30Сен

Назначение и устройство тормозной системы – Тормозная система — Википедия

Вспомогательная тормозная система: виды и назначение

Одной из систем, входящих в тормозное управление автомобиля, является вспомогательная тормозная система. Она работает вне зависимости от других тормозных систем и служит для поддержания постоянной скорости на затяжных спусках. Главная задача вспомогательной тормозной системы – разгрузка рабочей тормозной системы с целью снижения ее износа и перегрева во время длительного торможения. Применяется данная система в основном на коммерческих автомобилях.

Основное назначение системы

Вспомогательная тормозная система

Постепенно разгоняясь при движении на спусках, автомобиль может набрать достаточно высокую скорость, что может быть небезопасно для дальнейшего движения. Водитель вынужден постоянно контролировать скорость за счет использования рабочей тормозной системы. Такие циклы многократного притормаживания приводят к быстрому износу тормозных накладок и шин, а также увеличению температурного режима работы тормозного механизма.

В результате коэффициент трения накладок о тормозной барабан или диск снижается, что приводит к снижению эффективности всего тормозного механизма. А следовательно увеличивается тормозной путь автомобиля.

Для обеспечения длительного движения на спуске с небольшой фиксированной скоростью и без перегрева тормозных механизмов используется вспомогательная тормозная система. Она не может снизить скорость машины до нулевого значения. Это делает рабочая тормозная система, которая в «холодном» состоянии готова с наибольшей эффективностью выполнить свою задачу в нужный момент.

Виды и устройство вспомогательной тормозной системы

Вспомогательная тормозная система может быть представлена в виде следующих вариантов:

  • моторный или горный тормоз;
  • гидравлический тормоз-замедлитель;
  • электрический тормоз-замедлитель.

Моторный тормоз

Заслонка горного тормоза

Моторный тормоз (он же «горный») представляет собой специальную воздушную заслонку, установленную в выпускной системе двигателя автомобиля.  Также в его состав входят дополнительные механизмы ограничения подачи топлива и поворота заслонки, вызывающие дополнительное сопротивление.

При торможении водитель заслонку переводит в закрытое положение, а топливный насос высокого давления — в положение ограниченной подачи топлива в двигатель. Выпуск воздуха из цилиндров через выпускную систему становится невозможным. Двигатель глушится, но вращение коленчатого вала не прекращается.

В процессе выталкивания воздуха через выпускные отверстия поршень испытывает сопротивление, за счет чего замедляется вращение коленчатого вала. Таким образом тормозной момент передается на трансмиссию и далее к ведущим колесам автомобиля.

Гидравлический тормоз-замедлитель

Устройство гидравлического тормоза-замедлителя представляет собой:

  • корпус;
  • два лопастных колеса.
Гидравлический тормоз-замедлитель

Лопастные колеса установлены в отдельном корпусе друг напротив друга на небольшом расстоянии. Между собой они жестко не связаны. Одно колесо, соединенное с корпусом тормоза, установлено неподвижно. Второе устанавливается на вале трансмиссии (например, карданном) и вращается вместе с ним. Корпус наполняется маслом для создания сопротивления вращению вала. Принцип работы данного устройства напоминает гидромуфту, только здесь крутящий момент не передается, а наоборот рассеивается, переходя в тепло.

Если гидравлический тормоз-замедлитель устанавливается перед коробкой передач, то он может обеспечить несколько стадий интенсивности торможения. Чем ниже передача, тем, соответственно, эффективнее торможение.

Электрический тормоз-замедлитель

Аналогично функционирует электрический тормоз-замедлитель, который состоит из:

  • ротора;
  • обмоток статора.
Электрический тормоз-замедлитель

Данный тип тормоза-замедлителя на автомобиле с механической  трансмиссией расположен в отдельном корпусе. Ротор замедлителя соединен с карданным валом либо с любым другим валом трансмиссии, а неподвижные обмотки статора закреплены в корпусе.

В результате подачи напряжения на обмотки статора появляется магнитное силовое поле, которое препятствует свободному вращению ротора. Возникающий тормозной момент,подобно гидрозамедлителю, подводится к ведущим колесам транспортного средства через трансмиссию.

На прицепах и полуприцепах при необходимости также может устанавливаться тормоз-замедлитель как электрического, так и гидравлического типа. На этот случай одна из осей должна быть выполнена с полуосями, между которыми и будет установлен замедлитель.

Подведем итог

Вспомогательная тормозная система необходима для поддержания постоянной скорости при движении автомобиля на затяжных спусках. Это снижает нагрузку на тормозные механизмы, увеличивая их срок службы.

techautoport.ru

Назначение и общее устройство тормозов автомобиля

Тормоза предназначены для уменьшения скорости движения и быстрой остановки автомобиля, а также для удержания его на месте.

В каждом автомобиле имеются два действующих независимо друг от друга тормоза — ножной и ручной. Ножной тормоз предназначен для торможения автомобиля в движении и потому является основным рабочим тормозом. Ручной тормоз служит главным образом для затормаживания автомобиля на стоянке, для удержания его на подъемах и спусках, а также для торможения автомобиля в случае неисправности ножного тормоза.

Ножные тормоза на всех автомобилях устанавливаются в колесах и устроены примерно одинаково. Колесный тормоз состоит из двух колодок 3, установленных шарнирно на пальцах 6, закрепленных на неподвижном тормозном диске 8. Колодки расположены внутри тормозного барабана 7, соединенного со ступицей колеса. Тормозной диск жестко соединен с поворотным кулаком переднего моста, а у задних мостов — с фланцами их кожухов. Между свободными концами колодок помещен разжимной кулак 9. Когда тормозная педаль не нажата, колодки, стянутые между собой пружиной 4, не касаются тормозного барабана и колесо свободно вращается.

Рис. Колесный тормоз: 1 — фрикционная накладка; 2 — заклепка; 3 — колодка; 4 — стяжная пружина; 5 — кронштейн пальцев колодок; 6 — пальцы; 7 — тормозной барабан; 8 — тормозной диск; 9 — разжимной кулак

При нажатии на тормозную педаль разжимной кулак поворачивается, преодолевая усилие пружины 4, раздвигает колодки и прижимает их к тормозному барабану с большой силой. В результате трения, возникающего между фрикционными накладками 1 колодок и барабаном, вращение колеса прекращается и автомобиль останавливается.

Привод колесных тормозов бывает:

Гидравлический привод тормозов обеспечивает большую плавность торможения автомобиля и одновременность работы тормозов всех колес. Тормоза с гидравлическим приводом применяются преимущественно на легковых и грузовых автомобилях небольшой грузоподъемности. Это объясняется тем, что с увеличением грузоподъемности автомобиля возрастает и усилие, которое водитель должен прикладывать к тормозной педали, чтобы затормозить автомобиль; управление такими тормозами значительно затрудняется.

Интенсивность торможения автомобиля, оборудованного тормозами с пневматическим приводом, зависит не от силы нажатия на тормозную педаль, а от величины ее перемещения. Тормоза с пневматическим приводом легки в управлении и устанавливаются на автомобилях большой грузоподъемности.

Широкое распространение пневматического привода тормозов на большегрузных автомобилях и тягачах объясняется еще и тем, что обеспечивается управление тормозами прицепа. Тормозная система прицепа присоединяется при помощи шланга к тормозной системе автомобиля-тягача и работает с нею как одно целое.

Пневмогидравлический привод тормозов сочетает в себе преимущества гидравлического и пневматического приводов: большую плавность торможения, легкость управления тормозом и возможность управления тормозами буксируемого прицепа.

ustroistvo-avtomobilya.ru

Тормозная система: описание,виды,устройство,фото,видео,принцип работы | НЕМЕЦКИЕ АВТОМАШИНЫ

 

Для эффективного управления движением любого механического средства – регулированием скорости на том или ином участке пути, замедлением её при выполнении маневров, наконец, для остановки в нужном месте – и в том числе экстренной – на всех грузовых и легковых автомобилях должна быть установлена соответствующая классу машины тормозная система. Для удержания машины на месте во время продолжительной стоянки, особенно на склоне, предусмотрен стояночный тормоз.

Для безопасной эксплуатации транспортного средства эта система должна быть надежна, как никакая другая. Не случайно в перечне неисправностей, при которых запрещено использование транспортного средства (приложение к Правилам дорожного движения РФ), неисправности тормозных систем вынесены на первое место.

ВИДЫ И УСТРОЙСТВО ТОРМОЗНЫХ СИСТЕМ

В современных автомобилях используют устройства тормозов двух видов – дисковые и барабанные. Название устройств видов тормозных систем пошло от используемого главного элемента, воспринимающего тормозное усилие, выполненного в виде диска или в виде барабана.

Барабанные тормоза насчитывают более ста лет, в настоящее время считаются устаревшими, обычно применяются в ус

тройстве заднего моста автомобиля. Устройство задних барабанных тормозов достаточно простое и надежное. Ступица колеса жестко соединена с тормозным барабаном, который и воспринимает тормозящее усилие от двух тормозных колодок со специальными накладками. Пара колодок и гидравлический привод, называемый еще колесным цилиндром, смонтированы на тормозном щите, являющимся силовой деталью заднего моста. Устройство барабана таково, что удачно закрывает весь механизм от грязи и пыли, поэтому задний механизм торможения менее восприимчив к воздействию окружающей среды.

При нажатии педали тормоза давление гидравлической жидкости передается в рабочую полость колесного цилиндра и выталкивает из него два симметричных штока, прижимающих колодки к внутренней поверхности тормозного барабана. В старых моделях барабан изготавливался из специальных сортов чугуна, современные барабаны отливаются из алюминиевых сплавов с чугунными вставками, что значительно улучшает отведение тепла от трущихся поверхностей.

В конструкции барабанного механизма предусмотрено крепление троса стояночного тормоза. При выжимании рычага на определенную величину, легко контролируемую по количеству щелчков храповика фиксатора, трос натягивается и через специальный рычаг механизма тормоза с усилием прижимает колодки заднего тормоза к барабану, тем самым фиксируя колеса машины.

Преимущества устройства барабанных систем:

  • общая рабочая поверхность колодок составляет не менее 400 см2для легкового автомобиля класса «В», что в разы больше суммарной поверхности накладок дисковых систем;
  • при меньшей эффективности, значительно большее останавливающее действие;
  • устройство привода позволяет легко подключить трос ручного стояночного тормоза, тогда как для дисковых систем это сделать значительно сложнее;
  • накладки на колодках изнашиваются медленнее.

Важно! Контролировать, насколько выработана и изношена рабочая поверхность барабана, в силу специфики устройства достаточно сложно, поэтому следует с каждой регулировкой системы демонтировать барабан и замерять остаточную толщину стенки.

Усилие торможения может достаточно изменить траекторию движения автомобиля, поэтому в системе управления торможением первым всегда подключается привод задних колес, с небольшим опозданием подключается привод колодок передних колес. Благодаря такой последовательности обеспечивается стабильность курса движения машины без бокового заноса или разворота.

Принцип работы тормозной системы

Принцип работы тормозной системы рассмотрен на примере гидравлической рабочей системы.

При нажатии на педаль тормоза нагрузка передается к усилителю, который создает дополнительное усилие на главном тормозном цилиндре. Поршень главного тормозного цилиндра нагнетает жидкость через трубопроводы к колесным цилиндрам. При этом увеличивается давление жидкости в тормозном приводе. Поршни колесных цилиндров перемещают тормозные колодки к дискам (барабанам).

При дальнейшем нажатии на педаль увеличивается давление жидкости и происходит срабатывание тормозных механизмов, которое приводит к замедлению вращения колес и поялению тормозных сил в точке контакта шин с дорогой. Чем больше приложена сила к тормозной педали, тем быстрее и эффективнее осуществляется торможение колес. Давление жидкости при торможении может достигать 10-15 МПа.

При окончании торможения (отпускании тормозной педали), педаль под воздействием возвратной пружины перемещается в исходное положение. В исходное положение перемещается поршень главного тормозного цилиндра. Пружинные элементы отводят колодки от дисков (барабанов). Тормозная жидкость из колесных цилиндров по трубопроводам вытесняется в главный тормозной цилиндр. Давление в системе падает.

Эффективность тормозной системы значительно повышается за счет применения систем активной безопасности автомобиля.

ТОРМОЗНЫЕ МЕХАНИЗМЫ

Механизмы тормозов используются для создания противодействующего вращению колёс механического момента. В основном на всех авто применяются фрикционные механизмы, работающие на трении соприкасающихся материалов. Они устанавливаются на колесе и делятся по конструкции на дисковые и барабанные типы.

1 — колесная шпилька дисковые тормоза
2 — направляющий палец
3 — смотровое отверстие
4 — суппорт
5  — клапан
6 — рабочий цилиндр
7 — тормозной шланг
8 — тормозная колодка
9 — вентиляционное отверстие
10 — тормозной диск
11 — ступица колеса
12- грязезащитный колпачок

Дисковые механизмы могут быть с подвижным или статичным суппортом. Подвижный суппорт способствует равномерному износу трущихся накладок и, кроме того, обеспечивает постоянный зазор до поверхности диска вне зависимости от выработки накладок. Он крепится на подвеске с помощью кронштейна и имеет пазы для установки рабочих цилиндров. Диск, соединённый со ступицей колеса, имеет гладкую поверхность и отверстия для быстрого воздушного охлаждения.

Колодки с тормозящими накладками в нормальном положении прижаты к суппорту возвратными пружинами. Под давлением штока поршня исполнительных цилиндров колодки отжимаются к поверхности диска, происходит его торможение. Для индикации выработки накладок в колодках имеется датчик износа, который сигнализирует на приборную доску о критической выработке фрикционного поверхностного слоя колодок.

Барабанные механизмы имеют полукруглые колодки в виде полумесяца с фрикционными накладками с наружной стороны, нижние концы которых закреплены на неподвижной оси, а верхние концы могут раздвигаться под давлением поршней исполнительных цилиндров тормозов. Прижатые в нормальном положении друг к другу стяжными пружинами полукруглые колодки под давлением поршней раздвигаются и распирают внутреннюю поверхность вращающегося барабана. Трение поверхностей колодок и барабана приводит к торможению колеса. Для компенсации выработки трущейся поверхности имеется механизм самоподвода колодок к барабану.

По отношению к тормозам барабанного типа дисковые механизмы имеют следующие преимущества:

  • температурные изменения материала не влияют на состояние поверхности, и тормозной момент не зависит от нагрева диска;
  • эффективное воздушное охлаждение за счёт использования отверстий на диске и высокая температурная стойкость материала;
  • меньший тормозной путь за счёт активного действия всей поверхности колодок;
  • меньше вес и габариты;
  • высокая чувствительность системы торможения;
  • оперативность срабатывания;
  • лёгкость замены колодок, не требуется обточка и подгонка накладок при замене колодок;
  • до 70% инерции движения автомобиля могут гаситься на передних тормозных дисках.

О тормозных приводах

В автомобильных тормозных системах нашли применение вот эти типы тормозных приводов:

 

  • гидравлический;
  • пневматический;
  • комбинированный.
  • механический;

Гидравлический привод получил самое широкое распространение в рабочей тормозной системе автомобиля. В него входят:

  • главный тормозной цилиндр;
  • тормозная педаль;
  • колесные цилиндры;
  • усилитель тормозов
  • шланги и трубопроводы (рабочие контура).

При усилии на тормозную педаль водителем, та передает усилие от ноги на главный тормозной цилиндр. Усилитель тормозов дополнительно создает усилие, облегчая тем самым жизнь водителя. Широкое применение на машинах приобрел вакуумный усилитель тормозов.

 Главный тормозной цилиндр нагнетает тормозную жидкость к тормозным цилиндрам. Обычно над главным цилиндром стоит расширительный бачок, в нем содержится тормозная жидкость.

Колесный цилиндр прижимает тормозные колодки к тормозному барабану или диску.

Рабочий контур сейчас представляет из себя основной и вспомогательный. Например, вся система исправна, то значит работают оба, но при неисправности одного из них — другой будет работать.

Широко распространены три основные компоновки разделения рабочих контуров:

  • 2 + 2 подключенных параллельно — задние + передние;
  • 2 + 2 подключенных диагонально — правый передний + левый задний и так далее;
  • 4 + 2 в один контур подключены два передних, а в другой тормозные механизмы всех колес.

Прогресс не стоит на месте и сейчас в состав гидравлического тормозного привода добавляются разные электронные компоненты:

  • усилитель экстренного торможения
  • антиблокировочная система тормозов;
  • антипробуксовочная система;
  • система распределения тормозных усилий;
  • электронная блокировка дифференциала.

Пневматический привод применяется в тормозной системе большегрузных автомобилей.

Комбинированный тормозной привод — это комбинация разных типов привода.

Механический привод применяется в стояночной тормозной системе. Он включает в себя систему тяг и тросов, с помощью которых объединяет систему в одно целое, обычно на задние колеса имеет привод. Рычаг тормоза соединен при помощи тонкого троса с тормозными механизмами, где есть устройство, которое приводит в действие основные или стояночные колодки.

Есть автомобили, где стояночная система работает от ножной педали. Сейчас всё чаще стали применять в стояночной системе электропривод, который получил название — электромеханический стояночный тормоз.

Итак, как работает гидравлическая тормозная система

Осталось рассмотреть работу тормозной системы, что мы сделаем на примере гидравлической системы.

Когда водитель нажимает на педаль тормоза, то передается нагрузка к усилителю и тот создает усилие на главном тормозном цилиндре. А в свою очередь поршень главного тормозного цилиндра через трубопроводы нагнетает жидкость к колесным цилиндрам. Поршни колесных цилиндров от давления жидкости передвигают тормозные колодки к дискам или барабанам и происходит торможение автомобиля.

Когда водитель убирает ногу с педали тормоза, то педаль от действия возвратной пружины возвращается в начальное положение. Также, в свое положение возвращается и поршень главного тормозного цилиндра, а пружины отводят колодки от барабанов или дисков. Тормозная жидкость возвращается обратно в главный тормозной цилиндр и падает давление в системе.

УХОД ЗА ТОРМОЗНОЙ СИСТЕМОЙ АВТОМОБИЛЯ

Как один из наиболее важных узлов, тормозная система автомобиля требует постоянного внимания и ухода. Здесь буквально любая неисправность может привести к непредсказуемым последствиям на дороге.

Некоторые диагнозы можно поставить, исходя из характера поведения тормозной педали. Так увеличенный ход или «мягкая» педаль свидетельствуют, скорее всего, о попадании воздуха в систему гидропривода в результате утечки тормозной жидкости. Поэтому необходимо периодически контролировать уровень жидкости в бачке.

Её повышенный расход может быть следствием повреждения гидрошлангов и трубок, а также обыкновенного испарения со временем. Это приводит к попаданию в систему воздуха и отказу тормозов.

Пришедшие в негодность детали необходимо заменить, а систему придется прокачивать, выпуская воздух из каждого рабочего цилиндра на колесах и доливая жидкость. Процесс длительный и нудный.

Уход автомобиля при торможении в сторону говорит о возможном выходе из строя одного из рабочих цилиндров или чрезмерном износе накладок на каком-то определенном колесе. При загрязнении тормозных механизмов может возникать характерный шум при нажатии на педаль.

Все эти неисправности легко устраняются самостоятельно или обращением в сервисный центр. А чтобы свести к минимуму вышеописанные неприятности, берегите тормоза, чаще используйте торможение двигателем, особенно на крутых и затяжных спусках. Продолжительное по времени включение основной рабочей системы ведет к перегреву деталей и служит причиной различных поломок

Выхлопная система: описание,фото,назначение,тюнинг

Тормозные колодки описание виды фото видео параметры категории

Редуктор и все, что нужно о нем знать — описание,виды,фото,видео

ПОХОЖИЕ СТАТЬИ:

seite1.ru

Устройство и назначение тормозной системы

Устройство и назначение тормозной системы

Тормозная система служит для снижения скорости и быстрой остановки автомобиля, а также для удержания его на месте при стоянке. Наличие надежных тормозов позволяет увеличить среднюю скорость движения, а, следовательно, эффективность при эксплуатации автомобиля. К тормозной системе автомобиля предъявляются высокие требования. Она должна обеспечивать возможность быстрого снижения скорости и полной остановки автомобиля в различных условиях движения. На стоянках с продольным уклоном до 16% полностью груженый автомобиль должен надежно удерживаться тормозами от самопроизвольного перемещения. Современный автомобиль оборудуется рабочей, запасной, стояночной и вспомогательной тормозными системами.

Рабочая тормозная система служит для снижения скорости движения автомобиля вплоть до полной его остановки вне зависимости от его скорости, нагрузки и уклонов дороги. Стояночная тормозная система служит для удержания неподвижного автомобиля на горизонтальном участке или уклоне дороги и должна обеспечивать неподвижное состояние снаряженного легкового автомобиля на уклоне 23% включительно.

Стояночная тормозная система выполняет также функцию аварийной тормозной системы в случае выхода из строя рабочей тормозной системы. Запасная тормозная система предназначена для плавного снижения скорости движения автомобиля до остановки, в случаи отказа полной или частичной рабочей системы; она может быть менее эффективной, чем рабочая тормозная система.

Вспомогательная система тормозов предназначена для поддержания постоянной скорости автомобиля, при движении его на затяжных спусках горных дорог, с целью снижения нагрузки на рабочею тормозную систему при длительном торможении.

Каждая тормозная система состоит из тормозных механизмов, которые обеспечивают затормаживание колес или вал трансмиссий, и тормозного привода приводящего в действие тормозной механизм.

Гидравлический привод предназначен для передачи усилия водителя через педаль с помощью тормозной жидкости, и состоит из: тормозного главного цилиндра, колесного тормозного цилиндра и соединительных трубок и шлангов, гидровакуумного усилителя и регулятора давления задних тормозов.

Рабочая тормозная система имеет двухконтурный раздельный гидравлический привод на тормозные механизмы передних и задних колес. Также применяется рабочая тормозная система с диагональным разделением контуров, что значительно повышает безопасность вождения автомобиля. Один контур гидропривода обеспечивает работу правого переднего и левого заднего тормозных механизмов, другого – левого переднего и правого заднего. Это позволяет уменьшить тормозной путь в случае повреждения соединительных трубок передних (дисковых) тормозных механизмов. При отказе одного из контуров рабочей тормозной системы используется второй контур, обеспечивающий остановку автомобиля с достаточной эффективностью.

Краткое описание и принцип действия тормозной системы автомобиля ВАЗ-210 8

1 – главный цилиндр гидропривода тормозов;

2 – трубопровод контура «правый передний – левый задний тормоз»;

3 – гибкий шланг переднего тормоза;

4 – бачок главного цилиндра;

5 – вакуумный усилитель;

6 – трубопровод контура «левый передний – правый задний тормоз»;

7 – тормозной механизм заднего колеса;

8 – упругий рычаг привода регулятора давления;

9 – гибкий шланг заднего тормоза;

10 – регулятор давления;

11 – рычаг привода регулятора давления;

12 – педаль тормоза;

13 – тормозной механизм переднего колеса.

Описание конструкции

Рабочая тормозная система — гидравлическая, двухконтурная (с диагональным разделением контуров), с регулятором давления 10, вакуумным усилителем 5 и индикатором недостаточного уровня тормозной жидкости в бачке. При отказе одного из контуров тормозной системы второй контур обеспечивает торможение автомобиля, хотя и с меньшей эффективностью.

ТОРМОЗНЫЕ МЕХАНИЗМЫ ПЕРЕДНИХ КОЛЕС

Тормозные механизмы передних колес 13 — дисковые, с однопоршневой плавающей скобой. На заводе автомобили комплектуются колодками с электрическим индикатором износа ( на автомобиле установлен электронный блок контроля).

Схема тормозного механизма показана на рис. 6-12 (6-13) суппорта 12 (4) в сборе с рабочими цилиндрами 17, тормозного диска 18, двух тормозных колодок 16(11), соединительных пальцев 8 (8) и трубопроводов.

Суппорт крепится к кронштейну 11 двумя болтами 9, которые стопорятся отгибанием на грань болтов стопорных пластин. Кронштейн 11, в свою очередь, крепится к фланцу поворотного кулака 10 вместе с защитным кожухом 13 и поворотным рычагом. В суппорте выполнен радиусный паз, через который проходит тормозной диск 18 и два поперечных паза для размещения тормозных колодок 16. В приливах суппорта имеются два окна с направляющими пазами, в которых установлены два противолежащих цилиндра 17. Для фиксацию цилиндров относительно суппорта в цилиндре установлен пружинный фиксатор 4, входящий в боковой паз суппорта.

В каждом цилиндре расположен поршень 3(1), который уплотняется резиновым кольцом 6 (3). Оно расположено в канавке цилиндра и плотно обжимает поверхность поршня. Полость цилиндра защищена от загрязнения резиновым колпачком 7 (2).

Рабочие полости цилиндров соединены между собой трубопроводом 2 (5). Во внешний цилиндр ввернут штуцер 1 (6) для прокачки контура привода передних тормозов, во внутренний — штуцер шланга для подвода тормозной жидкости.

Поршень 3 упирается в тормозные колодки 16, которые установлены на пальцах 8 и поджимаются к ним пружинами 15 (7). Пальцы 8 удерживаются в цилиндре шплинтами 14 (9).

Тормозной диск 18 крепится к ступице колеса двумя установочными штифтами.

При торможении поршни под давлением жидкости выдвигаются из колесных цилиндров и поджимают колодки к тормозному диску. На передних колесах создается тормозной момент. При движении поршни увлекают за собой уплотнительные кольца 6, которые при этом скручиваются. При растормаживании, когда давление в приводе передних колес падает, поршни за счет упругой деформации колец 6 вдвигаются обратно в цилиндры. При этом накладки тормозных колодок будут находиться в легком соприкосновении с тормозным диском. При износе накладок, когда зазор в тормозном механизме увеличивается, в приводе создается большее давление жидкости, чтобы создать тормозной момент. Под действием давления жидкости поршни 3 проскальзывают относительно колец 6 и занимают новое положение в цилиндрах, которое обеспечивает оптимальный зазор между диском и колодками. При замене колодок, когда толщина накладок уменьшается до 1,5 мм, поршни вручную утапливают в цилиндры, чтобы установить новые колодки.

Тормозные диски — чугунные. Минимальная толщина диска при износе 10,8 мм, максимально допустимое биение (на наибольшем радиусе) — 0,15 мм.

ТОРМОЗНЫЕ МЕХАНИЗМЫ ЗАДНИХ КОЛЕС

Тормозные механизмы задних колес 7 — барабанные, с двухпоршневыми колесными цилиндрами и автоматической регулировкой зазора между колодками и барабаном. Устройство автоматической регулировки зазора расположено в колесном цилиндре.

Тормозной механизм заднего колеса барабанного типа, с самоустанавливающимися колодками. Тормозные колодки 2 (рис. 5) с накладками, колесный цилиндр 1 и другие детали смонтированы на тормозном щите 6, который крепится к фланцу балки заднего моста.

.


Автоматическое устройство регулировки зазора между барабаном и накладками расположено в колесных цилиндрах .

Основным его элементом является разрезное упорное кольцо 9, установленное на поршне 4 между буртиком упорного винта 10 и двумя сухарями 8 с зазором 1,25-1,65 мм. Упорные кольца установлены в цилиндре с натягом, обеспечивающим усилие сдвига колец по зеркалу цилиндра не менее 343 Н (35 кгс), что превышает усилие от стяжных пружин тормозных колодок.

При оптимальном зазоре между колодками и барабаном при торможении колодки раздвигаются до выбора зазора 1,25-1,65 мм между буртиком винта и буртиком упорного кольца. Указанный зазор обеспечивает ход колодок для создания максимального тормозного момента.

При износе накладок зазор 1,25-1,65 мм устраняется полностью, буртик на упорном винте 10 прижимается к буртику кольца 9, вследствие чего упорное кольцо сдвигается вслед за поршнем на величину износа. С прекращением торможения, усилием стяжных пружин поршни сдвигаются до упора сухарей в буртики упорных колец. Так поддерживается оптимальный зазор в тормозном механизме.

Тормозной барабан отлит из алюминиевого сплава, имеет на наружной поверхности ребра жесткости и сквозные отверстия для сообщения внутренней полости барабана с атмосферой. Внутри барабана находится чугунное кольцо , с которым контактируются тормозные колодки. Барабан крепится к фланцу полуоси двумя штифтами и дополнительно вместе с колесом болтами. В барабане выполнены два резьбовых отверстия, в которые ввертываются установочные штифты при снятии барабана. Такое снятие возможно только в том случае, когда барабан » не прикипел» к фланцу полуоси, иначе возможен срыв резьбы в отверстиях барабана. Чтобы не происходило такого » прикипания» при сборке необходимо наносить на контактирующие поверхности барабана и полуоси графитовую смазку.

ГЛАВНЫЙ ЦИЛИНДР

Главный тормозной цилиндр 1 крепится к корпусу вакуумного усилителя 5 на двух шпильках. В отверстия в верхней части цилиндра на резиновых уплотнениях вставлен полупрозрачный полиэтиленовый тормозной бачок 4 с датчиком недостаточного уровня жидкости. На бачке нанесены метки максимального и минимального уровней жидкости. В нижней части цилиндра ввернуты два винта, ограничивающие перемещение поршней. Винты уплотнены медными прокладками. В передней части цилиндра (по ходу автомобиля) ввернута заглушка, служащая упором возвратной пружины и уплотненная медной прокладкой В цилиндре последовательно установлены два поршня, один из которых приводит в действие задние тормоза, другой — передние. Между пробкой и поршнем 12, а также между поршнями 12 и 14 установлены возвратные пружины 7, под действием которых они возвращаются в исходное положение при растормаживании. При этом ход поршней в цилиндре ограничен винтами 6, хвостовики которых заходят в продольные пазы поршней. Поршень 12 привода задних тормозов уплотнен в цилиндре двумя кольцами 10. Переднее кольцо пружиной 9 поджато к торцевой поверхности канавки. Другой конец пружины упирается в тарелку 82. Заднее кольцо поджато к торцу поршня пружиной 7 через шайбу 13.

mirznanii.com

Тормозная система автомобиля: устройство, назначение и принцип действия тормозов

Одной из самых важных систем в автомобиле, является система торможения. При ее неисправности автомобиль становится смертельно опасным как для водителя, едущих с ним пассажиров, так и для всех остальных участников дорожного движения, включая вездесущих пешеходов. Поэтому исправность тормозной системы автомобиля — залог сохранности не только здоровья, но и жизни.

Тормозная система автомобиля предназначена для замедления или осуществления полной остановки транспортного средства. В тормозную систему входит ряд составных частей – это тормозные колодки, шланги, тормозные цилиндры, вакуумный усилитель, барабаны или диски.

Все современные автомобили оборудуются фрикционными тормозами. В основе работоспособности фрикционных тормозов используется сила трения неподвижных деталей механизма о подвижные.

Тормозная система разделяется на два вида: рабочая, которая предназначена для снижения скорости и остановки автомобиля и стояночная, которая используется для того, чтобы удержать автомобиль на неровной поверхности (ручник, но в современных автомобилях бывает и автоматический стояночный тормоз). Согласно требований, которые предъявляются странами, входящими в ЕЭС, рабочей и стояночной тормозной системами должен быть оборудован каждый производимый автомобиль.

Обеспечить безопасную эксплуатацию транспортных средств без высоко-эффективной и крайне надежной тормозной системы не представляется возможным. Перед инженерами, работающими в автомобилестроении, постоянно стоит задача совершенствования тормозных систем. Многие из этих усовершенствований, к сожалению, предлагаются только в дополнительных опциях к автомобилю или только в дорогих комплектациях, за которые приходится платить больше. Но стоит ли экономить на собственной безопасности? Это решает каждый автолюбитель самостоятельно.

Принцип действия тормозной системы

Схема подготовлена по материалам automn.ru и systemsauto.ru

  1. трубопровод контура «левый передний-правый задний тормозные механизмы»
  2. сигнальное устройство
  3. трубопровод контура «правый передний — левый задний тормозные механизмы»
  4. бачок главного тормозного цилиндра
  5. главный тормозной цилиндр
  6. вакуумный усилитель тормозов
  7. педаль тормоза
  8. регулятор давления
  9. трос стояночного тормоза
  10. тормозной механизм заднего колеса
  11. регулировочный наконечник стояночного тормоза
  12. рычаг привода стояночного тормоза
  13. тормозной механизм переднего колеса

При нажатии на педаль тормоза в тормозной системе создается давление, которое усиливается вакуумным усилителем и передается через тормозные шланги на неподвижные части тормозного механизма — колодки.

Тем самым тормозные колодки приводятся в движение и либо зажимают тормозной диск (в дисковых тормозах), либо упираются в стенки барабана (в тормозах барабанного типа), что обеспечивает торможение.

Дисковые тормоза хотя и более дорогие, но более надежные, поэтому барабанные тормоза используются лишь на задних колесах бюджетных автомобилей.

Схема дисковых тормозов

Дисковый тормозной механизм состоит из тормозного диска, который закреплен на колесе и вращается вместе с ним, двух неподвижных колодок, которые установлены внутри суппорта по обе стороны от тормозного диска.

Суппорт крепится на кронштейне. На суппорте, в его пазах также крепятся рабочие цилиндры, которые во время торможения прижимают тормозные колодки к диску.

Тормозные колодки после отпускания педали тормоза возвращаются в исходное положение пружинными элементами.

Тормозной диск в процессе торможения, под воздействием сил трения сильно нагревается. Охлаждение тормозных дисков происходит за счет конвективного омовения потоком воздуха. Для улучшения отвода накапливаемого диском тепла в нем делаются специальные отверстия и в этом случае диск является вентилируемым. Для еще большего повышения эффективности процесса торможения и нивелирования последствий перегрева диска на спортивных и скоростных автомобилях устанавливают тормозные диски, изготовленные с применением специальных керамических материалов.

Тормозной привод служит для обеспечения управления всеми составляющими тормозного механизма. В современных тормозных системах применяются такие типы тормозных приводов: механический, пневматический, гидравлический, электрический и комбинированный.

Механический привод применяется в стояночной тормозной системе (ручник). Механический привод — это система тяг, тросов и рычагов, которые служат для соединения рычага стояночного тормоза с тормозным механизмом задних колес автомобиля.

Существует также система механического привода стояночного тормоза, приводимая в действие с помощью ножной педали.

Гидравлический привод является наиболее распространенным типом привода в рабочей системе тормозов. Конструкция гидравлического привода включает: педаль тормоза, главный тормозной цилиндр, вакуумный усилитель тормозов, рабочие цилиндры, шланги и трубопроводы.

Принцип работы гидравлического привода тормозов описан чуть выше.

Для обеспечения надежности тормозной системы работа гидравлического привода организуется по двум (как правило) независимым контурам. При поломке одного контура, его функции берет на себя другой контур. Рабочие контуры могут дублировать функции друг-друга либо выполнять часть какую-то часть функций второго контура. Возможно также и выполнение каждым контуром строго своих функций. Наиболее распространенной является диагональная схема работы контуров.

Пневматический привод используется преимущественно в тормозной системе грузовых автомобилей.

Комбинированный тормозной привод, как следует из названия, представляет собой сочетание (комбинацию) двух видов привода (электропневматический, например).

Далее скажем пару слов о дополнительных системах, которые делают автомобиль более безопасным…

Анти-блокировочная система ABS, предназначается для предотвращения блокирования колес автомобиля во время очень сильного нажатия на педаль тормоза, что позволяет избежать движения юзом, и сохранить контроль над автомобилем. В состав системы ABS (Antilock Brake System) входят три элемента – это датчик измерения скорости, который устанавливается на каждом колесе, модулятор давления тормозной жидкости и блок управления системой ABS.

Система TCS создана на основе системы ABS и предназначена для предотвращения пробуксовывания колес во время слишком резкого старта или на скользкой дороге. Система (Traction Control System) существует и под названиями: ASR, ASC, ETS. Она отличается от системы ABS только наличием модифицированного блока управления.

ESP. Еще одной полезной системой, которая может устанавливаться на автомобиле, является система электронной стабилизации колес ESP. Эта система работает в повороте, причем его угол и скорость не имеют значения, при возникновении заноса задней оси автомобиля, ESP (Electronic Stability Program) обеспечивает подтормаживание переднего наружного колеса. В такой ситуации образуется стабилизирующий момент, возникающий между колесами автомобиля, который возвращает движущийся автомобиль на безопасную траекторию.

Видео: принцип работы тормозной системы

Читайте также, какие неисправности тормозной системы наиболее часто встречаются…

autodromo.ru

Виды современных тормозных систем

Инженеры справедливо называют тормозную систему автомобиля основной составляющей любого транспортного средства. Задачей этого устройства является обеспечение безопасности во время движения. Имея в распоряжении тормоз, водитель может вовремя замедлить ход, либо же остановить машину полностью. Дополнительные системы активно помогают при езде и во время стоянки транспорта. Если изучить исключительно механические компоненты, ничего сложного в системе торможения вы не увидите. Она состоит преимущественно из привода и исполнительных механизмов. Этот принцип устройства применяется на всех тормозах. Но современные автомобили пошли намного дальше. Производители начали использовать вспомогательные системы, с помощью которых удалось повысить эффективность работы тормозов.

Разновидность современных тормозных систем.

Виды

Для начала нужно познакомиться с видами тормозных систем, которые используются на транспортных средствах. Тормоза используются с самого появления первых машин. Тогда конструкция была предельно простая и примитивная. Но и её хватало для обеспечения эффективного торможения из-за малой максимальной скорости. Но постепенно машины становились быстрее. Это заставило производителей разрабатывать более действенные и сложные тормозные механизмы. Если говорить о разновидностях, то классификация тормозных систем для автомобилей предусматривает несколько разных решений в зависимости от:

  • назначения;
  • привода;
  • рабочих механизмов.

Поскольку в торможении принимает участие целый ряд элементов и агрегатов, нужно понять, чем системы друг от друга отличаются.

Назначение

Начнём с назначений и типов тормозных систем. Легковые машины предусматривают использование рабочего и стояночного тормоза. В роли дополнительных устройств выступают резервные и горные системы торможения. Рабочий тип тормозной системы легковых автомобилей замедляет движение транспорта и позволяет полностью остановиться. Особенностью является то, что интенсивность снижения скорости напрямую зависит от того, как сильно водитель нажимает на соответствующую педаль. Название стояночного тормоза говорит само за себя. С его помощью машина блокирует любые возможные перемещения, находясь на стоянке. Колёса обездвиживаются, а потому исключается произвольное движение, которое может возникнуть при нахождении ТС на каком-нибудь склоне.

Резервные или аварийные тормоза служат в качестве вспомогательного механизма на тот случай, когда ломается основной агрегат. У большинства легковых машин запасной аварийный тормоз преимущественно отсутствует, а вместо него эта роль передаётся стояночной системе. Горные тормоза актуально применять в конструкции грузовых машин. Такая система позволяет принудительно сбросить обороты двигателя, когда грузовой транспорт движется с горы. Так замедляется движение авто без применения основного рабочего тормоза. Это полезное решение, поскольку исключается перегрев и предотвращается возможный отказ главной системы.

Привод

Также тормозные системы различают в зависимости от того, какой тип привода на каждой из них используется. Задачей привода является передача усилия рабочих механизмов, либо же выполнение тех или иных действий с компонентами системы, отвечающей за торможение. Привод бывает:

  • механическим;
  • гидравлическим;
  • пневматическим;
  • комбинированным.

В механических системах воздействие на рабочие узлы осуществляется с помощью тяг, рычагов и специальных тросов. В обычных тормозах этот привод практически не применяется. Зато часто оказывается в составе стояночного тормоза. Гидравлические приводы являются наиболее распространёнными при создании легковых машин. Основой его работы является физическое свойство жидкости, которое заключается в её несжимаемости. С её помощью усилие довольно легко передаётся на рабочие механизмы, а потому водителю не приходится сильно давить на педаль.

Пневматический привод получил широкое распространение в конструкции грузовых машин. Рабочим телом тут является сжатый воздух, нагнетание которого осуществляется за счёт использования компрессора. Когда водитель давит на педаль, открываются специальные каналы. По ним воздух идёт в камеры, непосредственно связанными с рабочими тормозными механизмами. Комбинированный привод актуален для спецтехники. Особенностью системы является одновременное использование разных приводов. На легковых машинах не устанавливается.

Рабочие механизмы

Рабочий механизм нужен для того, чтобы оказывать воздействие на автомобильные колёса, замедляя скорость их вращения. Потому это главные компоненты всей системы. Их делят на ленточные, дисковые и барабанные. Ленточные механизмы практически не применяются. Единственным исключением является спецтехника. Суть заключается в том, что на ось, предназначенную для передачи вращений на колёса, устанавливается барабан с лентой. Когда водитель тормозит, лента натягивается, и за счёт силы трения скорость вращения барабана падает. Дисковые механизмы оказались самыми распространёнными среди легковых транспортных средств. Основным элементом является диск, который жёстко фиксируют на ступице колеса.

Привод имеет непосредственную связь с суппортом, стоящем на диске торможения. Здесь имеются колодки фрикционного типа. Когда нажимается педаль, колодка прижимается к диску, и сила трения способствует замедлению. Если система барабанная, тогда место диска занимает барабан, установленный на ступицу. Внутри барабана есть пара колодок, которые имеют форму полумесяца. Их монтируют на неподвижную часть ступицы. Когда происходит торможение, этот провод разжимает колодки, после чего они начинают прижиматься к барабану, тем самым замедляя скорость его вращения.

Преимущества и недостатки

Поскольку о ленточных приводах говорить не имеет смысла, стоит обсудить сильные и слабые стороны дисковых и барабанных тормозных систем. К достоинствам дисковых решений относят следующие моменты:

  • высокий уровень эффективности;
  • небольшой вес;
  • компактные размеры;
  • низкая температура гидравлической жидкости при работе;
  • высокие показатели надёжности;
  • стабильность.

При этом дисковые тормоза недостаточно хорошо защищены от грязи, которая способна негативно повлиять на работоспособность всей системы. Что же касается барабанных аналогов, то их преимуществами являются:

  1. Большие показатели усилия. Это позволяет эффективно использовать барабаны на больших машинах и грузовиках, поскольку их масса внушительная, а потому дисковыми тормозами останавливать подобные транспортные средства сложнее.
  2. Длительный срок службы. Внутрь привода не проникает грязь, а потому накладки изнашиваются с меньшей интенсивностью.
  3. Доступная цена. Это касается покупки и обслуживания.

Но не всё так идеально с барабанными тормозами. Нельзя забывать про медленную скорость из реакции на нажатие педали, а также вероятность залипания тормозных колодок. Такое происходит, если машину в условиях сильной жары или чрезмерного холода оставляют на улице с включённым ручным тормозом.

Системы безопасности

Современные автомобили оснащаются дополнительным оборудованием, которое призвано повысить безопасность и поднять эффективность основных тормозных механизмов. Многие знают о том, что такое антиблокировочная тормозная система и зачем она нужна. Впервые о ней на практике узнали в 1978 году, когда компания Bosch разработала новинку и запустила её в производство. Тормозная система АБС предназначена для предотвращения блокировки автомобильных колёс, когда водитель резко нажимает на педаль и тормозит. Это позволяет машине сохранять устойчивость даже при условии экстренной остановки. Плюс АБС способствует сохранению управляемости транспортным средством. Но современные тенденции и увеличение скоростей заставили производителей придумывать новые решения для обеспечения надлежащей безопасности. Помимо АБС, которая стала уже стандартным решением на всех машинах, добавили ещё несколько новых систем. А именно:

  • Brake Assist;
  • Dynamic Brake Control;
  • Cornering Brake Control;
  • Electronic Brake Force Distribution.

Все эти вспомогательные, но очень полезные дополнительные системы торможения называют сокращённо BA (BAS или EBS), DBC, CBC и EBD.

BA

Чтобы повысить эффективность, после внедрения АБС начали использовать дополнительно тормозные системы EBS. На некоторых автомобилях её называют просто BA или BAS. От названия суть не меняется. Система направлена на снижение времени, необходимого для срабатывания тормозной системы. АБС позволяет максимально повысить эффективность торможения, если педаль тормоза выжата полностью. Но она не активируется, когда педаль нажимают слабо. Усилитель срабатывает в определённых ситуациях и обеспечивает аварийное торможение, если водитель резко жмёт на педаль, но ему не удаётся приложить достаточное усилие. Система измеряет, как быстро и с каким приложенным усилием осуществляется нажатие. Если это нужно, автоматически и моментально увеличивается давление внутри системы торможения до максимальных значений.

Чтобы реализовать такую задумку, в пневмоусилители вмонтировали датчик скорости, который следит за перемещением штока, и электромагнитный тип привода. Когда от датчика поступает сигнал об очень быстром перемещении штока, то есть водитель резко надавить на педаль, включается электромагнит и повышает величину воздействующей на шток силы. Именно это позволяет снизить время торможения, порой спасая водителю жизнь. Современные системы EBS способны запоминать особенности работы с тормозами водителя в обычном режиме, тем самым распознаётся экстренное торможение. Наличие EBS возможно только при условии присутствия на автомобиле ABS, поскольку они тесно взаимодействуют друг с другом.

Если говорить коротко, то EBS служит для додавливания педали тормоза, благодаря чему активируется система ABS. Но при этом EBS не способна распределять усилия на разные колёса. Сейчас ведутся активные разработки усовершенствованной версии этой тормозной системы, позволяющей совместно работать с круиз-контролем, распознавать автоматически препятствия впереди и помогать в сокращении тормозного пути. Специалисты из компании Bosch уверены, что новинка окажется ещё эффективнее стандартного Brake Assist.

DBC

Авторами этой системы торможения выступают инженеры немецкой компании BMW. Чем-то решение напоминает рассмотренный ранее BA. Но немецкая система помогает ускорять и дополнительно усиливать рост давления в приводе тормоза автомобиля при экстренной остановке. Даже если водитель прикладывает небольшое усилие, тормозной путь сокращается до минимума. Автоматическая система считывает информацию о скорости повышения давления и усилии, которое прикладывает водитель. Так компьютер определяет, является ли ситуация опасной. Если да, незамедлительно давление возрастает до максимума, что и позволяет машине затормозить быстрее.

Дополнительно блок управлением считывает данные о скорости движения о степени износа тормозов. DBC основана на принципе гидравлического усиления, в отличие от конкурентов, где применяется вакуумный принцип. Практика показывает, что гидравлика способствует лучшему и более точно распределяемому тормозному усилию при экстренных и аварийных остановках автотранспорта. Электроника DBC напрямую связана с системой стабилизации и ABS.

CBC

Эту систему разработали также баварские специалисты из BMW ещё в 1997 году. Когда авто начинает тормозить, задние колёса на машине разгружаются. Если это торможение происходит в повороте, заднюю ось может занести, поскольку растёт нагрузка на переднюю часть. CBC тесно связана с ABS. Их совместная работа позволяет предотвращать возможный снос задней оси, когда водитель начинает тормозить на входе в поворот. Система оптимально распределяет тормозные усилия. В итоге занос не происходит, даже если водитель плотно и резко зажимает педаль тормоза. Сигналы, идущие от датчиков ABS, передаются на CBC. Также определяется скорость, с которой вращаются колёса. Эти данные позволяют регулировать рост тормозного усилия для каждого из цилиндров. Происходит это так, чтобы нарастание происходило интенсивнее на внешнем переднем колесе, если смотреть относительно поворота. Такой принцип действия позволяет предотвращать заносы. На автомобилях система работает постоянно, но это остаётся незаметным для водителей. Хотя польза от подобного решения огромная.

EBD

Много говорится о системе распределения тормозных усилий EBD, но не каждый точно понимает, что это такое. EBD расшифровывается как электронная система распределения тормозных усилий. Из этого уже становится примерно понятно, какие функции и задачи выполняет система. В автомобилях это решение используется для того, чтобы перераспределять усилия от тормозов между задними и передними колёсами. Плюс система распределения тормозного усилия, или просто EBD, помогает в грамотном автоматическом перенаправлении между левой и правой стороной транспортного средства, опираясь не текущие условия передвижения. ЕБД входит в состав традиционной системы ABS, оснащённой электронным управлением.

Когда машина движется прямолинейно и начинает тормозить, нагрузка перераспределяется. А именно нагружаются передние колёса, а задние наоборот разгружаются. Если у задних тормозов будет аналогичное усилие, как и впереди, значительно возрастёт вероятность возникновения блокировки на задних колёсах. Используя специальные датчики скорости, электронный управляющий блок ABS определяет нужный момент и регулирует усилие. Во многом грамотное распределение зависит от того, какую массу имеет перевозимый груз и как он располагается.

Также ЕБД оказывается полезной при торможении во время входа в повороты. Тогда происходит увеличение нагрузки на внешние колёса относительно поворота и разгрузка внутренних. Тем самым гарантируется защита от возможной блокировки. ЕБД ориентируется на сигналы датчиков, установленных на колёсах, а также датчиков замедления или ускорения. Это позволяет системе определить, какие условия нужно создать для безопасного торможения. Комбинируя разные клапаны, давление рабочей жидкости перераспределяется. В итоге в каждом из колёс отмечается разный показатель давления.

Современные тормозные механизмы сохранили свой изначальный принцип работы. Но новые разработки сумели значительно повысить их эффективность. Теперь машина не просто может затормозить. Она делает это аккуратно, избегая блокировки колёс, заносов и прочих неприятностей, которые могут возникнуть при необходимости экстренно сбросить скорость. Многие недооценивают значимость современных тормозных систем. Хотя именно они во многом помогают уверенно чувствовать себя на дорогах, входить в повороты на солидных скоростях и своевременно останавливаться перед выскочившим впереди препятствием. Наличие всех ассистов тормозной системы постепенно становится обязательным условием при производстве и продаже новых автомобилей. И это абсолютно правильное решение, направленное на повышение безопасности на дорогах и снижение количества аварийных ситуаций или дорожно-транспортных происшествий.

drivertip.ru

1.2. Виды тормозных систем автомобиля

Тормозная система необходима для замедления транспортного средства и полной остановки автомобиля, а также его удержания на месте.

Для этого на автомобиле используют некоторые тормозные система, как — стояночная, рабочая, вспомогательная система и запасная.

Рабочая тормозная система используется постоянно, на любой скорости, для замедления и остановки автомобиля. Рабочая тормозная система, приводится в действие, путем нажатия на педаль тормоза. Она является самой эффективной системой из всех остальных.

Запасная тормозная система используется при неисправности основной. Она бывает в виде автономной системы или её функцию выполняет часть исправной рабочей тормозной системы.

Стояночная тормозная система нужна для удержания автомобиля на одном месте. Стояночную систему использую во избежание самопроизвольного движения автомобиля.

Вспомогательная тормозная система применяется на авто с повышенной массой. Вспомогательную систему используют для торможения на склонах и спусках. Не редко бывает, что на автомобилях роль вспомогательной системы играет двигатель, где выпускной трубопровод перекрывает заслонка.

Тормозная система — это важнейшая неотъемлемая часть автомобиля, служащая для обеспечения активной безопасности водителей и пешеходов. На многих автомобилях применяют различные устройства и системы, повышающие эффективность системы при торможении — это антиблокировочная система (ABS), усилитель экстренного торможения (BAS), усилитель тормозов [3].

1.3. Основные элементы тормозной системы автомобиля

Тормозная система автомобиля состоит из тормозного привода и тормозного механизма [5].

Рис.1.3. Схема гидропривода тормозов: 1 — трубопровод контура «левый передний-правый задний тормоз»; 2-сигнальное устройство; 3 — трубопровод контура «правый передний — левый задний тормоз»; 4 — бачок главного цилиндра; 5 — главный цилиндр гидропривода тормозов; 6 — вакуумный усилитель; 7 — педаль тормоза; 8 — регулятор давления задних тормозов; 9 — трос стояночного тормоза; 10 — тормозной механизм заднего колеса; 11 — регулировочный наконечник стояночного тормоза; 12 — рычаг привода стояночного тормоза; 13 — тормозной механизм переднего колеса.

Тормозным механизмом блокируются вращения колес автомобиля и в следствии чего, появляется тормозная сила, которая является причиной остановки автомобиля. Тормозные механизмы находятся на передних и задних колесах автомобиля.

Проще говоря, все тормозные механизмы можно назвать колодочными. И уже в свою очередь, их можно разделять по трению — барабанные и дисковые. Тормозной механизм основной системы монтируется в колесо, а за раздаточной коробкой или коробкой передач находится механизм стояночной системы.

Тормозные механизмы, как правило состоят из двух частей, из неподвижной и вращающейся. Неподвижная часть – это тормозные колодки, а вращающаяся часть барабанного механизма — это тормозной барабан.

Барабанные тормозные механизмы (рис. 1.4.) чаще всего стоят на задних колесах автомобиля. В процессе эксплуатации из-за износа, зазор между колодкой и барабаном увеличивается и для его устранения используют механические регуляторы.

Рис. 1.4. Барабанный тормозной механизм заднего колеса: 1 – чашка; 2 – прижимная пружина; 3 – приводной рычаг; 4 – тормозная колодка; 5 – верхняя стяжная пружина; 6 – распорная планка; 7 – регулировочный клин; 8 – колесный тормозной цилиндр; 9 – тормозной щит; 10 – болт; 11 – стержень; 12 – эксцентрик; 13 – нажимная пружина; 14 – нижняя стяжная пружина; 15 – прижимная пружина распорной планки.

На автомобилях могут применять различные комбинации тормозных механизмов:

  • два барабанных задних, два дисковых передних;

  • четыре барабанных;

  • четыре дисковых.

В тормозном дисковом механизме (рис. 1.5.) — диск вращается, а внутри суппорта установлены, две неподвижные колодки. В суппорте установлены рабочие цилиндры, при торможении они прижимают тормозные колодки к диску, а сам суппорт надежно закреплен на кронштейне. Для увеличения отвода тепла от рабочей зоны часто используются вентилируемые диски [8].

Рис. 1.5. Схема дискового тормозного механизма: 1 — колесная шпилька; 2 — направляющий палец; 3 — смотровое отверстие; 4 — суппорт; 5 — клапан; 6 — рабочий цилиндр; 7 — тормозной шланг; 8 — тормозная колодка; 9 — вентиляционное отверстие; 10 — тормозной диск; 11 — ступица колеса; 12 — грязезащитный колпачок.

studfile.net

30Сен

Роторно поршневой двигатель: Принципы работы, плюсы и минусы роторного двигателя — особенности роторно-поршневого ДВС — журнал За рулем

Плюсы и минусы роторно-поршневого двигателя

Немного истории. Первый роторно-поршневой двигатель (РПД) был представлен народу в далеком 1957 году. Основоположниками в данной области были два немецких инженера, Феликс Ванкель и Вальтер Фройд. Изначально оба работали над разными конструкциями РПД, но позже объединив свои усилия, выпустили в свет роторно-поршневой двигатель. В настоящее время с РПД можно встретить такие авто, как Mazda RX-8, Mazda RX-7. Совсем недавнем прошлом, роторно-поршневые моторы выпускались и в России, на автозаводе ВАЗ. Но долго он тоже не продержался и сейчас уже это все в прошлом. Конструкция РПД совершенно отличная от классического двигателя внутреннего сгорания (ДВС). В этом моторе нет привычных поршней. Роль поршня выполняет трехгранный ротор. Ротор приводится в движение валом и движется эксцентрично. Как и классического ДВС у РПД так же 4 такта:

  • Впуск.
  • Сжатие.
  • Рабочий ход.
  • Выпуск.

Принцип тут такой, что за 1 оборот ротора вокруг своей оси выполняется 4 такта. В каждой из трех камер происходит такт поддерживающий работоспособность двигателя.

Теперь рассмотрим плюсы и минусы роторно-поршневого двигателя, начнем с плюсов:

  1. Роторно-поршневой двигатель имеет максимальную отдачу и КПД составляет 45%, для сравнения у дизельного ДВС этот показатель около 40%, а у бензинового ДВС и того меньше – 30%.
  2. Минимальный уровень вибраций. Это обусловлено тем, что ротор движется по кругу и не делает возвратно-поступательных движений как классический ДВС. Плюс РПД хорошо сбалансированы.
  3. РПД имеет отличные динамические характеристики, обладают высокой мощность и хорошим крутящим моментом. Так, при объеме в 1.3 литра мотор имеет показатель мощности на уровне 231 л.с и крутящий момент, равный 210Нм.
  4. Компактность. Благодаря простоте конструкции и сведенного до минимума количества деталей такие моторы весьма компактны и имеют весьма малый вес.

Исходя из вышеперечисленного, можно сказать, что роторно-поршневой двигатель весьма хорош и вполне способен конкурировать с классическими моторами. Но не все так просто как кажется. Давай рассмотрим минусы РПД.

Минусы роторно-поршневого двигателя

  1. Начнем пожалуй с самого главного минуса, это неимоверно маленький моторесурс двигателя. В среднем эти показатели не превышают отметку в 200 тысяч км.
  2. Дороговизна. Так как при изготовлении РПД требуется точнейшее оборудование, для выполнения точнейших работ над деталями, то и цена на запчасти и на сами моторы изначально очень высока. Поэтому РПД гораздо дороже чем классический ДВС.
  3. Замена масла. С маслом тоже ничего хорошего. Мотор очень трепетный и требует к себе большого внимания. Масло следует менять каждые 5 тысяч км, а то и чаще. Подливать масло тоже приходится регулярно, расход на тысячу км от 400 до 1000 мл.
  4. Большой расход топлива. При объем в 1.3л этот монстр, в смешанном цикле, кушает 15-20л бензина на 100 км пробега.
  5. Высокая токсичность выхлопа. Из-за того, что с топливовоздушной смесью горит некоторая часть масла в атмосферу выходит слишком грязный выхлоп.
  6. Огромная склонность к перегреву. Это сказывается из-за формы камеры сгорания РПД.
  7. Частая замена уплотнителей камер сгорания из-за большого воздействия ротора.

Вот и рассмотрели плюсы и минусы РПД. Сказать, что роторно-поршневой двигатель это плохой двигатель нельзя, потому что его результативность и КПД говорят сами за себя, но из некоторых недоработок конструкции, а точнее ее необычности имеется ряд недостатков. Конечно с годами это все решается и при появлении должных материалов качество этих моторов будет только расти. Но пока что РПД далековато до совершенства.

Здесь тоже важная информация для Вас

Роторно-поршневой двигатель(Ванкеля). История создания и где применялся.

Роторный двигатель постоянно привлекает к себе внимание. Конструкция – проще не придумаешь, характеристики автомобиля с ротором под капотом такие, словно там два двигателя! Так почему же мы не ездим повсеместно на роторных машинах? Ответ на этот вопрос заключается в истории создания и применения роторного двигателя, запутанной, полной подъёмов и падений…

Создатель – Феликс Ванкель

Роторный двигатель

Имеет хождение старая байка, что Ванкель придумал чудо-двигатель в 1919 году. В неё всегда верилось с трудом: как мог 17-летний парень, пусть и талантливый, такое сотворить? Для этого надо пройти обучение где-нибудь в университете, научиться конструировать и рисовать… Гораздо вероятнее сведения о первых эскизах двигателя от 1924 года, которые сделал Ванкель, окончив высшую школу и поступив на работу в издательство технической литературы. Перелопачивая горы макулатуры, можно либо навсегда потерять к технике интерес, либо начать конструировать самому. Видимо, у Феликса душа лежала именно к конструированию.

Он открыл в городе Гейдельберге собственную мастерскую, а в 1927 году появились на свет чертежи «машины с вращающимися поршнями» (на немецком языке сокращенно DKM). Первый патент DRP 507584 Феликс Ванкель получил в 1929 году, а в 1934 году подал заявку на двигатель DKM. Правда, патент он получил через два года. Тогда же, в 1936 году, Ванкель обосновывается в Линдау, где размещает свою лабораторию.

Феликс Ванкель

Потом перспективного конструктора заметила власть, и работы над DKM пришлось оставить. Ванкель работал на BMW, Daimler и DVL, основные авиамоторостроительные предприятия фашистской Германии. Так что не удивительно, что до наступления 1946 года Ванкелю пришлось сидеть в тюрьме, как пособнику режима. Лабораторию в Линдау вывезли французы, и Феликс попросту остался ни с чем.

Лишь в 1951 году Ванкель устраивается на работу в мотоциклетную фирму – уже широко известный тогда NSU. Восстанавливая лабораторию, он заинтересовал Вальтера Фройде, конструктора гоночных мотоциклов своими конструкциями. Вместе Ванкель и Фройде продавили проект в руководстве, и разработка двигателя резко ускорилась. 1 февраля 1957 года заработал первый роторный двигатель DKM-54. Он работал на метаноле, но к июню проработавший 100 часов на стенде двигатель перевели на бензин.

Принципы работы роторного двигателя

Цикл двигателя Ванкеля

Но тут Фройде предложил новую концепцию роторного двигателя! В двигателе Ванкеля (DKM) ротор вращался вокруг неподвижного вала вместе с камерой сгорания, чем обеспечивалось отсутствие вибраций. Вальтер решил камеру сгорания зафиксировать, а ротор пусть будет приводить в движение вал, то есть использовать принцип двойственности вращения для роторного двигателя. Такой тип роторного двигателя получил обозначение KKM.

Принцип двойственности вращения сам Ванкель запатентовал в 1954, но он всё-таки использовал принцип DKM. Надо сказать, что Ванкелю идея такой инверсии не нравилась, но он ничего не мог поделать – у двигателя его любимого типа DKM обслуживание было трудоёмким, чтобы сменить свечи, требовалась разборка мотора. Так что двигатель типа KKM имел гораздо больше перспектив. Его первый образец закрутился 7 июля 1958 года (правда, на нем ещё в роторе стояли свечи, как на DKM). Впоследствии свечи перенесли на корпус двигателя, и он обрёл свой облик, принципиально не менявшийся до наших дней. Теперь по этой схеме устроены все роторные двигатели. Иногда их называют «ванкелями», в честь разработчика.

В таком двигателе роль поршня играет сам ротор. Цилиндром служит статор, имеющий форму эпитрохоиды, и когда уплотнения ротора двигаются по поверхности статора, образуются камеры, в которых происходит процесс сгорания топлива. За один оборот ротора такой процесс происходит трижды, а благодаря сочетанию форм ротора и статора число тактов такое же, как у обычного ДВС: впуск, сжатие, рабочий ход и выпуск. Анимацию работы роторного двигателя можно посмотреть здесь.

У роторного двигателя нет системы газораспределения – за газораспределительный механизм работает ротор. Он сам открывает и закрывает окна в нужный момент. Еще ему не нужны балансирные валы, двухсекционный двигатель по уровню вибраций можно сравнить с многоцилиндровыми ДВС. Так что идея роторного двигателя в конце пятидесятых казалась ступенькой для автомобилестроения в светлое будущее.

В серию!

NSU Spider

Послевоенная Германия начинала потихоньку богатеть, и автомобили расходились всё лучше и лучше. Фирма NSU работала на этом фронте, и ключевым моментом её модельной гаммы должны были быть двигатели Ванкеля. Уже с 1958 года шли работы по созданию автомобиля с роторным двигателем, и в 1960 году он был показан публике на конференции немецких конструкторов в Мюнхене. Машина под названием NSU Spider оснащалась двигателем Ванкеля, развивавшим 54 л.с. Многие усмехнутся, но для маленького спайдера это было в самый раз – он разгонялся до 150 км/ч. Spider производился с 1964 по 1967 год.

NSU Ro-80

Главным автомобилем, принёсшим известность Ванкелю, стал NSU Ro-80, представленный в 1967 году. Уже в его названии зашифрованы претензии на лидерство: «Ro» – это значит «роторный», а 80… Что-то вроде «автомобиль 80х годов». Машина установила новые правила экстерьера седанов: чистые линии, большая степень остекления, багажник выше капота… Влияние дизайна Ro-80 чувствуется в Audi 100. Благодаря малым размерам роторного двигателя переднюю часть машины удалось понизить и сузить, поэтому коэффициент аэродинамического сопротивления по сравнению с одноклассниками снизился на 25%. Оснащался седан двухсекционным двигателем Ванкеля рабочим объёмом 2 x 497,5 см3.

Двигатель развивал мощность 115 л.с., разгоняя новинку до 180 км/ч, а 100 км/ч с места достигались через 12,8 секунды. Успех был колоссальный. Ro80 тут же получил титул «Автомобиль 1967 года», роторный двигатель стал популярной темой на автовыставках. Множество автопроизводителей закупило лицензии на производство двигателей Ванкеля, но…

До серийного производства дело обычно не доходило. Тема оказалась не настолько проста, как казалась. И виной всему…

Врождённые недостатки

У перспективнейшей схемы есть серьёзные недостатки, справиться с которыми обойдётся дорого и трудно.

Камера сгорания у роторного двигателя вытянутой формы, словно серпик молодой луны. Естественно, тепловые потери на большей, чем в обычном цилиндре, площади приводят к высокой теплонагруженности двигателя и меньшему КПД. В такой камере сгорания и эффективного перемешивания рабочей смеси не происходит, а тогда – плохая экономичность и экологичность.

С точки зрения технолога, роторный двигатель далеко не подарок. В отличие от обычных поршневых двигателей, у которых процесс сгорания топлива происходит попеременно в разных цилиндрах, а в промежутках камера сгорания охлаждается на такте впуска рабочей смесью, роторный двигатель имеет только одну камеру сгорания, работающую постоянно. Поэтому ротор должен быть стойким к температурным изменениям, когда нагревшуюся поверхность начинает охлаждать рабочая смесь через такт.

Еще одна проблема – уплотнения. В поршневом ДВС кольца работают под одним и тем же рабочим углом. В роторном двигателе, когда ротор скользит углами по поверхности статора, уплотнениям приходится работать под разными углами. Естественно, трение приходится уменьшать, впрыскивая масло прямо в коллектор. Экологичность ещё больше страдает…

Ну и для заметки: роторный двигатель просто не может работать на солярке. Он не вынесет таких нагрузок, какие свойственны дизелю.

Машины с двигателем Ванкеля

NSU Ro-80

С самого начала работ над роторным двигателем фирма NSU не делала из этого тайны. Любая автофирма могла купить лицензию на производство нового мотора, и покупатели сразу нашлись. Daimler Benz, GM, Mazda, Citroen, Toyota… Многие из них хотели получить дешёвый и мощный двигатель, но, сталкиваясь с проблемами надёжности и эксплуатации, прекращали разработку. Да и сама NSU погорела именно на эксплуатации. Неопытные покупатели просто-напросто палили двигатели, перекручивая их сверх всяких норм. Надёжность двигателя в таких условиях была слишком низкой. А тут еще топливные кризисы! Расход топлива для Ro-80 составлял от 15 до 17,5 литров на 100 км…

Финансовые проблемы загнали NSU в яму, откуда ей не суждено было выбраться: в 1969 году её со всеми потрохами поглотил Volkswagen. Этим закончилось серийное производство роторных автомобилей в Германии.

Но опытные машины были. Mercedes Benz работал над суперкаром с роторным двигателем. Опытный образец появился в 1969 году и оснащался трёхсекционным роторным двигателем с объёмом каждой секции в 600 см3 и мощностью в 280 лошадиных сил. Лёгкий автомобиль с пластмассовым кузовом разгонялся до 257,5 км/ч, а до «сотни» за пять секунд.

Mercedes C111

Через год на Женевском Моторшоу публике представили С111 второго поколения. Автомобиль имел сверхобтекаемый по тем временам кузов, его Сх был в пределах 0,325. Двигатель получил ещё одну секцию и теперь развивал 350 л.с. Водитель такого автомобиля мог ездить на скорости 300 км/ч, а благодаря переработанному и укреплённому каркасу кузова он получал удовольствие от поведения машины в поворотах. Разгонялся второй образец до 100 км/ч ещё быстрее – за 4,8 секунды оранжевый клиновидный автомобиль достигал магической отметки и продолжал набирать скорость.

Поклонники «Gulfwing» уже выстраивались в очередь за новым «Крылом», но Mercedes не собирался тогда производить римейки своей легенды. Эти машины были нужны для обкатки нового мотора, но даже MB так и не смог справиться с основной проблемой роторного двигателя – его прожорливость была колоссальной. Так нефтяные кризисы погубили германское направление разработки «ванкелей».

Chevrolet Corvette

За океаном также присматривались к двигателю Ванкеля. Chevrolet получил лицензию на производство роторных двигателей и в 1970 году принялся за разработку Корветов с двух- и четырёхсекционными двигателями. Фиберглассовая модель с двигателем в базе получила одобрение президента GM Эда Коула в июне 1971 года. Спустя год, в июне 1972 года, Corvette со стальным кузовом и с двухсекционным роторным двигателем был представлен правлению GM, и получил обозначение XP-987GT.

К январю 1973 года был собран и Корвет с двигателем с четырьмя секциями, в апреле он продувался в аэродинамической трубе в Калифорнии. Corvette с двухсекционным ротором мощностью 266 л.с. выставлен на обозрение публики 13 сентября 1973 года во Франкфурте, а его собрат с четырёхсекционным сердцем и мощностью 390 л.с. показался на Парижском салоне 4 октября того же года. Но 24 сентября 1974 года Эд Коул отложил разработку Corvette с двигателем Ванкеля из-за трудностей с выпуском.

Немецкую идею восприняли и в соседней Франции. Сотрудничать с NSU французы начали в 1964 году, образовав с немецким партнером компанию Comotor. В 1973 году Citroen завершил разработку роторного двигателя и в 1974 в производство пошел Citroen GS Birotor.

Citroen GS Birotor

Автомобиль оснащался двухсекционным роторным двигателем объёмом 2 х 498 см3, развивающим 107 лошадиных сил при 5500 об/мин. Рабочую смесь ванкелю поставляли два карбюратора Solex. Машины также оснащены полуавтоматом и гидравлической подвеской. Когда запущен двигатель, Birotor поднимается над землей (традиция Citroen) и выглядит при этом почти как полноприводник. Салон отделывался тканью и винилом, как дополнительное оснащение устанавливались радио, тонированные стёкла и люк в крыше.

С марта по август 1974 года завод покинули 750 Ситроенов с роторным двигателем. До конца 1974 года сделали еще 93 машины, а в 1975 только 31 GS Birotor съехал с конвейера. Всего, как не трудно подсчитать, было сделано 874 Citroen GS Birotor. В 1977 году завод отозвал роторные машины, чтобы их ликвидировать. Однако порядка 200 машин могли уцелеть, но большинство нигде не зарегистрированы. Вероятность обнаружить живой Birotor больше всего во Франции, а вообще они продавались в Швеции, Великобритании, Германии, Дании и Нидерландах.

Но самого верного и последовательного поклонника идея Ванкеля приобрела в далёкой Японии, где фирме Mazda позарез требовалась свежая идея, чтобы выделяться среди остальных. Тогда правительству самураев пришла в голову идея объединить весь автопром. Но от неё отказались, и правильно сделали!

Mazda Cosmo Sport

Первым автомобилем Mazda с роторным двигателем стало купе Mazda Cosmo Sport, первый образец которой был показан на Токийском автосалоне в 1964 году. В 1965 была произведена первая партия из 60 Космосов, но серийное производство началось только в 1967 году.

Космос серии 1 оснащался двухсекционным двигателем Ванкеля 10A 0810 объёмом 2 x 491 см3 с двумя карбюраторами Hitachi. Такая силовая установка развивала мощность в 110 л.с. и разгоняла немаленький автомобиль до 185 километров в час. Управлять машиной помогала 4-скоростная ручная коробка передач и передняя независимая подвеска. Производилась первая серия с мая 1967 года по июль 1968, сделано 343 машины.

С июля 1968 года производилась вторая серия Cosmo Sport. Машина получила двигатель 10A 0813 мощностью 128 лошадиных сил, пятискоростную коробку передач, более мощные тормоза и 15-дюймовые тормоза (на предыдущей серии стояли 14-дюймовые). Теперь Космос мог достичь скорости 120 миль в час (или 193 км/ч), а четырёхсотметровую дистанцию проехать при старте с места за 15,8 секунды. Внешне обновлённую модель можно было отличить по увеличившейся «пасти» и по чуть увеличенной базе. До июля 1972 года сделали 1176 машин, что относительно неплохо при ручной сборке и норме выпуска одна машина в день.

Тогда же, с 1968 по 1973 год производилась роторная модификация модели Familia. Двухдверное купе использовало шасси обычной Фамилии, но под капотом у нее жил двигатель Ванкеля мощностью 100 л.с. от Космоса. Меньшая по сравнению с Cosmo мощность двигателя 10А 0820 объясняется малыми размерами карбюратора. Для недорогой машины использовались недорогие материалы – в частности, алюминий заменялся чугуном. Но вес двигателя увеличился ненамного, на 20 кг, и достиг всего 122 кг. Familia R100 участвовала в гонках 24 часа Спа и Ле-Мана, где она проигрывала только 911-ым и BMW.

Mazda Luce R130

Третьей моделью стало заднеприводное купе Luce люкс-класса. Переднемоторная машина с дизайном от Джуджаро оснащалось двигателем модели 13А объёмом 2 x 655 см3, развивавшим 126 лошадиных сил. Четверть мили при разгоне с места Luce R130 мог проехать за 16,9 секунд. Эта машина не поставлялась на американский рынок. Производилась модель с 1969 по 1972 год.

В 70-х годах прошлого века двигатель Ванкеля ставился японцами практически на любую свою новую модель, от Capella до пикапа и микроавтобуса. Именно в это десятилетие родился бренд «RX», значащий для Мазды то же самое, что и «GTI» для Фольксвагена. Роторный двигатель обходил конкурентов по всем статьям, но неожиданные финансовые потери заставили руководство фирмы. В 1970 появилась смена Familia R100. Новая модель Mazda RX2 основывалась на шасси модели Capella с обычным поршневым двигателем. RX2 предлагалась покупателям с кузовами «седан» и «купе», представлявшими собой лишь модификации таких же версий модели Капелла, и отличаясь от них внешне лишь шильдиками. Основные изменения скрывались под капотом.

RX2 оснащалась двигателем модификации 12А, имеющим две секции общим объёмом 1146 кубических сантиметров. «Ванкель» развивал мощность 130 л.с., что для весящей 1050 кг машины означало хорошую динамику даже по сегодняшним меркам. Такая «горячесть» модели обеспечивало ей любовь поклонников. В 1974 году Mazda RX2 получила чуть улучшенный двигатель, то позволило ей продержаться в производстве до 1978 года.

С октября 1972 года Mazda производила большой автомобиль Luce Rotary, пришедший на замену Luce R130. Три кузова – купе, седан и универсал, ручная 4-ступенчатая коробка передач и 3-ступенчатый автомат производили впечатление. Автомобиль продавался с двигателем 12А, выдававшим 130 л.с., но на экспорт в Америку с 1974 года он поставлялся оснащённым мотором серии 13В и под новым названием RX-4. Этот роторный двигатель поглощал меньше топлива и соответствовал американским нормам по чистоте выхлопа.

13В выдавал мощность 110 л.с., что обеспечивало купе или седану снаряжённой массой около 1190 кг неплохую динамику. Универсал участвовал в тестах журнала Road&Truck в 1974 году и показал вполне сносные результаты, несмотря на массу, возросшую до 1330 кг. Разгоняясь до 60 миль в час за 11,7 секунд, он 400 метров преодолел за 18 секунд, показав в конце мерного отрезка 124,5 км/ч. Журнал отметил и возросшую экономичность модели, внеся её в десятку «Лучших Покупок в диапазоне цен 3500-6000$». Сама машина стоила 4250 долларов, но за опции в виде кондиционера (395$) или «автомата» (270$) приходилось доплачивать. Производилась модель ровно пять лет, претерпев в 1976 году обновление кузова.

Mazda Rotary Pickup

С 1974 года на американском и канадском авторынках стал продаваться первый и пока единственный роторный пикап. Mazda продавала его исключительно на заокеанском рынке, на внутреннем он не был представлен. От пикапов серии B и родственных им Ford Courier роторная модель отличалась внешним видом – увеличившимися бамперами, другими линиями, хромированной передней решёткой радиатора и круглыми задними фонарями.

Под капотом Rotary Pickup располагался знакомый уже мотор 13B, который придавал пикапу изрядную толику спортивности. Было изготовлено 15 000 машин, большинство из которых продано в 1974 году, перед энергетическим кризисом. Из-за кризиса продажи резко упали, автомобилей 1976 модельного года было сделано всего около 700. Mazda изменила дизайн для машин 1977 модельного года, обновила электронику, заменила коробку передач на 5-скоростную, даже удлинила кабину на 10 см для пущего комфорта, но всё было напрасно. В 1977 году модель была снята с производства.

Mazda Parkway Rotary 26

C июля 1974 производилась еще одна редчайшая модель Parkway Rotary 26 – единственный в мире автобус с роторным двигателем. Оснащён он был мотором модели 13B рабочим объёмом 2 x 654 см3, развивавшим уже 135 л.с. и обладавшим низким уровнем содержания вредных веществ в выхлопных газах. Управлялся этот силовой агрегат с помощью четырёхступенчатой ручной коробки передач. Немаленький автобус (габариты 6195 x 1980 x 2295 мм, снаряжённая масса 2835 кг) легко разгонялся до крейсерской скорости 120 км/ч.

Прозвище «двадцать шесть» Парквэй получил за вместимость – в стандартной комплектации DX он имел на борту 26 пассажирских мест, что было отражено и в его названии. Имелась и роскошная версия Super DX, вмещавшая только тринадцать человек. Модель отличалась низким уровнем вибраций и тишиной в салоне, что было обеспечено гладкостью работы роторного двигателя. По заказу Parkway можно было оснастить системой вентиляции. Производство завершено в 1976 году.

В 1975 году австралийское отделение Holden концерна Ford поставило своим японским коллегам машину представительского класса Premier для выпуска под брэндом Mazda. Производство машин было успешно освоено, но Holden не дал японцам двигателей, подходящих для машины весом 1575 кг, и они приспособили под капот большого седана Mazda RoadPacer роторный двигатель модели 13B. Поскольку он был мощнее, чем те моторы, что имелись у Холдена, то максимальная скорость достигла 166 км/ч, но вот крутящего момента ему явно не хватало. Разгон был очень слабым, а расход топлива и так не отличающегося плохим аппетитом мотора зашкалил за 26 литров бензина на 100 км. Первоначально планировавшийся как представительский, автомобиль попал в продажу во время топливного кризиса и успеха на рынке закономерно не получил. Сняли неудачливого RoadPacer’а с производства через три года.

Mazda RX-7

Последнее, третье поколение RX-7 было полнокровным японским спортивным автомобилем. Под капот ставился роторный двигатель модели 13B-REW, оснащавшийся двумя турбинами, стоящими друг за другом. Система работы двух турбин была разработана вместе с фирмой Хитачи и обкатана на модели Cosmo, продававшейся на внутреннем рынке. Первая турбина была маленькой и работать начинала на малых оборотах двигателя (примерно с 1800 об/мин), чтобы на них не возникала «турбояма». Вторая турбина была побольше и включалась в работу с 4000 об/мин. Их совместная работа была отлажена настолько, что крутящего момента «хватало» всегда.

Платформа FD была оценена как разработка мирового класса. Длительная работа над улучшением ходовых качеств, отточенное шасси, низкий центр тяжести и равномерное распределение веса по осям привели к появлению очень серьёзного «драйверского» автомобиля.

Русская страница этой истории

ВАЗ 21018

Первое упоминание о роторном двигателе в Советском Союзе относится к 60-м годам: некий умелец собрал и установил на свой мотоцикл в качестве эксперимента двигатель Ванкеля. Промышленное производство началось в 1974 году на ВАЗе с создания Специального конструкторского бюро роторно-поршневых двигателей (СКБ РПД). Поскольку лицензию купить не было возможности, был разобран и скопирован серийный «ванкель» от NSU Ro80. На этой основе разработали и собрали двигатель Ваз-311, а произошло это знаменательное событие в 1976 году. Доработка конструкции тянулась почти шесть лет. И на выставке НТТМ-82 ВАЗ наконец-то представил свой первый серийный автомобиль с роторным двигателем под капотом – Ваз-21018. Машина практически по конструкции не отличалась от своих обычных «поршневых» собратьев, но под капотом стоял односекционный роторный двигатель мощностью 70 л.с. Длительность разработки не помешала случиться конфузу: на всех 50 машинах опытной серии при эксплуатации возникли поломки мотора, заставившие завод установить на его место обычный поршневой.

Установив, что причиной неполадок являлись вибрации механизмов и ненадёжность уплотнений, конструкторы начали спасать тонущий проект. Уже в 83-ем появились двухсекционные Ваз-411 и Ваз-413 (мощностью, соответственно, 120 и 140 л.с.). Несмотря на низкую экономичность и малый ресурс, сфера применения роторного двигателя всё-таки нашлась – ГАИ, КГБ и МВД требовались мощные и незаметные машины. Оснащённые роторными двигателями «Жигули» и «Волги» легко догоняли иномарки.

ВАЗ 21079

А затем СКБ был увлечён новой темой – роторные двигатели стали пробовать применить в малой авиации. Безрезультатное отвлечение от темы привело к тому, что для переднеприводных машин роторный двигатель Ваз-414 создаётся лишь к 1992 году, да ещё три года доводится. В 1995 году Ваз-415 был представлен к сертификации. В отличие от предшественников он универсален, и может устанавливаться под капотом как заднеприводных («классика» и ГАЗ), так и переднеприводных машин (ВАЗ, Москвич). Двухсекционный «ванкель» имеет рабочий объём 1308 см3 и развивает мощность 135 л.с. при 6000об/мин. «Девяносто девятую» он ускоряет до сотни за 9 секунд.

К сожалению, одно из самых перспективных направлений в нашем автомобилестроении было свёрнуто.

Дальнейшие перспективы роторных двигателей

Сейчас серийно выпускается только Mazda RX-8. У неё потрясающие управляемость и динамика: максимальная скорость 235 км/ч и разгон до сотни за 6,4 секунды. Двигатель нового поколения Renesis выдаёт 250 л.с. при 9000 об/мин без турбонаддува с двух секций общим объёмом 1598 см3, и расходует на удивление мало бензина.

Но для новой RX-8 свойственны некоторые отличия от легендарных машин прошлого. Экологические требования привели к отказу от применения турбонаддува, который придавал прежним моторам невероятную мощь. Кроме того, японские тюнингеры разгоняли их до 1000 л.с., повышая давление наддува, а с новым мотором этого не выйдет. Он форсирован по-другому, методом повышения максимальных оборотов. Видимо, это плата за существование двигателя Ванкеля в новом, странном и непонятном, но экологичном мире.

История не закончена…

В настоящее время разработку роторных двигателей официально ведёт только Mazda, накопившая в этой области гигантский опыт. Именно ей принадлежит идея заставить роторный двигатель работать на водородном топливе, таким образом, исключая выбросы вообще. Правда, роторный двигатель Renesis на водороде работает с неохотой, выдавая всего 109 лошадей. Но для упорных японцев это не проблема. Пока RX-8 Hydrogene возит на борту два бака – один для бензина, другой для водорода. На трассе Мазда ездит на бензине, а в городе на водороде – переключение между видами топлива происходит с водительского места простым нажатием кнопки.

Так что история роторного двигателя на этом не заканчивается. Возможно, в будущем к двигателю, работающему на чистом водороде, японцы приспособят турбонаддув…

Вместо поскриптума

Недавно на крупном автосайте обнаружено сообщение о разработке АвтоВАЗом нового роторного двигателя. Может быть, именно это придаст брэнду «ВАЗ» узнаваемость, а его моделям динамичность?

Двигатель Ванкеля — это… Что такое Двигатель Ванкеля?

Роторно-поршневой двигатель в разрезе.

Ро́торно-поршнево́й дви́гатель внутреннего сгорания (РПД, двигатель Ва́нкеля), конструкция которого разработана в 1957 инженером компании NSU Вальтером Фройде (англ.), ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя. [1]

Особенность двигателя — применение трёхгранного ротора (поршня), имеющего вид треугольника Рело, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде.

Конструкция

Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй — статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов.

Цикл двигателя Ванкеля: впуск (голубой), сжатие (зелёный), рабочий ход (красный), выпуск (жёлтый)

Роторно-поршневой двигатель

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого (экономия составляет около тысячи деталей), а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот ванкель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя.

Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.

Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.

Преимущества, недостатки и их разрешение

Преимущества перед обычными бензиновыми двигателями

  • низкий уровень вибраций. РПД полностью механически уравновешен, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей, мотокаров и юникаров;
  • главным преимуществом роторно-поршневого двигателя являются отличные динамические характеристики: на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более), чем в случае конструкции обычного двигателя внутреннего сгорания.
  • Малая удельная масса при высокой удельной мощности, причины:
  1. Масса движущихся частей в РПД гораздо меньше, чем в аналогичных по мощности «нормальных» поршневых двигателях, так как в его конструкции отсутствуют коленчатый вал и шатуны.
  2. К тому же однороторный двигатель выдаёт мощность в течение трёх четвертей каждого оборота выходного вала. В отличии от одноцилиндрового поршневого двигателя, который выдаёт мощность только в течение одной четверти каждого оборота выходного вала. (современный серийный РПД с объёмом рабочей камеры 1300 см³ имеет мощность 220 л.с., а с турбокомпрессором — 350 л.с.)
  • меньшие в 1,5—2 раза габаритные размеры.
  • меньшее на 35—40 % число деталей

За счёт отсутствия преобразования возвратно-поступательного движения во вращательное двигатель способен выдерживать бо́льшие обороты с меньшими вибрациями, по сравнению с традиционными двигателями. Роторно-поршневые двигатели обладают более высокой мощностью при небольшом объёме камеры сгорания, сама же конструкция двигателя сравнительно мала и содержит меньше деталей. Небольшие размеры улучшают управляемость, облегчают оптимальное расположение трансмиссии и позволяют сделать автомобиль более просторным для водителя и пассажиров.

Соединение ротора с выходным валом через эксцентриковый механизм, являясь характерной особенностью РПД Ванкеля, вызывает давление между трущимися поверхностями, что в сочетании с высокой температурой, приводит к дополнительному износу и нагреву двигателя.

В связи с этим возникает повышенное требование к периодической замене масла. При правильной эксплуатации периодически производится капитальный ремонт, включающий в себя замену уплотнителей. Ресурс при правильной эксплуатации достаточно велик, но не заменённое вовремя масло неизбежно приводит к необратимым последствиям, и двигатель выходит из строя.

Важной проблемой считается состояние уплотнителей. Площадь пятна контакта очень невелика, а перепад давления очень высокий. Следствием этого, неразрешимого для двигателей Ванкеля, противоречия являются высокие утечки между отдельными камерами и, как следствие, падение коэффициента полезного действия и токсичность выхлопа.

Проблема быстрого износа уплотнителей на высокой скорости вращения была разрешена применением высоколегированной стали.

При всех преимуществах (высокая удельная мощность, простота устройства, несложный ремонт при правильной эксплуатации), важной проблемой является меньшая экономичность на низких оборотах по сравнению с обычными ДВС.

Другой особенностью двигателей Ванкеля является его склонность к перегреву. Камера сгорания имеет линзовидную форму, то есть при маленьком объёме у неё относительно большая площадь. При температуре горения рабочей смеси основные потери энергии идут через излучение. Интенсивность излучения пропорциональна четвёртой степени температуры, таким образом идеальная форма камеры сгорания — сферическая. Лучистая энергия не только бесполезно покидает камеру сгорания, но и приводит к перегреву рабочего цилиндра. Эти потери не только снижают эффективность преобразования химической энергии в механическую, но и вызывают проблемы с воспламенением рабочей смеси, поэтому в конструкции двигателя часто предусматривают 2 свечи.

Высокие требования к точности исполнения деталей делают его сложным в производстве. Оно требует высокотехнологичного и высокоточного оборудования — станков, способных перемещать инструмент по сложной траектории эпитрохоидальной поверхности камеры объёмного вытеснения.

Применение

NSU Ro80.

Двигатель разрабатывался изначально именно для применения на автотранспорте. Первый серийный автомобиль с роторным двигателем — немецкий спорткар NSU Wankelspider.

Первый массовый (37,204 экземпляра) — немецкий седан бизнес-класса NSU Ro80. Автомобиль имел достаточно инноваций и помимо двигателя — в частности, кузов с рекордно-низким аэродинамическим сопротивлением, полуавтоматическую коробку передач с гидротрансформатором, блок-фары, и так далее. Ro80 отличалась не только уникальной конструкцией, но и передовым дизайном, который оказался непонятен публике середины шестидесятых; через десять лет именно он был положен в основу стиля моделей «Ауди» 100 и 200 поколения C2.

К сожалению, ресурс двигателя оказался весьма мал (ремонт требовался уже после пробега порядка 50 тыс. км), поэтому автомобиль заслужил плохую репутацию и относительно малоизвестен. На многих сохранившихся автомобилях оригинальный двигатель заменён на поршневой V4 «Essex» фирмы Ford.

Citroën также экспериментировал с РПД — проект Citroën M35.

После этого серийное и мелкосерийное производство роторно-поршневых двигателей Ванкеля производились только фирмой ВАЗ, в конечном счёте взявшим за основу конструкцию двигателя

Современные двигатели

Инженерам фирмы Euro IV. Двухцилиндровый двигатель «Renesis» объёмом всего 1,3 л выдаёт мощность в 250 л. с. и занимает гораздо меньше места в моторном отсеке. Следующая модель двигателя Renesis 2 16X имеет меньший объём, но бо́льшую мощность, меньше нагревается.

Автомобили марки [2] могут использовать в качестве топлива как бензин, так и водород. Это явилось вторым витком роста внимания к РПД двигателю со стороны разработчиков. Двигатель успешно может использовать водород, так как менее чувствителен к детонации, чем обычный двигатель, использующий возвратно-поступательное движение поршня.

Автомобили с РПД потребляют от 7 до 20 литров топлива на 100 км, в зависимости от режима движения, и масла от 0,4 л до 1 л на 1000 км (для двигателей Mazda 0,4 — 0,6 л.). В настоящее время исследование этого типа двигателя активно ведёт японский автоконцерн

Авиационные двигатели

В начале 50-х годов была создана серия авиадвигателей ВП-760, ВП-1300, ВП-2650 — пятилучевых двухтактных звёзд мощностью от 40 до 130 л. с. и весом от 25 до 100 кг авиационного инженера В.Полякова, созданных для лёгкой авиационной техники и прошедших успешные испытания в небольшой серии в ДОСААФ. [3]

Сноски

  1. Иван Пятов. РПД изнутри и снаружи, Журнал Двигатель, № 5-6 (11-12) сентябрь-декабрь 2000
  2. первые буквы от названия «Renesis», производным от слов (англ. Rotary Engine:роторный двигатель и Genesis:процесс становления, название говорящее о появлении нового класса двигателей)
  3. альманах АэроМастер, №1/98г, Новосибирск.

Литература

  • Роторно-поршневой двигатель // Большая советская энциклопедия

Ссылки

РПД СССР/России

Авиационные РПД

См. также

Wikimedia Foundation. 2010.

Двигатель Ванкеля | Роторные двигатели

Единственной на сегодняшний день выпускаемой в промышленных масштабах моделью роторного мотора является двигатель Ванкеля, который относится к типу роторных двигателей с планетарным круговым движением главного рабочего элемента. Такая конструктивная компоновка роторного двигателя является, несомненно, самойпростой по своему техническому устройству, но не самой оптимальной по способу организации рабочих процессов и поэтому имеет свои неотъемлемые и серьезные недостатки.

Роторных двигателей с планетарным движением главного рабочего элемента существует достаточно много разновидностей, но по существу они отличаются друг от друга лишь количеством граней ротора и соотвествующей формой внутренней поверхности корпуса . Приведенные схемы разных компоновок подобных моторов взяты из книги «Судовые роторные двигатели», издания 1967 года, авторов Е.Акатов, В.Бологов и др. и подготовлены к публикаци в электронном виде автором этого сайта.

Роторный двигатель

   Кратко рассмотрим саму конструкцию двигателя этого типа вместе с историей его появления и сферой применения.   История создания роторных двигателей с планетарным вращательным движением главного рабочего элемента начинается в 1943 году, когда изобретатель Майлар предложил первую подобную схему. Потом в течение короткого времени было подано еще несколько патентов на двигатели подобной схемы. В том числе и разработчик германской фирмы NSU – В. Фреде. Но главным слабым местом этой схемы роторного двигателя были системы уплотнений между ребрами на стыке соседних граней вращающегося треугольного ротора и стенками неподвижного корпуса. Вот к решению к этой сложной инженерной задачи и был подключен Р.Ванкель как специалист по уплотнениям. Вскоре, благодаря своей энергичности и инженерному мышлению он стал лидером группы разработчиков. В 1957 году в лаборатории фирмы NSU построили прототип роторного двигателя типа «DKM», с треугольным ротором и рабочей камерой в форме капсулы, в которой ротор был неподвижным, а корпус вращался вокруг него. Гораздо более практичным был вариант компоновки типа «KKM» с нормальной схемой — рабочая камера в корпусе была неподвижной, а в ней вращался ротор. Этот мотор появился годом позже, в 1958-м. В ноябре 1959 года NSU официально объявила о создании работающего роторного двигателя. За короткое время около 100 компаний во всём мире приобрели лицензии на эту технологию, при этом 34 из них были японскими.  

Мотор оказался очень небольшим, мощным и имел мало деталей. В Европе начались продажи машин с роторными двигателями, но как оказалось у них мал моторесурс, они потребляли много топлива и имели очень токсичный выхлоп. Нефтяной кризис 1973 года из-за очередной арабо-израильской войны, когда цены на бензин увеличились в несколько раз, резко поставил вопрос об экономичности автомобильных моторов. Из-за этого в Европе и Америке попытки довести роторный двигатель Ванкеля до нужной степени совершенства были прекращены. И только японская компания Mazda упорно продолжала работы в этом направлении. А еще советский завод ВАЗ – так как бензин в то время в СССР стоил копейки, а мощный, хотя и с малым ресурсом, мотор был нужен силовым ведомствам. Но в 2004 году малосерийное производство на ВАЗе было закрыто и на сегодняшний момент Mazda является единственным автопроизводителем, который серийно выпускает автомобили с роторным двигателем.   В настоящее время в мире серийно выпускается лишь один автомобиль с роторным двигателем системы Ванкеля – это спортивное купе Mazda RX-8. На этой машине устанавливается мотор «RENESIS» с двумя роторными секциями общим объемом 1,3 литра. Двигатель исполняется в неск

Роторно-поршневой двигатель внутреннего сгорания

Статья опубликована 26.06.2014 06:22
Последняя правка произведена 26.06.2014 06:29

Двигатель Ванкеля
Роторно-поршневой двигатель внутреннего сгорания (двигатель Ванкеля, РПДВС) был сконструирован в 1957 году инженером Вальтером Фройде, который, совместно с Феликсом Ванкелем, работал над его разработкой. Основное отличие конструкции РПДВС от других ДВС – использование трехгранного, вращающегося внутри цилиндра, поверхность которого составляет эпитрохоида, поршня.

Конструкция.

Ротор, установленный на валу, жестко закреплен с зубчатым колесом, которое зацепляется со статором – неподвижной шестерней. Размер ротора в диаметре значительно больше, чем статора, но это не мешает ротору свободно обкатываться вокруг шестерни, поскольку шлицы ротора и статора одинаковые. Все три вершины граней движутся по эпитрохоидальной поверхности цилиндра, отсекая определенные объемы камер в цилиндре при помощи трех клапанов.

Благодаря данной конструкции двигателя, становится возможным осуществление любого четырехтактного цикла, не применяя дополнительного механизма распределения газа (т.е. около тысячи лишних деталей), что делает двигатель очень компактным, а также повышает КПД. Герметизация камер происходит за счет прижимания центробежными силами, ленточными пружинами и давлением газа радиальных и торцевых уплотнительных пластин. За один оборот двигателя совершается три полных рабочих цикла, что сопоставимо с одним оборотом шестицилиндрового поршневого двигателя.

В остальном (запуск, зажигание, охлаждение, смазка) двигатель Ванкеля не отличается от поршневых ДВС.

принцип работы Двигателя Ванкеля
Цикл двигателя Ванкеля: впуск (голубой), сжатие (зелёный), рабочий ход (красный), выпуск (жёлтый).

На практике используются только те двигатели, в которых отношение радиуса шестерни и зубчатого колеса: 2:3. Их устанавливают на автомобили, моторные лодки и другие средства передвижения.

Основные преимущества и недостатки:

Преимущества:

Уменьшенная вибрация. Поскольку РПД идеально механически сбалансирован (нет надобности в преобразовании возвратно-поступательного движения во вращательное), то автомобили, оснащенные им, гораздо более комфортные, что заметно проявляется в малолитражках и микроавтомобилях.

Динамика. РПД значительно динамичнее, нежели поршневые. Даже на низкой передаче и высоких оборотах (свыше 8000 об/мин), можно легко, не нагружая двигатель, разогнать автомобиль до 100 км/ч.

Высокая удельная мощность (л.с./кг). Ввиду отсутствия коленчатого вала и шатунов, масса ротора в РПД значительно меньше, чем в «обычных» поршневых двигателях. Габариты двигателя меньше в 1.5-2 раза, а общее количество деталей меньше на 35-40%. Все это способствует увеличению удельной мощности двигателя. Кроме того, в РПД мощность вырабатывается в течении ¾ ей каждого оборота выходного вала, а в одноцилиндровых поршневых двигателях только в период ¼ ти оборота выходного вала.



Недостатки:

Быстрая изнашиваемость деталей. Соединение ротора и выходного вала в РПД особенное, оно осуществляется посредством эксцентрикового механизма, что вызывает давление между контактирующими поверхностями, которое, в купе с высокой температурой, приводит к скоропостижному износу деталей. Из-за этого, особое внимание следует уделять периодической замене масла. Даже при бережной и правильной эксплуатации, необходимо регулярно производить капитальный ремонт, в первую очередь для замены уплотнителей. Ресурс двигателя достаточно велик, однако, если не производить своевременную замену масла, то он быстро выйдет из строя.

От состояния уплотнителя зависит КПД двигателя Ванкеля, ведь площадь пятна контакта слишком маленькая, а перепады давления высокие. Если уплотнитель в плохом состоянии, то будут происходить утечки между отдельными камерами, что поведет к снижению коэффициента полезного действия и увеличению токсичности выхлопа.

Проблему быстрой изнашиваемости уплотнителей решили, применив вместо обычной стали – высоколегированную.

Низкая экономичность. На малых оборотах двигателя, РПД потребляет значительно больше топлива, нежели «обычные» поршневые.

Склонность к перегреву. Камера сгорания двигателя Ванкеля – линзовидной формы, т.е. при малом объеме у нее относительно большая площадь, что приводит к потерям энергии за счет излучения. Излученная энергия перегревает рабочий цилиндр, тем самым, эффективность преобразования химической энергии в механическую падает, а также появляются проблемы с воспламенением рабочей смеси. Из-за чего, конструкция двигателя предусматривает две свечи зажигания.

Сложность производства. По причине высоких требований к исполнению деталей, двигатели Ванкеля сложны в производстве. Необходимо высокотехнологичное оборудование, способное воспроизводить движение инструмента по сложной траектории поверхности камеры объемного вытеснения (эпитрохоида).

Применение.

NSU Wankelspider Подразумевалось, что в основном, двигатель будет использоваться на автотранспорте, и первым серийным автомобилем, который был оснащен двигателем Ванкеля, стал спорткар из Германии NSU Wankelspider.

NSU Ro 80 – первый массовый (37 204 экз.) немецкий седан бизнес-класса. В машине, помимо двигателя Ванкеля, было много инноваций – это и кузов, с минимальным аэродинамическим сопротивлением, и полуавтоматическая коробка передач с гидротрансформатором, и блок-фары, также не обошлось и без передового дизайна. Через десять лет именно такой дизайн кузова был основополагающим стиля моделей «Ауди» 100 и 200 поколения С2. Автомобиль NSO Ro 80 заслужил плохую репутацию из-за малого ресурса двигателя, уже через 50 тыс. км. ему требовался ремонт. На некоторых, сохранившихся автомобилях, РПД заменен на «фордовский» двигатель V4 «Essex».

С двигателями Ванкеля экспериментировала и Citroën – проект Citroën M35.

Позднее, серийным и мелкосерийным производством двигателей Ванкеля занимались только ВАЗ (Россия) и Mazda (Япония).

Современные разработки.

В нынешнее время над РПД активно работают инженеры Mazda. Сейчас им уже удалось решить основные проблемы Ванкелевского двигателя: токсичность и неэкономичность. Потребление масла снизилось на 50%, а бензина на 40%. Двигатель соответствует экологическому стандарту Euro IV. Двигатель «Renesis» (если перевести дословно, то – процесс становления роторного двигателя), при объеме 1.3 л. имеет мощность 250 л.с.. Последующая модель – «Renesis 2 16x» с объемом 1.6. литра, значительно мощнее своего предшественника, а также меньше нагревается.

Новые модели фирмы Mazda, с префиксом RE в названии, способны, в качестве топлива, использовать как бензин, так и водород, что не могло не заинтересовать сторонних разработчиков.

Расход топлива в РПД двигателях составляет от 7 до 20 литров на 100 км (зависит от многих факторов: дорога, загруженность и др.), а масла от 0.4 до 1 л на 1000 км. Как показывает опыт, усовершенствованный РПД Mazd`ы вполне конкурентоспособен.

Ротативный двигатель. Чумазый вояка :-)…

Привет, друзья!

Истребитель Sopwith Camel F.1 с двигателем Clerget 9B.

Сегодня поговорим о двигателе, эра расцвета которого пришлась на тот период времени, когда авиация еще не вышла из состояния «летающих этажерок», но когда эти самые этажерки уже чувствовали себя в воздухе достаточно уверенно.

Основные принципы самолето- и двигателестроения быстро принимали устойчивые очертания. Появлялось все больше моделей двигателей для аэропланов, а вместе с ними как новые победы, так и новые проблемы в двигателестроении. Конструкторы и инженеры стремились (как это, вобщем-то, происходит и сейчас :-)) максимально облегчить двигатели и при этом сохранить или даже увеличить их тяговую эффективность.

На этой волне и появился ротативный двигатель для тогдашних аэропланов. Почему именно для аэропланов? Да потому что сам по себе этот тип двигателя был разработан даже значительно раньше первого полета братьев Райт.

Однако обо всем по порядку. Что из себя представляет ротативный двигатель…. На английском rotary engine (что, кстати, на мой взгляд странно, потому что этим же словом обозначается роторный двигатель (двигатель Ванкеля)). Это двигатель внутреннего сгорания, в котором цилиндры с поршнями ( их нечетное количество) расположены радиально в виде звезды, обычно четырехтактный.

Рабочее топливо — бензин, воспламенение происходит от свечей зажигания.

По внешнему виду он очень похож на появившийся практически одновременно с ним и хорошо нам сегодня известный радиальный (звездообразный) поршневой двигатель. Но это только в неработающем состоянии. При запуске ротативный двигатель на неосведомленного о нем человека производит сильное впечатление.

Работа ротативного двигателя.

Происходит это потому, что уж очень необычно, на первый взгляд, выглядит его работа. Ведь вместе с винтом вращается и весь блок цилиндров, то есть, по сути дела весь двигатель. А вал, на котором происходит это вращение закреплен неподвижно. Однако в механическом плане ничего необычного тут нет. Просто дело привычки :-).

Топливо-воздушная смесь из-за вращения цилиндров не может быть подведена к ним обычным порядком, поэтому попадает туда из картера, куда подводится через полый неподвижный вал от карбюратора (или устройства его заменяющего).

Впервые в истории патент на ротативный двигатель получил французский изобретатель Félix Millet в 1888 году. Тогда этот двигатель поставили на мотоцикл и показали его на всемирной парижской выставке в 1889 году.

Ротативный двигатель Félix Millet на мотоцикле.

Позже двигатели Félix Millet ставились на автомобили, один из которых принял участие в первой в мире автомобильной гонке Paris–Bordeaux–Paris в 1895 году, а с 1900 года эти двигатели ставили на автомобили французской фирмы Darracq.

В дальнейшем инженеры-изобретатели стали обращать внимание на ротативный двигатель уже с точки зрения применения его в авиации.

Первым в этом плане был бывший ньюйоркский часовщик Stephen Balzer, создавший свой ротативный двигатель в 1890 году и ставший автором (совместно с инженером Charles M. Manly) первого в истории двигателя, разработанного конкретно для аэроплана, известного под названием Manly-Balzer engine.

Практически одновременно с ним работал американский инженер  Adams Farwell, строивший автомобили с ротативными двигателями с 1901 года.

Открытый картер двигателя Le Rhône 9J.

По некоторым сведениям принципы конструкции его двигателей были взяты за основу производителями знаменитых впоследствии двигателей «Гном».

Что же так привлекало инженеров в ротативном двигателе? Что в нем такого полезного для авиации?

Есть две основные особенности, которые и являются его главными положительными качествами. Первая — это самый малый (по тому времени) вес по сравнению с двигателями той же мощности. Дело в том, что частоты вращения тогдашних двигателей были невысокие и для получения необходимой мощности (в среднем тогда порядка 100 л.с. (75 кВт)) циклы воспламенения топливовоздушной смеси давали о себе знать весьма ощутимыми толчками.

Чтобы этого избежать двигатели снабжались массивными маховиками, что, естественно, влекло за собой утяжеление конструкции. Но для ротативного двигателя маховик был не нужен, потому, что вращался сам двигатель, имеющий достаточную массу для стабилизации хода.

Такие двигатели отличались плавностью и равномерностью хода. Зажигание производилось последовательно в каждом цилиндре через один по кругу.

Второй особенностью было хорошее охлаждение. Металлургическая промышленность в те времена была не настолько развита, как сейчас и качество сплавов (в плане термостойкости) было не слишком высоким. Поэтому требовалось хорошее охлаждение.

Скорости полета самолетов были не высокие, поэтому простое охлаждение набегающим потоком стационарного движка было недостаточным. А ротативный двигатель здесь находился в более выгодном положении, потому что сам вращался с достаточной для эффективного охлаждения скоростью и цилиндры хорошо обдувались воздухом. При этом они могли быть как гладкими, так и оребренными. Охлаждение было достаточно эффективным даже при работе двигателя на земле.

Теперь отвлечемся на пару полезных роликов о работе ротативного двигателя. Первый — это моделирование его работы на компьютере. Во втором показана работа «внутренностей» двигателя Le Rhône.

Расцвет ротативных двигателей пришелся на первую мировую войну. В то время авиация уже достаточно серьезно участвовала в боевых действиях и воздушные бои не были редкостью. Самолеты и двигатели для них производились всеми крупными участниками войны.

Из двигателестроительных одной из самых известных была французская фирма Société des Moteurs Gnome, в свое время занимавшаяся производством двигателей внутреннего сгорания для промышленного производства. В 1900 году она купила лицензию на производство маленького одноцилиндрового стационарного двигателя (мощность 4 л.с.) Gnom у немецой фирмы Motorenfabrik Oberursel. Это движок продавался во Франции под французским наименованием Gnome и при этом настолько успешно, что наименование это было использовано в названии фирмы.

Ротативный двигатель Gnome 7 Omega.

В дальнейшем на базе Гнома был разработан ротативный двигатель Gnome Omega, имевший немалое количество модификаций и устанавливавшийся на самые различные самолеты. Известны так же другие массово производившиеся двигатели этой фирмы. Например, Gnome 7 Lambda – семицилиндровый, мощностью 80 л.с. и его продолжение Gnome 14 Lambda-Lambda (160 л.с.), двухрядный ротативный двигатель с 14-ю цилиндрами.

Двигатель Gnome Monosoupape.

Широко известен двигатель Gnome Monosoupape (один клапан), начавший выпускаться в 1913 году и считавшийся одним из лучших двигателей в начальный период войны. Этот «лучший двигатель» 🙂 имел всего один клапан, использовавшийся и для выхлопа и для забора воздуха. Для поступления топлива в цилиндр из картера, в юбке цилиндра был сделан ряд специальных отверстий. Двигатель был безкарбюраторный и из-за упрощенной системы управления был легче и потреблял, к тому же меньше масла.

Подвод топлива в цилиндр Gnome Monosoupape. Crank Case — картер, Ports — подводящие отверстия.

Управления у него не было практически никакого. Был только топливный кран, подававший бензин через специальную форсунку (или распылитель) в полый неподвижный вал и далее в картер. Этим краном можно было пытаться обогащать или обеднять топливо-воздушную смесь в очень узком диапазоне, от чего было мало толку.

Пытались использовать с целью управления изменение фаз газораспределения, но быстро от этого отказались, потому что начали гореть клапана. В итоге движок постоянно работал на максимальных оборотах (как, впрочем и все ротативные двигатели :-)) и управлялся только отключением зажигания (об этом чуть ниже :-)).

Другой известной французской фирмой, производившей ротативный двигатели была фирма Société des Moteurs Le Rhône, начавшая свою работу с 1910 года. Одними из самых известных ее двигателей были Le Rhône 9C (мощность 80 л.с.) и Le Rhône 9J (110 л.с.). Характерной их особенностью было наличие специальных трубопроводов от картера к цилиндрам для подвода топливо-воздушной смеси (немного похоже на входные коллектора современных ДВС).

Двигатель Le Rhone 9C.

Ротативный двигатель Le Rhone 9J.

Le Rhône и Gnome первоначально соперничали, но потом объединились и с 1915 года уже работали совместно под названием Société des Moteurs Gnome et Rhône. Двигатель 9J был, вобщем-то, уже их совместным продуктом.

Интересно, что вышеупомянутая германская фирма Motorenfabrik Oberursel в 1913 году закупила лицензии на производство теперь уже французских ротативных двигателей Gnome (хотя и была родоначальницей этого брэнда, можно сказать :-)) и чуть позже двигателей Le Rhône. Их она выпускала под своими наименованиями: Gnome, как U-серия и Le Rhône, как UR-серия ( от немецкого слова Umlaufmotor, обозначающего ротативный двигатель).

Например, двигатель Oberursel U.0 был аналогом французского Gnome 7 Lambda и устанавливался первоначально на самолет Fokker E.I., а двигатель Oberursel U.III – это копия двухрядного Gnome 14 Lambda-Lambda.

Истребитель Fokker E.I с двигателем Oberursel U.0 .

Германский двухрядный Oberursel U.III, копия Gnome 14 Lambda-Lambda.

Вообще фирма Motorenfabrik Oberursel всю войну в довольно большом количестве производила двигатели-клоны французских моделей, которые потом ставились на самолеты, являвшиеся противниками французов и их союзников в воздушных боях. Вот такие фокусы жизни :-)…

Среди других известных двигателестроительных фирм значится также французская фирма Société Clerget-Blin et Cie ( интересное для русского уха слово Blin в названии означает фамилию одного из учредителей, промышленника Эжена Блина :-)) со своим известным движком Clerget 9B.

Двигатель Clerget 9B.

Двигатель Clerget 9B на истребителе Sopwith 1½ Strutter.

Истребитель Sopwith 1 1/2 Strutter с двигателем Clerget 9B.

Многие двигатели производились в Великобритании по лицензиям. На этих же заводах выпускали английские двигатели разработки Walter Owen Bentley (того самого Бентли) Bentley BR.1 (заменившие Clerget 9B на истребителях Sopwith Camel) и Bentley BR.2 для истребителей Sopwith 7F.1 Snipe.

На двигателях Bentley в конструкции поршней впервые были применены алюминиевые сплавы. До этого на всех движках цилиндры были чугунные.

Ротативный двигатель Bentley BR1.

Ротативный двигатель Bentley BR2.

Истребитель Sopwith 7F.1 Snipe с двигателем Bentley BR.2 .

Теперь вспомним о других особенностях ротативного двигателя, которые, так сказать, плюсов ему не прибавляют 🙂 (чаще всего как раз наоборот).

Немного об управлении. Современный (стационарный, конечно :-)) поршневой двигатель, неважно рядный он или звездообразный, управляется относительно легко. Карбюратор (либо инжектор) формирует нужный состав топливо-воздушной смеси и с помощью дроссельной заслонки пилот может регулироват подачу ее в цилиндры и, тем самым, менять обороты двигателя. Для этого по сути дела существует ручка (или педаль, как хотите :-)) газа.

У ротативного двигателя все не так просто :-). Несмотря на разницу конструкций, большинство ротативных двигателей имели на цилиндрах управляемые впускные клапана, через которые и поступала топливо-воздушная смесь. Но вращение цилиндров не позволяло применять обычный карбюратор, который бы поддерживал оптимальное соотношение воздух-топливо за дроссельной заслонкой. Состав смеси, поступающей в цилиндры нужно было корректировать для достижения оптимального соотношения и устойчивой работы двигателя.

Для этого обычно существовал дополнительный воздушный клапан («bloctube») . Пилот устанавливал рычаг газа в нужное положение (чаще всего полностью открывая дроссель) и потом рычагом регулировки подачи воздуха добивался устойчивой работы двигателя на максимальных оборотах, производя так называемую тонкую регулировку. На таких оборотах обычно и проходил полет.

Из-за большой инерционности двигателя (масса цилиндров все же немаленькая :-)), такая регулировка часто делалась «методом тыка», то есть определить нужную величину регулировки можно было только на практике, и эта практика была необходима для уверенного управления. Все зависело от конструкции двигателя и опыта пилота.

Весь полет проходил на максимальной частоте вращения движка и если ее по какой-либо причине надо было снизить, например для посадки, то действия по управлению должны были быть обратного направления. То есть пилоту нужно было прикрыть дроссель и потом опять регулировать подачу воздуха в двигатель.

Но такое «управление» было, как вы понимаете, достаточно громоздким и требующим времени, которое в полете не всегда есть, особенно на посадке. Поэтому гораздо чаще применялся метод отключения зажигания. Чаще всего это делалось через специальное устройство, позволяющее отключать зажигание полностью или в отдельных цилиндрах. То есть цилиндры без зажигания переставали работать и двигатель в целом терял мощность, что и нужно было пилоту.

Этот метод управления широко применялся на практике, но тянул за собой и кучу проблем. Топливо, вместе, кстати, с маслом, несмотря на отключение зажигания, продолжало поступать в двигатель и, несгорев, благополучно его покидало и затем скапливалось под капотом. Так как движок очень горячий, то опасность серьезного пожара налицо. Тогдашние «легкие этажерки» горели очень легко и быстро :-).

Пример защитных капотов на двигателе (защита от масла двигатель Gnome 7 Lambda ) на самолете Sopwith Tabloid.

Поэтому капоты для двигателей имели внизу вырез примерно на одну треть периметра или на худой конец серьезные дренажные отводы, чтобы вся эта гадость могла быть удалена набегающим потоком. Чаще всего, конечно, она размазывалась по фюзеляжу.

Кроме того свечи в неработающих цилиндрах могли оказаться залитыми и замасленными и повторный запуск поэтому был не гарантирован.

К 1918 году французская двигателестроительная фирма Société Clerget-Blin et Cie (ротативные двигатели Clerget 9B), исходя из очевидной опасности использования способа снижения мощности путем отключения зажигания, в руководстве по эксплуатации своих двигателей рекомендовала следующий метод управления.

При необходимости снижения мощности двигателя пилот перекрывает подачу топлива закрытием дросселя (ручкой газа). При этом зажигание не отключается, и свечи продолжают «искрить» (предохраняя себя от замасливания). Винт вращается в результате эффекта авторотации, и при необходимости запуска топливный клапан просто открывается в то же положение, что и до закрытия. Двигатель запускается…

Однако, по отзывам пилотов, которые в наши дни летают на восстановленных или точных копиях самолетов того времени, все-таки самый удобный режим снижения мощности – это отключение зажигания, несмотря на всю «грязь», которую при этом извергают ротативные двигатели :-).

Самолеты с такими движками вообще особой чистотой не отличались. Про топливо в отключенных цилиндрах я уже сказал, но ведь было еще и масло. Дело в том, что из-за вращающегося блока цилиндров, возможность откачки топлива из картера была весьма проблематична, поэтому организовать полноценную систему смазки было нельзя.

Схема топливо- и маслопитания ротативного двигателя Gnome 7 Omega.

Но без смазки никакой механизм работать не будет, поэтому она, конечно, существовала, но в о-о-очень упрощенном виде. Масло подавалось прямо в цилиндры, в топливо-воздушную смесь.На большинстве двигателей для этого существовал небольшой насос, подававший масло через полый (неподвижный, как уже известно :-)) вал по специальным каналам.

В качестве смазывающего масла использовалось касторовое, самое лучшее по тем временам масло ( природное растительное) для этих целей. Оно, кроме того не смешивалось с топливом, что улучшало условия смазки. Да и сгорало в цилиндрах оно только частично.

Пример замасливания (темные пятна) двигателя Gnome 7 Omega полусгоревшим касторовым маслом.

А удалялось оно оттуда после выполнения своих функций вместе с отработанным газами через выпускной клапан. И расход его при этом был очень даже немаленький. Средний движок, мощностью около 100 л.с. (≈75 кВт, 5-7 цилиндров) за час работы расходовал более двух галлонов (английских) масла. То есть около 10 литров вылетало «на ветер».

Ну что тут скажешь… Бедные механики :-). Масло, сгоревшее и несовсем, топливная смесь, оставшаяся после дросселирования движка, сажа… все это оседало на самолете, и все это нужно было отмывать. Причем масло это отмывалось очень плохо. Из-за этого на старых снимках самолеты частенько «щеголяют» грязными пятнами на крыле и фюзеляже.

Но и летчики – люди мужественные :-). Ведь из движка выходила касторка. А это, как известно, очень хорошее слабительное (в аптеках раньше продавалась, не знаю, как сейчас). Конечно, двигатель был закрыт капотом, и снизу, как я уже говорил, был вырез для удаления всей грязи. Но ведь кабина открытая и воздушный поток – штука не всегда управляемая. Если чистая касторка попадала на лицо и потом внутрь… Последствия предугадать…. наверное было не сложно :-)…

Следующая особенность ротативных двигателей, которую я бы тоже не назвал положительной была связана с управляемостью аэропланов, на которых стояли такие движки. Немалая масса вращающегося блока представляла собой по сути дела большой гироскоп, поэтому гироскопический эффект был неизбежен :-).

Пока самолет летел прямолинейно, его влияние не было сильно заметно, но стоило начать совершать какие-либо полетные эволюции, как сразу проявлялась гироскопическая прецессия. Из-за этого и вкупе с большим крутящим моментом массивного блока цилиндров при выбранном правом вращении винта самолет очень неохотно поворачивал влево и при этом задирал нос, но зато быстро делал правые развороты с большой тенденцией к опусканию носа.

Такой эффект с одной стороны очень мешал (особенно молодым и неопытным пилотам), а с другой был полезен при проведении воздушных боев , в так называемых «собачьих свалках» (dogfights). Это, конечно, для опытных летчиков, которые могли с толком использовать эту особенность.

Очень характерен в этом плане был известный самолет Sopwith Camel F.1 Королевских ВВС, считавшийся лучшим истребителем Первой Мировой. На нем стоял ротативный двигатель Clerget 9B ( как примечание добавлю, что в последствии также ставился и английский Bentley BR.1(150 л.с.)). Мощный (130 л.с.), но достаточно капризный двигатель, чувствительный к составу топлива и к маслу. Мог запросто отказать на взлете. Но именно благодаря ему и особенностям компоновки фюзеляжа (рассредоточению полезного оборудования) Camel был очень маневренен.

Истребитель Sopwith Camel F.1 с двигателем Clerget 9B .

Истребитель Sopwith Camel F.1 (реплика).

Маневренность эта, правда, доходила до крайности. В управлении истребитель был необычайно строг и вообще имел кое-какие неприятные особенности. Например, большое желание войти в штопор на малой скорости :-). Он абсолютно не подходил для обучения молодых пилотов. По некоторой статистике за время войны в боевых действиях на этом аэроплане погибло 415 пилотов, а в летных происшествиях – 385. Цифры красноречивые…

Однако опытные пилоты, хорошо его освоившие, могли извлечь большую пользу из его особенностей и делали это. Интересно, что из-за нежелания Camel-а быстро разворачиваться влево, многие пилоты предпочитали делать это, так сказать, «через правое плечо» :-). Поворот вправо на 270º получался значительно быстрее, чем влево на 90º .

Основным и достойным противником для Sopwith Camel F.1 был немецкий триплан Fokker Dr.I с двигателем Oberursel UR.II (полный аналог французского Le Rhône 9J). На таком воевал Барон Ма́нфред А́льбрехт фон Рихтго́фен (Manfred Albrecht Freiherr von Richthofen), знаменитый «Красный барон».

Триплан Fokker Dr.I

Германский двигатель Oberursel-UR-2. Копия Le Rhône 9J.

Истребитель-триплан Fokker Dr.I (современная реплика, правда двигатель у нее не ротативный).

Fokker DR1, современная реплика с настоящим ротативным двигателем.

Триплан Fokker Dr.I незадолго до гибели «Красного Барона».

За время войны ротативные двигатели достигли своего полного расцвета. При имеющихся запросах армии, несмотря на свои недостатки они очень хорошо подходили для решения, так сказать, триединой задачи «мощность – вес – надежность». Особенно, что касается легких истребителей. Ведь именно на них в подавляющем большинстве такие движки стояли.

Более крупные и тяжелые самолеты продолжали летать, используя традиционные рядные движки.

Однако авиация развивалась бурными темпами. Требовалась все большая мощность двигателей. Для стационарных рядных это достигалось путем увеличения максимального количества оборотов. Возможности совершенствования в этом направлении были. Улучшались системы зажигания и газораспределения, принципы образования топливовоздушной смеси. Применялись все более совершенные материалы.

Это позволило к концу Первой Мировой войны поднять максимальную величину оборотов стационарного двигателя с 1200 до 2000 об/мин.

Однако, для ротационного двигателя этот было невозможно. Организовать правильное смесеобразование было нельзя. Все приходилось делать «на глазок», поэтому расход топлива (как и масла) был, мягко говоря, немаленьким 🙂 (в том числе, кстати, из-за постоянной работы на больших оборотах).

Какие-либо внешние регулировочные работы на двигателе, пока он находится в запущенном состоянии само собой были невозможны.

Повысить частоту вращения тоже не получалось, потому что сопротивление воздуха быстро вращающемуся блоку цилиндров было достаточно большим. Более того, при увеличении скорости вращения, сопротивление росло еще быстрее. Ведь, как известно, скоростной напор пропорционален квадрату скорости ( ρV2/2, где ρ – плотность воздуха, V – скорость потока). То есть если скорость просто растет, то сопротивление растет в квадрате (примерно :-)).

При попытках на некоторых моделях двигателей начала войны поднять обороты с 1200 об/мин до 1400 об/мин сопротивление поднималось на 38%. То есть получалось, что возросшая мощность двигателя больше тратилась на преодоление сопротивления, чем на создание полезной тяги воздушного винта.

Немецкой фирмой Siemens AG была сделана попытка обойти эту проблему с другой стороны. Был выполнен 11-цилиндровый двигатель так называемой биротативной схемы (наименование Siemens-Halske Sh.III ). В нем блок цилиндров вращался в одну сторону с частотой 900 об/мин., а вал (ранее неподвижный) в другую с той же частотой. Суммарная относительная частота составила 1800 об/мин. Это позволило достичь мощности в 170 л.с.

Биротативный двигатель Siemens-Halske Sh.III .

Истребитель Siemens-Schuckert D.IV .

Истребитель Siemens-Schuckert D.IV в берлинском музее.

Этот двигатель имел меньшее сопротивление воздуху при вращении и меньший крутящий момент, мешающий управлению. Устанавливался на истребителе Siemens-Schuckert D.IV , который по мнению многих специалистов стал одним из лучших маневренных истребителей времен войны. Однако производиться начал поздно и сделан был в небольшом количестве экземпляров.

Существующее положение Siemens-Halske Sh.III не поправил и не смог опять поднять ротативные двигатели на должную высоту.

Недостатков у них, как видите, хватало. Ко всему прочему могу еще добавить, что движки эти были достаточно дороги. Ведь из-за большой быстро вращающейся массы все детали двигателя должны были быть хорошо отбалансированы и четко подогнаны. Плюс сами материалы были недешевы. Это приводило к тому, что, например, двигатель Monosoupape по ценам 1916 года стоил порядка 4000$ (что в переводе на курс года 2000-го составляет примерно 65000$). Это при том, что в движке-то, вобщем-то, по нынешним понятиям :-), ничего особенного-то нет.

Ко всему прочему моторесурс всех таких двигателей был невысок (вплоть до 10-ти часов между ремонтами) и менять их приходилось часто, несмотря на высокую стоимость.

Все эти недостатки копились и в конце концов чаша оказалась переполнена. Ротативный двигатель широко использовался и совершенствовался (по мере возможности) вплоть до конца войны. Самолеты с такими движками некоторое время использовались во время гражданской войны в России и иностранной интервенции. Но в целом их популярность быстро пошла на спад.

Совершенствование науки и производства привели к тому, что на сцену уверенно вышел последователь ротативного двигателя – радиальный или звездообразный двигатель с воздушным охлаждением, который не сходит с нее и по сей день, работая, между прочим, в содружестве с рядным поршневым авиационным двигателем с жидкостным охлаждением.

Ротативный двигатель, оставив яркий след в истории авиации, занимает теперь почетное место в музеях и на исторических выставках.

На этом заканчиваю :-). В заключение как всегда кое-какое интересное видео. Первый ролик — запуск восстановленного двигателя Гном 1918 года выпуска. Далее три ролика о работе двигателя и полетах восстановленного Sopwith Camel F.1, а также Fokker Dr.I  (на заднем плане :-)). Интересного вам просмотра и до встречи…

P.S. Один из моих читателей (Александр) совершенно справедливо указал мне на то, что в ролике, где вместе с Сопвичем летает современная реплика германского триплана, движок у этого триплана не ротативный. Абсолютно верно. Я, увлекшись Сопвичем, не обратил на это внимание :-). Прошу прощения у читателей и помещаю ролик (и фото), где в полете современная реплика Фоккера с настоящим ротативным движком. Самолет здесь классно показан :-)…

Фотографии кликабельны.

Поршень

против роторного двигателя: в чем разница?

Считается, что все автомобили используют традиционный поршневой двигатель. В США, как и во многих других странах, наиболее распространены поршневые двигатели. Однако на некоторых автомобилях используется двигатель другого типа, известный как роторный двигатель. Для ничего не подозревающего водителя поршневые и роторные двигатели могут выглядеть одинаково, но это не обязательно так. Между ними есть некоторые ключевые различия, о которых вам следует знать.

Что такое поршневой двигатель?

Также известный как поршневой двигатель, поршневой двигатель — это традиционный автомобильный двигатель, в котором поршни возвратно-поступательного действия используются для создания вращательного движения. Поршни соединены с цилиндром, в котором сжигаются газ и воздух. Когда смесь газа и воздуха горит, она создает давление, которое толкает соответствующий поршень, таким образом вращая коленчатый вал и перемещая автомобиль.

Поршневые двигатели на сегодняшний день являются наиболее распространенным типом автомобильных двигателей, и они даже используются во многих самолетах.Почти все крупные автопроизводители используют поршневые двигатели в некоторых или всех своих автомобилях.

Что такое роторный двигатель?

Роторный двигатель, также известный как двигатель Ванкеля, представляет собой менее распространенный тип автомобильного двигателя, для которого характерно использование нечетного числа цилиндров в радиальной компоновке. Как правило, они меньше, легче и компактнее, чем их аналоги с поршневыми двигателями. Их называют роторными двигателями, потому что все их части вращаются. Для сравнения, поршневые двигатели имеют возвратно-поступательные поршни, которые перемещаются вверх и вниз в цилиндрах.

С учетом сказанного, роторные двигатели имеют ряд серьезных недостатков, которые нельзя упускать из виду. Во-первых, роторные двигатели страдают от плохой экономии топлива. Они потребляют больше топлива и вырабатывают меньше мощности, чем поршневые двигатели. А поскольку роторные двигатели склонны к утечкам, они производят больше выбросов, чем поршневые.

С другой стороны, роторные двигатели имеют меньше движущихся частей. Роторный двигатель нередко имеет только три основных движущихся части, тогда как поршневой двигатель может иметь десятки движущихся частей.При наличии большего количества движущихся частей повышается риск внутренней неисправности поршневых двигателей.

Заключение

Сегодня автомобили обычно имеют поршневой или роторный двигатель. Поршневые двигатели имеют движущиеся вверх и вниз поршни, которые преобразуют давление во вращательное движение, тогда как роторные двигатели имеют радиальную компоновку с нечетным числом цилиндров. Надеюсь, это даст вам лучшее понимание нюансов между поршневыми двигателями и роторными двигателями.

Роторные против поршневых — журнал DSPORT

T Роторный двигатель Ванкеля: самое ценное предложение Mazda также является источником сотен веселых интернет-мемов.В то время, когда поршневые двигатели внутреннего сгорания были основной технологией, используемой в автомобилях, Mazda решила разработать конкурирующую технологию. В начале 70-х роторные двигатели использовались почти во всех автомобилях модельного ряда Mazda. Когда случился кризис газа, он все еще использовался в высокопроизводительных автомобилях Mazda. Mazda Rotary имела преимущества по сравнению с поршневыми двигателями, но у нее также был изрядный список недостатков. Давайте посмотрим, что отличает его от поршневого двигателя, а также некоторые его плюсы и минусы.

Текст Бассема Гиргиса и Джима Медерера // Фотографии Staff и Racing Beat


Поршневой двигатель внутреннего сгорания состоит из блока, кривошипа, шатунов, поршней, головок, клапанов, распределительных валов, системы впуска, системы выпуска и системы зажигания. Все они работают вместе, чтобы преобразовать химическую энергию в механическую энергию, которая позволяет вашему автомобилю двигаться. Внутри блока коленчатый вал соединен с несколькими шатунами (в зависимости от того, сколько цилиндров у вашего двигателя), а шатуны прикреплены к тому же количеству поршней.При перемещении поршней вверх и вниз они вращают коленчатый вал с помощью шатунов.

Начиная с поршня в верхней мертвой точке (первый шаг в четырехтактном цикле), впускные клапаны открываются, а выпускные клапаны закрыты (открытие и закрытие регулируется распределительным валом, который синхронизируется с коленчатым валом с помощью ремня. или цепочка). Коленчатый вал продолжает вращаться, он опускает поршень, всасывая воздух в цилиндры. К тому времени, когда поршень достигает дна, цилиндр уже заполнен воздухом и топливом.

Для завершения полного четырехтактного процесса поршень должен сделать два полных прохода в цилиндре.

Затем поршень начинает движение вверх во время такта сжатия. Во время этого хода впускной и выпускной клапаны закрыты. Движение поршня вверх сжимает смесь воздуха и топлива, которая смешивает молекулы воздуха и топлива по мере их сближения. В результате этого процесса создается смесь, оптимизированная для сгорания. Как только поршень снова окажется около верхней мертвой точки, свеча зажигания загорится, чтобы вызвать сгорание в цилиндре.

Рабочий ход создает управляемое сгорание, вызываемое искрой. Горение толкает поршень вниз по цилиндру. Давление, создаваемое сгоранием, является движущей силой, которая приводит в движение колеса вашего автомобиля. Когда поршень приближается к нижней мертвой точке, выступ выпускного распределительного вала начинает открывать выпускной клапан, готовясь к последнему такту в четырехтактном цикле.

Когда цилиндр снова начинает подниматься, выпускные клапаны открываются полностью. Это позволяет выхлопным газам выходить из цилиндров, чтобы снова освободить место для следующего четырехтактного цикла.Выхлопные газы выходят через выпускной коллектор, через каталитический нейтрализатор и через выхлопную трубу и глушитель. К тому времени, когда поршень снова окажется в верхней мертвой точке, выпускной клапан почти закрыт, а впускной клапан начинает открываться. Затем процесс повторяется.

Роторный двигатель имеет тот же четырехтактный цикл, что и поршневой двигатель, для выработки мощности на маховике. В отличие от поршневого двигателя, в котором сгорание происходит в цилиндре, роторный двигатель полагается на давление, содержащееся в камере в корпусе, которая герметизирована одной стороной ротора.Два ротора используются вместо поршней. Ротор трехсторонний, который вращается вокруг корпуса ротора с помощью эксцентрикового вала. Три стороны изогнуты в три лопасти, а корпус ротора имеет форму грубой восьмерки (8). Когда ротор вращается внутри корпуса, зазор между ротором и корпусом меняется между большим и маленьким.

В то время как в поршневом двигателе для распределительных валов и клапанов используется зубчатый ремень или цепь, единственная цепь, которую использует роторный двигатель, — это масляный насос.

Воздух и топливо попадают в корпус ротора по мере увеличения объема между одной из лопастей ротора и стенкой корпуса. Когда ротор вращается и объем увеличивается, создается вакуум, который втягивает воздух и топливо в корпус. Как только кончик одной из сторон ротора покидает эту зону всасывания, следующая сторона ротора начинает процесс всасывания. Ротор продолжает вращаться, пока объем между лопастью ротора и стенкой корпуса не начнет уменьшаться.Это сжимает смесь воздуха и топлива, подобно тому, как это делает поршневой двигатель, когда поршень движется вверх. Затем сжатая смесь попадает в следующую часть корпуса, где находится свеча зажигания. Свеча зажигания загорается, чтобы воспламенить сжатую смесь. В то время как нижняя свеча зажигания воспламеняет большую часть смеси через большее отверстие, верхняя свеча зажигания воспламеняет топливо в меньшем конце камеры сгорания. Воспламеняющийся воздух и топливо сгорают (горит с контролируемой скоростью), что приводит в движение ротор по часовой стрелке.Поскольку ротор продолжает вращаться после первого удара, объем между ротором и корпусом увеличивается, что позволяет газам расширяться. Заключительный шаг — это когда объем уменьшается в последний раз, чтобы вытеснить выхлопные газы через выхлопные отверстия, прежде чем сделать еще один оборот и снова запустить четырехтактный цикл.

Горение — это то, что движет большинством двигателей. И роторные, и поршневые двигатели приводятся в движение четырехтактным двигателем. Четырехтактный ход относится к такту впуска, такту сжатия, такту мощности и такту выпуска.Оба двигателя нуждаются в воздухе, топливе и искре для работы.


Все углы поворота указаны для выходного вала (эксцентрикового вала / коленчатого вала), а не для ротора. Оба двигателя сжигают сжатую топливно-воздушную смесь, чтобы развивать мощность вращения. Оба двигателя четырехтактные.

Ротор вращается вокруг эксцентрикового вала внутри корпуса. Воздух сжимается вместе с топливом, затем вводится искра и, наконец, выхлоп выходит через выхлопное отверстие.

Однако одно большое различие между ними состоит в том, что у реципиента 180 градусов на ход (или 4 x 180 = 720 градусов на термодинамический цикл, это два оборота кривошипа для одного полного четырехтактного цикла в цилиндре), в то время как у поворотного устройства 270 градусов. градусов на «ход» (или 4 x 270 = 1080 градусов на термодинамический цикл, это три оборота кривошипа на один полный оборот ротора). Да, возможно, вам придется немного подумать об этом, но поверьте нам, это правда.


На каждый полный ротор вырабатывается в два раза больше импульсов мощности, чем на одноцилиндровый приемник.Это означает, что 1,3-литровый двигатель производит в 1,5 раза больше мощности и крутящего момента, чем двигатель аналогичного объема.

Это имеет как хорошие, так и плохие последствия. Если предположить, что оба двигателя имеют одинаковые максимальные обороты в минуту, это означает, что роторный двигатель имеет в 1,5 раза больше миллисекунд для выполнения каждого «хода». Это одна из причин, почему роторные двигатели так хорошо дышат — у них больше времени (в миллисекундах), чтобы втягивать и выплевывать смесь.

У них также больше времени для рабочего хода — реальный плюс для получения максимальной отдачи от продуктов сгорания, особенно на высоких оборотах.Теперь о плохом. Ротор также имеет в 1,5 раза больше миллисекунд для передачи тепла от горящей смеси маслу и воде.

Это одна из причин, по которой роторные двигатели расходуют больше тепла в процессе охлаждения. Другое следствие заключается в том, что если вы рассматриваете только одну боковую поверхность одного ротора, роторный двигатель получает только 2/3 импульсов мощности от реципиента. Однако на самом деле у каждого ротора есть три боковых стороны, каждая в разных точках термодинамического цикла, поэтому каждый полный ротор фактически дает в два раза больше импульсов мощности (в 3 раза 2/3), чем одноцилиндровый приемник.Смущенный? Найдите минутку, чтобы изучить рисунки 2 и 3 и погрузиться в них. Суть в том, что 1,3-литровый роторный двигатель обеспечивает в 1,5 раза большую мощность и крутящий момент, чем двигатель аналогичного размера. Это как 2,0-литровый поршневой двигатель.


Другими словами, роторный двигатель с 2 роторами имеет такое же количество пусковых импульсов, что и 4-цилиндровый реципиент, но поскольку продолжительность каждого пускового импульса составляет 270 градусов, двигатель работает более плавно из-за перекрытия пусковых импульсов.

Итак, в чем смысл всей этой математики? Дело в том, чтобы лучше понять, ПОЧЕМУ некоторые вещи так важны для роторного типа, особенно теплопередача.Помните, что тепло — это потенциальная мощность, поэтому сохранение тепла в смеси для сгорания дает больше мощности, которую вы можете использовать.

Переходим к следующему пункту: по сравнению с получателем, всасываемый заряд (когда он находится внутри двигателя) на самом деле проходит долгий, мучительный путь. На рисунках выше это показано подробно.


определение роторно-поршневого двигателя и синонимы роторно-поршневого двигателя (английский)

содержание сенсагента

  • определения
  • синонимов
  • антонимов
  • энциклопедия

Решение для веб-мастеров

Александрия

Всплывающее окно с информацией (полное содержание Sensagent), вызываемое двойным щелчком по любому слову на вашей веб-странице.Предоставьте контекстные объяснения и перевод с вашего сайта !

Попробуйте здесь или получите код

SensagentBox

С помощью SensagentBox посетители вашего сайта могут получить доступ к надежной информации на более чем 5 миллионах страниц, предоставленных Sensagent.com. Выберите дизайн, который подходит вашему сайту.

Бизнес-решение

Улучшите содержание своего сайта

Добавьте новый контент на свой сайт из Sensagent by XML.

Сканирование продуктов или добавление

Получите доступ к XML для поиска лучших продуктов.

Индексирование изображений и определение метаданных

Получите доступ к XML, чтобы исправить значение ваших метаданных.

Напишите нам, чтобы описать вашу идею.

Lettris

Lettris — любопытная игра-тетрис-клон, в которой все кубики имеют одинаковую квадратную форму, но разное содержание. На каждом квадрате есть буква. Чтобы квадраты исчезли и сэкономили место для других квадратов, вам нужно собрать английские слова (left, right, up, down) из падающих квадратов.

болт

Boggle дает вам 3 минуты, чтобы найти как можно больше слов (3 буквы и более) в сетке из 16 букв. Вы также можете попробовать сетку из 16 букв. Буквы должны располагаться рядом, и более длинные слова оцениваются лучше. Посмотрите, сможете ли вы попасть в Зал славы сетки!

Английский словарь
Основные ссылки

WordNet предоставляет большинство определений на английском языке.
Английский тезаурус в основном заимствован из The Integral Dictionary (TID).

30Сен

Крепления для багажника на крышу – разновидности конструкций, изготовление своими руками

​Багажник на крышу авто: виды, способы креплений, достоинства и недостатки

  1. Главная
  2. Статьи
  3. ​Багажник на крышу авто: виды, способы креплений, достоинства и недостатки
21 августа 2017

багажник на крышу и автобоксБагажник — это поперечины, которые прикреплены к крыше автомобиля. Багажники делятся на виды по их конфигурации и особенностям крепления, но вне зависимости от этих характеристик, багажник — отличное решение для тех, кто вынужден постоянно возить на своей машине грузы.

Современные автомобили оснащены большими «родными» багажниками, но кто откажется от возможности разместить в машине ещё больше вещей? Для этого и предназначены крышные автомобильные багажники — классические, экспедиционные, велосипедные и автобоксы.

Виды багажников на крышу авто

  • Классические, универсальные, базовые — под всеми этими словами подразумевается одинаковая конструкция. Это багажник, который вы не раз встречали на дорогах города: металлические поперечины и перекладины, закреплённые на крыше авто. Во-первых, установить такой багажник можно практически на любую машину, во-вторых, он совершенно универсален — на нём можно перевозить всё, что угодно, а ещё его можно дополнительно укомплектовать крепежами для спортивной экипировки и автобоксом.
  • Экспедиционные созданы специально для туристов, охотников, поклонников активного отдыха. Это своего рода «корзины», которые помимо поперечин и перекладин оснащены местами, к которым можно прикрепить отбойники, фонари и запаски. А ещё экспедиционный багажник защищает крышу автомобиля от ударов ветками.
  • Велосипедные — багажники, предназначенные для фиксации велосипедов и другого спортивного снаряжения на крыше машины. Он представляет из себя отдельные крепежи, установленные в разных местах. Кстати, помимо крыши, велосипеды можно перевозить на фаркопе — такой вариант автобагажников у нас тоже есть.
  • Автобоксы жёсткие и мягкие. Жёсткие изготавливаются из ударопорочного пластика, мягкие выглядят как прочные спортивные сумки. Помимо перевозки груза, автобоксы дополнительно защищают его от атмосферных осадков, грязи и ветра. К тому же, жёсткие автобоксы имеют идеальную аэродинамическую форму — они не тормозят машину и не увеличивают расход топлива.

Способы крепления багажника на крышу автомобиля

От видов багажников переходим к другой их характерной особенности — способу крепления. Всего способов крепления 7. Расскажем о каждом.

  • В штатные места крепления, которые были задуманы производителем автомобиля как место для фиксации багажника. Обычно их наличие указано в инструкции к автомобилю.
  • На водостоки — особенность отечественных автомобилей. У иномарок водостоков нет. К ним багажник можно цеплять немного по-разному, что даёт больший простор фантазии.
  • На гладкую крышу — когда багажник цепляется за дверной проём или при помощи адаптеров в трёхдверных авто. Когда двери закрываются, багажник становится невозможно снять.
  • На рейлинги — то есть, на поперечины, которые у многих современных внедорожников встроенные.
  • На магниты. Увы, очень тяжёлый груз на таком креплении везти небезопасно, но лёгкий —весьма удобно.
  • На Т-образный профиль, который держит груз на возвышении и не даёт ему соприкасаться с крышей авто. Но если вам важна эстетика, этот вариант — не для вас: уместно он смотрится только на больших машинах.
  • На ремни через салон — так к автомобилю прикрепляются надувные багажники. Способ интересный и действенный, но не всегда удобный для пассажиров.

багажник на крышу автомобиля

Преимущества и недостатки багажников на крышу авто

+ универсальность;

+ доступность;

+ надёжность;

+ отсутствие помех для обзора.

– аэродинамические помехи при движении;

– снижение устойчивости и скорости движения;

– необходимость поднимать груз на крышу.

7 правил выбора багажника на крышу вашего автомобиля

1. Определитесь, какой багаж вы будете чаще всего возить. Также учитывайте марку и модель своего автомобиля.

2. Багажник для хэчбеков, фургонов и универсалов должен располагаться таким образом, чтобы не вредить «родному» багажнику и не мешать открывать задний капот.

3. Обязательно изучите инструкцию к автомобилю — там указано, какой вес машина может выдержать на своей крыше.

4. При подборе багажника внимательно изучайте материал изготовления. Лучшие багажники производятся из алюминия, нержавеющей стали и ударопрочного пластика.

5. Если у вас высокий автомобиль, купите автобокс с двусторонней крышкой. Такие багажники можно загружать и разгружать с удобной вам стороны.

6. Внимательно изучите информацию о производителе — почитайте отзывы, посмотрите фото и видео с производства.

7. Не покупайте слишком дешёвые багажники. Дешёвые модели быстро ржавеют и разваливаются, они плохо и ненадёжно фиксируют груз. А хороший багажник прослужит вам по-настоящему долго.

багажники на крышу и автомобильные боксы евродеталь

Наши предложения:

bagazhniki.su

Аксессуары для багажников на крышу под любые задачи

Для того чтобы превратить ваш автомобиль в полноценный инструмент для выполнения ваших задач предлагаем большой выбор аксессуаров для багажников на крышу.

Аксессуары для багажников могут быть крайне важны, поскольку добавляются ряд важнейших дополнительных функций, которых вам нехватало.

Сбросить фильтр

Фильтровать

  • Комплект Т-болтов Taurus, 3 штКомплект Т-болтов Taurus, 3 шт 600 руб.

    Комплект Т-болтов Taurus, 3 шт.

    600 руб.

    Переходник для установки аксессуаров на аэродинамические дуги.

     

    Количество: 2 шт
    Высота: 15 см
    Диаметр: 6 см
    Размер головки: 20х20 см
    Производитель: Taurus
    Страна: Польша

    Гарантия 1 год

  • Набор замков Thule One-Key SystemНабор замков Thule One-Key System 544 2,160 руб.

    Набор замков Thule One Key System 544 (4шт.), для автомобильного багажника

    2,160 руб.
    Замените личинки всех замков на изделиях Thule и пользуйтесь одним ключом.
    • Набор из 4 замков, один ключ для всех аксессуаров.
    • В комплект входит удобный ключ Thule Comfort.
    • Замените замки в изделии Thule несколькими простыми действиями.
    • Система одного ключа Thule One-Key System доступна в наборах по 4, 6, 8 и 12 замков.

    Производитель: Thule
    Страна: Швеция

    Гарантия 5 лет

  • Thule One-Key SystemThule One-Key System 2,300 руб.

    Набор замков Thule One-Key System 4504 (4шт.)

    2,300 руб.
    Установите или замените личинки всех замков на изделиях Thule и пользуйтесь одним ключом.
    • Набор из 4 замков, один ключ для всех аксессуаров.
    • В комплект входит удобный ключ Thule Comfort.
    • Замените замки в изделии Thule несколькими простыми действиями.
    • Система одного ключа Thule One-Key System доступна в наборах по 4, 6, 8, 12 и 16 замков.

    Производитель: Thule
    Страна: Швеция

    Гарантия 5 лет

  • Thule One-Key SystemThule One-Key System 2,800 руб.

    Набор замков Thule One-Key System 4506 (6шт.)

    2,800 руб.
    Установите или замените личинки всех замков на изделиях Thule и пользуйтесь одним ключом.
    • Набор из 6 замков, один ключ для всех аксессуаров.
    • В комплект входит удобный ключ Thule Comfort.
    • Замените замки в изделии Thule несколькими простыми действиями.
    • Система одного ключа Thule One-Key System доступна в наборах по 4, 6, 8, 12 и 16 замков.

    Производитель: Thule
    Страна: Швеция

    Гарантия 5 лет

www.vashbagazh.ru

Типы креплений, или почему не любой багажник подойдет для вашего авто

Для любого из нас собственная машина ценна по-своему. Для кого-то важен комфорт, а кому-то нужна скорость, одни ценят престиж, а другие – экономичность. И всё же большинство автолюбителей согласятся с тем, что автомобиль это универсальное средство перевозки пассажиров и груза.

Однако зачастую серийного салона и багажника автомобиля недостаточно для того, чтобы быстро и комфортно перевести всё необходимое. В этих случаях многие водители обращаются к помощи специальных автомобильных багажников, которые устанавливаются на крыше.

В былые советские времена данное оборудование было просто и универсально. Все автомобили и багажники прекрасно и быстро совмещались друг с другом. Багажники крепились на крышу автомобиля с помощью водостоков, которые были практически у каждой машины.

В современном автомобильном мире всё гораздо сложнее. Авторынок широк и разнообразен. На нём представлены самые разные модели, как автомобилей, так и багажников отечественного и иностранного производства. Для того, чтобы выбрать необходимую именно Вам модификацию автобагажника необходимо приложить немало усилий. Стоит отметить, что некоторые производители автомобилей даже в одном модельном ряде своей же линейки машин применяют отличающиеся варианты багажников и их креплений. Попробуем вместе разобраться в этом многообразии форм и выражений инженерной мысли.

Можно выделить следующие 8 видов креплений верхних автомобильных багажников:

Крепление на водостоки

Водосток — специальная выемка вдоль дверных проемов, предназначенная для отведения воды с крыши автомобиля. Водостоки присутствуют на многих отечественных автомобилях, а вот на иномарках их уже практически не встретить — иностранные производители давно отказались от данного решения.

Плюсы: Багажник можно установить в любой позиции, так как водостоки идут вдоль всей крыши. Можно установить не пару реечных багажников, а например 2 пары. Для автомобилей с водостоками также производятся багажники-корзины. Универсальны, подходят для любой вазовской классики, ГАЗа, ИЖ, Москвичей.

Пример: Багажники на ВАЗ 2101-2107, 2108-21099, 2113-2115, ГАЗ-3110, Москвич 2141, Иж Ода, а также УАЗ Хантер, УАЗ Буханка, Газель.

Крепление за дверной проем на авто с гладкой крышей

Наиболее распространенный вид креплений — за дверной проем с помощью прижимов. Крепление багажника на крышу машины производится с помощью системы металлических прижимов (адаптеров/китов) за кромку дверного проёма. На эти адаптеры устанавливаются опоры, а необходимая устойчивость данной конструкции обеспечивается при помощи стягивающего механизма и резинового основания багажника. У некоторых автомобилей для прижима имеется дополнительное крепление под болты в виде отверстий с резьбой в дверном проёме.

Плюсы: подходят для большинства моделей, при разборной конструкции багажника, приобретая новый автомобиль часто достаточно только докупить адаптер, а опоры и дуги использовать прежние. Даже при отсутствии замков дуги защищены от съема (как правило) закрытыми дверями.

Минусы: С точки зрения некоторых автовладельцев страдает эстетика автомобиля. При длительной интенсивной эксплуатации на месте соприкосновения с крышей/дверным проемом могут возникнуть протертости.

Примеры: ВАЗ 2110, 2112, Лада Веста седан, Renault Logan, Volkswagen Polo, Toyota Corolla и большинство иномарок.

Крепление багажника в штатные места (Fix Point)

Багажник устанавливается только туда, куда указано в соответствующей инструкции по эксплуатации автомобиля, а именно в штатные места на крыше, и никаких фантазий! При отсутствии багажника выемки штатных мест часто закрываются декоративными молдингами.

Плюсы: производители заранее подумали о том, что автомобиль будет использоваться для перевозки грузов, а это значит гарантирована высокая надежность крепления.

Минусы: ограниченность выбора, полное отсутствие возможности варьировать позицию багажника на крыше.

Примеры: Kia Ceed hatchback, Renault Megane 2, Nissan X-Trail, Opel Astra JDaewoo Nexia

Крепление на продольных дугах (на рейлинги)

На машинах, оборудованных продольными дугами (рейлингами) для перевозки груза устанавливаются поперечины. Закреплять такие поперечины, как правило, можно на любой дистанции друг от друга, что удобно в случае перевозки грузов различных или нестандартных видов и объёмов.

Плюсы: Любые вариации месторасположения багажных дуг, конструкция не соприкасается с крышей, а это значит практически нет угрозы поцарапать крышу или повредить окраску. При закреплении груза стягивающие ремни можно проводить через рейлинги.

Минусы: Центр тяжести груза будет расположен выше по сравнению с другими креплениями, что может негативно сказаться на поведении автомобиля на дороге.

Примеры: Все автомобили с рейлингами, например, ВАЗ-2111, Лада Приора универсал, многие иномарки (как правило это внедорожники или универсалы).
 

Крепление на интегрированные рейлинги

Интегрированными (слитыми, без просвета) рейлингами стали оборудовать автомобили относительно недавно, как правило это универсалы или кроссоверы. Обычно такие рейлинги имеют специальные отверстия с внутренней стороны для закрепления поперечных дуг, но на многие марки авто можно ставить и универсальные дуги без крепежных винтов.

Плюсы: Центр тяжести ниже чем в случае с обычными рейлингами, дуги можно перемещать вдоль рейлингов (при отсутствии крепежа винтами).

Минусы: Для интегрированных рейлингов поперечные дуги подобрать бывает сложнее. Пропадает преимущество обычных рейлингов — возможность провести стягивающий ремень под рейлингом при закреплении груза.

Примеры: Lada Vesta sw, Lada XRay Cross, Kia Sportage III, Opel MokkaSuzuki Grand Vitara II
 

Крепление багажника на Т-образный профиль.

Если на крыше машине имеется Т-образный профиль (который также называют «рельсы» или «полозья»), то дуги устанавливаются именно в них. Считается идеальным вариантом крепления

Плюсы: установка производится весьма просто, дуги могут двигаться вдоль всей крыши автомобиля, а опоры и крепления дуг никоим образом не соприкасаются с крышей автомобиля, что гарантирует отсутствие протертостей и царапин.
Минусы: Их практически нет, за исключением того, что Т-образным профилем автопроизводители редко снабжают свои машины, да и смотреться они будут уместно только на универсалах и внедорожниках и вряд ли подойдут для автомобилей с кузовом «седан».

Пример: Все автомобили с Т-образным профилем, например, Nissan Wingroad

Крепление на магниты

Универсальный, но пока достаточно экзотичный вариант крепления — с помощью магнитов. На крышу ставятся пара магнитов, на которые сверху закрепляется груз. Эти магнитные крепления легко установить практически на любую крышу любого автомобиля.

Плюсы: Абсолютная универсальность, легкость установки

Минусы: Сравнительно небольшая «грузоподъёмность». Такие багажники предназначены в первую очередь для перевозки не тяжёлых габаритных грузов, например лыж или сноубордов. Кроме того, магниты имеют свойство «размагничиваться», что может быть весьма неприятным, особенно на дороге.

Надувной багажник

Интересный вариант перевозки грузов, универсальный — провести два ремня через салон можно не только в любом 4 дверном автомобиле, но также и в 2-дверном автомобиле. Надувные секции кладутся прямо на крышу, а груз — сверху них.

Плюсы: Абсолютная универсальность, легкость установки

Минусы: Ограниченная категория грузов, которые можно перевезти (нельзя перевозить боксы, велосипеды, грузы с острыми краями и т.д.). К минусам также можно отнести помехи для сидящих в автомобиле от проведенных через салон ремней. Пример багажника — надувной багажник Handirack


​В качестве итога данной статьи можно выделить следующее: при выборе багажника главным критерием должны быть безопасность во время транспортировки груза. Не стоит игнорировать рекомендации и советы изготовителей автомобилей и багажников, требования Правил дорожного движения, касающихся перевозки грузов, а также здравый смысл и бытовую логику.

 

ufa-bagazhniki.ru

Установка багажника на крышу автомобиля: рекомендации как правильно.

Типичная история, когда при подготовке к дальней поездке в салоне автомобиля заканчивается свободное пространство. По статистике каждый пятый устанавливает автобагажник на крышу автомобиля. На приобретение прицепа  многие не решаются так как много сложностей. Вариант установить багажник проще и менее затруднительный. Попробуем разобраться в вопросе установки багажника на крышу автомобиля.

Багажник на крыше Тойоты Лэнд Круйзер 200

 

Виды автобагажников

Для каждой модели машины существуют свои способы установки багажника. Иногда это зависит от вида багажника:

  1. Открытый. Позволяет размещать объемные предметы и надежно их фиксировать. Представляет собой открытую платформу. Этот доступный способ для транспортировки отличается невысокой ценой. Недостаток конструкции в преобладании слабых аэродинамических характеристик и минимальной защиты в непогоду. А плюс в том, что крепление прочное и прослужит долгое время. Конфигурация открытого багажника:
    • Легковесная алюминиевая корзина с бортами. Сезонный «друг» дачника.
    • Экспедиционный багажник весом до 30 кг. Защита для езды по бездорожью, нежели багажник. Ставится на внедорожники.
    • Поперечно-дуговая площадка из круглого или квадратного профиля. Облегчает перевозку строительных материалов. Багажник экспедиционный

      Багажник экспедиционный

  2.  Автомобильный багажный бокс. Этот вид автобагажника защищает предметы в дождливую погоду. Замки безопасности позволяют сохранить ценности от грабителей на автостоянках. Воздух легко обтекает такую конструкцию, позволяя уменьшить расход топлива и сэкономить бюджет. В таком багажнике перевозят небольшие грузы. Представляет собой литой прочный пластик в форме лодки. Изготавливается из углепластика для лучшей прочности. Автобокс Yakima

    Автобокс Yakima на крыше автомобиля

  3. Багажники специального назначения. Они требуются для перевозки:
  • Лодок.
  • Велосипедов.
  • Мотоциклов.
  • Спортивного инвентаря.
  • Лестниц.
  • Мачт. крепление для перевозки лыж

    Багажник на крыше автомобиля с креплением для перевозки лыж

Их отличает специальная система удержания предметов от падения во время поездки.

Тонкости выбора

Выбирая багажник, тщательно изучаются виды и информация о грузоподъемности. Если у прицепа пружинистая подвеска в любом исполнении, которая облегчает манёвры по бугоркам и ямкам, то в случае с багажником на крыше автомобиля, с амортизирующей подвеской авто его разлучает та самая крыша. Она не имеет ярко-выраженных свойств нивелировать колебания и принимать на себя векторные удары массы груза. Но кузов с межоконными стойками – это демпфер между дорогой и дополнительным закреплённым высоко центром тяжести. Поэтому крепят багажник как можно ниже к крыше, важен даже один сантиметр.

Конструкция багажника

Золотое правило: если у автомобиля пара рейлингов на крыше, то подбираются соответствующие поперечины. Размеры должны соответствовать расстояние между рейлингами. Это крайне важно для равномерного распределения, где большая часть веса приходится на ключевые крепежные элементы.

При отсутствии элементов с помощью набора крепежей устанавливается соединение багажника и верхней части автомобиля. Составных частей базового багажника мало:

  • Продольные дуги.
  • Поперечные перекладины. Поперечные и продольные рейлинги

    Поперечные и продольные рейлинги

Стойки опоры, которые состоят из:

  • Кронштейнов.
  • Уголков.
  • Пластиковых площадок.
  • Болтов, гаек и шайб.

На практике автомобильные багажники в своём виде различные. Материал исполнения и механические свойства креплений совместно с показателями крыши машины определяют конструкцию и будущее назначение устройства.

Простой подбор багажника

При покупке автобагажника на крышу машины стоит уточнить:

  • Марку транспортного средства.
  • Тип крыши и кузова.
  • Год выпуска машины.

Эти параметры помогут не допустить ошибок при покупке. Далее следуют тонкости. Важно знать, из чего сделаны опоры багажника и установочные стержни на крыше. Их изготавливают из стали и алюминия. При небольшом периоде использования багажника останавливаются на крепежных элементах из стали. При длительном использовании они приходят в негодность и ухудшают аэродинамические свойства.

Преимущество багажников из алюминия:

  • Антикоррозийное покрытие. С ним срок эксплуатации увеличивается в разы, следовательно, автовладелец экономит деньги.
  • Улучшенная аэродинамика. Чем меньше сопротивление воздуха, тем больше топлива экономит автомобиль.
  • Алюминиевая корзина легче. Монтаж и демонтаж происходят быстро.
  • Важным параметром является размер конструкции. Лучше использовать автобагажник с регулировками. Багажник корзина на крыше автомобиля

    Багажник алюминиевая корзина на крыше автомобиля

Способы крепежа багажника

Рассмотрим способы крепежа автобагажника к крыше:

  • Штатный. При покупке автомобиля в комплекте уже идут крепежные элементы багажника. А отверстия монтажа спрятаны за дверной уплотнитель. Этот вариант удобен и позволяет не тратить силы на поиск необходимых приспособлений. Чтобы стойки крепко держались, в наборе используют специальные болты. Крепление поперечин на крышу Шевроле Нива

    Штатные крепления на крыше Шевроле Нива

  • Универсальный. Ещё называют дверной. Устанавливается с помощью универсального крепежа, фиксирующейся в области контррельефа кузова, повторяющего изгиб двери. Этот вариант затратный в установке и занимает время. Подобрать точную модель универсального багажника может только специалист. Крепление багажника Рено Логан

    Универсальное крепление на крышу Рено Логан

  • Использование рейлингов. У большого количества транспортных средств есть рейлинги. Это приспособления, идущие параллельно вдоль крыши с двух сторон, выполненные из пластика или металла. С помощью них даже самостоятельная установка автобагажника происходит намного проще. Иногда рейлинги оборудуются местами крепления для облегчения процесса установки. Багажник Атлат на рейлинги

    Крепление багажник Атлат на рейлинги

Важные моменты

Даже после вышеизложенной информации экономный водитель скажет: «И что? Специальный багажник дорогой, бокс – маломер, экспедиционный подавно не нужен. Буду собирать из разных комплектов». На сегодня существуют все багажники со всей комплектацией, но если у такого автовладельца получится собрать подходящие детали по отдельности, раза с пятого, то он передаст свой опыт коллегам по гаражу:

  • Поперечины и рейлинги подбираются путём замера крыши.
  • Простые опоры изготавливаются из дешевого пластика. Поэтому они подвержены разрушению, так как не переносят и жару и холод.
  • Практичней стойки из алюминия, стали или ABS-пластика. Они прослужат намного дольше, не теряя своих свойств.
  • Чем больше объем автобагажника, тем больше вещей он вмещает.

Удобно иметь крупный автобагажник и не задумываться о том, сколько места в нем осталось, но:

  • Придется доплатить за объем.
  • Увеличиться расход топлива.
  • Конструкция будет иметь ухудшенные аэродинамические свойства.

Любая модель имеет допустимую нагрузку. При покупке неправильно подобранный автобагажник приведет к ухудшению управления автомобилем и быстрому износу конструкции. Крыша машины также обладает допустимой грузоподъёмностью.

Рекомендации по установке

  • Установка багажника на крышу машины – несложный процесс, занимающий небольшое количество времени. Но если установка предстоит впервые, то лучше обратиться в автосервис, чтобы установку произвели, основываясь на рекомендациях производителей автомобиля.
  • Рынок креплений предоставлен отечественными и импортными аналогами. Правильно установить автобагажник на крышу, не имея качественных запчастей невозможно. Это приведёт к порче автомобиля, а в худшем случае к аварии.

Наличие рейлингов позволяет установить на машину разнообразные модели автобагажников. Сборка простая и быстрая. Конструкция отличается надежностью.

Установка багажника без рейлингов или точек крепления. Это популярный вид автобагажника с регулирующимся расстоянием между ножками. Этот способ подразумевает установку и сборку поперечины на крыше, закрепление фиксаторов и корпуса. После этого можно прикрепить дополнительные элементы для перевозки снаряжения.

Установка багажника на якорных точках. Если на автомобиле не оборудованы стержни, то используются якоря. Они крепятся к привязке, которую предоставляет производитель автобагажника. Для установки якоря нужно закрепить установочную муфту, установить и закрепить поперечины крепежами.

В

Сборка

Самостоятельная сборка ничем не отличается от сервисной.

  1. Лучшим вариантом для самостоятельного монтажа по степени надежности будет установка автобагажника на штатные крепежные элементы. Машины таких моделей изначально заточены на перевоз грузов при помощи багажника на крыше:
    • Необходимо обнаружить крепёжные отверстия за дверной резиновой прокладкой на кузове.
    • Приложить дуги к отверстиям.
    • Зафиксировать на болты.
  2. Сборка с опорами немного отличается:
    • Необходимо предварительно собрать площадку.
    • Смонтировать и крепко зафиксировать кронштейн опорной стойки.
    • Соединить, но не докручивать площадку к стойке.
    • Уложить поперечины или корзину.
    • Отцентровать конструкцию.
    • Затянуть гайки.
  3. Сборка на водостоки и на дверной проём одинакова:
    • Смонтировать, но не докрутить кронштейны на водостоках (дверных проёмах).
    • Уложить перекладины или корзину.
    • Закрепить конструкцию.
  4. Рейлинги, имеющие два или три крепления на дуге, монтируются моментально без предварительной отцентровки.
  5. Экспедиционная корзина идентична в сборке. Нужно учесть только то, что она уже готова (сварена) и для её установки необходимо как минимум два человека.

Каждый водитель решает сам покупать-не покупать, устанавливать самому или в автосервисе. А также экономия денег без учёта важной информации не сэкономит эмоции на дороге. Золотая середина заключается в соблюдении порядка действий при установке и в предшествующем грамотном выборе багажника на крышу автомобиля.

pricepclub.ru

30Сен

Характеристика дизельного топлива 5 класса: Сорта и классы дизельного топлива (дизеля) — Волгаресурс

Дизельное топливо ЕВРО 5 с доставкой и автоналивом в Санкт-Петербурге

По содержанию серы топливо подразделяются на два вида:
I — массовая доля серы не более 0,2 %;
II — массовая доля серы не более 0,5 % (для марки А не более 0,4 %).

Помимо этого, существует множество различных параметров и характеристик дизельного топлива: фракционный состав, кинематическая вязкость, температура перегонки, цетановое число, густота при 20 °С, йодистое число, коэффициент фильтрации, содержание воды, массовая часть серы и серных соединений, концентрация смол, содержание механических примесей, предельная температура фильтрации, температура замерзания, химическая стабильность, кислотность, температура вспышки, коксуемость, зольность и другие. Рассмотрим более подробно самые основные характеристики дизельного топлива.

* Цетановое число (детонационная стойкость) характеризует работу двигателя с точки зрения воспламенения и сгорания. От цетанового числа, в свою очередь, зависит мощность, дымность и шумность двигателя. Эталоном определения детонационной стойкости или цетанового числа является цетан или н-гексадекан. Значение цетанового числа для цетана при этом устанавливается на уровне 100, а аналогичный показатель альфаметилнафталина – на уровне 0. Температура вспышки, определённая по ASTM D93, для диз топлива должна быть не выше 70 °C. Температура перегонки, определённая по ASTM D86, для дизельного топлива не должна быть ниже 200 и выше 350 °C.

* Плотность и вязкость определяют процесс испарения и образования смесей в двигателе.

* Низкотемпературные характеристики дизельного топлива (предельная температура фильтрации, температура застывания, температура помутнения) также являются важными параметрами. Что касается температуры застывания, то она составляет порядка -10 °С для летних марок и не выше -35 °С для зимних марок, в соответствии с ГОСТом. Температура помутнения составляет обычно около -5 °С.

* Химическая стабильность солярки – это его способность к сопротивлению окислению в процессе хранения. Окисление приводит к образованию осадка на дне бака с топливом, во избежание чего добавляются специальные присадки.

* Ещё одной проблемой является повышенное содержание воды в дизельном топливе. Вода отслаивается при хранении дизтоплива и собирается внизу, так как его плотность меньше 1 кг/л. Водяная пробка в магистрали полностью блокирует работу двигателя. Требования межгосударственного стандарта ГОСТ 305-82 «Топливо дизельное. Технические условия» регламентируют кинематическую вязкость при 20 °C для летних сортов в пределах 3,0÷6,0 сСт, для зимних сортов 1,8÷5,0 сСт, для арктических 1,5÷4,0 сСт. Этот стандарт по ГОСТу требует также отсутствия воды во всех марках топлива.

Дизельное топливо Евро класса: 3, 4, 5

«Евро» — принятое в России название европейского экологического стандарта, который в соответствии с решением Европейской экономической комиссии при ООН, действует на территории ЕС и стран СНГ. Его основной задачей является регулирование содержания в продуктах сгорания топлива вредных веществ. На сегодня практическое применение в нашей стране имеют стандарты дизельного топлива Евро 3, Евро 4 и Евро 5, ведётся активная работа по переходу от Евро 3 к Евро 4, что позволяет обеспечить более высокий уровень экологической безопасности в работе дизельных двигателей.

Официально действуют стандарты не ниже Евро 3. Топливо, соответствующее Евро 2 и Евро 1 запрещено продавать на территории России с начала 2013 года. Сроки окончательного перехода на Евро 4 постоянно переносятся, поэтому о точных датах говорить сложно. Основной причиной такой ситуации стала техническая неготовность нефтеперерабатывающих предприятий к полной модернизации своего производства, которая включает закупку нового технологического оборудования, внесение изменений в технологию.

Основные задачи введения стандартов Евро

 Важнейшей целью, которая преследуется при введении в действие стандартов Евро, является снижение уровня содержания в выхлопах, выбрасываемых в атмосферу, вредных веществ. К ним относятся угарный газ, бензол, полиароматические углеводороды, а главное, сернистые соединения. Именно последняя характеристика из всех перечисленных составляет основное отличие между нефтепродуктами разного класса.

Почему был запрещён стандарт дизельного топлива Евро 2

   Дизельное топливо, соответствующее стандарту Евро 2, стало обязательно к использованию с осени 2005 года. Согласно новому техническому регламенту, все виды топлива, которое предлагается на заправочных станциях, и техника должны были быть модернизированы или изначально соответствовать новым требованиям. Но достаточно быстро ДТ класса 2 было запрещено из-за высокого содержания серы (до 500 ррМ) и было принято решение о переходе на Евро 3, для которого этот показатель составляет уже не более 150 ррМ. Также резко снижается уровень бензола с 5 % до 1 %.

Дизельное топливо Евро 3

 В соответствии с российским законодательством все сорта дизельного топлива должны соответствовать Евро 3. При этом все транспортные средства, которые вводятся в страну или производятся здесь с 1 января 2008 года должны также соответствовать этому стандарту. Окончательный переход на Евро 3 состоялся в 2013 году.

Главным преимуществом такого решения стала сравнительно высокая экологичность. Результат особенно заметен в Москве и Московской области, в которых после отказа от использования дизтоплива классом ниже в 2007 году удалось приостановить ухудшение экологической ситуации, хотя более показательные результаты ожидаются только при окончательном переходе на Евро 4.

В соответствии с нормами, указанными в ГОСТе содержание серы в дизеле не превышает 150 ррМ. Также намного более строгий регламент действует на содержание в топливе таких канцерогенов как окиси азота и углерода. Всё это позволяет снизить уровень выбросов с выхлопами вредных веществ на 40 %, если сравнивать ситуацию с Евро 2.

  

Дизельное топливо Евро 4

  В соответствии с Постановлением Правительства все транспортные средства на территории России произведенные или введённые после 1 января 2013 года должны соответствовать стандарту экологической безопасности Евро 4. При этом для того, чтобы сделать этот переход менее болезненным для предприятий нефтеперерабатывающей отрасли, разрешено дальнейшее использование дизельного топлива Евро 3 для работы автомобилей и другой техники, выпущенной до указанной даты.

Решение безусловно правильное, но на данный момент необходима ещё большая работа, чтобы она действовала на практике. Основной проблемой становится то, что структура отечественного автопарка следующая:

  • машины старше 10 лет – 50 %,
  • 5-10 лет – 35 %,
  • менее 5 лет – 15 %

Именно поэтому сроки окончательного перехода на Евро 4 постоянно переносятся и пока нет решения по этому вопросу.

 Стоит отметить, что дизельное топливо Евро 4 (впрочем как и Евро 5) можно с уверенностью назвать своего рода аналогом зимней российской солярки по большинству эксплуатационных характеристик (в частности по возможности использования при низких температурах и более высокой экологичности). По прогнозам специалистов результатом полного отказа от Евро 3 и переход на использование дизельного топлива класса 4 и 5 станет улучшение экологической ситуации в Москве на 85-90 %.

 

Дизельное топливо Евро 5

 

На сегодня это самый «свежий» экологический стандарт, который действует на территории России с 1 января 2014 года на все автомобили, ввозимые в страну. Принципиальным отличием Евро 5 от его предшественников стало уменьшение дымности отработанных газов, существенное снижение содержания серы, за счёт которого стало возможным уменьшение доли выбрасываемых в атмосферу оксидов азота, твёрдых частиц, окисей углерода, а также не полностью сгоревших углеводородов.

Что касается самого автомобиля, использование дизельного топлива Евро 5 позволяет значительно улучшить процесс сгорания с одновременным снижением уровня вибрации и шума во время работы двигателя. Кроме того, заметно снижаются и коррозионные процессы, запуск двигателя становится легче, что положительно сказывается на его ресурсе. Также стоит отметить, что расход топлива при использовании Евро 5 будет более экономичным, что также немаловажно.

В ООО «Компании «Нипетойл» вы можете всегда купить дизельное топливо партией любого объёма по доступным ценам в Москве и Московской области с доставкой. У нас есть достаточно большой автопарк, чтобы обеспечить поставки в минимальные сроки в любую точку региона. Для того чтобы сделать заказ, достаточно позвонить нашему менеджеру. С ним можно оперативно согласовать все организационные вопросы, получить консультацию. Оплата производится только после прибытия бензовоза на место со всеми накладными, документацией, паспортом качества на дизтопливо. Обращайтесь!

Топливо дизельное

Название и марка
нефтепродукта
Нормативный документ Область применения, достижения  

    Топливо дизельное
зимнее депарафинированное
ДТ-З-К5 минус 32

ГОСТ Р 55475-2013

Дизельное топливо депарафинированное зимнее соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18. 10.2011 № 826. Получают на основе среднедистиллятных фракций при переработке нефти и газовых конденсатов. Предназначено для использования в двигателях внутреннего сгорания с
воспламенением от сжатия.
Лауреат всероссийского конкурса «Сто лучших товаров России» 2017
Новинка всероссийского конкурса «Сто лучших товаров России» 2017 

 

    Топливо дизельное
зимнее
депарафинированное
ДТ-З-К5 минус 38

ГОСТ Р 55475-2013

Дизельное топливо депарафинированное зимнее соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18.10.2011 № 826. Получают на основе среднедистиллятных фракций при переработке нефти и газовых конденсатов. Предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.

 

Топливо дизельное арктическое
депарафинированное

ДТ-А-К5 минус 44
ДТ-А-К5 минус 48
ДТ-А-К5 минус 52

ГОСТ Р 55475-2013

Дизельное топливо депарафинированное арктическое соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18.10.2011 № 826. Получают на основе среднедистиллятных фракций при переработке нефти и газовых конденсатов. Предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.   
Почётный диплом «Золотая сотня» всероссийского конкурса «Сто лучших товаров России» 2017  
Лауреат всероссийского конкурса «Сто лучших товаров России» 2017
Новинка всероссийского конкурса «Сто лучших товаров России» 2017 

 

Топливо дизельное летнее
Л-55 (ДТ-Л-К5)

  ТУ 38. 301-19-155-2009 изм. 1-11

Топливо дизельное летнее соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18.10.2011 № 826 и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.

 
    Топливо дизельное
          межсезонное
 Е-минус 15 (ДТ-Е-К5)  

 ТУ 38.301-19-155-2009 изм. 1-12      

Топливо дизельное межсезонное соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18. 10.2011 № 826, и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.

   

Топливо дизельное зимнее
З-минус 25 (ДТ-З-К5)

  ТУ 38.301-19-155-2009 изм. 1-12

Топливо дизельное зимнее с предельной температурой фильтруемости не выше минус 25 °С соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18.10.2011 № 826, и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия. 

 
 

  Топливо дизельное
зимнее
З-минус 35 (ДТ-З-К5)

   

ТУ 38. 301-19-155-2009 изм. 1-12    

 

Топливо дизельное зимнее с предельной температурой фильтруемости не выше минус 35 °С соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18.10.2011 № 826, и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.

 

    Топливо дизельное ЕВРО
Сорт С, вид III (ДТ-Л-К5)

ГОСТ Р 52368-2005
(ЕН 590:2009)
изм. 1

Топливо дизельное ЕВРО (для умеренного климата) соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18. 10.2011 № 826 и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.

  

 

    Топливо дизельное ЕВРО
Сорт E, вид III (ДТ-Е-К5)

ГОСТ Р 52368-2005
(ЕН 590:2009)
изм. 1

   

Топливо дизельное ЕВРО (для умеренного климата) соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18.10.2011 № 826, и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.
Лауреат всероссийского конкурса «Сто лучших товаров России» 2016
Новинка всероссийского конкурса «Сто лучших товаров России» 2016 

 

    Топливо дизельное ЕВРО
Сорт F, вид III (ДТ-Е-К5)

ГОСТ Р 52368-2005
(ЕН 590:2009)
изм. 1

Топливо дизельное ЕВРО (для умеренного климата) соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18.10.2011 № 826 и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.

 

    Топливо дизельное ЕВРО
класс 2, вид III (ДТ-З-К5)

ГОСТ Р 52368-2005
(ЕН 590:2009)
изм. 1

Топливо дизельное ЕВРО (для холодного климата) соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18. 10.2011 № 826 и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.
Лауреат всероссийского конкурса «Сто лучших товаров России» 2016.
Новинка всероссийского конкурса «Сто лучших товаров России» 2016.

 

    Топливо дизельное ЕВРО
класс 3 (4), вид III (ДТ-А-К5)

ГОСТ Р 52368-2005
(ЕН 590:2004)
изм. 1

Топливо дизельное ЕВРО (для арктического климата) соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18.10.2011 № 826 и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.

 

Топливо дизельное ЕВРО, летнее, сорта В,
экологического класса К5
(ДТ-Л-К5)

ГОСТ 32511-2013
(EN 590:2009)

Топливо дизельное ЕВРО (летнее) соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18. 10.2011 № 826 и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.

 

Топливо дизельное ЕВРО, летнее, сорта С,
экологического класса К5
(ДТ-Л-К5)

ГОСТ 32511-2013
(EN 590:2009)

Топливо дизельное ЕВРО (летнее) соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18.10.2011 № 826 и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.
Лауреат всероссийского конкурса «Сто лучших товаров России» 2016.
Новинка всероссийского конкурса «Сто лучших товаров России» 2016.

 

Топливо дизельное ЕВРО, межсезонное, сорта Е,
экологического класса К5
(ДТ-Е-К5)

ГОСТ 32511-2013
(EN 590:2009)

Топливо дизельное ЕВРО (межсезонное) соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18. 10.2011 № 826 и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.

 

Топливо дизельное ЕВРО, межсезонное, сорта F,
экологического класса К5
(ДТ-Е-К5)

ГОСТ 32511-2013
(EN 590:2009)

Топливо дизельное ЕВРО (межсезонное) соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18.10.2011 № 826 и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.
Дипломант всероссийского конкурса «Сто лучших товаров России» 2016.
Новинка всероссийского конкурса «Сто лучших товаров России» 2016.

 

Топливо дизельное ЕВРО,
зимнее, класса 2,
экологического класса К5
(ДТ-З-К5)

ГОСТ 32511-2013
(EN 590:2009)

Топливо дизельное ЕВРО (зимнее) соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18. 10.2011 № 826 и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.

 

Топливо дизельное ЕВРО,
арктическое, класса 4,
экологического класса К5
(ДТ-А-К5)

ГОСТ 32511-2013
(EN 590:2009)

Топливо дизельное ЕВРО (арктическое) соответствует требованиям технического регламента Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (ТР ТС 013/2011), принятого Решением Комиссии Таможенного союза от 18.10.2011 № 826 и предназначено для использования в двигателях внутреннего сгорания с воспламенением от сжатия.

 

цены и характеристики на сайте impuls-oil.ru

Дизельное топливо используют для заправки отопительных котлов, электрогенераторов, танков, тракторов, грузовиков, самолетов и катеров. Несмотря на спорные экологические характеристики, множество ограничений и регулярное появление улучшенных новинок многие автомобилисты предпочитают приобретать транспорт, работающий на старой проверенной солярке.

Сейчас этот нефтепродукт изготавливается согласно требованиям ГОСТ 305-2013 «Топливо дизельное. Технические условия», обновленного по сравнению с нормативом 1982 года.

Для каждого вида погодных условий предусмотрено подходящее дизельное топливо. Чтобы добиться требуемых характеристик, при производстве применяют разную технологию. Добавляют различные вещества, закрепляющие особые качества.

Названия марок определяют по сезонам:

  • Марка Л – летнее – обеспечивает работу двигателя летом, когда на термометре больше -5 С°;
  • Марка Е – межсезонное – хорошо зарекомендовало себя в переходный период, когда приходят заморозки от -5 до -15°С;
  • Марка З – зимнее – требуется в холода от -25 до -35°С;
  • Марка А – арктическое – обозначается названием холодного полюса, так как не теряет рабочих свойств при морозе -45°С
Основным фактором является предельная температура фильтруемости – самый высокий показатель, при котором определенный объем материала не протекает через стандартный фильтр за отведенный отрезок времени. При температуре ниже указанной парафин, который содержится в дизтопливе, начинает кристаллизоваться. Выпадает осадок. Жидкость мутнеет, становится вязкой, плотной. Плохо проходит через фильтр. Отсюда и название.

Но если солярка мутная, это не значит, что ее нельзя использовать. Фильтруемость может оставаться нормальной. Определить ее на глаз трудно. Для проверки разработана специальная методика.

Арктическое дизельное топливо сохраняет рабочие свойства в самых суровых условиях. Его можно хранить в обычном режиме там, где остальные материалы невозможно даже транспортировать. По составу это ДТ похоже на керосин, но его молекулы тяжелее, а цетановое число и смазывающая способность выше.

Получают дизельное топливо Арктика с помощью перегонки нефти и добавления присадок. Либо освобождая от парафина летний тип. Второй способ трудоемкий и дорогой, его применяют редко. Изначально морозостойкое дизтопливо получается менее плотным. Это плохо сказывается на расходе, но позволяет сохранять нормативные параметры в морозы.

Дизельное топливо евро 5 технические характеристики

ООО АКТИВЭЛ > Дизельное топливо евро 5 технические характеристики

В России дизельное топливо класса ЕВРО 5 ввели несколько лет назад. Сейчас оно применяется наряду со своими предшественниками, классами 4 и 3. Главное отличие в том, что данный стандарт более экологически чистый, и заметно меньше загрязняет не только окружающую среду, но и двигатель вашего автомобиля.

ООО «Активэл» предлагает оптом дизельное топливо ЕВРО 5 в бочках с доставкой по Москве и всей области. Мы прямые поставщики от лучших производителей России, таких как Лукоил и Роснефть. Так же всегда в наличии авиационный керосин ТС-1.

Задать вопросы, рассчитать стоимость партии доставки вы можете по телефонам: +7 (985) 225-36-37 и +7 (495) 508-53-15

Основные характеристики дизельного топлива Евро 5

Нередко покупатели интересуются, каковы же технические характеристики дизельного топлива ЕВРО 5. Здесь мы приведем самые важные из них, остальное вы можете получить в виде документов и сертификатов, при желании запросите их у наших менеджеров.

  • Цетановое число – 51,0
  • Цетановый индекс – 46,0
  • Содержание серы – 10 мг/кг
  • Температура вспышки – 55°С
  • Содержание воды – 200 мг/кг
  • Осадок – не более 25 мг/кг
  • Окислительная стабильность – 25 г/м³

Цетановое число один из важнейших показателей, это характеристика воспламеняемости. Или попросту промежуток от впрыска ДТ в цилиндр до момента начала горения. Чем ниже цетановое число, тем легче загорается пламя в двигателе и тем меньше шумов, и снижается дымность двигателя. Так в стандарте ЕВРО 3 его гораздо больше, чем в ЕВРО 5.

Одним словом, если вы видите цетановое число больше 60, стоит задуматься, стоит ли пользоваться таким топливом. Иногда автомобилисты пытаются заменить дизельное топливо соляркой. Но это разные виды топлива, отличаются характеристиками. Конечно, теоретически можно одно заменить другим. Но как результат будет большая нагрузка на двигатель от солярки и быстрый его износ.

В чем преимущества топлива ЕВРО 5

Кроме того дизельное топливо евро-5, благодаря высокому цетановому числу не ниже 51, повышает мощность двигателя и уменьшает его износ.

Плюсы дизельного топлива евро 5:

  • Выше мощность;
  • полное исключение детонации;
  • более плавный пуск двигателя;
  • уменьшение расхода топлива;

Как видите, дизельное топливо ЕВРО 5 выгодное вложение в ваш транспорт. Так двигатель прослужит вам больше и дольше. Поэтому если вам надо купить оптом дизельное топливо Евро 5 по выгодной цене в Москве, звоните по телефонам:

+7 (985) 225-36-37 и +7 (495) 508-53-15

Форма для связи с нами

дизельное топливо летнее и зимнее, дизельное топливо евро

Дизельное топливо или, как говорится в народе, солярка — это топливо, используемое в дизельных двигателях, ДВС с воспламенением от сжатия.

Дизельное топливо — это смесь углеводородов с очень небольшими примесями водорода, азота, кислорода и серы. Дизтопливо подразделяют на маловязкие дистиллятные сорта, применяющиеся в форсированных быстроходных двигателях и сорта остаточные высоковязкие, используемые в судовых, стационарных и тракторных ДВС.

Маловязкие сорта состоят из керосиногазойлевых фракций прямой перегонки и до 20% из газойлей получаемых каталитическим крекингом. Остаточные (вязкие сорта) — это смесь керосиногазойлевых фракций с мазутом.

Также существует сезонная классификация дизельного топлива.

  • А — арктическое
  • З — зимнее   дизтопливо
  • Л — летнее  дизтопливо

Рассмотрим сезонные характеристики дизтоплива подробней:

  • А – арктическое дт. Используется при температуре  окружающей среды до – 50 о. Цетановое число – 40, плотность при 20 о – не более 830 кг/м3, вязкость при 20 о – от 1,4 до 4 кв. мм/с, температура застывания составляет –55 о.
  • З – дизельное топливо зимнее. Применяется при температуре до –30 о. Цетановое число  – 45, плотность при 20 о – не более 840 кг/м3, вязкость при 20 о – от 1,8 до 5 кв. мм/с, температура застывания составляет –35 о.
  • Л – дизельное топливо летнее. Используется при температуре воздуха  до 0 о и выше. Цетановое число – не ниже 45, плотность при 20 о – не более 860 кг/м3, вязкость при 20о – от 3 до 6 кв. мм/с, температура застывания составляет –5 о.

Вышеперечисленные характеристики относятся к устаревшему ГОСТу 305-82.
В 2006г. был введен в строй новый ГОСТ Р 52368-2005 (ЕН 590:2004).

Топливо дизельное евро.

Введена новая система маркировок ДТ:

  • СОРТ — предельная температура фильтруемости.
  • КЛАСС — температура помутнения.
  • ВИД — количество сернистых соединений.

Как пример — ТД ЕВРО Сорт С вид 2 имеет температуру фильтруемости до -5С° и содержание сернистых соединений, которое соответствует стандарту ЕВРО 2.

Область применения этого вида топлива очень и очень широка. Это и автомобильные, судовые, железнодорожные, сельскохозяйственные двигатели внутреннего сгорания, и автономная электроэнергия (дизель генераторы), смазка различных механизмов, кожевенное производство.

Говоря о дизельном топливе, в первую очередь имеется в виду многокомпонентная смесь, содержащая в себе несколько различных фракций – продуктов прямой нефтеперегонки. Данное горючее получило всеобщую популярность – около трети всех транспортных средств, колесящих дороги не только в нашей стране, но и за рубежом, оснащены мотором дизельного типа. К числу достоинств данного двигателя следует отнести его повышенный эксплуатационный ресурс, простоту ухода, достойную мощность, возможность использования внутри территорий с экстремальными погодными условиями. Кроме того, использование соляры (так в обиходе нередко называют указанное выше горючее) позволяет снизить финансовые издержки водителей — реализуется горючее в сети автозаправочных станциях по более доступным, нежели, чем бензин, ценам. На сегодняшний день продажа дизтоплива осуществляется десятками отечественных и зарубежных компаний, занятых в нефтехимической промышленности – вниманию владельцев авто предоставлена возможность выбора горючего, использовать которое возможно при нахождении как в жарких регионах, так и в условиях Крайнего севера.

А что автомобилистам следует знать о самом топливе? Какие требования к его качеству предъявляются в последние годы? Общемировой тенденцией следует считать ужесточение процентного содержания в составе продукта серы. Так, в Швеции в дизтопливе I класса не допускается содержание данного элемента свыше 10 мг/кг, для горючего II класса – свыше 50 мг/кг, соответственно.

Общеевропейский стандарт EN 590 предусматривает, чтобы в конечном продукте содержание серы было снижено до 0.035%, цетановое же число было, наоборот, увеличено до 51 единицы. Соответствующие изменения введены и в отношении вязкости углеводорода: 2-4.5 при температуре 400 С, и 2.7-6.5 мм2/с при температуре 200 С.

Как уже было сказано выше, продажа дизельного топлива производится с учетом климатических условий эксплуатации транспортных средств. Низкотемпературные свойства горючего обусловлены показателями температуры застывания, фильтрации. Данный параметр характеризует потерю текучести углеводорода с понижением температуры (вследствие увеличения вязкости). При достижения дизельным топливом данной границы подача его в цилиндры двигателя не представляется возможной. Автовладельцам рекомендуется использовать соляру зимнюю и арктическую, не изменяющую агрегатного состояния при заливе в баки в условиях низкой температуры окружающего воздуха.

В нашей компании вы можете приобрести дизельное топливо отвечающее стандартам ГОСТа, по низким ценам и в точно указанные сроки.

Экспертиза дизтоплива: Не отравится ли дизель? — журнал За рулем

Экспертиза дизтоплива: Не отравится ли дизель?

Шутки шутками, а когда наш материал был уже почти готов к публикации, в американском журнале Microbiology проскочила новость: обнаружен гриб, вырабатывающий… дизельное топливо! Чудо-дерево, в древесине которого проживает столь продвинутая плесень, растет где-то в северной Патагонии. Интересно, знакомы ли эти грибы с Евро IV?

Конечно, такие сообщения — на уровне журналистской утки. Реальное дизтопливо состоит примерно из 900 углеводородных соединений, и никакой гриб ничего подобного не сотворит. Поэтому гоняться за «грибным» топливом не будем, ограничимся анализом того, что продают на российских АЗС.

Расхожая страшилка: наше дизтопливо — полная дрянь, заправляться им нельзя. Вот и посмотрим, насколько эти страхи оправданны. Забегая далеко вперед, скажем главное: полученные результаты хотя и выявляют кучу проблем, но говорят однозначно: не так страшен черт, как его малюют. По крайней мере ни один из образцов топлива, выставленных нами на испытания, к скоропостижному летальному исходу мотора не приведет. Но обо всем по порядку.

Для проведения этой работы мы привлекли шесть (!) лабораторий в двух столицах. О стоимости работ скромно умолчим, но именно из-за нее мы решили ограничиться шестью пробами дизтоплива с различных заправок — от столичных до затерянных в провинции.

Начали, как всегда, с поездок по АЗС. Методику отбора мы описывали еще в ЗР, 2008, № 1, однако…

МЕТОДИКА ОТБОРА И ДОБРЫЕ ЛЮДИ

Бытует мнение, что каждый покупатель может сам выяснить, качественное ли топливо продают на АЗС. Для этого надо всего лишь попросить копию паспорта качества. И мы попробовали.

— Эй, любезный, я что-то не догоняю… Я тебе снимать разрешал? Машину в сторону, сам — за мной. Понял?

Добрый человек с замызганной АЗС был очень недоволен. Он ткнул пальцем в древнюю бумажку, висящую на его «избушке»: читай и запоминай, если такой любопытный, а копий мы не держим. Но когда вместо ксерокса мы применили фотоаппарат, он покинул убежище и решительно потребовал сатисфакции.

Вот такая у нас работа. Нагнетать страсти не будем, отметим главное: машина не пострадала, доброго человека удалось перевоспитать, а сертификат — на фото.

Итак, шесть образцов отобраны, все по 40 литров. О том, какие параметры мы проверяли и что в стране называют дизтопливом, читайте ниже. Напомним также, что страна Россия далеко не южная, а отбор проб происходил в конце октября. Обладателям современных дизелей, которым неохота вдумываться в содержание таблиц, предлагаем просто взглянуть на фоторяд с АЗС. Чем дальше от начала, тем меньше это топливо подходит для вас.

ЦЕТАН И СЕРА, ЗИМА И ЛЕТО

Не написать сегодня на раздаточной колонке «Евро IV» — себя не уважать. Пусть по корявенькому трафарету да на ржавую поверхность, но как звучит! И не важно, что ни в действующих, ни в перспективных нормативных документах такой марки дизельного топлива нет! Упоминание «Евро» пока что надо рассматривать не как признак высокого качества, а скорее как маркетинговый ход! Что, кстати, подтвердили чеки и паспорта качества — нигде заветного слова с римской цифрой нет и в помине.

Что касается полученных данных, такого разнобоя мы не ожидали. Убедитесь сами — все сведено в таблицы. Разброс величины ЦЧ составил целых шесть единиц. Самое низкое — 49 единиц — у образцов с контейнерных заправок эпохи паровоза Черепановых. А лидер в этой номинации — топливо «Киришиавтосервиса», в которое заложили аж 55 цетановых единиц. На перспективное Евро V по этому параметру тянет! Только вот зачем? Впрочем, об этом ниже.

Снято 27.10.2008 года полускрытой камерой в антисанитарных условиях на контейнерной заправке. И не зря! Какое число указано в этой бумажке, называемой «паспортом качества»? 7 августа!

Снято 27.10.2008 года полускрытой камерой в антисанитарных условиях на контейнерной заправке. И не зря! Какое число указано в этой бумажке, называемой «паспортом качества»? 7 августа!

От цетана — к сере. Если по старому ГОСТу разрешалось выпускать топливо двух видов — с содержанием серы 0,2 и 0,5%, то Евро IV допускает только 50 ррm (то есть 50 частей на миллион), а Евро V вообще выводит на предел определяемости — 10 ррm. Это соответственно в 100 и в 500 раз меньше! А у нас? Разница в содержании серы — 70-кратная! Лидер — ЛУКОЙЛ: всего 60 ррm. Лидер с другой стороны — топливо «Киришиавтосервиса»: 0,41%. А что говорят паспорта качества? А то, что закупленная киришская солярка изготовлена по древнему ГОСТ 305–82 и реально ему соответствует! Что касается Евро IV, то по содержанию серы всем образцам, кроме лукойловского, до этих требований далековато.

Современный дизель очень чувствителен к качеству топлива.

В современных нормативных документах на дизтопливо жестко нормируется его смазывающая способность. Сера и сернистые соединения выполняют роль своеобразной смазки, но их убрали, заменив специальными смазывающими присадками, весьма, кстати, дорогими. По этой части в лидерах опять ЛУКОЙЛ! Хотя серы в его образце совсем мало, но и пятно контакта самое маленькое — 268 мкм. Здорово! Солярка от BР по этому параметру тоже хороша. А вот деревенский образец, купленный на смешной контейнерной заправке с надписью «Евро IV» на фоне мертвого трактора, провалился по этому параметру с треском!

А какое топливо мы залили? Для летней или зимней эксплуатации? Может, для весенне-осеннего сезона, как разрешено в ГОСТ Р 52368–2005? Два образца из одной столицы — переходные, из другой — летние, а деревенские — вперемешку: один зимний, другой летний. Всего-то 900 км от Тульской области до Ленинградской, а какие сезонные колебания: на севере еще лето, а на юге, в Москве, — уже осень. По трассе же вообще тропический климат с лютой зимой чередуется.

КАНЦЕРОГЕНЫ И АРОМАТИКА

Как соотносятся групповой состав солярки и ее канцерогенная опасность? В протоколе из Российского онкологического центра четко написано: чем больше полициклических ароматических углеводородов (ПАУ), тем больше должно быть бенз(а)пирена. А что дают наши результаты?

В образце с минимальным содержанием полициклической ароматики бенз(а)пирена действительно меньше всего. А вот дальше сплошные чудеса. Четыре образца имеют содержание ПАУ приблизительно одинаковое — около 6%, а содержание злого канцерогена бенз(а)-пирена в них различается в 2,5 раза. И самое смешное, что в одном из образцов из этой четверки, где ПАУ хоть чуть-чуть, но меньше, бенз(а)пирена оказалось больше всего! А вот в образце с максимальным содержанием ПАУ обнаружилось относительно умеренное количество вышеупомянутого канцерогена. Дело в том, что ароматические соединения делятся на легкие и тяжелые — последние и включают в свой состав канцерогенные вещества. Именно об их наличии и свидетельствует бенз(а)пирен, который официально признан их индикатором.

Дизельное топливо — обзор

3.2.4 Дизельное топливо

Дизельное топливо по существу такое же, как топочный мазут, но доля крекированного газойля обычно меньше, поскольку высокое содержание ароматических веществ в крекированном газойле снижает цетановое число стоимость дизельного топлива.

Допустимое содержание серы для керосина со сверхнизким содержанием серы и дизельного топлива со сверхнизким содержанием серы (15 частей на миллион) намного ниже, чем предыдущий дорожный стандарт США для дизельного топлива с низким содержанием серы (500 частей на миллион), что не только снижает выбросы соединений серы. (причина кислотных дождей), но также позволяет устанавливать передовые системы контроля выбросов, которые в противном случае были бы отравлены этими соединениями.Эти системы могут значительно снизить выбросы оксидов азота и твердых частиц.

Дизельное топливо изначально представляло собой прямогонный продукт, полученный при перегонке сырой нефти. Однако при использовании различных процессов крекинга для получения компонентов дизельного топлива дизельное топливо также может содержать различные количества выбранных крекинг-дистиллятов для увеличения объема, доступного для удовлетворения растущего спроса. Особое внимание уделяется выбору растрескавшихся ложек таким образом, чтобы они соответствовали техническим требованиям.

В широком определении свойств дизельного топлива (таблица 3.3) существует множество возможных комбинаций характеристик (таких как летучесть, качество воспламенения, вязкость, сила тяжести, стабильность и другие свойства). Чтобы охарактеризовать дизельное топливо и тем самым установить рамки определений и ссылок, в разных странах используются различные классификации.

Примером является ASTM D975 в Соединенных Штатах, в котором сорта № 1D и 2-D представляют собой дистиллятные топлива, типы, наиболее часто используемые в высокоскоростных двигателях мобильного типа, в стационарных двигателях средней скорости и в железнодорожных двигателях. .Сорт 4-D относится к классу более вязких дистиллятов, а иногда и к смесям этих дистиллятов с мазутом. Топливо № 4-D применимо для использования в двигателях с низкой и средней частотой вращения, которые используются в системах с постоянной нагрузкой и преимущественно постоянной скоростью.

Цетановое число — это мера склонности дизельного топлива к детонации в дизельном двигателе. Шкала основана на характеристиках воспламенения двух углеводородов n -гексадекан (цетан) и 2,3,4,5,6,7,8-гептаметилнонан (изоцетан).Цетан имеет короткий период задержки во время воспламенения и ему присвоено цетановое число 100; изоцетан имеет длительный период задержки и ему присвоено цетановое число 15. Так же, как октановое число имеет значение для автомобильного топлива, цетановое число является средством определения качества воспламенения дизельного топлива и эквивалентно процентному содержанию цетан в смеси с изоцетаном, что соответствует качеству воспламенения тестового топлива (ASTM D613).

Когда-то при производстве жидкого топлива использовалось то, что осталось после удаления желаемых продуктов из сырой нефти.В настоящее время производство мазута представляет собой сложный вопрос выбора и смешивания различных нефтяных фракций для удовлетворения определенных требований, а производство однородного, стабильного жидкого топлива требует опыта, подкрепленного лабораторным контролем.

Как и бензин, присадки также доступны для дизельного топлива. Присадки к дизельному топливу выполняют две основные функции. Первая добавка к дизельному топливу — поддержание чистоты инжектора. Чистый инжектор будет распылять дизельный топливный туман с идеальной формой «лисьего хвоста», обеспечивая эффективное сгорание.Грязные форсунки производят брызги топлива, которые не являются равномерно мелким туманом, что, среди прочего, влияет на расход топлива, выходную мощность и качество холостого хода. Вторая роль присадок к дизельному топливу — предотвратить гелеобразование в холодную погоду. Без надлежащей присадки дизельные двигатели не запустятся, когда температура опустится ниже определенной точки.

AMF

Состав бензина и дизельного топлива

И бензин, и дизельное топливо состоят из сотен различных молекул углеводородов.Кроме того, часто встречаются некоторые компоненты биологического происхождения, такие как этанол в смеси бензина.

Бензин содержит в основном алканы (парафины), алкены (олефины) и ароматические углеводороды. Дизельное топливо состоит в основном из парафинов, ароматических углеводородов и нафтенов. Углеводороды бензина обычно содержат 4-12 атомов углерода с интервалом кипения от 30 до 210 ° C, тогда как дизельное топливо содержит углеводороды с приблизительно 12-20 атомами углерода и интервалом кипения от 170 до 360 ° C. Бензин и дизельное топливо содержат приблизительно 86 мас.% Углерода и 14 мас.% Водорода, но соотношение водорода к углероду несколько изменяется в зависимости от состава.

Парафиновые углеводороды, особенно нормальные парафины, улучшают воспламеняемость дизельного топлива, но низкотемпературные свойства этих парафинов имеют тенденцию к ухудшению. Ароматические углеводороды в бензине имеют высокое октановое число. Однако ароматические углеводороды и олефины могут ухудшить чистоту двигателя, а также увеличить отложения в двигателе, что является важным фактором для новых сложных двигателей и устройств последующей обработки. Ароматические углеводороды могут приводить к образованию канцерогенных соединений в выхлопных газах, таких как бензол и полиароматические соединения.Олефины в бензине могут привести к увеличению концентрации реакционноспособных олефинов в выхлопных газах, некоторые из которых являются канцерогенными, токсичными или могут увеличивать озонообразование. Добавки могут потребоваться для обеспечения надлежащих свойств бензина и дизельного топлива.

Традиционный бензин и дизельное топливо не рассматриваются подробно в «Системе топливной информации AMF». Вместо этого основное внимание уделяется альтернативным вариантам смешивания или замены бензина и дизельного топлива. Тем не менее, технология двигателей вместе с законодательством и стандартами для бензина и дизельного топлива рассматриваются кратко.

Бензин — законодательство и стандарты

Двигатель и технология последующей обработки предъявляют требования к качеству топлива. Базовый анализ топлива был разработан для проверки общих характеристик и работоспособности топлива в двигателях внутреннего сгорания. Впоследствии были определены свойства топлива, важные с точки зрения окружающей среды, такие как совместимость топлива с устройствами контроля выбросов. Функциональные возможности и общие характеристики бензина можно определить, например, с точки зрения октанового числа, летучести, содержания олефинов и добавок.Экологические характеристики могут быть определены, например, с точки зрения ароматических соединений, олефинов, содержания бензола, оксигенатов, летучести и серы (свинец не разрешен в большинстве стран). Свойства топлива регулируются законодательством и стандартами на топливо. Существует также ряд других региональных и национальных стандартов на топливо.

В Европе Директива по качеству топлива 2009/30 / EC определяет требования к основным свойствам топлива для бензина. Европейский стандарт EN 228 включает более обширные требования, чем Директива о качестве топлива, для обеспечения надлежащей работы бензина на рынке.CEN (Европейский комитет по стандартизации) разрабатывает стандарты в Европе.

В США ASTM D 4814 — это спецификация для бензина. Стандарт ASTM включает ряд классов, отказов и исключений с учетом климата, региона и, например, содержания этанола в бензине. В 2011 году Агентство по охране окружающей среды США приняло отказ от использования 15 об.% Этанола для автомобилей 2001 года и более новых. В США бензин-оксигенатные смеси считаются «по существу подобными», если они содержат углеводороды, алифатические простые эфиры, алифатические спирты, отличные от метанола, до 0. 3 об.% Метанола, до 2,75 об.% Метанола с равным объемом бутанола или спирта с более высокой молекулярной массой. Топливо должно содержать не более 2,0 мас.% Кислорода, за исключением топлива, содержащего алифатические эфиры и / или спирты (за исключением метанола), которые не должны содержать более 2,7 мас.% Кислорода. В США для автомобилей FFV разрешено использовать так называемое топливо серии P, состоящее из бутана, пентанов, этанола и сорастворителя биомассы метилтетрагидрофуран (MTHF).

Производители автомобилей и двигателей определили рекомендации для топлива во «Всемирной топливной хартии» (WWFC).Категория 4 является самой строгой категорией WWFC для «рынков с дополнительными передовыми требованиями к контролю за выбросами, позволяющими использовать современные технологии последующей обработки NOx и твердых частиц».

Выбранные требования и свойства топлива показаны в таблицах 1 и 2 ниже.

Таблица 1. Отдельные требования к свойствам бензина в Европе и США вместе с рекомендациями автопроизводителей (WWFC). Полные требования и стандарты доступны в соответствующих организациях.

Таблица 2. Примеры некоторых неограниченных свойств бензина.

Дизельное топливо — законодательство и стандарты

Двигатель и технология последующей обработки предъявляют требования к качеству топлива. Базовый анализ топлива был разработан для проверки общих характеристик и работоспособности топлива в двигателях внутреннего сгорания. Впоследствии были определены свойства топлива, важные с точки зрения окружающей среды, такие как совместимость топлива с устройствами контроля выбросов.Функциональные возможности и общие характеристики дизельного топлива можно определить, например, с точки зрения качества воспламенения, дистилляции, вязкости и присадок. Экологические характеристики можно определить по содержанию ароматических углеводородов и серы.

Свойства топлива регулируются законодательством и стандартами на топливо. В Европе Директива о качестве топлива 2009/30 / EC определяет требования к основным свойствам дизельного топлива. Европейский стандарт EN 590 включает более обширные требования, чем Директива по качеству топлива, для обеспечения надлежащей работы дизельного топлива на рынке.В Европе стандарты разрабатывает CEN (Европейский комитет по стандартизации).

В США ASTM D 975 — это спецификация для дизельного топлива. Стандарт ASTM включает несколько классов. Существует также ряд других региональных и национальных стандартов на топливо.

Производители автомобилей и двигателей определили рекомендации для топлива во «Всемирной топливной хартии» (WWFC). Категория 4 является самой строгой категорией WWFC для «рынков с дополнительными передовыми требованиями к контролю за выбросами, позволяющими использовать современные технологии последующей обработки NOx и твердых частиц».

Отдельные требования и свойства топлива показаны в таблицах 3 и 4 ниже.

Таблица 3. Отдельные требования к свойствам дизельного топлива в Европе и США вместе с рекомендациями автопроизводителей (WWFC). Полные требования и стандарты доступны в соответствующих организациях.

Таблица 4. Примеры некоторых неограниченных свойств дизельного топлива. а, б

Технология двигателя

БЕНЗИН — Двигатели с искровым зажиганием, работающие на бензине, являются ведущим источником энергии для легковых автомобилей.Двигатели с искровым зажиганием просты и дешевы по сравнению с дизельными двигателями с воспламенением от сжатия. Кроме того, стехиометрическое соотношение воздух-топливо позволяет использовать трехкомпонентный катализатор (TWC), который способен одновременно и эффективно снижать выбросы моноксида углерода (CO), углеводородов (HC) и оксидов азота (NO x ). . Недостатком двигателей с искровым зажиганием является их более низкий КПД по сравнению с двигателями с воспламенением от сжатия. Поэтому расход топлива двигателей с искровым зажиганием выше, чем у дизельных двигателей, как в энергетическом, так и в объемном выражении.

Бензиновые автомобили, оснащенные карбюраторными двигателями, были доступны до конца 1980-х годов. Сегодня двигатели с искровым зажиганием — это двигатели с впрыском топлива, в основном оснащенные многоточечным впрыском топлива (MPFI, впрыск топлива во впускной канал). В 1990-х годах на рынке появились двигатели с непосредственным впрыском и искровым зажиганием с более высоким КПД и меньшим расходом топлива. Модели, использующие обедненное сжигание с избытком воздуха, также были представлены в 1990-х годах, но вскоре исчезли с рынка. Двигатели с искровым зажиганием, как с прямым, так и с прямым впрыском, теперь основаны на стехиометрическом соотношении воздух / топливо и оснащены катализатором TWC.

Выбросы выхлопных газов двигателей с искровым зажиганием, использующих стехиометрическое соотношение воздух / топливо, можно эффективно контролировать с помощью трехкомпонентного катализатора (TWC). В TWC оксид углерода и несгоревшие углеводороды окисляются одновременно с восстановлением оксидов азота. С TWC достигается даже более чем 90% -ное сокращение выбросов CO, HC и NO x из двигателя, причем выбросы происходят в основном при холодном запуске или резком ускорении. Однако в некоторых условиях катализатор TWC может вызывать выбросы аммиака и закиси азота.TWC работают эффективно только в очень узком лямбда-окне, близком к стехиометрическому соотношению воздух / топливо, и поэтому TWC не могут использоваться в двигателях, работающих на бедной смеси, таких как дизельные двигатели. Преимущество обедненной смеси будет заключаться в улучшении расхода топлива, но за счет увеличения выбросов NO x . Рециркуляция выхлопных газов (EGR) — одна из распространенных технологий, используемых для снижения выбросов NO x дизельных двигателей, а также в двигателях с искровым зажиганием.Для автомобилей с прямым впрыском и искровым зажиганием выброс твердых частиц высок, и поэтому могут потребоваться фильтры для твердых частиц.

Сегодня двигатели с искровым зажиганием менее чувствительны к топливу, чем двигатели более старых поколений, а абсолютная масса выбросов низка. Однако при холодном пуске, тяжелых условиях вождения и при низких температурах между видами топлива для всех автомобилей могут быть большие абсолютные и относительные различия. В прошлом карбюраторные двигатели были особенно чувствительны к топливу, например, возникали проблемы с управляемостью и паровыми пробками.Большинство автомобилей с бензиновым двигателем сегодня могут выдерживать как минимум до 10 об.% Этанола в Европе и США

.

ДИЗЕЛЬ — благодаря своему высокому КПД дизельные двигатели с воспламенением от сжатия являются ведущим источником энергии в тяжелых транспортных средствах из-за их высокого КПД. Сегодня дизельные двигатели становятся все более популярными и в легковых автомобилях. Устройства контроля выбросов и внутренние двигатели имеют решающее влияние на выбросы выхлопных газов. Дизельные двигатели работают на обедненной смеси, что улучшает расход топлива, но за счет увеличения выбросов оксидов азота (NO x ). Выбросы NO x образуются из азота в воздухе при высоких температурах. Выбросы твердых частиц (ТЧ) — еще одна проблема дизельных двигателей.

Селективное каталитическое восстановление (SCR) и рециркуляция выхлопных газов (EGR) являются общими технологиями, используемыми для снижения выбросов NO x дизельных двигателей. EGR — это внутренняя технология двигателя, тогда как SCR — это устройство последующей обработки выхлопных газов с использованием восстановителя, такого как аммиак или мочевина. С помощью системы рециркуляции выхлопных газов часть выхлопных газов возвращается в цилиндры двигателя, что снижает температуру сгорания и, следовательно, выбросы NO x .Высокий коэффициент рециркуляции отработавших газов может привести к проблемам с чистотой двигателя и увеличению выбросов твердых частиц. Катализатор окисления снижает выбросы летучих органических соединений. Фильтры твердых частиц эффективно снижают выбросы твердых частиц.

Ссылки

Chiba, F. , Ichinose, H., Morita, K., Yoshioka, M., Noguchi, Y. and Tsugagoshi, T. Влияние высокой концентрации этанола на двигатель SI

Дегальдо Р., Араужо А. и Фернандес В. (2007) Свойства бразильского бензина, смешанного с гидратированным этанолом, для технологии гибкого топлива.Технология переработки топлива 88 (2007) 365-368.

Выбросы (2010) Технический документ SAE 2010-01-1268.

Заявление

EMA. (2010) Техническое заявление по использованию кислородсодержащих бензиновых смесей в двигателях с искровым зажиганием. Ассоциация производителей двигателей. Январь 2010 г. http://www.enginemanufacturers.org/.

Кабасин Д. и др. (2009) Форсунки с подогревом для холодного пуска этанола. Технический документ SAE 2009-01-0615.

Лупеску, Дж., Чанко, Т., Ричерт, Дж. И Де Вриз, Дж.(2009) Обработка выбросов транспортных средств от сжигания E85 и бензина с помощью катализированных ловушек углеводородов. Общество Автомобильных Инженеров. Технический документ 2009-01-1080.

Мерфи, М. (1998) Варианты моторного топлива для дизельных двигателей тяжелых транспортных средств: свойства и спецификации топлива. Battelle.

Муртонен, Т., Аакко-Сакса, П., Куронен, М., Микконен, С. и Лехторанта, К., Выбросы тяжелых дизельных двигателей и транспортных средств, использующих топлива FAME, HVO и GTL с DOC + POC и без него После лечения.SAE International Journal of Fuels and Lubricants, 2010: 2, page 147-166. Также как технический документ SAE 2009-01-2693. 20 шт.

Оуэн, К. и Коли, Т. (1995) Справочник по автомобильному топливу. Общество Автомобильных Инженеров. Варрендейл. ISBN 1-56091-589-7.

Вест, Б., Лопес, А., Тайсс, Т., Грейвс, Р., Стори, Дж. И Льюис, С. (2007) Экономия топлива и выбросы оптимизированного для этанола биоэнергетического автомобиля Saab 9-5. Технический документ SAE 2007-01-3994.

Характеристики дизельного топлива, влияющие на мощность и экономичность JSTOR

Статья журнала

Характеристики дизельного топлива, влияющие на мощность и экономичность

А. Дж. Блэквуд, Дж. Х. Клауд

Сделки SAE

Издатель: SAE International

https://www.jstor.org/stable/44429089

Копировать

ИЗ многих характеристик дизельного топлива, теплотворной способности, качества воспламенения и, возможно, вязкости топлива являются единственными важными характеристиками, влияющими на мощность и экономичность двигателя, сообщают авторы.В своей статье они представляют данные, полученные в результате расширенной программы исследования топлива, относительно мощности и экономии топлива, полученные при использовании топлива, различающегося по своим физическим и химическим характеристикам. Пункты, которые, по мнению авторов, имеют большое практическое значение, резюмируются следующим образом: 1. Предполагая полное сгорание, летучесть топлива влияет на количество пинт на тормозную мощность в час только косвенно, поскольку это связано с теплотворной способностью и качеством зажигания. 2. Большинство современных двигателей имеют фиксированное время впрыска, и в таких двигателях качество зажигания является основным фактором, определяющим объемную экономию топлива в верхних диапазонах скоростей.При более низких оборотах двигателя теплотворная способность в единицах британских тепловых единиц на галлон или рассчитанная по плотности в градусах API является наиболее важным фактором. 3. Вязкость топлива сама по себе не является важным фактором мощности, получаемой от высокоскоростного дизельного двигателя, за исключением случаев, когда изношенное оборудование для впрыска может сделать нежелательным использование топлива с низкой вязкостью.

SAE International — это глобальная ассоциация, объединяющая более 128 000 инженеров и технических экспертов в аэрокосмической, автомобильной и коммерческой промышленности. Основные направления деятельности SAE International — обучение на протяжении всей жизни и разработка добровольных согласованных стандартов. Благотворительным подразделением SAE International является SAE Foundation, который поддерживает множество программ, включая A World In Motion® и Collegiate Design Series.

× Закрыть оверлей

Закрыть просмотр

Дизельное топливо легковоспламеняющееся или горючее?

Если ваша организация использует дизельное топливо, вам важно знать об опасных свойствах, связанных с этим веществом, таких как его воспламеняемость.Понимание химических и физических свойств дизельного топлива позволит вам внедрить меры контроля для снижения опасностей, которые дизельное топливо может представлять для вашего рабочего места. Одно из свойств дизельного топлива, которое часто вызывает сомнения, заключается в том, является ли оно легковоспламеняющимся или горючим. Чтобы определить ответ на этот вопрос, мы должны знать разницу между легковоспламеняющимися и горючими жидкостями и их точки вспышки.

Температура вспышки

Точка вспышки легковоспламеняющейся или горючей жидкости — это самая низкая температура, при которой вещества выделяют достаточно легковоспламеняющихся паров для воспламенения на воздухе.

Легковоспламеняющиеся жидкости

Австралийский кодекс по опасным грузам дает определение легковоспламеняющихся жидкостей. В этом коде указано:

Легковоспламеняющиеся жидкости — это жидкости или смеси жидкостей, или жидкости, содержащие твердые вещества в растворе или суспензии (например, краски, лаки, лаки и т. Д., За исключением веществ , классифицируемых иным образом по причине их опасных характеристик) которые выделяют легковоспламеняющийся пар при температуре не более 60 ° C, испытание в закрытом тигле, или не более 65. 6 ° C, испытание в открытом тигле, обычно называемое температурой вспышки. В этот класс также входят:

  • Жидкости, предлагаемые для перевозки при температурах, равных или превышающих их температуру вспышки; и
  • Вещества, которые транспортируются или предлагаются для перевозки при повышенных температурах в жидком состоянии и выделяют легковоспламеняющийся пар при температуре, равной или ниже максимальной температуры перевозки .

Горючие жидкости

Австралийский стандарт, в котором изложены требования к хранению и обращению с легковоспламеняющимися и горючими жидкостями, дает нам определение горючих жидкостей: Этот стандарт гласит:

Горючая жидкость — это любая жидкость, отличная от легковоспламеняющейся жидкости, имеющая точку воспламенения и температуру воспламенения ниже точки кипения.Есть два разных класса горючих жидкостей. К ним относятся C1 и C2.

  • Класс C1: горючая жидкость с температурой вспышки в закрытом тигле выше 60 ° C и не выше 93 ° C.
  • Класс C2: горючая жидкость с температурой вспышки выше 93 ° C.

Следовательно, легковоспламеняющиеся жидкости — это жидкости с температурой вспышки ниже 60 ° C, а горючие жидкости — это жидкости с температурой вспышки выше 60 ° C, но ниже точки кипения.Теперь мы можем использовать эту информацию, чтобы определить, является ли дизельное топливо легковоспламеняющимся или горючим.

Воспламеняемость дизельного топлива

Дизельное топливо — это любой вид жидкого топлива, которое может использоваться в дизельных двигателях. Дизельный двигатель — это двигатель внутреннего сгорания, который использует тепло, выделяемое при сжатии воздуха, для воспламенения топлива, впрыскиваемого в его цилиндры. Поскольку существует множество различных видов дизельного топлива, нет однозначного ответа, являются ли они горючими или горючими.Температура вспышки каждого дизельного топлива должна быть проверена, чтобы определить, классифицируется ли оно как легковоспламеняющаяся или горючая жидкость. Эту информацию можно найти, проверив паспорт безопасности каждого дизельного топлива. Дизельное топливо обычно имеет температуру вспышки от 52 ° C до 93 ° C. Поэтому те дизельные топлива, у которых температура вспышки ниже 60 ° C, классифицируются как легковоспламеняющиеся жидкости, а те, у которых температура вспышки выше 60 ° C, классифицируются как горючие жидкости.

Виды дизельного топлива

Есть много различных видов дизельного топлива, и они получают из различных источников.К различным типам дизельного топлива относятся:

  • Петродизель — добывается из сырой нефти
  • Синтетическое дизельное топливо — производится из углеродсодержащих материалов, таких как природный газ, биогаз или уголь
  • Биодизель — произведенный из растительных масел или животных жиров
  • Гидрогенизированные масла и жиры — получаются путем превращения триглицеридов в растительных маслах и животных жирах в алканы путем рафинирования и гидрогенизации
  • DME (диметиловый эфир) — газообразное дизельное топливо, произведенное синтетическим путем, обеспечивающее чистое сгорание

Из этих различных видов дизельного топлива наиболее широко используется нефтедизель. Большинство видов автомобильного дизельного топлива — это бензин.

Безопасное хранение и обращение с дизельным топливом

Независимо от того, является ли дизельное топливо, которое вы используете, легковоспламеняющимся или горючим, его необходимо хранить в безопасных условиях. Чтобы защитить свое рабочее место от опасностей, связанных с дизельным топливом, важно хранить легковоспламеняющиеся жидкости в полном соответствии с австралийскими стандартами.

Австралийский стандарт, в котором изложены требования к безопасному хранению дизельного топлива, — это AS1940-2017 — хранение и обращение с легковоспламеняющимися и горючими жидкостями. Требования к хранению, изложенные в этом стандарте, различаются в зависимости от места хранения. При использовании вне помещений дизельное топливо можно безопасно хранить в огороженном хранилище горючих жидкостей. Меньшие количества дизельного топлива можно хранить в помещении. Когда дизельное топливо хранится в помещении, оно должно храниться в соответствующем шкафу безопасности, отвечающем требованиям AS1940. Как в закрытом шкафу безопасности, так и во внешнем хранилище горючих жидкостей есть такие особенности жалоб, как отстойники для сбора разливов, средства вентиляции и знаки безопасности, чтобы минимизировать риски, которые дизельное топливо представляет для людей на рабочем месте.

Следующие шаги

Поскольку некоторые виды дизельного топлива классифицируются как легковоспламеняющиеся жидкости, а другие — как горючие жидкости, очень важно хранить и обращаться со всем дизельным топливом таким образом, чтобы снизить риск, который они представляют для людей на вашем рабочем месте. Если вам нужна дополнительная информация о том, как использовать структурированный подход к управлению рисками, связанными с воспламеняющимися жидкостями, загрузите нашу БЕСПЛАТНУЮ электронную книгу, нажав на изображение ниже.

Понимание различий между сортами дизельного топлива

28 февраля 2018 г., среда

Дизельное топливо имеет гораздо больше применений, чем обычный бензин, потому что его компоненты содержат больше энергии на галлон. Эксперты оценивают дизельное топливо более выгодно, чем бензин, поскольку его пары редко взрываются или воспламеняются во время использования. С 2007 года Агентство по охране окружающей среды (EPA) обязало все дизельное топливо для шоссе, продаваемое в Соединенных Штатах, соответствовать спецификациям, прежде чем широкая публика получит к нему доступ. Считается, что это поможет снизить выбросы от автомобилей с дизельным двигателем.

Дизельное топливо коммерчески доступно во многих марках, но различия между ними не влияют на использование топлива.У сортов есть свои преимущества и недостатки, и они должны отказываться от определенных характеристик, чтобы получить другие свойства. Например, дизельное топливо №1 имеет более низкую энергетическую составляющую, чем его аналог, дизельное топливо №2. # 2 также превращается в гель в холодную погоду. Следующее может помочь вам понять разницу между вариантами №1 и №2, а также зимним дизельным двигателем и дизельным двигателем AG.

№1 дизельное топливо

Продукция марки

№1 имеет меньше энергетических компонентов и более дорогая, чем ее основной аналог, продукция марки №2. Однако он редко имеет проблемы в холодных погодных условиях, что полностью противоположно классу №2. Это связано с тем, что парафин (разновидность воска) был удален из химической смеси. Отсутствие этого химического вещества позволяет ему оставаться в жидкой форме в течение зимних месяцев.

# 2 Топливо дизельное

Дизельное топливо класса

№2 является наиболее доступным на большинстве АЗС по всему миру. Это химическое соединение содержит наибольшее количество энергетических компонентов и смазочных свойств в одной смеси и обеспечивает лучшие топливные характеристики, доступные сегодня на рынке.Большинство ученых согласны с тем, что дизельное топливо №2 защитит топливные насосы, уплотнения и другие важные детали двигателя.

Как правило, №2 дешевле, чем №1, потому что не требует такой же глубины доработки, чтобы производить для продажи. Обратной стороной дизельного топлива №2 является его тенденция превращаться в густой гель при понижении температуры. Это часто приводит к тяжелому запуску и другим осложнениям зимой.

Топливо дизельное зимнее

Зимнее дизельное топливо представляет собой комбинацию топлива №1 и №2, которое при смешивании дает более высокую концентрацию дизельного топлива сорта №1.Эти виды топлива используются в те месяцы, когда становится слишком холодно для использования класса №2.

Комбинация обоих сортов топлива должна содержать достаточно энергетических компонентов и смазочных свойств, чтобы снизить вероятность гелеобразования химической смеси при более низких температурах. Обычно в зимние месяцы экономия топлива немного снижается, поскольку потребность в нем ниже, чем в другое время года.

Использование дизельного топлива сорта №1 зимой никогда не должно вызывать никаких непосредственных опасений.Однако длительное использование в двигателях, специально разработанных для класса № 2, может сократить срок службы двигателя в течение длительного периода времени. Топливо марок №1 и №2 можно смешивать одновременно. Это означает, что вам не о чем беспокоиться, если сорт №1 доступен только в зимние месяцы.

AG дизель

AG Diesel, также известный как красный дизель, предназначен для внедорожников и другого оборудования, которое не работает на дорогах общего пользования. По этой причине топливо класса AG не облагается налогами, как другие виды топлива, используемые в дорожных транспортных средствах.Стоимость красного дизельного топлива значительно ниже, чем у других видов, имеющихся на бензоколонке.

Дизель для бездорожья окрашен в красный цвет, чтобы его можно было отличить от других видов топлива. Это связано с тем, что его запрещено использовать на дорогах общего пользования. Обычно офицеры проверяют топливо на предмет незаконного использования, погружая в бак металлический датчик, чтобы взять образец. Это поможет определить, произошло ли противоправное действие. Штраф за такое деяние составляет несколько тысяч долларов за каждое нарушение.С химической точки зрения, у этого типа нет явных преимуществ перед другими типами, доступными на заправках, кроме цены на бензобак.

Где найти качественное дизельное топливо

Компания Kendrick Oil занимается оптовой продажей широкого ассортимента топлива, включая дизельное топливо и обычный газ. Если ваш бизнес нуждается в оптовом топливе или у вас есть какие-либо вопросы по поводу наших продуктов и услуг, позвоните нам по телефону (800) 299-3991 или свяжитесь с нами по электронной почте. У нас есть офисы в Техасе, Нью-Мексико, Оклахоме, Канзасе, Колорадо и Луизиане.

Характеристики сгорания и выбросов дизельного топлива, смешанного с сырой ятрофой, соевыми бобами и отработанными кулинарными маслами

Реферат

В настоящем исследовании было проанализировано сырое масло (ятрофа, соя и отходы кулинарного топлива), чтобы доказать его пригодность в качестве альтернативного топлива в двигатели с воспламенением от сжатия (CI). Смеси высокоэффективных растительных масел с дизельным топливом созданы и проанализированы экспериментально. Неочищенное масло смешивают с дизельным топливом в различной пропорции (от 20% до 50%) с использованием сырого растительного масла (100%). Для каждой топливной смеси проводятся две серии экспериментов: одна для анализа характеристик, а другая — для проверки выбросов. Анализ был проведен для чистого дизельного топлива и различных смесей ятрофа-дизель, соевое дизельное топливо и отработанное дизельное топливо для приготовления пищи при степени сжатия (CR) (16,5). Исследованы рабочие характеристики и характеристики выбросов для каждой смеси сырого масла и дизельного топлива, и представлены результаты сравнения. Результат показывает, что смеси B20 всего биодизельного топлива показали очень близкие значения термической эффективности тормозов (BTE) при любой нагрузке.

Ключевые слова: Химическое машиностроение, Машиностроение, Нефтяное машиностроение

1. Введение

Увеличение использования традиционной энергии и рост стоимости сырой нефти вынудили искать альтернативу дизельному топливу для дизельных двигателей . Были использованы различные возобновляемые кислородсодержащие топлива в зависимости от их безопасности, стоимости, доступности и совместимости с дизельными двигателями [1]. Среди различных видов топлива биодизель является наиболее изученной альтернативой, которая также продемонстрировала положительное влияние на решение проблем, связанных с недостаточным спросом на энергию.Биодизель неопасен, нетоксичен и поддается биологическому разложению и может значительно снизить выбросы токсичных, вредных веществ и углекислого газа из двигателей [2]. Биодизель также является жизнеспособным топливом и может смешиваться непосредственно с дизельным топливом в различных пропорциях. Кроме того, биодизель используется для работы дизельных двигателей без каких-либо изменений. Однако на производительность двигателя и выбросы влияет разница в их физико-химических свойствах.

Двигатели внутреннего сгорания широко используются в различных областях, таких как двигатели локомотивов, транспорт, электроэнергетика, сельскохозяйственная техника и т. Д.Тем не менее, дизельный двигатель играет жизненно важную роль в увеличении загрязнения окружающей среды, выделяя углеводород (HC), оксиды азота (NO X ), монооксид углерода (CO) в процессе сгорания. Растущее беспокойство по поводу истощения традиционных ресурсов и глобальных экологических проблем привлекло внимание к поощрению использования альтернативных видов топлива [3, 4]. У биодизеля есть огромные перспективы с низкой теплотворной способностью, меньшими выбросами CO и HC, более высоким цетановым числом и содержанием кислорода [4, 5, 6].

Усама Ахмед Эльсануси и др. [5] исследовали характеристики эмульсионного топлива и его влияние на дизельный двигатель при различных уровнях воды. Результаты показали, что содержание воды в смеси увеличивает термическую эффективность тормозов (BTE), тогда как выбросы выхлопных газов (EGT), оксидов азота (NOx) и дыма снижаются с увеличением содержания воды. Упендра Раджак и др. [7] исследовали рабочие характеристики биодизеля микроводоросли спирулины при различных условиях нагрузки на четырехтактном одноцилиндровом компрессорном двигателе с прямым зажиганием и водяным охлаждением и отметили снижение BTE, температуры выхлопных газов (EGT), выбросов NOx и дыма, а также обнаружили, что использование 20% смеси спирулины увеличивает удельный расход топлива и выбросы диоксидов углерода (CO 2 ).

Упендра Раджак и др. [8] численно определили характеристики дизельного двигателя с использованием растительного масла, отработанного масла, животного жира и спиртов с помощью инструмента Diesel-RK. Исследование показывает, что задержка воспламенения для биодизеля была меньше, чем для дизельного, и уменьшается при увеличении нагрузки на двигатель. Для биодизеля наблюдалось меньшее время сгорания. Упендра Раджак и др. [9] выполнили численное исследование для изучения эффективности девяти различных альтернативных видов биотоплива и дизельного топлива. Результаты показывают, что биотопливо может использоваться в качестве дополнительного топлива в двигателях ХИ.Численный результат был подтвержден против двух экспериментальных данных с использованием предложенного численного инструмента и показывает приблизительное хорошее согласие с экспериментальными результатами. Упендра Раджак и др. [10] исследовали характеристики эмульсионного топлива микроводорослей спирулины биодизель (MSB-20) с уровнем смеси B20 и изучили его влияние на характеристики дизельного двигателя. Результаты показывают снижение параметров цилиндра, тепловой эффективности тормозов, твердых частиц, оксидов азота, тогда как такие параметры, как пиковая скорость тепловыделения, удельный расход топлива, выбросы углекислого газа, период задержки зажигания, показывают увеличение при использовании биодизельного топлива MSB-20 при полной нагрузке двигателя. .Tse H et al. [13] изучали влияние дизельного топлива, биодизеля и этанола на характеристики сгорания дизельного двигателя и наблюдали, что смешанные топлива работают лучше, подавляя специфические числовые характеристики тормозов, что приводит к уменьшению количества ультратонких и наночастиц. L Wei et al. [14] провели исследование, чтобы оценить влияние биодизеля (кулинарного масла) на характеристики сгорания и выбросов 18 японского испытательного дизельного двигателя с 13 режимами, использующего топливо B20, B50 и B75.

Обзор доступной литературы показывает, что исследований непищевого сырого масла не так много.Целью исследования является оценка эффекта сжигания, а также оценка рабочих характеристик и характеристик выбросов дизельного двигателя с использованием ятрофы, сибаина и отработанного кулинарного масла. Каждое сырое масло смешивается с дизельным топливом в различной пропорции (от 20% до 50%) с использованием сырого масла (100%). Изучаются характеристики и характеристики выбросов для каждой смеси масло-дизельное топливо, и результаты сравниваются только с дизельным топливом. Кроме того, в этом исследовании изучаются выбросы CO и NOx.

2. Материал и методы

2.1. Производство и свойства биодизеля

В данном исследовании сырье, ятрофа, соя, отработанное масло для жарки, метанол, гидроксид натрия и другие консерванты были приобретены у местного поставщика. Биодизельное топливо было произведено методом трансэстрификации из ятрофы, сои и отработанного кулинарного масла, как показано в стандарте Американского общества испытаний и материалов (ASTM D6751). Ятрофа, соевые бобы и отработанное кулинарное масло в количестве 20, 30, 40 и 50% использовались с объемом чистого дизельного топлива для образования смеси.Свойства топлива приведены в.

Реакция переэтерификации.

Таблица 1

Физические свойства исследуемых топлив [15, 16].

9037 9037 9037 9037 9037 9037 9037 9037 9037 9037 9037 9037 40 ° C (мм 2 / с)
Свойства топлива Дизель Jatropha соя варка отходов
LHV (МДж / кг) 42,5 3.2 4,3 4,1 2–6
Плотность (кг / м 3 )830 873 885–914 874,5
874,5
52 63
Температура вспышки (° C) 74 148 160 176

2. 2. Методика эксперимента

Настоящее исследование проводилось на одноцилиндровом (1-C) 4-тактном дизельном двигателе с прямым впрыском (TV1, Kirloskar), который был объединен с вихретоковым динамометром (с воздушным охлаждением).показывает экспериментальную установку, которая используется для проведения экспериментов для этого исследования. Техническая спецификация тестового двигателя представлена ​​в. Анализатор дымовых газов Testo 350 был соединен с другим датчиком для анализа возможностей выбросов O 2 , HC, NO, CO, NO X , CO 2 от испытательного двигателя. Технические характеристики анализатора дымовых газов Testo 350 указаны в. Эксперимент проводится со смесями биодизельного топлива из ятрофы, сои и отработанного кулинарного масла (20%, 30%, 40% и 50%) и чистого дизельного топлива.

Таблица 2

Параметры Значения
Производитель М / с Kirloskar Oil Motors Ltd.
Модель TV 1 ход
Номинальная мощность 3,5 кВт при 1500 об / мин
Система сгорания Прямой впрыск
Цилиндры 1-C
Диаметр отверстия 87.5
Длина хода 110 мм
Степень сжатия (CR) 16,5: 1
Тип охлаждения Вода
Впрыск топлива Таблица 3

Технические характеристики газоанализатора.

до четырех цифр
Параметр измерения HC, CO, CO 2 , O 2 , NO X
Метод измерения HC, CO, CO 2 –NDIR (Non Dispersive Infrared Infrared ) Метод
O 2 , NOx — Электронно-химический метод
Диапазон измерения HC 0–15000 ppm CO 0.000–9,999%
Разрешение 1 ppm 0,001%
Тип дисплея Пятизначный FND Четырехзначный FND
Диапазон измерения CO % O 2 0–25%
Разрешение 0,01% 0,01%
Тип дисплея До четырех цифр Диапазон измерения
NO X 0–5000 ppm
Разрешение 1ppm (частей на миллион)
Воспроизводимость Менее ± 2% O 2 Менее = 0. 2%
Время отклика 10 секунд (более 90%)
O 2 –20 секунд
Время разогрева Около 5–10 минут
Скорость расход 2–4 литра в минуту
Мощность Переменный ток 90–250 В / 50 Гц (герц)
Рабочая температура 0 ° C ∼ 40 ° C
Измерение 270 (ширина) x 370 (длина) x 165 (высота) мм

3.Результат и обсуждение

3.1. BTE

Иллюстрация BTE для дизельного топлива и различных смесей при различных нагрузках двигателя приведена на. Повышение термического КПД тормозов или снижение удельного расхода топлива тормозами при изменении нагрузки происходит в основном из-за усиленного горения, тогда как снижение BTE при высокой нагрузке двигателя происходит из-за неправильного зажигания. BTE смесей биодизеля и дизельного топлива при различных нагрузках и степени сжатия показаны на диаграмме, а также показывают, что BTE смесей биодизеля немного ниже по сравнению со стандартным дизельным топливом при любой нагрузке.

BTE с нагрузкой на двигатель a) B20, b) B30, c) B40 и d) B50.

Ниже показано изменение BTE двигателя, работающего на B-20, B-30, B-40, B-50 и дизельном топливе с постоянной скоростью, переменной нагрузкой (20–100%) и постоянным CR-16,5. . Добавление смесей в биодизельное топливо увеличивает BTE с нагрузкой на двигатель. BTE BJ20, то есть смесь 80% дизельного топлива и 20% Jatropha (BJ20), дает более высокую эффективность при любой загрузке, за которой следует 80% дизельного топлива на 20% сои (BS20) и 80% дизельного топлива на 20% отработанного кулинарного масла (BWCO20). BTE увеличивается с нагрузкой в ​​результате содержания кислорода, что улучшает воспламенение биодизеля.

3.2. BSFC

BSFC зависит от свойств топлива. BSFC является мерой эффективности двигателя в использовании топлива [11], [12]. При постоянной скорости и степени сжатия характеристики биодизельных смесей демонстрируют те же тенденции, что и у чистого дизельного топлива.

SFC при нагрузке на двигатель a) B20, b) B30, c) B40 и d) B50.

Показывает, что BSFC снижает загрузку до 80% загрузки для всех смесей.Среди всех смесей смесь Jatropha показала наименьший BSFC при всех нагрузках. BJ20 биодизеля Jatropha показал потребление топлива 0,28 кг / кВтч при 80% нагрузке, что очень близко к дизельному топливу 0,27 кг / кВтч для 80% нагрузки, за которыми следуют соя 0,31 кг / кВтч и отработанное кулинарное масло 0,32 кг / кВтч при 80%. нагрузка. Возможная причина такого поведения может заключаться в том, что биодизельное топливо Jatropha имеет более высокую теплотворную способность по сравнению с другими смесями, а также имеет низкую вязкость.

3.3. EGT

Показывает отклонение температуры выхлопных газов с нагрузкой.Установлено, что CR и температура выхлопных газов повышаются с двигателем. Расхождение EGT для смесей (B20, B30, B40 и B50) ятрофа-биодизель, соя-биодизель и отработанное кулинарное масло-биодизель показаны для постоянной скорости 1500 об / мин и CR 16,5.

SFC при нагрузке на двигатель a) B20, b) B30, c) B40 и d) B50.

Показывает, что по мере увеличения нагрузки температура выхлопных газов для смесей биодизеля увеличивается. Температура выхлопных газов смесей BJ20 из ятрофы, сои и отработанного кулинарного масла составляет 373 ° C, 382 ° C и 384 ° C соответственно.Смеси биодизельного топлива Jatropha показали, что средняя температура выхлопных газов на 0,14% выше, чем у дизельного топлива. Аналогичным образом, смеси биодизельного топлива сои показали, что средняя температура выхлопных газов на 0,23% выше, чем у дизельного топлива, а смеси биодизеля из отработанного кулинарного масла (WCO) показали, что средняя температура выхлопных газов на 0,24% выше, чем у дизельного топлива.

3.4. Окись углерода

Выбросы CO с различным топливом при разной нагрузке двигателя показаны в. Указатели выбросов CO можно было получить в процентных единицах, поскольку альтернативные виды топлива и дизельное топливо имеют разную теплотворную способность.Эмиссия CO — главный продукт несовершенного процесса зажигания [13]. Видно, что выброс CO снижается с увеличением процентного содержания биодизеля в топливных смесях. Средние значения выбросов CO (%) с B20 составляют 0,0552, 0,0578 и 0,0598 для ятрофы (BJ20), сои (BS20) и (BWCO20) соответственно, а для B50 эти значения составляют 0,0518, 0,0536 и 0,0546 для ятрофы (BJ50). ), Сои (BS50), (BWCO50) соответственно, которые ниже по сравнению с выбросами дизельного топлива. Это связано с тем, что при более высокой температуре характеристики двигателя улучшаются за счет улучшенного сжигания топлива, что приводит к снижению выбросов CO для смесей биодизеля.Однако дальнейшая загрузка приводит к образованию большего количества дыма, и этот дым ограничивает окисление CO до CO 2 , что внезапно увеличивает выбросы CO.

Выбросы CO при нагрузке двигателя a) B20, b) B30, c) B40 и d) B50.

3.5. Несгоревшие углеводороды (UBHC)

Снижение выбросов углеводородов связано с использованием альтернативных топливных смесей с более высоким содержанием кислорода, что приводит к полному процессу сгорания. Ниже показано сокращение выбросов углеводородов из-за большего количества цетанового числа для альтернативных видов топлива.

Несгоревшие углеводороды при нагрузке двигателя a) B20, b) B30, c) B40 и d) B50.

Несгоревшие компоненты топлива, присутствующие в выхлопе двигателя, представляют собой выбросы UBHC. Неполное сгорание молекул топлива приводит к выбросам несгоревшего углеводорода (UBHC). Основной причиной выбросов UBHC является неоднородность топливно-воздушной смеси. Исследование выбросов UBHC очень важно, потому что они добавляют к фотохимическому смогу. Выбросы UBHC при переменной нагрузке показаны в.Увеличение нагрузки увеличивает выбросы UBHC из-за богатой топливом смеси при более высоких нагрузках. Выбросы UBHC смеси биодизеля ниже, чем у дизельного топлива, что связано с полным воспламенением топлива при всех степенях сжатия.

3.6. Оксиды азота

Выбросы NO X выше из-за более высокой температуры в двигателях с CI. Изменение выбросов NO X при различной нагрузке показано на. Было отмечено, что существует значительное увеличение выбросов NO X при нагрузках для всех биодизельных смесей по сравнению с дизельным топливом.Смесь B20 всего биодизельного топлива показала более низкий уровень NO X , чем B50 для CR-16.5 при всех нагрузках. На рисунке показано, что выбросы NOx увеличиваются с увеличением доли биодизеля в дизельном топливе. Температура баллона увеличивается из-за увеличения содержания кислорода. Легкодоступный кислород при более высокой температуре приведет к большему количеству NO X .

Оксиды азота при нагрузке на двигатель (a) B20 (b) B30 (c) B40 (d) B50.

Декларации

Заявление об участии автора

Прем Чаурасия: задумал и спроектировал эксперименты; Провёл эксперименты; Проанализировал и интерпретировал данные; Предоставленные реагенты, материалы, инструменты анализа или данные; Написал газету.

Санджай Сингх, Рашми Двиведи и Рави Шанкар Чоудри: проводил эксперименты; Проанализировал и интерпретировал данные; Предоставленные реагенты, материалы, инструменты анализа или данные.

Отчет о финансировании

Это исследование не получало какого-либо специального гранта от финансирующих агентств государственного, коммерческого или некоммерческого секторов.

Заявление о конкурирующих интересах

Авторы заявляют об отсутствии конфликта интересов.

Дополнительная информация

Дополнительная информация для этого документа недоступна.

«Критический анализ состава и свойств обычного топлива с точки зрения производительности дизельного двигателя и выбросов загрязняющих веществ», 2013 г.

83

[31] Ullman, T.L. Исследование влияния состава топлива на выбросы тяжелых дизельных двигателей

. Бумага SAE Νο. 892072, 1989.

[32] Den Ouden, C.J.J .; Lange, W.W .; Maillard, C .; Clark, R.H .; Cowley, L. T .; Strandling,

R.J. Влияние качества топлива на выбросы твердых частиц от дизельных двигателей малой и большой мощности

.SAE Paper No. 942022, 1994.

[33] Beatrice, C .; Bertoli, C .; Del Giacomo, N .; na Migliaccio, M .; Гвидо К. Потенциал

современных двигателей, работающих на новом дизельном топливе, приближается к будущим европейским ограничениям выбросов

. Документ SAE № 2002-01-2826, 2002.

[34] Neeft, J.P.A .; Makkee, M .; Мулин, Дж. Контроль выбросов твердых частиц дизельного топлива. Топливо

Ур. Technol. 1996, т. 47, 1-69.

[35] Fukuda, M .; Tree, D.R .; Фостер, Д.; Ричард, Б.Д .; Aufderheide, E. Влияние ароматической структуры и содержания топлива

на выбросы дизельных двигателей DI. SAE Paper No. 940676,

1994.

[36] Flanigan, C.T .; Litzinger, T.A .; Грейвс, Р.Л. Влияние ароматических углеводородов и циклопарафинов

на выбросы дизельного топлива DI. Публикация SAE № 892130, 1989.