожий со стуком шатунных подшипников коленчатого вала, свидетельствует об усиленном износе подшипников и шеек распределительного вала.

Резкий стук на всех режимах работы двигателя в зоне крышек коромысел при одновременном падении мощности двигателя и его работе с перебоями указывает на увеличение зазоров между бойками коромысел и торцами стержней клапанов.

Герметичность клапанов определяют одновременно с замерами герметичности . цилиндров компрессометрами, прибором К-69М, газовым расходомером. Негерметичность клапанов может быть одной из причин снижения компрессии.

Для проверки упругости клапанных пружин без разборки клапанного механизма служит прибор КИ-723. Сняв крышки клапанного механизма, устанавливают ножки 5 прибора на тарелку пружины, перемещают кольцо в крайнее верхнее положение и нажимают на рукоятку с таким усилием, чтобы пружина осела на 0,5… 1 мм. Сняв прибор, Определяют по его показаниям усилие сжатия и повторяют измерение. Если усилие меньше предельного, необходимо заменить нружину или подложить под нее прокладку.

Изменение давления во впускном и выпускном трубопроводах фиксируют устанавливаемыми в трубопроводах датчиками.

Способы устранения неисправностей механизма газораспределения. Зазор между бойком коромысла и торцом стержня клапана (впускного и выпускного) холодных двигателей 3M3-53-11 и ЗИЛ-130 должен составлять Q25…0,30 мм, а двигателя ЗИЛ-645 — 0,40… 0,45 мм. Для регулировки зазоров снимают.крыш-ки головок цилиндров и проверяют крепление головок цилиндров к блоку цилиндров и стоек коромысел к головкам цилиндров. При необходимости гайки (у двигателя 3M3-53-11) или бблты (у двигателей ЗИЛ-130 и -645) подтягивают. У двигателя ЗИЛ-645 снимают крышку люка в нижней части картера маховика и устанавливают фиксатор маховика, расположенный на картере маховика, в нижнее положение. Поршень первого цилиндра устанавливают в в. м. т. конца такта сжатия. Такт сжатия определяют, проворачивая коленчатый вал рукояткой до тех пор, пока пробка из ветоши или бумаги, установленная в отверстие головки цилиндров на место вывернутой свечи зажигания или форсунки, не будет вытолкнута. Для того чтобы поршень первого цилиндра занял положение в в. м. т., коленчатый вал медленно проворачивают: у двигателя 3M3-53-11 до совмещения метки на шкиве коленчатого вала с выступом указателя, у двигателя ЭИЛ-130 —до совмещения отверстия на шкиве коленчатого вала с меткой в. м. т. на шкале указателя, у двигателя ЗИЛ-645— до совмещения рисок на муфте ТНВД.

Рис. 5. Измерение упругости клапанных пружин прибором КИ-723: 1 — рукоятка; 2 — шток; 3 — кольцо; 4 — корпус; 5—ножки прибора

В этом прложении на двигателе ЗИЛ-645 проверяют и регулируют зазоры впускных клапанов 1-го, 5-, 7-, 8-го цилиндров и выпускных клапанов 2-го, 4-, 5-, 6-го цилиндров. У остальных клапанов зазор регулируют после поворота коленчатого вала на 360° (полный оборот). На двигателях 3M3-53-11 и ЭИЛ-130 зазоры у клапанов регулируют в последовательности, соответствующей порядку работы цилиндров (1—5—4—2—6—3—7—8), поворачивая коленчатый вал при переходе от цилиндра к цилиндру на 90°.

Зазоры в клапанном механизме проверяют щупом. Щуп, толщина которого равна минимальному зазору, должен проходить свободно, а щуп, равньж по толщине максимальному зазору, — с усилием. В противном случае зазор необходимо регулировать. Ослабив и удерживая ключом контргайку регулировочного винта, вставляют в зазор щуп необходимой толщины и вращают винт до получения требуемого зазора. Удерживая винт отверткой, затягивают контргайку и снова проверяют зазор.

Рис. 6. Метки для регулировки клапанов

При неплотном прилегании клапанов к седлам механизм газораспределения разбирают. Отсоединив ось коромысел от головки цилиндров, снимают ее в сборе с коромыслами, стойками и другими деталями. На головку цилиндров устанавливают приспособление для снятия и установки клапанных пружин. Сжав клапанную пружину, вынимают клапанные сухари 1 и снимают приспособление с головки цилиндров. Со стержня клапана снимают освобожденные детали: клапанную пружину с опорной шайбой пружины и опорную шайбу. Сняв механизм поворота, из направляющей втулки вынимают клапан.

Клапаны и седла клапанов тщательно очищают от нагара, промывают и контролируют. Если тарелка и стержень клапана йе покороблены, прогара на фасках клапана и седла нет, то при наличии мелких раковин на фасках при незначительном их износе можно восстановить герметичность клапана притиркой.

Для притирки используют пасту, состоящую из одной части абразивного микропорошка М20 и двух частей масла индустриального. Перемешивая компоненты, пасту доводят до сметанообраз-ного состояния и перед употреблением обязательно дополнительно перемешивают. Тонкий равномерный слой пасты наносят на фаску клапана, стержень клапана смазывают чистым маслом для двигателя и устанавливают клапан в седло. При помощи притирочного приспособления или коловорота с присосом сообщают клапану возвратно-вращательное движение. Слегка нажимая на клапан, поворачивают его на 1/3 оборота, затем приподнимают, снова прижимают и поворачивают на 1/4 в обратном направлении. Периодически поднимая клапан, наносят на фаску новые порции пасты. Притирку заканчивают, когда на фасках клапана и седла появятся сплошные матовые пояски шириной 1,5…3 мм.

После притирки клапан, седло, канал и направляющую втулку промывают керосином и насухо вытирают. Перед установкой стержень клапана смазывают маслом для двигателя. Качество притирки клапанов можно проверить до и после сборки клапанного механизма. В первом случае поперек фаски клапана мягким графитовым карандашом наносят через одинаковые промежутки 15… 20 рисок. Вставив клапан в седло и сильно прижав, его поворачивают на 1/4 оборота. Если все риски окажутся стертыми, качество притирки удовлетворительное. Во втором случае после сборки клапанного механизма головку цилиндров переворачивают, и в камеры сгорания заливают керосин. Если через 3 мин не будет обнаружено просачивания керосина, качество притирки удовлетворительное.

Рис. 7. Схема регулирования зазоров в клапанном механизме: 1 — головка цилиндров; 2 — контргайка;

Рис. 8. Снятие и установка клапанных пружин приспособлением 1 — регулировочный винт; 4 — коромысло; 5 — клапан; 6 — основание; 7 — прокладка; 8 — стойка валика коромысла

Если дефекты механизма газораспределения вызваны износом или поломкой его деталей, негодные детали заменяют.

Техническое обслуживание механизма газораспределения. При ТО-1 прослушивают работу клапанного механизма и при необходимости регулируют зазоры между клапанами и коромыслами. При ТО-2 проверяют и при необходимости подтягивают крепление крышки распределительных шестерен.

Неисправности кривошипно-шатунного механизма

Внешними признаками неисправностей этого механизма являются: появление стуков, повышенный расход, масла и топлива, снижение давления в конце такта сжатия (компрессии), дымленге отработавших газов. Стуки возникают в результате износа сопряженных деталей, и по их характеру определяют неисправность.

Рис. 9. Крепление силового агрегата: а — двигателя МеМЗ; б — двигателя «Москвич»; 1 — поперечина передней опоры; 2 — резиновая подушка; 3, 10 — кронштейны передних опор; 4 — кронштейн задней опоры; 5, 14 – поперечина задней опоры; 6 — опорная шайба; 7, 8 — нижняя и верхняя резиновые подушки; 9— распорная втулка; 11 — лапы крепления поперечины передних опор; 12 — поперечина передней подвески; 13 — резиновая подушка передней опоры; 15 — резиновая подушка задней опоры

Рис. 10. Последовательность затяжки- гаек шпилек головки блока цилиндров двигателей: а — «Москвич»; б — «Жигули»; в — «Запорожец»

Звонкий стук, появляющийся при работе холодного двигателя и уменьшающийся или исчезающий после прогрева, указывает на износ поршней и цилиндров. Такой же стук, прослушиваемый на всех режимах работы двигателя, свидетельствует об износе поршневых пальцев и втулок верхних-головок шатунов.

Глухой стук, усиливающийся при резком увеличении частоты вращения коленчатого вала, является признаком износа коренных или шатунных подшипников. Стук шатунных подшипников несколько меньшей силы, чем коренных, и прослушивается через стенку блока цилиндров в зонах, соответствующих верхнему и нижнему положениям кривошипов коленчатого вала.

Сильные металлические стуки, сопровождающиеся значительным уменьшением давления масла, указывают на выплавление вкладышей коренных или шатунных подшипников.

Дымление отработавших газов, повышенный расход масла и топлива могут быть при износе поршней и цилиндров, износе и поломке поршневых колец или заклинивании их в канавках. В последнем случае неисправность можно устранить без разборки двигателям путем заливки на 8—10 ч через отверстия для свечей в каждый цилиндр по 25—30 г смеси, составленной из керосина и денатурированного спирта (по 50%). После чего двигателю дают работать 10—15 мин и меняют масло в картере.

Снижение величины давления в конце

такта сжатия (компрессии) в цилиндрах происходит вследствие неплотного прилегания клапанов к своим седлам, заклинивания поршневых колец в канавках, износа поршней и цилиндров, неплотного прилегания головки блока цилиндров из-за повреждения прокладки или слабой затяжки болтов и гаек шпилек. В последнем случае производится подтяжка крепления головки блока цилиндров при помощи динамометрического ключа неопределенной последовательности на холодном двигателе. Момент окончательной затяжки десяти ,болтов на двигателе ВАЗ — 11,5 кгс • м и одного болта на приливе 3,8 кгс • м, на двигателе «Москвич» — 7,3—7,8 кгс • м и на двигателе ЗАЗ — 4—5 кгс • м. Затяжку следует производить в два приема: первый с половинным усилием и второй, окончательный,— с полным усилием. Для определения величины компрессии необходимо пустить и прогреть двигатель до нормальной температуры, вывернуть все свечи зажигания, полностью открыть дроссельные и воздушную заслонки.

Затем установить резиновый конусный наконечник компрессометра в отверстие для свечи одного из цилиндров, стартером провернуть коленчатый вал на 10—12* оборотов и заметить величину давления по шкале манометра. После этого нажатием пальца на стержень золотника компрессометра выпустить воздух до установки стрелки манометра в нулевое положение. Аналогично проверяют давление в остальных цилиндрах. Величина давления сжатия в цилиндре должна быть 7—8 кгс/см2, а разница в показаниях у отдельных цилиндров не должна превышать 1 кгс/см2. При отсутствии прибора компрессию можно проверить следующим образом. Вывернуть свечи зажигания, кроме первого цилиндра, и поворачивать рукояткой коленчатый вал; затем свечу из первого цилиндра вывернуть и завертывать ее поочередно в остальные цилиндры. Пониженная компрессия будет в том цилиндре, где для поворачивания коленчатого вала будет требоваться меньшее усилие руки.

Техническое обслуживание кривошипно-шатунного механизма

После пробега первых 1500—2000 км, а в дальнейшем после снятия головки блока цилиндров, а также при появлении признаков прорыва газов или подтекания охлаждающей жидкости в соединении, подтягивать гайки шпилек и болты головки блока цилиндров в установленной последовательности. В эти же сроки подтягивать винты или болты крепления поддона картера. Проверять и при необходимости подтягивать крепления опор двигателя, очищать от грязи и масла резиновые подушки. Ежедневно протирать поверхность двигателя ветошью, смоченной специальным очистителем или раствором стирального порошка.

Рекламные предложения:

Читать далее: Устранение простейших неисправностей системы охлаждения и смазочной системы

К

атегория: — 1Отечественные автомобили

Главная → Справочник → Статьи → Форум

Неисправности, возникающие при работе КШМ и их причины

Неполадки и поломки в кривошипно-шатунном механизме могут произойти в самых разных его узлах. Чтобы свести риск возникновения этих неприятностей до минимума, необходимо знать, отчего они происходят. Чаще всего это нагар на деталях и их износ. Наиболее часто происходят поломки КШМ от использования некачественного автомобильного топлива и масла. Особенно это чревато для дизелей, которые требовательны к качеству горюче-смазочных материалов, что может вывести из строя не только КШМ. Редкая смена масла, несвоевременная замена топливных, воздушных и масляных фильтров – всё это также несёт потенциальную угрозу поломок. Может послужить причиной неисправности перегрев двигателя, а также утечка и снижение уровня моторного масла в двигателе.

Перегрев двигателя может привести даже к заклиниванию. Чтобы этого не случилось, заливайте качественную охлаждающую жидкость и следите за состоянием системы охлаждения.

Бывает, что проблема в системе питания или в зажигании. Тогда смесь сгорает не полностью или неравномерно.

Ещё одна распространённая причина поломок – это использование некачественных запчастей. Не покупайте фейк и пользуйтесь услугами проверенных автосервисов.

Попадание масла в охлаждающую жидкость

Наблюдается уменьшение уровня масла в двигателе, появляется масляная пленка в расширительном бачке, цвет охлаждающей жидкости меняется от серого до темно-коричневого.

Для проверки снять головку цилиндров, заполнить охлаждающую рубашку блока цилиндров водой и подать сжатый воздух в вертикальный масляный канал блока цилиндров (около отверстия под болт 5, см. рис. 22). Если в воде, заполняющей охлаждающую рубашку, наблюдаются пузырьки воздуха, то причины неисправности — раковины или трещины в перемычках между масляной магистралью и охлаждающей рубашкой блока цилиндров. В этом случае блок цилиндров необходимо заменить.

Если масляные каналы блока цилиндров герметичны, то, возможно, масло попадает в охлаждающую жидкость из масляных каналов головки цилиндров. В этом случае необходимо проверить герметичность головки цилиндров (см. главу «Основные неисправности механизма газораспределения»).

Перечень неисправностей КШМ

Главные неприятности, которые могут случится с кривошипно-шатунным механизмом:

  1. Как шатунные, так и коренные шейки коленчатого вала подвержены износу и механическим повреждениям.
  2. Износ, механические повреждения и даже расплавление могут угрожать и вкладышам (подшипникам) шеек коленвала.
  3. «Болезни» поршневых колец – это закоксовывание не до конца сгоревшими продуктами горения (углеводороды окисляются только до углерода), их залегание и даже поломки, что может привести к фатальным последствиям.
  4. Цилиндропоршневая группа также подвержена износу. В современных «движках» это не так заметно, всё-таки они созданы по последнему слову техники, но у каждой детали имеется конечный ресурс.
  5. На днище поршня может отложиться нагар.
  6. В деталях могут появиться трещины, они могут прогореть, обломиться и даже расплавиться.
  7. Двигатель может даже заклинить.

Стук в коренных подшипниках коленчатого вала

Обычно это металлический глухой стук низкого тона. Прослушивается в нижней части блока цилиндров и обнаруживается при резком открытии дроссельной заслонки на холостом ходу. Чрезмерный зазор коленчатого вала вызывает стук более резкий с неравномерными промежутками, особенно заметными при плавном увеличении и уменьшении частоты вращения коленчатого вала. Причины стука и способы его устранения:

  • слишком раннее зажигание. Проверить и отрегулировать момент зажигания;
  • недостаточное давление масла. См. главу «Основные неисправности системы смазки»;
  • увеличенный зазор между шейками коленчатого вала и вкладышами коренных подшипников. Обратиться на станцию технического обслуживания для проверки и, если необходимо, для перешлифовки шеек и замены вкладышей;
  • увеличенный зазор между упорными полукольцами и коленчатым валом. На неработающем двигателе проверить осевой свободный ход коленчатого вала, нажимая и отпуская педаль сцепления. При этом перемещение переднего конца коленчатого вала должно быть не более 0,35 мм. В случае большего осевого свободного хода следует обратиться на станцию технического обслуживания для замены упорных полуколец коленчатого вала.

Признаки наличия неисправностей в работе КШМ

Могут насторожить посторонние стуки в двигателе. Возможно, это связано с детонацией или вам попалось не слишком качественное топливо. Последствия как детонации, так и некачественного топлива могут быть печальными. Звук при детонации более звонкий, а вот глухой звук может свидетельствовать о том, что износились шейки коленвала. Если же он совсем звонкий и происходит не только при резком увеличении оборотов (например, если вы быстро тронулись с места), то вполне возможно, что вкладыши шейки коленвала начинают плавиться. Возможно, причиной масляное голодание, но так или иначе – в сервис.

Также многое может сказать дым из двигателя. Если он сизый, то значит, что в камеру сгорания попадает масло. Возможно, виной тому маслосъёмные колпачки ГРМ, а возможно, проблема в поршневых кольцах. Накопление нагара на поршнях и цилиндрах приводит к увеличению трения и повышенному износу деталей. Если проблема в кольцах, то будет снижена компрессия, хотя понижение компрессии может быть связано и с другими причинами.

Стук шатунных подшипников

Обычно стук шатунных подшипников резче стука коренных. Он прослушивается в верхней части блока цилиндров на холостом ходу двигателя при резком открытии дроссельной заслонки. Место стука легко определить, отключая по очереди свечи зажигания.

Причины стука и способы его устранения:

  • недостаточное давление масла. См. главу «Основные неисправности системы смазки»;
  • чрезмерный зазор между шатунными шейками коленчатого вала и вкладышами. На станции технического обслуживания прошлифовать шейки коленчатого вала и заменить вкладыши.

Стук поршней и поршневых пальцев. Стук поршней обычно незвонкий, приглушенный, вызывается «биением» поршня в цилиндре: Лучше всего он прослушивается при малой частоте вращения коленчатого вала под нагрузкой. Стук пальцев — отчетливый и резкий, усиливается с повышением частоты вращения коленчатого вала и пропадает при выключении цилиндра из работы. Прослушивается в верхней части блока цилиндров.

Причины стука и способы его устранения:

  • увеличенный зазор между поршнями и цилиндрами. Отремонтировать двигатель, расточив и отхонинговав цилиндры и заменив поршни;
  • чрезмерный зазор между поршневыми кольцами и канавками на поршне. Заменить кольца или поршень с кольцами;
  • чрезмерный зазор между пальцем и отверстием в поршне. Заменить поршень и палец.

Обслуживание КШМ

Прежде всего, общие советы: «машина любит ласку, чистоту и смазку». Следует вовремя проверять уровень масла, не допускать перегрева двигателя и заправляться только качественным горючим. Серьёзные проблемы с КШМ решаются только в автосервисе. Разумеется, есть автолюбители, которые самостоятельно могут расточить цилиндр до ремонтного размера, но это всё же характерно для не самых новых автомобилей.

В «закоксованных» двигателях можно провести раскоксовку, которая делается как с разбором двигателя, так и при помощи специальных средств – без такового. Однако, подобные манипуляции лучше доверить профессионалам. Соблюдайте сроки ТО.

ПРИНЦИП РАБОТЫ МЕХАНИЗМА

Принцип работы кривошипно-шатунного механизма рассмотрим упрощенно на примере одноцилиндрового мотора. Такой двигатель включает в себя:

  • коленчатый вал с двумя коренными шейками и одним кривошипом;
  • шатун;
  • и комплект деталей ЦПГ, включающий в себя гильзу, поршень, поршневые кольца и палец.

Воспламенение горючей смеси выполняется когда объем камеры сгорания минимальный, а обеспечивается это при максимальном поднятии вверх поршня внутри гильзы (верхняя мертвая точка – ВМТ). При таком положении кривошип тоже «смотрит» вверх. При сгорании выделяемая энергия толкает вниз поршень, это движение передается через шатун на кривошип, и он начинает двигаться по кругу вниз, при этом коренные шейки вращаются вокруг своей оси.

При провороте кривошипа на 180 градусов поршень достигает нижней мертвой точки (НМТ). После ее достижения выполняется обратная работа механизма. За счет накопленной кинетической энергии маховик продолжает вращать коленвал, поэтому чему кривошип проворачивается и посредством шатуна толкает поршень вверх. Затем цикл полностью повторяется.

Если рассмотреть проще, то один полуоборот коленвала осуществляется за счет выделенной при сгорании энергии, а второй – благодаря кинетической энергии, накопленной маховиком. Затем процесс повторяется вновь.

Конструкция шатуна

Шатун в процессе работы совершает 2 вида движения – круговые, в месте соединения нижней головки с коленвалом, и возвратно-поступательные, в месте соединения верхней головки и поршня. При эксплуатации двигателя на данную деталь постоянно воздействуют высокие нагрузки.

В шатун входят следующие элементы:

  • Верхняя головка (поршневая)
  • Нижняя головка (кривошипная)
  • Силовой стержень

Поршневая головка

Поршневой палец соединяет верхнюю головку с поршнем. Сама головка представляет собой цельную неразборную конструкцию. Палец может быть плавающим и фиксированным.

В первом случае в верхнюю головку пальца впрессовываются бронзовые или биметаллические втулки. Но это относится не ко всем двигателям. Существуют модификации, где этих втулок нет, а сам палец свободно вращается в отверстии головки шатуна благодаря зазору. Для обеспечения работоспособности подобной детали важно обеспечить смазывание поршневого пальца.

Для установки фиксированных пальцев в головке шатуна проделывается отверстие цилиндрической формы, изготовленное с очень высокой точностью. Диаметр этого отверстия меньше, чем диаметр поршневого пальца. Благодаря этому обеспечивается необходимый натяг при соединении двух деталей.

Верхняя головка шатуна имеет форму трапеции. Это позволяет увеличить опорную площадь поверхности при работе поршня и снизить разрушительное воздействие очень высоких нагрузок.

Кривошипная головка

Кривошипная головка служит для соединения шатуна и коленвала. В большинстве шатунов этот элемент разъемный, что обусловлено методом сборки двигателя. Крышка головки фиксируется на шатуне болтами, но в некоторых случаях для этих целей используют штифты или бандажное крепление.

На шатуне можно использовать лишь ту крышку, которая была установлена на заводе. Это обусловлено тем, что она имеет определенный вес и размер, и потому не может быть заменена на другую.

Разъем головки относительно расположения стержня может быть прямым (90° к оси) или косым (под определенным углом к оси). В V-образных ДВС применяется последний вид.

В нижней части шатунной головки находятся подшипники скольжения, схожие с коренными вкладышами коленчатого вала. Для их производства используется стальная лента, с внутренней стороны покрытая антифрикционным материалом, который обладает высокими противоизносными характеристиками. Данный слой работает исключительно при наличии моторного масла, в противном случае он быстро разрушается.

Для подшипников скольжения шатунов, коренных подшипников коленвала, юбок поршней, распределительных валы, втулок пальцев, в дроссельной заслонке подходит антифрикционное твердосмазочное покрытие MODENGY Для деталей ДВС.

Данный материал эффективно снижает трение и износ, предотвращает заклинивание поршня в цилиндре и задир поверхностей. Он не разрушается при длительном воздействии моторного масла, предотвращает движение рывками, работает в режиме масляного голодания.

Благодаря аэрозольной упаковке с выверенными параметрами распыления нанесение покрытия не вызывает затруднений. Полимеризация материала происходит как при комнатной температуре, так и при нагреве.

Силовой стержень

Стержень шатуна имеет двутавровую форму и расширяется от верхней головки к нижней. В дизельных двигателях, в отличие от бензиновых, шатуны более прочные и массивные. В спорткарах для производства этих деталей используется алюминий, что способствует снижению массы автомобиля.

Все шатуны в двигателе должны иметь одинаковую массу. В противном случае при работе ДВС будут сильные вибрации. Это требование распространяется также на обе головки детали. Для выравнивания веса шатунов их взвешивают на очень точных весах. После этого, выбрав самый легкий шатун, подгоняют массу других деталей под него путем снятия части металла на головках детали и с бобышек на стержне.

О кривошипно-шатунном механизме

Кривошипно-шатунный механизм служит для восприятия давления газов и превращения возвратно-поступательного движения поршней при рабочем ходе во вращательное движение коленчатого вала. Возвратно-поступательное — это значит вверх-вниз. Именно так движется поршень в цилиндре. Ну а вращательное движение говорит само за себя.

Но давайте по порядку. Коленчатый вал представляет собой caмую главную и сложную деталь. Он состоит из массивных пластин, называемых коленами, которые coeдинены между собой цилиндрическими деталями, напоминающими трубы, которые называются шейки.

Конструкция коленчатого вала зависит от количества и расположения цилиндров. Расположение цилиндров может быть или рядное (как у «Жигулей»), или V-образное (как у «Запорожца»), или оппозитное (противоположное). Поясню это схемами (рисунок 8).

Шейки коленчатого вала подразделяются на коренные и шатунные. При помощи коренных шеек коленчатый вал крепится в блоке цилиндров. На шатунных шейках, как следует из их названия, закреплены шатуны. Рассмотрим еще схему, чтобы подробно и наглядно объяснить устройство узлов соединения коленчатого вала с шатуна ми (рисунок 9).

Коленчатый вал двигателя во время работы вращается с очень большой скоростью, и если добавить к этому высокую температуру нагрева двигателя и нагрузки от поршней, то нетрудно догадаться, что подшипники с роликами или шариками, при меняемые повсюду, в этом случае не подходят. Коленчатый вал вращается на вкладышах. Различают коренные и шатунные вкладыши Сменная деталь (втулка и т. п.) подшипников скольжения, непосредственно взаимодействующая с цапфой вала или вращающейся оси. .

Коренные вкладыши образуют кольцо вокpyг коренных шеек коленчатого вала, а шатунные вокpyг шатунных.

Вкладыш представляет собой тонкую металлическую пластинку полукруглой формы, которая для лучшей приработки со стороны коленчатого вала покрыта еще тонким слоем мягкoгo металла. На каждой шейке коленчатого вала находятся два вкладыша, которые обхватывают ее как бы кольцом. Для тoгo чтобы уменьшить трение, в зону контакта вкладыша с шейкой под давлением подается мacло. Причем слой масла очень тонкий, буквально несколько микрон. Можно представить себе эти узлы как обыкновенные подшипники, только вместо шариков и роликов слой масла. Это очень ответственные узлы двигателя. При увеличении зазора между вкладышем и шейкой давление масла падает, возникает стук, и двигатель выходит из строя. То же самое возникает, когда масла в зоне контакта нет, и вкладыш как бы «приклеивается» к шейке и начинает вращаться вместе с валом.

На другом конце коленчатого вала располагается маховик. Это такое очень тяжелое металлическое колесо с зубцами по внешней окружности. Про нeгo мы уже говорили. Маховик помогает поршню пройти подготовительные такты и сглаживает рывки вала при их смене.

А сейчас несколько слов о других узлах и деталях кривошипно-шатунного мeханизма.

Шатун состоит из верхней головки, стержня и нижней головки. Нижняя головка разъемная и состоит из двух частей, которые соединены между собой шатунными болтами с гайками. При помощи нижней головки шатун крепится к коленчатому валу. В верхней головке располагается поршневой палец которым крепится к шатуну поршень.

Шатун соединяет коленчатый вал с поршнем (рисунок 10).

Поршень, образно говоря, представляет собой перевернутую вверх дном банку. И названия у них coвпадают. Так, верхняя часть поршня носит название днища. Нижняя часть называется юбкой поршня. Юбка немного сужается внизу, чтобы поршень не заклинило в цилиндре. Но поршень не соприкасается со стенками цилиндра. Контакт происходит при помощи поршневых колец, которые располагаются в кольцевых канавках в верхней части поршня. Кольца изготавливаются из особой стали в виде тонких пластинок различного сечения. В кольцах имеются разрывы замки, которые позволяют надеть их на поршень.

Различают кольца компрессионные и маслосъемные. Компрессионные кольца установлены в верхней части поршня и не пропускают газы из камеры cгopaния вниз. Они как бы уплотняют зазор между поршнем и цилиндром.

Маслосъемные кольца установлены ниже и снимают масло со стенок цилиндра, чтобы оно не попало в камеру сгорания. Стенки цилиндра каждый раз при движении поршня вверх смазываются мacлом, которое впрыскивается через отверстие в нижней головке шатуна. При движении поршня вниз масло удаляется при помощи маслосъемных колец и через отверстия в поршне сливается вниз, в картер двигателя.

Маслосъемное кольцо coставное, выполненное из отдельных элементов. Это, как правило, два тоненьких плоских колечка, между которыми находится волнообразное кольцо. которое не дает им соприкасаться

На поршневом пальце подробно останавливаться не будем, так как он представляет собой толстостенную трубку, внешняя сторона которой обработана ocoбым образом. В поршне палец крепится при помощи специальных стопорных кол

Цилиндр двигателя является очень ответственной деталью. Eгo внутренняя поверхность подвергается очень тщательной обработке, и ее название говорит само за себя — «зеркало цилиндра». Снаружи цилиндр омывается охлаждающей жидкостью, которая уменьшает eгo нaгpe

К кривошипно-шатунному механизму относится также блок цилиндров, о котором мы говорили ранее и который является основой вceгo двигателя. Это достаточно массивная деталь с множеством каналов и отверстий. К блоку цилиндров крепятся практически все дополнительные aгpeгaты двигателя.

Подвижные и неподвижные детали кшм


Кривошипно-шатунный механизм (КШМ). Назначение, устройство, принцип действия

Видео: Кривошипно-шатунный механизм (КШМ). Основы

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

Детали кривошипно-шатунного механизма можно разделить на:

  • неподвижные — картер, блок цилиндров, цилиндры, головка блока цилиндров, прокладка головки блока и поддон. Обычно блок цилиндров отливают вместе с верхней половиной картера, поэтому иногда его называют блок-картером.
  • подвижные детали КШМ — поршни, поршневые кольца и пальцы, шатуны, коленчатый вал и маховик.

Кроме того, к кривошипно-шатунному механизму относятся различные крепежные детали, а также коренные и шатунные подшипники.

Блок-картер

Блок-картер — основной элемент остова двигателя. Он подвергается значительным силовым и тепловым воздействиям и должен обладать высокой прочностью и жесткостью. В блок-картере устанавливают цилиндры, опоры коленчатого вала, некоторые устройства механизма газораспределения, различные узлы смазочной системы с ее сложной сетью каналов и другое вспомогательное оборудование. Блок-картер изготавливают из чугуна или алюминиевого сплава литьем.

Цилиндр

Цилиндры представляют собой направляющие элементы ⭐ кривошипно-шатунного механизма. Внутри их перемещаются поршни. Длина образующей цилиндра определяется ходом поршня и его размерами. Цилиндры работают в условиях резко изменяющегося давления в надпоршневой полости. Их стенки соприкасаются с пламенем и горячими газами, имеющими температуру до 1500… 2 500 °С.

Цилиндры должны быть прочными, жесткими, термо- и износостойкими при ограниченном количестве смазки. Кроме того, материал цилиндров должен обладать хорошими литейными свойствами и легко обрабатываться на станках. Обычно цилиндры изготавливают из специального легированного чугуна, но могут применяться также алюминиевые сплавы и сталь. Внутреннюю рабочую поверхность цилиндра, называемую его зеркалом, тщательно обрабатывают и покрывают хромом для уменьшения трения, повышения износостойкости и долговечности.

В двигателях с жидкостным охлаждением цилиндры могут быть отлиты вместе с блоком цилиндров или в виде отдельных гильз, устанавливаемых в отверстиях блока. Между наружными стенками цилиндров и блоком имеются полости, называемые рубашкой охлаждения. Последняя заполняется жидкостью, охлаждающей двигатель. Если гильза цилиндра своей наружной поверхностью непосредственно соприкасается с охлаждающей жидкостью, то ее называют мокрой. В противном случае она называется сухой. Применение сменных мокрых гильз облегчает ремонт двигателя. При установке в блок мокрые гильзы надежно уплотняются.

Цилиндры двигателей воздушного охлаждения отливают индивидуально. Для улучшения теплоотвода их наружные поверхности снабжают кольцевыми ребрами. У большинства двигателей воздушного охлаждения цилиндры вместе с их головками крепят общими болтами или шпильками к верхней части картера.

В V-образном двигателе цилиндры одного ряда могут быть несколько смещены относительно цилиндров другого ряда. Это связано с тем, что на каждом кривошипе коленчатого вала крепятся два шатуна, один из которых предназначен для поршня правой, а другой — для поршня левой половины блока.

Блок цилиндров

На тщательно обработанную верхнюю плоскость блока цилиндров устанавливают головку блока, которая закрывает цилиндры сверху. В головке над цилиндрами выполнены углубления, образующие камеры сгорания. У двигателей жидкостного охлаждения в теле головки блока предусмотрена рубашка охлаждения, сообщающаяся с рубашкой охлаждения блока цилиндров. При верхнем расположении клапанов в головке имеются гнезда для них, впускные и выпускные каналы, отверстия с резьбой для установки свечей зажигания (у бензиновых двигателей) или форсунок (у дизелей), магистрали смазочной системы, крепежные и другие вспомогательные отверстия. Материалом для головки блока обычно служит алюминиевый сплав или чугун.

Плотное соединение блока цилиндров и головки блока обеспечивается с помощью болтов или шпилек с гайками. Для герметизации стыка с целью предотвращения утечки газов из цилиндров и охлаждающей жидкости из рубашки охлаждения между блоком цилиндров и головкой блока устанавливается прокладка. Она обычно изготавливается из асбестового картона и облицовывается тонким стальным или медным листом. Иногда прокладку с обеих сторон натирают графитом для защиты от пригорания.

Нижняя часть картера, предохраняющая детали кривошипно-шатунного и других механизмов двигателя от загрязнения, обычно называется поддоном. В двигателях сравнительно малой мощности поддон служит также резервуаром для моторного масла. Поддон чаще всего выполняется литым или изготавливается из стального листа штамповкой. Для устранения подтекания масла между блок-картером и поддоном устанавливается прокладка (на двигателях небольшой мощности для уплотнения этого стыка часто используется герметик — «жидкая прокладка»).

Остов двигателя

Соединенные друг с другом неподвижные детали кривошипно-шатунного механизма являются остовом двигателя, воспринимающим все основные силовые и тепловые нагрузки, как внутренние (связанные с работой двигателя), так и внешние (обусловленные трансмиссией и ходовой частью). Силовые нагрузки, передающиеся на остов двигателя от несущей системы ТС (рама, кузов, корпус) и обратно, существенно зависят от способа крепления двигателя. Обычно он крепится в трех или четырех точках так, чтобы не воспринимались нагрузки, вызванные перекосами несущей системы, возникающими при движении машины по неровностям. Крепление двигателя должно исключать возможность его смещения в горизонтальной плоскости под действием продольных и поперечных сил (при разгоне, торможении, повороте и т.д.). Для уменьшения вибрации, передающейся на несущую систему ТС от работающего двигателя, между двигателем и подмоторной рамой, в местах крепления, устанавливаются резиновые подушки разнообразных конструкций.

Поршневую группу кривошипно-шатунного механизма образует поршень в сборе с комплектом компрессионных и маслосъемных колец, поршневым пальцем и деталями его крепления. Ее назначение заключается в том, чтобы во время рабочего хода воспринимать давление газов и через шатун передавать усилие на коленчатый вал, осуществлять другие вспомогательные такты, а также уплотнять надпоршневую полость цилиндра для предотвращения прорыва газов в картер и проникновения в него моторного масла.

Поршень

Поршень представляет собой металлический стакан сложной формы, устанавливаемый в цилиндре днищем вверх. Он состоит из двух основных частей. Верхняя утолщенная часть называется головкой, а нижняя направляющая часть — юбкой. Головка поршня содержит днище 4 (рис. а) и стенки 2. В стенках проточены канавки 5 для компрессионных колец. Нижние канавки имеют дренажные отверстия 6 для отвода масла. Для увеличения прочности и жесткости головки ее стенки снабжены массивными ребрами 3, связывающими стенки и днище с бобышками, в которых устанавливается поршневой палец. Иногда оребряют также внутреннюю поверхность днища.

Юбка имеет более тонкие стенки, чем у головки. В ее средней части расположены бобышки с отверстиями.

Рис. Конструкции поршней с различной формой днища (а—з) и их элементов:
1 — бобышка; 2 — стенка поршня; 3 — ребро; 4 — днище поршня; 5 — канавки для компрессионных колец; 6 — дренажное отверстие для отвода масла

Днища поршней могут быть плоскими (см. а), выпуклыми, вогнутыми и фигурными (рис. б—з). Их форма зависит от типа двигателя и камеры сгорания, принятого способа смесеобразования и технологии изготовления поршней. Самой простой и технологичной является плоская форма. В дизелях применяются поршни с вогнутыми и фигурными днищами (см. рис. е—з).

При работе двигателя поршни нагреваются сильнее, чем цилиндры, охлаждаемые жидкостью или воздухом, поэтому расширение поршней (особенно алюминиевых) больше. Несмотря на наличие зазора между цилиндром и поршнем, может произойти заклинивание последнего. Для предотвращения заклинивания юбке придают овальную форму (большая ось овала перпендикулярна оси поршневого пальца), увеличивают диаметр юбки по сравнению с диаметром головки, разрезают юбку (чаще всего выполняют Т- или П-образный разрез), заливают в поршень компенсационные вставки, ограничивающие тепловое расширение юбки в плоскости качания шатуна, или принудительно охлаждают внутренние поверхности поршня струями моторного масла под давлением.

Поршень, подвергающийся воздействию значительных силовых и тепловых нагрузок, должен обладать высокой прочностью, теплопроводностью и износостойкостью. В целях уменьшения инерционных сил и моментов у него должна быть малая масса. Это учитывается при выборе конструкции и материала для поршня. Чаще всего материалом служит алюминиевый сплав или чугун. Иногда применяют сталь и магниевые сплавы. Перспективными материалами для поршней или их отдельных частей являются керамика и спеченные материалы, обладающие достаточной прочностью, высокой износостойкостью, низкой теплопроводностью, малой плотностью и небольшим коэффициентом теплового расширения.

Поршневые кольца

Поршневые кольца обеспечивают плотное подвижное соединение поршня с цилиндром. Они предотвращают прорыв газов из надпоршневой полости в картер и попадание масла в камеру сгорания. Различают компрессионные и маслосъемные кольца.

Компрессионные кольца (два или три) устанавливают в верхние канавки поршня. Они имеют разрез, называемый замком, и поэтому могут пружинить. В свободном состоянии диаметр кольца должен быть несколько больше диаметра цилиндра. При введении в цилиндр такого кольца в сжатом состоянии оно создает плотное соединение. Для того чтобы обеспечить возможность расширения установленного в цилиндре кольца при нагревании, в замке должен быть зазор 0,2…0,4 мм. С целью обеспечения хорошей приработки компрессионных колец к цилиндрам часто применяют кольца с конусной наружной поверхностью, а также скручивающиеся кольца с фаской на кромке с внутренней или наружной стороны. Благодаря наличию фаски такие кольца при установке в цилиндр перекашиваются в сечении, плотно прилегая к стенкам канавок на поршне.

Маслосъемные кольца (одно или два) удаляют масло со стенок цилиндра, не позволяя ему попадать в камеру сгорания. Они располагаются на поршне под компрессионными кольцами. Обычно маслосъемные кольца имеют кольцевую канавку на наружной цилиндрической поверхности и радиальные сквозные прорези для отвода масла, которое по ним проходит к дренажным отверстиям в поршне (см. рис. а). Кроме маслосъемных колец с прорезями для отвода масла используются составные кольца с осевыми и радиальными расширителями.

Для предотвращения утечки газов из камеры сгорания в картер через замки поршневых колец необходимо следить за тем, чтобы замки соседних колец не располагались на одной прямой.

Поршневые кольца работают в сложных условиях. Они подвергаются воздействию высоких температур, а смазывание их наружных поверхностей, перемещающихся с большой скоростью по зеркалу цилиндра, недостаточно. Поэтому к материалу для поршневых колец предъявляются высокие требования. Чаще всего для их изготовления применяют высокосортный легированный чугун. Верхние компрессионные кольца, работающие в наиболее тяжелых условиях, обычно покрывают с наружной стороны пористым хромом. Составные маслосъемные кольца изготавливают из легированной стали.

Поршневой палец

Поршневой палец служит для шарнирного соединения поршня с шатуном. Он представляет собой трубку, проходящую через верхнюю головку шатуна и установленную концами в бобышки поршня. Крепление поршневого пальца в бобышках осуществляется двумя стопорными пружинными кольцами, расположенными в специальных канавках бобышек. Такое крепление позволяет пальцу (в этом случае он называется плавающим) проворачиваться. Вся его поверхность становится рабочей, и он меньше изнашивается. Ось пальца в бобышках поршня может быть смещена относительно оси цилиндра на 1,5…2,0 мм в сторону действия большей боковой силы. Благодаря этому уменьшается стук поршня в непрогретом двигателе.

Поршневые пальцы изготавливают из высококачественной стали. Для обеспечения высокой износоустойчивости их наружную цилиндрическую поверхность подвергают закалке или цементации, а затем шлифуют и полируют.

Поршневая группа состоит из довольно большого числа деталей (поршень, кольца, палец), масса которых по технологическим причинам может колебаться; в некоторых пределах. Если различие в массе поршневых групп в разных цилиндрах будет значительным, то при работе двигателя возникнут дополнительные инерционные нагрузки. Поэтому поршневые группы для одного двигателя подбирают так, чтобы они несущественно отличались по массе (для тяжелых двигателей не более чем на 10 г).

Шатунная группа кривошипно-шатунного механизма состоит из:

  • шатуна
  • верхней и нижней головок шатуна
  • подшипников
  • шатунных болтов с гайками и элементами их фиксации

Шатун

Шатун соединяет поршень с кривошипом коленчатого вала и, преобразуя возвратно-поступательное движение поршневой группы во вращательное движение коленчатого вала, совершает сложное движение, подвергаясь при этом действию знакопеременных ударных нагрузок. Шатун состоит из трех конструктивных элементов: стержня 2, верхней (поршневой) головки 1 и нижней (кривошипной) головки 3. Стержень шатуна обычно имеет двутавровое сечение. В верхнюю головку для уменьшения трения запрессовывают бронзовую втулку 6 с отверстием для подвода масла к трущимся поверхностям. Нижнюю головку шатуна для обеспечения возможности сборки с коленчатым валом выполняют разъемной. У бензиновых двигателей разъем головки обычно расположен под углом 90° к оси шатуна. У дизелей нижняя головка шатуна 7, как правило, имеет косой разъем. Крышка 4 нижней головки крепится к шатуну двумя шатунными болтами, точно подогнанными к отверстиям в шатуне и крышке для обеспечения высокой точности сборки. Чтобы крепление не ослабло, гайки болтов стопорят шплинтами, стопорными шайбами или контргайками. Отверстие в нижней головке растачивают в сборе с крышкой, поэтому крышки шатунов не могут быть взаимозаменяемыми.

Рис. Детали шатунной группы:
1 — верхняя головка шатуна; 2 — стержень; 3 — нижняя головка шатуна; 4 — крышка нижней головки; 5 — вкладыши; 6 — втулка; 7 — шатун дизеля; S — основной шатун сочлененного шатунного узла

Для уменьшения трения в соединении шатуна с коленчатым валом и облегчения ремонта двигателя в нижнюю головку шатуна устанавливают шатунный подшипник, который выполнен в виде двух тонкостенных стальных вкладышей 5, залитых антифрикционным сплавом. Внутренняя поверхность вкладышей точно подогнана к шейкам коленчатого вала. Для фиксации вкладышей относительно головки они имеют отогнутые усики, входящие в соответствующие пазы головки. Подвод масла к трущимся поверхностям обеспечивают кольцевые проточки и отверстия во вкладышах.

Для обеспечения хорошей уравновешенности деталей кривошипно-шатунного механизма шатунные группы одного двигателя (как и поршневые) должны иметь одинаковую массу с соответствующим ее распределением между верхней и нижней головками шатуна.

В V-образных двигателях иногда используются сочлененные шатунные узлы, состоящие из спаренных шатунов. Основной шатун 8, имеющий обычную конструкцию, соединен с поршнем одного ряда. Вспомогательный прицепной шатун, соединенный верхней головкой с поршнем другого ряда, нижней головкой шарнирно крепится с помощью пальца к нижней головке основного шатуна.

Коленчатый вал

Коленчатый вал, соединенный с поршнем посредством шатуна, воспринимает действующие на поршень силы. На нем возникает вращающий момент, который затем передается на трансмиссию, а также используется для приведения в действие других механизмов и агрегатов. Под влиянием резко изменяющихся по величине и направлению сил инерции и давления газов коленчатый вал вращается неравномерно, испытывая крутильные колебания, подвергаясь скручиванию, изгибу, сжатию и растяжению, а также воспринимая тепловые нагрузки. Поэтому он должен обладать достаточной прочностью, жесткостью и износостойкостью при сравнительно небольшой массе.

Конструкции коленчатых валов отличаются сложностью. Их форма определяется числом и расположением цилиндров, порядком работы двигателя и числом коренных опор. Основными частями коленчатого вала являются коренные шейки 3, шатунные шейки 2, щеки 4, противовесы 5, передний конец (носок 1) и задний конец (хвостовик 6) с фланцем.

К шатунным шейкам коленчатого вала присоединяют нижние головки шатунов. Коренными шейками вал устанавливают в подшипниках картера двигателя. Соединяются коренные и шатунные шейки при помощи щек. Плавный переход от шеек к щекам, называемый галтелью, позволяет избежать концентрации напряжений и возможных поломок коленчатого вала. Противовесы предназначены для разгрузки коренных подшипников от центробежных сил, возникающих на кривошипах вала во время его вращения. Их, как правило, изготавливают как единое целое со щеками.

Для обеспечения нормальной работы двигателя к рабочим поверхностям коренных и шатунных шеек необходимо подавать моторное масло под давлением. Масло поступает из отверстий в картере к коренным подшипникам. Затем оно через специальные каналы в коренных шейках, щеках и шатунных шейках попадает к шатунным подшипникам. Для дополнительной центробежной очистки масла в шатунных шейках имеются грязеуловительные полости, закрытые заглушками.

Коленчатые валы изготавливают методом ковки или литья из среднеуглеродистых и легированных сталей (может применяться также чугун высококачественных марок). После механической и термической обработки коренные и шатунные шейки подвергают поверхностной закалке (для повышения износостойкости), а затем шлифуют и полируют. После обработки вал балансируют, т. е. добиваются такого распределения его массы относительно оси вращения, при котором вал находится в состоянии безразличного равновесия.

В коренных подшипниках применяют тонкостенные износостойкие вкладыши, аналогичные вкладышам шатунных подшипников. Для восприятия осевых нагрузок и предотвращения осевого смещения коленчатого вала один из его коренных подшипников (обычно передний) делают упорным.

Маховик

Маховик крепится к фланцу хвостовика коленчатого вала. Он представляет собой тщательно сбалансированный чугунный диск определенной массы. Кроме обеспечения равномерного вращения коленчатого вала маховик способствует преодолению сопротивления сжатия в цилиндрах при пуске двигателя и кратковременных перегрузок, например, при трогании ТС с места. На ободе маховика закреплен зубчатый венец для пуска двигателя от стартера. Поверхность маховика, которая соприкасается с ведомым диском сцепления, шлифуют и полируют.

Рис. Коленчатый вал:
1 — носок; 2 — шатунная шейка; 3 — коренная шейка; 4 — щека; 5 — противовес; 6 — хвостовик с фланцем

Видео-уроки о КШМ

Кривошипно-шатунный механизм (КШМ): назначение, устройство, принцип работы

Если есть что-то, что прочно ассоциируется с любым автомобилем, это механизм двигателя. Как ни странно, принцип его действия мало изменился с тех пор, как 120 лет назад Карл Бенц запатентовал свой первый автомобиль. Система усложнялась, обрастала сложной электроникой, совершенствовалась, но кривошипно-шатунный механизм (КШМ) остался самым узнаваемым “портретом” любого мотора.

Что такое КШМ и для чего он нужен?

Двигатель в процессе работы должен давать какое-то постоянное движение, и удобней всего, чтобы это было равномерное вращение. Однако силовая часть (цилиндро-поршневая группа, ЦПГ) вырабатывает поступательное движение. Значит, нужно сделать так, чтобы один тип движения преобразовался в другой, причем с наименьшими потерями. Вот для этого и был создан кривошипно-шатунный механизм.
По сути, КШМ – это устройство для получения и преобразования энергии и передачи ее дальше, другим узлам, которые уже эту энергию используют.

Устройство КШМ

Строго говоря, КШМ автомобиля состоит из самого кривошипа, шатунов и поршней. Однако говорить о части, не рассказав о целостной конструкции, было бы в корне неправильно. Поэтому схема и назначение КШП и смежных элементов будет рассматриваться в комплексе.

Устройство КШМ: (1 — коренной подшипник на коренной шейке; 2 — шатунный подшипник на шатунной шейке; 3 — шатун; 4 — поршневой палец; 5 — поршневые кольца; 6 — поршень; 7 — цилиндр; 8 — маховик; 9 — противовес; 10 — коленчатый вал.)
  1. Блок цилиндров – это начало всего движения в моторе. Его составляющие – поршни, цилиндры и гильзы цилиндров, в которых эти поршни движутся;
  2. Шатуны – это соединительные элементы между поршнями и коленвалом. По сути, шатун представляет собой прочную металлическую перемычку, которая одной стороной крепится к поршню с помощью шатунного пальца, а другой фиксируется на шейке коленвала. Благодаря пальцевому соединению поршень может двигаться относительно цилиндра в одной плоскости. Точно так же шатун охватывает посадочное место коленвала – шатунную шейку, и это крепление позволяет ему двигаться в той же плоскости, что и соединение с поршнем;
  3. Коленвал – коленчатый вал вращения, ось которого проходит через носок вала, коренные (опорные) шейки и фланец маховика. А вот шатунные шейки выходят за ось вала, и благодаря этому при его вращении описывают окружность;
  4. Маховик – обязательный элемент механизма, накапливающий инерцию вращения, благодаря которой двигатель работает ровней и не останавливается в “мертвой точке”.

Эти и другие элементы КШМ можно условно разделить на подвижные, те, что выполняют непосредственную работу, и неподвижные вспомогательные элементы.

Подвижная (рабочая) группа КШМ

Как понятно из названия, к подвижной группе относятся элементы, которые активно задействованы в работе двигателя.

  1. Поршень. При работе двигателя поршень перемещается в гильзе цилиндра под действием выталкивающей силы при сгорании топлива – с одной стороны, и поворотом коленвала – с другой. Для уплотнения зазора между ним и цилиндром на боковой поверхности поршня находятся поршневые кольца (компрессионные и маслосъемные), которые герметизируют промежуток и препятствуют потере мощности во время сгорания топлива.

    Устройство поршневой группы: (1 — масляно-охлаждающий канал; 2 — камера сгорания в днище поршня; 3 — днище поршня; 4 — канавка первого компрессионного кольца; 5 — первое (верхнее) компрессионное кольцо; 6 — второе (нижнее) компрессионное кольцо; 7 — маслосъемное кольцо; 8 — масляная форсунка; 9 — отверстие в головке шатуна для подвода масла к поршневому пальцу; 10 — шатун; 11 — поршневой палец; 12 — стопорное кольцо поршневого пальца; 13 и 14 — перегородки поршневых колец; 15 — жаровой пояс.)

  2. Шатун. Это соединительный элемент между поршнем и коленвалом. Верхней головкой шатун крепится к поршню с помощью пальца. Нижняя головка имеет съемную часть, так что шатун можно надеть на шейку коленвала. Для уменьшения трения между шейкой коленвала и головкой шатуна ставятся шатунные вкладыши – подшипники скольжения в виде двух пластин, изогнутых полукругом.

    Устройство шатуна

  3. Коленвал. Это центральная часть двигателя, без которой сложно представить себе его принцип работы. Основной его частью является ось вращения, которая одновременно служит опорой для коленвала в блоке цилиндров. Выступающие за ось вращения элементы предназначены для присоединения к шатунам: когда шатун движется вниз, коленвал позволяет ему описать нижней частью окружность одновременно с движением поршня. Так же, как и в случае с шатунами, опорные шейки коленвала лежат на подшипниках скольжения – вкладышах.

    Устройство коленвала

  4. Маховик. Он крепится к фланцу на торцевой части коленвала. Маховик вращается вместе с валом двигателя и частично демпфирует неизбежные в любом ДВС рывковые нагрузки. Но основная задача маховика – раскручивать коленвал (а с ним и цилиндро-поршневую группу), чтобы поршни не замерли в “мертвой точке”. Таким образом, часть мощности двигателя расходуется на поддержку вращения маховика.
Устройство маховика
Неподвижная группа КШМ

Неподвижной группой можно назвать внешнюю часть двигателя, в которой находится КШП.

  1. Блок цилиндров. По сути, это корпус, в котором располагаются непосредственно цилиндры, каналы системы охлаждения, посадочные места распредвала, коленвала и т.д. Он может выполняться из чугуна или алюминиевого сплава, и сегодня производители всё чаще используют алюминий, чтобы облегчить конструкцию. Для этой же цели вместо сплошного литья используются ребра жесткости, которые облегчают конструкцию без потери прочности. На боковых сторонах блока цилиндров располагаются посадочные места для вспомогательных механизмов двигателя.

    Блок цилиндров

  2. Головка блока цилиндров (ГБЦ). Устанавливается на блок цилиндров и закрывает его сверху. В ГБЦ предусмотрены отверстия для клапанов, впускного и выпускного коллекторов, крепления распредвала (одного или больше), крепления для других элементов двигателя. К ГБЦ, снизу, крепится прокладка (1) — пластина, которая герметизирует стык между блоком цилиндров и ГБЦ. В ней предусмотрены отверстия для цилиндров и крепежных болтов. А сверху — клапанная крышка (5), — ею закрывается ГБЦ сверху, когда двигатель собран и готов к запуску. Прокладка клапанной крышки. Это тонкая пластина, которая укладывается по периметру ГБЦ и герметизирует стык.
Устройство ГБЦ: (1 — прокладка ГБЦ; 2 — ГБЦ; 3 — сальник; 4 — прокладка крышки ГБЦ; 5 — крышка клапанная; 6- прижимная пластина; 7 — пробка маслозаливной горловины; 8 — прокладка пробки; 9 — направляющая втулка клапана; 10 — установочная втулка; 11 — болт крепления головки блока.)

Принцип работы КШМ

Работа механизма двигателя основана на энергии расширения при сгорании топливно-воздушной смеси. Именно эти “микровзрывы” являются движущей силой, которую кривошипно-шатунный механизм переводит в удобную форму. На видео, ниже, подробно описанный принцип работы КШМ в 3Д анимайии.

Принцип работы КШМ:

  1. В цилиндрах двигателя сгорает распыленное и смешанное с воздухом топливо. Такая дисперсия предполагает не медленное горение, а мгновенное, благодаря чему воздух в цилиндре резко расширяется.
  2. Поршень, который в момент начала горения топлива находится в верхней точке, резко опускается вниз. Это прямолинейное движение поршня в цилиндре.
  3. Шатун соединен с поршнем и коленвалом так, что может двигаться (отклоняться) в одной плоскости. Поршень толкает шатун, который надет на шейку коленвала. Благодаря подвижному соединению, импульс от поршня через шатун передается на коленвал по касательной, то есть вал делает поворот.
  4. Поскольку все поршни по очереди толкают коленвал по тому же принципу, их возвратно-поступательное движение переходит во вращение коленвала.
  5. Маховик добавляет импульс вращения, когда поршень находится в «мертвых» точках.

Интересно, что для старта двигателя нужно сначала раскрутить маховик. Для этой цели нужен стартер, который сцепляется с зубчатым венцом маховика и раскручивает его, пока мотор не заведется. Закон сохранения энергии в действии.

Остальные элементы двигателя: клапаны, распредвалы, толкатели, система охлаждения, система смазки, ГРМ и прочие – необходимые детали и узлы для обеспечения работы КШМ.

Основные неисправности

Учитывая нагрузки, как механические, так и химические, и температурные, кривошипно-шатунный механизм подвержен различным проблемам. Избежать неприятностей с КШП (а значит, и с двигателем) помогает грамотное обслуживание, но всё равно от поломок никто не застрахован.

Стук в двигателе

Один из самых страшных звуков, когда в моторе вдруг появляется странный стук и прочие посторонние шумы. Это всегда признак проблем: если что-то начало стучать, значит, с ним проблема. Поскольку в двигателе элементы подогнаны с микронной точностью, стук свидетельствует об износе. Придется разбирать двигатель, смотреть, что стучало, и менять изношенную деталь.

Основной причиной износа чаще всего становится некачественное ТО двигателя. Моторное масло имеет свой ресурс, и его регулярная замена архиважна. То же относится и к фильтрам. Твердые частички, даже мельчайшие, постепенно изнашивают тонко пригнанные детали, образуют задиры и выработку.

Стук может говорить и об износе подшипников (вкладышей). Они также страдают от недостатка смазки, поскольку именно на вкладыши приходится огромная нагрузка.

Снижение мощности

Потеря мощности двигателя может говорить о залегании поршневых колец. В этом случае кольца не выполняют свою функцию, в камере сгорания остается моторное масло, а продукты сгорания прорываются в двигатель. Прорыв газов говорит и о пустой растрате энергии, и это чувствует автовладелец как снижение динамических характеристик. Продолжительная работа в такой ситуации может только ухудшить состояние двигателя и довести стандартную, в общем-то, проблему до капремонта двигателя.

Проверить состояние мотора можно самостоятельно, измерив компрессию в цилиндрах. Если она ниже нормативной для данной модификации двигателя, значит, предстоит ремонт двигателя.

Повышенный расход масла

Если двигатель начал “жрать” масло, это явный признак залегания поршневых колец или других проблем с цилиндро-поршневой группой. Масло сгорает вместе с топливом, из выхлопной трубы идет черный дым, температура в камере сгорания превышает расчетную, и это не добавляет двигателю здоровья. В некоторых случаях может помочь очистка без демонтажа двигателя, но в большинстве случаев предстоит разборка и дефектовка двигателя.

Нагар

Отложения на поршнях, клапанах и свечах зажигания говорят о том, что с двигателем есть проблема. Если топливо не сгорает полностью, нужно искать причину неисправности и устранять ее. В противном случае мотору грозит перегрев из-за ухудшения теплопроводности поверхностей со слоем нагара.

Белый дым из выхлопной трубы

Появляется, когда в камеру сгорания попадает антифриз. Причиной чаще всего бывает износ прокладки ГБЦ или микротрещины в рубашке охлаждения двигателя, и для устранения проблемы необходима ее замена.

Медлить в этой ситуации нежелательно: маленькая протечка может обернуться гидроударом. Камера сгорания наполняется жидкостью, поршень движется вверх, но жидкость, в отличие от воздуха, не сжимается, и получается эффект удара о твёрдую поверхность. Последствия такой катастрофы могут быть любые, вплоть до “кулака дружбы” и продажи машины на запчасти.

Заключение

Несмотря на высокие нагрузки, критические условия работы и даже небрежность владельцев, кривошипно-шатунный механизм отличается завидной живучестью. Вывести его из строя можно неправильным обслуживанием, нештатными нагрузками, поломкой смежных элементов. Да, двигатель почти всегда можно починить, но эта услуга обойдётся в разы дороже, чем просто грамотное регулярное ТО. Недаром же есть двигатели “миллионники”, которые способны служить десятилетиями, не доставляя проблем владельцу машины.

Устройство КШМ

 

 

 

 

 КШМ ВАЗ 2110, 2111, 2112

Основные размеры КШМ ВАЗ 2110, 2111, 2112

показаны на рисунке. Хорошо зарекомендовали

себя двигателя ВАЗ 2110, они имеют много

взаимозаменяемых деталей КШМ с двигателями

ВАЗ 2108, ВАЗ 2109

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала.

Устройство КШМ можно разделить на две группы: подвижные и неподвижные.

Подвижные детали: 

поршень, поршневые кольца, поршневые пальцы и шатуны, коленчатый вал, маховик.

Блок-картер, головка блока цилиндров, гильзы цилиндров. Имеются также фиксирующие и крепежные детали.

Поршневая группа

Поршневая группа включает в себя поршень, поршневые кольца, поршневой палец с фиксирующими деталями. Поршень воспринимает усилие расширяющихся газов при рабочем ходе и передает ею через шатун па кривошип коленчатого вала; осуществляет подготовительные такты; уплотняет над поршневую полость цилиндра как от прорыва газов в картер, так и от излишнего проникновения в нее смазочного материала.

Коренные подшипники

Для коренных подшипников применяются подшипники скольжения, выполненные в виде вкладышей, основой которых является стальная лента толщиной 1,9—2,8 мм для карбюраторных двигателей и 3—6 мм для дизелей. В качестве антифрикционного материала вкладышей используют высокооловянистый алюминиевый сплав для карбюраторных двигателей и трехслойные с рабочим слоем из свинцовой бронзы.

Маховик

Маховик служит для уменьшения неравномерности вращения коленчатого вала, накопления энергии во время рабочего хода поршня, необходимой для вращения вала в течение подготовительных тактов, и вывода деталей КШМ из ВМТ (верхней мертвой точки) и НВТ (нижней мертвой точки).
В многоцилиндровых двигателях маховик является, в основном, накопителем кинетической энергии, необходимой для пуска двигателя и обеспечения плавного трогания автомобиля с места.


Маховики отливают из чугуна в виде лиска с массивным ободом и проводят его динамическую балансировку в сборе с коленчатым валом. На ободе маховика имеется посадочный поясок для напрессовки зубчатого венца для электрического пуска стартером. На цилиндрической поверхности маховика находятся метки или маркировочные штифты и надписи, определяющие момент прохождения ВМТ поршнем первого цилиндра. На торцевую рабочую поверхность опирается фрикционный диск сцепления. Для крепления его кожуха имеются резьбовые отверстия. Маховик центрируют по наружной поверхности фланца с помощью выточки, а положения его относительно коленчатого вала фиксируют установочным штифтом или несимметричным расположением отверстий крепления маховика.

Поршни

Форма и конструкция поршня, включая днище поршня и отверстие под поршневой палец, в значительной степени определяются формой камеры сгорания.

 Устройство шатуна

Шатун необходим для соединения поршня с коленчатым валом и передачи усилия от поршня к коленчатому валу

 

 

Устройство КШМ автомобиля. 

1 — стопорное кольцо, 2 — поршневой палец, 3 — маслосьемные кольца, 4 — компрессионные кольца, 5 — камера сгорания, 6 — днище поршня, 7 — головка поршня:     8 — юбка поршня;  9 —  поршень: 10 — форсунка; 11- шатун; 12  — вкладыш;  13 — шайба , 14 — длинный болт; 15 — короткий болт; 16 — крышка шатуна, 17  —  втулка шатуна;  18 — номер на шатуне; 19 — метка на крышке шатуна; 20 —  шатунный болт.

 

Поршень состоит из головки поршня и направляющей части — юбки поршня. С внутренней стороны имеются приливы — бобышки с гладкими отверстиями под поршневой палец. Для фиксации пальца в отверстиях проточены канавки под стопорные кольца. В зоне выхода отверстий на внешних стенках юбки выполняются местные углубления, где стенки юбки не соприкасаются со стенками цилиндров. Таким образом получаются так называемые холодильники. Для снижения температуры нагрева направляющей поршня в карбюраторных двигателях головку поршня отделяют две поперечные симметричные прорези, которые препятствуют отводу теплоты от днища.

Нагрев, а следовательно, и тепловое расширение поршня по высоте неравномерны. Поэтому поршни выполняют в виде конуса овального сечения. Головка поршня имеет диаметр меньше, чем направляющая. В быстроходных двигателях, особенно при применении коротких шатунов, скорость изменения боковой силы довольно значительна. Это приводит к удару поршня о цилиндр. Чтобы избежать стуков, при перекладке поршневые пальцы смещают на 1,4—1,6 мм в сторону действия максимальной боковой силы, что приводит к более плавной перекладке и снижению уровня шума.


Головка поршня состоит из днища и образующих ее стенок, в которых именно канавки под поршневые кольца. В нижней канавке находятся дренажные отверстия для отвода масла диаметром 2,5—3 мм. Днище головки является одной из стенок камеры сгорания и воспринимает давление газов, омывается открытым пламенем и горячими газами. Для увеличения прочности днища и повышения обшей жесткости головки се стенки выполняются с массивными ребрами. Днища поршней изготовляют плоскими, выпуклыми, вогнутыми и фигурными. Форма выбирается с учетом типа двигателя, камеры сгорания, процесса смесеобразования и технологии изготовления поршней.

Поршневые кольца

Поршневые кольца — элементы уплотнения поршневой группы, обеспечивающие герметичность рабочей полости цилиндра и отвод теплоты от головки поршня.

По назначению кольца подразделяются на:

Компрессионные кольца — препятствующие прорыву газов в картер и отводу теплоты в стенки цилиндра.

Маслосъемные кольца — обеспечивающие равномерное распределение масла по поверхности цилиндра и препятствующие проникновению масла в камеру сгорания.


Изготовляются кольца из специальною легированною чугуна или стали. Разрез кольца, называемый замком, может быть прямым, косым или ступенчатым. По форме и конструкции поршневые кольца дизелей делятся на трапециевидные, с конической поверхностью, и подрезом, маслосъемные, пружинящие с расширителем; поршневые кольца карбюраторных двигателей — на бочкообразные, с конической поверхностью со скосом, с подрезом; маслосьемные — с дренажными отверстиями и узкой перемычкой, составные предсталяют собой два стальных лиска (осевой и радиальный расширители).

Составное маслосъемное поршневое кольцо (а) и его установка в головке поршня двигателя: 1 — дискообразное кольцо; 2 — осевой расширитель; 3 — радиальный расширитель; 4— замок кольца; 5 — компрессионные кольца; 6 — поршень; 7 — отверстие в канавке маслосъемного кольца.

Для повышения износостойкости первого компрессионного кольца, работающего и условиях высоких температур  и граничного трения, его поверхность покрывают пористым хромом. Устанавливая на поршень поршневые кольца, необходимо следить за тем, чтобы замки соседних колец были смещены один относительно другого на некоторый угол (90 —180 градусов).

Поршневой палец обеспечивает шарнирное соединение шатуна с поршнем. Поршневые пальцы изготовляют из малоуглеродистых сталей. Рабочую поверхность тщательно обрабатывают и шлифуют. Для уменьшения массы палец выполняют пустотелым.

Установка поршневого пальца

Шатун шарнирно соединяет поршень с кривошипом коленчатого вала. Он воспринимает от поршня и передает коленчатому валу усилие давления газов при рабочем ходе, обеспечивает перемещение поршней при совершении вспомогательных тактов. Шатун работает в условиях значительных нагрузок действующих по его продольной оси.

Шатун состоит из верхней головки, в которой имеется гладкое отверстие под подшипник поршневого пальца; стержня двутаврового сечения и нижней головки с разъемным отверстием для крепления с шатунной шейкой коленчатого вата. Крышка нижней головки крепится с помощью шатунных болтов. Шатун изготавливают методом гарячей штамповки из высокочественной стали. Для более подробного изучения создан раздел «Устройство шатуна«.

Устройство шатуна

Для смазывания подшипника поршневого пальца (бронзовая втулка) в верхней головке шатуна имеются отверстие или прорези. В двигателях марки «ЯМЗ» подшипник смазывается под давлением, для чего в стержне шатуна имеется масляный канал. Плоскость разъема нижней головки шатуна может располагаться под различными углами к продольной оси шатуна. Наибольшее распространение получили шатуны с разъемом перпендикулярным к оси стержня, В двигателях марки «ЯМЗ» имеющим больший диаметр,  чем диаметр цилиндра, pазмер нижней головки шатуна, выполнен косой разъем нижней головки, так как при прямом разъеме монтаж шатуна через цилиндр при сборке двигателя становится невозможным. Для подвода масла к стенкам цилиндра на нижней головке шатуна имеется отверстие. С целью уменьшения трения и изнашивания в нижние головки шатунов устанавливают подшипники скольжения, состоящие из двух взаимозаменяемых вкладышей (верхнего и нижнею).

Вкладыши изготовляются из стальной профилированной ленты толщиной 1,3—1,6 мм для карбюраторных двигателей и 2—3,6 мм для дизелей. На ленту наносят антифрикционный сплав толщиной 0,25—-0,4 мм — высокооловянистый алюминиевый сплав (для карбюраторных двигателей). На дизелях марки «КамАЗ» применяют трехслойные вкладыши, залитые свинцовистой бронзой. Шатунные вкладыши устанавливаются в нижнюю головку шатуна с натягом 0,03—0,04 мм. От осевого смешения и провертывания вкладыши удерживаются в своих гнездах усиками, входящими в пазы, которые при сборке шатуна и крышки должны располагаться на одной стороне шатуна.

Устройство двигателя автомобиля не сложно для обучения, главное изучать материал последовательно и систематизированно.

СОДЕРЖАНИЕ:

1. Устройство КШМ двигателя

1.1 Подвижные детали КШМ

1.2 Неподвижные детали КШМ

2. Неисправности КШМ двигателя

2.1 Звуки неисправностей двигателя (стуки двигателя)

2.2 Признаки и причины неисправностей двигателя автомобиля

3. Капитальный ремонт двигателя автомобиля

 

Кривошипно-шатунный механизм: устройство, детали, принцип работы

Практически в любом поршневом двигателе, установленном в автомобиле, тракторе, мотоблоке, используется кривошипно- шатунный механизм. Стоят они и компрессорах для производства сжатого воздуха. Энергию расширяющихся газов, продуктов сгорания очередной порции рабочей смеси, кривошипный механизм преобразует во вращение рабочего вала, передаваемое на колеса, гусеницы или привод мотокосы. В компрессоре происходит обратное явление: энергия вращения приводного вала преобразуется в потенциальную энергию сжимаемого в рабочей камере воздуха или другого газа.

Устройство механизма

Первые кривошипные устройства были изобретены в античном мире. На древнеримских лесопилках вращательное движение водяного колеса, вращаемого речным течением, преобразовывалось в возвратно-поступательной движение полотна пилы. В античности большого распространения такие устройства не получили по следующим причинам:

  • деревянные части быстро изнашивались и требовали частого ремонта или замены;
  • рабский труд обходился дешевле высоких для того времени технологий.

В упрощенном виде кривошипно-шатунный механизм использовался с XVI века в деревенских прялках. Движение педали преобразовывалось во вращение прядильного колеса и других частей приспособления.

Разработанные в XVIII веке паровые машины тоже использовали кривошипный механизм. Он располагался на ведущем колесе паровоза. Давление пара на поршневое дно преобразовывалось в возвратно- поступательное движение штока, соединенного с шатуном, шарнирно закрепленном на ведущем колесе. Шатун придавал колесу вращение. Такое устройство кривошипно-шатунного механизма было основой механического транспорта до первой трети XX века.

Паровозная схема была улучшена в крейцкопфных моторах. Поршень в них жестко прикреплен к крейцкопфу- штоку, скользящему в направляющих взад и вперед. На конце штока закреплен шарнир, к нему присоединен шатун. Такая схема увеличивает размах рабочих движений, позволяет даже сделать вторую камеру с другой стороны от поршня. Таким образом каждое движение штока сопровождается рабочим тактом. Такая кинематика и динамика кривошипно-шатунного механизма позволяет при тех же габаритах удвоить мощность. Крейцкопфы применяются в крупных стационарных и корабельных дизельных установках.

Элементы, составляющие кривошипно-шатунный механизм, разбивают на следующие типы:

  • Подвижные.
  • Неподвижные.

К первым относятся:

  • поршень;
  • кольца;
  • пальцы;
  • шатун;
  • маховик;
  • коленвал;
  • подшипники скольжения коленчатого вала.

К неподвижным деталям кривошипно-шатунного механизма относят:

  • блок цилиндров;
  • гильза;
  • головка блока;
  • кронштейны;
  • картер;
  • другие второстепенные элементы.

Поршни, пальцы и кольца объединяют в поршневую группу.

Каждый элемент, равно как и подробная кинематическая схема и принцип работы заслуживают более подробного рассмотрения

Блок цилиндров

Это одна из самых сложных по конфигурации деталь двигателя. На схематическом объемном чертеже видно, что внутри он пронизан двумя непересекающимися системами каналов для подачи масла к точкам смазки и циркуляции охлаждающей жидкости. Он отливается из чугуна или сплавов легких металлов, содержит в себе места для запрессовки гильз цилиндра, кронштейны для подшипников коленвала, пространство для маховика, систем смазки и охлаждения. К блоку подходят патрубки системы подачи топливной смеси и удаления отработанных газов.

Снизу к блоку через герметичную прокладку крепится масляный картер- резервуар для смазки. В этом картере и происходит основная работа кривошипно- шатунного механизма, сокращенно КШМ.

Гильза должна выдерживать высокое давление в цилиндре. Его создают газы, образовавшиеся после сгорания топливной смеси. Поэтому и то место блока, куда гильзы запрессованы, должно выдерживать большие механические и термические нагрузки.

Гильзы обычно изготавливают из прочных сортов стали, реже — из чугуна. В ходе работы двигателя они изнашиваются при капитальном ремонте двигателя могут быть заменены. Различают две основных схемы их размещения:

  • сухая, внешняя сторона гильзы отдает тепло материалу блока цилиндров;
  • влажная, гильза омывается снаружи охлаждающей жидкостью.

Второй вариант позволяет развивать большую мощность и переносить пиковые нагрузки.

Поршни

Деталь представляет из себя стальную или алюминиевую отливку в виде перевернутого стакана. Скользя по стенкам цилиндра, он принимает на себя давление сгоревшей топливной смеси и превращает его в линейное движение. Далее через кривошипный узел она превращается во вращение коленчатого вала, а затем передается на сцепление и коробку передач и через кардан к колесам. Силы, действующие в кривошипно-шатунном механизме, приводят транспортное средство или стационарный механизм в движение.

Деталь выполняет следующие функции:

  • на такте впуска, двигаясь вниз (или в направлении от коленчатого вала, если цилиндр расположен не вертикально) на, он увеличивает объем рабочей камеры и создает в ней разрежение, затягивающее и равномерно распределяющее по объему очередную порцию рабочей смеси;
  • на такте сжатия поршневая группа движется вверх, сжимая рабочую смесь до необходимой степени;
  • далее идет рабочий такт, деталь под давлением идет вниз, передавая импульс вращения коленчатому валу;
  • на такте выпуска он снова идет вверх, вытесняя отработанные газы в выхлопную систему.

На всех тактах, кроме рабочего, поршневая группа движется за счет коленчатого вала, забирая часть энергии его вращения. На одноцилиндровых двигателях для аккумуляции такой энергии служим массивный маховик, на многоцилиндровые такты цилиндров сдвинуты во времени.

Конструктивно изделие подразделяется на такие части, как:

  • днище, воспринимающее давление газов;
  • уплотнение с канавками для поршневых колец;
  • юбка, в которой закреплен палец.

Палец служит осью, на которой закреплено верхнее плечо шатуна.

Поршневые кольца

Назначение и устройство поршневых колец обуславливается их ролью в работе кривошипных- устройств. Кольца выполняются плоскими, они имеют разрез шириной в несколько десятых частей миллиметра. Их вставляют в проточенные для них кольцевые углубления на уплотнении.

Кольца выполняют следующие функции:

  • Уплотняют зазор между гильзой и стенками поршня.
  • Обеспечивают направление движения поршня.
  • Охлаждают. Касаясь гильзы, компрессионные кольца отводят избыточное тепло от поршня, оберегая его от перегрева.
  • Изолируют рабочую камеру от смазочных материалов в картере. С одной стороны, кольца задерживают капельки масла, разбрызгиваемые в картере ударами противовесов щек коленвала, с другой, пропускают небольшое его количество для смазки стенок цилиндра. За это отвечает нижнее, маслосъемное кольцо.

Смазывать необходимо и соединение поршня с шатуном.

Отсутствие смазки в течение нескольких минут приводит детали цилиндра в негодность. Трущиеся части перегреваются и начинают разрушаться либо заклиниваются. Ремонт в этом случае предстоит сложный и дорогостоящий.

Поршневые пальцы

Осуществляют кинематическую связь поршня и шатуна. Изделие закреплено в поршневой юбке и служит осью подшипника скольжения. Детали выдерживают высокие динамические нагрузки во время рабочего хода, а также смены такта и обращения направления движения. Вытачивают их из высоколегированных термостойких сплавов.

Различают следующие типы конструкции пальцев:

  • Фиксированные. Неподвижно крепятся в юбке, вращается только обойма верхней части шатуна.
  • Плавающие. Могут проворачиваться в своих креплениях.

Плавающая конструкция применяется в современных моторах, она снижает удельные нагрузки на компоненты кривошипно- шатунной  группы и увеличивает их ресурс.

Шатун

Эта ответственный элемент кривошипно-шатунного механизма двигателя выполнен разборным, для того, чтобы можно было менять вкладыши подшипников в его обоймах. Подшипники скольжения используются на низкооборотных двигателях, на высокооборотных устанавливают более дорогие подшипники качения.

Внешним видом шатун напоминает накидной ключ. Для повышения прочности и снижения массы поперечное сечение сделано в виде двутавровой балки.

При работе деталь испытывает попеременно нагрузки продольного сжатия и растяжения. Для изготовления используют отливки из легированной или высокоуглеродистой стали.

Коленчатый вал

Преобразование осуществляет с помощь.

Из деталей кривошипно-шатунной группы коленчатый вал имеет наиболее сложную пространственную форму. Несколько коленчатых сочленений выносят оси вращения его сегментов в сторону от основной продольной оси. К этим вынесенным осям крепятся нижние обоймы шатунов. Физический смысл конструкции точно такой же, как и при закреплении оси шатуна на краю маховика. В коленвала «лишняя», неиспользуемая часть маховика изымается и заменяется противовесом. Это позволяет существенно сократить массу и габариты изделия, повысить максимально доступные обороты.

Основные части, из которых состоит коленвал, следующие:

  • Шейки. Служат для крепления вала в кронштейнах картера и шатунов на валу. Первые называют коренными, вторые — шатунными.
  • Щеки. Образуют колена, давшие узлу свое название. Вращаясь вокруг продольной оси и толкаемые шатунами, преобразуют энергию продольного движения поршневой группы во вращательную энергию коленвала.
  • Фронтальная выходная часть. На ней размещен шкив, от которого цепным или ременным приводом крутятся валы вспомогательных систем мотора- охлаждения, смазки, распределительного механизма, генератора.
  • Основная выходная часть. Передает энергию трансмиссии и далее — колесам.

Тыльная часть щек, выступающая за ось вращения коленвала, служит противовесом для основной их части и шатунных шеек. Это позволяет динамически уравновесит вращающуюся с большой скоростью конструкцию, избежав разрушительных вибраций во время работы.

Для изготовления коленвалов используются отливки из легких высокопрочных чугунов либо горячие штамповки (поковки) из упрочненных сортов стали.

Картер двигателя

Служит конструктивной основой всего двигателя, к нему крепятся все остальные детали. От него отходят внешние кронштейны, на них весь агрегат прикреплен к кузову. К картеру крепится трансмиссия, передающая от двигателя к колесам крутящий момент. В современных конструкциях картер исполняется единой деталью с блоком цилиндров. В его пространственных рамках и происходит основная работа узлов, механизмов и деталей мотора. Снизу к картеру крепится поддон для хранения масла для смазки подвижных частей.

Принцип работы кривошипно-шатунного механизма

Принцип работы кривошипно — шатунного механизма не изменился за последние три столетия.

Во время рабочего такта воспламенившаяся в конце такта сжатия рабочая смесь быстро сгорает, продукты сгорания расширяются и толкают поршень вниз. Он толкает шатун, тот упирается в нижнюю ось, разнесенную в пространстве с основной продольной осью.  В результате под действием приложенных по касательной сил коленвал проворачивается на четверть оборота в четырехтактных двигателях и на пол-оборота в двухтактных. таким образом продольное движение поршня преобразуется во вращение вала.

Расчет кривошипно-шатунного механизма требует отличных знаний прикладной механики, кинематики, сопротивления материалов. Его поручают самым опытным инженерам.

Неисправности, возникающие при работе КШМ и их причины

Сбои в работе могут случиться в разных элементах кривошипно-шатунной группы. Сложность конструкции и сочетания параметров шатунных механизмов двигателей заставляет особенно внимательно относить к их расчету, изготовлению и эксплуатации.

Наиболее часто к неполадкам приводит несоблюдение режимов работы и технического обслуживания мотора. Некачественная смазка, засорение каналов подачи масла, несвоевременная замена или пополнение запаса масла в картере до установленного уровня- все эти причины приводят к повышенному трению, перегреву деталей, появлению на их рабочих поверхностях задиров, потертостей и царапин. При каждой замене масла обязательно следует менять масляный фильтр. В соответствии с регламентом обслуживания также нужно менять топливные и воздушные фильтры.

Нарушение работы системы охлаждения также вызывает термические деформации деталей вплоть до их заклинивания или разрушения. Особенно чувствительны к качеству смазки дизельные моторы.

Неполадки в системе зажигания также могут привести к появлению нагара на поршне и п\его кольцах Закоксовывание колец вызывает снижение компрессии и повреждение стенок цилиндра.

Бывает также, что причиной поломки становятся некачественные либо поддельные детали или материалы, примененные при техническом обслуживании. Лучше приобретать их у официальных дилеров или в проверенных магазинах, заботящихся о своей репутации.

Перечень неисправностей КШМ

Наиболее распространенными поломками механизма являются:

  • износ и разрушение шатунных и коренных шеек коленвала;
  • стачивание, выкрашивание или плавление вкладышей подшипников скольжения;
  • загрязнение нагаром сгорания поршневых колец;
  • перегрев и поломка колец;
  • скопление нагара на поршневом днище приводит к его перегреву и возможному разрушению;
  • длительная эксплуатация двигателя с детонационными эффектами вызывает прогорание днища поршня.

Сочетание этих неисправностей со сбоем в системе смазки может вызвать перекос поршней в цилиндрах и заклинивание двигателя. Устранение всех этих поломок связано демонтажом двигателя и его частичной или полной разборкой.

Ремонт занимает много времени и обходится недешево, поэтому лучше выявлять сбои в работе на ранних стадиях и своевременно устранять неполадки.

Признаки наличия неисправностей в работе КШМ

Для своевременного выявления сбоев и начинающих развиваться негативных процессов в кривошипно- шатунной группе полезно знать из внешних признаков:

  • Стуки в двигателе, непривычные звуки при разгоне.  Звенящие звуки часто бывают вызваны детонационными явлениями. Неполное сгорание топлива во время рабочего такта и взрывообразное его сгорание на такте выпуска приводят к скоплению нагара на кольцах и днище поршня, к ухудшению условий их охлаждения и разрушению. Необходимо залить качественное топливо и проверит параметры работы системы зажигания на стенде.
  • Глухие стуки говорят об износе шеек коленвала. В этом случае следует прекратить эксплуатацию, отшлифовать шейки и заменить вкладыши на более толстые из ремонтного комплекта.
  • «Поющий» на высокой звонко ноте звук указывает на возможное начало плавления вкладышей или на нехватку масла при повышении оборотов. Также нужно срочно ехать в сервис.
  • Сизые клубы дыма из выхлопного патрубка свидетельствуют о избытке масла в рабочей камере. Следует проверить состояние колец и при необходимости заменить их.
  • Падение мощности также может вызываться закоксовыванием колец и снижением компрессии.

При обнаружении этих тревожных симптомов не стоит откладывать визит в сервисный центр. Заклиненный двигатель обойдется намного дороже, и по деньгам, и по затратам времени.

Обслуживание КШМ

Чтобы не повредить детали КШМ, нужно соблюдать все требования изготовителя по периодическому обслуживанию и регулярному осмотру автомобиля.

Уровень масла, особенно на не новом автомобиле, следует проверять ежедневно перед выездом. Занимает это меньше минуты, а может сэкономить месяцы ожидания при серьезной поломке.

Топливо нужно заливать только с проверенных АЗС известных брендов, не прельщаясь двухрублевой разницей в цене.

При обнаружении перечисленных выше тревожных симптомов нужно незамедлительно ехать на СТО.

Не стоит самостоятельно, по роликам из Сети, пытаться растачивать цилиндры, снимать нагар с колец и выполнять другие сложные ремонтные работы. Если у вас нет многолетнего опыта такой работы- лучше обратиться к профессионалам. Самостоятельная установка шатунного механизма после ремонта- весьма сложная операция.

Применять различные патентованные средства «для преобразования нагара на стенках цилиндров», «для раскоксовывания» разумно лишь тогда, когда вы точно уверены и в диагнозе, и в лекарстве.

Устройство КШМ

 

 

 

 

 КШМ ВАЗ 2110, 2111, 2112

Основные размеры КШМ ВАЗ 2110, 2111, 2112

показаны на рисунке. Хорошо зарекомендовали

себя двигателя ВАЗ 2110, они имеют много

взаимозаменяемых деталей КШМ с двигателями

ВАЗ 2108, ВАЗ 2109

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала.

Устройство КШМ можно разделить на две группы: подвижные и неподвижные.

Подвижные детали: 

поршень, поршневые кольца, поршневые пальцы и шатуны, коленчатый вал, маховик.

Блок-картер, головка блока цилиндров, гильзы цилиндров. Имеются также фиксирующие и крепежные детали.

Поршневая группа

Поршневая группа включает в себя поршень, поршневые кольца, поршневой палец с фиксирующими деталями. Поршень воспринимает усилие расширяющихся газов при рабочем ходе и передает ею через шатун па кривошип коленчатого вала; осуществляет подготовительные такты; уплотняет над поршневую полость цилиндра как от прорыва газов в картер, так и от излишнего проникновения в нее смазочного материала.

Коренные подшипники

Для коренных подшипников применяются подшипники скольжения, выполненные в виде вкладышей, основой которых является стальная лента толщиной 1,9—2,8 мм для карбюраторных двигателей и 3—6 мм для дизелей. В качестве антифрикционного материала вкладышей используют высокооловянистый алюминиевый сплав для карбюраторных двигателей и трехслойные с рабочим слоем из свинцовой бронзы.

Маховик

Маховик служит для уменьшения неравномерности вращения коленчатого вала, накопления энергии во время рабочего хода поршня, необходимой для вращения вала в течение подготовительных тактов, и вывода деталей КШМ из ВМТ (верхней мертвой точки) и НВТ (нижней мертвой точки).
В многоцилиндровых двигателях маховик является, в основном, накопителем кинетической энергии, необходимой для пуска двигателя и обеспечения плавного трогания автомобиля с места.


Маховики отливают из чугуна в виде лиска с массивным ободом и проводят его динамическую балансировку в сборе с коленчатым валом. На ободе маховика имеется посадочный поясок для напрессовки зубчатого венца для электрического пуска стартером. На цилиндрической поверхности маховика находятся метки или маркировочные штифты и надписи, определяющие момент прохождения ВМТ поршнем первого цилиндра. На торцевую рабочую поверхность опирается фрикционный диск сцепления. Для крепления его кожуха имеются резьбовые отверстия. Маховик центрируют по наружной поверхности фланца с помощью выточки, а положения его относительно коленчатого вала фиксируют установочным штифтом или несимметричным расположением отверстий крепления маховика.

Поршни

Форма и конструкция поршня, включая днище поршня и отверстие под поршневой палец, в значительной степени определяются формой камеры сгорания.

 Устройство шатуна

Шатун необходим для соединения поршня с коленчатым валом и передачи усилия от поршня к коленчатому валу

 

 

Устройство КШМ автомобиля. 

1 — стопорное кольцо, 2 — поршневой палец, 3 — маслосьемные кольца, 4 — компрессионные кольца, 5 — камера сгорания, 6 — днище поршня, 7 — головка поршня:     8 — юбка поршня;  9 —  поршень: 10 — форсунка; 11- шатун; 12  — вкладыш;  13 — шайба , 14 — длинный болт; 15 — короткий болт; 16 — крышка шатуна, 17  —  втулка шатуна;  18 — номер на шатуне; 19 — метка на крышке шатуна; 20 —  шатунный болт.

 

Поршень состоит из головки поршня и направляющей части — юбки поршня. С внутренней стороны имеются приливы — бобышки с гладкими отверстиями под поршневой палец. Для фиксации пальца в отверстиях проточены канавки под стопорные кольца. В зоне выхода отверстий на внешних стенках юбки выполняются местные углубления, где стенки юбки не соприкасаются со стенками цилиндров. Таким образом получаются так называемые холодильники. Для снижения температуры нагрева направляющей поршня в карбюраторных двигателях головку поршня отделяют две поперечные симметричные прорези, которые препятствуют отводу теплоты от днища.

Нагрев, а следовательно, и тепловое расширение поршня по высоте неравномерны. Поэтому поршни выполняют в виде конуса овального сечения. Головка поршня имеет диаметр меньше, чем направляющая. В быстроходных двигателях, особенно при применении коротких шатунов, скорость изменения боковой силы довольно значительна. Это приводит к удару поршня о цилиндр. Чтобы избежать стуков, при перекладке поршневые пальцы смещают на 1,4—1,6 мм в сторону действия максимальной боковой силы, что приводит к более плавной перекладке и снижению уровня шума.


Головка поршня состоит из днища и образующих ее стенок, в которых именно канавки под поршневые кольца. В нижней канавке находятся дренажные отверстия для отвода масла диаметром 2,5—3 мм. Днище головки является одной из стенок камеры сгорания и воспринимает давление газов, омывается открытым пламенем и горячими газами. Для увеличения прочности днища и повышения обшей жесткости головки се стенки выполняются с массивными ребрами. Днища поршней изготовляют плоскими, выпуклыми, вогнутыми и фигурными. Форма выбирается с учетом типа двигателя, камеры сгорания, процесса смесеобразования и технологии изготовления поршней.

Поршневые кольца

Поршневые кольца — элементы уплотнения поршневой группы, обеспечивающие герметичность рабочей полости цилиндра и отвод теплоты от головки поршня.

По назначению кольца подразделяются на:

Компрессионные кольца — препятствующие прорыву газов в картер и отводу теплоты в стенки цилиндра.

Маслосъемные кольца — обеспечивающие равномерное распределение масла по поверхности цилиндра и препятствующие проникновению масла в камеру сгорания.


Изготовляются кольца из специальною легированною чугуна или стали. Разрез кольца, называемый замком, может быть прямым, косым или ступенчатым. По форме и конструкции поршневые кольца дизелей делятся на трапециевидные, с конической поверхностью, и подрезом, маслосъемные, пружинящие с расширителем; поршневые кольца карбюраторных двигателей — на бочкообразные, с конической поверхностью со скосом, с подрезом; маслосьемные — с дренажными отверстиями и узкой перемычкой, составные предсталяют собой два стальных лиска (осевой и радиальный расширители).

Составное маслосъемное поршневое кольцо (а) и его установка в головке поршня двигателя: 1 — дискообразное кольцо; 2 — осевой расширитель; 3 — радиальный расширитель; 4— замок кольца; 5 — компрессионные кольца; 6 — поршень; 7 — отверстие в канавке маслосъемного кольца.

Для повышения износостойкости первого компрессионного кольца, работающего и условиях высоких температур  и граничного трения, его поверхность покрывают пористым хромом. Устанавливая на поршень поршневые кольца, необходимо следить за тем, чтобы замки соседних колец были смещены один относительно другого на некоторый угол (90 —180 градусов).

Поршневой палец обеспечивает шарнирное соединение шатуна с поршнем. Поршневые пальцы изготовляют из малоуглеродистых сталей. Рабочую поверхность тщательно обрабатывают и шлифуют. Для уменьшения массы палец выполняют пустотелым.

Установка поршневого пальца

Шатун шарнирно соединяет поршень с кривошипом коленчатого вала. Он воспринимает от поршня и передает коленчатому валу усилие давления газов при рабочем ходе, обеспечивает перемещение поршней при совершении вспомогательных тактов. Шатун работает в условиях значительных нагрузок действующих по его продольной оси.

Шатун состоит из верхней головки, в которой имеется гладкое отверстие под подшипник поршневого пальца; стержня двутаврового сечения и нижней головки с разъемным отверстием для крепления с шатунной шейкой коленчатого вата. Крышка нижней головки крепится с помощью шатунных болтов. Шатун изготавливают методом гарячей штамповки из высокочественной стали. Для более подробного изучения создан раздел «Устройство шатуна«.

Устройство шатуна

Для смазывания подшипника поршневого пальца (бронзовая втулка) в верхней головке шатуна имеются отверстие или прорези. В двигателях марки «ЯМЗ» подшипник смазывается под давлением, для чего в стержне шатуна имеется масляный канал. Плоскость разъема нижней головки шатуна может располагаться под различными углами к продольной оси шатуна. Наибольшее распространение получили шатуны с разъемом перпендикулярным к оси стержня, В двигателях марки «ЯМЗ» имеющим больший диаметр,  чем диаметр цилиндра, pазмер нижней головки шатуна, выполнен косой разъем нижней головки, так как при прямом разъеме монтаж шатуна через цилиндр при сборке двигателя становится невозможным. Для подвода масла к стенкам цилиндра на нижней головке шатуна имеется отверстие. С целью уменьшения трения и изнашивания в нижние головки шатунов устанавливают подшипники скольжения, состоящие из двух взаимозаменяемых вкладышей (верхнего и нижнею).

Вкладыши изготовляются из стальной профилированной ленты толщиной 1,3—1,6 мм для карбюраторных двигателей и 2—3,6 мм для дизелей. На ленту наносят антифрикционный сплав толщиной 0,25—-0,4 мм — высокооловянистый алюминиевый сплав (для карбюраторных двигателей). На дизелях марки «КамАЗ» применяют трехслойные вкладыши, залитые свинцовистой бронзой. Шатунные вкладыши устанавливаются в нижнюю головку шатуна с натягом 0,03—0,04 мм. От осевого смешения и провертывания вкладыши удерживаются в своих гнездах усиками, входящими в пазы, которые при сборке шатуна и крышки должны располагаться на одной стороне шатуна.

Устройство двигателя автомобиля не сложно для обучения, главное изучать материал последовательно и систематизированно.

СОДЕРЖАНИЕ:

1. Устройство КШМ двигателя

1.1 Подвижные детали КШМ

1.2 Неподвижные детали КШМ

2. Неисправности КШМ двигателя

2.1 Звуки неисправностей двигателя (стуки двигателя)

2.2 Признаки и причины неисправностей двигателя автомобиля

3. Капитальный ремонт двигателя автомобиля

 

Как устроен и для чего служит кривошипно-шатунный механизм? 7 основных неисправностей, которые могут возникнуть в его работе

Если у вас есть автомобиль, то с вероятностью 99.99%, в нём есть кривошипно-шатунный механизм (КШМ). Его нет только в «чистых» электромобилях, а также автомобилях с роторно-поршневым двигателем, а также в газотурбинных двигателях. Все остальные автомобильные двигатели внутреннего сгорания построены именно на базе КШМ, и неважно, дизельные они или бензиновые. Данная система передаёт энергию горения рабочей смеси через коленчатый вал и далее трансмиссию на колёса автомобиля, преобразуя возвратно-поступательное (туда и обратно) движение поршней в цилиндрах мотора во вращательное движение коленчатого вала.

Содержание статьи

Устройство механизма

Классический кривошипно-шатунный механизм был известен ещё в Древнем Риме. Использовался похожий принцип в Римской пилораме, только там вращение, под воздействием течения реки, водяного колеса превращалось в возвратно-поступательное движение пилы.

В паровых машинах также использовался КШМ, похожий на использующийся сейчас в автомобильных двигателях внутреннего сгорания (ДВС). Только в нём поршень был соединён с шатуном через шток и цилиндр низкого давления. Схожая конструкция используется иногда в ДВС и по сей день.

В так называемых крейцкопфных двигателях поршень жёстко соединён с крейцкопфом – деталью, движущейся по неподвижным направляющим в одном измерении, как и поршень, через шток, а далее по привычной схеме – шатун с коленвалом. Это позволяет увеличить рабочий ход поршня, а иногда делает цилиндр двусторонним, в таких конструкциях добавлена ещё одна камера сгорания. Такой тип КШМ применяется чаще всего в судовых дизелях и другой крупной технике.

Кривошипно-шатунный механизм состоит из двух основных групп деталей – подвижных и неподвижных:

  1. К подвижным частям КШМ относятся следующие детали: поршни, которые вместе с кольцами и пальцами объединены в поршневую группу, шатуны, коленчатый вал (в просторечном сокращении — коленвал), подшипники коленвала и маховик.
  2. Неподвижные – это картер, объединённый с блоком цилиндров, гильзы цилиндров, головка блока цилиндров. Также к ним относятся поддон (нижний картер), полукольца коленвала, картер маховика и сцепления, а также кронштейны и детали крепежа.

Иногда выделяют и цилиндропоршневую группу, в которую входит поршневая и гильза цилиндра.

Блок цилиндров

Блок цилиндров сейчас неотделим от картера блока. Так, кстати, было не всегда – на старых двигателях (у «Запорожца», например) они могли быть изготовлены раздельно. Именно картер вместе с блоком цилиндров – основной узел конструкции двигателя автомобиля.

Внутри блока и происходит вся полезная работа двигателя. К блоку цилиндров крепятся внизу — нижний картер (поддон), сверху — головка блока, сзади — картер маховика, топливная, выпускная системы и другие детали двигателя. Сам блок прикреплён к шасси автомобиля через специальные «подушки».

Материал, из которого изготовлена эта важная часть двигателя – чаще всего либо алюминий, либо чугун. На спортивных автомобилях могут применяться и композитные материалы. В блок запрессованы съёмные гильзы, которые облегчают ход поршней и ремонтопригодность блока – то есть его расточку под «ремонтные» поршни и кольца. Гильзы делают из чугуна, стали или композитных сплавов. Существует два вида гильз:

  • «сухие» — когда внешняя поверхность гильз не омывается охлаждающей жидкостью;
  • «мокрые» — когда гильзу снаружи охлаждает поток жидкости.

Каждый вариант имеет свои достоинства и недостатки.

Поршни

Поршень – это металлическая деталь, которая имеет форму стакана, и в некоторых автопредприятиях водители и автослесари со стажем старые поршни, очищенные от нагара, в качестве стаканов и использовали. Однако основное его предназначение, естественно, не в этом, а для того, чтобы преобразовывать потенциальную энергию давления и термическую энергию температуры газов в кинетическую энергию вращения коленчатого вала в момент рабочего хода.

Во время тактов впуска он служит в качестве насоса, затягивающего воздух или горючую смесь, в ходе такта сжатия сжимает её, а в ходе такта выпуска — помогает удалению отработанных газов. Во время рабочего хода (точнее, чуть раньше) смесь воспламеняется (или форсунка впрыскивает топливо на дизельных двигателях), и горящие газы давят на поршень, заставляя его выполнять работу по преобразованию термической энергии в кинетическую.

Поршень современного автомобильного двигателя выполнен чаще всего из сплавов на основе алюминия. Они обеспечивают хороший отвод лишнего тепла, к тому же довольно лёгкие.

Составные части поршня автомобильного двигателя – это днище, уплотняющяя часть и юбка. Поршень соединяется с шатуном при помощи находящегося в юбке пальца. Для обеспечения плотности соединения поршня со стенкой цилиндра применяются поршневые кольца.

Поршневые кольца

Это плоские незамкнутые (с разъёмом в несколько десятых долей миллиметра) стальные или чугунные кольца, надеваемые в специальные канавки на уплотнительную часть поршня. Они служат для нескольких целей:

  1. Уплотнение. Качественные, неизношенные кольца повышают компрессию (давление в цилиндре).
  2. Теплопередача. Компрессионные кольца передают лишнее тепло гильзе цилиндра, предотвращая перегрев двигателя.
  3. Не пропускают моторное масло из картера в камеру сгорания, но оставляют на стенках гильзы небольшой слой масла для смазки цилиндра. Самое нижнее кольцо называется маслосъёмным. Его конструкция специально разработана под эту задачу.
Поршневые пальцы

Поршневой палец нужен для того, чтобы связать поршень с шатуном. Он находится во внутренней части юбки поршня и представляет собой металлический цилиндр, отдалённо похожий на палец (отсюда и название). Шатун не крепится жёстко на пальце, ведь надо обеспечивать максимально ровную передачу крутящего момента от поршня к шатуну и далее. Выполнены пальцы обычно из легированной стали.

Пальцы делятся на фиксированные и плавающие. Фиксированный жёстко прикреплён к юбке поршня, и двигается на нём только шатун, а плавающий палец как в поршневой юбке, и на шатуне может крутиться. Сейчас в конструкциях автомоторов преобладают плавающие пальцы, обеспечивающие более полную и плавную передачу крутящего момента и снижающие нагрузку на детали КШМ.

Шатун

Для того, чтоб передать крутящий момент с поршня на коленвал, служит шатун, соединяющий две этих важных детали. Для того, чтобы ремонт шатуна не вызывал особых трудностей, в нём применяются специальные вкладыши, фактически разборный подшипник скольжения, хотя в некоторых двигателях с малой скоростью вращения коленвала по-прежнему применяются баббитовые вкладки, а в быстроходных моторах в обеих головках шатуна (как нижней, так и верхней) установлены подшипники качения. По форме шатун похож на рычаг или гаечный ключ с двутавровым сечением. Его верхняя, обычно неразъёмная головка соединяет его с пальцем поршня, а нижняя, разъёмная соединяет шатун с коленчатым валом. Делают шатуны чаще всего из легированной, иногда из углеродистой стали.

Коленчатый вал

Коленчатый вал, или сокращённо коленвал – одна из важнейших деталей мотора, впрочем, лишних деталей не бывает. Он имеет форму вала с «искривлениями» в сторону, к которой через оси прикреплены шатуны двигателя. Он состоит из следующих деталей:

  1. Шейки. Они нужны для того, чтобы закрепить коленвал на картере и шатуны на нём. Подразделяются на коренные и шатунные. На коренных крепится к картеру сам коленчатый вал, на шатунных шейках к коленвалу крепятся шатуны.
  2. Щёки – они и являются своего рода «коленями» коленчатого вала, именно они крутятся вокруг оси коленчатого вала. Щёки коленвала соединяют коренные и шатунные шейки.
  3. Передняя выходная часть вала. К ней присоединены шкивы отбора мощности для привода через ремень, цепь или шестерни распредвала, системы охлаждения генератора и других агрегатов.
  4. Задняя выходная часть вала. Она соединена с маховиком и служит для отбора мощности для «основного предназначения» автомобиля – для движения.

В конструкции коленчатого вала также предусмотрены дополнительные детали, например, противовесы, предназначенные для компенсации вибраций вала, возникающих при ударных нагрузках.

Коленчатые валы чаще всего изготавливаются либо из стали, либо из высококачественного лёгкого чугуна. Чугунные коленвалы изготавливаются при помощи литья, стальные – при помощи штамповки.

Картер двигателя

Картер, отливаемый вместе с блоком цилиндров – основная деталь двигателя автомобиля, можно сказать, что рама двигателя. Именно на картере закреплены основные части двигателя, в нём крутится коленчатый вал, в цилиндрах двигаются поршни и происходит непосредственный процесс превращения энергии сгорания топлива в энергию вращения колёс вашего автомобиля.

Ещё картер является основным местом для размещения моторного масла, которое смазывает двигатель. Для хранения масла также предназначен поддон – нижняя часть картера.

Принцип работы кривошипно-шатунного механизма

Во время основного такта работы автомобильного двигателя – рабочего хода (расширения), горящие газы давят на поршень, а тот двигается вниз — от верхней мёртвой точки к нижней, тем самым передавая энергию посредством пальца и шатуна на коленчатый вал. Шатун может ограниченно поворачиваться и вокруг оси пальца поршня, и вокруг шатунной шейки коленвала, и таким образом поступательное движение поршня превращается во вращательное.

Стоит заметить, что при остальных тактах коленчатый вал через шатун, наоборот, сообщает возвратно-поступательное движение поршню. Где он его берёт? Из «рабочих» цилиндров, энергии коленвала и маховика, а при запуске – стартера.

Неисправности, возникающие при работе КШМ и их причины

Неполадки и поломки в кривошипно-шатунном механизме могут произойти в самых разных его узлах. Чтобы свести риск возникновения этих неприятностей до минимума, необходимо знать, отчего они происходят. Чаще всего это нагар на деталях и их износ. Наиболее часто происходят поломки КШМ от использования некачественного автомобильного топлива и масла. Особенно это чревато для дизелей, которые требовательны к качеству горюче-смазочных материалов, что может вывести из строя не только КШМ. Редкая смена масла, несвоевременная замена топливных, воздушных и масляных фильтров – всё это также несёт потенциальную угрозу поломок. Может послужить причиной неисправности перегрев двигателя, а также утечка и снижение уровня моторного масла в двигателе.

Перегрев двигателя может привести даже к заклиниванию. Чтобы этого не случилось, заливайте качественную охлаждающую жидкость и следите за состоянием системы охлаждения.

Бывает, что проблема в системе питания или в зажигании. Тогда смесь сгорает не полностью или неравномерно.

Ещё одна распространённая причина поломок – это использование некачественных запчастей. Не покупайте фейк и пользуйтесь услугами проверенных автосервисов.

Перечень неисправностей КШМ

Главные неприятности, которые могут случится с кривошипно-шатунным механизмом:

  1. Как шатунные, так и коренные шейки коленчатого вала подвержены износу и механическим повреждениям.
  2. Износ, механические повреждения и даже расплавление могут угрожать и вкладышам (подшипникам) шеек коленвала.
  3. «Болезни» поршневых колец – это закоксовывание не до конца сгоревшими продуктами горения (углеводороды окисляются только до углерода), их залегание и даже поломки, что может привести к фатальным последствиям.
  4. Цилиндропоршневая группа также подвержена износу. В современных «движках» это не так заметно, всё-таки они созданы по последнему слову техники, но у каждой детали имеется конечный ресурс.
  5. На днище поршня может отложиться нагар.
  6. В деталях могут появиться трещины, они могут прогореть, обломиться и даже расплавиться.
  7. Двигатель может даже заклинить.

Признаки наличия неисправностей в работе КШМ

Могут насторожить посторонние стуки в двигателе. Возможно, это связано с детонацией или вам попалось не слишком качественное топливо. Последствия как детонации, так и некачественного топлива могут быть печальными. Звук при детонации более звонкий, а вот глухой звук может свидетельствовать о том, что износились шейки коленвала. Если же он совсем звонкий и происходит не только при резком увеличении оборотов (например, если вы быстро тронулись с места), то вполне возможно, что вкладыши шейки коленвала начинают плавиться. Возможно, причиной масляное голодание, но так или иначе – в сервис.

Также многое может сказать дым из двигателя. Если он сизый, то значит, что в камеру сгорания попадает масло. Возможно, виной тому маслосъёмные колпачки ГРМ, а возможно, проблема в поршневых кольцах. Накопление нагара на поршнях и цилиндрах приводит к увеличению трения и повышенному износу деталей. Если проблема в кольцах, то будет снижена компрессия, хотя понижение компрессии может быть связано и с другими причинами.

Обслуживание КШМ

Прежде всего, общие советы: «машина любит ласку, чистоту и смазку». Следует вовремя проверять уровень масла, не допускать перегрева двигателя и заправляться только качественным горючим. Серьёзные проблемы с КШМ решаются только в автосервисе. Разумеется, есть автолюбители, которые самостоятельно могут расточить цилиндр до ремонтного размера, но это всё же характерно для не самых новых автомобилей.

В «закоксованных» двигателях можно провести раскоксовку, которая делается как с разбором двигателя, так и при помощи специальных средств – без такового. Однако, подобные манипуляции лучше доверить профессионалам. Соблюдайте сроки ТО.

Заключение

Кривошипно-шатунный механизм – это важнейший агрегат в автомобиле. От его функционирования зависит состояние всего автомобиля и настроение его владельца. Следите за его технической исправностью, и двигатель будет работать долго, радуя вас мощностью и экономичностью.

мьютексов — как мне работать с мьютексами в подвижных типах в C ++?

Переполнение стека
  1. Около
  2. Продукты
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
  4. Талант Нанимайте технических специалистов и создавайте свой бренд работодателя
.

Балки — закреплены на одном конце и поддерживаются на другом

Балка закреплена на одном конце и поддерживается на другом — одноточечная нагрузка
Изгибающий момент

M A = — F ab (L + b) / (2 L 2 ) (1a)

где

M A = момент на неподвижном конце (Нм, фунт f футов)

F = нагрузка (Н, фунт f )

M F = R b b (1b)

где

M F = момент в точке нагрузки F (Нм, фунт f футов)

R b = опорная нагрузка на опоре B (Н, фунт f )

Прогиб

δ F = F a 3 b 2 (3 L + b) / ( 12 л 3 EI) (1c) 9 0073

где

δ F = прогиб (м, фут)

E = Модуль упругости (Па (Н / м 2 ), Н / мм 2 , psi)

I = Момент инерции площади (м 4 , мм 4 , дюйм 4 )

Реакции опоры

R A = F b (3 л 2 — b 2 ) / (2 л 3 ) (1d)

где

R A = опорная сила в A (Н, фунт f )

R B = F a 2 (b + 2 L) / (2 L 3 ) (1f)

где

R B = сила опоры в B (Н, фунт f )

Балка, закрепленная на одном конце и поддерживаемая на другом — постоянная нагрузка
Изгибающий момент

M A = — q L 2 /8 (2a)

где

M A = момент на неподвижном конце (Нм, фунт на футов)

q = длительная нагрузка (Н / м, фунт на / фут)

M 1 = 9 q L 2 / 128 (2b)

где

M 1 = максимальный момент при x = 0.625 L (Нм, фунт f футов)

Прогиб

δ max = q L 4 / (185 EI) (2c)

где

δ max = максимальный прогиб при x = 0,579 L (м, фут)

δ 1/2 = q L 4 / (192 EI) (2d)

где

δ 1/2 = прогиб при x = L / 2 (м, фут)

Реакции опоры

R A = 5 q L / 8 (2e)

R B = 3 q L / 8 (2f)

Балка, закрепленная на одном конце и поддерживаемая на другом — непрерывная уменьшающаяся нагрузка
Изгибающий момент

M A = — q L 2 /15 (3a)

, где

M A = момент на неподвижном конце (Нм, фунт f футов)

q = непрерывно снижающаяся нагрузка (Н / м, фунт f / футов)

M 1 = q L 2 /33.6 (3b)

где

M 1 = максимальный момент при x = 0,553 L (Нм, фунт f фут)

Прогиб

δ max = q L 4 / (419 EI) (3c)

где

δ max = максимальный прогиб при x = 0,553 L (м, фут)

δ 1/2 = q L 4 / (427 EI) (3d)

где

δ 1/2 = прогиб при x = L / 2 (м, фут)

Реакции опоры

R A = 2 q L / 5 (3e)

R B = q L / 10 (3f)

Балка, закрепленная на одном конце и поддерживаемая на другом — Момент на поддерживаемом конце
Изгибающий момент

M A = -M B /2 (4a)

где

M A = момент на неподвижном конце (Нм, фунт f футов)

Прогиб

δ max = M B L 2 / (27 EI) (4b)

где

δ max = max прогиб при x = 2/3 L (м, фут)

Реакции опоры

R A = 3 M B / (2 L) (4c)

R B = — 3 м B / (2 л) (4d)

.

Лезвия челюсти, фиксированные и подвижные

Поиск решений Интернет-магазин en
  • английский
  • Deutsch
.

% PDF-1.4 % 14 0 объект > endobj xref 14 62 0000000016 00000 н. 0000001586 00000 н. 0000001733 00000 н. 0000002052 00000 н. 0000002270 00000 н. 0000002350 00000 н. 0000002447 00000 н. 0000002557 00000 н. 0000002982 00000 н. 0000003031 00000 н. 0000003080 00000 н. 0000003293 00000 н. 0000003481 00000 н. 0000003520 00000 н. 0000003569 00000 н. 0000003618 00000 н. 0000003667 00000 н. 0000003689 00000 н. 0000007038 00000 п. 0000007060 00000 п. 0000010296 00000 п. 0000010318 00000 п. 0000012975 00000 п. 0000012997 00000 п. 0000015852 00000 п. 0000015874 00000 п. 0000018750 00000 п. 0000018772 00000 п. 0000021667 00000 п. 0000022001 00000 п. 0000022428 00000 п. 0000022642 00000 п. 0000022864 00000 п. 0000022886 00000 п. 0000025941 00000 п. 0000025963 00000 п. 0000029232 00000 п. 0000044523 00000 п. 0000045374 00000 п. 0000053122 00000 п. 0000053979 00000 п. 0000054641 00000 п. 0000057318 00000 п. 0000058175 00000 п. 0000059032 00000 н. 0000072221 00000 п. 0000132349 00000 н. 0000135453 00000 п. 0000139595 00000 п. 0000141689 00000 н. 0000143944 00000 н. 0000147063 00000 н. 0000151908 00000 н. 0000155139 00000 н. 0000164393 00000 н. 0000172397 00000 н. 0000178517 00000 н. 0000180853 00000 п. 0000185648 00000 н. 0000185726 00000 н. 0000001784 00000 н. 0000002031 00000 н. трейлер ] >> startxref 0 %% EOF 15 0 объект > endobj 16 0 объект > endobj 74 0 объект > поток Hb«a«tv.6Ā # Vp? 2A0K? 10py30p [2Z0Ne8pȾ _oVN ٙ + ٙ 8). / qr -e`EraJ @

.

Шатун в двигателе держит поршень но качается перед коленвалом

Шатун – так называют медведя, который от недостатка пищи просыпается среди зимы или совсем не впадает в спячку.

Ходит, шатается по лесу, может напасть даже на человека.

Но в этой статье будет не про него, а про совсем безобидную деталь, точнее про шатун в двигателе автомобиля.

Он при своей работе совершает качающие движения, поэтому назван именем коварного хищника. А про Мишку мы как-нибудь в другой раз поговорим. Наш шатун сейчас нам гораздо нужнее чем медведь.

Эта самая деталь, соединяет коленчатый вал и поршень. Ее назначение – преобразование поступательного движения поршня в цилиндре во вращательное движение коленчатого вала, который в свою очередь через трансмиссию приводит в движение колеса автомобиля.

Шатун, особенности конструкции

Конструктивные отличия шатуна определяются типом мотора и схемой его компоновки. Так в бензиновых двигателях используют легкий вариант, а в дизельных – утяжеленный, Причина тому – дизель работает при бОльших степенях сжатия .

Основные элементы

К главным звеньям относятся: стержень, верхняя головка (поршневая) и нижняя (кривошипная). Также в комплект входят: вкладыши нижней головки (подшипники скольжения), подшипниковая втулка верхней головки, болты и гайки со шплинтами для крепления нижней головки к шатуну.

Стержень шатуна может быть разных видов сечения: прямоугольник, круг, крест или Н-образный. Есть движки, в которых шатуны имеют масляную канавку, через которую подается масло к поршню.

Поршневая головка находится вверху – это неразъемный шатунный элемент. Его конструкция зависит от способа установки поршневого пальца.

В двигателях, с пальцем фиксированного типа (палец жестко запрессован в верхнюю шатунную головку), в поршневой в головке предусмотрено цилиндрическое отверстие без втулки.

В варианте движка с плавающим пальцем (палец фиксируется в бобышках поршня), присутствует биметаллическая или бронзовая втулка.

Кривошипная головка находится внизу и имеет разборную конструкцию. Она соединяет коленчатый вал и сам шатун. Включает верхнюю часть и крышку, которая прикреплена к шатуну болтами. Бывает с двумя категориями разъемов относительно стержневой оси – косым (под углом) и прямым (перпендикулярным).

В головке, как уже говорилось, установлены вкладыши подшипника скольжения. Выглядят как две половинки разрезанного плоского кольца. Покрыты и могут содержать от двух до пяти слоев мягкого металла.

В современных моторах применяют двух и трехслойные вкладыши. В двухслойном на металлическую основу нанесен покров антифрикционного материала, а в трехслойном, кроме того есть еще изоляционный слой.

Чтобы не возникало вибраций и шумов во время работы двигателя, все шатуны, и их составляющие должны быть одинаковой массы. Подгонку по массе делают, снимая тонкую стружку с бобышек, которые расположены на верхней головке, на стержне или внизу поршневой головки.

Применяемый материал и профили

Шатуны делают штамповкой из высокопрочной стали или методом литья из чугуна.

В дизельных моторах используются изделия из легированной стали изготовленные методом ковки (горячей штамповки), а в некоторых бензиновых двигателях из порошкообразных металлов, полученные методом спекания.

Напряженные условия работы этой детали предполагают ее высокую надежность, долговечность и износостойкость. Повышенные требования предъявляются и к болтам крепления. Для их производства используют легированные стали, с высоким коэффициентом текучести.

Конструктивные особенности

Стержень шатуна, при работе, подвергается продольному изгибу, поэтому обычно имеет двутавровое сечение, хотя встречаются также круглые, крестообразные и трубчатые. Но оптимальным вариантом считается двутавровый стержень, обладающий хорошей жесткостью при минимальном весе.

Для крестообразных профилей нужны более развитые головки, а это способствует утяжелению детали. У круглого исполнения простая геометрия, но оно требует высокого качества механической обработки.

В массовом автомобильном производстве применяются стержни двутаврового сечения. Для повышения общей жесткости, уменьшения габаритов и массы шатунов в форсированных двигателях обе головки отковывают как одно целое со стержнем. При этом верхней, как правило, придают форму цилиндра.

Верхние головки выпускаются различной формы, отличия зависят лишь от устройства и способа фиксации поршневого пальца, а так же от способа смазки.

Ну, теперь поняли, чем отличается наш шатун от медведя?)))

Теперь самое время поделится информацией с друзьями в социальных сетях про медведя-шатуна.

Да! Не забудьте поделиться с друзьями! Ссылочку скиньте им на эту статью и порядок. И не останавливайтесь на прочитанном, продолжайте расширять свой автомобильный кругозор, читай те статьи про Поршень, про Блок двигателя, Про Коленчатый вал. Всё будет для вас интересно!

До новых встреч, автомобилисты!)))

Поршни, цилиндры, шатуны и коленчатый вал

Мы все время говорим о регулярном техническом обслуживании, но иногда трудно понять, почему так важно соблюдать этот график технического обслуживания. Может помочь небольшое представление об основных деталях внутри вашего двигателя.

Цилиндр в двигателе — это всего лишь трубка. Однако внутри этой трубки происходит вся магия. Все, что описано ниже, происходит в плотно закрытой трубке, называемой цилиндром. У большинства машин их как минимум четыре.

Что такое цилиндр?

Джунко Кимура / Getty Images

Цилиндр в двигателе — это всего лишь трубка. Однако внутри этой трубки происходит вся магия. Все, что описано ниже, происходит в плотно закрытой трубке, называемой цилиндром. У большинства машин их как минимум четыре.

Объяснение автомобильного поршня

filipfoto / Getty Images

Поршень по своей конструкции движется вверх и вниз. У автомобильного поршня впереди гораздо более жестокая судьба.Он не только поднимается и опускается, но и должен выдерживать тысячи взрывов каждый раз, когда вы используете свой автомобиль или грузовик. Поршень имеет верх и низ. Верх обычно гладкий, иногда с небольшими углублениями на поверхности, поэтому поршень не задевает ни один из клапанов. В верхней части происходят взрывы.

Когда поршень проталкивается вверх в цилиндр, герметичная топливно-воздушная смесь сжимается, и свеча зажигания заставляет все это взорваться. Вместо того, чтобы выглядеть как сцена из «Звездных войн», этот взрыв содержится внутри двигателя и служит только для быстрого и мощного опускания поршня вниз.Когда поршень опускается, шатун прижимается к части коленчатого вала и поддерживает двигатель.

Соединение стержнем

withgod / Getty Images

Шатун соединен с нижней частью поршня. Поршень имеет куполообразную форму и уплотнен вверху, но нижняя часть поршня полая. Внутри этой перевернутой чашки находится штифт для запястья, толстый стальной штифт, который соединяет поршень с шатуном и позволяет шатуну слегка поворачиваться вперед и назад, при этом он при этом прочно прикреплен к нижней части поршня.Это важно, потому что, поскольку шатуны вызывают вращение коленчатого вала, точка, в которой они прикреплены к коленчатому валу, немного смещается по отношению к центру поршня. Это означает, что он должен немного покачиваться вперед и назад, чтобы он не сломался при первом повороте ключа. Штифты для запястий очень прочные и почти никогда не ломаются. Я видел гораздо больше разрушенных поршней, чем штоков.

Коленчатый вал, центр силы

schlol / Getty Images

Взрыв, который происходит в цилиндре, заставляет поршень толкаться вниз по направлению к двигателю.Шатун соединяет нижнюю часть поршня с определенной точкой коленчатого вала, передавая энергию сгорания (взрыва в цилиндре) от движения поршня и шатуна вверх и вниз к вращательному движению в коленчатом валу. Каждый раз, когда в цилиндре происходит горение, коленчатый вал поворачивается немного больше. Каждый поршень имеет собственный шатун, и каждый шатун прикреплен к коленчатому валу в разных точках. Они не только расположены вдоль длинного коленчатого вала, но и прикреплены в разных точках вращения коленчатого вала.Это означает, что при вращении всегда толкается другая часть коленчатого вала. Когда это происходит тысячи раз в минуту, вы получаете мощный двигатель, способный перемещать автомобиль по дороге.

* Помните, что если вы забудете долить масло в двигатель или регулярно менять масло, вы рискуете серьезно повредить внутренние части двигателя. Все эти детали нуждаются в постоянной смазке!

Поршни и шатуны двигателя

Поршень выполняет роль подвижной заглушки в цилиндре, образуя нижнюю часть камеры сгорания.Между поршнем и стенкой цилиндра имеется газонепроницаемое уплотнение, поэтому единственный способ расширения горячих газов сгорания — это прижать поршень вниз. То же самое и с пушечным ядром, но вместо того, чтобы улететь на чей-то любимый пиратский корабль, вращающийся коленчатый вал толкает поршень вверх по цилиндру, и цикл повторяется.

Более 60% трения внутри двигателя происходит за счет движения поршневого узла, и поэтому это основная область для повышения эффективности двигателей.Поршень все еще находится в стадии разработки и исследований, о чем мы вскоре поговорим более подробно.

Огромные силы создаются при изменении направления поршня при его движении вверх и вниз. Более легкий поршневой узел имеет меньший импульс, таким образом прикладывая меньшее усилие и позволяя двигателям с более высокими оборотами. Это означает, что происходит постоянный толчок для уменьшения веса шатуна и поршня.

Поршень соединен с коленчатым валом через шатун , часто сокращается до стержень или шатун .Эти части вместе известны как поршень в сборе . Оба конца шатуна могут поворачиваться: часть шатуна, которая соединяется с поршнем, называется малый конец , а конец, который крепится вокруг коленчатого вала, называется большой конец . Большой конец будет иметь Вкладыши подшипники которые минимизируют трение и поддерживают точный масляный зазор с шейкой штока на коленчатом валу. Шатун разделен на две части — с крышка стержня используется для зажима вокруг подшипника шатуна и коленчатого вала.

Компоненты поршневого узла

Поршень

Вся мощность в двигателе достигается за счет силы, воздействующей на верхнюю часть поршня. Эта сила определяется как площадь поршня, умноженная на давление газа. Более крупные поршни и более высокое давление газа обеспечат большую мощность. В целом размер поршня ограничен конструкцией двигателя, но поршень действительно играет жизненно важную роль в поддержании высокого давления газа, создавая газонепроницаемое уплотнение со стенкой цилиндра.

Верхняя поверхность поршня называется кроны (также голова или купол ). В серийных двигателях корона бывает различной формы, но обычно она бывает плоской, выпуклой или выпуклой.

[Различные формы коронки]

Практически все современные поршни включают предохранительные клапаны которые обеспечивают зазор вокруг клапанов в верхней части хода поршня.

Заводная головка, находящаяся в непосредственном контакте с горячими дымовыми газами, сильно нагревается.Именно эта область расширяется больше всего, поэтому будет небольшой конус внутрь от нижней части поршня, чтобы обеспечить больший зазор вокруг этой верхней площадки между головкой и верхним поршневым кольцом.

Хотя нам требуется газонепроницаемое уплотнение, нам также необходимо, чтобы поршень плавно перемещался по цилиндру с минимальным трением, поэтому поршню требуется некоторое клиренс . У обычного поршня зазор между ним и стенкой цилиндра составляет 0,1 мм (0,004 дюйма) — это примерно ширина человеческого волоса.Чтобы сохранить этот зазор, поршень должен быть точно обработан, а сплав, из которого он сделан, будет точно определен с учетом теплового расширения.

Небольшой зазор между поршнем и стенкой цилиндра перекрывается кольца поршневые , которые входят в канавки на поршне в области, известной как поршневой ремень . Пространства между этими канавками называются кольцо приземляется .

Поршень прикреплен к шатуну с помощью короткой полой трубки, называемой штифт на запястье , или поршневой палец .Эта булавка для запястья несет полную силу сгорания.

На поршень при сгорании действуют не только вертикальные силы, но и боковые силы, вызванные постоянно изменяющимся углом шатуна. Из-за этих боковых сил поршню требуются гладкие поверхности, чтобы он мог прилегать к стенке цилиндра и удерживать поршень в вертикальном положении. Боковые поверхности поршня известны как Юбка поршня .

[Пышная юбка и юбка-тапочка]

Есть два типа юбок.Самый простой — это полная юбка или сплошная юбка, представляющая собой классический поршень трубчатой ​​формы. Эта конструкция до сих пор используется в двигателях грузовиков и больших коммерческих автомобилей, но уже давно заменена на автомобили и мотоциклы более легкой конструкцией, известной как поршневой тап .

У скользящего поршня часть юбки срезана, остались только поверхности, которые опираются на переднюю и заднюю часть стенки цилиндра. Такое удаление сводит к минимуму вес и уменьшает площадь контакта между поршнем и стенкой цилиндра, тем самым уменьшая трение.

Современные производственные двигатели дополнительно уменьшают трение между поршнем и стенкой цилиндра за счет использования Покрытие поршня с низким коэффициентом трения , как тефлон в сковороде с антипригарным покрытием. Эти покрытия обычно наносятся трафаретной печатью в виде заплатки на юбки поршней — например, на изображенном на рисунке покрытии на основе графита двигателя Ford Fiesta Ecoboost.

[Поршень Ford]

Когда поршень опускается на такте сгорания, он будет оказывать боковое усилие в направлении, противоположном наклонному шатуну.Направление цилиндра, на которое действует эта сила, известно как сторона осевого напора, и поршень и стенка цилиндра будут подвергаться большему износу в этой области.

[Схема тяги]

Поршень становится невероятно горячим, и ему необходимо эффективно отводить это тепло. Тепло от поршня идет в три места: в виде лучистого тепла в камеру сгорания, в стенки цилиндра через поршневые кольца и вниз по шатуну. Кроме того, во многих двигателях поршень охлаждается с помощью масла, распыляемого на нижнюю часть.

Поршневые кольца

Поршневые кольца устанавливаются вокруг поршня, перекрывая небольшой зазор между поршнем и стенкой цилиндра. Обычно на поршне имеется три поршневых кольца, выполняющих разные функции.

Компрессионные кольца

Два верхних кольца называются кольца компрессионные (также известный как нажимные кольца или газовые кольца ) и их основная роль заключается в предотвращении проникновения газов через небольшой зазор между поршнем и стенкой цилиндра.Этот проход газа через поршень в картер известен как минет и должны быть минимизированы для сохранения сжатия.

Компрессионные кольца обычно изготавливаются из твердого чугуна и оказывают внешнее давление на стенку цилиндра. Это внешнее давление возникает из-за естественной упругости колец, но дополняется на такте сгорания давлением газа за кольцами, которое более плотно прижимает их к стенке цилиндра.

[Давление газа за компрессионными кольцами]

Важно отметить, что компрессионные кольца не оказывают бокового давления на поршень и не действуют для него как направляющие.Канавка в поршне будет глубже, чем ширина поршневого кольца, что позволит кольцу скользить по масляной пленке.

Компрессионные кольца также передают тепло от поршня к стенке цилиндра, где оно рассеивается в охлаждающей жидкости, протекающей через водяные рубашки.

Эти кольца сломаны с небольшим зазором, который позволяет устанавливать и снимать их поверх поршня. Ширина этого зазор поршневого кольца указывается производителем, и его можно измерить, поместив кольцо внутрь цилиндра и измерив зазор с помощью щупа.На этом рисунке зазоры сильно преувеличены, на самом деле они будут очень тонкими — 0,2 мм или меньше.

Кольца контроля масла

Кольцо нижнее на поршне Масло-контрольное кольцо . Масло постоянно разбрызгивается на стенки цилиндров либо из отверстий в шатунах, либо из форсунок, установленных в картере. Для минимального трения нам нужна тонкая масляная пленка, а функция маслосъемного кольца заключается в удалении излишков масла и создании идеальной масляной пленки для скольжения компрессионных колец и юбки поршня.

Нам определенно не нужно масло в камере сгорания: присутствие масла может вызвать плохое сгорание, высокие выбросы, чрезмерное накопление углерода на клапанах и поршнях и синий дым — все это плохие новости для плавного двигателя.

Маслосъемное кольцо обычно состоит из двух тонких хромированных скребковых колец с проставкой, зажатой между ними для удаления масла. Он разработан, чтобы скользить по маслу при движении вверх и соскребать его при движении вниз. Это называется сегментированным дизайном.В канавке для контроля масла будут просверлены отверстия, чтобы излишки масла могли легко стекать обратно в картер.

Установка новых поршневых колец

Область стенки цилиндра над верхним компрессионным кольцом не охвачена кольцами, что снижает износ. Это может вызвать образование гребня в течение всего срока службы двигателя. Если новые кольца устанавливаются на цилиндр, который не подвергался повторной расточке, тогда может потребоваться кольцо с удаленной выемкой, известное как гребневик, чтобы гарантировать, что новое кольцо не соприкасается с этим гребнем материала.

[Схема смещения колец]

При установке новых колец зазоры должны быть смещены и никогда не должны находиться на одной линии друг с другом, чтобы предотвратить прямой путь для выхода газов.

Булавка на запястье

Поршень прикреплен к шатуну через полую трубку из закаленной стали, известную как штифт на запястье или поршневой палец . Этот штифт проходит через маленький конец шатуна и позволяет ему поворачиваться на поршне.

Есть два метода закрепления булавки на запястье. А полуплавающий В конструкции штифт закреплен в шатуне, при этом он может свободно вращаться в отверстиях поршня. А полностью плавающий штифт запястья будет свободно вращаться как в малом конце, так и в поршне, и будет зафиксирован на месте с помощью стопорных колец или тефлоновых кнопок на концах штифта. Для полностью плавающей булавки на запястье будет заменяемая втулка внутри малого торцевого отверстия.

Штифт кисти может быть немного смещен в сторону, а не точно по центру поршня.Это известно как палец на запястье со смещением и используется для уменьшения поперечного перемещения поршня внутри цилиндра. Избыточное движение из стороны в сторону известно как удар поршня из-за стука, который он производит.

Шатун

шатун передает силу от поршня к коленчатому валу, он постоянно подвергается растягивающим, сжимающим и изгибающим силам, поскольку он действует как посредник в этих двухтактных отношениях.Шатун должен быть конструктивно прочным, и неслучайно он принимает форму миниатюрной стальной двутавровой балки, похожей на своих более крупных собратьев, поддерживающих небоскребы и мосты. Профиль двутавровой балки обеспечивает максимальную прочность конструкции при минимальной стоимости веса, и, как и поршень, мы хотим сохранить как можно меньший вес шатуна.

Требуемая прочность шатуна означает, что он изготовлен из кованой стали или порошковой стали. У экзотических двигателей могут быть титановые стержни.Чугун не используется из-за его веса.

Верхняя часть шатуна, прикрепленная к поршню, называется малый . Он не всегда будет иметь опору. От малого конца стержень проходит по профилю двутавровой балки до самого конца. большой который разделен на две части, чтобы он мог плотно прилегать к шейке коленчатого вала. Нижняя часть стержня называется крышка стержня и он будет прикреплен шпильками или болтами к самому стержню.

Стержень в настоящее время обычно изготавливается как одно целое, а затем крышка стержня вырезается и отламывается. Это оставляет неровную поверхность сопрягаемой поверхности, но придает большую прочность. Важно, чтобы крышки шатунов не смешивались с другими шатунами — они принадлежат друг другу как единое целое.

Шатунная головка будет иметь вкладыши подшипника в двух половинах, эти вкладыши подшипника будут изготовлены из того же материала, что и вкладыши для основных цапф. Подшипники шатуна смазываются маслом, поступающим под давлением через каналы в коленчатом валу.

Во многих шатунах просверлено отверстие от большого конца вверх, через вал, до выпускного отверстия где-нибудь по их длине. Этот канал позволяет маслу проходить вверх по шатуну от большого конца и разбрызгиваться на упорную область стенки цилиндра, где трение является максимальным.

Неисправности

Поршневой удар

Износ стенки цилиндра или юбки поршня может привести к слишком большим зазорам между поршнем и стенкой цилиндра.Это допускает чрезмерное перемещение поршня из стороны в сторону. Когда поршень меняет направление вверху и внизу своего хода, это может привести к его ударам о стенку цилиндра, вызывая шум, известный как поршневой удар .

Поршень обычно усиливается, когда двигатель холодный, прежде чем поршень успеет прогреться и расшириться. Его можно вылечить путем механической обработки цилиндра и использования поршня увеличенного размера.

Модификации и апгрейды

Модернизированные поршни и шатуны

Установка набора более прочных и легких штоков и поршней позволит создать более мощный двигатель.Это может быть необходимо для наддува или наддува двигателя. Переход от кованых стержней к титановой или порошковой (спеченной) стали приведет к более мощному двигателю.

Покрытия поршней

Как обсуждалось выше, недавно разработанные двигатели часто имеют покрытие с низким коэффициентом трения, нанесенное на заводе на их поршни. Но эти покрытия также доступны на вторичном рынке для уменьшения трения и увеличения (или уменьшения) теплопередачи.

[Примеры покрытий]

  • На юбку нанесено покрытие для уменьшения трения между ней и стенкой цилиндра.
  • Керамическое покрытие может быть нанесено на головку и предназначено для отражения тепла обратно в камеру сгорания и уменьшения количества, передаваемого поршню.
  • Нижняя сторона поршня может иметь нескользящее покрытие, известное как масляное покрытие который отталкивает масло, тем самым уменьшая вес узла и обеспечивая более эффективное охлаждение масла.

Конструкция и компоненты двигателя

Конструкция и компоненты двигателя

Двигатель построен из разных частей.Эти части: нижняя часть, верхняя часть, передняя часть, масляный поддон, клапанная крышка и передняя крышка.

Нижний конец (короткий блок): Нижний конец включает блок цилиндров со всеми установленных его внутренних частей. Поршни, шатуны, коленчатый вал и подшипник будет в блоке. Термин «короткий блок» часто означает то же самое. вещь как нижний конец.

Длинный блок : технический термин, относящийся к короткому блоку. с установленными головками.Такие детали, как клапанные крышки, передняя крышка, маховик, крепления и т.п. не входят в длинный блок

Открытый блок : представляет собой блок цилиндров со снятыми всеми частями. Там не было бы поршней, шатунов, коленвала или других деталей в блоке.

Конструкция нижнего (нижнего) конца

Дека блока цилиндров: представляет собой плоскую обработанную поверхность головки блока цилиндров. Просверливаются отверстия под болты и врезался в колоду для тепловых болтов.Проходы для охлаждающей жидкости и масла позволяют перекачивать жидкости через блок, прокладку головки и головки блока цилиндров.

Цилиндры (стенки цилиндров): в блоке цилиндров выточены большие отверстия для поршней. Неотъемлемую цилиндр является частью блока.

Гильзы блока цилиндров (вкладыши): — это отдельная деталь, запрессованная в блок. Есть два основных типы гильз цилиндров: сухие гильзы и мокрые гильзы.

Диаметр цилиндра: В блоке есть несколько отверстий, отверстия подъемника, отверстия под кулачок, основное отверстие.

Колпачки основные: они есть промокните до дна блока цилиндров и сделайте половину основного отверстия. Большие основные болты крышки ввинчиваются в отверстия в блоке, чтобы прикрепить крышки к блок

Коренные подшипники: защелкивается в блоке цилиндров и основных крышках, чтобы обеспечить рабочую поверхность за коренные шейки коленчатого вала.

Коленчатый вал: It преобразует возвратно-поступательное движение поршней во вращательное движение.Коленчатый вал входит в основную расточку блока. Коленчатый вал имеет масло для коленчатого вала. проходов, противовесов, фланца коленчатого вала с направляющей опорой в центр для поддержки первичного вала механической коробки передач и масла коленчатого вала уплотнения.

Коренные шейки кривошипа: представляют собой прецизионно обработанные и полированные поверхности, которые опираются на основные подшипники.

Цапфы шатуна: также термины шатунные шейки — это также обработанные и полированные поверхности, но они предназначены для шатунные подшипники.

Маховик: большой стальной диск установлен на заднем фланце коленчатого вала. Маховик имеет большой зубчатый венец, позволяющий запускать двигатель.

Шатун: крепит поршень к коленчатому валу.

Крышка шатуна: болты к нижней части корпуса шатуна. Его можно удалить для разборка двигателя.

Подшипники шатуна: избавиться от шейки шатуна коленчатого вала.

Палец поршня: позволяет поршень качаться на шатуне. Штифт проходит через отверстие в поршень и малый конец шатуна.

Поршни: передач давление сгорания на шатун и коленчатый вал. Это должно удерживайте поршневые кольца и поршневой палец во время работы в цилиндре.

Поршневые кольца: В автомобильных поршнях обычно используются три кольца — два компрессионных кольца и одно масляное. звенеть.

Балансирные валы: ар используется в некоторых двигателях для уменьшения вибрации. Эти противовесные валы обычно устанавливаются на левой и правой стороне блока цилиндров и приводятся в движение ремнем или цепочкой.

Конструкция верхнего (верхнего) конца

* Головка блока цилиндров: болтами к деке блока и закрывает верхнюю часть цилиндров. Предстоящий прокладка уплотняет поверхности блока и головки, предотвращая попадание масла, охлаждающей жидкости и давления утечка.

* Головка блока цилиндров без покрытия: представляет собой отливку головки со всеми ее частями (клапаны, держатели, фиксаторы, пружины, сальники и коромысла) сняты. Головка блока цилиндров состоит из сгорания камеры, впускные каналы, выпускные отверстия, масляные каналы, водяные рубашки, впускные палуба, вытяжная дека и отверстия для дюбелей.

* Направляющие клапана: ар небольшие отверстия, проделанные через верхнюю часть головки, проделайте во впускном отверстии и выхлопные отверстия. Двумя основными типами направляющих клапана являются интегральные и вдавлен.

* Седла клапана: ар круглые обработанные поверхности в отверстиях портов в камеры сгорания. В седла клапана могут быть частью головки или отдельным запрессованным элементом.

* Клапаны: открытые и близко к регулируемому потоку в камеру сгорания и из нее.
* Уплотнения клапана: предотвращают попадание масла в отверстия головки цилиндров через направляющие клапана.

* Пружина клапана в сборе: используется для закрытия клапана.Он в основном состоит из пружины клапана, фиксатора, и два сторожа.

* Распредвал: открывает клапаны двигателя в нужное время во время каждого хода.

* Шестерня распределительного вала: а Распредвал иногда имеет приводную шестерню для работы распределителя и масляного насоса.

* Эксцентрик распределительного вала: Эксцентрик (овал) может быть обработан на распредвале для механической (двигательной ведомый) бензонасос.

* Подшипники распредвала: обычно представляют собой неразъемные вставки, запрессованные в блок ГБЦ.

* Подъемники клапана: также называемые толкатели, ездят на кулачках и передают движение остальной части клапанный механизм.

* Толкатели: передача движение между подъемниками и коромыслами. Они нужны, когда распредвал расположен в блоке цилиндров

* Коромысла: может быть используется для передачи движения от толкателей к клапанам. Их можно использовать в двигатели OHC и OHV. В любом двигателе коромысла устанавливаются поверх ГБЦ различными методами; вал коромысла, шпилька коромысла или коромысло пьедестал.Есть два типа коромысел; регулируемые коромысла и нерегулируемые коромысла. Регулируемые коромысла позволяют менять зазор клапанного механизма. Нерегулируемые коромысла не позволяют изменить клапанный зазор. Они используются только с некоторыми гидравлическими подъемниками.

* с соленоидом коромысла: используются на двигателях переменного рабочего объема. Соленоиды может быть включен или выключен для деактивации или активации некоторых клапанов двигателя.

* Переменная синхронизация клапана: изменять фазы газораспределения при изменении частоты вращения двигателя. Это сделано для оптимизации движка мощность и эффективность на всех рабочих скоростях.

Конструкция передней части

Механизм привода распредвала также называется механизмом газораспределения, должен поворачивать распределительный вал и удерживать его синхронно с коленчатый вал двигателя и поршни. Иногда он также должен питать другие устройства. (балансирный вал, масляный насос, распределитель и т. д.) Есть три основных типа приводы распредвалов: зубчатая, цепная, ременная.

Зубчатая передача: ГРМ шестерни — это две косозубые шестерни на передней части двигателя, которые приводят в действие двигатель. распредвал.

Цепь привода ГРМ и две звездочки: цепь привода ГРМ передает мощность от звездочек кривошипа к кулачковые звездочки. Шпонка коленвала используется для блокировки звездочки коленчатого вала. к валу. Шпонка распредвала или штифт используется для фиксации распредвала. звездочку на кулачке и гарантирует, что звездочка не вращается на кулачке. распредвал и выходят не вовремя.Натяжитель цепи можно использовать для чрезмерное провисание по мере износа цепи и звездочек. Направляющая цепи может быть необходимо для предотвращения ударов цепи. Допускается использование вспомогательной цепи и звездочек для привода масляного насоса двигателя, балансирных валов и других узлов двигателя. Масло slinger помогает распылять масло на цепь привода ГРМ для предотвращения износа. Двигатель передняя крышка , также называемая крышкой цепи привода ГРМ или крышкой шестерни ГРМ, является металлической корпус, который крепится болтами к передней части двигателя.Он охватывает цепь привода ГРМ или шестерни, чтобы масло не разбрызгивалось. Крышка удерживает сальник коленвала.

Ремень ГРМ: Зубья Топор сформирован внутри пояса. Они сцепляются с зубами снаружи кривошипа и звездочек кулачка. Звездочка ремня обычно имеет квадратную форму. зубы. Натяжитель ремня ГРМ — колесо, которое удерживает ремень ГРМ в натянутом состоянии. на его звездочки. ГРМ датчики ремня обнаруживают чрезмерный натяжитель удлинение и износ и растяжение ремня ГРМ.Когда датчик обнаруживает ремень растяжение, индикатор возможного выхода ремня из строя, сигнализирует ЭБУ. ЭБУ может затем включите приборную панель, чтобы предупредить водителя о проблеме. Вспомогательный элемент ременная звездочка , также называемая промежуточной звездочкой, может использоваться для работы масляный насос, водяной насос, распределитель и т. д. Ремень ГРМ просто удлиняется вокруг этой дополнительной звездочки. Крышка ремня ГРМ — это просто лист металла или пластиковый кожух вокруг ремня привода кулачка.

* Шкивы коленчатого вала: необходимы для работы генератора, насоса гидроусилителя руля, кондиционера компрессор, насос нагнетания воздуха и другие устройства.

* Балансные валы двигателя: привязаны к коленчатому или распределительному валу. Балансирный вал имеет грузы. которые вращаются в направлении, противоположном вращению коленчатого вала. Это отменяет крутильные колебания, создаваемые коленчатым валом, что обеспечивает более плавный двигатель праздный.

* Коллектор впускной : есть отливка из металла или пластмассы, которая крепится болтами и закрывает впускные отверстия на головке блока цилиндров.

Болты крепления выпускного коллектора к головку блока цилиндров, над выпускными отверстиями.Крышка клапана также называется крышкой коромысла или Крышка кулачка на двигателях OHC представляет собой тонкий кожух над головкой блока цилиндров. Он просто предотвращает вытекание масляной струи из клапанного механизма из двигателя. Крышка уплотняется прокладкой или герметиком.

Прокладки двигателя предотвращают давление, утечка масла, охлаждающей жидкости и воздуха между компонентами двигателя. Они есть; прокладка ГБЦ, прокладка клапанной крышки, прокладка масляного поддона, прокладка передней крышки, прокладки корпуса термостата, прокладки впускного и выпускного коллектора и т. д.

Поддон и поддон масляный

Поддон картера, обычно изготовленный из тонкий лист металла или алюминия, болты к нижней части блока цилиндров. Это вмещает дополнительный запас масла для системы смазки. Масляный поддон установлен с резьбовой пробкой сливного отверстия для замены масла. Отстойник — это самая нижняя часть масляный поддон, в котором собирается масло.

Одно- и многоцилиндровые двигатели

Соотношение мощность / масса:

Мощность двигателя изменяется как площадь отверстия (то есть с площадью поршня), но масса изменяется как куб канала ствола (то есть с объемом использованного материала).Увеличение мощность за счет использования большого цилиндра, следовательно, приводит к низкому соотношению мощности и веса, тогда как увеличение количества цилиндров сохраняет мощность и вес в такие же пропорции.

Интервал и крутящий момент колебание:

Так как все цилиндры должны зажигание за два оборота четырехтактного коленчатого вала, интервалы зажигания 7200 разделить на количество цилиндров. Эффективный рабочий ход занимает около 1350 г.С а. одноцилиндровый, масса большого маховика требуется для поглощают колебания крутящего момента и обеспечивают энергией коленчатый вал. Как число цилиндров увеличивается, крутящий момент становится более плавным, и требуется меньший вес маховика, помощь ускорению.

Охлаждение:

Большие цилиндры имеют длинные тепловые пути, например, от центра поршня. Необходимы многоцилиндровые агрегаты для большой мощности, чтобы избежать проблем со смазкой и детонацией из-за перегрев.

Уравновешивающие и инерционные нагрузки:

Одноцилиндровый агрегат может только при неправильной балансировке, и вибрация будет возникать при определенных оборотах двигателя. Рядные четырехцилиндровые агрегаты имеют небольшие вторичные дисбалансные силы, в то время как горизонтально противоположный; шестицилиндровые и восьмицилиндровые агрегаты могут иметь полностью удовлетворительный баланс. Уменьшенная возвратно-поступательная масса многоцилиндрового двигатель позволяет более высокие частоты вращения коленчатого вала без проблем с силой инерции.

Обычный автомобильный двигатель:

Часть преимуществ традиционный опыт работы с этим типом агрегатов: четырехтактный, четырехцилиндровый, Рядный двигатель с водяным охлаждением имеет неотъемлемые преимущества.

* Двухтактный агрегат имеет недопустимый расход топлива.

* Экономичность с воспламенением от сжатия (CI) компенсируется меньшей мощностью и

ускорение, с увеличенным стоимость, шум, вес и (для некоторых) более неприемлемое топливо.

* Двухцилиндровый двигатель имеют большие колебания крутящего момента, а

* Шесть цилиндров шт. являются ненужным расходом при емкости 2-2,5 л.

* V4 и по горизонтали четыре противостоящих (HO4) дороже и имеют много комплектующих по сравнению с линейной компоновкой, а H04 имеет более сложные коллекторы

и охлаждающие устройства.

* Воздушное охлаждение в нет подходит для четырехцилиндровых рядных агрегатов; он более шумный, требует мощности для привода большой вентилятор системы охлаждения и сложное отопление салона

4 Основные детали, которые заставляют ваш двигатель работать

Двигатель — это сложное устройство, в котором много деталей, жизненно важных для бесперебойной работы вашего автомобиля.Из всех этих частей коленчатый вал, шатуны, поршни и цилиндры являются основными для двигателя любого грузовика и легкового автомобиля.

Цилиндры

Цилиндры двигателя представляют собой трубы. У большинства автомобилей будет как минимум четыре цилиндра. Чем больше цилиндров, тем «мощнее» двигатель автомобиля. Именно внутри этих трубок происходит волшебство. Все, что делают остальные части, описанные ниже, происходит внутри цилиндров.

Поршни

В каждом цилиндре есть поршень, который качает внутри него.Поршень должен выдерживать тысячи взрывов каждый раз, когда вы используете свой автомобиль. Когда он проталкивается вверх в цилиндр, находящаяся в нем топливно-воздушная смесь сжимается, и свеча зажигания вызывает его «взрыв». При взрыве поршень быстро и мощно опускается вниз. Как только поршень будет опущен, шатун будет давить на коленчатый вал, чтобы двигатель продолжал вращаться. Поршни имеют верх и низ. Взрывы происходят на верхнем конце, который является гладким, часто с вмятинами на поверхности, так что поршень не задевает клапан.

Поршни двигателя V8 на коленчатом валу

Шатуны

Шатуны соединены с нижней частью поршней. Дно поршня полое, а внутри находится толстый стальной штифт (штифт), соединяющий шатун и поршень. Это заставляет шток слегка поворачиваться вперед и назад, оставаясь при этом надежно прикрепленным к нижней части поршня. Это важная функция, поскольку она вызывает вращение коленчатого вала.

Коленчатый вал

По сути, то, что мы узнали выше, — это то, что в цилиндре происходит взрыв, который заставляет поршень опускаться вниз по направлению к двигателю.В нижней части поршня находится шатун, который соединяет поршень с определенной точкой на коленчатом валу, который передает энергию взрыва от движения поршня вверх / вниз к вращательному движению в коленчатом валу. Каждый раз, когда происходит взрыв, коленчатый вал немного больше проворачивается. Каждый шатун прикрепляется к коленчатому валу в разных точках, что означает, что при вращении всегда толкается другая часть коленчатого вала. Это происходит тысячи раз в минуту, в результате чего получается мощный двигатель, способный перемещать ваш автомобиль по дороге.

* Вы должны помнить, что для бесперебойной работы вашему двигателю необходима смазка. Убедитесь, что вы поддерживаете надлежащий уровень масла и регулярно его меняете. Для достижения наилучших результатов обратитесь к руководству пользователя, чтобы узнать, когда его нужно изменить. Если вы не будете регулярно проводить техническое обслуживание масла, вы рискуете серьезно повредить двигатель.

Как работают автомобили — Как работает автомобильный двигатель

Процесс работы автомобиля намного проще, чем вы думаете.Когда водитель поворачивает ключ в замке зажигания:

  • Автомобильный аккумулятор включается, отправляя
  • Питание стартера, который
  • Поворачивает коленчатый вал, который
  • Приводит в движение поршни
  • При перемещении поршней двигатель заводится и тикает более
  • Вентилятор всасывает воздух в двигатель через воздушный фильтр
  • Воздушный фильтр удаляет грязь и песок из воздуха
  • Очищенный воздух втягивается в камеру, в которую добавляется топливо (бензин или дизельное топливо)
  • Эта топливно-воздушная смесь (испаренный газ) хранится в камере
  • Водитель нажимает на педаль акселератора
  • Дроссельная заслонка открыта
  • Газовоздушная смесь проходит через впускной коллектор и распределяется через впускные клапаны в цилиндры.Распределительный вал управляет открытием и закрытием клапанов.
  • Распределитель зажигает свечи зажигания, зажигая топливно-воздушную смесь. Возникающий в результате взрыв заставляет поршень опускаться, что, в свою очередь, вызывает вращение коленчатого вала.

В цилиндрах происходит магия, которая придает мощность и движение колесам автомобиля. В большинстве автомобильных двигателей используется четырехтактный цикл сгорания. Этот цикл начинается с поршня в верхней части цилиндра. Тогда:

Внутри цилиндра автомобиля

Четырехтактный цикл сгорания

Такт впуска: впускной клапан открывается, и поршень движется вниз, позволяя топливно-воздушной смеси попасть в открытое пространство.

Ход сжатия: поршень движется вверх. Это сжимает топливно-воздушную смесь, вытесняя ее в меньшее пространство. Сжатие заставляет топливно-воздушную смесь взрываться с большей силой.

Силовой цикл: искра от свечи зажигания воспламеняет топливно-воздушную смесь. Взрыв толкает поршень вниз по цилиндру.

Выпускной цикл: выпускной клапан открывается, и поршень перемещается обратно в верхнюю часть цилиндра, вытесняя выхлопные газы.

Нижняя часть каждого поршня прикреплена к коленчатому валу.

Когда поршни перемещаются вверх и вниз, они вращают коленчатый вал, который после передачи мощности через трансмиссию вращает колеса.

Большинство автомобилей имеют как минимум четыре цилиндра. У более мощных машин больше. Например, у V6 шесть цилиндров, а у V8 восемь.

Чем сильнее водитель нажимает на педаль акселератора, тем больше топливно-воздушной смеси проходит в цилиндры и тем больше вырабатывается мощности.

Что такое число оборотов в минуту?

Четырехтактный цикл повторяется тысячу раз в минуту. Эти повторы более известны как Revs.

Счетчик оборотов показывает, сколько тысяч раз в минуту повторяется цикл.


Трансмиссия

Управляет мощностью, содержащейся в коленчатом валу, прежде чем она поступает на колеса, и позволяет водителю управлять скоростью / мощностью автомобиля, обеспечивая различные соотношения скорость / мощность, известные как шестерни.

Итак, первая передача дает большую мощность, но небольшую скорость, тогда как пятая передача дает небольшую мощность, но большую скорость.

Коленчатый вал соединяется с трансмиссией только тогда, когда автомобиль находится на передаче и сцепление включено. Если вы нажмете на сцепление, коленчатый вал отсоединится от коробки передач.

Трансмиссия соединена с выходным валом, который соединен с осями, соединенными с колесами. Когда трансмиссия вращает выходной вал, это поворачивает оси, которые, в свою очередь, вращают колеса.

Прочие ключевые компоненты автомобилей и двигателей

Генератор : превращает механическую энергию в электрическую. Эта энергия приводит в действие электрическую систему автомобиля, от фар до дворников. Он также подзаряжает автомобильный аккумулятор. Ремень, который вращается при включении двигателя, приводит его в действие.

Тормоза : в автомобилях используются барабанные или дисковые тормоза. Дисковые тормоза используют суппорт для нажатия на диск колеса, чтобы замедлить колесо. Барабанные тормоза работают по тому же принципу, однако барабанный тормоз давит на внутреннюю часть барабана.

Распредвал : управляет открытием и закрытием впускных и выпускных клапанов.

Система охлаждения : автомобильные двигатели выделяют много тепла. Это тепло нужно контролировать. Для этого вода прокачивается через проходы, окружающие цилиндры, а затем через радиаторы для охлаждения.

Распределитель : приводит в действие катушку зажигания, заставляя ее зажигать точно в нужный момент. Он также распределяет искру по нужному цилиндру и в нужное время.Если синхронизация отстает на долю, двигатель не будет работать должным образом.

Выхлопная система : после сгорания топливно-воздушной смеси оставшийся газ попадает в выхлопную систему и удаляется из автомобиля. Если присутствует каталитический нейтрализатор, выхлопные газы проходят через него, а любое неиспользованное топливо и другие определенные химические вещества удаляются.

Ручной тормоз : это отдельная система от ножного тормоза. Как правило, он устанавливается на полу автомобиля и соединяется тросом с двумя задними колесами.

Прокладка головки : головка цилиндра (блок, который герметизирует все верхние части цилиндров) и блок двигателя (который содержит основные корпуса цилиндров) представляют собой отдельные компоненты, которые должны легко стыковаться друг с другом. Прокладка головки — это кусок металла, который находится между ними и соединяет их.

Масло : двигатель автомобиля состоит из множества движущихся частей. Масло смазывает эти детали и позволяет им плавно двигаться. В большинстве автомобильных двигателей масло откачивается из масляного поддона через фильтр, удаляющий любую грязь, а затем под высоким давлением разбрызгивается на подшипники и стенки цилиндров.Затем масло стекает в поддон, где процесс начинается заново.

Регулятор : регулирует количество энергии в генераторе.

Амортизаторы : также известные как амортизаторы, устанавливаются между кузовом и осью автомобиля для предотвращения чрезмерного качения и раскачивания кузова автомобиля во время движения.

Подвеска : противодействует ударам неровностей дороги. Без такой системы автомобиль, конечно, будет отклоняться каждый раз, когда шины наезжают на неровность или выбоину.Система состоит из пружин и амортизаторов. Пружины поглощают любую энергию, выделяемую, когда шины катятся по ухабу, а амортизаторы поглощают энергию пружин. Это обеспечивает устойчивость и устойчивость основного корпуса автомобиля.

Ремень ГРМ : ремень, соединенный как с распределительным валом, так и с коленчатым валом, гарантирующий, что они работают синхронно друг с другом.

В чем разница между бензиновым и дизельным двигателем?

В бензиновых двигателях топливо смешивается с воздухом и затем нагнетается в цилиндры, где топливно-воздушная смесь сжимается поршнями и воспламеняется свечами зажигания.В дизельном двигателе воздух сжимается перед добавлением в него топлива. Когда воздух сжимается, он нагревается. Это означает, что когда топливо добавляется к сжатому воздуху, он становится очень горячим и топливно-воздушная смесь воспламеняется автоматически. Таким образом, в дизельном двигателе нет свечей зажигания, так как давление используется для воспламенения топливно-воздушной смеси.


Добро пожаловать. | Департамент образования

Предупреждающее сообщение

В вашем поиске используется слишком много выражений И / ИЛИ.В этот поиск были включены только первые 7 терминов.

К сожалению, страница, которую вы ищете, больше не существует, была перемещена или в настоящее время недоступна. Мы выполнили поиск по ключевым словам на основе страницы, которую вы пытаетесь открыть. Соответствующие варианты поиска представлены ниже.

  1. История штата Мэн и Интернет-ресурсы

    Мэн История и Интернет-ресурсы … Используя наборы первичных источников (совместно представлено Мэн DOE , Историческое общество штата Мэн , Государственный архив штата Мэн ,… Мэн Государственные служащие Talking Civics и Gov ‘t с сенатором Ангусом Кингом Talking Civics и…

  2. Летняя программа общественного питания (SFSP)

    … по этой ссылке и следуйте указаниям http: // www.fns.usda. gov / summerfoodrocks Летняя служба питания… для всех детей в возрасте 18 лет и младше на утвержденных SFSP сайтах в районах со значительной концентрацией малообеспеченных… Перейти на веб-страницы) Образование в области питания — Университет , штат Мэн, Совместное расширение: ресурсы EFNEP …

  3. Государственные служащие, гражданские деятели и гражданский дискурс

    … Государственные чиновники Talking Civics и Gov ‘t с сенатором Ангусом Кингом Talking Civics и… NewsHour) Презентация PBS NewsHour Mid- Maine Технический центр / Веб-страница Дэйва Бордмана … (ICivics & CivXNow), чтобы ответить на вопросы, заданные студентами штата Мэн, студентов о предстоящих выборах и…

  4. Гражданские студенты и голос студентов

    … NewsHour) Презентация PBS NewsHour Mid- Maine Технический центр / Веб-страница Дэйва Бордмана … (ICivics & CivXNow), чтобы ответить на вопросы, заданные студентами штата Мэн, студентов о предстоящих выборах и… с государственными служащими из штата Мэн . Talking Civics и Gov ‘t с сенатором Ангусом Кингом Talking Civics и…

  5. Пенсия учителя

    … перевод взносов работодателя Пожалуйста, обратитесь к законам штата Мэн о пенсионной системе и : Заголовок 5 -… — https: // www. Мэн . gov / doe / сайты / мэн . gov . doe / файлов / inline файлов / FY20_RFL_prelimED279_Present27Feb2019. pdf

  6. Ежемесячный информационный бюллетень ESEA

    … Часы работы во вторник, 24 августа. Свяжитесь с Cheryl.Lang @ maine . gov или координатора региональной программы по ссылке. … Здесь: https: // www. Мэн . gov / doe / сайты / мэн . gov . doe / файлов / встроенных файлов / Grants4ME% 20Access% 20v4. pdf . Для…

  7. Ежемесячный информационный бюллетень ESEA

    … (Свяжитесь со своим региональным координатором программы или Cheryl.Lang @ maine . gov , чтобы получить ссылку.) Общие и конкретные обновления заголовков… здесь: https: // www. Мэн . gov / doe / сайты / мэн . gov . doe / файлов / встроенных файлов / Grants4ME% 20Access% 20v4. pdf . Для…

  8. Годовая финансовая отчетность на конец года

    … Требования Загрузите следующие файлов в NEO Financial до 23 августа 2019 г. … Заявки в перенесенном статусе считаются полученными Мэн DOE .

  9. Годовая финансовая отчетность на конец года

    … Требования Загрузите следующие файлов в NEO Financial до 30 августа Фактические… заявки в перенесенном статусе считаются полученными Мэн DOE .

  10. Интернет-руководство

    … Видеоурок Новичок Файлы , Ссылки и якоря Узнайте, как прикрепить…

Поршень

, отличающийся по средствам в коленчатом валу, шатуне или поршне Патенты и заявки на патенты (класс 123 / 48B)

Номер патента: 4957069

Abstract: Приводной или работающий двигатель, в частности двигатель внутреннего сгорания, имеющий по крайней мере один цилиндр и поршень, который перемещается в последнем аксиально и соединен с коленчатым валом верхней частью шатуна и нижней частью шатун, соединенный с указанной верхней частью с помощью шарнира.Две секции шатуна опираются на регулируемую ось, составляющую единое целое с корпусом двигателя, с помощью общего шарнирного поворотного рычага. Для увеличения производительности и адаптации к различным видам топлива конец верхней части шатуна (5, 30), обращенный к поршню (2), имеет осевое выступание (27), которое проходит через общий шарнир (9, 33). ) двух секций шатуна (5, 10 и 30, 35) и конец (14 «, 36, 36 ‘) поворотного рычага (14, 39), обращенный к двум упомянутым секциям шатуна ( 5, 10 и 30, 35) шарнирно входит в прологацию (27).

Тип: Грант

Зарегистрирован: 5 января 1989 г.

Дата патента: 18 сентября 1990 г.

Изобретатель: Герхард Медерер

.
27Янв

Как подключить котел подогрева двигателя: Электрические предпусковые подогреватели для двигателя 220В – предназначение, выбор и самостоятельная установка

Схемы Подключения Подогревателей Двигателя — tokzamer.ru

Истории наших читателей «Гребаный таз!!!


Видео: работа, достоинства и недостатки автономных подогревателей Тепловые аккумуляторы Конструкция представляет собой большой термос, сохраняющий тепло нагретой охлаждающей жидкости до двух суток. Схема, представленная на Рис.

При этом жидкость, поступающая в рубашку охлаждения двигателя, успевает изрядно остынуть. Кроме того, следует приготовить комплект гаечных ключей, торцевую отвёртку, острый нож, охлаждающую жидкость 1—1.
ПРЕДПУСКОВОЙ ПОДОГРЕВАТЕЛЬ ДВИГАТЕЛЯ С НАСОСОМ СТАРТ-ТУРБО. ОБЗОР.

Дополнительно можно подключить дистанционное управление. Данный аппарат монтируется в охладительной системе мотора.

При этом жидкость, поступающая в рубашку охлаждения двигателя, успевает изрядно остынуть.

После прогрева провод складывается в подкапотное пространство. Шланги для охлаждающей жидкости лучше купить самостоятельно, предварительно измерив необходимую длину лучше, если они будут цельными.

Условия монтажа при этом способе с вашей стороны должны подкрепиться технической умелостью и обьёмом определённых знаний по гидродинамике и автослесарничеству. Разумеется, не затапливаться при преодолении бродов.

На сильном морозе солярка может загуститься так, что дизель не удастся запустить.

Предпусковой подогреватель двигателя 220 вольт Паджеро 2

ЧИТАЙТЕ ТАКЖЕ НА САЙТЕ

Питаются от аккумуляторов, напряжением постоянного тока 12 в. В зависимости от объёма двигателя, можно выбрать модели мощностью от 1 до 3 кВт Видео: эффективность и особенности электрических предпусковых подогревателей Другие разновидности предпусковых подогревателей Кроме электрических нагревателей, выпускаются также другие устройства, отличающиеся принципом действия.

В случае самостоятельной установки следует придерживаться подробной инструкции. Нельзя включать подогреватель без охлаждающей жидкости.

При прогретом двигателе струи воздуха из отопителя должны быть горячими!

Справедливости ради следует отметить, что наши автолюбители все-таки считают автомобиль в первую очередь роскошью, на которую потрачено и так слишком много денег. На рынке можно встретить большое количество котлов от в, но какой котел для подогрева двигателя выбрать?

Место разреза нужно определить, примерив входной рукав котла. При соединении всех элементов не забываем использовать хомутики для шлангов, которые обычно идут в комплекте с подогревателем.

Кроме нагрева рубашки охлаждения движка, нагреватели могут параллельно: заряжать аккумуляторы; нагнетать тёплый воздух в салон; управляться дистанционно, включаясь и выключаясь по команде из пульта. В системе охлаждения не допускается наличие осадка или посторонних включений, а также любых присадок для устранения течи радиатора.

Большинство моделей оснащено терморегулятором.
Обзор подогревателей двигателя с помпой Лунфей #2

Монтаж и установка устройства

Так жидкость циркулирует до тех пор, пока полностью не обогреет агрегат. За счет понижения давление внутри корпуса клапан 4 открывается, и жидкость начинает поступать в него по входному патрубку.

Собираем всю систему, при этом важно не забыть закрутить обратно все предварительно открученные гайки и хорошенько их затянуть. Кроме нагрева рубашки охлаждения движка, нагреватели могут параллельно: заряжать аккумуляторы; нагнетать тёплый воздух в салон; управляться дистанционно, включаясь и выключаясь по команде из пульта. Но чаще применяется несколько другая схема подключения.

Если же на пути сигнала будут препятствия, дистанция значительно сократится. На некоторых модификациях авто сливать антифриз не потребуется.

Отсоединяем патрубок от печки. Если вы не уверенны в навыках электромонтажа, подключение электрической части лучше доверить профессионалам.

Да, морально то я созрел, а вот финансово никак не мог потянуть. Но главным преимуществом аппарата является то, что он имеет простую схему установки, поэтому с задачей как установить предпусковой подогреватель двигателя не возникнет сложностей даже у малоопытного пользователя. Какой мощности ТЭН нужно покупать? Поэтому подключать к питанию прибор лучше через переходник с таймером.

Известные виды устройств


Он вворачивается вместо термодатчика. Такие подогреватели нагревают дизтопливо до приемлемой температуры. Охлаждающая жидкость нагревается прямо в блоке устройства. Такие механизмы очень удобны. В ней подача антифриза делается через все ту же сливную пробку, а вот слив производится в отверстие термодатчика блока цилиндров.

При присоединении подогревателя к патрубкам через тройники, нельзя производить врезку между термостатом и радиатором, как показано на рис. От чего зависит мощность предпускового подогревателя?

Происходит постоянное движение жидкости по замкнутому циклу. Далее расскажем, как действует данный механизм и как его можно установить на свой автомобиль. В торце упаковочной коробки есть перечень моделей. В поисках средств для обеспечения легкого запуска силовой установки в условиях сниженных температур многие автовладельцы останавливают свой выбор на предпусковых подогревателях антифриза, работающих от сети В.
Предпусковой подогреватель двигателя с GSM дистанционным управлением.

Что такое предпусковой подогреватель двигателя

Довольны будут и те, кто имеет неподалёку гараж с подведённым электричеством.

Выхлопная труба не должна располагаться в направлении движения. Для того чтобы этого избежать, а также облегчить старт движка в морозную погоду, предназначены предпусковые обогреватели, питающиеся от сети В.

Все шланги должны быть хорошо закреплены хомутами в местах соединения, защищены от перетирания. Сибирь-М Приборы отечественного производителя марки Сибирь-М, Альянс, Страт имеют меньшую стоимость при идентичных технических характеристиках. Цена предпускового подогревателя, как правило, невысока и в основном зависит от наличия тех или иных опций.

Соединение подогревателя с системой охлаждения должно осуществляться в двух удаленных друг от друга местах вход подогревателя и выход из подогревателя. Главной особенностью современных предпусковых подогревателей двигателя является отсутствие необходимости установки в самой низкой области прохождения антифриза. Всей работой управляет электронный управляющий блок ЭБУ в автономном режиме.

Устанавливая подогреватель Лунфэй придерживайтесь рекомендаций

Предпусковой подогреватель, работающий от сети в В, потребляет довольно много электроэнергии, так как тэн, установленный внутри устройства, имеет достаточно высокую мощность. Он осуществляет принудительную циркуляцию теплоносителя в виде подогретого тосола, что существенно сокращает время на прогрев. Наиболее универсальный вариант 1 — ДВС, 2 — радиатор отопления салона.

Устроен он следующим образом: вольфрамовая спираль помещена в специальный блок. Сам процесс установки займет не более 3-х часов.

Какими бывают предпусковые подогреватели двигателя

Зарегистрируйтесь на сайте 2. Тогда не лишней будет покупка обыкновенного таймера, если уж вам так принципиально важна точность вплоть до каждой секунды.

Аппараты бывают двух типов: электромагнитные; электронные. Корпус ни в коем случае нельзя крепить на саморезы! В черный либо красный цвет окрашена подогреваемая отопителем часть контура.
Подключение подогревателя двигателя на HONDA CAPA.

Установка котла подогрева.

В зимнее время половина ресурсов силового агрегата тратится на его прогрев перед выездом. Чтобы предотвратить преждевременный износ компонентов мотора, необходимо приобрести специальный предпусковой подогреватель.

Многие владельцы транспортных средств совершают следующие ошибки:

  • после того, как владельцем приобретен котел установка выполняется в кустарных условиях, из-за чего возможны перебои в работе мотора и электроники транспортного средства;
  • хозяин решил купить котел на стихийном рынке – здесь, как правило, реализовываются китайские экземпляры, которые выходят из строя всего за 1-2 сезона.

Правильный подогрев двигателя возможен не только при покупке качественного оборудования, но и полноценной установке. Поэтому если в наличии имеется котел установка должна выполняться на территории сервисного центра.

Почему автомобилисты приобретают котел?

Решив установить подогреватель двигателя, можно воспользоваться целым рядом преимуществ, а именно:

  • беспроблемный запуск мотора в зимнее время вне зависимости от температуры;
  • комплексная защита движущихся деталей мотора от преждевременного выхода из строя в результате повышенного износа;
  • увеличение срока службы силового агрегата;
  • дополнительная экономия горючего;
  • предпусковой подогреватель позволяет сэкономить время на прогреве;
  • доступная стоимость.

Благодаря продуманной конструкции, которую имеет подогреватель двигателя, его можно без проблем установить как на легковой автомобиль, так и на грузовой транспорт. Для этого следует определиться с моделью и адаптировать предпусковой подогреватель под штатную систему обогрева.

Почему следует обращаться за помощью к мастерам?

Имея в наличии котел установка будет выполняться в разрыв охлаждающей системы мотора. Вмешательство в его конструкцию без применения специальных инструментов может привести к проблемам при поддержке требуемой температуры мотора. Причиной тому является неправильная циркуляция тосола или дистиллированной воды по системе.

Владелец может купить котел, который подключается к бытовой электрической сети. Такие модели не пользуются особой популярностью, поскольку компании-производители готовы предложить интегрированную систему. Но чтобы подогрев двигателя работал исправно, надо правильно подключить его к штатной проводке. Справиться с этой задачей могут только опытные электрики.

Установка подогревателя двигателя на 5A-FE — Авторемесленник


  

«>

В этом видео я хочу показать, как устанавливать электрический подогреватель охлаждающей жидкости на двигатель Toyota Corolla в 110 кузове с двигателем  5A-FE.

Почему я выбрал данный подогреватель:

  1. Есть возможность подключения к сети 220 В;

  2. Надежный. Т. к. в нем нет движущихся частей и электроники, можно считать, что он состоит из одного элемента — нагревательного ТЭН-а.

  3. Безопасный. По началу, в сильные морозы я использовал бытовой подогреватель, которым грел масло двигателя. Опасность такого обогрева, в том, что горюче смазочные материалы, которые накапливаются на нем или могут появиться, могут попасть на открытый нагреваемый элемент подогревателя, и вызвать пожар. Нагревательный же элемент данного подогревателя находится в негорючей среде охлаждающей жидкости и по этому все, что с ним может случиться — это выход его из строя.

  4. Практичный. Его можно самостоятельно установить, не затратив много времени. Он не нуждается в каком-то особом обслуживание.

  5. Данный подогреватель наверно самый дешевый из автомобильных подогревателей.

  6. Экономный. Если сравнить с автопрогревом сигнализации и принять, что машина стоит на прогреве три месяца и заводится в среднем за ночь по два раза по 10 мин, считая, что расход топлива 7,5 л/100 км, при скорости движения 90-100 км/ч, это значит, что примерно в один час сжигается 7,5 л топлива. Значит за 10 мин топлива израсходуется в шесть раз меньше 7,5/6≈1,25 л. Тогда израсходованное топливо будет равно 30(дней)х3(месяца)х2х1,25(л за 10 мин)=225 л. 225(л)х30(р за АИ-92)=7750 р. В действительность количество сгоревшего топлива будет больше, т. к. в Сибири долго стоят сильные морозы и в выходные когда машина простаивает, она заводится еще и днем. Кроме того, при автопрогреве происходит сильный износ двигателя. Расход же электроэнергии, если включать данный подогреватель мощностью 1,5 кВт на  один час перед пуском двигателя будет равен 2,18(р/кВт*ч)х1,5(кВт)х30(дней)х3(месяца)=294,3 р. Т. е. данный подогреватель экономней в 20-30 раз.

     Я установил подогреватель «Старт-М» мощностью 1,5 кВт компании «ТАД». Подогреватель комплектуется штуцером, тройниками, пружинной, пластиковой защитой, шлангом и хомутами. В этом подогревателе имеется две защиты. Первая контролирует температуру ОЖ и в случае достижение температуры 85 град. отключает ТЭН и когда температура опускается до 65 град., подогреватель снова включается, поддерживая рабочую температуру. Вторая аварийная защита предотвращает выход из строя подогревателя при отсутствии в нем ОЖ.

      Сливаем ОЖ. Эта процедура показана в инструкции Т.005-2014 на сайте.

      Подогреватель должен быть расположен как можно ниже сливной пробки двигателя. Подогреватель подсоединяют так, что бы получился контур: двигатель-подогреватель-двигатель, и не было бы разрыва этого контура. Разорвать контур может термостат, если не правильно подсоединить подогреватель. Подогреватель я закрепил на самодельном кронштейне, на двух нижних болтах крепления компрессора кондиционера. Данный кронштейн несколько неудачен, т. к. шланг подвода в подогреватель немного переломлен. Исправленный эскиз кронштейна, можно посмотреть на сайте. Вворачивается штуцер вместо сливной пробки. На штуцер одевается шланг, с внутренним диаметром 16 мм, и затягивается хомутом. Второй конец шланга одевается на входной штуцер подогревателя. На штуцер выхода подогревателя одеваем шланг, и закрепляем хомутом. Второй конец подсоединяется через тройник к верхнему рукаву радиатора. ЧТО БЫ НЕ БЫЛО ПЕРЕМЫЧКИ В СИСТЕМЕ ОХЛАЖДЕНИЯ, НУЖНО УСТАНОВИТЬ КРАН, Т. К. ПРИ РАБОТЕ ДВИГАТЕЛЯ ОХЛАЖДЕННАЯ ЖИДКОСТЬ ПОСТУПАЛА БЫ СРАЗУ В ГОЛОВКУ ДВИГАТЕЛЯ, А НЕ ЧЕРЕЗ БЛОК И ГОЛОВКУ, ЧТО ПРИВОДИТ К НЕПРАВИЛЬНОЙ РАБОТЕ ДВИГАТЕЛЯ. Кран шаровый 1/2″ и два штуцера с наружным диаметром 18 мм.
      При прокладке шлангов не обходимо обеспечить отсутствие перегибов. В шланг можно вставить пружину, она не даст шлангу перегнуться. Для того, что бы шланг не перетирался, снаружи, в местах соприкосновения или возможного касания с частями автомобиля, нужно на эту часть шланга одеть пластиковую защиту (см. видео).

    В подогревателе охлаждающая жидкость разогревается, ее плотность уменьшается, она поднимается по шлангу в верхний патрубок радиатора, откуда поступает в головку двигателя. Соответственно холодная ОЖ из блока поступает через сливное отверстие,  во впускной штуцер подогревателя. Это движение охлаждающей жидкости образует циркуляцию: двигатель-подогреватель-двигатель. Термостат стоит в нижней части двигателя и по этому не мешает циркуляции.

      Электропровод выводим к радиатору. При прокладки провода, нужно его защитить в местах касания с кромками кузова, которые могут повредить его, при вибрации. Провод крепится к кузову хомутами. Для подключения вытаскиваем вилку, подключаем к розетке и закрываем капот. Провод для удлинителя, нужно использовать морозостойкий, 3-х жильный. Одна жила для фазы, вторая для нейтрали и один для защитного заземления. Сечение одной жилы сделанной из меди, должно быть не менее 1,5 мм2. Я использовал морозостойкий провод КГ-ХЛ 3х1,5.

     В инструкции по установке, сказано, что подогреватель нужно подключать через УЗО и автоматически выключатель на ток не более 10 А. Я включил подогреватель через автоматический выключатель дифференциального тока (АВДТ) на ток 25 А, т. к. собираюсь подключать два подогревателя, с током утечки 30 мА, он сочетает функции УЗО и автоматического выключателя. При подключении к сети, нужно правильно подключить фазу и ноль к АВДТ. Помечаем контакт вилки с фазой и с помощью индикатора определяем фазу в розетке и также помечаем.

        Вы можете использовать таймер, настроив который вам не потребуется включать подогреватель по утрам.

        Заполните систему охлаждения двигателя охлаждающей жидкостью в соответствие с инструкции Т.005.

        Что бы подогреватель и двигатель работали долго, контролируйте уровень охлаждающей жидкости в двигателе.

Установка подогревателя двигателя 220в на джетта самостоятельно

Главная » Разное » Установка подогревателя двигателя 220в на джетта самостоятельно

Volkswagen Jetta 1,6(75) EZ карб › Бортжурнал › История №9 Как и обещал, установка подогрева движка.

И так, сегодня, напрасившись с гараж, решился я на установку электрмческого предпускового подогревателя двигателя Старт-м с универсальным монтажным комплектом на свой авто.
Хозяин гаража (он же делал двиг) начал советовать ставить приблуду в разрез сливного патрубка печки, на что я долго сопративлялся и стал всеже делать как по инструкции. Подобрал подходящие тройники, начал думать как их врезать в патрубки и сразу проблема. Нужный нижний сливной патрубок печки разного диаметра( у помпы толще). Т.е. его резать нельзя, а ставить только в него (от него идет забор холодной жидкости). Покумекав, решил отрезать около 7-8 см от металяческой трубки патрубка ( под масляным фильтром) оставив 3 см до изгиба, наростив его потом другим диуритовым шлангом подходящего диаметра. как решил, так и сделал, Слил антифриз, снял трубку, отрезал от нее кусок, одел шланг, замерил сколько этого шланга нужно оставить на трубке (приложил сбоку старый кусок и тройник к одетому шлангу) и отрезал шланг, так, чтоб трубка + шланг + тройник = длине трубке в исходном положении. Собрал все это, поставил трубку на место, соединил все патрубки, затянул хомуты. Прикинул место установки прибора, нашел к чему крепить крепежную пластину ( крепежный болт помпы), изогнул пластину, закрепил ее, прикрепил к ней прибор, подогнул пластину с прибором, чоб поставить ниже и выравнять положение. Отрезал, прилагающийся шланг нужной длины, одел, затянул хомуты. Разрезал верхний входящий патрубок радиатора, вставил в него тройник, затянул хомутами, это будет вход горячей жидкости от прибора. Одел шланг на выход из прибора, затянул хомут, отрезал по нужной длине до верхнего тройника, приготовил второй хомут, начал заливать антифриз, не соединяя шланга с тройником. Налил 2/3 слитого антифриза, ртом прососал антифриз через прибор и одел шланг на место, затянул хомутом. Объясню почему просасывал антифриз: по инструкции не должно быть перегибов шланга в виде бугров, чтобы небыло воздушной пробки, а у меня не получилось, небольшой перегиб есть, вот я эту возд. пробку и прососал.
Потом долил антифриз, проверил, надежность крепления и соединения всего, что я снимал, завел двигатель, прогрел, чтобы выгнать остатки воздуха и проверить церкуляцию и гермитичность, собрался и уехал домой. Дома дал машине остыть, включил прибор в сеть и ждал, пошел тихий шумок закипающего самовара, через 2-3 мин начал нагреваться верхний шланг от прибора, долго я не грел, дождался пока не станет горячим верхний патрубок радиатора, ну и все, выключил, ушел домой вам хвалиться. Ниже смотрите фотки и картинки, извините, фоток мало и на телефон, фотик разбил, в смотровую яму упал, благо старый.

Установка подогрева двигателя от сети 220В — Volkswagen Golf, 1.6 л., 1991 года на DRIVE2

На дворе наступила вторая зима для меня и гольфика. Прошлой зимой заводилась при любом морозе без проблем. Но тратить время на прогрев и сжигая бензин просто так не очень хочется, да и любому двигателю в мороз тяжко заводиться. Были мысли о подогреве, вот и наткнулся в одном магазине на него. Опыта в них у меня не было, взял что посоветовали. В итоге имеем подогреватель СТАРТ-Классик Универсал вертикального исполнения без насоса и без терморегулятора. Мощность 1.5 кВт. отключение при 70 гр включение при 50 гр.
Думал куда и как поставить… Спасибо драйву) нашел тут пример для установки. При установке не фотографировал, руки были грязные и делал один. После установки и стравливания воздуха из системы начал проверять. включил и ждем чуда)) эффект хороший! но термостат у подогревателя стоит на входе поэтому на выходе температура может доходить до 95-100 градусов а отключится только когда снизу из блока на вход будет 70 гр. Установил отдельную розетку с дифференциальным автоматом на 10А для защиты (при малейшей утечке тока отключение). теперь присмотрел на алиэкспресс недельный электронный таймер на дин рейку в щит управления. там можно настроить дни, часы минуты включения и отключения. Жду морозов. поставил подогрев, на улице уже неделю +2+4)

такой таймер буду заказывать

Общий вид. подачу взял с обратки печки. выход врезал в верхний патрубок радиатора

открутил один из 4х болтов крепления помпы и на него одел крепления из комплекта. ток согнул его как мне надо, снизу защита поэтому там грязь лететь не будет. кабель уложил в шланг и обмотал изолентой <img src=

«>

Цена вопроса: 1 000 ₽ Пробег: 162 321 км

установка подогрева от 220V — Volkswagen Golf, 1.8 л., 1993 года на DRIVE2

Полный размер

новое место обитания

Так как Вишенка в ближайшее время будет проживать возле домика в деревне, где есть розетка на улице, я счёл целесообразным установить подогрев.
Кстати, тёплый салон и уверенный запуск в морозы — это всего лишь приятные бонусы.

Полный размер

Основная польза предварительного подогрева — это увеличение ресурса мотора. Ибо самый большой износ — во время холодного старта. Благодаря Драйву и его обитателем мне не пришлось тратить время на поиски, сразу поехал в проверенное место (нынче, увы, закрывшееся), где, прямо скажем, минут на 30 впал в ступор перед витринами

и это только одна из 10-ти секций…

Если отбросить всякие разновидности автономных обогревателей, просто электроподогревов, оказывается, огромный выбор. Не было только тэнов, которые вставляются непосредственно в блок, вместо технологической заглушки. В итоге я взял одну из последних моделей на 1, кВт с циркуляционным насосом

Полный размер

Северс-М

к нему прилагался монтажный комплект, в котором были и элементы для крепления, и шланги с хомутами, и переходники на разные диаметры.
Крепление придумалось быстро

Полный размер

удобно, когда в соседнем боксе работает сварщик:-)

Полный размер

как будто тут и було:-)

Полный размер

аккумулятор подвинулся, но места хватило всем

По схеме подключения рекомендовалось врезаться в цепь отопителя. Так как у меня АКПП, удалось обойтись без длинных шлангов, заодно обеспечить и прогрев самой коробки

Полный размер

Правда я, как самый умный, сначала инсталлирую, а уже потом читаю инструкцию. Оказалось, что я поставил подогреватель вверх ногами. Ну да перевернуть — пара минут.

Полный размер

И вот — первый запуск

Полный размер

пока что розетка у бокса

на шлангах сразу ощущаемая вибрация, говорящая о наличии циркуляции, быстро появился и нагрев. На улице было -1, уже через час все(!) шланги были тёплыми, а так же и сам мотор приятно грел руки. Стрелка температур визуально оставалась на месте, но через пару минут после запуска на стёкла подул тёплый воздух, и сразу оно (стекло) стало оттаивать.

Полный размер

Правда через несколько поездок столкнулся с проблемой. Вроде бы слышно, что насос работает, вроде бы сам корпус — горячий, а шланги — холодные. Снял верхний, оттуда вышел пузырёк воздуха. Видимо из-за некоторой петли они тут будут постоянно скапливаться. Потому я быстренько сделал отвод, как раз в патрубок, отводящий воздух в расширительный бачок

Полный размер

и это помогло!
Буду вести наблюдения.

Great Wall Hover 2,0 TD AT Hopper › Бортжурнал › Установка предпускового подогревателя Лунфей 2 кВт на дизель.

Всем привет!
Спустя некоторое время после «полевых» испытаний установленного подогревателя антифриза на 220 вольт решил таки написать об этом, возможно, пригодится кому-нибудь.
Итак, почти на всех своих машинах ставил подогреватели от розетки, т.к. климат наш достаточно суров, что бы пренебрегать возможностью подогревать двигатель после продолжительной ночной стоянки. Озадачился этим вопросом и с Хоппером. Помониторив интернет, выявил, что не очень как то и много информации об установке подогревателей на дизельный двигатель Ховеров. Пришлось самому разбираться, изучать по незначительным крупицам информацию во всемирной паутине… Приступим!
После непродолжительных размышлений был сделан выбор в пользу подогревателей антифриза с помпой, т.е. такого подогревателя, что сам может гонять нагреваемый антифриз по системе, ускоряя процесс нагрева, да и для более равномерного прогрева ДВС. Из наших (отечественных) подогревателей был опыт использования подогревателей Старт-М и Северс-М (они без помпы), а котлы отечественных производителей с помпочкой стоят как то неоправдано многовато (по моему мнению), решил попробовать подогреватель родственный по производителю Ховеру — китайский. Был заказан Лунфей 2 кВт. По ссылке понятно где я его покупал.

Полный размер

Собственно, сам — Красавчик (фото с сайта продавца)


Полный размер

Пришел в оригинальной упаковке


Полный размер


После получения котла ломал голову о способе установки. Определился, что буду ставить его по ходу движения антифриза, для того чтобы иметь возможность использования Лунтика в качестве догревателя. Хотя многие ставят его наоборот, против хода, от помпы на выход с печки. Немного разобрался с тем как движется антифриз в нашем тракторном сердечке. Вот пару фото моих набросков.

Полный размер

Схема движения антифриза от печки до помпы


Полный размер

Схема подключения подогревателя


Если что не понятно спрашиваете, постараюсь объяснить.
Один из наиболее важных моментов это, то что патрубки на печку и помпу в нашем дизеле с внутренним диаметром на 18 мм, а штуцера Лунтика внешним — на 16 мм. Пришлось ставить на подогреватель патрубки силиконовые на 16 мм и потом натягивать их на штуцера для патрубков на 18 мм, это получилось. Использовал остатки разных патрубков на 16 мм от предыдущих машин. А на 18 мм купил в магазине автозапчастей комплект силиконовых армированных патрубков на печку «Гранты — Приоры» и порезал их так как мне было нужно. Собрал монтажную схему (приблизительную) не на машине

Полный размер

Планировалось поставить как то так


Но так поставить не получилось из-за ограничения свободного места возле двигателя, мешал ЕГР со своими патрубками, рядом вал рулевой колонки и т.д. Установил так, как выложил на схеме установки подогревателя выше.
Сам котел закрепил на металлической пластине к левой опоре двигателя. Получилось вот так:

Полный размер

Все видно. Пластину крепления, приходящий и выходящий из Лунтика патрубки.


Еще фото для наглядности

Полный размер


Для лучшего процесса развоздушивания системы охлаждения был внедрен в патрубок обратки печки кран Маевского.
Используя сантехничесий тройник, 2 штуцера для шлангов на 18 мм, удлинитель на 1/2дюйма и кран Маевского

Полный размер

Собран вот такой узел


И установлен в верхний патрубок печки. Родной патрубок был заменен на силиконовый отрезанный от
патрубка Приоровской печки.

Полный размер

Мешает просмотру трубка кондея, но, думаю, тут все ясно


Полный размер


Полный размер

К тройнику прицепил температурный датчик от сигнализации


По окончании всех работ система была развоздушена, как я уже описывал в предыдущей статье.
Фоток как проложил провод с вилкой не сделал, пока проложил по временной схеме. Провел по тормозным трубкам до главного тормозного цилиндра и положил вику на автоодеяло, при подключении к розетке приходится каждый раз открывать капот и тянуть провод с розеткой в дальний угол подкапотного пространства, но я продумаю и что-нибудь придумаю. Жаль, что бамперный разъем на Ховер Н5 не установить без каких-либо вырезаний в бампере.
Теперь результат всего этого действия.
Первое что хочу сказать — защита на Лунтике от перегрева есть и работает! Проверено, два дня с утра подогрев запускался (было слышно помпу) но не грел антифриз, захватывал воздух и тэн отключался. После полного выпуска воздуха, и после протяжки всех хомутов, подогреватель работает как положено.
При остывании двигателя до -21 градуса, после прогрева Лунтиком температура на выходе с печки, т.е после всего круга, перед входом в подогреватель, через 30 минут была -1 градус, через 1 час прогрева +18, а салон немного нагрелся до -18 градусов без запуска двигателя. После прогрева 1 час 15 минут температура на обратке составила + 26 градусов. Примерно через 1,5 часа +30. Т.е. температура двигателя была более +30 градусов. С автозапуска Хоппер заводится как летом. Только вот прогревается на холостых в мороз… почти не нагревается! Даже если учесть все описанные мной ранее работы по утеплению подкапотного пространства.
Все больше укрепляюсь в мысли о необходимости установки автономки.
На этом все. Полных баков и теплых салонов. Всем удачи на дорогах!

Jeep Grand Cherokee WG 3,1 TD › Бортжурнал › Установка предпускового подогрева двигателя «Лунфей» с принудительной циркуляцией жидкости (помпой) 220в.

Немного о самом подогревателе.

Вот такую штуковину прикупил


Подогреватель Лунфей позволяет подогревать двигатель автомобиля для пуска в зимнее время.

Схема подогревателя


Электрический компонент для нагрева Антифриза (тосола) дополнительно защищен температурным датчиком.
Помпа подогревателя оснащена мотором без графитовых щеток, что уменьшает вероятность его скорого изнашивания. Подогреватель работает от сети переменного тока 220В.
Время подогрева длится около 15 — 30 минут.

Схема установки подогревателя


Преимущества:
1. Легкий запуск двигателя в самый лютый мороз.
2. Салон автомобиля будет быстрее прогреваться. Так как происходит пуск уже подогретого двигателя,
3.Масло в двигателе лучше смазывает его детали, что продляет срок службы автомобиля.
4.Сокращается расход топлива на прогрев автомобиля и снижается уровень загрязнения окружающей среды.

Рекомендуется использовать таймеры на 220В которые в назначенное время включат подогреватель.

Таймер 220В


Теперь о установке данного девайса в чирка!

Полный размер

Место врезки


Полный размер

Приобрел два шланга и хомута


Полный размер

Также заменил заводское крепление


Полный размер

Слил антифриз


Полный размер

Подогнал шланги по месту


Полный размер

Место для крепления подогревателя.


Полный размер

Ну и уже сам установленный подогреватель!

При -15С через 10 мин двигатель был теплым!

Установка подогревателя Лунфэй на пассат б3 — Volkswagen Passat Variant, 1.8 л., 1993 года на DRIVE2

Приветствую читателя моего бж. Сегодня расскажу и покажу как я установил на пассат б3 предпусковой подогреватель Лунфэй. Вот сам подогреватель.

Полный размер

Полный размер

Мощность подогревателя.

Полный размер

Для начала разобрал подогреватель, что бы увеличить входное и выходное отверстие уж очень оно заужено на мой взгляд. Внутренний диаметр составляет 11мм. Взял сверло на 12мм и расширил оба отверстия благо толщина позволяет это сделать.

Полный размер

Полный размер

Полный размер

Теперь собираем все обратно по контуру идет уплотнительная резинка, но для перестраховки промазал герметиком.

Полный размер

На разборе подобрал шланг оригинал от ауди от цэшки.

Полный размер

Номер шланга 8A0121109D И два оригинальных само зажимных хомута.

Полный размер

Номер хомута 23.

Теперь сливаем антифриз можно не весь главное слить с печки что бы снять шланги.Далее определил место установки подогревателя (очень долги крутил его в моторном отсеке не зная куда его там закрепить) нашел за двиготелем на перегородке болт крепления корпуса печки. Выгнул крепление на корпусе подогревателя вот так.

Полный размер

Полный размер

И установил.

Полный размер

Теперь режим шланг от ауди по размеру у меня получилось так.

Полный размер

Теперь длинный шланг подключаем от нижнего отверстия подогревателя к выходу обратки с печки, а короткий шланг с верхнего отверстия подогревателя к металлической трубке.

Полный размер

Вот так.

Все заливаем антифриз выгоняем из системы воздух и только потом проверяем подогреватель.

Полный размер

В работе.

Несколько дней уже проверял все отлично работает. Печка в салоне жарит без потерь тепла.

Skoda Octavia › Бортжурнал › Установка предпускового электроподогревателя «СТАРТ-ТУРБО»

С момента моего переезда в Сибирь, учитывая климатические условия данной местности, мною на все мои автомобили устанавливались предпусковые электроподогреватели.
У каждого конечно свое предпочтение, кто РТС, кто вебасто, я лично предпочитаю именно предпусковые электроподогреватели.
Вчера установил подаренный на днюху предпусковой электроподогреватель «Старт-Турбо» с встроенным центробежным насосом.

1


2


Комплект Монтажный Универсальный содержит необходимые комплектующие для установки в систему охлаждения ДВС последовательно с отопителем салона (обратка печки). (Схема установки на большинстве автомобилей).

3


Для установки пришлось снимать весь воздухан

4


АКБ

5


и площадку под нее

6


после чего разрезали патрубок обратки с печки и установили сам подогрев

7


Ну и все сибирается в обратном порядке.
Стоит четко под площадкой АКБ, даже не видно.

«Старт-Турбо» предназначен для предпускового разогрева и подогрева двигателей легковых и среднетоннажных автомобилей отечественного и зарубежного производства в зимний период эксплуатации.

Принцип работы электроподогревателя:
При подключении подогревателя к сети переменного тока напряжением 220В электроподогреватель – ТЭН, находящийся внутри корпуса, начинает нагревать охлаждающую жидкость. Одновременно включается центробежный электронасос. Центробежный электронасос обеспечивает непрерывную циркуляцию охлаждающей жидкости через подогреватель и рубашку системы охлаждения двигателя, к которой подключен подогреватель. Этим достигается быстрый и равномерный прогрев двигателя, а также исключается перегрев ТЭНа и увеличивается срок его службы. Терморегулятор автоматически поддерживает температуру охлаждающей жидкости в заданных пределах и предотвращает её перегрев при длительной работе подогревателя. Время разогрева двигателя зависит от климатических условий (температура, ветер), а также от условий стоянки автомобиля (открытая стоянка, гараж).

Установка и техническое обслуживание:
Электроподгреватель встраивается в систему охлаждения двигателя автомобилей отечественного и зарубежного производства(способ монтажа наружный), источник питания от электросети напряжением 220 В. Монтаж электроподогревателя рекомендуется производить на станции технического обслуживания автомобилей. Благодаря простой конструкции электроподгреватели не требуют частого технического обслуживания.

Технические данные электроподогревателя:
Род тока – Переменный, частота 50Гц
Номинальное напряжение — 220 В
Класс защиты от поражения электрическим током – I
Степень защиты — IP 34
Масса не более – 0,98 кг
Габаритные размеры – 101×130×130 мм
Потребляемая мощность — 1,5; 2 кВт
Температура срабатывания (отключения) терморегулятора – 70 °С
Температура возврата (включения) терморегулятора – 55 °С

ДОСТОИНСТВА:
Электроподогреватель может быть установлен в любом свободном месте моторного отсека и в любом пространственном положении, но при выборе пространственного положения подогревателя следует помнить, что центробежный насос, примененный в данной модели подогревателя, обеспечивает циркуляцию жидкости только при отсутствии в подогревателе и подходящем рукаве воздуха. Этим он выгодно отличается от подогревателей, работающих на принципе термосифонной циркуляции;
Терморегулятор обеспечивает включение и выключение электроподогревателя в заданных температурных пределах, что защищает устройство от перегрева и экономит электроэнергию ;

Предпусковой подогреватель 220в Лунфэй на 2,3 кв — Toyota Wish, 1.8 л., 2003 года на DRIVE2

Всем привет!
Зима близко, и пора готовить авто к суровым зимним испытаниям.
Т.к. не всегда есть возможность поставить в гараж свой автомобиль, сильно заметает в хороший снегопад, а иногда и просто лень туда ходить по утрам, решил поставить предпусковой подогреватель двигателя на 220в, для случаев если придётся ставить машину на ночь под окном. Розетка под окном у меня уже есть и проблем с питанием не возникнет.
Долго выбирал себе предпусковой котёл, до этого был печальный опыт использования на дизельной Делике российского Северс + на 3 кв. с помпой, у которого постоянно плавилась крельчатка, и в итоге перегревался, и выключался, авто приходилось заводить на холодную в -30. Кому интересна подробная история мучений с ним вот ссылка: www.drive2.ru/l/488719725480640596/
Выбор остановился на китайском подогревателе Лунфэй на 2.3кв с помпой. Стоит не дорого и отзывов положительных много. Купил у местных барыг за 1550р. Прежде чем ставить проверил работоспособность в домашних условиях, ведро холодной воды нагрел за 5мин, не до кипятка но руку уже держать тяжело, вода горячая и напор хороший для циркуляции.
Дождался отпуска, хорошей погоды и приступил к монтажу. Слил антифриз из радиатора, вытекло литра 4,5, решил его заменить. Котёл установил в разрыв печки, на выход из печки. Родной шланг не резал, оставил на всякий случай, использовал покупной на 16 диаметром, российский посоветовали не брать, так как он лопается от напора, взял корейский 1м, говорят хороший, посмотрим. Закрепил сам котёл в нижней части к корпусу АКПП подходяшим болтом на динрейку, котёл не тяжёлый, зафиксировался хорошо. Шланг садил на герметик и затяжные хомуты, покупал отдельно, хомуты из комплекта с котлом использовать не стал, пишут, что они не очень. После залил антифриз, проехался кружок, долил ещё не много, залил в бачёк выше урованя, ещё проехал с печкой на полную пока печка не начала шпарить горячим, и вновь проверил уровень, всё ок, шланги горячие, воздух вышел, паралельно следил за температурой ДВС чтобы не перегревался. В общем покатавшись и убедившись что система не завоздушена, чуть позже проверил работоспособнось котла, всё работает, антифриз циркулирует, ДВС греется. Осталось дождаться морозов и проверить эффективность устройства.
По мере эксплуатации буду дополнять.
Всем удачи!

Дополнение от 27.11.2018
Пока ноябрь, но котлом уже пользуюсь во всю. Включаю за час до выхода, греет хорошо, проблем с запуском двс нет. Ночью пока опускается до -23 градусов. Воздух из печки сразу тёплым дует.

Дополнение от 08.02.2019
Зима в самом разгаре, котёл запускается каждое утро и ни разу не подвёл. Сегодня утром за бортом было чень холодно -42, котёл работал чуть больше часа, машина завелась легко. С Северс + в это время по прошлому году я уже третий или четвёртый раз в сервис ездил на ремонт. Так что резюмирую, что китайский лунфей гораздо надёжней и на много дешевле, учись Тюмень!

Дополнение от 15.11.2019
Снова зима на носу, и вновь запускаю котёл, ночью уже холодает до -20, котёл работает без сбоев, всё отлично. Один минус, нужен доступ к розетке 220в )))

Дополнение от 29.01.2020
Всё работает отлично, проблем ни каких. Запускается каждое утро по таймеру заданному в Wifi разметке. Грею 1час, затем отключаю разметку перед выходом и завожу машину с брелка, пока одеваюсь, спускаюсь, отключаю провод, в салоне уже тепло, двигатель прогрет и можно ехать.

Полный размер

Тестирование дома

Полный размер

Закрепил динрейку

Полный размер

Снял воздушный фильтр

П

Установка предпускового подогрева 220v Северс-М 1,5кВт — Nissan Teana, 2.5 л., 2010 года на DRIVE2

Полный размер

Всем привет. Подогрев ставил давно, но фото остались. Покупал тут: podogrev.com, называется Северс-м 1,5 квт с бамперным разьемом, так же нужен монтажный комплект(с двумя тройниками, один 19х14х19, второй на верхний большой патрубок радиатора !32х14х32!-возможно неточно проверю ). Двс VQ25DE. Места установки и комментарии смотрите на фото. Сливаем антифриз сняв шланг с нижней трубки печки(обратки печки), подложив под него воронку из отрезанной бутылки со шлангом и на конце 5 литровка.

Производитель рекомендовал подключение подачи (холодного антифриза) в нижнее сливное отверстие блока движка, но это, как я понял, не представляется возможным ввиду того, что очень близко находится выпускной коллектор, ограничено место для установки подогрева, мешают трубки идущие на печку и кожух коллектора, поэтому установил подачу холодного антифриза в трубку обратки печки (смотрите фото)

Подогрев закрепил на подушку двигателя на правый болт. Просунуть подогрев к месту крепления возможно только без скобы крепления, скобу прикручиваем к подогреву после просовывания. Фото загиба скобы с размерами в приложении, под скобу необходимо подкладывать дополнительную шайбу чтобы подогрев не ложился на балку. Фото шайбы и фото болта подушки приложил

Для подключения подачи ОЖ необходимо распилить алюминиевую нижнюю трубку обратки печки, предварительно ослабив её крепления и вытащив её из магистрали. Причем саму трубку без демонтажа кожуха проводки идущей к двигателю мне вытащить не удалось, поэтому пришлось резать трубку на месте гравером с отрезным небольшим кругом. После разрезания трубка вытаскивается с двух сторон. Потом на разрезанную трубку с двух сторон одеваем шланг на 19 и в шланг вставляем тройник 19х14х19 .

С подключением выхода горячей ОЖ проблем нет. Шланг от подогрева идет вертикально вверх и подключается к верхнему шлангу радиатора.

Так же посмотрите на сайте более современный подогрев с циркуляционным насосом Северс+ 2квт, т.к.если Северс-М должен стоять в самом нижнем месте для поддержания естественной циркуляции, то Северсу+ месторасположение безразлично. Только единственное у него габариты больше, поэтому есть вероятность, что не встанет на мое место, но можно попробовать закрепить под креплением аккумулятора. И соответственно прогревать движок будет быстрее и качественнее.
Антифриз который нужно заливать тоже на фото.

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Подогреватель двигателя 220В — Daewoo Nexia, 1.6 л., 2011 года на DRIVE2

Давно хотел поставить подогрев двигатель, объехал все магазин автомобильные в городе искал именно с помой или по другому принудительной циркуляцией, некоторые продавцы уверенны в том что сам этот котел(боченок) к примеру «сибирь», «северс-м», «старт-м» (по которым я не нашел информации что они бывают с помпой)это и есть помпа, все они друг от друга отличаются качеством сборки и в каких-то есть клапан(шарик) в каких-то нету ну это так чисто визуально, С помпами выпускают фирмы «Гольфстрим 5х», «Атлант», «Лунфэй»(китай) и еще попадалась какая-то китайская ерунда ужасно сделанная))
Остановил я было выбор на «Гольфстриме 5х» но продавец мне отказывался давать какие либо гарантии на товар и проверять его он тоже его никаким образом не хотел, мол езжай на сервис там устанавливай если он не рабочий то пусть они тебе пишут бумагу и т.д. и т.п.(не ну может он и прав, но с другой стороны кратковременно и чайники в магазине проверяю, а тут даже работоспособность помпы(крыльчатки) не захотел проверять)Ну бог с тобой золотая рыбка будем искать дальше, пусть он дальше у тебя на полке лежит)))
На следующий день заехал в магазин(супермаркет) за продуктами там автомобильный отдел-магазинчик, захожу туда говорю что мне нужно они достают два варианта фирмы «лунфей» один (сделан как «гольфстрим 5х») 1.5квт. второй напоминает утюжок («Атлант» тоже такие есть) 2.0 или 2.2квт. Ну так как проводку я пока что поменял только внутри дома, а от гусака до счетчека еще идет старенькая, я и искал 1.5квт.
Продавцы оказались адекватные, (но включать в розетку все же побоялись)))дали товарный чек на 1500р. и все претензии в течении двух недель, это конечно не гарантия но хотя бо что-то))
По глупости или так на всякий случай прикупил еще переходники с 16на18мм, и шланг на 16 кусочек см.20 при сборке они не пригодились так как на печки патрубки на 16. меньше соединений меньше вероятности течи))
Ходил вокруг капота и думал как слить антифриз, в итоге просто разрезал патрубок обратки печки.в который и монтировал подогреватель, сколь не пытался аккуратно слить так и не получилось все вокруг забрызгал видно на фото(( Были запасы антифриза больше пол канистры пяти литровой, ее потом все и вылил как раз хватило до maxимума, а то что поймал в обрезанную канистру при сливе, вышло где то около 2 литров но они не пригодились
Встал по месту вроде не плохо только вот с креплением проблемка не придумал еще как его по жестче закрепить пока прикрутил кабелем трех жильным к креплению вакумника и поджался он к тормозным трубка, метал по металлу не есть хорошо, поэтому подложил резину.
Подлазить туда очень хреново(((
Все собрал завел пока пузыри с системы выгонял движка нагрелся поэтому что как греет за сколько сказать не могу, на работу печки пока ехал домой разницы не заметил чтоб она хуже стала греть из за того что в ее схему вмешались.
По приезду домой на запуск ставить не стал, завтра проснусь пойду проверять, погода как раз походящая днем -25-27 ночью -30-35 )))
Продолжение

Цена вопроса: 1 500 ₽ Пробег: 70 335 км

Кэт

Низкие температуры предъявляют особые требования к смазочной, электрической и топливной системам транспортных средств. Обогреватели Kat предлагают широкий спектр эффективных и экономичных решений для обслуживания в холодную погоду.

Три зоны подготовки к зиме для полной защиты транспортных средств

  • Двигатель
  • Аккумулятор
  • Масло и трансмиссионная жидкость

Нагрев двигателя

Замерзшая пробка, нагреватель нижнего шланга радиатора или нагреватель циркуляционного бака предназначены для поддержания температуры охлаждающей жидкости в двигателе.Эти продукты помогают стимулировать высокие температуры, обеспечивают более быстрый запуск и защищают ваш двигатель от повреждений, которые могут возникнуть во время запусков в холодную погоду.

Двигатель с подогревом экологически безопасен

Когда температура воздуха ниже 20˚F, запуск холодного двигателя производит в 50-100 раз больше выбросов парниковых газов в первую минуту, чем запуск предварительно нагретого двигателя. Прогретые двигатели также обеспечивают лучшую экономию топлива, а улучшенный поток масла обеспечивает лучшую смазку двигателя во время запуска, что снижает износ и увеличивает срок службы двигателя.

Что такое подогреватель двигателя?

Обогреватель двигателя — это электрический обогреватель, который нагревает двигатель автомобиля для более быстрого запуска в холодную погоду. Они подключаются к обычному источнику переменного тока в ночное время или перед поездкой через обычные розетки, которые проходят через решетку радиатора автомобиля. Это упрощает запуск при низких температурах, поскольку охлаждающая жидкость остается теплой. Также имеются нагреватели для моторного масла, которые нагревают масло и обеспечивают смазку двигателя с самого начала запуска.Быстрая циркуляция тепла, вызванная блочными нагревателями, также способствует начальному испарению топлива в двигателе; благодаря этому эффекту блочные обогреватели уменьшают загрязнение, поскольку плохое испарение топлива приводит к гораздо более высоким выбросам.

Типы подогревателей двигателей

Обогреватели свечей защиты от замерзания

  • Также называется нагревателями с замораживанием или просто блочными нагревателями.
  • Самый надежный и эффективный способ предварительного прогрева двигателя.
  • Работает, будучи непосредственно погруженным в охлаждающую жидкость и нагревая блок.
  • Номера деталей для конкретных приложений
  • Требуется механическая способность для установки

Нижний шланг обогревателя радиатора

  • Простота установки / требуется некоторая механическая способность.
  • с термостатическим управлением
  • Доступны модели мощностью 400, 600 и 750 Вт
  • Доступно для шлангов диаметром от одного дюйма до трех дюймов.

Нагреватель циркуляционного бака

  • Доступны модели мощностью 850 Вт, 1000 Вт, 1500 Вт и 2000 Вт, 120 и 240 В.
  • Термостатическое управление 135 ° — 175 °
  • Использует универсальное крепление на ремне.
  • Для установки требуются умеренные механические свойства.

Подогреватель блока цилиндров картриджного типа

  • Взаимозаменяемость с оригинальным оборудованием производителя — единственное доступное экономичное решение для вторичного рынка.
  • Из литого алюминия
  • Простота установки
  • Устанавливается в отверстие для сердечника блока цилиндров.Больше не нужно снимать пробку от замерзания или слить охлаждающую жидкость — просто нанесите силиконовую смазку NSCG G-624 (не входит в комплект), вставьте и закрепите на месте
  • Оригинальное оборудование для Toyota, Chrysler-Jeep, Hyundai, Kia и General Motors (подробности см. В руководстве по применению)
  • Упрощенная информация о применении — весь спектр приложений производителей покрывается только пятью номерами деталей

Защита масла и трансмиссионной жидкости

Масло и трансмиссионные жидкости сгущаются и плохо циркулируют при низких температурах.Силиконовые прокладки и магнитные нагреватели непрерывно передают тепло, чтобы масло оставалось текучим, обеспечивая мгновенную смазку при запуске двигателя.

Типы двигателей / масляных обогревателей

Handi-Heat Магнитный нагреватель мощностью 200 Вт, модель № 1155 и 1153 (с термостатическим управлением)

Приложения включают:

  • Масляный поддон, впускной коллектор, держатель аккумулятора или блок двигателя.
  • Снегоуборочные машины, бензопилы, снегоходы или другие маломощные двигатели.
  • Может также использоваться для обогрева гидравлических систем или оттаивания замороженных замков, труб, желобов, кормушек и т. Д.

Handi-Heat Магнитный нагреватель мощностью 300 Вт — Модель № 1160 и 1190 (с термостатическим управлением)

Magnum — Magnum — это высококлассная версия Handi -Heat с двумя мощными магнитами и увеличенной поверхностью нагрева. Его можно использовать во многих из тех же приложений, что и Handi-Heat, плюс его больший размер делает его идеальным для использования на грузовиках, дизелях и сельскохозяйственной технике.

Нагреватели с силиконовыми подушечками

  • Масло- и кислотостойкий, гибкий.
  • Используется в качестве нагревателя масляного поддона или поддона коробки передач.
  • Доступны от 25 до 1200 Вт.
  • Прост в установке, так как не требует больших механических усилий.
  • Универсальное приложение

Защитите аккумулятор

Батарея может потерять 60% своей пусковой мощности, когда температура достигает 0⁰F. Холодным двигателям требуется больше энергии от аккумулятора при таких температурах. Эти два факта обуславливают необходимость использования одеяла или подкладки для батареи, чтобы продлить срок службы батареи и помочь в выполнении ваших требований к запуску в холодную погоду.

Типы нагревателей батарей

Термообертка для батареи

  • Виниловое покрытие, маслостойкий и кислотостойкий, гибкий.
  • 3 модели для большинства размеров батарей.
  • Быстрая и простая установка.
  • Продлевает срок службы батареи за счет снижения нагрузки при запуске в холодную погоду.

Нагреватели аккумуляторной батареи

  • С силиконовым покрытием, кислотостойкий и маслостойкий, гибкий.
  • Подходит для большинства аккумуляторов легковых и грузовых автомобилей.
  • Простая установка. Требуется небольшая механическая способность.
  • Практически универсальное применение.
  • Широкий диапазон размеров на 120 и 240 вольт.

Системы впрыска пусковой жидкости в холодную погоду

Системы впрыска пусковой жидкости не являются нагревателями двигателя, а вместо этого впрыскивают мгновенное топливо (эфир) во впускной коллектор, что обеспечивает плавный, быстрый и надежный запуск в холодную погоду

Системы впрыска пусковой жидкости

Быстрый, безопасный, надежный — запускается каждый раз

Kats был создан и разработан как действительно эффективный продукт для холодной погоды и тяжелых проблем с запуском.Владельцы и операторы оборудования, работающего на дизельном и газовом топливе, давно знают, что отсрочка и медленный запуск означают большие денежные потери в плане оплаты труда, технического обслуживания и операционных доходов. Продукты Kats Ether Start предназначены для одного — БЫСТРО запускать двигатели! Системы Kats Ether Start — действительно превосходные запатентованные продукты для тяжелых условий эксплуатации. Наши системы 100% произведены в США. Клиенты найдут, что системы Kats Ether Start не имеют себе равных по цене, качеству и производительности где угодно. Процедуры контроля качества производства Kats гарантируют вам наилучшее качество при установке и эксплуатации системы Kats.

Эфирные стартовые системы

  • Эфирные стартовые системы не загрязняют окружающую среду и не загрязняют окружающую среду за счет снижения выбросов.
  • Доступно для различных типов приложений и размеров оборудования.
  • Доступен в сериях Automatic Electric 33200, Push-Button Electric 33100 и серии 33180 с ручным управлением по тросу.
  • Экологически чистый
  • Kats — единственный производитель, предлагающий 90% раствор этилового эфира высокого качества — это на 20-25% больше, чем у наших конкурентов.
  • Изделие ручной работы высокого качества

Система центрального отопления — обзор

6.1 Общие положения

Для распределения солнечного тепла в зданиях можно использовать гидравлическую систему (излучающие панели и водяные радиаторы) или центральную систему принудительной подачи воздуха.

В системах центрального отопления температура подачи горячей воды может иметь разные значения. В недавнем прошлом наиболее используемым значением в Румынии, а также в других странах Европейского Союза было 90 ° C с перепадом температуры на 20 ° C, но в настоящее время температура подачи обычно ниже 90 ° C.

Обеспечение потребности в тепле для зданий, оборудованных системами центрального отопления, требует систем с высокой эффективностью не только в процессе производства тепла, но и в распределении тепловой энергии. Одним из способов повышения эффективности систем отопления является использование пониженной температуры [1]. Кроме того, можно использовать ВИЭ с более высокой эффективностью в качестве солнечной энергии. Обычно плоские жидкостные коллекторы нагревают передающую и распределяющую жидкость до температуры от 35 до 50 ° C.Систему необходимо контролировать и оптимизировать в соответствии с постоянно меняющейся потребностью в тепле.

Энергетическая и эксергетическая эффективность систем центрального отопления выше при пониженных температурах горячей воды [2], но, исходя из [3], необходимо указать, что это справедливо только для полностью сбалансированных систем. Стабильность системы центрального отопления с пониженной температурой может быть улучшена за счет уменьшения уровня перепада температуры. Таким образом, можно получить системы отопления с более высокой стабильностью и энергоэффективностью за счет одновременного снижения температуры подачи и падения температуры.

После внедрения пластиковых трубопроводов применение водного лучистого отопления с трубами, встроенными в поверхности помещений (например, полы, стены и потолки), значительно расширилось во всем мире. Ранее системы лучистого отопления применялись в основном для жилых домов из-за комфорта и свободного использования площади без каких-либо препятствий со стороны установок. По тем же причинам, а также для возможного снижения пиковых нагрузок и экономии энергии, излучающие системы широко применяются в коммерческих и промышленных зданиях.Из-за больших поверхностей, необходимых для передачи тепла, системы работают с водой с низкой температурой для обогрева. Однако, чтобы расширить использование этих типов генераторов и извлечь выгоду из их энергоэффективности для достижения целевых показателей 20–20–20 (повышение энергоэффективности на 20%, сокращение выбросов CO 2 на 20% и возобновляемые источники энергии на 20%) к 2020 году), необходима работа с радиаторами, которые в прошлом были наиболее часто используемыми оконечными устройствами в системах отопления.

В Европе предстоит отремонтировать десятки тысяч зданий, большинство из которых — жилые.Энергетическая задача будущего будет заключаться в ремонте существующих зданий и предложении системно-инженерных технологий, которые могут быть установлены с минимальным вмешательством, что будет чрезвычайно успешным. Следовательно, если продвигается солнечная технология, она должна быть рассчитана также на работу с радиаторами.

В этой главе представлены системы распределения тепла в зданиях, включая водяные радиаторы, излучающие панели (пол, стены, потолок и пол-потолок) и комнатные воздухонагреватели. Первой целью данного исследования является анализ экономии энергии в системах центрального отопления с пониженной температурой подачи для различных типов радиаторов с учетом теплоизоляции распределительных труб и исследование производительности различных типов низкотемпературных систем отопления с разные методы.Кроме того, разработана и экспериментально подтверждена математическая модель для численного моделирования теплового излучения излучающих полов, а также проведен сравнительный анализ энергетических, экологических и экономических характеристик полов, стен, потолка и пола-потолка с использованием численного моделирования с Выполняется программное обеспечение моделирования переходных систем (TRNSYS). Наконец, включена важная информация по контролю и эффективности SHS, разработана аналитическая модель для энергетического анализа SHS, и представлены некоторые показатели экономического анализа, показывающие возможность внедрения этих систем в зданиях.

Программа контроля качества воздуха EngineBlockHeater


Почему вилка под углом 20 градусов?

для снижения износа двигателя

Пуск — это период максимального износа двигателя и минимальной топливной экономичности. Холодное масло циркулирует медленно, оставляя компоненты двигателя незащищенными. Блочные нагреватели предварительно нагревают двигатели, позволяя им быстрее достичь рабочей температуры и смазывать движущиеся части. Тепло также раньше становится доступным для кабины и лобового стекла, что приносит пользу водителям.

Для уменьшения загрязнения воздуха

В исследовании, проведенном Sierra Research в Анкоридже и Фэрбенксе, сравнивались выбросы от транспортных средств при низких температурах.Местные испытания показали, что использование блочных обогревателей существенно снижает выбросы при пуске и расход топлива.

Чтобы поддерживать чистоту в вашем районе

В дни с переворотом и неподвижным воздухом загрязнение от холодного пуска автомобиля и холостого хода распространяется очень медленно. Некоторые из самых высоких уровней CO в Анкоридже обнаруживаются в утренние часы в районах с низким трафиком, но многие автомобили заводятся холодными после парковки на улице ночью. Призыв к «Plug @ 20» — это напоминание о включении, даже если автомобили относительно легко заводятся.Обогреватели блока цилиндров.

Как давно существуют блочные обогреватели? Используются ли они за пределами Аляски?

Да, блочные обогреватели были изобретены Эндрю Фриманом, который родился в Северной Дакоте в 1909 году. Чтобы позволить завести свой Ford Model A, семья Фримена сначала отапливала гараж дровяной печью, чтобы согреть машину. Городской почтальон слил масло из его двигателя после завершения маршрута, держал его в помещении на ночь и заменял каждое утро. Другие соседи лили горячую воду на свои впускные коллекторы или сгребали уголь из топки на землю под их двигателями (уфу!).Фримен получил степень в области электротехники в 1932 году и применил свои навыки, соединив нагревательный элемент из утюга для одежды с витыми медными трубками. После успешного запуска в 29 минус, друзья и соседи умоляли о обогревателях. В 1949 году «Электрический подогреватель болта головки двигателя внутреннего сгорания Freeman» получил патент, и за четыре года было продано почти четверть миллиона в 28 штатах. Источник: Общественное радио Прари и Государственное историческое общество Северной Дакоты, с разрешения.

Как еще можно улучшить качество воздуха?

  • Не будь SOV (одноместный автомобиль)! Чтобы бесплатно и конфиденциально согласовать совместную поездку для автобуса или фургона, позвоните в программу Share-A-Ride по телефону 562-7665 или зарегистрируйтесь, чтобы найти своего партнера по автобазу на сайте http://www.peoplemover.org/.
  • Забудьте о скрежете окон и скользких улицах; сесть на автобус на работу или использовать его для выполнения поручений в течение дня и оставить место для парковки. Посетите http://www.peoplemover.org/, чтобы узнать, какие маршруты путешествовать.«Bus Tracker» People Mover позволяет с точностью до минуты отслеживать, где находится автобус на каждом маршруте, с помощью компьютера или смартфона.
  • Сведите к минимуму количество холодных пусков, «связав» свои поездки. Комбинирование поручений может сократить количество миль в пути и уменьшить загрязнение при холодном пуске.
  • Ухаживайте за своим автомобилем, чтобы улучшить его пусковые характеристики, пробег, выбросы и износ.
  • Предприятия, организации и школы могут работать над получением награды Green Star Award за счет сокращения выбросов твердых отходов, энергии и выбросов в атмосферу в результате поездок и операций.См. Http://www.greenstarinc.org/.

Если вы получали таймер в предыдущие зимы, но у вас нет инструкций к своей модели, см. Нашу страницу «Зачем вставлять» на странице 20, где приведены ссылки на инструкции на английском, корейском, испанском и тагальском языках.

Многие продаваемые таймеры не подходят для использования с блочными обогревателями в очень холодном климате. Ознакомьтесь с нашей страницей Why Plug на 20, чтобы узнать о функциях таймера, которые вам следует искать или которых следует избегать, а также инструкции для таймеров, распространенных в предыдущие зимы.

Покупаете новую машину или грузовик? Не удивляйтесь комплектации салона и забудьте проверить наличие обогревателя!

Обогреватели

обычно намного дешевле устанавливаются на заводе.Наклейка на окно перечисляет обогреватели блоков среди опций автомобиля, если они установлены. Иногда «пакет для холодной погоды» или «пакет для холодного климата» указывает на то, что в автомобиле есть блочный отопитель и другие функции для холодного климата, такие как аккумулятор повышенной емкости, обогреватель кабины или подогрев сидений. Покупаете подержанный автомобиль? Иногда можно увидеть электрическую вилку нагревателя, свисающую с гриля, если таковой имеется. Механик может подтвердить, что обогреватель все еще работает на старом автомобиле.

Вы водите автомобиль без обогревателя? Ваш дилер или механик могут предоставить оценку по телефону в зависимости от года / модели вашего автомобиля.

Срок действия федеральной программы субсидирования блочных обогревателей истек в 2006 году после 13 000 установок.

Всегда подключать? Для удобства и экономии электроэнергии найдите таймер и удлинитель для улицы. Установите таймер в гараже или на столбе рядом с розеткой на высоте более 3 футов (уровень снега). Инструкции по установке таймера приведены ниже.

В исследовании, проведенном Sierra Research в Анкоридже и Фэрбенксе, сравнивались выбросы от транспортных средств при низких температурах.Местные испытания показали, что использование блочных нагревателей существенно снижает выбросы при пуске и расход топлива.

Выхлоп холодных двигателей богат оксидом углерода (CO) и токсичными загрязнителями воздуха, но предварительный прогрев двигателей за два-три часа до запуска снижает выбросы CO почти на 60%. Мы призываем автомобилистов убедиться, что любой автомобиль, который они покупают, был оборудован блочным обогревателем — и Plug @ 20!

Дополнительная информация Plug @ 20:

Отсечка маловодья — Боб Вила

Фото: дом снабжения.com

Средний домовладелец редко задумывается о котле, пока не возникнет проблема. К счастью, как двигатель, приводящий в действие систему водяного или парового отопления, котлы обычно обеспечивают безопасную и надежную работу. Но они не без проблем. Напротив, котлы подвержены целому ряду проблем. По данным Национального совета инспекторов котлов и сосудов высокого давления, наиболее серьезные поломки котлов также являются наиболее частыми. Это состояние, известное как «сухой огонь», и его последствия могут быть не только разрушительными, но и опасными.Фактически, сухой огонь «может превратить ваш котел в бомбу замедленного действия», — говорит Дэниел О’Брайан, технический специалист SupplyHouse.com.

Конечно, системы парового и водяного отопления имеют сложную конструкцию, но сухое горение обычно происходит по простой причине — например, из-за разрыва трубы или неплотного соединения. Поскольку котлам требуется достаточный объем воды для нормальной работы, любое прерывание подачи воды к агрегату приводит к перегреву. Еще хуже то, что без воды бойлер не может отапливать дом.Таким образом, не зная о низком уровне воды в бойлере, холодный домовладелец может включить термостат, в результате чего прибор станет еще сильнее. Продолжение сухого горения может необратимо повредить котел или, что еще хуже, привести к тому, что котел станет летучим.

Фото: supplyhouse.com

Важно отметить, что не каждый котел подвержен риску перегрева до такой степени, что может нанести вред себе, дому, который он должен обогревать, или людям, которые там живут. Котлы могут быть защищены простой и недорогой системой отключения малой воды (LWCO).Устройство LWCO активно контролирует уровень воды в бойлере, затем отключает питание и отключает систему, если уровень падает ниже порога безопасности. Эксперты считают эту функцию практически стандартной. «Точно так же, как вы не купили бы машину без ремня безопасности, — говорит О’Брайан, — вам не следует запускать паровую или водяную систему отопления без отключения по низкому уровню воды». Он продолжает: «Если в вашем котле нет LWCO, серьезно подумайте о том, чтобы добавить его».

Существует два основных типа устройств отсечки малой воды.Один из них, называемый «плавающий» LWCO, имеет плавучий шар, который поднимается и опускается вместе с уровнем воды. Если вода опускается до опасно низкого уровня, устройство отключает питание котла. Альтернатива, электрическая модель, контролирует уровень воды, проверяя ее проводимость, и отключает систему, когда уровень становится слишком низким. Оба варианта достойны рассмотрения, есть ли у вас паровой или водогрейный котел. Но нельзя сказать, что все отсечки по малой воде взаимозаменяемы. Одна функция, в частности, определяет, подходит ли данный LWCO для вашего котла — способ, которым устройство перезагружается, когда вода возвращается в котел.

В паровой системе выберите отсечку при низком уровне воды с автоматическим сбросом. Причина? Уровень воды в паровом котле нередко колеблется в процессе нормальной работы. LWCO может отключить котел, если уровень воды упадет слишком низко, но как только уровень вернется к безопасному минимуму, автоматический сброс позволяет котлу снова запустить его. С другой стороны, в водогрейном котле низкий уровень воды обычно является признаком того, что возникла проблема, требующая внимания. По этой причине рекомендуется соединить водогрейный котел с LWCO с ручным сбросом.Таким образом, домовладельцам предлагается устранить основную причину сбоя, прежде чем они снова активируют котел.

Амбициозные мастера, имеющие опыт работы в сфере сантехники, могут установить устройство отключения низкого уровня воды самостоятельно, без помощи профессионала, но всем остальным О’Брайан советует нанять подрядчика. Если вам нужна помощь в выборе подходящего устройства для вашего котла и отопительной системы, свяжитесь со специалистами SupplyHouse.com — и не откладывайте. В конце концов, учитывая, что эти устройства могут предотвратить потенциально пагубные последствия, отключения при низком уровне воды могут быть, как говорит О’Брайан, «самой важной функцией безопасности дома, о которой вы никогда не слышали.» До настоящего времени.

Фото: supplyhouse.com

Эта статья была предоставлена ​​вам компанией SupplyHouse.com. Его факты и мнения принадлежат BobVila.com.

% PDF-1.4 % 1030 0 объект > эндобдж xref 1030 607 0000000016 00000 н. 0000012496 00000 п. 0000012771 00000 п. 0000012837 00000 п. 0000017953 00000 п. 0000018407 00000 п. 0000018494 00000 п. 0000018638 00000 п. 0000018785 00000 п. 0000019072 00000 п. 0000019199 00000 п. 0000019324 00000 п. 0000019386 00000 п. 0000019582 00000 п. 0000019644 00000 п. 0000019849 00000 п. 0000019962 00000 п. 0000020181 00000 п. 0000020243 00000 п. 0000020376 00000 п. 0000020489 00000 н. 0000020703 00000 п. 0000020765 00000 п. 0000020943 00000 п. 0000021056 00000 п. 0000021289 00000 п. 0000021351 00000 п. 0000021482 00000 п. 0000021595 00000 п. 0000021796 00000 п. 0000021858 00000 п. 0000022036 00000 н. 0000022149 00000 п. 0000022347 00000 п. 0000022409 00000 п. 0000022571 00000 п. 0000022684 00000 п. 0000022860 00000 п. 0000022922 00000 п. 0000023086 00000 п. 0000023199 00000 п. 0000023411 00000 п. 0000023473 00000 п. 0000023610 00000 п. 0000023723 00000 п. 0000023898 00000 п. 0000023959 00000 п. 0000024092 00000 п. 0000024205 00000 п. 0000024340 00000 п. 0000024401 00000 п. 0000024532 00000 п. 0000024593 00000 п. 0000024710 00000 п. 0000024771 00000 п. 0000024832 00000 п. 0000024993 00000 п. 0000025054 00000 п. 0000025179 00000 п. 0000025240 00000 п. 0000025301 00000 п. 0000025362 00000 п. 0000025556 00000 п. 0000025618 00000 п. 0000025787 00000 п. 0000025936 00000 п. 0000026138 00000 п. 0000026200 00000 н. 0000026366 00000 п. 0000026493 00000 п. 0000026642 00000 п. 0000026704 00000 п. 0000026765 00000 п. 0000026827 00000 н. 0000027006 00000 н. 0000027157 00000 п. 0000027219 00000 н. 0000027425 00000 н. 0000027487 00000 н. 0000027612 00000 н. 0000027731 00000 н. 0000027920 00000 н. 0000027982 00000 н. 0000028165 00000 п. 0000028227 00000 п. 0000028289 00000 п. 0000028351 00000 п. 0000028413 00000 п. 0000028475 00000 п. 0000028537 00000 п. 0000028599 00000 п. 0000028660 00000 п. 0000028832 00000 п. 0000028894 00000 п. 0000029013 00000 н. 0000029154 00000 п. 0000029390 00000 н. 0000029452 00000 п. 0000029571 00000 п. 0000029712 00000 п. 0000029890 00000 н. 0000029952 00000 н. 0000030071 00000 п. 0000030212 00000 п. 0000030388 00000 п. 0000030450 00000 п. 0000030569 00000 п. 0000030710 00000 п. 0000030772 00000 п. 0000031006 00000 п. 0000031068 00000 п. 0000031189 00000 п. 0000031328 00000 п. 0000031390 00000 н. 0000031533 00000 п. 0000031595 00000 п. 0000031734 00000 п. 0000031796 00000 п. 0000031937 00000 п. 0000031999 00000 п. 0000032140 00000 п. 0000032202 00000 п. 0000032264 00000 н. 0000032326 00000 п. 0000032388 00000 п. 0000032622 00000 п. 0000032684 00000 п. 0000032805 00000 п. 0000032944 00000 п. 0000033006 00000 п. 0000033149 00000 п. 0000033211 00000 п. 0000033350 00000 п. 0000033412 00000 п. 0000033553 00000 п. 0000033615 00000 п. 0000033756 00000 п. 0000033818 00000 п. 0000033880 00000 п. 0000033942 00000 п. 0000034004 00000 п. 0000034238 00000 п. 0000034300 00000 п. 0000034421 00000 п. 0000034560 00000 п. 0000034622 00000 п. 0000034765 00000 п. 0000034827 00000 н. 0000034966 00000 п. 0000035028 00000 п. 0000035169 00000 п. 0000035231 00000 п. 0000035372 00000 п. 0000035434 00000 п. 0000035496 00000 п. 0000035558 00000 п. 0000035620 00000 п. 0000035854 00000 п. 0000035916 00000 п. 0000036037 00000 п. 0000036176 00000 п. 0000036238 00000 п. 0000036381 00000 п. 0000036443 00000 п. 0000036582 00000 п. 0000036644 00000 п. 0000036785 00000 п. 0000036847 00000 п. 0000036988 00000 п. 0000037050 00000 п. 0000037112 00000 п. 0000037174 00000 п. 0000037236 00000 п. 0000037355 00000 п. 0000037496 00000 п. 0000037558 00000 п. 0000037792 00000 п. 0000037854 00000 п. 0000037975 00000 п. 0000038114 00000 п. 0000038176 00000 п. 0000038319 00000 п. 0000038381 00000 п. 0000038520 00000 п. 0000038582 00000 п. 0000038723 00000 п. 0000038785 00000 п. 0000038926 00000 п. 0000038988 00000 п. 0000039050 00000 п. 0000039112 00000 п. 0000039174 00000 п. 0000039348 00000 п. 0000039410 00000 п. 0000039609 00000 п. 0000039806 00000 п. 0000039868 00000 п. 0000039930 00000 н. 0000039992 00000 н. 0000040167 00000 п. 0000040294 00000 п. 0000040356 00000 п. 0000040493 00000 п. 0000040555 00000 п. 0000040738 00000 п. 0000040800 00000 п. 0000040963 00000 п. 0000041025 00000 п. 0000041162 00000 п. 0000041224 00000 п. 0000041361 00000 п. 0000041423 00000 п. 0000041580 00000 п. 0000041642 00000 п. 0000041704 00000 п. 0000041766 00000 п. 0000041919 00000 п. 0000041981 00000 п. 0000042108 00000 п. 0000042170 00000 п. 0000042291 00000 п. 0000042353 00000 п. 0000042492 00000 п. 0000042554 00000 п. 0000042681 00000 п. 0000042743 00000 п. 0000042805 00000 п. 0000042946 00000 п. 0000043083 00000 п. 0000043145 00000 п. 0000043207 00000 п. 0000043269 00000 п. 0000043457 00000 п. 0000043519 00000 п. 0000043646 00000 п. 0000043793 00000 п. 0000043948 00000 н. 0000044010 00000 п. 0000044072 00000 п. 0000044193 00000 п. 0000044255 00000 п. 0000044378 00000 п. 0000044440 00000 п. 0000044502 00000 п. 0000044564 00000 п. 0000044626 00000 п. 0000044761 00000 п. 0000044823 00000 п. 0000044976 00000 п. 0000045038 00000 п. 0000045193 00000 п. 0000045255 00000 п. 0000045317 00000 п. 0000045474 00000 п. 0000045627 00000 п. 0000045689 00000 п. 0000045852 00000 п. 0000045914 00000 п. 0000046101 00000 п. 0000046163 00000 п. 0000046373 00000 п. 0000046435 00000 п. 0000046614 00000 п. 0000046797 00000 п. 0000046859 00000 п. 0000046921 00000 п. 0000046983 00000 п. 0000047045 00000 п. 0000047176 00000 п. 0000047238 00000 п. 0000047389 00000 п. 0000047451 00000 п. 0000047626 00000 п. 0000047688 00000 п. 0000047839 00000 п. 0000047901 00000 п. 0000047963 00000 п. 0000048025 00000 п. 0000048172 00000 п. 0000048234 00000 п. 0000048296 00000 п. 0000048502 00000 н. 0000048661 00000 п. 0000048723 00000 п. 0000048961 00000 н. 0000049023 00000 п. 0000049162 00000 п. 0000049277 00000 п. 0000049444 00000 п. 0000049506 00000 п. 0000049655 00000 п. 0000049717 00000 п. 0000049779 00000 п. 0000049930 00000 н. 0000049992 00000 н. 0000050145 00000 п. 0000050207 00000 п. 0000050402 00000 п. 0000050464 00000 п. 0000050526 00000 п. 0000050588 00000 п. 0000050747 00000 п. 0000050890 00000 н. 0000050952 00000 п. 0000051014 00000 п. 0000051076 00000 п. 0000051219 00000 п. 0000051281 00000 п. 0000051578 00000 п. 0000051640 00000 п. 0000051923 00000 п. 0000051985 00000 п. 0000052264 00000 п. 0000052326 00000 п. 0000052639 00000 п. 0000052701 00000 п. 0000052976 00000 п. 0000053038 00000 п. 0000053337 00000 п. 0000053399 00000 п. 0000053692 00000 п. 0000053754 00000 п. 0000054041 00000 п. 0000054103 00000 п. 0000054386 00000 п. 0000054448 00000 п. 0000054741 00000 п. 0000054803 00000 п. 0000055104 00000 п. 0000055166 00000 п. 0000055455 00000 п. 0000055517 00000 п. 0000055728 00000 п. 0000055790 00000 п. 0000056101 00000 п. 0000056163 00000 п. 0000056464 00000 н. 0000056526 00000 п. 0000056821 00000 п. 0000056883 00000 п. 0000057178 00000 п. 0000057240 00000 п. 0000057539 00000 п. 0000057601 00000 п. 0000057908 00000 п. 0000057970 00000 п. 0000058271 00000 п. 0000058333 00000 п. 0000058640 00000 п. 0000058702 00000 п. 0000058997 00000 н. 0000059059 00000 п. 0000059370 00000 п. 0000059432 00000 п. 0000059735 00000 п. 0000059797 00000 п. 0000060080 00000 п. 0000060142 00000 п. 0000060425 00000 п. 0000060487 00000 п. 0000060790 00000 н. 0000060852 00000 п. 0000061145 00000 п. 0000061207 00000 п. 0000061508 00000 п. 0000061570 00000 п. 0000061871 00000 п. 0000061933 00000 п. 0000062230 00000 п. 0000062292 00000 п. 0000062587 00000 п. 0000062649 00000 п. 0000062926 00000 п. 0000062988 00000 п. 0000063281 00000 п. 0000063343 00000 п. 0000063644 00000 п. 0000063706 00000 п. 0000063997 00000 п. 0000064059 00000 п. 0000064356 00000 п. 0000064418 00000 п. 0000064711 00000 п. 0000064773 00000 п. 0000065014 00000 п. 0000065076 00000 п. 0000065377 00000 п. 0000065439 00000 п. 0000065738 00000 п. 0000065800 00000 п. 0000066103 00000 п. 0000066165 00000 п. 0000066472 00000 н. 0000066534 00000 п. 0000066823 00000 п. 0000066885 00000 п. 0000067188 00000 п. 0000067250 00000 п. 0000067549 00000 п. 0000067611 00000 п. 0000067908 00000 н. 0000067970 00000 п. 0000068277 00000 п. 0000068339 00000 п. 0000068644 00000 п. 0000068706 00000 п. 0000069007 00000 п. 0000069069 00000 п. 0000069370 00000 п. 0000069432 00000 п. 0000069729 00000 п. 0000069791 00000 п. 0000070084 00000 п. 0000070146 00000 п. 0000070447 00000 п. 0000070509 00000 п. 0000070798 00000 п. 0000070860 00000 п. 0000071165 00000 п. 0000071227 00000 п. 0000071514 00000 п. 0000071576 00000 п. 0000071881 00000 п. 0000071943 00000 п. 0000072244 00000 п. 0000072306 00000 п. 0000072591 00000 п. 0000072653 00000 п. 0000072938 00000 п. 0000073000 00000 п. 0000073287 00000 п. 0000073349 00000 п. 0000073636 00000 п. 0000073698 00000 п. 0000073989 00000 п. 0000074051 00000 п. 0000074354 00000 п. 0000074416 00000 п. 0000074717 00000 п. 0000074779 00000 п. 0000075016 00000 п. 0000075078 00000 п. 0000075367 00000 п. 0000075429 00000 п. 0000075704 00000 п. 0000075766 00000 п. 0000076065 00000 п. 0000076127 00000 п. 0000076428 00000 п. 0000076490 00000 н. 0000076785 00000 п. 0000076847 00000 п. 0000077132 00000 п. 0000077194 00000 п. 0000077487 00000 п. 0000077549 00000 п. 0000077854 00000 п. 0000077916 00000 п. 0000078207 00000 п. 0000078269 00000 п. 0000078578 00000 п. 0000078640 00000 п. 0000078941 00000 п. 0000079003 00000 п. 0000079306 00000 п. 0000079368 00000 п. 0000079673 00000 п. 0000079735 00000 п. 0000080040 00000 п. 0000080102 00000 п. 0000080411 00000 п. 0000080473 00000 п. 0000080768 00000 п. 0000080830 00000 п. 0000081119 00000 п. 0000081181 00000 п. 0000081470 00000 п. 0000081532 00000 п. 0000081837 00000 п. 0000081899 00000 п. 0000082194 00000 п. 0000082256 00000 п. 0000082555 00000 п. 0000082617 00000 п. 0000082918 00000 п. 0000082980 00000 п. 0000083269 00000 п. 0000083331 00000 п. 0000083626 00000 п. 0000083688 00000 п. 0000083985 00000 п. 0000084047 00000 п. 0000084350 00000 п. 0000084412 00000 п. 0000084707 00000 п. 0000084769 00000 п. 0000085062 00000 п. 0000085124 00000 п. 0000085409 00000 п. 0000085471 00000 п. 0000085760 00000 п. 0000085822 00000 п. 0000086127 00000 п. 0000086189 00000 п. 0000086478 00000 п. 0000086540 00000 п. 0000086841 00000 п. 0000086903 00000 п. 0000087208 00000 п. 0000087270 00000 п. 0000087561 00000 п. 0000087623 00000 п. 0000087916 00000 п. 0000087978 00000 п. 0000088267 00000 п. 0000088329 00000 п. 0000088618 00000 п. 0000088680 00000 п. 0000088979 00000 п. 0000089041 00000 п. 0000089334 00000 п. 0000089396 00000 п. 0000089683 00000 п. 0000089745 00000 п. 00000 00000 п. 00000

00000 п. 00000

00000 п. 00000

00000 п. 00000

00000 п. 00000

00000 п. 0000091113 00000 п. 0000091175 00000 п. 0000091468 00000 п. 0000091530 00000 н. 0000091807 00000 п. 0000091869 00000 п. 0000092168 00000 п. 0000092230 00000 н. 0000092519 00000 п. 0000092581 00000 п. 0000092866 00000 п. 0000092928 00000 п. 0000093227 00000 н. 0000093289 00000 п. 0000093586 00000 п. 0000093648 00000 п. 0000093951 00000 п. 0000094013 00000 п. 0000094314 00000 п. 0000094376 00000 п. 0000094663 00000 п. 0000094725 00000 п. 0000095006 00000 п. 0000095068 00000 п. 0000095377 00000 п. 0000095439 00000 п. 0000095742 00000 п. 0000095804 00000 п. 0000096105 00000 п. 0000096167 00000 п. 0000096460 00000 п. 0000096522 00000 п. 0000096829 00000 н. 0000096891 00000 п. 0000097176 00000 п. 0000097238 00000 п. 0000097539 00000 п. 0000097601 00000 п. 0000097912 00000 п. 0000097974 00000 п. 0000098265 00000 п. 0000098327 00000 п. 0000098624 00000 п. 0000098686 00000 п. 0000098748 00000 п. 0000098810 00000 п. 0000098925 00000 п. 0000099038 00000 н. 0000099099 00000 н. 0000099160 00000 п. 0000099221 00000 н. 0000099277 00000 н. 0000099334 00000 п. 0000099365 00000 п. 0000099539 00000 п. 0000100193 00000 н. 0000102388 00000 н. 0000102612 00000 н. 0000103335 00000 н. 0000103512 00000 н. 0000104025 00000 н. ؉ ӢE] & 17br2 ƪN, aU.m & VM2x9Be5 [ږ ln -. qF? fT {gnҦ {>> z

Yanmar объявляет о совместной разработке котлов-утилизаторов | 2011 | Новости | YANMAR

30 сентября 2011 г.
Yanmar Energy System Co., Ltd.

Yanmar объявила о выпуске пяти новых моделей котлов, в которых используется теплая вода-утилизатор, полученная от когенерационных систем с газовыми двигателями собственного производства, мощностью 25, 35 и 50 кВт (т.е. два блока по 25 кВт). Эти новые модели, известные как GENEBO * 1, были разработаны в сотрудничестве с Tokyo Gas Co., Ltd, Osaka Gas Co., Ltd, Toho Gas Co., Ltd и Showa Manufacturing Co., Ltd.
Котлы мощностью от 465 до 1163 кВт используются в тандеме с когенерационными системами Yanmar GENELIGHT и будут коммерциализированы. в Японии под названием GENEBO SYSTEM с 1 октября 2011 года.
До сих пор GENEBO * 2 можно было использовать только с когенерационными системами меньшей мощности, от 5 до 9,9 кВт, но улучшенные модели позволяют применять на более крупных объектах, таких как как спа, фитнес-клубы или учреждения социального обеспечения.Более того, улучшенные модели регенерируют скрытое тепло из выбросов, что увеличивает энергоэффективность с 90 до почти 100%. * 3 Кроме того, прямая подача предварительно нагретой воды и пропорциональная экономия при сжигании приводит к ежегодному сокращению выбросов на 19% * 4 по первичной энергии и на 25% * 4 по выбросам углекислого газа по сравнению с газовыми котлами.
Showa Manufacturing занималась проектированием и производством котлов, Yanmar Energy System — когенерационными системами GENELIGHT и подключением труб к котлам, в то время как Osaka Gas и Tokyo Gas занимались реализацией и эффективной интеграцией потребностей клиентов в спецификации продукта.Что касается коммерциализации, Showa Manufacturing будет производить и продавать GENEBO, а Yanmar Energy System — GENELIGHT.

СИСТЕМА GENEBO

1. Характеристики продукта:

1-1. Экологичность и экономичность
За счет повторного использования тепла, получаемого при выработке электроэнергии, GENELIGHT обеспечивает превосходную энергоэффективность, в то время как GENEBO позволяет оптимально восстанавливать отходящее тепло из систем когенерации. При использовании для горячего водоснабжения или отопления в нем используется газовая горелка * 5, которая сокращает необходимое обычное время работы, тем самым повышая эффективность использования топлива и снижая расходы и нагрузку на окружающую среду.

1-2. Простая и компактная конструкция
Предыдущие модели GENELIGHT требовали индивидуальной проверки, проектирования и монтажа теплообменников при подключении котла к когенерационным системам. Однако недавно представленные котлы имеют более простую конструкцию и трубопроводы, что позволяет напрямую отводить теплую воду из когенерационных систем через присоединенные трубы. Кроме того, поскольку теплообменник и блок управления встроены в продукт, пространство, необходимое для установки, было уменьшено на 20% * 6 по сравнению с предыдущими моделями.

3. Для справок:

Группа по связям с общественностью,
Отдел общих дел, Yanmar Co., Ltd.
ТЕЛ: + 81-6-6376-6212
ФАКС: + 81-6-6372-2455
Эл. Почта: [email protected]. jp

Как работает автономный подогреватель двигателя. Установка и обслуживание котла отопления двигателя

Инструкция к современным автомобилям утверждает, что никаких подготовительных процедур перед поездкой не требуется, садись и езди, что проще? Но у опытных водителей несколько иное мнение.

Те, кто водит автомобиль более года, считают, что нагружать двигатель, что на самом деле является значительной нагрузкой в ​​течение нескольких минут после холодного пуска, очень рискованно. Ведь термические зазоры еще не пришли в нормальное состояние, смазка — не успела войти в дальние каналы.

Даже качественное дорогое машинное масло и безупречная конструкция двигателя не спасут его от ускоренного износа.

При таком типе работы неопытному водителю будет сложно заподозрить, что с двигателем что-то не так, ведь системы зажигания и впрыска управляются совершенными электронными устройствами, ни провалов, ни слабой реакции на газ не будет.

Тем не менее практика доказала, что если вы хотите сохранить работоспособность своего автомобиля, прогрейте двигатель перед поездкой в ​​морозный день.

Лучший вариант:

  • запустить двигатель,
  • включить обогрев сидений, руля, стекол, пару минут хватит на прогрев,
  • начало движения должно быть плавным, лучше избегать как высоких, так и низких оборотов, в идеале стрелка тахометра должна находиться посередине шкалы.

При работе в этом режиме двигатель быстро нагревается до рабочей температуры, редуктор, если таковой имеется, может прослужить дольше.

а как же инструкция? Во многих странах в целях борьбы с загрязнением воздуха категорически запрещено курить в жилых помещениях. Второй, не менее веский аргумент — производители автомобилей совершенно не заинтересованы в том, чтобы каждое их творение было живым вечно. Увеличивая объемы производства, они предполагают, что у автовладельцев все чаще будет возникать желание или потребность в замене автомобиля на новый.

Тем, кто действительно заботится о своем автомобиле и хочет, чтобы его эксплуатация продолжалась без проблем, стоит подумать о покупке и установке предпускового подогрева кузова.

Более того, установка обогревателя с программируемым или дистанционным управлением позволит прогреть машину заранее, еще до выхода из дома.

Обогреватели могут быть автономными и неавтономными, электрическими.

Электрические обогреватели популярны в странах с суровыми зимами и являются встроенным стандартом во многих моделях.Поскольку такие автомобили необходимо периодически заряжать, предназначенные для этого электрические розетки имеются на всех стоянках и стоянках.

Из чего состоит подогреватель

Назначение автономного жидкостного устройства — прогрев двигателя перед запуском, т.е. без его прямого включения, что крайне важно при отрицательных температурах воздуха на улице. В некоторых случаях устройство используется для подогрева воздуха в салоне автомобиля, а также для размораживания дворников и стекла, покрытого инеем.

Устройство достаточно компактное, в конструкцию входит несколько элементов:

  • блок включения ТЭН,
    термостат включения вентилятора климата
    основной блок — котел, состоящий из теплообменника и камеры сгорания,
  • Топливопровод
  • оснащен топливным насосом
    также есть насос для перекачки охлаждающей жидкости

Электронный блок используется для управления устройством.

Установка осуществляется в моторном отсеке, для установки потребуется произвести подключение:

  • устройство теплообменника к малому контуру системы охлаждения
  • электронный блок управления — к цепи авто

Хотя эта процедура на первый взгляд несложная, будет лучше, если ее проведут специалисты СТО.

Пульт дистанционного управления подогревателем

При установке предпускового подогревателя автовладелец должен будет решить, как он будет включать устройство: в машине, с помощью трансподера (пульта) или с помощью GSM-модуля мобильного телефона.

Первый вариант намного дешевле, стоимость установки в пределах 2,5 — 3 тыс. Руб. Основным недостатком будет необходимость выйти на улицу и открыть машину, когда необходимо перепрограммировать устройство, т.е.е. каждый раз возникает желание изменить время включения.

Второй вариант, покупка и установка, может стоить не менее 10 тысяч рублей, но при этом избавит вас от неудобств, связанных с эксплуатацией первого варианта.

Третий вариант, с использованием модуля GSM, оказывается наиболее удобным на практике, вам не нужно носить с собой панель управления, все команды можно отдавать с вашего мобильного телефона. Естественно, для этого потребуется выбор и покупка модуля GSM, стоимость этих устройств варьируется в широких пределах.

Принцип работы подогревателя следующий:

  • сигнал с телефона, таймера или пульта дистанционного управления запускает триггер
  • Дизельное топливо
  • или бензин подается в камеру сгорания устройства, подключенного к топливной магистрали
  • в результате смешения топлива с воздушной массой образуется горючая смесь, для которой используются либо керамические штифты, либо свечи зажигания

Процесс накопления тепла в теплообменнике сопровождается прокачкой нагретой среды по малому контуру двигателя.Такой нагрев позволяет добиться повышения температуры всех элементов конструкции, достаточного для последующего быстрого пуска.

Включив обогрев салона и стекол, получаем следующее: термостат включается в результате достижения двигателем заданной температуры, затем тепло подается в салон автомобиля и на стекло.

Типы подогревателей

Принцип конструкции нагревателей может предполагать использование жидкости или воздуха в качестве теплоносителя.Для легковых автомобилей характерно использование жидкостного отопления, для грузовых автомобилей и другой крупногабаритной техники и спецтехники — воздушного.

Такое деление конструктивно обосновано, воздухонагреватели крупнее по размеру, могут выделять значительное количество тепла, естественно, увеличится расход топлива.

Нагрев жидкости может осуществляться приборами нескольких типов.

A … Предназначены для автомобилей с небольшой кабиной и двигателями объемом менее 2 литров, экономно расходуют топливо.

B … Универсальный, с оптимальным соотношением размера и экономичности, может использоваться для небольших автомобилей и коммерческих фургонов.

V … Используется для внедорожников и минивэнов, с более внушительными размерами, более высоким расходом топлива и более высоким тепловыделением.

Особенностью этого типа является оптимизированный режим циркуляции жидкости, обеспечивающий быстрый прогрев крупногабаритных двигателей и больших салонов.

Все три типа универсальны по топливу, могут работать с бензиновыми, дизельными, бензиновыми двигателями.

Количество топлива, необходимое подогревателю за час работы при максимальной нагрузке, не превышает 0,5 литра.

Предпусковой подогреватель Бинар

Если говорить о выборе качественного и недорогого обогревателя, то обязательно стоит вспомнить о продукте от Теплостар. По принципу устройства и подключения обогреватель Бинар ничем не отличается от аналогов: энергия, образующаяся в результате сгорания топливовоздушной смеси, передается теплообменнику, что приводит к его нагреву и разогреву антифриза. .

Нагретая жидкость с помощью насоса прокачивается через систему охлаждения автомобиля, в результате чего происходит обогрев двигателя и салона. Управление устройством осуществляется установкой таймера, установленного внутри кабины.

Предпусковые обогреватели Бинар — автономные устройства. Их можно устанавливать на автомобили, работающие как на бензине, так и на дизельном топливе.

Устройство позволяет упростить запуск двигателя при отрицательных температурах и продлить срок его службы.

Специалисты утверждают, что в некоторых случаях для того, чтобы вывести дизель из строя, достаточно выполнить один холодный пуск.

Работать с подогревателями любого типа необходимо по простому правилу. Обогреватель следует запускать не реже одного раза в месяц вне зависимости от времени года. те. даже в летние месяцы. Это поможет удалить сажу, образующуюся при сгорании топлива. При нарушении этого правила можно спровоцировать блокировку обогревателя.

Поскольку предпусковой подогреватель питается от аккумуляторной батареи, в условиях коротких поездок, около 10-15 км в день и длительного нахождения в пробках на городских улицах, вполне вероятно, что аккумулятор полностью разрядится через пару недель. .Чтобы этого не произошло, рекомендуется, чтобы время работы подогревателя и двигателя было одинаковым.

Водитель должен следить за тем, чтобы цикл прогрева прошел полностью, иначе будет опасность оседания сажи на стенках камеры сгорания.

Прерванный цикл не позволяет саже полностью выгореть, что может привести к отказу системы.

Предпусковой подогреватель с функцией автономного обогревателя

Обычно указываются основные преимущества использования жидкостных нагревателей:

  • возможность предварительного прогрева салона и двигателя,
    разморозка стекол,
  • возможность начать поездку, не дожидаясь прогрева двигателя.

При бережном отношении срок службы двигателя значительно увеличивается.

Из положительных также следует отметить, что автономные отопители могут служить дополнительными источниками тепла, которые помогут обогреть салон в особо холодные дни. Действительно, при очень низких температурах ах, машина, движущаяся со скоростью, очень быстро замерзает.

Возможность дополнительного подогрева будет особенно полезна для дизельного типа двигателя, так как его теплотворная способность намного ниже.В конструкции некоторых современных автомобилей изначально предусмотрено наличие автономного подогревателя двигателя.

тепловые термосы-аккумуляторы

Некоторые автомобили, как минимум, версия гибридного автомобиля производства США Toyota Prius, оснащенная специальными автономными отопительными приборами, тепловыми аккумуляторами. По принципу действия представляют собой неисправность термоса, в которой скапливается хорошо прогретый антифриз.

Такой термос может поддерживать температурные показатели пару дней.

При запуске двигателя теплая жидкость перетекает в систему охлаждения малого контура, температура всех имеющихся антифризов повышается на 12-18 градусов.

Предпусковой подогреватель дизельного двигателя

Вместе со снижением температуры воздуха до +5 С у автовладельцев с дизельными двигателями начинаются проблемы. Причина в том, что солярка при таких температурных показателях меняет вязкостные характеристики и начинает парафинизироваться.

Это вызывает ухудшение прохождения топлива по магистрали, в частности, через фильтр.Те. существует вполне реальная угроза перебоев в подаче топлива в двигатель.

Второй негативный момент — это увеличение количества потребляемого топлива. Поскольку сгущенное дизельное топливо распыляется хуже, процесс его сгорания в цилиндрах не происходит полностью, мощность двигателя снижается, что приводит к увеличению расхода топлива.

Правильный метод устранения этих проблем — прогрев труднопроходимых участков топливопровода.Оптимальные температурные характеристики могут быть достигнуты путем установки подогревателей для конкретных автомобилей.

По конструкции такие устройства делятся на предпусковые и маршевые. Предпусковой , соответственно, двигатель прогревается перед запуском. В процессе нагрева кристаллы парафина, заполняющие поры фильтров, плавятся.

Маршевый подогрев Применяется для обеспечения бесперебойной подачи топлива через каждый элемент магистрали при работе двигателя.Для этого потребуется установка автономного устройства, способного обеспечить обогрев каждой из секций системы подачи топлива, от топливного бака до самого двигателя.

Конструкция устройств подогрева топлива может быть кожуховой, т.е. устанавливается на фильтре тонкой очистки, второй вариант обеспечивает равномерный прогрев всей магистрали, по которой подается топливо.

Устройства второго типа могут быть:

  • проточные, их конструкция предполагает проход через рубашку нагревателя, их еще называют врезными
  • Лента
  • , предназначена для обмотки проблемных участков автомобильной дороги, по которой подается дизельное топливо.

Из всего вышеизложенного легко сделать вывод о полезности устройств для подогрева двигателей и подогревателей пропульсивного топлива для дизельных двигателей. Единственный недостаток этих полезных устройств — их относительно высокая стоимость.

Самостоятельно решать, устанавливать обогреватели или нет, разумеется, если они изначально не встроены в данную модель автомобиля. Но прежде чем отказаться от такого улучшения, следует тщательно взвесить все за и против.

Климатические условия большей части территории нашей страны отличаются очень широким диапазоном температур: от жары летом до морозов зимой.В летнее время автомобиль эксплуатируется довольно просто, хотя и имеет свои особенности. А в холодное время года двигателю автомобиля требуется много времени после запуска для достижения рабочей температуры. А для облегчения холодного запуска и экономии времени при прогреве автомобиля есть электрический подогреватель двигателя, который за достаточно короткий промежуток времени способен довести его температуру до приемлемых значений.

Особенности запуска двигателя в холодное время года

Двигатель внутреннего сгорания благодаря особенностям своей конструкции способен развивать максимум своей мощности и крутящего момента в довольно узком температурном диапазоне.Вот почему холодный запуск, особенно в зимний период, так плохо сказывается на двигателях. Раньше, до появления предпусковых подогревателей, единственным выходом был запуск и прогрев на холостом ходу или повышенных оборотах. Теперь, с появлением различных средств и способов обогрева, этим методом можно пренебречь. Более того, современные моторы очень эффективно распределяют тепло от камер сгорания и быстро прогреваются, поэтому вы можете начать движение практически сразу после запуска. Но это можно сделать в обычных зимних условиях, а если ночью температура достигает 40-45 градусов ниже нуля? Здесь дополнительный обогрев двигателя зимой просто необходим.

Что такое подогреватель двигателя


В общем случае предварительный прогрев двигателя осуществляется путем искусственного повышения температуры охлаждающей жидкости таким образом, что она нагревает детали двигателя (блок и головку блока цилиндров, а также радиатор отопителя). Это позволяет значительно снизить негативное влияние повышенной силы трения при пуске и локального (неравномерного) нагрева его деталей.

Виды подогревателей двигателя


На самом деле обогревателей всего два типа — автономные и электрические.Автономное отопление, как следует из названия, не зависит от внешних условий и является частью автомобильной силовой установки: для своей работы использует топливо из бака. Самый известный пример — автономный отопитель двигателя Webasto. Специальные котлы используют сгорание топлива для нагрева охлаждающей жидкости, циркулирующей в системе, — и все это без запуска двигателя.

Электрический автоподогреватель также встроен в систему охлаждения двигателя и с помощью специального нагревательного элемента, например, бойлера, нагревает охлаждающую жидкость.

Электронагреватель как альтернатива автономным приборам


Установка подогревателя двигателя на 220 В намного проще (поскольку он имеет, по сути, только один элемент и провода для подключения) и намного дешевле, при этом в нем не используется бензин в качестве источника тепла, тратя электроэнергию.

Разновидности ТЭНов


Блочный


Самый простой вид подогревателей, которые устанавливаются в блоке цилиндров вместо заглушки сбоку.Они представляют собой электрический нагревательный элемент в корпусе и разъем. Такие модели не обладают большой потребляемой мощностью (500-700 Вт), однако из-за того, что расположены прямо в двигателе, прогревают его почти по центру. Более совершенные системы обогрева двигателя могут быть оснащены тепловентиляторами салона, таймером запуска, пультом дистанционного управления … Единственной проблемой при установке может быть сапун двигателя (шланг вентиляции картера), так как он часто устанавливается таким образом что он закрывает заглушку в блоке.

Патрубки


Такие устройства устанавливаются в разрезе основных патрубков системы охлаждения. Сам ТЭН снабжен специальным корпусом переходника, который устанавливается прямо на шланги. Недостатком является то, что большинство этих устройств рассчитаны на стандартные диаметры шлангов. У таких устройств мощность может быть выше (до 2-3 кВт), функционал и оснащение примерно такие же, как у предыдущей группы.

Удаленный


Это особая группа устройств, которые также встраиваются в систему охлаждения, но имеют более сложную конструкцию и установку.Такие модели больше похожи на отопители Вебасто, только работают на электричестве, а не на бензине. Такие модели наиболее эффективно нагревают охлаждающую жидкость и блок цилиндров. Внешний нагреватель также может быть снабжен принудительной циркуляцией охлаждающей жидкости, которая лучше способствует равномерному нагреву блока цилиндров и сводит к минимуму вредное воздействие холодного пуска. Стоимость таких агрегатов отличается более чем на порядок (от 1,5 тысячи рублей для обычных китайских моделей до 23 тысяч рублей для действительно хорошего американского HotStart).Мощность нагревательного элемента тоже сильно различается и зависит от рабочего объема.

Достоинства обогрева двигателя 220в:

  • Недорогой установочный комплект и сама установка (от 1 тыс. Руб.).
  • Широкий модельный ряд , совместимость практически со всеми двигателями, простая конструкция и высокий КПД.

Недостатки электронагревателя:

  • В ближайшее время должна быть розетка бытовая 220в.
  • Открытый капот во время работы обогрева … На современных моделях это не так важно, так как они оснащены специальным разъемом, врезанным в передний бампер.
  • Надежность некоторых моделей, которые со временем начинают пропускать охлаждающую жидкость на стыке с двигателем.

Как поставить подогреватель двигателя


Установка подогрева двигателя своими руками — задача относительно несложная. Не требует специального инструмента и специальных знаний. Вам просто необходимо общее представление о принципах работы автомобильных двигателей и представление о расположении узлов и агрегатов под капотом.

Чтобы понять, как установить подогреватель двигателя, достаточно ознакомиться с инструкциями по установке, прилагаемыми к комплекту. Общая последовательность установки следующая.

  1. Поскольку подогреватель установлен в системе охлаждения, необходимо слить часть антифриза (не менее 2 литров, чтобы снизить его уровень и предотвратить утечку при разгерметизации)
  2. Если установлен блочный нагреватель, то с блока цилиндров снимается заглушка и устанавливается нагревательный элемент.У выносной версии или версии с патрубком снимаются шланги, ведущие к радиатору отопителя. Лучше использовать шланги, входящие в комплект для установки, чтобы не разрезать заводские. При установке новых форсунок все соединения фиксируются хомутами, а во избежание протечек желательно покрыть арматуру герметиком.
  3. Корпус устройства крепится с помощью кронштейна, входящего в комплект.
  4. Все необходимые подключения выполнены, остальная часть сборки проводится в обратной последовательности.
  5. Антифриз залил до нужного уровня … При заливке желательно избегать появления воздушных пробок (антифриз в расширительный бачок заливать осторожно, тонкой струйкой!).

Установка подогрева двигателя — задача, которая вполне по силам практически каждому. А какой тип выбрать, зависит от конкретных условий эксплуатации и конструктивных особенностей автомобиля.

Устройство, указанное в названии статьи, позволяет запускать двигатель автомобиля или другого транспортного средства без его запуска.Такое устройство используется для предварительного прогрева двигателя, облегчения его запуска и, в некоторых случаях, для подогрева воздуха в салоне автомобиля.

Значение подогревателя двигателя в российских условиях трудно переоценить. Особенно актуален прибор для автовладельцев с дизельным двигателем … На многочисленных форумах часто можно прочитать, что «солярка замерзает». Впрочем, автовладельцам с бензиновым двигателем такой прибор тоже не помешает в условиях русской зимы. Нагреватель доведет температуру масла до приемлемого уровня, и автомобиль легко заведется.

Электронагреватели

Этот тип обогревателей неавтономный. Этот тип устройства был изобретен в 1949 году А. Фриманом. Изобретение запатентовано. Нагреватель вкручивается вместо одного из болтов блока цилиндров и питается от розетки 220 вольт. В некоторых машинах такие устройства входят в комплект.

Понятно, что электронагреватели популярны в северных странах: Канаде, странах Скандинавии. Они также используются в России.

Этот тип обогревателя довольно сложен.Он состоит из следующих компонентов:

  • нагревательный элемент. Обычно его мощность варьируется от 500 до 5000 Вт. Нагревательный элемент размещается в герметичном теплообменнике, который монтируется в технологических отверстиях системы охлаждения двигателя, либо соединяется с рубашкой охлаждения с помощью труб.
  • ЭБУ с таймером. Таймер нужен для контроля времени включения и выключения ТЭНа.
  • Блок подзарядки аккумуляторных батарей
  • , если они предусмотрены конструкцией нагревателя.
  • вентилятор, необходимый для обогрева салона или моторного отсека автомобиля.
  • есть модели с помпой, которая способствует равномерному прогреву двигателя.

Принцип работы электронагревателя прост и основан на самых известных законах физики.

Нагревательный элемент воздействует на охлаждающую жидкость. Он начинает циркулировать, пока полностью не прогреется. Нагревательный элемент необходимо установить внизу системы охлаждения, так как по тем же законам физики теплая жидкость поднимается вверх, а холодная опускается.Если каменка оборудована помпой, то расположение ТЭНа не имеет значения.

Автономные отопители

Автономные жидкостные отопители устанавливаются под капотом автомобиля и работают на одном из видов топлива: бензин, дизельное топливо, газ.

Компоненты жидкостного нагревателя:

  • достаточно сложный блок управления, который контролирует ряд параметров: температуру, подачу топлива, подачу воздуха;
  • Топливный насос
  • ;
  • Воздуходувка
  • ;
  • котел с расположенной в нем камерой сгорания топлива;
  • насос, отвечающий за циркуляцию теплоносителя;
  • система также может быть укомплектована реле, которое включает вентилятор салона для печки.При этом греется не только двигатель, но и салон, что очень удобно;
  • таймер, пульт дистанционного управления или другой модуль управления нагревателем.

Принцип работы у этого типа обогревателей тоже довольно понятен. Система запускается удаленно или по таймеру. Приходит в движение топливный насос, перекачивающий топливо из бака автомобиля в камеру сгорания, другой насос нагнетает воздух. Свеча зажигания воспламеняет топливо. Тепло передается охлаждающей жидкости, которая начинает циркулировать благодаря третьему насосу.Как только жидкость нагревается до определенной температуры, включается вентилятор салона. Салон машины начинает нагреваться. Если охлаждающая жидкость достигает высокой температуры, система отключается.

Средний расход топлива при использовании такого отопителя составляет 0,5 литра бензина в час. Лучше потратиться на бензин, чем утром «колдовать» над машиной с паяльной лампой и другими подручными средствами, пытаясь завести машину.

К недостаткам жидкостных обогревателей можно отнести следующее: система использует энергию в своей работе аккумуляторной батареи, установленной на автомобиле.Если аккумулятор разряжен, то жидкостный обогреватель может «посадить» его полностью, и машина утром не заведется.

В целом у этого типа обогревателей нет серьезных недостатков, но есть большие преимущества.

Аккумуляторы тепла

Такими устройствами оснащена

Toyota Prius. Что они любят? Аккумулятор тепла — это термос, собирающий определенный объем теплого теплоносителя. При запуске двигателя собранная жидкость из теплового аккумулятора впрыскивается в систему охлаждения.В среднем температура всей жидкости в системе охлаждения повышается на 10-15 градусов, что дает возможность эксплуатировать двигатель без большой нагрузки. Кстати, тепловые аккумуляторы могут сохранять теплоноситель в тепле до 2 суток.

Очевидно, метод имеет право на жизнь. Более того, при использовании таких аккумуляторов не требуется дополнительного электричества или топлива.

Подогреватели дизельного топлива

Как обсуждалось в начале этой статьи, дизельное топливо плохо переносит низкие температуры.Поэтому нагреватели также используются для растворения парафинов, образующихся в дизельном топливе.

Дизельное топливо нагревается двумя типами устройств: одни из них устанавливаются на фильтре очистки дизельного топлива, а другие — на топливной системе магистрали или врезаются в нее.

Популярные модели предпусковых подогревателей

Webasto Thermo Top E

Люди, хоть немного интересующиеся автомобилями, наверняка слышали название Webasto. Да, это, пожалуй, самая популярная марка обогревателей.

Модель Thermo Top E представляет собой предпусковой подогреватель, то есть нагревает охлаждающую жидкость, двигатель и воздух в салоне.Производится в Германии, как и вся продукция Webasto.

Thermo Top E — классический пример уже упомянутых жидкостных нагревателей. Устройство относительно компактное, подходит для установки даже в небольших автомобилях. Важно, чтобы обогреватель даже в момент запуска потреблял очень небольшое количество электроэнергии. Таким образом, можно не беспокоиться об уровне заряда аккумулятора автомобиля.

Усовершенствованная версия таймера обогревателя позволяет включать обогреватель на период от 10 минут до 1 часа.При морозе 10-15 градусов обогреватель вполне может справиться со своей задачей за 15 минут.

В жаркое время года отопитель способен проветривать салон автомобиля, что тоже очень приятно, особенно владельцам тех автомобилей, в которых не установлен кондиционер.

В Вебасто все хорошо, кроме цены. Не каждый российский автовладелец решается тратиться на обогреватель от этой компании.

Теплостар 04ТС

Теплостар — бытовой обогреватель, произведенный в Самаре.Модель в целом очень хорошая. С помощью 04TC нагревается охлаждающая жидкость и салон, есть дистанционное управление, срабатывающее на расстоянии до 150 метров. То есть, если машина стоит под окнами дома, то запустить обогреватель с пульта не составит труда. У пульта только один недостаток: он не оснащен системой обратной связи … Есть опасность, что при неисправности отопителя автовладелец узнает об этом только утром, сидя в холодной машине.

Отрадно, что особое внимание самарские производители обогревателей уделили безопасности устройств. Перед запуском ЭБУ проверяет работоспособность всех систем. Если что-то не работает правильно, коды ошибок отображаются на специальном дисплее. Если по какой-то причине прекращается горение в камере, прекращается подача топлива. Это очень важно и ценно.

Северс 103.3741

Северс — обогреватель, тоже российского производства, но он неавтономный и работает от розетки 220 В.В устройстве есть термостат, защищающий от перегрева двигателя. Нагрев до 60 градусов осуществляется за 1-1,5 часа. При температуре 85 градусов система перестает работать. Если температура охлаждающей жидкости упадет до 50 градусов, ТЭН снова запустится.

Примечательно, что нагреватель защищен от влаги и поражения электрическим током.

Единственный недостаток Северса в том, что ему нужна розетка. Для автовладельцев, имеющих собственный гараж, устройство подходит очень хорошо. Но в остальном от этого мало толку.

Defa разминка

Он-лайн обогреватель, произведенный в Норвегии. Он прогревает двигатель, салон и, внимание, может подзарядить аккумулятор. Последнее очень важно, так как в холодную погоду автомобильный аккумулятор значительно теряет мощность.

Имеет базовый и универсальный комплекты, которые можно комбинировать по своему усмотрению.

По сравнению с обогревателем Severs, описанным выше, Defa, конечно, дороговат. Но цена оправдана функциональным набором.

Автоплюс МАДИ УОПД -0.2-2

Аппарат от компании Автоплюс представляет собой теплоаккумулятор. Его легко установить на автомобиль любого размера. Вся работа устройства автоматизирована. Драйвер не требует никаких манипуляций. Примечательно, что самостоятельно установить теплоаккумулятор на автомобиль может любой автовладелец. Никаких специальных навыков здесь не требуется.

Номакон ПБ

Номакон — подогреватель дизельного топлива. Он установлен на фильтре тонкой очистки. Собственно, на отечественном рынке у этого обогревателя нет конкурентов.Но белорусы сохраняют достаточно низкие цены за устройство, сохраняя при этом высокое качество оборудования.

Результатов

Рассмотрев типы подогревателей, ознакомившись с их основными моделями, которые пользуются популярностью, можно сделать простой вывод: в России можно и нужно использовать подогреватели. Какие именно? Выбирайте для каждого, исходя из предпочтений, типа машины и бюджета.

На различных типах легковых автомобилей, большегрузных автомобилей, спецтехники устанавливается предпусковой подогреватель двигателя.Оснащение этим устройством облегчает запуск двигателя внутреннего сгорания, увеличивает срок службы силового агрегата, а также повышает комфорт при использовании машины зимой.

На модели автомобилей, не оборудованные штатной системой подогрева двигателя, возможна установка данного устройства. Однако при установке нужно правильно выбрать подогреватель для мотора, и правильно его установить.

Зачем нужен подогреватель?

Холодный запуск силового агрегата снижает его ресурс на 400-500 километров.К тому же далеко не всякая попытка завести машину зимой заканчивается удачно. Сложнее всего запустить двигатель в северных широтах России, где водители большегрузных автомобилей не выключают двигатель на ночь, не давая ему остыть. Это сказывается на расходе топлива и ресурсе силового агрегата.

Раньше для прогрева двигателя использовались паяльные лампы. Недостатком этого метода было то, что пламя могло повредить автомобиль, кроме того, для работы с этим устройством требовались определенные знания и навыки.

Для решения проблемы с запуском двигателя зимой необходимо приобрести предпусковой подогреватель — устройство, которое нагревает двигатель и салон перед запуском автомобиля. Это значительно увеличивает срок службы силового агрегата, повышает комфорт передвижения в отапливаемой кабине и снижает расход топлива.

Типы предпусковых подогревателей

Предпусковые автомобильные обогреватели в зависимости от типа источника питания и области применения делятся на:

В свою очередь автономные отопители делятся на:

Системы предпускового подогрева двигателя также подразделяются по типу топлива, которое используется в автомобиле.Для бензиновых и дизельных двигателей используют подогреватели разных типов.

При установке учитывать тип автомобиля и тип отопителя. При неправильном подборе устройства прогрев двигателя перед запуском будет малоэффективным или приведет к закипанию тормозной жидкости.

Электронагреватели на 220 В

Электронагреватель имеет простую конструкцию. Охлаждающая жидкость нагревается — впоследствии она течет по патрубкам системы охлаждения и нагревает двигатель машины.Чаще всего у электронагревателя есть шнур, подключенный к розетке 220 вольт, и нагревательный элемент.

Устройство в зависимости от комплектации оснащено устройством для подзарядки автомобильного аккумулятора, таймером с термостатом, вентилятором, пультом дистанционного управления.

Установка такого устройства достаточно проста и не требует посещения специализированного сервисного центра. Для его выполнения вам потребуется выполнить следующую процедуру:

  1. Слейте не менее 2 литров антифриза.
  2. Отсоединить патрубок от печки.
  3. Установить подогреватель. Для этого используйте комплектный кронштейн нагревателя.
  4. Подсоедините автомобильный обогреватель к печке с помощью шлангов.
  5. Подсоединить трубы к печке, собрать всю систему.
  6. Залить тосол или антифриз.

Что касается нюансов использования, то в большинстве случаев для полного прогрева мотора требуется не более 30 минут. Однако при экстремально низких температурах время увеличится до 1–2 часов.Нагревательное устройство, подключенное к автомобильному отопителю, нагревает двигатель, подключенные к нему системы и салон автомобиля. Нагреватель следует использовать только в том случае, если температура воздуха не превышает -5 градусов. В остальных случаях нет необходимости использовать систему обогрева автомобиля.

Не превышайте время прогрева двигателя, это может привести к закипанию охлаждающей жидкости. Кроме того, перегрев может привести к возгоранию.

Средняя стоимость электронагревателя от 1000 до 5000 рублей в зависимости от марки, страны-производителя и функциональности.

В Скандинавских странах парковочные болларды устанавливаются с розетками 220В, что позволяет в любой момент поставить машину на прогрев.

Автономная система предпускового подогрева двигателя

Автономные отопители намного удобнее электрических, так как могут работать без подключения к сети 220 вольт. Однако такие устройства дороже и сложнее в установке. Устройство представляет собой небольшую камеру, внутри которой размещается капельница и топливовоздушная смесь.В стенках камеры постоянно циркулирует охлаждающая жидкость, которая нагревает, прогревает двигатель, салон и помогает оттаивать окна.

Автономный обогреватель устанавливается либо в системе охлаждения автомобиля, либо в системе электропитания. В равной степени применимо как к бензиновым, так и к дизельным двигателям.

Автономные отопители делятся на:

Жидкостные автономные отопительные приборы для внедорожников, минивэнов и компактных автомобилей. Устройство предпускового подогрева, предназначенное для малолитражных автомобилей, устанавливается на автомобили, объем двигателя которых не превышает 2.0 литров. Отличается высокой производительностью. Обогреватели, предназначенные для использования в внедорожниках и минивэнах, большие и эффективные. Однако они потребляют гораздо больше топлива. Также в продаже можно найти универсальные системы отопления; их можно с одинаковым успехом использовать как на больших, так и на маленьких машинах.

Воздушные намного крупнее жидких, но при этом выделяют больше тепла. Они используются на кораблях, самолетах, спецтехнике и больших грузовиках.

Аккумуляторы тепла

Теплоаккумуляторы относятся к автомобильному отопителю жидкостного типа… Суть работы заключается в том, что через такую ​​батарею проходят трубки системы охлаждения автомобиля. Во время работы двигателя в аккумуляторной батарее накапливается избыточное тепло, которое сохраняется до 48 часов. При запуске охлаждаемого двигателя включается насос, а при перекачке антифриза или антифриза тепло передается в систему охлаждения.

Основное преимущество такого устройства — высокая теплопроизводительность и длительное удержание тепла. К недостаткам можно отнести сложность установки и необходимость замены составных частей устройства.Со временем изнашиваются клапаны, трубки и рычаги управления. Также недостатком эксплуатации является ее стоимость. В среднем теплоаккумулятор обойдется автолюбителю в 7-8 тысяч рублей.

При покупке теплового аккумулятора не стоит приобретать модели китайского или российского производства. Лучше всего обращать внимание на устройства, произведенные в странах Скандинавии. Такие обогреватели могут похвастаться высоким качеством, хорошей теплоотдачей и эффективностью работы.

Подогреватели дизельного топлива

Под воздействием низких температур дизельное топливо теряет текучесть.Дизельное топливо мутнеет, кристаллизуется и происходит парафинизация. В результате топливо становится густым, что затрудняет прокачку через фильтры или полностью делает его невозможным.

Одним из устройств, позволяющих защитить дизельное топливо от замерзания, является подогреватель. Благодаря его использованию, топливо в баке и в фильтре-сепараторе подогревается. Для этих целей используются обогреватели следующих типов:

  • Подогреваемые воздухозаборники и подогреватели в баке.

Один из самых распространенных вариантов. После окончания прогрева солярка попадает в топливопровод … Тепло сохраняется за счет перетекания подогретой солярки из «обратной».

  • Нагреватели бинты (в виде гибкой ленты).

Фильтр тонкой очистки подогревается, кнопка управления устройством находится в салоне автомобиля. По достижении рабочей температуры нагреватель автоматически отключается.

Популярные модели предпусковых подогревателей

Среди моделей предпусковых подогревателей особой популярностью пользуются следующие устройства:

Устройство производства Германии.Относится к компактным обогревателям, экономичным по энергопотреблению. Работает от автомобильного аккумулятора … В холодное время года двигатель прогревается быстро и качественно. Летом может проветривать салон автомобиля.

Бытовой обогреватель Самарского производства. Он питается от розетки 220 В, прост и эффективен в эксплуатации и обслуживании. Многие автолюбители оценят относительно невысокую стоимость данного устройства. Особенностью является дистанционное управление устройством. Также в случае неисправности останавливается работа подогревателя.

Норвежский обогреватель неавтономного типа. Помимо основной функции прогрева двигателя, он может подзаряжать аккумулятор (такая опция полезна, так как аккумулятор значительно теряет мощность на морозе). Покупатель имеет возможность приобрести базовый и расширенный комплекты, а также комбинировать их по своему усмотрению.

При покупке предпускового подогревателя не стоит экономить. Дизельные подогреватели или аккумуляторы тепла, при некачественной сборке, могут быстро выйти из строя, а технические жидкости попасть в моторный отсек автомобиля.Это приведет к появлению дыма или пожара.

Подводя итог, следует сказать, что использование обогревателя значительно ускоряет процесс запуска автомобиля, экономит топливо, а также делает поездку в автомобиле более комфортной за счет подогрева воздуха в салоне автомобиля.

Видео о предпусковых подогревателях автомобилей

Электрический предпусковой подогреватель двигателя — одно из самых доступных устройств среди других типов оперативных систем подкачки автомобилей.

Можно, конечно, запустить двигатель на холодном, но, во-первых, это чревато повышенным износом всей системы двигателя, а во-вторых, в теплом, заранее прогретом салоне на холодное зимнее утро.Поэтому разумнее, а в перспективе и экономичнее в обслуживании позаботиться о раннем прогреве двигателя, установив в систему охлаждения своего автомобиля специальные нагревательные элементы. Поскольку нагревательные устройства, работающие по электрическому принципу, бывают разной мощности и типа, следует учитывать время, необходимое вашему двигателю и салону для достижения желаемой температуры, в среднем это занимает до получаса.

Какие виды подогрева электродвигателей наиболее распространены:

Внешний электронагреватель двигателя внешнего типа, который получает энергию для своей работы от сети переменного тока 220В.Его нагревательные элементы изготовлены из качественных материалов, они прочны и просты в обслуживании. Единственная особенность, которую следует учитывать, — это недостаточно развитая инфраструктура мест, где можно воспользоваться услугой отопления. В скандинавских странах на парковках и возле супермаркетов часто можно встретить такие небольшие столбы, как раз для этих целей. Для нашего человека однозначно имеет смысл покупать внешний коллекторный отопитель, если у автовладельца есть оборудованный гараж или возможность пользоваться электросетью на стоянке, и в таком случае это отличное решение.

Электрический предпусковой подогреватель блочного типа, устанавливаемый в блоке цилиндров или масляном поддоне. Отсутствие многометровой проводки и шлангов делает их чрезвычайно удобными и эффективными нагревательными элементами. Они действуют точечно, нагревают именно узел, что в первую очередь необходимо для безопасного и быстрого запуска мотора. Нагреватель управляется, то есть автоматическое отключение при достижении достаточной температуры осуществляется с помощью термостата или таймера. Хотя есть маломощные модели, где эта опция полностью отсутствует просто потому, что они не способны довести жидкости до кипения, а значит, они полностью безопасны, даже если о них забыли.

Большинство этих устройств можно купить как отдельные компоненты, если вам нужен только электрический подогреватель, так и полные монтажные комплекты для установки от Атлант, Дефа, Каликс, Северс, Старт, Альянс, Лестар. В таких наборах, помимо самого ТЭНа, часто присутствуют:

  • — блок отопителя салона, который начинает работать задолго до штатной печки
  • — пульт управления, дальность действия в среднем до 1000 м
  • — устройство для подзарядки аккумулятора, вполне полезное дополнение в снежную зиму
  • — помпа, для более равномерного прогрева двигателя

Приобрести подогреватель двигателя 220В с полным комплектом для установки можно в специализированном интернет-магазине, здесь сложно нарваться на некачественный товар или брак, что часто бывает при покупке запчастей на стихийных рынках или барахолках.

Так, электрический подогреватель двигателя 220 В дает возможность легко и с минимальным износом заводить двигатель в любое время года, снижает нагрузку на окружающую среду и расход топлива до 24%, вредные выбросы до 71%, за счет к использованию более безопасной электроэнергии.

Установка предпускового подогревателя двигателя стоит в среднем 5000 руб.

22Дек

Заклинило двигатель что делать: Заклинил двигатель: причины и способы устранения

Заклинил двигатель: причины

Сложно найти автомобильную неприятность хуже, чем заклинивший мотор. Чтобы избежать этого, стоит знать причины, по которым заклинил двигатель, а также что именно произошло в силовом агрегате.

Содержание статьи

Признаки заклинивания

Начнем с того, что если заклинивает двигатель, тогда мотор фактически не крутится. Когда такая неисправность возникает во время движения, силовой агрегат либо внезапно глохнет, либо заметно падает мощность и потом уже прекращается работа ДВС.

Завести машину заново невозможно, во всяком случае, сразу. При этом стартер не будет крутить либо при попытке запуска слышен скрежет и визг, могут прослушиваться удары металла по металлу.

Иногда после простоя мотор, все-таки, удается запустить, но работать он будет недолго. В некоторых случаях заклиниваю двигателя также предшествует возникновение явного металлического стука или грохота под капотом.

Что именно заклинивает в моторе и по каким причинам

Как правило, заклинивает коленвал. А точнее, его подшипники. Реже происходит заклинивание поршня. Главное, быстро ответить на вопрос о том, почему заклинило двигатель, попросту нельзя.

Дело в том, что существует множество причин, которые можно разделить на две основные группы: механические повреждения и перегрев.

Механические причины заклинивания ДВС

Посторонние предметы попали в надпоршневое пространство или на головку поршня. Это может быть, например, упущенная/оторванная гаечка. Например, шайба крепления воздушного фильтра упала во впускной коллектор, элементы попали во впуск при снятии карбюратора, посторонние предметы могли попасть непосредственно в камеру сгорания и т.д.

В этом случае заклинивает поршень, но не обязательно намертво. Однако в большинстве случаев для устранения последствий предстоит серьезный ремонт.

  • Обрыв или перескакивание ремня или цепи ГРМ, а также обрыв успокоителя цепи ГРМ и попадание его фрагмента под саму цепь.
Еще следует выделить попадание посторонних предметов под ремень или цепь ГРМ. Это происходит в тех случаях, когда снята крышка ГРМ. Также в списке проблем с  механизмом газораспределения отмечают рассухаривание одного или нескольких клапанов, поломку их пружин. Еще возможно заклинивание клапанов в их направляющих.

Кстати, когда причиной заклинивания выступают неполадки с цепью или ремнем, клапаны деформируются (гнутся), из-за чего не могут вернуться в свое седло. Как следствие, поршень не может войти в верхнюю мертвую точку и происходит соударение клапана с головкой поршня.

  • Выход поршневого пальца. Это чревато тем, что головка поршня останется незакрепленной со всеми вытекающими последствиями.
  • Разболтавшиеся гайки коренных крышек коленвала или гайки нижней головки шатуна. Такое может случиться тогда, когда во время ремонта мотора эти гайки не были затянуты должным образом (момент затяжки нарушен).

Кстати, если достоверно известно о попадании посторонних металлических предметов в цилиндры, можно их извлечь без полного разбора двигателя. Для этого понадобится магнит и достаточной длины стержень (например, спица). Подняв поршни 1 и 4 цилиндров в верхнее положение, нужно вывернуть свечи зажигания и через свечной колодец магнитом извлечь металлический предмет. Если в 1 и 4 цилиндре ничего нет, то таким же образом следует проверить 2 и 3.

Перегрев двигателя

Многие причины заклинивания двигателя связаны именно с перегревом мотора. Наиболее распространенные из них такие:

  • Отсутствие смазки или низкий уровень масла. Как известно, внутри самого двигателя масло играет роль не только смазки, но и охладителя.
Если трущиеся детали будут оставаться сухими, то от нагрева они расширятся и, вполне возможно, заклинят. Вообще, нехватка масла (масляное голодание) в свою очередь тоже может быть вызвана различными причинами.
  • Попадание охлаждающей жидкости в масло. Приводит к тому, что смазочная жидкость теряет свои свойства. Чаще всего это происходит при нарушении целостности прокладки между головкой и блоком цилиндров, однако возможны и трещины в БЦ или ГБЦ.
  • Неисправный термостат или помпа охлаждающей жидкости.

Полезные советы

В отличие от механических причин, многих случаев перегрева двигателя удастся избежать, если регулярно проверять уровень масла и его состояние, а также контролировать уровень охлаждающей жидкости и следить за исправностью отдельных элементов (термостат, вентилятор охлаждения, помпа и другие).

Таким образом, многие причины, которые приводят к тому, что заклинил двигатель, можно заблаговременно нейтрализовать. В любом случае, обнаружив во время движения признаки заклинивая мотора (стук, грохот и прочие посторонние звуки), лучше всего прекратить движение, причем не дожидаясь того момента, пока двигатель начнет глохнуть сам.

Важно понимать, что если ДВС сначала застучал, а потом заклинил, тогда такой заклинивший мотор может даже показать «кулак дружбы», что является серьезнейшей поломкой. Однако если появился стук, но водитель заглушил агрегат заранее, есть шанс избежать большого количества проблем. После остановки мотора нужно отбуксировать автомобиль для осмотра на СТО. Такие действия во многих случаях позволяют существенно снизить конечную стоимость ремонта двигателя.

Читайте также

Заклинил двигатель: причины, способы устранения поломки

Заклинил двигатель? Сразу проверяют вращение коленчатого вала от руки или стартера. Причины поломки могут иметь механическое и физическое происхождение. Последний вариант событий чаще случается из-за перегрева вследствие недостатка масла или попадания инородных включений.

Обнаружена проблема

В первую минуту не всегда понятно, что именно произошло — не крутится другой узел или заклинило двигатель. Что делать, если стартером не повернуть коленчатый вал? Пробуют начать с простого визуального осмотра подкапотного пространства.

Пытаются определить может ли заклинить двигатель от:

  • Перегрева (это прощупать можно только сразу после его остановки).
  • Отсутствия смазки (проверяют уровень).
  • Осматривают внешнее состояние всех узлов, важно заметить наличие течей или механических повреждений. Замеряется уровень охлаждающей жидкости. Без нее двигатель будет также перегреваться.

Если заклинил двигатель, то следует проверить работу всей системы охлаждения. Закипание жидкости говорит о неисправной прокачивающей помпе. Насос ответственен за циркуляцию, без этого в каналах двигателя температура растет.

Почему не крутится коленчатый вал?

Заклинил двигатель — проверяется вручную: можно ли сорвать коленчатый вал. Если этого не происходит, то можно включить любую передачу коробки и попытаться протолкнуть автомобиль. Категорически запрещается дергать машину тросом. Это может привести к еще большему ущербу.

Заклинил двигатель — рекомендуется выкрутить свечи и повторить попытки провернуть вручную коленчатый вал. Причинами могут быть сторонние предметы в колодцах или рассыпавшиеся вкладыши, что является достаточно редким случаем. Жидкость в поршнях выдавится при выкрученных свечах, а посторонние предметы и загрязнения можно будет увидеть через дюймовое отверстие.

Дополнительные источники неисправности

Если после элементарных проверок остается непонятно, почему заклинил двигатель, рекомендуется вспомнить предшествующие события. Доливали ли масло до этого, если да, то какого качества. Два масла различного типа и вязкости легко могли свернуться и запениться.

Добавление некачественных присадок в масло двигателя также неблагоприятно отразится на работе его узлов. Аналогичные последствия наступят при использовании не рекомендованных производителем масел.

Топливо влияет на состояние поршней и колец. Слишком высокое октановое число приводит к их деформации, а из-за этого уже не раз у многих заклинил двигатель. Причины неисправности могут заключаться и в нарушении работы системы зажигания.

Нарушения в работе

Если заклинил двигатель, также проверяют момент образования искры в двигателе. Каждый момент зажигания топлива должен происходить, когда он находится в верхней точке. При запаздывании этого будет оказываться сопротивление движению коленчатого вала, когда другой поршень с силой за счет смеси толкается вниз.

Аналогичные проблемы возникают при несвоевременном впрыске топлива в поршень, когда искра подается правильно. Диагностику этих узлов лучше проводить в условиях автосервиса на современном оборудовании. Также не допускается ездить в жару с неисправным вентилятором радиатора охлаждения.

Масляный насос механически связан с коленчатым валом. Проверяется достаточность попадания масла на трущиеся поверхности. Диагностировать скрытые дефекты получается, увы, когда уже заклинил двигатель. ВАЗ имеет аналогичные проблемы при недостаточном уходе за автомобилем.

Масляное голодание внутри двигателя происходит при постоянно низком уровне в картере. Коленчатый вал должен практически купаться в защитных присадках. В противном случае металл расширяется под влиянием температуры. Поэтому затягивать с периодической заменой масел строго не рекомендуется.

Нелепые случаи

Если заклинил двигатель, признаки загустевшего масла могут свидетельствовать о попадании сахара в систему. Аналогичные последствия наступают при перемешивании сырого яйца, которое при работе мотора обязательно нагреется и заварит все каналы. Каким образом последнее вещество попадает в систему — известно только обладателю автомобиля.

Сахар могут подсыпать недоброжелатели через заправочный люк в топливо. Существует немало веществ, меняющих состав масла. Бывает, водитель может по ошибке залить в горловину двигателя смертельную для железа смесь.

Неисправность, когда охлаждающая жидкость проникает в масло, также может привести к подклиниванию трущихся металлов. Это можно заметить при замере уровня по щупу. Изменившийся состав заметен на глаз и на ощупь: по цвету, вязкости, по наличию пены. Белесый оттенок говорит о потере качества масла.

Профилактика

Клин двигателя можно предупредить, если тщательно обслуживать автомобиль. Периодические осмотры и постоянный контроль работоспособности контролирующих и сигнализирующих узлов помогает избежать вариант, когда эксплуатация продолжается при неисправностях. Важно вовремя заметить следующие состояния:

  • визуально низкий уровень охлаждающей жидкости;
  • визуально низкий уровень масла в картере;
  • отсутствие срабатывания датчика давления масла;
  • отклонения в показаниях экономайзера;
  • изменение тяги двигателя;
  • посторонние звуки в работе авто: стуки, гул, звон, скрежет.

Незамедлительная диагностика в автосервисе подозрительно работающих узлов убережет от дорогостоящего капитального ремонта. Рекомендуется прекратить эксплуатацию при неуверенности в исправности двигателя.

Разные случаи

Порядок действий при неисправности двигателя зависит, когда это произошло. Если в движении автомобиль резко остановился, то вероятнее всего механическое попадание инородного тела или поломка вращающегося узла. Рекомендуется искать неисправное место и отказаться от дальнейших попыток крутить движок насильно.

После длительной поездки был заглушен двигатель. А наутро его невозможно прокрутить вручную. Высока вероятность свернувшегося масла. Потребуется капитальный ремонт. Скорее всего, вращать коленвал получится, но очень с большим усилием.

Если авто долго стояло и потребовалось его завести, а двигатель не крутится, то рекомендуется принудительно осуществить вращение через коробку передач тросом или вручную. Часто так происходит в морозы, когда минеральное масло сильно густеет. Неисправности нет, требуется просто разогреть масло или дождаться теплой погоды.

Как происходит?

Чаще всего посторонние предметы попадают через закрылки карбюратора. Туда же попадают пыль и более крупные включения при образовании трещин на пути всасывания воздуха. Требуется проверить целостность патрубков, чистоту фильтра.

После ремонта карбюратора незакрепленная запчасть могла провалиться в колодца двигателя. Аналогичные последствия можно получить при неосторожном монтаже головки двигателя с клапанами. Нелишним будет проверить чистоту смазки, слив ее с картера. Но последние работы проводят на яме в условиях сервиса.

Обрыв ремня

Плачевный результат наблюдают при разрыве ремня или цепи ГРМ. Часто даже гнутся блоки цилиндров. В момент удара ломаются клапанные крышки. В результате приходится проводить капитальный ремонт двигателя.

При недостаточном ремонте поломанные детали могут оставаться в картере, при каких-то обстоятельствах они снова попадут в место следующего клина двигателя. Разболтавшийся успокоитель также может попасть под ремень или цепь ГРМ. Клапаны и блоки цилиндров при неправильных режимах работы деформируются.

Появляются задиры, которые движущийся металл постоянно задевают. В какой-то момент, когда износ становится достаточно большим, происходит окончательное подклинивание, и коленчатый вал уже не провернуть.

Механический износ

Основной причиной клина в отечественных авто становятся внутренние разболтавшиеся крепления в двигателе из-за некачественной смазки и непериодической ее замене. Ослабиться могут гайки коренных подшипников, натяжителя ремня ГРМ, крепление головки шатуна. После кустарного капитального ремонта может выйти стопорное кольцо из поршня. Причина тому — нестандартные запчасти.

Рассыпавшийся клапан можно проверить визуально, сняв крышку двигателя. Часто вылетает пружина или гнется сам клапан при обрыве ремня ГРМ. Неисправности возникают при затяжке головки блока цилиндров без динамометрического ключа, когда от перенапряжения появляется трещина в стенках и, соответственно, падает давление на смазку. Вероятность клина двигателя повышается при чрезмерных нагрузках во время вождения.

Заклинило двигатель на ходу


Заклинил двигатель: причины

Сложно найти автомобильную неприятность хуже, чем заклинивший мотор. Чтобы избежать этого, стоит знать причины, по которым заклинил двигатель, а также что именно произошло в силовом агрегате.

Содержание статьи

Признаки заклинивания

Начнем с того, что если заклинивает двигатель, тогда мотор фактически не крутится. Когда такая неисправность возникает во время движения, силовой агрегат либо внезапно глохнет, либо заметно падает мощность и потом уже прекращается работа ДВС.

Завести машину заново невозможно, во всяком случае, сразу. При этом стартер не будет крутить либо при попытке запуска слышен скрежет и визг, могут прослушиваться удары металла по металлу.

Иногда после простоя мотор, все-таки, удается запустить, но работать он будет недолго. В некоторых случаях заклиниваю двигателя также предшествует возникновение явного металлического стука или грохота под капотом.

Что именно заклинивает в моторе и по каким причинам

Как правило, заклинивает коленвал. А точнее, его подшипники. Реже происходит заклинивание поршня. Главное, быстро ответить на вопрос о том, почему заклинило двигатель, попросту нельзя.

Дело в том, что существует множество причин, которые можно разделить на две основные группы: механические повреждения и перегрев.

Механические причины заклинивания ДВС

Посторонние предметы попали в надпоршневое пространство или на головку поршня. Это может быть, например, упущенная/оторванная гаечка. Например, шайба крепления воздушного фильтра упала во впускной коллектор, элементы попали во впуск при снятии карбюратора, посторонние предметы могли попасть непосредственно в камеру сгорания и т.д.

В этом случае заклинивает поршень, но не обязательно намертво. Однако в большинстве случаев для устранения последствий предстоит серьезный ремонт.

  • Обрыв или перескакивание ремня или цепи ГРМ, а также обрыв успокоителя цепи ГРМ и попадание его фрагмента под саму цепь.
Еще следует выделить попадание посторонних предметов под ремень или цепь ГРМ. Это происходит в тех случаях, когда снята крышка ГРМ. Также в списке проблем с  механизмом газораспределения отмечают рассухаривание одного или нескольких клапанов, поломку их пружин. Еще возможно заклинивание клапанов в их направляющих.

Кстати, когда причиной заклинивания выступают неполадки с цепью или ремнем, клапаны деформируются (гнутся), из-за чего не могут вернуться в свое седло. Как следствие, поршень не может войти в верхнюю мертвую точку и происходит соударение клапана с головкой поршня.

  • Выход поршневого пальца. Это чревато тем, что головка поршня останется незакрепленной со всеми вытекающими последствиями.
  • Разболтавшиеся гайки коренных крышек коленвала или гайки нижней головки шатуна. Такое может случиться тогда, когда во время ремонта мотора эти гайки не были затянуты должным образом (момент затяжки нарушен).

Кстати, если достоверно известно о попадании посторонних металлических предметов в цилиндры, можно их извлечь без полного разбора двигателя. Для этого понадобится магнит и достаточной длины стержень (например, спица). Подняв поршни 1 и 4 цилиндров в верхнее положение, нужно вывернуть свечи зажигания и через свечной колодец магнитом извлечь металлический предмет. Если в 1 и 4 цилиндре ничего нет, то таким же образом следует проверить 2 и 3.

Перегрев двигателя

Многие причины заклинивания двигателя связаны именно с перегревом мотора. Наиболее распространенные из них такие:

  • Отсутствие смазки или низкий уровень масла. Как известно, внутри самого двигателя масло играет роль не только смазки, но и охладителя.
Если трущиеся детали будут оставаться сухими, то от нагрева они расширятся и, вполне возможно, заклинят. Вообще, нехватка масла (масляное голодание) в свою очередь тоже может быть вызвана различными причинами.
  • Попадание охлаждающей жидкости в масло. Приводит к тому, что смазочная жидкость теряет свои свойства. Чаще всего это происходит при нарушении целостности прокладки между головкой и блоком цилиндров, однако возможны и трещины в БЦ или ГБЦ.
  • Неисправный термостат или помпа охлаждающей жидкости.

Полезные советы

В отличие от механических причин, многих случаев перегрева двигателя удастся избежать, если регулярно проверять уровень масла и его состояние, а также контролировать уровень охлаждающей жидкости и следить за исправностью отдельных элементов (термостат, вентилятор охлаждения, помпа и другие).

Таким образом, многие причины, которые приводят к тому, что заклинил двигатель, можно заблаговременно нейтрализовать. В любом случае, обнаружив во время движения признаки заклинивая мотора (стук, грохот и прочие посторонние звуки), лучше всего прекратить движение, причем не дожидаясь того момента, пока двигатель начнет глохнуть сам.

Важно понимать, что если ДВС сначала застучал, а потом заклинил, тогда такой заклинивший мотор может даже показать «кулак дружбы», что является серьезнейшей поломкой. Однако если появился стук, но водитель заглушил агрегат заранее, есть шанс избежать большого количества проблем. После остановки мотора нужно отбуксировать автомобиль для осмотра на СТО. Такие действия во многих случаях позволяют существенно снизить конечную стоимость ремонта двигателя.

Читайте также

Заклинил двигатель: причины, способы устранения поломки

Заклинил двигатель? Сразу проверяют вращение коленчатого вала от руки или стартера. Причины поломки могут иметь механическое и физическое происхождение. Последний вариант событий чаще случается из-за перегрева вследствие недостатка масла или попадания инородных включений.

Обнаружена проблема

В первую минуту не всегда понятно, что именно произошло — не крутится другой узел или заклинило двигатель. Что делать, если стартером не повернуть коленчатый вал? Пробуют начать с простого визуального осмотра подкапотного пространства.

Пытаются определить может ли заклинить двигатель от:

  • Перегрева (это прощупать можно только сразу после его остановки).
  • Отсутствия смазки (проверяют уровень).
  • Осматривают внешнее состояние всех узлов, важно заметить наличие течей или механических повреждений. Замеряется уровень охлаждающей жидкости. Без нее двигатель будет также перегреваться.

Если заклинил двигатель, то следует проверить работу всей системы охлаждения. Закипание жидкости говорит о неисправной прокачивающей помпе. Насос ответственен за циркуляцию, без этого в каналах двигателя температура растет.

Почему не крутится коленчатый вал?

Заклинил двигатель — проверяется вручную: можно ли сорвать коленчатый вал. Если этого не происходит, то можно включить любую передачу коробки и попытаться протолкнуть автомобиль. Категорически запрещается дергать машину тросом. Это может привести к еще большему ущербу.

Заклинил двигатель — рекомендуется выкрутить свечи и повторить попытки провернуть вручную коленчатый вал. Причинами могут быть сторонние предметы в колодцах или рассыпавшиеся вкладыши, что является достаточно редким случаем. Жидкость в поршнях выдавится при выкрученных свечах, а посторонние предметы и загрязнения можно будет увидеть через дюймовое отверстие.

Дополнительные источники неисправности

Если после элементарных проверок остается непонятно, почему заклинил двигатель, рекомендуется вспомнить предшествующие события. Доливали ли масло до этого, если да, то какого качества. Два масла различного типа и вязкости легко могли свернуться и запениться.

Добавление некачественных присадок в масло двигателя также неблагоприятно отразится на работе его узлов. Аналогичные последствия наступят при использовании не рекомендованных производителем масел.

Топливо влияет на состояние поршней и колец. Слишком высокое октановое число приводит к их деформации, а из-за этого уже не раз у многих заклинил двигатель. Причины неисправности могут заключаться и в нарушении работы системы зажигания.

Нарушения в работе

Если заклинил двигатель, также проверяют момент образования искры в двигателе. Каждый момент зажигания топлива должен происходить, когда он находится в верхней точке. При запаздывании этого будет оказываться сопротивление движению коленчатого вала, когда другой поршень с силой за счет смеси толкается вниз.

Аналогичные проблемы возникают при несвоевременном впрыске топлива в поршень, когда искра подается правильно. Диагностику этих узлов лучше проводить в условиях автосервиса на современном оборудовании. Также не допускается ездить в жару с неисправным вентилятором радиатора охлаждения.

Масляный насос механически связан с коленчатым валом. Проверяется достаточность попадания масла на трущиеся поверхности. Диагностировать скрытые дефекты получается, увы, когда уже заклинил двигатель. ВАЗ имеет аналогичные проблемы при недостаточном уходе за автомобилем.

Масляное голодание внутри двигателя происходит при постоянно низком уровне в картере. Коленчатый вал должен практически купаться в защитных присадках. В противном случае металл расширяется под влиянием температуры. Поэтому затягивать с периодической заменой масел строго не рекомендуется.

Нелепые случаи

Если заклинил двигатель, признаки загустевшего масла могут свидетельствовать о попадании сахара в систему. Аналогичные последствия наступают при перемешивании сырого яйца, которое при работе мотора обязательно нагреется и заварит все каналы. Каким образом последнее вещество попадает в систему — известно только обладателю автомобиля.

Сахар могут подсыпать недоброжелатели через заправочный люк в топливо. Существует немало веществ, меняющих состав масла. Бывает, водитель может по ошибке залить в горловину двигателя смертельную для железа смесь.

Неисправность, когда охлаждающая жидкость проникает в масло, также может привести к подклиниванию трущихся металлов. Это можно заметить при замере уровня по щупу. Изменившийся состав заметен на глаз и на ощупь: по цвету, вязкости, по наличию пены. Белесый оттенок говорит о потере качества масла.

Профилактика

Клин двигателя можно предупредить, если тщательно обслуживать автомобиль. Периодические осмотры и постоянный контроль работоспособности контролирующих и сигнализирующих узлов помогает избежать вариант, когда эксплуатация продолжается при неисправностях. Важно вовремя заметить следующие состояния:

  • визуально низкий уровень охлаждающей жидкости;
  • визуально низкий уровень масла в картере;
  • отсутствие срабатывания датчика давления масла;
  • отклонения в показаниях экономайзера;
  • изменение тяги двигателя;
  • посторонние звуки в работе авто: стуки, гул, звон, скрежет.

Незамедлительная диагностика в автосервисе подозрительно работающих узлов убережет от дорогостоящего капитального ремонта. Рекомендуется прекратить эксплуатацию при неуверенности в исправности двигателя.

Разные случаи

Порядок действий при неисправности двигателя зависит, когда это произошло. Если в движении автомобиль резко остановился, то вероятнее всего механическое попадание инородного тела или поломка вращающегося узла. Рекомендуется искать неисправное место и отказаться от дальнейших попыток крутить движок насильно.

После длительной поездки был заглушен двигатель. А наутро его невозможно прокрутить вручную. Высока вероятность свернувшегося масла. Потребуется капитальный ремонт. Скорее всего, вращать коленвал получится, но очень с большим усилием.

Если авто долго стояло и потребовалось его завести, а двигатель не крутится, то рекомендуется принудительно осуществить вращение через коробку передач тросом или вручную. Часто так происходит в морозы, когда минеральное масло сильно густеет. Неисправности нет, требуется просто разогреть масло или дождаться теплой погоды.

Как происходит?

Чаще всего посторонние предметы попадают через закрылки карбюратора. Туда же попадают пыль и более крупные включения при образовании трещин на пути всасывания воздуха. Требуется проверить целостность патрубков, чистоту фильтра.

После ремонта карбюратора незакрепленная запчасть могла провалиться в колодца двигателя. Аналогичные последствия можно получить при неосторожном монтаже головки двигателя с клапанами. Нелишним будет проверить чистоту смазки, слив ее с картера. Но последние работы проводят на яме в условиях сервиса.

Обрыв ремня

Плачевный результат наблюдают при разрыве ремня или цепи ГРМ. Часто даже гнутся блоки цилиндров. В момент удара ломаются клапанные крышки. В результате приходится проводить капитальный ремонт двигателя.

При недостаточном ремонте поломанные детали могут оставаться в картере, при каких-то обстоятельствах они снова попадут в место следующего клина двигателя. Разболтавшийся успокоитель также может попасть под ремень или цепь ГРМ. Клапаны и блоки цилиндров при неправильных режимах работы деформируются.

Появляются задиры, которые движущийся металл постоянно задевают. В какой-то момент, когда износ становится достаточно большим, происходит окончательное подклинивание, и коленчатый вал уже не провернуть.

Механический износ

Основной причиной клина в отечественных авто становятся внутренние разболтавшиеся крепления в двигателе из-за некачественной смазки и непериодической ее замене. Ослабиться могут гайки коренных подшипников, натяжителя ремня ГРМ, крепление головки шатуна. После кустарного капитального ремонта может выйти стопорное кольцо из поршня. Причина тому — нестандартные запчасти.

Рассыпавшийся клапан можно проверить визуально, сняв крышку двигателя. Часто вылетает пружина или гнется сам клапан при обрыве ремня ГРМ. Неисправности возникают при затяжке головки блока цилиндров без динамометрического ключа, когда от перенапряжения появляется трещина в стенках и, соответственно, падает давление на смазку. Вероятность клина двигателя повышается при чрезмерных нагрузках во время вождения.

признаки, определение причины и особенности ремонта. Что делать, если мотор ВАЗ поймал клин, кулак дружбы

В случае клина важно не только произвести квалифицированный ремонт, но и правильно определить причину, по которой заклинил двигатель. Рассмотрим, как определить, что стартер не может провернуть коленчатый вал именно из-за клина, а также как предотвратить последствия перегрева, масляного голодания и последующий капитальный ремонт ДВС.

Основные причины

  • Сваривание вкладышей с шейками коленчатого вала вследствие масляного голодания.
  • Заклинивание поршневых пальцев в верхней головке поршня. Как и в случае с вкладышами, причина может быть в масляном голодании. Но палец заклинивает и по причине несоосности верхней головки и поршневого пальца. Из-за возникшего перекоса появляются локальные зоны полусухого трения и чрезмерного натяга, что может стать причиной критического теплового расширения, задиров и заклинивания.
  • Поршень заклинил в цилиндре вследствие перегрева двигателя или ухудшенного теплоотвода.
  • Разрушившийся поршень блокирует перемещение шатуна и вращение коленвала.
  • Неквалифицированный ремонт двигателя. Неправильный выбор тепловых зазоров при сборке ЦПГ, коленчатого вала, не устраненные неисправности системы смазки могут стать причиной описанных выше поломок. Также причиной клина могут стать болты, гайки, по неосторожности уроненные в цилиндры или впускной тракт.
  • Погнутый клапан блокирует движение поршня. Основная причина «встречи» клапанов с поршнями – обрыв ремня ГРМ. После обрыва либо перескока сразу на несколько зубьев цепи ГРМ и удара происходит изгиб стержня клапана. Сильная деформация приводит к тому, что клапан не может двигаться по направляющей и блокирует движение поршня на подходе к ВМТ. К аналогичным последствиям приведет рассухаривание клапана.

Как понять, что двигатель поймал клин?

Мысль о том, что двигатель заклинил, приходит после щелчка втягивающего реле стартера, за которым не следует вращение коленчатого вала. Вполне вероятно, что стартер щелкает, но не крутит из-за севшей АКБ или неисправности самого пускача. Чтобы определить заклинивший двигатель, необходимо попытаться прокрутить коленчатый вал вручную. Сделать это можно 2 способами:

  • прокрутить коленвал ключом за болт крепления шкива. Недостаток в том, что на большинстве современных автомобилей компоновка подкапотного пространства ограничивает доступ к шкиву;
  • вывесить одну из сторон ведущей оси, включить наивысшую передачу и попытаться за колесо провернуть двигатель.

Не стоит пытаться провернуть коленчатый вал, буксируя автомобиль на тросу. Если двигатель заклинил, то усердные попытки провернуть коленвал могут привести к еще большим повреждениям.

Что делать и как лучше ремонтировать заклинивший мотор?

Предположим, двигатель на вашем авто все-таки заклинил, но вы не желаете разбирать его полностью для капитального ремонта. В таком случае снимите ремень ГРМ и попытайтесь провернуть шестерню/и распределительного вала. Если шестерня не вращается в направлении вращения КВ, вполне вероятно, что двигатель заклинил из-за клапанов. В таком случае ремонт заклинившего мотора рекомендуем начинать со снятия клапанной крышки, ГБЦ.

Если шкив коленчатого вала не вращается ни в какую из сторону, демонтируйте поддон для снятия бугелей коренных вкладышей, крышек нижних головок шатунов. В случае обнаружения задранных, прихваченных к коленчатому валу и провернутых вкладышей, замены подшипников скольжения все равно будет недостаточно. Мы рекомендуем не только проверить масляный насос, но и снять коленчатый вал для продувки сжатым воздухом каналов подвода масла. Вполне вероятно, что канал закоксован, что привело к локальному недостатку смазки. Если подшипники скольжения в норме, необходимо снятие и дефектовка ЦПГ.

Масляное голодание

Нехватка моторного масла в нагруженных парах трения приводит к трению на сухую, из-за чего детали быстро перегреваются. Расширение вследствие нагрева ведет к уменьшению теплового зазора, а из-за повышения температуры на деталях из мягких сплавов появляются локальные зоны оплавления. Именно такой разрушительный эффект имеет масляное голодание на подшипники скольжения коленчатого вала, шатунов.

Первыми в случае падения давления масла чаще всего страдают коренные вкладыши коленвала, так как при работе двигателя на них идет наибольшая нагрузка. Из-за высокой температуры происходит прихватка вкладышей и шейки вращающегося коленчатого вала. Последствие – проворачивание вкладышей в постелях и появление характерного стука (в таких случаях говорят, что двигатель стуканул). При усугублении проблемы пара шейка-вкладыш прихватываются настолько сильно, что после остановки двигателя и попытке последующего запуска стартер попросту не может провернуть коленчатый вал. Это и является главным признаком заклинившего мотора.

Основные причины низкого давления масла в двигателе:

  • низкая производительность маслонасоса. О характерных неисправностях и методах проверки читайте в статье «Как правильно проверить масляный насос»;
  • забитая сетка маслоприемника;
  • низкий уровень масла в двигателе. При значительном превышении уровня противовесы коленвала начинают взбивать масло и насыщать его воздухом, что также чревато ухудшением смазки трущихся пар;
  • появление эмульсии вследствие смешивания масла с водой, ОЖ;
  • неподходящий состав, вязкость моторного масла;
  • забитые каналы подачи масла к поршневому пальцу, магистрали смазывания вкладышей коленчатого вала.
Перегрев двигателя

Критическое повышение температуры ведет к чрезмерному тепловому расширению элементов ЦПГ. При сгорании ТПВС поршень подвергается большим термическим нагрузкам, нежели цилиндр. Также стоит учитывать, что большинство поршней изготавливаются из алюминия, который по сравнению с чугуном имеет двойное тепловое расширение. Уменьшение зазора между поршнем и стенкой цилиндра ведет к полусухому трению, так как масляная пленка вытесняется расширяющимся поршнем. В местах соприкосновения возникают зоны локального перегрева, из-за чего поршень все с большим давлением воздействует на стенку цилиндра. Именно это становится причиной первых задиров.

Дальнейшее тепловое расширение ведет к повышению коэффициента трения и заклиниванию поршня в цилиндре. Двигатель в таком случае глохнет и больше не заводится. В некоторых случаях после остывания двигатель еще можно прокрутить стартером, но работать нормально он уже не будет. Наиболее печальный вариант развития событий – остановка двигателя с характерным стуком и «кулак дружбы».

Чтобы двигатель не заклинил вследствие перегрева, рекомендуем:

Почему клинит двигатель и как с этим бороться

Автомобилисты со стажем за время эксплуатации авто неоднократно сталкиваются с разного рода проблемами в функционировании систем и узлов. Одно из неприятнейших событий для водителя – отказ работы двигателя, который может случиться как вследствие естественного износа агрегата, так и влияния неблагоприятных факторов. Абсолютно надёжных устройств не существует, но чтобы поддерживать исправность и продлить их срок службы, необходим качественный уход. Нарушения в работе могут быть вполне закономерным явлением, например, из-за естественного старения элементов или внезапным, возникшим без видимой на то причины.

Нередки ситуации, когда исправный мотор отказывается работать вследствие заклинивания, что происходит случайно. Проблема не всегда возникает по халатности автовладельца, но от дальнейших действий напрямую зависит, светит ли агрегату капитальный ремонт. В случае, когда заклинило двигатель, важно знать, что делать, чтобы разрешить проблему с наименьшими потерями. Избежать капремонта зачастую удаётся, если водитель своевременно принял необходимые меры.

Признаки заклинивания

Сигнализировать о неполадке двигатель будет сразу же, да и движение в таком случае невозможно. Часто при возникновении неисправности водители грешат на севший аккумулятор, но его зарядка не всегда способна исправить неполадку. Есть определённые симптомы, указывающие на проблему, состоящую в заклинивании элементов мотора.

Часто об этом оповещает щелчок реле стартера, после чего коленвал перестаёт вращаться. Причиной может быть и севшая АКБ, и неисправность пускового механизма. Во время движения может произойти как резкое заклинивание мотора, тогда он тут же глохнет, так и постепенная потеря мощности, затем остановка ДВС. Завести автомобиль снова уже не получится, стартер не крутит и при пробах запуска мотора раздаётся скрежет и лязг металла. Иногда после бездействия агрегат всё же запускается, но даже если запуск удался, если проблема не устранена, на его нормальное и продолжительное функционирование рассчитывать уже не приходится. Нередко перед заклиниванием из-под капота можно услышать грохот и звук ударов металлических частей друг о друга.

Диагностировать заклинивание двигателя можно, запустив коленвал вручную:

  • если модель автомобиля позволяет добраться до шкива, можно прокрутить мотор ключом за болт крепления шкива;
  • как вариант также возможно вывесить ведущую ось и на самой высокой передаче провернуть агрегат за колесо вручную.

Прокручивать коленвал методом буксирования машины не стоит, поскольку чрезмерное насилие над двигателем в попытках его завести может стать причиной ещё больших деформаций элементов и привести к серьёзным последствиям.

Что заклинивает в моторе

В конструкции двигателя большое количество постоянно трущихся механических пар и под действием нагрузок все они подвержены износу. Нередко проблема заклинивания агрегата состоит в подшипниках коленчатого вала, но может заклинить и поршень. Определить источник неприятности «на глаз» невозможно. Причины, почему клинит двигатель, могут быть разными, это и механические дефекты элементов, и критически низкий уровень смазки, и перегрев.

Механические причины заклинивания ДВС

Часто нормальному функционированию мотора препятствуют посторонние предметы, попадающие в надпоршневое пространство или в камеру сгорания. Болты крепления и прочие мелкие элементы конструкции могут попасть внутрь, например, при ремонтных работах и вызвать заклинивание или полный выход из строя агрегата. Если вовремя не определить, что стало причиной неисправности и не повлиять на ситуацию, то такая мелочь, как плохо затянутая гайка, разболтавшаяся и упавшая во впускной коллектор, приведёт к серьёзным последствиям.

Заклинивание может произойти по причине обрыва ремня или цепи ГРМ, а также при попадании успокоителя или его части под ремень или цепь.

Попадание инородных тел в механизм распределения газов – ещё одна распространённая причина клина силового агрегата. Они могут попасть туда при отсутствии крышки ГРМ и приводят к поломке пружин или рассухариванию клапанов. Так, чтобы узнать, что двигатель заклинил по причине попадания инородных предметов в механизм, найти и извлечь их, требуется разборка ремня ГРМ. Если провернуть шестерню распределительного вала не получается, то проблема именно в них.

Проблемы с ремнём или цепью механизма распределения газов провоцируют деформирование клапанов. За этим следует и невозможность вхождения поршня в верхнюю мёртвую точку, что провоцирует удары клапана с поршнем друг о друга. Заклинивание клапанов в направляющих втулках тоже нередкое явление.

Выход из поршня поршневого пальца, обеспечивающего подвижное соединение шатуна и поршня, ввиду отсутствия фиксации может спровоцировать сильное повреждение элемента.

Когда известно о факте проникновения инородных металлических элементов в цилиндр, вытащить их возможно и не прибегая к полному разбору агрегата. Осуществить процедуру извлечения помогут магнит и стержень необходимой длины. Для этого следует поднять поршни 1 и 4 цилиндров (или 2 и 3, если инородные предметы не были обнаружены в 1 и 4), выкрутить свечи зажигания и через свечной проём магнитом вытащить инородное тело.

Масляное голодание

Моторное масло, как и другие расходники имеет свойство со временем изнашиваться, окисление происходит гораздо быстрее при эксплуатации автомобиля в условиях повышенных нагрузок. Трущиеся пары без качественной смазки стремительно выходят из строя, что приводит ко многим серьёзным последствиям для агрегата, в том числе и его заклиниванию. Масляное голодание влечёт за собой уменьшение теплового зазора между элементами вследствие сильного нагрева, а детали из мягкого металла могут оплавиться. Недостаток смазки оказывает губительное воздействие на такие элементы, как коленчатый и распределительный валы, ГРМ и цилиндропоршневая группа.

При падении масляного давления в первую очередь подвергаются свариванию вкладыши коленвала, поскольку на них приходится основная нагрузка. Если машина заглохла после характерного стука лучше сразу начать осмотр, потому как понять, что заклинил двигатель можно только, проверив вручную, срывается ли коленчатый вал.

Важно, чтобы автомобилист понимал всю серьёзность проблемы и как можно скорее предпринял меры по устранению проблемы. Масляное голодание может быть вызвано следующими факторами:

  • критически низкий уровень масла, не обеспечивающий смазку элементов, из-за чего они работают «всухую». Необходимость контроля уровня жидкости и её состояния должна войти в привычку для предотвращения поломок, связанных с недостатком смазки;
  • аварийное снижение объёма масла связано с протечками через сальники, прокладки, вследствие нарушения целостности поддонов, ГБЦ и пр. либо поломками основных узлов агрегата;
  • несвоевременная замена масла или масляного фильтра. По мере износа расходные материалы необходимо менять, поскольку их свойства со временем утрачиваются, период замены значительно сокращается при тяжёлых условиях эксплуатации, поэтому сроки, рекомендуемые производителем, могут быть сокращены практически вдвое;
  • использование моторных масел неподходящей вязкости, что провоцирует отсутствие подачи жидкости к деталям и при нормальном её уровне в картере. Это касается как слишком высоких показателей вязкостных характеристик, так и слишком низких. Вязкость повышается также вследствие накопившейся грязи и отложений. Сетка забивается, а масляный насос не справляется с задачей. Для устранения неполадки следует разобрать и почистить каналы маслоприёмника, при этом, не используя промывочную жидкость, дабы не ухудшить положение.

В результате масляного голодания происходят заклинивание вала или поршней в цилиндрах, выход из строя клапанов, неисправности маслосъёмных колец. Последствия могут приобрести и более тяжёлый характер в виде масштабных разрушений узлов агрегата, что может привести к невозможности восстановления двигателя и необходимости его замены.

В случае с турбомоторами может возникать также масляное голодание турбины, что приводит к неисправности данной детали. Стоимость ремонта турбированного двигателя высока, поэтому необходимо регулярно следить за качеством и интенсивностью подачи смазки.

Практически все узлы силового агрегата страдают при масляном голодании. Если при диагностике заклинивания двигателя коленчатый вал не вращается, требуется демонтаж поддона. При обнаружении в моторе прихваченных к коленвалу и провёрнутых коренных вкладышей, замены подшипников недостаточно. Кроме проверки масляного насоса лучше также прочистить каналы, засорение которых могло послужить возникновению проблемы масляного голодания. Если подшипники в нормальном состоянии, необходимо снятие деталей цилиндропоршневой группы для проведения диагностики.

Перегрев двигателя

Мотор может заклинить на ходу от перегрева. Не только постоянная эксплуатация в режиме высоких оборотов и низкий уровень моторного масла приводят к перегреванию трущихся пар. Частыми причинами становятся:

  • неисправный термостат;
  • отсутствие охлаждающей жидкости;
  • неисправность датчика нагрева ОЖ;
  • попадание антифриза в масло. Причиной этого явления становятся нарушение целостности прокладки или микротрещины головки блока цилиндров и БЦ;
  • неисправность вентиляторов;
  • засорение радиатора.

Перегрев может вызывать серьёзные проблемы в функционировании силового агрегата, в том числе и его заклинивание. При этом есть также вероятность полного выхода из строя всех элементов мотора. Уровень охлаждающей жидкости следует проверять регулярно во избежание подобных проблем. Если датчик нагрева двигателя на критической отметке – следует незамедлительно глушить мотор либо продолжать ехать на нейтральной передаче до остановки.

Самостоятельно диагностировать двигатель можно, не снимая его, но если виновник заклинивания при осмотре не был обнаружен, вскрытие лучше доверить профессионалам ввиду дороговизны ремонта.

Профилактика

Во избежание заклинивания мотора и прочих неполадок следует выполнять ряд несложных рекомендаций:

  • необходимо регулярно следить за уровнем и состоянием моторного масла, а также выполнять его своевременную замену. Кроме смазочного материала менять нужно и масляный фильтр;
  • контроль уровня охлаждающей жидкости также убережёт от перегрева. Объём антифриза в расширительном бачке проверяется при холодном моторе;
  • при постукиваниях в моторе или других посторонних звуках движение необходимо незамедлительно прекратить, не дожидаясь, что агрегат заглохнет самостоятельно.

Так, большинство причин, приводящих к заклиниванию элементов двигателя можно предупредить. Это нередкая проблема, но если уделять время уходу за автомобилем и обращать внимание на нехарактерное поведение агрегата, удастся избежать многих проблем.

Что делать с заклинившим двигателем Audi V6. Заклинило… — журнал За рулем

Что делать с заклинившим двигателем Audi V6. Заклинило…

Иногда бывает: кузов пополам, а мотор цел. Но порой наоборот — легкая авария приводит к тяжелым последствиям для двигателя, хотя удар его вроде и не затронул. На беду владельца «Ауди А6» события развивались подобно снежной лавине, начало которой может дать один неосторожный шаг.

Роскошный седан приволокли «на галстуке». Он выглядел весьма свежим, если бы не шрамы от небольшой аварии: слегка погнуты капот, передняя рамка, решетка радиатора. Пластмассовые облицовки, конечно, «в хлам». Впрочем, удар двигателя не достиг, пострадала лишь крыльчатка вискомуфты в приводе вентилятора да верхняя крышка кожуха, укрывающего ремень ГРМ. Важная деталь: эта крышка, тоже пластмассовая, раскололась.

И двигатель… заклинило! Сгоряча владелец еще пытался его пустить, но вскоре эту затею бросил. Такова предыстория. «Экспонат», попавший к нам, изучали придирчиво. Мотор V-образный, шестицилиндровый, по три в каждом ряду… Распредвалы приводятся общим ремнем… Никаких следов удара по блоку или головкам нет, ремень на своем месте — тут все «как в аптеке»… но только на первый взгляд. А на второй? После проверки фаз газораспределения обнаружили чудовищную нестыковку: у левого распредвала впускных клапанов фазы в порядке, а у правого съехали черт-те куда! Подобного обращения мотор не допускает — вот его и заклинило. Кто-то сразу поставил вопрос ребром: если ремень прекрасно натянут, шкивы в порядке, то каким образом правому распредвалу удалось «отстать» от левого?

Придирчиво осматривая правый шкив, во впадинах между зубьями заметили следы пластмассы, и картина начала проясняться. Когда пластмассовый кожух разлетелся на куски, куда их разбросало, не скажет спец по баллистике, но какой-то осколок (пусть на мгновение!) застрял между шкивом и ремнем, сыграв роль «лыжи». Фазы «ушли».

Разбираем мотор: последствия — самые что ни на есть разрушительные, кое-что показываем на снимках. Изогнутые или сломанные клапаны (фото 1), куски которых «вколочены» поршнями в изуродованную головку трех правых цилиндров (фото 2). Седлам, втулкам — конец! Поршни деформировались, а между ними и зеркалом цилиндров застряли мелкие осколки стали, надрав рабочую поверхность. Более того, во второй цилиндр явно проникла охлаждающая жидкость. Откуда? Из сквозной трещины в стенке — продольной, около 100 мм длиной. К счастью, до верха и низа блока трещина не доходила — это позволяло отремонтировать блок малой кровью — расточить и загильзовать.

Причины, по которым в авто клинят двигатели

Подробности
Категория: Блог о продаже автомобиля
Создано: 21 августа 2018
Просмотров: 1911
Почему в авто клинят двигатели

Если в машине клинит ранее исправный двигатель – важно не только провести оперативно и в короткие сроки квалифицированный его ремонт, но и выявить первопричину такого выхода из строя. Также поговорим о том, как именно можно выявить, что работающий стартер не способен проворачивать коленчатый вал в силу его клина, как предотвратить негативные последствия аномального перегрева и масляного голодания в авто. Если сделать это своевременно – вы с успехом избежите дорогостоящего и ненужного капитального ремонта.

Причины клина

Прежде всего, это сваривание между собой вкладыша и шейки коленного вала – чаще всего подобная спайка происходит по причине недостаточного уровня смазки, так называемого масляного голодания авто. Также данный список причин заклинивания двигателя пополняют следующие пункты:

Читайте также: Как срочно и дорого продать авто в Минске

  1. Клин в самой верхней головке автомобильного поршня, поршневых пальцев – как и в первом варианте, спровоцировать это может недостаточный уровень моторной смазки, масляное голодание авто. Но клинить может и в силу несоосности последнего с верхней головкой. Перекос локальной зоны трения и тяги может спровоцировать аномальное тепловое расширение в моторе и заклинку.
  2. Заклинивание поршня в самом цилиндре – это может быть следствием перегрева в авто двигателя либо сбоя в процессе отвода тепла. Такая причина может привести в будущем ко многим более дорогостоящим поломкам и неисправностям с тепловой системой и самим автомобилем.
  3. Разрушение поршня, что в итоге спровоцирует блокирование перемещения шатуна и процесса вращения коленного вала, приводя к заклиниванию авто.
  4. Неквалифицированно и некачественно проведенный ремонт в авто двигателя – это требует незамедлительной диагностики и последующего устранения возникшей неисправности с учетом технологических норм и стандартов завода изготовителя автомобиля.
  5. Неправильный подбор и установка теплового зазора в процессе сборки ЦПГ или же коленного вала, несвоевременное устранение возникшей неисправности в системе подачи моторной смазки.
  6. Блокировать движение и работу машинного поршня может и по причине погнутого клапана, как и обрыва самого ремня ГРМ. Так по причине обрыва или же перекоса нескольких зубцов в цепи ГРМ и удара идет изгиб самого стержня клапана. Как следствие, клапан не двигается в заданном направлении, блокируя собой движение поршней в направлении к ВМТ.

Все эти причины и негативные последствия поломок требуют немедленного, со стороны владельца авто и мастера, внимания и своевременного их устранения.

Двигатель клинит – как понять?

Чаще всего о том, что заклинило двигатель указывает характерный щелчок, издаваемый втягивающим реле стартера, а после не идет вращение коленвала. Как причина, стартер щелкает и при этом не крутит в силу севшей АКБ, выход из строя самого пускача. Для диагностики заклинки двигателя можно запустить коленной вал вручную.

  1. Прокрутить заклинивший двигатель ключом за болт, крепящий шкив. Но в новых моделях авто компоновка системы пространства под капотом ограничивает фактический доступ к шкиву.
  2. Вывести ведущую ось, далее включить наивысшую на пульте передач передачу и уже вручную, за колесо, провернуть сам двигатель.

Но не стоит делать прокрутку коленного вала путем буксирования авто, закрепив его на буксирный трос. Если же при заклинке двигателя вы прилагаете усиленные попытки запустить его, не имея на то достаточных знаний, это может спровоцировать еще большее повреждение и поломку.

Что делать дальше?

Если после заклинивания двигателя вы не хотите его полностью разбирать для проведения капитального, основательного ремонта – просто снимите ремень ГРМ и проверните шестерню и после распределитель вала. Когда сама шестерня не будет вращаться в направлении вращения коленного вала, скорее всего заклинивание произошло по причине заклинивания клапанов. Потому ремонтные работы начинают со снятия крышки клапана, ГБЦ.

Когда шкив коленвала не вращается ни в каком направлении – снимите поддон, предназначенный для снятия бугелей коренного вкладыша крышки, нижней головки шатуна. Если в этом месте вы выявили задранные, провернутые вкладыши, простой замены вышедшего из строя подшипника будет недостаточно для устранения проблемы. Стоит проверить масляной насос, продуть коленвал и подводы масла – причина может крыться в простом засоре, закоксованности канала и это привело к локальной нехватке смазки.

Масляное голодание

Недостаток в моторе масла, в нагруженных в автомобиле парах трения в итоге может стать причиной сухого типа трения и в силу чего двигатель быстро перегревается. Из-за нагрева идет аномальное расширение системы и снижение теплового зазора, а детали, отлитые из мягких металлов, будут плавиться. Все это есть следствием масляного в автомобильной системе голодания подшипников скольжения коленного вала и шатуна.

Самыми первыми от проблемы страдают коренные его вкладыши – в процессе работе на них идет максимум нагрузки. В силу повышения температуры идет прихватка вкладыша и шейки вращающегося коленвала и как следствие – проворачивание первого в постелях, характерный стук, указывающий на заклинивание в двигателе.

Когда проблема диагностирована в паре шейка – вкладыш и сильно усугубляется, при повторном запуске двигателя стартер не будет прокручивать коленный вал. Это прямо указывает на то, что мотор заклинило и требует немедленного внимания со стороны опытного мастера.

Причины снижения уровня масла в моторе следующие:
  1. Плохая производительность самого маслонасоса – может потребоваться или же его прочистка или же замена на новый.
  2. Причиной может быть и засор сетки маслоприемника – чаще всего достаточно его прочистить, чтобы устранить подобную проблему.
  3. Низкий в автомобильном двигателе уровень смазочного масла. Если же уровень масла превышен, противовесы коленвала будут взбивать его, насыщая кислородом. Это ухудшит качество смазки трущегося пара.
  4. Появление эмульсии – это может происходить по причине смешивания масла и воды, ОЖ. Потому стоит контролировать показатели масла и не допускать попадания чрезмерной влаги в маслопроводники.
  5. Несоответствующий мотору состав и уровень вязкости залитого масла. В этом отношении важно принимать во внимание все рекомендации и советы завода производителя автомобиля в отношении выбора масла, его состава и уровня вязкости.
  6. Каналы к поршневому пальцу могут быть забиты. В данном случае достаточно проводить прочистку каналов, как с целью устранения засора, так и профилактические продувы для недопущения в будущем новых засоров.
Перегрев двигателя

Критическое в моторе повышение уровня температуры в итоге может спровоцировать чрезмерное тепловое расширение всех элементов и узлов ЦПГ. В процессе сгорания ТПВС сам поршень и его поверхность переносят на себе большие нагрузки и трения, нежели цилиндр. Также важно принимать во внимание и тот факт, что большинство поршней делают из алюминия и если его сравнивать с чугуном – первый имеет в своих характеристиках 2-ухкратное тепловое расширение.

Уменьшение в размере зазора между стенками цилиндра и поршнем может привести к полусухому типу трения – это становится следствием вытеснения масляной пленки расширенными поршнями. Спровоцировать задир может и зона локального перегрева – тут сам поршень чрезмерно воздействует на стенки цилиндров.

Последующее тепловое расширение становится причиной повышения уровня коэффициента трения, клина в цилиндре поршня. Как следствие, двигатель будет глохнуть и не заводится. Реже, после остановки работы двигателя, последний можно прокрутить стартером, хотя говорить о его нормальной работе не приходится. Чтобы сам двигатель не клинило после перегрева, стоит принять во внимание следующее:

  1. Выбирая антифриз, всегда стоит учитывать и соблюдать рекомендации и допуски завода – изготовителя.
  2. Контролировать уровень ОЖ.
  3. Проводить профилактическую промывку сот радиатора в системе охлаждения двигателя.
  4. Понимать и принимать во внимание все симптомы и характерные признаки, указывающие на неисправность самого термостата и помпы в системе охлаждения. Это позволит своевременно проверять исправность/неисправность работы термоклапана и заменить по мере необходимости водяной насос.

Данные советы и рекомендации позволят не допускать заклинки мотора авто.

Понравилась статья?

Расскажи друзьям

Читайте также
Порядок и стоимость переоформления автомобиля

Транспортные средства юридических лиц и индивидуальных предпринимателей регистрируются по месту государственной регистрации этих юридических лиц и индивидуальных предпринимателей. Допускается регистрация транспортных средств юридических лиц по месту нахождения их филиалов, представительств и других обособленных подразделений.

Подробнее…
Особенности оформления купли-продажи автомобиля

Переход права собственности на транспортное средство предполагает выполнение некоторых бюрократических процедур и соблюдение ряда формальностей.

Подробнее…
Продал вторую машину-плати налоги

Многие автолюбители даже не подозревают, что, продав два или более авто в течение года, они обязаны подать декларацию в налоговую инспекцию. При этом, если Вы продали второй автомобиль дороже, чем купили, то обязаны заплатить налог с суммы продажи.

Подробнее…
Как продать машину без снятия с учета

Каким образом реализовать дорожное транспортное средство, не снимая с учета? Решение этой проблемы волнует многих автовладельцев.

Подробнее…
Договор купли-продажи автомобиля юридического лица физическому

На данный момент услугами рынка по продаже автомобилей пользуются не только частные лица, но и компании, так как они нуждаются в регулярном обновлении рабочих автомобилей.

Подробнее…
Как грамотно оформить договор купли-продажи автомобиля

При продаже автомобиля очень важно юридически грамотно оформить договор купли-продажи. Действующее законодательство регламентирует определённые правила проведения сделки, учитывая интересы и продавца и покупателя.

Подробнее…
Как избежать штрафа за тонировку авто

Если Вы любите затонировать свой автомобиль вкруговую, то данный текст именно для вас.

Как не получить штрафные санкции за подобное?

Подробнее…
Как продать автомобиль, полученный в наследство

После получения автомобиля по наследству, большинство людей задумываются о его продаже, причин этому достаточно много, возможно автомобиль старый, он вас не устраивает, вы хотите от него избавится или хотите вложить в какие-то внутренние инвестиции.

Подробнее…
Продажа авто при разводе, особенности и «подводные камни»

У нас часто спрашивают, как же продавать машину, если она была приобретена в браке, развод не за горами или уже состоялся.

Подробнее…
Договор купли – продажи и акт приема-передачи автотранспорта

Особо значимым документом при покупке автомобиля является как договор купли-продажи, так и акт приема-передачи автотранспорта. Имея под рукой пример его составления, можно справиться с оформлением акта купли-продажи, не обращаясь за помощью к юристу.

Подробнее…

Рассказ о том как у меня типа заклинил двигатель — Лада 2114, 1.6 л., 2007 года на DRIVE2

ВНИМАНИЕ РАССКАЗ БОЛЬШОЙ НО ОН ВАМ ПРИГОДИТСЯ!
Все началось с того что с коллегами по работе слушали музыку в машине. Решил запустить двигатель и ехать дальше а он не запускается, будто АКБ сел. Благо в багажнике были прикуриватели. Добрый человек прикурил мне и о чудо машина завелась. По пути домой решил заехать в банк и снять с карточки деньги, остановился. Возвращаюсь, завожу а она не заводится, причем признаки те же что и до этого. Думаю ну как так, ведь заряд был. Позвонил другу, решили толкнуть машину а она клином встает когда опускаешь педаль сцепления. Сразу в голову приходит мысль что заклинил движок. Но КАК?! Я же всегда заливаю одно и тоже масло, покупаю его в одном и том же проверенном магазине, причем масло недешевое. Уровень масла всегда в норме. Были мысли что возможно клинит коробка. Доехал я до дома на кукане. На следующий день взялся за машину, начал искать проблему. Снял ремни, проверил вращается ли генератор, помпа, распредвал, все норма. Очередь дошла до коленвала а он гад не вращается, настроение сразу в ноль (хотя оно уже накануне было не очень). Потом думаю дай-ка я сниму стартер, проверю его, может он заклинил на маховике. И действительно, я его даже снять не мог нормально, пришлось изрядно постараться отверткой чтобы его оторвать от движка. Звездочка бендикса была заклинена на маховике. Смазка на валу стартера была вся сухая и черная. После снятия стартера коленвал закрутился) Подкинул питание на стартер а он крутит и втягивающий срабатывает. Значит проблема в смазке подумал я. Разобрал полностью стартер, все почистил и сменил смазку на новую, мазал от души) (на цилиндр втягивающего не мажьте, пусть будет сухим, либо можно только WD-шкой т.к. зимой обычное масло густеет, пружинка втягивающего может не справиться). Заодно решил заменить втулки стартера (комплект 100р.). Ниже текста фотки процесса замены втулок. Далее после сборки стартера и замены втулок решил проверить стартер перед сборкой на авто. Там история вообще длинная поэтому этот момент пропущу. В итоге я купил новый стартер (были проблемы со старым). Установил его, проверяю а все то же самое. Думаю: ну как так?! После недолгих танцев с бубном и заклинаний из матных слов выяснил что оказывается виной всему был всего лишь замок зажигания а точнее его сломанная пружинка. У меня сломана пружинка возврата ключа из режима запуска в режим зажигание. Когда я поворачивал ключ чтобы завести двигатель получалось так что в начале поворота я замыкал контакты запуска двигателя а в конце они снова размыкались т.к. пружинка сломана и ключ стал проворачиваться больше. Чтобы завести оказывается нужно поворачивать ключ не до упора. Вот как-то так. Так что проверяйте все основательно, начинайте с малого.

новые втулки

втулку с задней крышки снимал с помощью метчика

центральную втулку снимал с помощью треугольного напильника.

втулку бендикса снимал плоской отверткой и пассатижами

купил метчики 12 мм для снятия втулки из корпуса двигателя.

вот где спряталась 4-я втулка) её тяжелее всего снимать


чтобы её снять вкручивал метчик во втулку до тех пор пока он не начнет упираться в корпус и выталкивать втулку наружу.
Чтобы вставить новую втулку сделал такую приспособу:

приспособа для заталкивания втулки в корпус двигателя

Новый стартер, который я зря купил уже на исходе сил и нервов.


кто смог прочитать полностью пишите + )))

Лада Гранта BlackPearl › Бортжурнал › Да у тебя двигатель заклинило! История одной поломки.

Поехал я пару дней назад по делам в соседний город (~130км), приехал к пункту назначения, заглушил автомобиль и ушел. Через пару часов вернулся, довольный результатом поездки, вставил ключ, повернул, а там хрен! Повторил попытку, эффект тот же, тишина, лишь еле слышный «щёлк» как при усаженном в ноль аккуме, хотя вся остальная электрика, музыка, сигнала работали нормально. Открыл капот, смотрю — поплавок аккума красного цвета, но это же не критично.
Стал думать дальше, открыл драйв, почитал. Писали про реле стартера, проверил, без результата. Позвонил брату супруги, он как раз живёт в этом городе, он приехал, было решено попробовать завести с «толкача», и это было что-то! Машина не то что не завелась, были настолько страшные звуки со стороны двигателя, что сие действие мы прекратили. Также была мысль о блокировке двигателя сигнализацией, но проверить мы это уже не смогли. Брат позвонил товарищу с МКПП (у самого автомат, решили не насиловать), он приехал, зацепили машинку на трос и покатили к электрикам в надежде что они оживят её.
После приезда в сервис и осмотра авто, мастер подошёл и разведя руки в стороны говорит: «ну всё, пи**ц, у тебя двигатель заклинило». Показали что коленвал не проворачивается, ещё что-то, но я уже не слушал. У меня просто молчание сначала, осознание услышанного, я был готов услышать всё, но не это, я спрашиваю: как, из-за чего, вот только что нормально всё было, проехал 130 км, ни стуков ни шума, двигатель ровненько тихонько работал, что могло быть?! Они сказали что мог перегреть, либо масляное голодание. Ну я примерно понял к каким цифрам мне готовиться, мне предложили 2 варианта: перебирать этот двиг либо ставить контрактный.
Я решил, что буду делать этот, вызвал эвакуатор (так как товарищ который меня тащил — уехал и сказал что освободится через 3-4 часа, а это долго), поехали к механикам, по пути я перебирал варианты, подумал про ГРМ, ведь если бы его порвало то симптомы были бы схожими. Приехали в сервис, выгрузились, я объяснил ситуацию и попросил начать с ГРМ.
Не буду далее описывать всех действий мастера, назову лишь причину: заклинил стартер! Стартер блин заклинило! Стартер!
Было проведено:
Замена ГРМ с роликами;
Замена помпы;
Замена масла и фильтра (залил Shell, напишу отзыв)
Замена антифриза
Профилактика стартера с разборкой

Потрачено: более 12 часов общего времени и огромная масса нервов.

Я остался доволен этой поломкой, как бы это ни звучало, тем более я хотел сделать весь этот комплекс на следующий день после поездки, но машина чуть-чуть не дождалась)

Всем спасибо за чтение и удачи на дорогах и в жизни!)

Заклинил и расклинил двигатель (04.2015) — Toyota Sprinter, 1.5 л., 1988 года на DRIVE2

Коленвал, общий вид.


Какие то чудеса творятся, и в инете ничего похожего не нашёл.
В общем начну:

20.04.2015
Я целый день колесил по делам, по городу, на СТО вытягивали морду, в страховой помогал товарищу вписаться в страховку, ездил по магазинам, забирал жену с работы. Приехал домой, поставил машину под окном, как и обычно, ХХ в норме, температура в норме, давление масла в норме, глушу двиг и домой. Позже выходил и открывал капот, с целью воспользоваться клеммами аккума, для проверки соседского стартера. Двиг не заводил, только проводами подключал соседский стартер.

21.04.2015
В полдень выхожу к машине, сажусь, далее всё как по мануалу, выжимаю сцепление, проверяю нейтралку, топаю один раз на газульку, ключ на старт, а не тут то было. Стартер только щелкает и не крутит. Сразу поясню, не так щелкает, как втягивающее, а именно сам стартер начинает крутиться и резко с громким стуком останавливается.
Сразу мысль, если стартер заклинил, или ещё, что по мелочи, то ерунда, а ДВС заклинил это будет плохо.
Вызвонил товарища, пока ждал, вытащил щуп, оказалось аж на самом кончике, подлил остатки с канистры, подцепили верёвку, а не крутит зараза, как только отпускаю сцеплени, происходит очень резкое торможение двигателем, что его машина сразу останавливается, хотя у меня колеса крутятся, по ощущению, будто из за клина сцепление аж пробуксовывает. Я проверил ещё раз стартером, стоит на месте.
Погнали мы её в гараж, по дороге попытался ещё раза 3-4 втыкнуть, то 4-ю, то 5-ю, и симптомы одни и те же, загнали в гараж и уехали.

22.04.2015
Так как машина сейчас нужна, решил не тянуть резину, набрал перчаток, воды, одежду для переодевания и т.д.
Подготавливаю всё, разложил инструмент, из канистры от масла, вырезаю тару, для слива отработки.
Уже намерен вскрыть крышку и поддон.
И тут мысль мне в голову дай как ещё разок крутану стартером чуток.
Крутанул, а он как то странно, так пол оборота сделал и снова в клин, дай думаю ещё, а он опять с пол оборота крутанул и в клин, третий, четвертый раз, и он наконец закрутил.
Отпустило думаю, значит надо заводить.
Кручу, а ноль эмоций, педаль в пол и он начинает двоить, то ли троить, схватывает и набирает максимум 400-500 оборотов и глохнет.
Выкручиваю свечи, 1-й и 3-й цилиндр в масле, ну всё думаю хана кольцам.
Чищу всё от масла, ставлю свечи обратно, кручу стартер, не хотит схватывать, жму в пол, опять троит и пердит до 500 оборотов набирает и глохнет.
Вскрыл свечи и теперь только в 3-ем цилиндре масло. Значит точно кольца.
Уже и крышку вскрыл и кожух ремня ГРМ, масло слил, хотел поддон вскрывать и начинать разберать. А тут смотрю, а масло то, как вода жидкое, понюхал, воняет вперемешку гарью и бензином.
Думаю, может на этой дикой смеси и не смогли вращаться детали мотора.
Масла с собой не было, была промывка, залил её, собрал всё обратно, а она завелась с пол оборота, как ни в чём ни бывало, только лампа давления не гаснет. Снял фильтр, про брызгал маслом и налил в фильтр, поставил обратно, опять не гаснет, снова так же сделал, опять не гаснет, снял на работающем двигателе заливную крышку, а шестерня распредвала не брызгает маслом с шестеренок, значит его там точно нет, на третий раз сообразил, в отверстии для фильтра полазил пальцем и нащупал, канал, от куда масляный насос качает в фильтр масло, туда и начал со шприца с трубкой на конце заливать масло. Залил шприцов 5-7, завел и наконец лампа погасла, двигатель работает ровно, без каких либо отклонений, давление в норме, при снятии заливной крышки масло брызгает с шестерни распредвала, значит на верх масло точно прокачивается.
Сначала планировал покупать масло и заливать и ездить дальше.
Но осталась не решённая загадка. Что это было.

Решил вскрыть поддон, результат на фото.
Фотки вкладышей и колен вала, по ним видно, что на шатунных небольшие царапинки, и вставляются они на своё место, как то слишком свободно, не плотно. Коренные гладенькие и вставляются очень плотно.
Клин скорее всего произошёл из за того, что в двигателе осталось мало масла и при попадании бензина, смесь масла с бензином стала очень жидкой, на столько, что с вкладышей этот бензин смыл масляную пленку!
В цилиндрах масло было по той же причине, я так предполагаю во первых через поршневые кольца жидкость могла просочиться, смыв масляную плёнку, во вторых через колпачки.

Коленвал

Опять коленвал.

Посадочное место 2 и 3 шатунных вкладышей.

Посадочное место шатунного вкладыша.

Посадочное место шатунного вкладыша.

Посадочное место шатунного вкладыша.

Шатунные вкладыши 2 и 3 шатуна.

Маркировка шатунного вкладыша.

Маркировка шатунного вкладыша.

Коренной вкладыш №4.

Коренной вкладыш №4.

Коленвал, то место где коренной вкладыш №4.

Коленвал, то место где коренной вкладыш №4.

Маркировка коренного вкладыша №4.

Маркировка коренного вкладыша №4.

Что будет если заклинит двигатель на ходу

Заклинил двигатель? Сразу проверяют вращение коленчатого вала от руки или стартера. Причины поломки могут иметь механическое и физическое происхождение. Последний вариант событий чаще случается из-за перегрева вследствие недостатка масла или попадания инородных включений.

Обнаружена проблема

В первую минуту не всегда понятно, что именно произошло — не крутится другой узел или заклинило двигатель. Что делать, если стартером не повернуть коленчатый вал? Пробуют начать с простого визуального осмотра подкапотного пространства.

Пытаются определить может ли заклинить двигатель от:

  • Перегрева (это прощупать можно только сразу после его остановки).
  • Отсутствия смазки (проверяют уровень).
  • Осматривают внешнее состояние всех узлов, важно заметить наличие течей или механических повреждений. Замеряется уровень охлаждающей жидкости. Без нее двигатель будет также перегреваться.

Если заклинил двигатель, то следует проверить работу всей системы охлаждения. Закипание жидкости говорит о неисправной прокачивающей помпе. Насос ответственен за циркуляцию, без этого в каналах двигателя температура растет.

Почему не крутится коленчатый вал?

Заклинил двигатель — проверяется вручную: можно ли сорвать коленчатый вал. Если этого не происходит, то можно включить любую передачу коробки и попытаться протолкнуть автомобиль. Категорически запрещается дергать машину тросом. Это может привести к еще большему ущербу.

Заклинил двигатель — рекомендуется выкрутить свечи и повторить попытки провернуть вручную коленчатый вал. Причинами могут быть сторонние предметы в колодцах или рассыпавшиеся вкладыши, что является достаточно редким случаем. Жидкость в поршнях выдавится при выкрученных свечах, а посторонние предметы и загрязнения можно будет увидеть через дюймовое отверстие.

Дополнительные источники неисправности

Если после элементарных проверок остается непонятно, почему заклинил двигатель, рекомендуется вспомнить предшествующие события. Доливали ли масло до этого, если да, то какого качества. Два масла различного типа и вязкости легко могли свернуться и запениться.

Добавление некачественных присадок в масло двигателя также неблагоприятно отразится на работе его узлов. Аналогичные последствия наступят при использовании не рекомендованных производителем масел.

Топливо влияет на состояние поршней и колец. Слишком высокое октановое число приводит к их деформации, а из-за этого уже не раз у многих заклинил двигатель. Причины неисправности могут заключаться и в нарушении работы системы зажигания.

Нарушения в работе

Если заклинил двигатель, также проверяют момент образования искры в двигателе. Каждый момент зажигания топлива должен происходить, когда он находится в верхней точке. При запаздывании этого будет оказываться сопротивление движению коленчатого вала, когда другой поршень с силой за счет смеси толкается вниз.

Аналогичные проблемы возникают при несвоевременном впрыске топлива в поршень, когда искра подается правильно. Диагностику этих узлов лучше проводить в условиях автосервиса на современном оборудовании. Также не допускается ездить в жару с неисправным вентилятором радиатора охлаждения.

Масляный насос механически связан с коленчатым валом. Проверяется достаточность попадания масла на трущиеся поверхности. Диагностировать скрытые дефекты получается, увы, когда уже заклинил двигатель. ВАЗ имеет аналогичные проблемы при недостаточном уходе за автомобилем.

Масляное голодание внутри двигателя происходит при постоянно низком уровне в картере. Коленчатый вал должен практически купаться в защитных присадках. В противном случае металл расширяется под влиянием температуры. Поэтому затягивать с периодической заменой масел строго не рекомендуется.

Нелепые случаи

Если заклинил двигатель, признаки загустевшего масла могут свидетельствовать о попадании сахара в систему. Аналогичные последствия наступают при перемешивании сырого яйца, которое при работе мотора обязательно нагреется и заварит все каналы. Каким образом последнее вещество попадает в систему — известно только обладателю автомобиля.

Сахар могут подсыпать недоброжелатели через заправочный люк в топливо. Существует немало веществ, меняющих состав масла. Бывает, водитель может по ошибке залить в горловину двигателя смертельную для железа смесь.

Неисправность, когда охлаждающая жидкость проникает в масло, также может привести к подклиниванию трущихся металлов. Это можно заметить при замере уровня по щупу. Изменившийся состав заметен на глаз и на ощупь: по цвету, вязкости, по наличию пены. Белесый оттенок говорит о потере качества масла.

Профилактика

Клин двигателя можно предупредить, если тщательно обслуживать автомобиль. Периодические осмотры и постоянный контроль работоспособности контролирующих и сигнализирующих узлов помогает избежать вариант, когда эксплуатация продолжается при неисправностях. Важно вовремя заметить следующие состояния:

  • визуально низкий уровень охлаждающей жидкости;
  • визуально низкий уровень масла в картере;
  • отсутствие срабатывания датчика давления масла;
  • отклонения в показаниях экономайзера;
  • изменение тяги двигателя;
  • посторонние звуки в работе авто: стуки, гул, звон, скрежет.

Незамедлительная диагностика в автосервисе подозрительно работающих узлов убережет от дорогостоящего капитального ремонта. Рекомендуется прекратить эксплуатацию при неуверенности в исправности двигателя.

Разные случаи

Порядок действий при неисправности двигателя зависит, когда это произошло. Если в движении автомобиль резко остановился, то вероятнее всего механическое попадание инородного тела или поломка вращающегося узла. Рекомендуется искать неисправное место и отказаться от дальнейших попыток крутить движок насильно.

После длительной поездки был заглушен двигатель. А наутро его невозможно прокрутить вручную. Высока вероятность свернувшегося масла. Потребуется капитальный ремонт. Скорее всего, вращать коленвал получится, но очень с большим усилием.

Если авто долго стояло и потребовалось его завести, а двигатель не крутится, то рекомендуется принудительно осуществить вращение через коробку передач тросом или вручную. Часто так происходит в морозы, когда минеральное масло сильно густеет. Неисправности нет, требуется просто разогреть масло или дождаться теплой погоды.

Как происходит?

Чаще всего посторонние предметы попадают через закрылки карбюратора. Туда же попадают пыль и более крупные включения при образовании трещин на пути всасывания воздуха. Требуется проверить целостность патрубков, чистоту фильтра.

После ремонта карбюратора незакрепленная запчасть могла провалиться в колодца двигателя. Аналогичные последствия можно получить при неосторожном монтаже головки двигателя с клапанами. Нелишним будет проверить чистоту смазки, слив ее с картера. Но последние работы проводят на яме в условиях сервиса.

Обрыв ремня

Плачевный результат наблюдают при разрыве ремня или цепи ГРМ. Часто даже гнутся блоки цилиндров. В момент удара ломаются клапанные крышки. В результате приходится проводить капитальный ремонт двигателя.

При недостаточном ремонте поломанные детали могут оставаться в картере, при каких-то обстоятельствах они снова попадут в место следующего клина двигателя. Разболтавшийся успокоитель также может попасть под ремень или цепь ГРМ. Клапаны и блоки цилиндров при неправильных режимах работы деформируются.

Появляются задиры, которые движущийся металл постоянно задевают. В какой-то момент, когда износ становится достаточно большим, происходит окончательное подклинивание, и коленчатый вал уже не провернуть.

Механический износ

Основной причиной клина в отечественных авто становятся внутренние разболтавшиеся крепления в двигателе из-за некачественной смазки и непериодической ее замене. Ослабиться могут гайки коренных подшипников, натяжителя ремня ГРМ, крепление головки шатуна. После кустарного капитального ремонта может выйти стопорное кольцо из поршня. Причина тому — нестандартные запчасти.

Рассыпавшийся клапан можно проверить визуально, сняв крышку двигателя. Часто вылетает пружина или гнется сам клапан при обрыве ремня ГРМ. Неисправности возникают при затяжке головки блока цилиндров без динамометрического ключа, когда от перенапряжения появляется трещина в стенках и, соответственно, падает давление на смазку. Вероятность клина двигателя повышается при чрезмерных нагрузках во время вождения.

Сложно найти автомобильную неприятность хуже, чем заклинивший мотор. Чтобы избежать этого, стоит знать причины, по которым заклинил двигатель, а также что именно произошло в силовом агрегате.

Читайте в этой статье

Признаки заклинивания

Начнем с того, что если заклинивает двигатель, тогда мотор фактически не крутится. Когда такая неисправность возникает во время движения, силовой агрегат либо внезапно глохнет, либо заметно падает мощность и потом уже прекращается работа ДВС.

Иногда после простоя мотор, все-таки, удается запустить, но работать он будет недолго. В некоторых случаях заклиниваю двигателя также предшествует возникновение явного металлического стука или грохота под капотом.

Что именно заклинивает в моторе и по каким причинам

Как правило, заклинивает коленвал. А точнее, его подшипники. Реже происходит заклинивание поршня. Главное, быстро ответить на вопрос о том, почему заклинило двигатель, попросту нельзя.

Дело в том, что существует множество причин, которые можно разделить на две основные группы: механические повреждения и перегрев.

Механические причины заклинивания ДВС

Посторонние предметы попали в надпоршневое пространство или на головку поршня. Это может быть, например, упущенная/оторванная гаечка. Например, шайба крепления воздушного фильтра упала во впускной коллектор, элементы попали во впуск при снятии карбюратора, посторонние предметы могли попасть непосредственно в камеру сгорания и т.д.

В этом случае заклинивает поршень, но не обязательно намертво. Однако в большинстве случаев для устранения последствий предстоит серьезный ремонт.

  • Обрыв или перескакивание ремня или цепи ГРМ, а также обрыв успокоителя цепи ГРМ и попадание его фрагмента под саму цепь.

Кстати, когда причиной заклинивания выступают неполадки с цепью или ремнем, клапаны деформируются (гнутся), из-за чего не могут вернуться в свое седло. Как следствие, поршень не может войти в верхнюю мертвую точку и происходит соударение клапана с головкой поршня.

  • Выход поршневого пальца. Это чревато тем, что головка поршня останется незакрепленной со всеми вытекающими последствиями.
  • Разболтавшиеся гайки коренных крышек коленвала или гайки нижней головки шатуна. Такое может случиться тогда, когда во время ремонта мотора эти гайки не были затянуты должным образом (момент затяжки нарушен).

Кстати, если достоверно известно о попадании посторонних металлических предметов в цилиндры, можно их извлечь без полного разбора двигателя. Для этого понадобится магнит и достаточной длины стержень (например, спица). Подняв поршни 1 и 4 цилиндров в верхнее положение, нужно вывернуть свечи зажигания и через свечной колодец магнитом извлечь металлический предмет. Если в 1 и 4 цилиндре ничего нет, то таким же образом следует проверить 2 и 3.

Перегрев двигателя

Многие причины заклинивания двигателя связаны именно с перегревом мотора. Наиболее распространенные из них такие:

  • Отсутствие смазки или низкий уровень масла. Как известно, внутри самого двигателя масло играет роль не только смазки, но и охладителя.
  • Попадание охлаждающей жидкости в масло. Приводит к тому, что смазочная жидкость теряет свои свойства. Чаще всего это происходит при нарушении целостности прокладки между головкой и блоком цилиндров, однако возможны и трещины в БЦ или ГБЦ.
  • Неисправный термостат или помпа охлаждающей жидкости.

Полезные советы

В отличие от механических причин, многих случаев перегрева двигателя удастся избежать, если регулярно проверять уровень масла и его состояние, а также контролировать уровень охлаждающей жидкости и следить за исправностью отдельных элементов (термостат, вентилятор охлаждения, помпа и другие).

Важно понимать, что если ДВС сначала застучал, а потом заклинил, тогда такой заклинивший мотор может даже показать «кулак дружбы», что является серьезнейшей поломкой. Однако если появился стук, но водитель заглушил агрегат заранее, есть шанс избежать большого количества проблем. После остановки мотора нужно отбуксировать автомобиль для осмотра на СТО. Такие действия во многих случаях позволяют существенно снизить конечную стоимость ремонта двигателя.

Почему проворачивает вкладыши коленвала: основные причины. Что делать, если провернуло шатунный влкадыш, как правильно менять вкладыши шатунов.

Что такое «кулак дружбы» двигателя автомобиля. Почему возникает данная неисправность, основные причины, которые приводят к такой поломке. Полезные советы.

Почему возникает перегрев двигателя. Чего ожидать водителю и какие поломки могут возникнуть, если двигатель перегрелся. Что делать в случае перегрева ДВС.

Почему холодный двигатель может стучать: различные неисправности. Анализ характера стука в силовом агрегате: звонкий, металлический, приглушенный и т.д.

Что следует понимать под определением «стуканул двигатель». Почему мотор начинает стучать. В каких случаях стук в двигателе указывает на поломку ДВС.

Наиболее распространенные причины стука двигателя: поршневой, шатунный, стук коленвала. Что делать, если двигатель неожиданно начал стучать в движении.

Автомобилисты со стажем за время эксплуатации авто неоднократно сталкиваются с разного рода проблемами в функционировании систем и узлов. Одно из неприятнейших событий для водителя – отказ работы двигателя, который может случиться как вследствие естественного износа агрегата, так и влияния неблагоприятных факторов. Абсолютно надёжных устройств не существует, но чтобы поддерживать исправность и продлить их срок службы, необходим качественный уход. Нарушения в работе могут быть вполне закономерным явлением, например, из-за естественного старения элементов или внезапным, возникшим без видимой на то причины.

Нередки ситуации, когда исправный мотор отказывается работать вследствие заклинивания, что происходит случайно. Проблема не всегда возникает по халатности автовладельца, но от дальнейших действий напрямую зависит, светит ли агрегату капитальный ремонт. В случае, когда заклинило двигатель, важно знать, что делать, чтобы разрешить проблему с наименьшими потерями. Избежать капремонта зачастую удаётся, если водитель своевременно принял необходимые меры.

Признаки заклинивания

Сигнализировать о неполадке двигатель будет сразу же, да и движение в таком случае невозможно. Часто при возникновении неисправности водители грешат на севший аккумулятор, но его зарядка не всегда способна исправить неполадку. Есть определённые симптомы, указывающие на проблему, состоящую в заклинивании элементов мотора.

Часто об этом оповещает щелчок реле стартера, после чего коленвал перестаёт вращаться. Причиной может быть и севшая АКБ, и неисправность пускового механизма. Во время движения может произойти как резкое заклинивание мотора, тогда он тут же глохнет, так и постепенная потеря мощности, затем остановка ДВС. Завести автомобиль снова уже не получится, стартер не крутит и при пробах запуска мотора раздаётся скрежет и лязг металла. Иногда после бездействия агрегат всё же запускается, но даже если запуск удался, если проблема не устранена, на его нормальное и продолжительное функционирование рассчитывать уже не приходится. Нередко перед заклиниванием из-под капота можно услышать грохот и звук ударов металлических частей друг о друга.

Диагностировать заклинивание двигателя можно, запустив коленвал вручную:

  • если модель автомобиля позволяет добраться до шкива, можно прокрутить мотор ключом за болт крепления шкива;
  • как вариант также возможно вывесить ведущую ось и на самой высокой передаче провернуть агрегат за колесо вручную.

Прокручивать коленвал методом буксирования машины не стоит, поскольку чрезмерное насилие над двигателем в попытках его завести может стать причиной ещё больших деформаций элементов и привести к серьёзным последствиям.

Что заклинивает в моторе

В конструкции двигателя большое количество постоянно трущихся механических пар и под действием нагрузок все они подвержены износу. Нередко проблема заклинивания агрегата состоит в подшипниках коленчатого вала, но может заклинить и поршень. Определить источник неприятности «на глаз» невозможно. Причины, почему клинит двигатель, могут быть разными, это и механические дефекты элементов, и критически низкий уровень смазки, и перегрев.

Механические причины заклинивания ДВС

Часто нормальному функционированию мотора препятствуют посторонние предметы, попадающие в надпоршневое пространство или в камеру сгорания. Болты крепления и прочие мелкие элементы конструкции могут попасть внутрь, например, при ремонтных работах и вызвать заклинивание или полный выход из строя агрегата. Если вовремя не определить, что стало причиной неисправности и не повлиять на ситуацию, то такая мелочь, как плохо затянутая гайка, разболтавшаяся и упавшая во впускной коллектор, приведёт к серьёзным последствиям.

Заклинивание может произойти по причине обрыва ремня или цепи ГРМ, а также при попадании успокоителя или его части под ремень или цепь.

Попадание инородных тел в механизм распределения газов – ещё одна распространённая причина клина силового агрегата. Они могут попасть туда при отсутствии крышки ГРМ и приводят к поломке пружин или рассухариванию клапанов. Так, чтобы узнать, что двигатель заклинил по причине попадания инородных предметов в механизм, найти и извлечь их, требуется разборка ремня ГРМ. Если провернуть шестерню распределительного вала не получается, то проблема именно в них.

Проблемы с ремнём или цепью механизма распределения газов провоцируют деформирование клапанов. За этим следует и невозможность вхождения поршня в верхнюю мёртвую точку, что провоцирует удары клапана с поршнем друг о друга. Заклинивание клапанов в направляющих втулках тоже нередкое явление.

Выход из поршня поршневого пальца, обеспечивающего подвижное соединение шатуна и поршня, ввиду отсутствия фиксации может спровоцировать сильное повреждение элемента.

Когда известно о факте проникновения инородных металлических элементов в цилиндр, вытащить их возможно и не прибегая к полному разбору агрегата. Осуществить процедуру извлечения помогут магнит и стержень необходимой длины. Для этого следует поднять поршни 1 и 4 цилиндров (или 2 и 3, если инородные предметы не были обнаружены в 1 и 4), выкрутить свечи зажигания и через свечной проём магнитом вытащить инородное тело.

Масляное голодание

Моторное масло, как и другие расходники имеет свойство со временем изнашиваться, окисление происходит гораздо быстрее при эксплуатации автомобиля в условиях повышенных нагрузок. Трущиеся пары без качественной смазки стремительно выходят из строя, что приводит ко многим серьёзным последствиям для агрегата, в том числе и его заклиниванию. Масляное голодание влечёт за собой уменьшение теплового зазора между элементами вследствие сильного нагрева, а детали из мягкого металла могут оплавиться. Недостаток смазки оказывает губительное воздействие на такие элементы, как коленчатый и распределительный валы, ГРМ и цилиндропоршневая группа.

При падении масляного давления в первую очередь подвергаются свариванию вкладыши коленвала, поскольку на них приходится основная нагрузка. Если машина заглохла после характерного стука лучше сразу начать осмотр, потому как понять, что заклинил двигатель можно только, проверив вручную, срывается ли коленчатый вал.

Важно, чтобы автомобилист понимал всю серьёзность проблемы и как можно скорее предпринял меры по устранению проблемы. Масляное голодание может быть вызвано следующими факторами:

  • критически низкий уровень масла, не обеспечивающий смазку элементов, из-за чего они работают «всухую». Необходимость контроля уровня жидкости и её состояния должна войти в привычку для предотвращения поломок, связанных с недостатком смазки;
  • аварийное снижение объёма масла связано с протечками через сальники, прокладки, вследствие нарушения целостности поддонов, ГБЦ и пр. либо поломками основных узлов агрегата;
  • несвоевременная замена масла или масляного фильтра. По мере износа расходные материалы необходимо менять, поскольку их свойства со временем утрачиваются, период замены значительно сокращается при тяжёлых условиях эксплуатации, поэтому сроки, рекомендуемые производителем, могут быть сокращены практически вдвое;
  • использование моторных масел неподходящей вязкости, что провоцирует отсутствие подачи жидкости к деталям и при нормальном её уровне в картере. Это касается как слишком высоких показателей вязкостных характеристик, так и слишком низких. Вязкость повышается также вследствие накопившейся грязи и отложений. Сетка забивается, а масляный насос не справляется с задачей. Для устранения неполадки следует разобрать и почистить каналы маслоприёмника, при этом, не используя промывочную жидкость, дабы не ухудшить положение.

В результате масляного голодания происходят заклинивание вала или поршней в цилиндрах, выход из строя клапанов, неисправности маслосъёмных колец. Последствия могут приобрести и более тяжёлый характер в виде масштабных разрушений узлов агрегата, что может привести к невозможности восстановления двигателя и необходимости его замены.

В случае с турбомоторами может возникать также масляное голодание турбины, что приводит к неисправности данной детали. Стоимость ремонта турбированного двигателя высока, поэтому необходимо регулярно следить за качеством и интенсивностью подачи смазки.

Практически все узлы силового агрегата страдают при масляном голодании. Если при диагностике заклинивания двигателя коленчатый вал не вращается, требуется демонтаж поддона. При обнаружении в моторе прихваченных к коленвалу и провёрнутых коренных вкладышей, замены подшипников недостаточно. Кроме проверки масляного насоса лучше также прочистить каналы, засорение которых могло послужить возникновению проблемы масляного голодания. Если подшипники в нормальном состоянии, необходимо снятие деталей цилиндропоршневой группы для проведения диагностики.

Перегрев двигателя

Мотор может заклинить на ходу от перегрева. Не только постоянная эксплуатация в режиме высоких оборотов и низкий уровень моторного масла приводят к перегреванию трущихся пар. Частыми причинами становятся:

  • неисправный термостат;
  • отсутствие охлаждающей жидкости;
  • неисправность датчика нагрева ОЖ;
  • попадание антифриза в масло. Причиной этого явления становятся нарушение целостности прокладки или микротрещины головки блока цилиндров и БЦ;
  • неисправность вентиляторов;
  • засорение радиатора.

Перегрев может вызывать серьёзные проблемы в функционировании силового агрегата, в том числе и его заклинивание. При этом есть также вероятность полного выхода из строя всех элементов мотора. Уровень охлаждающей жидкости следует проверять регулярно во избежание подобных проблем. Если датчик нагрева двигателя на критической отметке – следует незамедлительно глушить мотор либо продолжать ехать на нейтральной передаче до остановки.

Самостоятельно диагностировать двигатель можно, не снимая его, но если виновник заклинивания при осмотре не был обнаружен, вскрытие лучше доверить профессионалам ввиду дороговизны ремонта.

Профилактика

Во избежание заклинивания мотора и прочих неполадок следует выполнять ряд несложных рекомендаций:

  • необходимо регулярно следить за уровнем и состоянием моторного масла, а также выполнять его своевременную замену. Кроме смазочного материала менять нужно и масляный фильтр;
  • контроль уровня охлаждающей жидкости также убережёт от перегрева. Объём антифриза в расширительном бачке проверяется при холодном моторе;
  • при постукиваниях в моторе или других посторонних звуках движение необходимо незамедлительно прекратить, не дожидаясь, что агрегат заглохнет самостоятельно.

Так, большинство причин, приводящих к заклиниванию элементов двигателя можно предупредить. Это нередкая проблема, но если уделять время уходу за автомобилем и обращать внимание на нехарактерное поведение агрегата, удастся избежать многих проблем.

Opel Antara 3,2 Пуля › Бортжурнал › Заклинило двигатель (шкив коленвала не проворачивается)

В продолжение записи о том, что машина заглохла на ходу.
Под эмоциями в прошлой записи я не полностью описал ситуацию.
Ранее писал, что авто заглохло на ходу.
А дело было так, со светофора я решил разогнаться по шустренькому и соответственно раскрутил движок до отсечки, разогнался до 100 ки примерно и сбросил газ, увидев что впереди моргает светофор и скоро загорится красный свет. При разгоне я открыл окно со своей стороны, звук двигателя был в принципе как обычно, ничего сверхъестественного, хотя мне показалось, что двигатель на разгон ревет чуть громче чем обычно (может сейчас уже выдумываю, мерещится все). И при полной остановке на красный сигнал светофора я заметил что обороты на нуле, попытки завестись не увенчались успехом. Пару раз стартер всетки крутнул. Никаких сигнальных ламп не было на приборке лишних. Просто заглохла и все.
Машинку протащил на тросу с отцом километров около двух к сервису и бросил на парковке.
И вот, после выходных загнал в сервис у которого машинка простояла 2 дня. Ребята пытались провернуть шкив коленвала ключом, но ничего не вышло, заклинило намертво, стартер тоже конечно же не проворачивает. Завтра попробую отвезти Антару на вскрытие двигателя к мотористу который мне менял цепи ГРМ, для установления точной причины поломки и дальнейших моих раздумий что делать.
Заранее набрал по контрактным движкам, московские ребята занимаются, двигатель обойдется 133 тр. парень поинтересовался что произошло, я ему рассказал, он говорит, что в ближней голове бывает закусывает какую-то «пастель» и ремонт не дорогой, однако говорит выкрутить масляный фильтр и если в нем есть стружка, все серьезно, если нет, то вскрывать и уже по факту смотреть что там.
Вот такие дела, к замене ГРМ при покупке я был готов, к ремонту ГУРа тоже, но к такому нет, я не готов был. Печаль ((((
Кстати гнет клапана на этих движках? никто не знает?!

Цена вопроса: 150 000 ₽ Пробег: 123 000 км

Что делать с заклинившим двигателем Audi V6. Заклинило… — журнал За рулем

Что делать с заклинившим двигателем Audi V6. Заклинило…

Иногда бывает: кузов пополам, а мотор цел. Но порой наоборот — легкая авария приводит к тяжелым последствиям для двигателя, хотя удар его вроде и не затронул. На беду владельца «Ауди А6» события развивались подобно снежной лавине, начало которой может дать один неосторожный шаг.

Роскошный седан приволокли «на галстуке». Он выглядел весьма свежим, если бы не шрамы от небольшой аварии: слегка погнуты капот, передняя рамка, решетка радиатора. Пластмассовые облицовки, конечно, «в хлам». Впрочем, удар двигателя не достиг, пострадала лишь крыльчатка вискомуфты в приводе вентилятора да верхняя крышка кожуха, укрывающего ремень ГРМ. Важная деталь: эта крышка, тоже пластмассовая, раскололась.

И двигатель… заклинило! Сгоряча владелец еще пытался его пустить, но вскоре эту затею бросил. Такова предыстория. «Экспонат», попавший к нам, изучали придирчиво. Мотор V-образный, шестицилиндровый, по три в каждом ряду… Распредвалы приводятся общим ремнем… Никаких следов удара по блоку или головкам нет, ремень на своем месте — тут все «как в аптеке»… но только на первый взгляд. А на второй? После проверки фаз газораспределения обнаружили чудовищную нестыковку: у левого распредвала впускных клапанов фазы в порядке, а у правого съехали черт-те куда! Подобного обращения мотор не допускает — вот его и заклинило. Кто-то сразу поставил вопрос ребром: если ремень прекрасно натянут, шкивы в порядке, то каким образом правому распредвалу удалось «отстать» от левого?

Придирчиво осматривая правый шкив, во впадинах между зубьями заметили следы пластмассы, и картина начала проясняться. Когда пластмассовый кожух разлетелся на куски, куда их разбросало, не скажет спец по баллистике, но какой-то осколок (пусть на мгновение!) застрял между шкивом и ремнем, сыграв роль «лыжи». Фазы «ушли».

Разбираем мотор: последствия — самые что ни на есть разрушительные, кое-что показываем на снимках. Изогнутые или сломанные клапаны (фото 1), куски которых «вколочены» поршнями в изуродованную головку трех правых цилиндров (фото 2). Седлам, втулкам — конец! Поршни деформировались, а между ними и зеркалом цилиндров застряли мелкие осколки стали, надрав рабочую поверхность. Более того, во второй цилиндр явно проникла охлаждающая жидкость. Откуда? Из сквозной трещины в стенке — продольной, около 100 мм длиной. К счастью, до верха и низа блока трещина не доходила — это позволяло отремонтировать блок малой кровью — расточить и загильзовать.

Скажу честно: хотя оборудование в нашей мастерской неплохое, его возможности не беспредельны. Расточку, хонингование блоков, шлифовку коленчатых валов и т. п. мы поручаем специализированным предприятиям (читайте — заводам!). Так поступили и с блоком «Ауди». Он был расточен под установку гильз, охлажденных в жидком азоте. Позже, нагревшись в блоке, гильзы садятся с необходимым натягом, в частности, практически исключают течь охлаждающей жидкости. В этом состоянии их растачивают и хонингуют под нужный диаметр поршней (в нашем случае «родные» пришлось выбросить).

Забраковали мы и «битые» шатуны. Конечно, при сборке их вместе с поршнями тщательно взвесили — убедились, что балансировка двигателя не нарушится. Восстанавливать головку блока было бессмысленно, ее заменили, благо купить «на разборке» нужную ныне очень просто, даже в сборе с клапанами.

Вы предвкушаете «хэппи энд»? Рано — беда не ходит одна. Последствия маленькой аварии этим не ограничились.

… Когда пришло время пустить собранный мотор, начались фокусы. Первым «взбрыкнул» указатель температуры — на холодном моторе показывал 90°С. А после пуска этот показатель лез к рекордным высотам! Впрочем, «отвечают» за это только два вывода датчика температуры, всего же их четыре. Вторая пара вырабатывает сигнал для контроллера — с ней вроде был порядок: в этом убедились, подключив диагностическую аппаратуру. Но после пуска мотор начинало «колбасить» до тех пор, покуда не прогреется! Датчик заменили — мотор повел себя спокойнее. Но все-таки работа в первые минуты после пуска оставляла желать лучшего. Что дальше — исследовать систему «вглубь и вширь»? Соблазнительно, однако решающий голос принадлежит хозяину автомобиля — ведь ему оплачивать изыскания. Навязывать услугу мы не вправе — тем более когда работа грозит затянуться…

Взвесив все «за» и «против», хозяин «Ауди А6» решил, что результат его вполне удовлетворяет. Надеемся, что, покончив с мелкой «жестянкой», он уже сел за руль — и ездит осмотрительней. Впрочем, история этого автомобиля может получить продолжение. Ведь даже мелкие аварии оставляют рубцы на «сердце» машины.

признаки, определение причины и особенности ремонта. Что делать, если мотор ВАЗ поймал клин, кулак дружбы « NewNiva.ru

Что именно заклинивает в моторе и по каким причинам

Как правило, заклинивает коленвал. А точнее, его подшипники. Реже происходит заклинивание поршня. Главное, быстро ответить на вопрос о том, почему заклинило двигатель, попросту нельзя.

Дело в том, что существует множество причин, которые можно разделить на две основные группы: механические повреждения и перегрев.

Что делать и как лучше ремонтировать заклинивший мотор?

Предположим, двигатель на вашем авто все-таки заклинил, но вы не желаете разбирать его полностью для капитального ремонта. В таком случае снимите ремень ГРМ и попытайтесь провернуть шестерню/и распределительного вала. Если шестерня не вращается в направлении вращения КВ, вполне вероятно, что двигатель заклинил из-за клапанов. В таком случае ремонт заклинившего мотора рекомендуем начинать со снятия клапанной крышки, ГБЦ.

Если шкив коленчатого вала не вращается ни в какую из сторону, демонтируйте поддон для снятия бугелей коренных вкладышей, крышек нижних головок шатунов. В случае обнаружения задранных, прихваченных к коленчатому валу и провернутых вкладышей, замены подшипников скольжения все равно будет недостаточно.

Как понять, что двигатель поймал клин?

Мысль о том, что двигатель заклинил, приходит после щелчка втягивающего реле стартера, за которым не следует вращение коленчатого вала. Вполне вероятно, что стартер щелкает, но не крутит из-за севшей АКБ или неисправности самого пускача. Чтобы определить заклинивший двигатель, необходимо попытаться прокрутить коленчатый вал вручную. Сделать это можно 2 способами:

  • прокрутить коленвал ключом за болт крепления шкива. Недостаток в том, что на большинстве современных автомобилей компоновка подкапотного пространства ограничивает доступ к шкиву;
  • вывесить одну из сторон ведущей оси, включить наивысшую передачу и попытаться за колесо провернуть двигатель.

Не стоит пытаться провернуть коленчатый вал, буксируя автомобиль на тросу. Если двигатель заклинил, то усердные попытки провернуть коленвал могут привести к еще большим повреждениям.

Механические причины заклинивания двс

Посторонние предметы попали в надпоршневое пространство или на головку поршня. Это может быть, например, упущенная/оторванная гаечка. Например, шайба крепления воздушного фильтра упала во впускной коллектор, элементы попали во впуск при снятии карбюратора, посторонние предметы могли попасть непосредственно в камеру сгорания и т.д.

В этом случае заклинивает поршень, но не обязательно намертво. Однако в большинстве случаев для устранения последствий предстоит серьезный ремонт.

  • Обрыв или перескакивание ремня или цепи ГРМ, а также обрыв успокоителя цепи ГРМ и попадание его фрагмента под саму цепь.
Еще следует выделить попадание посторонних предметов под ремень или цепь ГРМ. Это происходит в тех случаях, когда снята крышка ГРМ. Также в списке проблем с  механизмом газораспределения отмечают рассухаривание одного или нескольких

клапанов

, поломку их пружин. Еще возможно заклинивание клапанов в их направляющих.

Кстати, когда причиной заклинивания выступают неполадки с цепью или ремнем, клапаны деформируются (гнутся), из-за чего не могут вернуться в свое седло. Как следствие, поршень не может войти в верхнюю мертвую точку и происходит соударение клапана с головкой поршня.

  • Выход поршневого пальца. Это чревато тем, что головка поршня останется незакрепленной со всеми вытекающими последствиями.
  • Разболтавшиеся гайки коренных крышек коленвала или гайки нижней головки шатуна. Такое может случиться тогда, когда во время ремонта мотора эти гайки не были затянуты должным образом (момент затяжки нарушен).

Кстати, если достоверно известно о попадании посторонних металлических предметов в цилиндры, можно их извлечь без полного разбора двигателя. Для этого понадобится магнит и достаточной длины стержень (например, спица). Подняв поршни 1 и 4 цилиндров в верхнее положение, нужно вывернуть свечи зажигания и через свечной колодец магнитом извлечь металлический предмет. Если в 1 и 4 цилиндре ничего нет, то таким же образом следует проверить 2 и 3.

Перегрев двигателя

Многие причины заклинивания двигателя связаны именно с перегревом мотора. Наиболее распространенные из них такие:

  • Отсутствие смазки или низкий уровень масла. Как известно, внутри самого двигателя масло играет роль не только смазки, но и охладителя.
Если трущиеся детали будут оставаться сухими, то от нагрева они расширятся и, вполне возможно, заклинят. Вообще, нехватка масла (

масляное голодание

) в свою очередь тоже может быть вызвана различными причинами.Рекомендуем также прочитать статью о том,

какие последствия для двигателя возникают после перегрева мотора

. Из этой статьи вы узнаете о причинах, по которым происходит перегрев ДВС, а также вероятных последствиях после повышения рабочей температуры силового агрегата.
  • Попадание охлаждающей жидкости в масло. Приводит к тому, что смазочная жидкость теряет свои свойства. Чаще всего это происходит при нарушении целостности прокладки между головкой и блоком цилиндров, однако возможны и трещины в БЦ или ГБЦ.
  • Неисправный термостат или помпа охлаждающей жидкости.

Полезные советы

В отличие от механических причин, многих случаев перегрева двигателя удастся избежать, если регулярно проверять уровень масла и его состояние, а также контролировать уровень охлаждающей жидкости и следить за исправностью отдельных элементов (термостат, вентилятор охлаждения, помпа и другие).

Таким образом, многие причины, которые приводят к тому, что заклинил двигатель, можно заблаговременно нейтрализовать. В любом случае, обнаружив во время движения признаки заклинивая мотора (стук, грохот и прочие посторонние звуки), лучше всего прекратить движение, причем не дожидаясь того момента, пока двигатель начнет глохнуть сам.

Рекомендуем также прочитать статью о том,

почему двигатель может стучать на холодную

. Из этой статьи вы узнаете о возможных причинах стука ДВС, который прослушивается до выхода агрегата на рабочие температуры.

Важно понимать, что если ДВС сначала застучал, а потом заклинил, тогда такой заклинивший мотор может даже показать «кулак дружбы», что является серьезнейшей поломкой. Однако если появился стук, но водитель заглушил агрегат заранее, есть шанс избежать большого количества проблем. После остановки мотора нужно отбуксировать автомобиль для осмотра на СТО. Такие действия во многих случаях позволяют существенно снизить конечную стоимость ремонта двигателя.

  • Провернуло шатунный вкладыш: решение проблемы

    Почему проворачивает вкладыши коленвала: основные причины. Что делать, если провернуло шатунный влкадыш, как правильно менять вкладыши шатунов.

  • Кулак «дружбы» в двигателе: что это такое

    Что такое «кулак дружбы» двигателя автомобиля. Почему возникает данная неисправность, основные причины, которые приводят к такой поломке. Полезные советы.

  • Последствия перегрева двигателя автомобиля

    Почему возникает перегрев двигателя. Чего ожидать водителю и какие поломки могут возникнуть, если двигатель перегрелся. Что делать в случае перегрева ДВС.

  • Стук в двигателе на холодную

    Почему холодный двигатель может стучать: различные неисправности. Анализ характера стука в силовом агрегате: звонкий, металлический, приглушенный и т.д.

  • Застучал (стуканул) двигатель: что это такое?

    Что следует понимать под определением «стуканул двигатель». Почему мотор начинает стучать. В каких случаях стук в двигателе указывает на поломку ДВС.

  • Что стучит в двигателе: как определить

    Наиболее распространенные причины стука двигателя: поршневой, шатунный, стук коленвала. Что делать, если двигатель неожиданно начал стучать в движении.

Признаки заклинивания

Начнем с того, что если заклинивает двигатель, тогда мотор фактически не крутится. Когда такая неисправность возникает во время движения, силовой агрегат либо внезапно глохнет, либо заметно падает мощность и потом уже прекращается работа ДВС.

Завести машину заново невозможно, во всяком случае, сразу. При этом стартер не будет крутить либо при попытке запуска слышен скрежет и визг, могут прослушиваться удары металла по металлу.

Иногда после простоя мотор, все-таки, удается запустить, но работать он будет недолго. В некоторых случаях заклиниваю двигателя также предшествует возникновение явного металлического стука или грохота под капотом.

Читать новости о новой Ниве

Причины, по которым в авто клинят двигатели

Почему в авто клинят двигатели

Если в машине клинит ранее исправный двигатель – важно не только провести оперативно и в короткие сроки квалифицированный его ремонт, но и выявить первопричину такого выхода из строя. Также поговорим о том, как именно можно выявить, что работающий стартер не способен проворачивать коленчатый вал в силу его клина, как предотвратить негативные последствия аномального перегрева и масляного голодания в авто. Если сделать это своевременно – вы с успехом избежите дорогостоящего и ненужного капитального ремонта.

Причины клина

Прежде всего, это сваривание между собой вкладыша и шейки коленного вала – чаще всего подобная спайка происходит по причине недостаточного уровня смазки, так называемого масляного голодания авто. Также данный список причин заклинивания двигателя пополняют следующие пункты:

Читайте также: Как срочно и дорого продать авто в Минске

  1. Клин в самой верхней головке автомобильного поршня, поршневых пальцев – как и в первом варианте, спровоцировать это может недостаточный уровень моторной смазки, масляное голодание авто. Но клинить может и в силу несоосности последнего с верхней головкой. Перекос локальной зоны трения и тяги может спровоцировать аномальное тепловое расширение в моторе и заклинку.
  2. Заклинивание поршня в самом цилиндре – это может быть следствием перегрева в авто двигателя либо сбоя в процессе отвода тепла. Такая причина может привести в будущем ко многим более дорогостоящим поломкам и неисправностям с тепловой системой и самим автомобилем.
  3. Разрушение поршня, что в итоге спровоцирует блокирование перемещения шатуна и процесса вращения коленного вала, приводя к заклиниванию авто.
  4. Неквалифицированно и некачественно проведенный ремонт в авто двигателя – это требует незамедлительной диагностики и последующего устранения возникшей неисправности с учетом технологических норм и стандартов завода изготовителя автомобиля.
  5. Неправильный подбор и установка теплового зазора в процессе сборки ЦПГ или же коленного вала, несвоевременное устранение возникшей неисправности в системе подачи моторной смазки.
  6. Блокировать движение и работу машинного поршня может и по причине погнутого клапана, как и обрыва самого ремня ГРМ. Так по причине обрыва или же перекоса нескольких зубцов в цепи ГРМ и удара идет изгиб самого стержня клапана. Как следствие, клапан не двигается в заданном направлении, блокируя собой движение поршней в направлении к ВМТ.

Все эти причины и негативные последствия поломок требуют немедленного, со стороны владельца авто и мастера, внимания и своевременного их устранения.

Двигатель клинит – как понять?

Чаще всего о том, что заклинило двигатель указывает характерный щелчок, издаваемый втягивающим реле стартера, а после не идет вращение коленвала. Как причина, стартер щелкает и при этом не крутит в силу севшей АКБ, выход из строя самого пускача. Для диагностики заклинки двигателя можно запустить коленной вал вручную.

  1. Прокрутить заклинивший двигатель ключом за болт, крепящий шкив. Но в новых моделях авто компоновка системы пространства под капотом ограничивает фактический доступ к шкиву.
  2. Вывести ведущую ось, далее включить наивысшую на пульте передач передачу и уже вручную, за колесо, провернуть сам двигатель.

Но не стоит делать прокрутку коленного вала путем буксирования авто, закрепив его на буксирный трос. Если же при заклинке двигателя вы прилагаете усиленные попытки запустить его, не имея на то достаточных знаний, это может спровоцировать еще большее повреждение и поломку.

Что делать дальше?

Если после заклинивания двигателя вы не хотите его полностью разбирать для проведения капитального, основательного ремонта – просто снимите ремень ГРМ и проверните шестерню и после распределитель вала. Когда сама шестерня не будет вращаться в направлении вращения коленного вала, скорее всего заклинивание произошло по причине заклинивания клапанов. Потому ремонтные работы начинают со снятия крышки клапана, ГБЦ.

Когда шкив коленвала не вращается ни в каком направлении – снимите поддон, предназначенный для снятия бугелей коренного вкладыша крышки, нижней головки шатуна. Если в этом месте вы выявили задранные, провернутые вкладыши, простой замены вышедшего из строя подшипника будет недостаточно для устранения проблемы. Стоит проверить масляной насос, продуть коленвал и подводы масла – причина может крыться в простом засоре, закоксованности канала и это привело к локальной нехватке смазки.

Масляное голодание

Недостаток в моторе масла, в нагруженных в автомобиле парах трения в итоге может стать причиной сухого типа трения и в силу чего двигатель быстро перегревается. Из-за нагрева идет аномальное расширение системы и снижение теплового зазора, а детали, отлитые из мягких металлов, будут плавиться. Все это есть следствием масляного в автомобильной системе голодания подшипников скольжения коленного вала и шатуна.

Самыми первыми от проблемы страдают коренные его вкладыши – в процессе работе на них идет максимум нагрузки. В силу повышения температуры идет прихватка вкладыша и шейки вращающегося коленвала и как следствие – проворачивание первого в постелях, характерный стук, указывающий на заклинивание в двигателе.

Когда проблема диагностирована в паре шейка – вкладыш и сильно усугубляется, при повторном запуске двигателя стартер не будет прокручивать коленный вал. Это прямо указывает на то, что мотор заклинило и требует немедленного внимания со стороны опытного мастера.

Причины снижения уровня масла в моторе следующие:
  1. Плохая производительность самого маслонасоса – может потребоваться или же его прочистка или же замена на новый.
  2. Причиной может быть и засор сетки маслоприемника – чаще всего достаточно его прочистить, чтобы устранить подобную проблему.
  3. Низкий в автомобильном двигателе уровень смазочного масла. Если же уровень масла превышен, противовесы коленвала будут взбивать его, насыщая кислородом. Это ухудшит качество смазки трущегося пара.
  4. Появление эмульсии – это может происходить по причине смешивания масла и воды, ОЖ. Потому стоит контролировать показатели масла и не допускать попадания чрезмерной влаги в маслопроводники.
  5. Несоответствующий мотору состав и уровень вязкости залитого масла. В этом отношении важно принимать во внимание все рекомендации и советы завода производителя автомобиля в отношении выбора масла, его состава и уровня вязкости.
  6. Каналы к поршневому пальцу могут быть забиты. В данном случае достаточно проводить прочистку каналов, как с целью устранения засора, так и профилактические продувы для недопущения в будущем новых засоров.

Перегрев двигателя

Критическое в моторе повышение уровня температуры в итоге может спровоцировать чрезмерное тепловое расширение всех элементов и узлов ЦПГ. В процессе сгорания ТПВС сам поршень и его поверхность переносят на себе большие нагрузки и трения, нежели цилиндр. Также важно принимать во внимание и тот факт, что большинство поршней делают из алюминия и если его сравнивать с чугуном – первый имеет в своих характеристиках 2-ухкратное тепловое расширение.

Уменьшение в размере зазора между стенками цилиндра и поршнем может привести к полусухому типу трения – это становится следствием вытеснения масляной пленки расширенными поршнями. Спровоцировать задир может и зона локального перегрева – тут сам поршень чрезмерно воздействует на стенки цилиндров.

Последующее тепловое расширение становится причиной повышения уровня коэффициента трения, клина в цилиндре поршня. Как следствие, двигатель будет глохнуть и не заводится. Реже, после остановки работы двигателя, последний можно прокрутить стартером, хотя говорить о его нормальной работе не приходится. Чтобы сам двигатель не клинило после перегрева, стоит принять во внимание следующее:

  1. Выбирая антифриз, всегда стоит учитывать и соблюдать рекомендации и допуски завода – изготовителя.
  2. Контролировать уровень ОЖ.
  3. Проводить профилактическую промывку сот радиатора в системе охлаждения двигателя.
  4. Понимать и принимать во внимание все симптомы и характерные признаки, указывающие на неисправность самого термостата и помпы в системе охлаждения. Это позволит своевременно проверять исправность/неисправность работы термоклапана и заменить по мере необходимости водяной насос.

Данные советы и рекомендации позволят не допускать заклинки мотора авто.

Читайте также
Давление в шинах. Чем чревато неправильное давление