Принцип работы трансмиссии автомобиля
Нельзя установить под капот транспортного средства двигатель, присоединить сцепление и колеса авто к коленчатому валу, а после просто начать ехать. В таком случае конструкция не будет иметь достаточное количество мощности, которая нужна с целью раскрутить колёса, так как основной причиной этого станет сила трения, значительные габариты авто и его масса. Выходом из сложившейся ситуации является установка специального промежуточного механизма, который имеет свойство уменьшать крутящий момент до необходимого количества оборотов, а также выполнять передачу всех необходимых действий передние колеса транспорта. Как вы понимаете, описанным ранее механизмом является именно трансмиссия. Сегодня подробно поговорим об этой части автомобиля!
Описание трансмиссии: устройство
Вас интересует устройство трансмиссии автомобиля? Тогда обратите внимание на то, что данный элемент транспортного средства состоит из следующих элементов:
- сцепление;
- приводной вал;
- коробка передач;
- мост, который представляет собой главную передачу и дифференциал;
- раздаточный механизм;
- ШРУС, то бишь шарнир равных угловых скоростей.
Каждый из элементов, которые были перечислены немного выше, является неотъемлемой частью трансмиссии автомобиля, поэтому неисправность трансмиссии может свидетельствовать о поломке какого-либо элемента, представленного выше. Кроме того, все составляющие автомобильной трансмиссии выполняют какие-либо важные функции и являются неотъемлемой частью механизма, благодаря чему машина имеет возможность осуществлять движение.
Принцип работы
Многие владельцы автомобилей точно знают, что любая коробка передач обладает сразу несколькими скоростями. Режимы трансмиссии действительно разнообразны. В данном случае речь идёт о низкой скорости, высокой и других, которые являются промежуточными. Если выбрать самое минимальное значение скорости, то в таком случае трансмиссия машины будет оказывать минимальное воздействие на движок авто. Машина будет двигаться медленно, что позволит в определенный момент ускорить ее движения, когда вам необходимо будет резко тронуться с места и начать передвижение.
Если же включить на коробке передач высокий показатель, то в таком случае сила вращения снизится, а показатель скорости увеличится. В общем, говоря кратко, стоит отметить, что управлять современными автомобилями, имеющими ручную коробку передач, которая представлена сразу несколькими промежуточными скоростями, можно без каких-либо трудностей, ведь наличие сразу нескольких скоростей гарантирует то, что вам удастся справиться с самыми разнообразными препятствиями на дороге.
Вот вы и узнали, как работает трансмиссия, а сейчас давайте поговорим немного о другом!
Назначение трансмиссии
Итак, какова же основная функция и задача любой трансмиссией для транспортного средства? Главное назначение трансмиссии автомобиля заключается в том, чтобы сделать доступным превращение мощности в так называемый полезный вращательный момент, передающийся на колеса, благодаря чему движение транспортного средства становится возможным.
Кроме того, благодаря этому автомобиль не только начинает ехать, но и может постоянно поддерживать определенную скорость. В общем, если говорить кратко, то станет понятно, что без трансмиссии машина просто никуда не поедет.
Типы трансмиссий
На данный момент специалисты разделяют следующие виды трансмиссий:
- механическая;
- электрическая;
- гидрообъемная;
- комбинированная.
А какая трансмиссия автомобиля необходимо именно вам?
Признаки неисправности трансмиссии авто
Принцип работы трансмиссии мы уже подробно обсудили, однако всё ещё непонятно, когда нужно волноваться по поводу поломки трансмиссии. Если владелец автомобиля знаком с элементами трансмиссии, то при наличии каких-либо признаков поломки он может попробовать самостоятельно все починить. А вот и основные признаки, свидетельствующие о неисправности:
- заедание или западение педали;
- появление рывков при начале движения с места;
- наличие утечки жидкости в месте, где провода сцепления соединяются;
- наличие шума в области, где находится сцепление.
Кроме того, одним из признаков может быть буксование автомобиля, поэтому в случае, если вы обнаружили какой-либо признак, представленный выше в этой статье, то вам точно стоит пройти диагностику, а в последствии сделать ремонт своего транспортного средства, чтобы оно прослужило вам еще много лет.
Какое масло выбрать?
Если вы думаете над тем, какое масло залить в трансмиссию, то вам точно следует знать, на какие три вида специалисты делят масла:
- синтетическое;
- минеральное;
- полусинтетическое.
Если сравнивать масло на синтетической основе с маслом на натуральной основе, то стоит отметить, что первое имеет лучшую текучесть. Кроме того, главным преимуществом синтетических изделий является возможность использовать такие масла в достаточно обширном диапазоне температур.
Что же касается полусинтетических товаров, то тут уж очевидно, что они являются чем-то средним между синтетическими изделиями и минеральными маслами. Обратив внимание на свойства такого масла, точно стоит отметить, что оно лучше, чем минеральные изделия.
Обсуждая масла для трансмиссии, нельзя не отметить изделия на минеральной основе. Они пользуются высоким уровнем спроса благодаря тому, что имеют приемлемые стоимость.
Кстати, если вы планируете менять масло в своём автомобиле, то так же вместе с ним можно установить и комплект вывода сапунов, который имеет приемлемую стоимость. Приятных покупок!
Что входит в трансмиссию автомобиля: устройство и основные элементы
Как известно, двигатель автомобиля преобразует энергию сгорания топлива, превращая возвратно-поступательные движения поршней в цилиндрах ДВС во вращательное движение на коленчатом валу (крутящий момент). При этом частота вращения коленвала и колес автомобиля сильно отличаются.
Чтобы двигатель имел возможность стабильно работать в оптимальных режимах, а автомобиль двигаться с разной скоростью (с учетом меняющихся нагрузок и условий), передача крутящего момента происходит через трансмиссию. Далее мы рассмотрим, что входит в трансмиссию автомобиля, а также какую функцию выполняют составные элементы трансмиссии.
Содержание статьи
Трансмиссия: устройство
Прежде всего, многие ошибочно полагают, что трансмиссией является коробка передач. На самом деле это не совсем так. На деле, каждый элемент, который отвечает за связь мотора с ведущими колесами, входит в состав трансмиссии автомобиля. Сама трансмиссия в автомобиле отвечает за выполнение следующих задач:
- передача крутящего момента от двигателя на ведущие колеса;
- изменение (преобразование) величины крутящего момента;
- изменение направление крутящего момента;
- перераспределение крутящего момента между колесами.
Если просто, сегодня наиболее распространенными являются механическая трансмиссия с ручной коробкой передач МКПП и автоматическая (гидромеханическая АКПП). Каждый из указанных типов трансмиссий отличается по своему устройству, имеет как преимущества, так и недостатки, однако основной их задачей неизменно остается получение, преобразование и передача крутящего момента от двигателя на ведущие колеса машины.
Идем далее. Все трансмиссии (как автоматические, так и механические), отличаются по типу привода. Если точнее, ведущими колесами могу быть передние, задние или сразу все колеса автомобиля.
Если ведущие колеса только передние, тогда такой автомобильная с передним приводом, если ведущей является задняя ось, машина заднеприводная, а если ведущими являются все колеса, тогда это полноприводный автомобиль. В зависимости от типа привода, также существенно различается и устройство трансмиссии (по количеству элементов, по схеме устройства и т.д.).Трансмиссия заднего привода автомобиля имеет сцепление, КПП (коробку передач), карданную передачу, главную передачу, дифференциал, а также полуоси.
- Сцепление позволяет плавно отсоединять и присоединять двигатель к трансмиссии, что необходимо для переключения передач, а также в целях исключения высоких нагрузок на детали трансмиссии.
- КПП (коробка переключения передач) является основой трансмиссии и служит для преобразования крутящего момента, изменения скорости движения (для движения вперед), направления движения (задняя передача), а также для разъединения мотора и трансмиссии (нейтральная передача).
- Карданная передача отвечает за передачу крутящего момента от вторичного вала КПП на вал главной передачи, которые расположены под углом относительно друг друга. Главная передача позволяет увеличить крутящий момент на колесах и передать его на полуоси ведущих колес. Машины с задним приводом имеют гипоидную главную передачу, где оси шестерен не пресекаются между собой.
- Дифференциал распределяет крутящий момент между левым и правым ведущим колесом, позволяя реализовать вращение полуосей с разной угловой скоростью. Это необходимо для повышения устойчивости машины при прохождении поворотов, сложных участков дороги и т.д.
- ШРУС является элементом, который необходим для того, чтобы передать крутящий момент от дифференциала на ведущие колеса. В устройстве трансмиссии переднеприводных авто зачастую используются два внутренних ШРУСа (отвечают за соединение с дифференциалом), а также два наружных (для соединения с колесами). Между указанных пар ШРУСов (наружных и внутренних), стоят полуоси.
Что касается полноприводных авто, в этом случае трансмиссия может отличаться по конструкции, однако в основе лежит комбинация систем переднего и заднего привода. Добавим, что полный привод бывает постоянным или подключаемым. Данная трансмиссия самая сложная по устройству, отличается большим количеством составных элементов, образуя различные схемы полного привода автомобиля.
Что в итоге
Как видно, после двигателя вторым по важности агрегатом в устройстве автомобиля является коробка переключения передач. Сама же КПП входит в состав трансмиссии, которая может быть реализована при помощи различных схем и конструктивных решений.
Автомобили с задним приводом имеют так называемую «классическую» компоновку, отличаются остротой рулевого управления, динамичным разгоном и т.д. Передний привод более устойчив на дороге, менее склонен к заносам, позволяет более эффективно контролировать автомобиль в поворотах и т.д.
Полный привод сочетает в себе определенные преимущества как переднего, так и заднего привода, однако является более дорогим и сложным решением. Так или иначе, как от двигателя, так и от трансмиссии напрямую зависят динамические показатели и другие эксплуатационные характеристики автомобиля, что необходимо учитывать при проектировании, в рамках тюнинга авто и т.д.
Читайте также
Как определить: ДСГ или автомат
Как отличить коробку ДСГ от «классического» автомата АКПП. Доступные способы определения типа КПП: DSG или автомат, на что обратить внимание.
Трансмиссия автомобиля: устройство, принцип работы, классификация
С тех пор, как автомобили перестали быть «самоходными телегами», началось стремительное развитие каждого узла и элемента. Так появилась и усовершенствовалась трансмиссия автомобиля, о которой все слышали, но мало кто серьезно вникал в суть того, что она собой представляет.
Все компоненты трансмиссии развивались, постепенно на первое место вышел вопрос управляемости и комфорта, а затем и продолжительности срока эксплуатации самого двигателя. Так что современная трансмиссия – это сочетание максимально эффективных решений передачи движения.
Что такое трансмиссия автомобиля и для чего она нужна?
Автомобильная трансмиссия – это комплекс устройств, передающих крутящий момент от коленвала двигателя на ведущие колёса. Помимо просто передачи, трансмиссия может изменять его значение, направление и распределение.
Устройство трансмиссии автомобиляДля чего такие сложности? В данном случае одна из функций трансмиссии – продлить срок эксплуатации двигателя, снимая с него лишние нагрузки. Например, вместо постоянного изменения режима работы мотора коробка передач меняет передаточное число крутящего момента. А сцепление, которое тоже считается одним их элементов трансмиссии, предохраняет коробку передач и двигатель от рывковых нагрузок.
Принцип и конструкция трансмиссии постепенно усложнялись, поскольку нужно не просто передавать вращение, а делать это «с умом», чтобы эффективно использовать возможности двигателя.
Устройство трансмиссии автомобиля
Рассмотрим, благодаря чему усилие, родившееся в недрах двигателя, попадает на колёса автомобиля. Основные узлы трансмиссии – это сцепление, КПП, карданная передача, дифференциал, ШРУСы.
Сцепление.
Работа сцепленияЗадача сцепления – создать легко размыкаемую связь между двигателем и следующим элементом трансмиссии. При переключении передач сцепление отключает мотор от КПП, чтобы уберечь механизмы от резких нагрузок. Затем эта связь восстанавливается. Конструкция сцепления позволяет проделывать это раз за разом, без лишних усилий со стороны водителя.
Коробка передач.
Работа механической коробки передачНезависимо от типа («автомат», «механика», «робот», «вариатор») назначение у всех КПП одинаковое: изменяя передаточное число, менять силу и направление крутящего момента. Таким образом, двигатель работает в одном режиме, без постоянного ускорения и замедления, а автомобиль движется с такой скоростью, которая нужна водителю.
Также коробка передач переключает движение на задний ход или вообще разрывает связь двигателя остальных элементов трансмиссии. Но если сцепление предназначено для размыкания этой связи на короткий срок, КПП может стоять на нейтральной передаче долгое время.
Карданная передача.
Работа карданной передачиОт КПП передача крутящего момента идет на вторичный вал, который связан с валом главной передачи. Поскольку эти валы расположены под определенным углом, в механизме задействован карданный шарнир.
Главная передача.
Работа главной передачиУ главной передачи две функции: понизить скорость вращения и передать крутящий момент на ведущий мост. Для этой цели используется гипоидная передача, которая одновременно понижает скорость вращения и изменяет направление его подачи.
Дифференциал.
Работа дифференциалаЗадача дифференциала – распределить скорость вращения по полуосям ведущего моста в зависимости от дорожной ситуации. Работает он в паре с главной передачей. Когда автомобиль движется по прямой, оба колеса крутятся с одинаковой скоростью. В поворотах колесо на внутренней дуге вращается медленней, а на внешней – быстрее, именно благодаря дифференциалу. То есть дифференциал выборочно меняет скорость вращения полуосей или блокируется, чтобы принудительно заставить оба колеса вращаться с одинаковой скоростью.
ШРУС.
Работа ШРУСаПоследний узел, влияющий на характеристики крутящего момента – шарнир равных угловых скоростей. Его задача – обеспечить передачу оборотов с полуоси на колесо, независимо от углового положения самого колеса. Регулировка скорости в поворотах осуществляется дифференциалом, и ШРУС должен передавать ее без искажений и рывков.
Принцип работы трансмиссии
На видео, выше, можно наглядно отследить, как трансмиссия автомобиля передает вращение коленвала двигателя на колёса ведущей оси. Пошагово этот процесс можно представить так.
- Коленвал двигателя соединен с маховиком, который, в свою очередь, подключен к сцеплению. В стандартном режиме сцепление соединено с маховиком, так что коробка передач постоянно подключена. Перед переключением передачи сцепление размыкает связь между валом коробки и маховиком двигателя, а после переключения – восстанавливает ее. Это может происходить в автоматическом режиме или при управлении самого водителя.
- КПП меняет передаточное число для изменения скорости движения. Это намного легче, чем постоянно менять режим работы двигателя, особенно при движении по городу. Также коробка передач переключает направление вращения для движения назад и может размыкать связь между первичным и вторичным валом (нейтральная передача).
- От КПП крутящий момент переходит на главную передачу, через карданный вал или напрямую. Главная передача понижает скорость вращения, которая слишком большая для колёс, и передает крутящий момент на дифференциал.
- Дифференциал распределяет скорость вращения между колесами ведущей оси или, в зависимости от компоновки автомобиля, между осями (раздаточная коробка или межосевой дифференциал в полноприводных автомобилях).
- От полуосей крутящий момент наконец-то доходит до колёс. Чтобы при поворотах или проезду по неровностям колесо продолжало вращаться с нужной скоростью, между полуосью и ступицей установлен ШРУС, который передает крутящий момент под углом.
Классификация трансмиссий
За период развития автомобиля инженеры разработали несколько вариантов трансмиссии. Сегодня по способу передачи и изменения крутящего момента используется пять основных видов: механическая, гидромеханическая, гидравлическая, электромеханическая и автоматическая. А по типу привода бывают: переднеприводные, заднеприводные и полноприводные трансмиссии.
Механические
Самая распространенная на легковых автомобилях – механическая трансмиссия. В ней вся работа осуществляется только механическими элементами: различными видами зубчатых, планетарных, фрикционных передач и т.д. Причем это относится не только к МКПП, но и ко всем остальным узлам.
По своему КПД, долговечности и простоте ремонта механическая трансмиссия пока что опережает остальные типы.
Автоматические
Под автоматической трансмиссией чаще всего понимают коробку передач, которая сама регулирует изменение передаточного числа. Яркие примеры – вариатор для бесступенчатой механической регулировки, а также АКПП для гидромеханических систем.
Гидравлические
Это особый вид трансмиссии, в которой все элементы передают крутильный момент за счет гидравлических устройств. В автомобилях такие системы не используются, их можно встретить разве что в строительной и авиационной технике.
Как ни странно, гидравлические устройства более компактны, чем механические. Кроме того, элементы гидравлической трансмиссии могут находиться на значительном расстоянии друг от друга – сжатие жидкости при передаче энергии дает много возможных вариантов для компоновки отдельных элементов. Однако сама рабочая жидкость должна быть в технически идеальном состоянии.
Гидромеханические
В гидромеханической трансмиссии отдельные элементы будут работать на принципе гидравлической передачи энергии движения. Самый распространенный пример – трансмиссия с автоматической коробкой передач, где функции сцепления выполняет гидротрансформатор. Жидкостная передача движения в гидротрансформаторе используется для снижения ударных нагрузок и уменьшения крутильных колебаний (в механическом сцеплении для этого используется двухмассовый маховик и демпферы на ведомом диске).
Еще одно устройство, применяемое в гидромеханической трансмиссии – вискомуфта, которая до недавнего времени устанавливалась на полноприводные автомобили. В ней жидкость служит не для передачи момента вращения, а для блокировки, но это всё равно гидромеханическое устройство.
Электромеханические
Это новый вид трансмиссии, который вышел «в массы» благодаря распространению электрокаров, поскольку для ее работы нужен тяговый (не стартерный) аккумулятор, а в электромобилях он уже есть на месте.
Плюсом электромеханической трансмиссии является довольно быстрая реакция на изменения крутящего момента за счет использования электромоторов. А также удобство размещения отдельных частей и узлов: поскольку принцип действия позволяет разнести элементы на большие расстояния, а значит, скомпоновать их более удобно, чем это можно было бы сделать с другими видами трансмиссий.
Переднеприводные
Здесь все просто, крутящий момент от двигателя полностью передается на передний привод автомобиля. Передается момент через коробку передач, главную передачу и полуоси на передние колеса автомобиля.
Заднеприводные
Здесь же ведучим приводом автомобиля будет задняя ось. Крутящий момент передается также, только с добавлением еще одного елемента — карданного вала между коробкой передач и главной передачей.
Полноприводные
Тут с названия все ясно. Момент передается на обе оси вто или инной пропорции одновременно. Здесь еще добавляются такие элементы как раздаточная коробка и межосевой дифференциал. «Раздатка» как раз служит для передачи мощности на оси автомобиля. А межосевой дифференциал — для распределения мощности между осями. Также, за типом подключения полный привод бывает 3 типов.
- Постоянный полный привод.
Постоянный полный привод
- Подключаемый.
Подключаемый полный привод
- Автоматически-подключаемый.
Автоматический полный привод
Основные неисправности
Всё, что работает, может и выходить из строя, ничего с этим не сделаешь. И компоненты трансмиссии тоже подвержены поломкам в той или иной степени. Основные неисправности компонентов трансмиссии имеют свои характерные особенности:
- Механическое сцепление можно назвать расходником. Чаще всего в нём выходит из строя ведомый диск, так что при появлении таких проблем как проскальзывание, нечеткая работа, скрежет и т.д. диск меняют, а остальные компоненты осматривают на предмет выработки. Срок службы сцепления во многом зависит от манеры вождения.
- Коробка передач – самый сложный и дорогостоящий узел во всей трансмиссии. Самая частая причина ее неисправности – несвоевременная замена трансмиссионной жидкости, которая во время работы постепенно деградирует и перестает выполнять свои функции, и вместо защиты механизма начинает с удвоенной силой его изнашивать. Признаками неисправности коробки являются шум при работе, в том числе при установке в нейтральное положение, нечеткое переключение передач или вообще невозможность их переключить, утечка масла из коробки.
- Карданный вал – штука достаточно прочная, но там, где есть шарнир, есть и его износ. Проблемы с карданным шарниром проявляются скрипом и вибрацией во время движения.
- Поломки главной передачи и дифференциала вызваны, как правило, двумя причинами: утечкой масла и неадекватными нагрузками. При недостаточном уровне смазки ускоряется выработка шестерен, в них появляются зазоры, а во всём механизме – вибрация. В свою очередь масло утекает через изношенные сальники. Механические неисправности проявляются шумом во время работы или характерным постукиванием в начале движения.
- ШРУСы, несмотря на большую нагрузку, выходят из строя редко. Их главный враг – вода, которая попадает в механизм через порванные пыльники. Если владелец автомобиля следит за состоянием ходовой и вовремя меняет расходные материалы, он может никогда в жизни не узнать, как хрустит изношенный ШРУС. Если же пыльник порвался, это стопроцентная гарантия близкой замены шарнира, даже если с ним пока всё в порядке.
Заключение
В целом, трансмиссия автомобиля – система достаточно живучая, особенно если речь идет о механической. И как бы банально это ни звучало, главное условие ее долгой и счастливой жизни – всего лишь регулярное ТО. Это не значит, что через каждые 10 тысяч километров нужно менять масло в коробке передач, но проверять состояние всех технических жидкостей, прокладок и защитных элементов нужно при каждом заезде на СТО. Эта несложная услуга позволит сэкономить деньги на дорогом и сложном ремонте.
Общее устройство трансмиссии. Грузовые автомобили. Трансмиссия и коробки передач
Читайте также
ОБЩЕЕ УСТРОЙСТВО
ОБЩЕЕ УСТРОЙСТВО Атомная подводная лодка проекта 949А (шифр «Антей») создана на базе проекта 949 путем врезки дополнительного отсека (пятого) с целью размещения новой аппаратуры, для удобства компоновки. Внешний вид её весьма примечательный- оставив прочный корпус
2.1.4. Устройство DSP-W215
2.1.4. Устройство DSP-W215 Электрическая розетка с интегрированной точкой доступа Wi-Fi модели DSP-W215 также может использоваться для быстрого и удобного подключения датчиков температуры, системы безопасности, датчиков дыма, камер. Настойка и управление осуществляются через
ОБЩЕЕ ОПИСАНИЕ ПРОЕКТА 670
ОБЩЕЕ ОПИСАНИЕ ПРОЕКТА 670 Атомная ракетная подводная лодка проекта 670 имела веретенообразную форму легкого корпуса с эллиптическим сечением в носовой части (с приполнением), где размещались стационарные ракетные контейнеры. Расположение акустических антенн МГК-100
Неисправности в узлах трансмиссии
Неисправности в узлах трансмиссии Неисправности сцепления Сцепление пробуксовывает. Недостаточное ускорение автомобиля при росте оборотов двигателя. Потеря мощности при движении на подъеме. Запах гари от перегретого сцепления Отсутствие свободного хода педали
13.1. Общее введение и содержание
13.1. Общее введение и содержание Марк РидМарк Рид получил ученую степень по физике в Сиракузском университете (1983), после чего поступил на работу в фирму Texas Instruments, где возглавил научные исследования в области нанотехнологий. Областью его научных интересов стал
B.1 Общее руководство по адаптации
B.1 Общее руководство по адаптации Данный раздел представляет руководство по адаптации настоящего стандарта и не является исчерпывающим. Данный раздел может быть использован для выполнения первого уровня адаптации настоящего стандарта к конкретной области
8.2.4.3.1 Общее положение
8.2.4.3.1 Общее положение Оформление (компоновка) информации в системах справочной и диалоговой (оперативной) документации во многом может определяться возможностями инструментальных средств, используемых при их
Железо общее
Железо общее Железо – один из самых распространенных элементов в природе. Его содержание в земной коре составляет около 4,7 % по массе, поэтому железо, с точки зрения его распространенности в природе, принято называть макроэлементом.В природной воде железо содержится в
§ 36. Шлюпочное устройство
§ 36. Шлюпочное устройство Шлюпочное устройство на судне служит для спуска, подъема, хранения и закрепления шлюпок по-походному.Шлюпки (катера) предназначаются для спасения людей в случае аварии и гибели судна, для связи судна с берегом, а также для выполнения работ на
Общее устройство автомобиля
Общее устройство автомобиля Все автомобили, в независимости от особенности своей конструкции состоят из трех основных частей:1. двигателя,2. кузова,3. шасси.Двигатель – это главная движущая сила автомобиля, источник механической энергии. В двигателе тепловая энергия
Назначение и общее устройство кузова автомобиля
Назначение и общее устройство кузова автомобиля У большинства легковых автомобилей есть так называемый несущий кузов на котором устанавливают двигатель, агрегаты трансмиссии, подвеску ходовой части, дополнительное оборудование. У грузовых автомобилей, автобусов,
Общее устройство автомобиля
Общее устройство автомобиля Все автомобили, в независимости от особенности своей конструкции состоят из трех основных частей:1. двигателя,2. кузова,3. шасси.Двигатель – это главная движущая сила автомобиля, источник механической энергии. В двигателе тепловая энергия
Общее устройство автомобиля
Общее устройство автомобиля Все автомобили, в независимости от особенности своей конструкции состоят из трех основных частей:1. двигателя,2. кузова,3. шасси.Двигатель – это главная движущая сила автомобиля, источник механической энергии. В двигателе тепловая энергия
Общее описание работы цифрового автопилота
Общее описание работы цифрового автопилота На активных участках траектории полета управление аппаратом по каналам тангажа и рыскания осуществляется отклонением на кардане ЖРД служебного отсека. Управление ориентацией по каналу крена производится ЖРД реактивной
Общее устройство автомобиля
Общее устройство автомобиля Все автомобили, в независимости от особенности своей конструкции состоят из трех основных частей:1. двигателя,2. кузова,3. шасси.Двигатель – это главная движущая сила автомобиля, источник механической энергии. В двигателе тепловая энергия
Общее устройство автомобиля
Общее устройство автомобиля Все автомобили, в независимости от особенности своей конструкции состоят из трех основных частей:1. двигателя,2. кузова,3. шасси.Двигатель – это главная движущая сила автомобиля, источник механической энергии. В двигателе тепловая энергия
Замена масла в коробке передач, типы и устройство трансмиссии.
Трансмиссия автомобиля (коробка передач) — сложный комплекс взаимодействующих систем, передающий крутящий момент от двигателя автомобиля к колесам. Несмотря на единую задачу, реализация этой функции существенно различается на разных типах автомобилей, поэтому значительны и отличия при выборе продукта для замены масла в трансмиссии различных автомобилей.
Самое простое и очевидное разделение трансмиссий по типу привода автомобиля. В этом случае передача крутящего момента может идти на переднюю пару колес, заднюю, или на все четыре колеса. Кроме того, автопроизводители предлагают дополнительные вариации подключаемого полного привода на автомобилях с одной парой ведущих колес. В этом случае полный привод может подключаться вручную либо имитироваться (и довольно результативно) электронными вспомогательными системами. Трансмиссия большинства автомобилей включает в себя непосредственно коробку передач, главную передачу, дифференциал и сцепление, а также ШРУС (на автомобилях с передними ведущими колесами) и карданный вал (на заднеприводных автомобилях). Масло, заливаемое в коробку передач, задействуется в смазке всех взаимодействующих элементов трансмиссии, поэтому замена трансмиссионного масла важна не только для коробки передач, но и для всего комплекса узлов.
Тип привода автомобиля, как правило, не является решающим при подборе масла, в отличие от другого, не менее известного, разделения трансмиссий на механическую и автоматическую, а также вариатор и роботизированную коробку. В этом случае конструкции трансмиссий и сопутствующих узлов будут принципиально различаться, поэтому и требования к маслам, применяемым для смазки конструктивных элементов, будут разными.
Замену трансмиссионного масла в механической коробке передач подробно рассматриваем в отдельной статье. Также отдельный материал мы посвящали замене масла в трансмиссии коробки-автомат и автомобиля с вариатором. Как правило, рекомендации производителей автомобилей и сервисных центров допускают довольно широкие допуски качественных показателей применяемого масла для автомобилей с механической коробкой, но для автомата обозначают гораздо более строгие требования. Кроме того, временной интервал замены трансмиссионного масла в автомате гораздо короче, чем на машинах с МКПП.
Так, для механики, замена масла в коробке передач рекомендована каждые 70-100 тысяч километров пробега, а для автомата уже через 50 тысяч километров (не считая сложных условий эксплуатации, существенно сокращающих интервал, через который должна быть выполнена замена трансмиссионного масла).
Если механическая коробка относительно «всеядна», то на автомате оптимальным (если не единственно возможным) вариантом будет замена трансмиссионного масла на идентичное залитому производителем (или рекомендованное им в сервисной книжке). Этот вариант безопасен, эффективен, но не всегда удобен для автовладельца, особенно, если необходимо выполнить замену масла в коробке передач в короткий срок, а необходимое масло не всегда есть в продаже.
Рынок предлагает решение этой задачи в виде «универсальных» трансмиссионных масел. Рассмотрим эту группу более подробно. Сразу стоит отметить, что автоматическая коробка передач — одна из наиболее сложных систем автомобиля, сочетающая, казалось бы, несочетаемые функции.
Поэтому масло для АКПП должно соответствовать целому набору требований, чтобы эффективно выполнять свою работу. Каждый производитель автоматических коробок выдвигает свой пакет задач для трансмиссионного масла, а каждый автопроизводитель его расширяет и углубляет. Поэтому создание масла, соответствующего всем требованиям даже одной такой пары заводов очень непросто.
Устройство автоматической трансмиссии
Автоматическая трансмиссия автомобиля состоит из гидротрансформатора и планетарного механизма смены передач. Работа гидротрансформатора происходит полностью за счет движения жидкости между насосным и турбинным колесом, не имеющих точек соприкосновения. Для эффективного взаимодействия между ними на первый план выступает вязкость смазывающей жидкости. При слишком большом показателе вязкости, большое количество энергии будет уходить на трение, возрастет расход топлива. При слишком низком, уменьшится сцепление элементов между собой, снизится общая эффективность работы гидротрансформатора. Добавим сюда изменения вязкости масла в жару и при минусовых температурах — и получим широкие границы эксплуатации, при которых масло должно оставаться в узком качественном диапазоне.
Планетарный механизм имеет совсем другие требования к маслу, его работа происходит при непосредственном контакте элементов, поэтому особое значение приобретает противодействие задиру и износу, а вязкость может быть минимальной.
Стоит ли говорить, насколько сложно производство масла, одинаково подходящего для всех вариаций трансмиссий автомобилей различных марок. Безусловно, такой жидкости просто не существует. Тем не менее, говорить о полной неприемлемости многофункциональных (или «универсальных») жидкостей нельзя. Если замена масла в коробке передач в Санкт-Петербурге необходима срочно, то лучше залить наиболее подходящее, чем обойтись без замены масла в коробке передач вовсе. Однако следует учитывать, что стандарты качества многофункциональных масел менее определённы и разброс параметров от производителя к производителю может отличаться в разы. При необходимости, допустима замена масла в коробке в Санкт-Петербурге на масло такого типа, но при этом целесообразно получить консультацию квалифицированного специалиста.
Если же Вы находитесь в Санкт-Петербурге, наиболее простым и безопасным решением будет визит в нашу станцию техобслуживания. Замена масла в коробке в Санкт-Петербурге — наш основной профиль уже много лет, поэтому мы отлично знаем качественные характеристики различных масел. Мы работаем напрямую с крупнейшими поставщиками, поэтому наверняка сможем подобрать именно тот продукт, который рекомендован для вашего автомобиля, не ставя под угрозу коробку передач. Замена трансмиссионного масла — простая сервисная процедура, позволяющая надолго продлить жизнь коробки при регулярном проведении. Владельцы автомобилей, столкнувшихся с необходимостью полной смены АКПП, наверняка предпочли бы гораздо менее затратный вариант своевременной замены масла в трансмиссии.
Если вы хотите найти оригинальное масло редкой марки, если вы не знаете, что залито в вашу коробку фактически и каковы были рекомендации производителя, если вы не знаете пробег автомобиля с предыдущей замены масла в коробке передач — мы поможем сделать правильный выбор, а непосредственная замена масла в трансмиссии будет выполнена бесплатно.
Замена масла в роботе или вариаторе позволит избежать преждевременного износа коробки передач, продлить ее срок службы, улучшить комфорт во время вождения и избежать аварийных ситуаций. Главное, это доверять работу профессионалам – СТО SPOT. Убедитесь в этом сами – позвоните по телефону +7 (812) 603-44-80 и запишитесь на замену!
назначение, устройство и принцип работы
Установить двигатель на старинную карету для создания автомобиля оказалось недостаточным. Надо было решить ещё две задачи – передать его крутящий момент на ведущие колёса и преобразовать скорость вращения таким образом, чтобы тянущее усилие смогло быть достаточным на любой скорости автомобиля. То есть не просто изменить направление передачи мощности, но и получить функцию регулирования момента на колёсах при номинальной частоте вращения вала двигателя.
Содержание статьи:
Эти задачи и выполняет трансмиссия автомобиля.
Зачем в машине трансмиссия
Исходя из функционального назначения, можно выделить несколько конкретных задач, которые решают механизмы трансмиссии:
- соединение и оперативное отключение узлов передачи момента с выходным валом двигателя, обычно с установленным там маховиком;
- изменение общего передаточного числа трансмиссии, то есть отношения скорости вращения вала двигателя к оборотам ведущих колёс;
- дополнительное повышение или понижение передаточного числа в особых условиях движения, например на бездорожье или при подъёмах в гору с большой нагрузкой;
- распределение крутящего момента между осями, когда автомобиль имеет более одной ведущей пары колёс;
- передачу вращения вдоль оси автомобиля к ведущим мостам или поперёк, непосредственно к ступичным узлам колёс;
- разворот направления передачи момента от продольного к поперечному в ведущих мостах;
- обеспечение возможности колёсам вращаться с разной скоростью при неизменной их загрузке крутящим моментом;
- отключение одной или нескольких функций, когда это необходимо;
- дополнительные функции, относящиеся к специфике конкретного транспортного средства, например, стояночное торможение, отбор мощности на внешние агрегаты и тому подобное.
Каждая функция имеет своё механическое, гидравлическое или электрическое устройство для её исполнения, иногда возможности совмещены в одном узле.
Принцип работы
В трансмиссии используется несколько характерных приёмов передачи вращательного движения на расстояние:
- возможность размыкания потока мощности;
- сдвиг оси вращения в пространстве;
- наклон оси вращения под постоянным или переменным углом;
- изменение величины крутящего момента с пропорциональным, но противоположным изменением частоты вращения;
- одновременное использование различных принципов, например в гипоидных передачах или более сложных случаях.
Применяются самые разные узлы и детали, от простейших валов и шестерён до приборов силовой электроники, управляемых компьютером.
Что входит в трансмиссию автомобиля
В большинстве производимых автомобилей используются узлы и агрегаты, известные ещё с тех пор, когда конструкция начала терять элементы экзотики и стала типовой. Некоторые из них стали устаревать или сильно видоизменяться.
Сцепление
Предназначено для кратковременного отсоединения двигателя от всей прочей трансмиссии. Чаще всего с обычными механическими коробками передач или автоматизированными (роботами) используется однодисковое сухое сцепление, состоящее из ведомого диска, который зажимается между ведущим подпружиненным и поверхностью маховика.
Но нередко узел может содержать несколько пар дисков, работать в масляной ванне, или даже выполняться в виде гидротрансформатора, где вращение передаётся между крыльчатками турбинного типа, взаимодействующим через поток гидравлической жидкости. Такие решения применяются в автоматических трансмиссиях разной организации.
Коробка передач
Коробка служит для изменения передаточного числа, адаптируя рабочий диапазон частот вращения вала двигателя к разным скоростям движения.
Коробки подразделяются на несколько принципиально разных категорий:
- механические с ручным переключением;
- роботизированные, то есть те же МКПП, но с автоматическим переключением и управлением сцеплением;
- автоматические гидромеханического типа;
- преселективные с двумя автоматическими сцеплениями;
- бесступенчатые вариаторного типа.
На одной и той же модели автомобиля могут использоваться разные коробки, в зависимости от целевого потребителя.
Карданная передача
Представляет собой вал с двумя или несколькими шарнирами.
В качестве них могут быть применены:
- классические крестовины, имеющие недостаток в виде неравномерности вращения на больших углах отклонения от оси;
- сдвоенные крестовины, дающие меньшую вибрацию, но массивные и громоздкие;
- шарниры равных угловых скоростей (ШРУС), дающие минимум неравномерностей и вибраций, но относительно дорогие в производстве;
- эластичные муфты, простые, дешёвые, но не очень надёжные, работающие только на небольших углах и неспособные передать значительный момент.
Карданных валов в автомобиле может быть несколько, в том числе и составных с промежуточными подвесными подшипниками.
Главная передача
Обычно этим термином обозначается понижающий редуктор ведущего моста. В классическом случае это гипоидная пара шестерён, работающая с низким уровнем шума и разворачивающая момент на 90 градусов с одновременным смещением оси вращения.
Но иногда используется и обычная пара конических шестерён, если нет необходимости в смещении оси. Передаточное число главной передачи в большой степени характеризует тяговые или скоростные возможности автомобиля.
Дифференциал
Колёса автомобиля вращаются с одинаковой скоростью только когда они строго одинакового диаметра, а автомобиль движется прямолинейно. Во всех прочих случаях им надо давать возможность опережения или отставания, чтобы не создавать паразитных разрушающих моментов в трансмиссии.
Для этого и применяются дифференциалы, развязывающие колёса друг от друга, при этом продолжая передавать момент на все. Теория и номенклатура дифференциалов достаточно сложна, они могут быть свободными, блокируемыми, вязкостными, несимметричными и с разными способами управления.
Применяются они как на ведущих осях, так и в раздаточных коробках, распределяющих момент между осями.
Виды трансмиссий
Некоторые широко распространённые конструкции трансмиссий стали классическими, что позволяет выделить их для отдельного рассмотрения.
Механические
Чисто механические решения отличаются простотой и дешевизной, при этом обеспечивая хорошую экономичность по расходу топлива.
Такая трансмиссия имеет в своём составе сухое однодисковое сцепление с педальным приводом, механическую коробку передач с ручным переключением, карданные валы к ведущим мостам или отдельным колёсам, интегрированные в коробку передач или мосты главные передачи с дифференциалами.
Колёса связываются с редуктором моста при помощи полуосей.
Автоматические
Автоматика в трансмиссии обычно участвует в построении коробки передач, хотя всё чаще используются автоматически срабатывающие муфты и на других участках.
Сама же коробка может быть организована в виде классической гидромеханики с элементами электронного управления, робота с соленоидами переключения и управления сцеплением или вариатора, где применён металлический ремень, работающий по конусам переменного диаметра.
Гидравлические
Не так часто используется чисто гидравлическая трансмиссия. Её состав уникален и имеет мало общего со всеми прочими.
От двигателя внутреннего сгорания приводится в действие мощный гидронасос, создаваемое им давление специальной жидкости по магистралям передаётся к исполнительным механизмам осей или отдельных колёс.
В роли этих механизмов используются гидромоторы, выполняющие обратную насосам роль, преобразовывая поток жидкости под давлением во вращение.
Гидромеханические
Характерной чертой гидромеханики является использование гидротрансформатора (ГТР) и управляемой давлением жидкости коробки передач.
ГТР смягчает ударные нагрузки и частично преобразует передаваемый момент за счёт проскальзывания напорного и ведомого турбинных колёс, между которыми ставится реактор для реорганизации потока жидкости.
За ГТР устанавливается механическая коробка своеобразной конструкции, где передачи организованы по планетарному принципу, а переключение производится посредством фрикционов, поджимаемых давлением жидкости через цилиндры. Такие коробки широко распространены и считаются классическими автоматами.
Электромеханические
С целью исключения массивных деталей, а также оптимизации управления, вместо механики можно использовать электрический ток. К двигателю подсоединяется генератор, а вырабатываемая им электроэнергия поступает по обычным проводам к исполнительным электромоторам, которых может быть даже по одному на каждое колесо.
Регулирующий функции сводятся к применению известных принципов электроники и электротехники. Особенно это актуально на автомобилях особо большой грузоподъёмности, а в последнее время и на всевозможных гибридах.
Переднеприводные
Наиболее технологичными в производстве стали переднеприводные машины, где двигатель, коробка и главная передача объединены в отдельный модуль, из которого выходят карданные валы на ШРУС к ступицам ведущих передних колёс.
Так сейчас устроены практически все бюджетные легковые машины, кроссоверы и даже часть премиум-сегмента. Утверждается, что эти машины просты и надёжны в управлении, хотя на самом деле главный их козырь – технологичность производства и низкая себестоимость. Достаточно проста и компоновка подобных кузовов.
Заднеприводные
Машины с задним приводом стали автомобильной классикой. Здесь реализован немаловажный принцип разделения ведущих и управляемых колёс, а также лучше дела с загрузкой ведущей оси на разгоне, естественностью реакции водителя в сложных ситуациях и простотой реализации полного привода.
Двигатель может быть в передней части машины, хотя на спорткарах он располагается в пределах базы или даже в заднем свесе. Все валы идут вдоль оси кузова.
Полноприводные
Полный привод может быть организован, как на основе переднего, так и классического заднего. В любом случае на машине появляется раздаточная коробка разного уровня сложности, а также иногда электроуправляемые вязкостные или фрикционные муфты подключения отдельных осей.
В таких машинах лучшие характеристики проходимости и управляемости, но и стоимость подобных трансмиссий высока, что ограничивает применение.
По теме: Что лучше полный привод, передний или задний
Ситуация кардинально решится в сторону полного привода на электромобилях, где его реализовать даже проще, чем любой монопривод.
Признаки поломки трансмиссии
Диагностируется трансмиссия в принципе проще, чем двигатель, но в последнее время она настолько усложнена, что потребуется те же приёмы использования специальных сканеров, но механические поломки достаточно наглядны:
- отказы сцепления, которые проявляются в его пробуксовке или наоборот, передаче момента в выключенном состоянии;
- поломки полуосей и приводов, случающиеся при их сильной перегрузке;
- естественный износ подшипников, которых в трансмиссии очень много, проявляется как вой или хруст;
- крестовины карданов и шарниры равных угловых скоростей проявляют свой износ начиная с треска при больших углах поворота;
- механические коробки передач имеют синхронизаторы, которые по мере износа начинают препятствовать бесшумному переключению, после чего начинают «выпадать» передачи;
- гидроавтоматы при переключениях начинают выдавать толчки, как говорят, «пинаться», что становится первым сигналом к ремонту;
- главные передачи при начавшемся разрушении издают характерный вой;
- дифференциалы могут начать стучать при ускорении или хрустеть при срыве одного из колёс в скольжение;
- вариаторы просто отказывают при критическом износе ремня и конусов.
Основной причиной поломок почти у всех трансмиссий выступает злоупотребление максимальными режимами работы, это частые резкие разгоны, быстрое переключение и перегрев.
Проблема усугубляется пренебрежением к регулярной замене масла. К сожалению, на это подталкивают и изготовители, слишком оптимистично формируя регламенты ТО.
Регулярной заменой масла на свежее и качественное можно довести срок службы трансмиссии до полного износа двигателя, а в отдельных случаях и до утилизации автомобиля в целом.
Трансмиссия Нива ВАЗ 21213, 21214, 2131 lada 4×4
Устройство трансмисси
Технические характеристики трансмиссии
Автомобиль «Нива» – полноприводный, т.е. ведущими являются все колеса. Полный привод – постоянный: крутящий момент от двигателя всегда передается сразу на обе оси (мосты не отключаются). Такая схема повышает проходимость автомобиля, одновременно снижая нагрузки на узлы трансмиссии, но несколько увеличивает расход топлива.
Передний и задний мосты связаны через межосевой дифференциал, позволяющий передним и задним колесам вращаться с разными угловыми скоростями в зависимости от траектории и условий движения. Межосевой дифференциал расположен в раздаточной коробке и аналогичен межколесным дифференциалам, расположенным в переднем и заднем мостах. Однако, в отличие от них, межосевой дифференциал можно принудительно блокировать (рычаг блокировки находится на тоннеле пола). При этом передний и задний карданные валы становятся жестко связанными между собой и вращаются с одинаковой частотой. Это значительно повышает проходимость автомобиля (на скользких подъемах, в грязи, снегу и т.п.), но ухудшает управляемость и увеличивает износ деталей трансмиссии и шин на покрытии с хорошим сцеплением. Поэтому блокировку дифференциала можно использовать только для преодоления сложных участков и на небольшой скорости. Для предупреждения водителя о включенном режиме блокировки служит контрольная лампа на панели приборов.
Включать блокировку дифференциала можно при движении автомобиля, если колеса не буксуют. Блокировка межосевого дифференциала не избавляет автомобиль от опасности «диагонального вывешивания», когда одно из колес на каждой оси теряет сцепление с грунтом – в этом случае подсыпают грунт под вывешенные колеса или подкапывают его под остальными.
Для увеличения крутящего момента, подводимого к колесам, служит низшая передача в раздаточной коробке, ее передаточное число – 2,135. Высшая передача, предназначенная для нормальных условий движения, имеет передаточное число 1,20. Таким образом, водитель может использовать один из двух рядов передаточных чисел – с высшей или низшей передачей в раздаточной коробке. Суммарные передаточные числа «верхнего» ряда (с I по V передачу) – 4,40; 2,52; 1,63; 1,20; 0,98, «нижнего» – 7,82; 4,47; 2,90; 2,13; 1,75. Низшую передачу в раздаточной коробке включают перед преодолением заснеженных, песчаных участков, крутых подъемов, при буксировке грузов и т.п., когда ощущается недостаток тяги двигателя или для движения с очень малой скоростью. Включать низшую передачу в раздаточной коробке необходимо заранее, на стоящем автомобиле, так как муфта переключения передач не имеет синхронизаторов. Высшую передачу при некотором навыке удается включить и при движении со скоростью не выше 30–35 км/ч, однако, если есть возможность, лучше снизить скорость или остановиться.
Автомобиль с постоянным полным приводом предъявляет особые требования к шинам. Они должны быть одинаковы не только по размеру, но и по степени износа. Разные радиусы качения шин вызовут повышенный износ дифференциалов при обычных условиях движения, а при включенной блокировке — повышенный износ других деталей трансмиссии и пробуксовку колес.
Видео
— обзор
6.1.2 Обработка временной переменной
Для прогнозирования производительности систем, состоящих из одного или нескольких преобразователей энергии, накопителей и передающих устройств, может быть построена математическая модель потока энергии. . Такая модель состоит из ряда уравнений преобразования и переноса энергии, включая параметры источника и стока, соответствующие входу возобновляемой энергии и выходу в области нагрузки, оба из которых меняются со временем.Процессы преобразования зависят от природы отдельных устройств, и описание таких устройств (см. Главу 4) направлено на предоставление необходимых формул для достаточно полного описания задействованных процессов. В ряде случаев (например, среди рассмотренных в главе 4) изучается только установившаяся ситуация, и выходная энергия рассчитывается для заданного уровня входящей энергии. В ситуации, зависящей от времени, этого типа расчета недостаточно, и необходимо ввести динамическое описание, чтобы оценить время отклика и задержку потока энергии через преобразователь (см., Например, раздел 4.3.6). Аналогичные замечания относятся к описанию систем хранения, и, наконец, сеть передачи вводит дополнительную временную зависимость и определенную задержку в потоке энергии, достигающем зон нагрузки. Сеть передачи часто имеет форму трубопроводов, по которым проходит поток некоторой жидкости (например, природного газа, водорода или горячей воды), или электрического проводника, по которому проходит поток электрического тока. Дополнительная транспортировка энергии может осуществляться в контейнерах (например, нефтепродукты или метанол, перевозимые в качестве морского, железнодорожного или автомобильного груза).
Чтобы решить проблемы, которые можно решить, в большинстве случаев необходимо упростить временную зависимость для некоторых частей системы. Во-первых, при некоторых обстоятельствах можно не учитывать краткосрочные колебания потока энергии источника. Это, конечно, возможно, если само преобразовательное устройство нечувствительно к колебаниям достаточно высокой частоты. Это может быть так в преобразователе энергии ветра из-за инерции вращающейся массы или, в солнечном коллекторе тепла, из-за постоянной времени изменения температуры в пластине поглотителя (а также в циркулирующей жидкости).Это также может быть правильным приближением, если краткосрочные изменения потока энергии от источника можно рассматривать как случайные, и если система сбора состоит из большого количества отдельных единиц, размещенных таким образом, что никакая согласованность флуктуирующих входных сигналов не может быть нарушена. быть ожидаемым.
Во-вторых, характеристики устройств преобразования часто можно адекватно описать в терминах квазистационарного приближения. Это состоит из расчета мгновенного выхода энергии из преобразователя на основе мгновенного входа энергии, как если бы входной поток был постоянным, т.е.е., выполнение стационарного расчета для каждого момента времени. Это исключает оценку возможной временной задержки между входным и выходным потоками. Если жесткое механическое соединение передает энергию через преобразователь (например, соединения ротор-вал-редуктор-электрогенератор в преобразователе энергии ветра с горизонтальной осью), пренебрежение временными задержками является значимым приближением. Это также может быть применимо для многих случаев нежесткого переноса (например, текучей средой), если краткосрочные корреляции между потоком источника и вариациями нагрузки не являются существенными (что они редко связаны с возобновляемыми источниками энергии).По той же причине временными задержками передачи часто можно пренебречь. Поток, полученный в точках нагрузки, может быть задержан на секунды или даже минуты относительно исходного потока, не влияя ни на один из соответствующих критериев производительности системы.
С другой стороны, задержки, вызванные наличием в системе накопителей энергии, являются важными особенностями, которыми нельзя и не следует пренебрегать. Таким образом, запоминающие устройства должны характеризоваться зависящим от времени уровнем запасенной энергии, а входной и выходной потоки, как правило, не будут идентичными.Количество энергии W ( S i ), накопленное в накопителе S i , можно определить из дифференциального уравнения вида
(6.1) dW (Si) dt = ∑jEji + −kEik −− Eiloss,
или из соответствующего интегрального уравнения. Отдельные члены в двух выражениях, включающих суммирование в правой части (6.1), представляют потоки энергии от преобразователей к запоминающим устройствам и от них. Срок потерь Eiloss может зависеть от входящих и исходящих потоков и от абсолютного количества энергии, хранящейся в рассматриваемом накопителе, W ( S i ).
На практике моделирование выполняется путем вычисления всех соответствующих величин для дискретных значений временной переменной и определения содержания накопленной энергии путем замены интеграла по времени (6.1) суммированием по рассматриваемым дискретным моментам времени. Эта процедура хорошо согласуется с приближением квазистационарного состояния, которое на каждом шаге интегрирования позволяет рассчитывать выходы преобразователя (некоторые из которых служат в качестве входов накопителя Eji +) для заданных входов возобновляемой энергии, а также позволяет рассчитывать процессы преобразования. в связи с хранилищами, и потоки энергии Eji-, которые должны быть извлечены из устройств хранения, чтобы удовлетворить потребности в зонах загрузки.Если пренебречь временем, необходимым для преобразования и передачи, можно выполнить закрытый расчет для каждого шага интегрирования по времени. Взаимозависимость входов и выходов накопителя, а также первичного преобразования от системных переменных в целом (например, зависимость производительности коллектора от температуры хранения для плоского солнечного коллектора) может привести к довольно сложным расчетам на каждом временном шаге, например как решение нелинейных уравнений итерационными процедурами (раздел 4.4.3).
Если конечным временем передачи нельзя пренебречь, они могут быть включены в первом приближении путем введения простых постоянных задержек, так что оценки на временном шаге м -го зависят от значений некоторых системных переменных в более раннее время шагов, м — d , где d — задержка в единицах временных шагов.Временные шаги не обязательно должны быть одинаковой длины, но могут быть последовательно оптимизированы для получения желаемой точности с минимальным количеством временных шагов стандартными математическими методами (см., Например, Patten, 1971, 1972).
Целью моделирования может быть оптимизация производительности или компоновки системы. В первом случае предполагается, что компоненты системы фиксированы, и оптимизация направлена на поиск наилучшей стратегии управления, то есть определение того, как лучше всего использовать имеющуюся систему («оптимизация диспетчеризации»).В системе преобразования с несколькими входами и выходами это включает в себя выбор того, какой из нескольких преобразователей использовать для удовлетворения каждой нагрузки, и настройку входов преобразователей в тех случаях, когда это возможно (например, биотопливо и гидроэлектростанции на основе водохранилищ, а не ветровые и солнечное излучение). Для оптимизации системы структура системы преобразования также может быть изменена с учетом временных задержек при внедрении изменений, и производительность в течение длительного периода может быть предметом оптимизации.Для простых систем (без множества входов или выходов от устройств) линейное программирование может обеспечить гарантированное оптимальное распределение существующих устройств, но в общем случае невозможно доказать существование оптимума. Тем не менее, существуют систематические способы подхода к проблеме оптимизации, например, используя метод наискорейшего спуска для нахождения наименьшего минимума сложной функции в сочетании с некоторой схемой, позволяющей избежать неглубоких вторичных минимумов функции, которую необходимо минимизировать (Sørensen, 1996). , 1999).
Продукты, передающие энергию для создания движения
Элементы машин обладают уникальными функциями. Некоторые из них используются для удержания компонентов, некоторые используются для передачи энергии, а другие используются для поддержки дополнительных компонентов, включая подшипники, оси, кронштейны и многое другое.
Продукты передачи энергии передают энергию для создания движения. Процесс передачи мощности передает движение от одного вала к другому с соединением между ними, как ремень, цепь или шестерня. Продукты для передачи энергии обычно используются в промышленной автоматизации, строительной технике и системах транспортировки материалов.
Bearing & Drive Systems стремится быть ведущим поставщиком подшипников и продуктов для передачи энергии на глобальный рынок сбыта. Мы предлагаем постоянно расширяющийся ассортимент продукции для передачи энергии, предназначенный для повышения надежности и эффективности промышленного оборудования и механизмов.
В этой статье мы обсуждаем типы способов и устройств передачи энергии.
Метод передачи — это метод, который соответствует «силовой машине» и «рабочей части машины» с точки зрения конфигурации энергии, скорости движения и формы движения.«
Четыре метода передачи энергии для передачи энергии для создания движенияМы рассматриваем четыре метода передачи энергии с упором на передачу механической энергии.
1. Трансмиссия механическая
Engineering Product Design цитирует:
«Механическая передача энергии — это передача энергии от места, где она генерируется, к месту, где она используется для выполнения работы с использованием машин, механических соединений и элементов механической передачи энергии.«
Преимущества заключаются в эффективной передаче мощности, изменении скорости вращения и преобразовании вращательного движения в линейное возвратно-поступательное движение.
Типы элементов механической передачи энергии включают в себя широкий спектр:
- Тормоза и сцепления — используются для включения и выключения передаваемой мощности.
- Цепи и звездочки — используются для передачи мощности, когда требуется точное передаточное число.
- Шестерни и зубчатые передачи — «Зубчатая передача — это система механической передачи энергии, в которой шестерни установлены на валах, поэтому зубья сопряженных шестерен входят в зацепление, и каждая из них катится друг на друга по диаметру делительной окружности.»(источник) Шестерни считаются жесткими соединителями.
- Приводные винты — используются в качестве элемента рычажного механизма передачи энергии
- Валы — применяются в конструкции всех видов механического оборудования. Такие компоненты, как муфты, шестерни, шкивы и т. Д., Устанавливаются на вал для передачи мощности или вращения.
2. Электропривод
Под электрическим приводом понимаются электродвигатели, используемые для привода производственного оборудования, транспортных средств и др.
Преобразует электрическую энергию в механическую.
3. Пневматическая трансмиссия
Станок MFG цитирует …
«Пневматическая трансмиссия использует сжатый газ в качестве рабочего тела, а гидравлическая передача энергии за счет давления газа».
У этого метода есть свои плюсы и минусы. Основное преимущество заключается в том, что в качестве рабочего тела используется сжатый газ, его легко получить и его стоимость невысока.
Однако
Из-за сжимаемости воздуха рабочая скорость менее стабильна, а давление воздуха может быть низким и потребовать подачи воздуха.(источник)
4. Гидравлическая трансмиссия
Гидравлическая трансмиссия — это передача энергии и управления с использованием жидкости в качестве рабочего тела.
«Жидкость обычно используется для минеральных масел. Ее функция аналогична функциям элементов трансмиссии, таких как ремни, цепи и шестерни в механической трансмиссии». (источник)
Рынок промышленной передачи электроэнергии
Рынок промышленных трансмиссий работает с базовыми продуктами с открытым приводом, такими как ременные передачи, цепные передачи, зубчатые передачи, и каждая из них имеет свой набор преимуществ и недостатков.
Устройства передачи энергии
1. Технология ременного привода — передача движения от одного вала к другому с помощью ленты, проходящей через два шкива.
2. Технология цепного привода — передача мощности от одного компонента к другому через связанную цепь и звездочки.
3. Зубчатая передача — передает мощность на короткое расстояние с постоянным передаточным числом.
Ресурс:
Взгляд на технологию ремня, цепи и зубчатого привода
Заключение
Энергия необходима для привода машин и оборудования различного назначения.В разных отраслях промышленности используются разные продукты для передачи энергии, а иногда и их комбинация, чтобы удовлетворить их индивидуальные потребности.
Существуют устройства линейного перемещения, которые передают мощность и поддерживают движение по прямой. В их состав входят приводы и линейные подшипники.
Устройства вращательного движения передают мощность между вращающимися частями машины. К ним относятся цепи, ремни, шкивы, шкивы и шестерни. И у нас есть подшипники, которые продлевают срок службы колес, шкивов и других вращающихся деталей за счет уменьшения трения и обеспечения плавного движения деталей.
BDS имеет самый большой запас избыточных запасов подшипников и систем передачи энергии. Мы здесь для вас, если вы не можете получить то, что вам нужно, на складе, а производители указывают длительные сроки выполнения заказа.
Представленное изображение предоставлено: Звездочки шестерни от Pixabay
Новый тип модулятора для будущего передачи данных — ScienceDaily
В феврале 1880 года в своей лаборатории в Вашингтоне американский изобретатель Александр Грэм Белл разработал устройство, которое он сам назвал своим величайшим. достижение, даже большее, чем телефон: «фотофон».«Идея Белла передавать произносимые слова на большие расстояния с помощью света была предшественницей технологии, без которой современный Интернет был бы немыслим. Сегодня огромные объемы данных передаются с невероятной скоростью по оптоволоконным кабелям в виде световых импульсов. Для этого они сначала необходимо преобразовать электрические сигналы, которые используются компьютерами и телефонами, в оптические сигналы. Во времена Белла это было простое и очень тонкое зеркало, которое превращало звуковые волны в модулированный свет. Сегодняшние электрооптические модуляторы сложнее, но у них есть одна общая черта с их далеким предком: в несколько сантиметров они все еще довольно большие, особенно по сравнению с электронными устройствами, размер которых может достигать нескольких микрометров.
В основополагающей статье в научном журнале Nature Photonics Юрг Лейтхольд, профессор фотоники и коммуникаций в ETH Zurich, и его коллеги теперь представляют новый модулятор, который в сто раз меньше и который, следовательно, может быть легко интегрирован в электронные схемы. Более того, новый модулятор значительно дешевле и быстрее обычных моделей, а также потребляет гораздо меньше энергии.
Плазмонный трюк
Для этой ловкости рук исследователи во главе с Лейтхольдом и его докторантом Кристианом Хаффнером, которые участвовали в разработке модулятора, используют технический прием.Чтобы построить минимально возможный модулятор, им сначала нужно сфокусировать световой луч, интенсивность которого они хотят модулировать, в очень маленький объем. Однако законы оптики гласят, что такой объем не может быть меньше длины волны самого света. В современных телекоммуникациях используется лазерный свет с длиной волны полтора микрометра, что, соответственно, является нижним пределом для размера модулятора.
Чтобы преодолеть этот предел и сделать устройство еще меньше, свет сначала превращается в так называемые поверхностные плазмон-поляритоны.Плазмон-поляритоны — это комбинация электромагнитных полей и электронов, распространяющихся по поверхности металлической полосы. В конце полосы они снова превращаются в свет. Преимущество этого обходного пути состоит в том, что плазмон-поляритоны могут быть заключены в гораздо меньшее пространство, чем свет, из которого они возникли.
Показатель преломления изменен снаружи
Чтобы контролировать мощность света, выходящего из устройства, и, таким образом, создавать импульсы, необходимые для передачи данных, исследователи используют принцип работы интерферометра.Например, лазерный луч может быть разделен на два плеча с помощью светоделителя и рекомбинирован с помощью устройства объединения лучей. Световые волны затем перекрываются (они «интерферируют») и усиливают или ослабляют друг друга, в зависимости от того, как их относительное состояние фазы в двух плечах интерферометра. Изменение фазы может быть результатом разницы в показателе преломления, который определяет скорость волн. Если одно плечо содержит материал, показатель преломления которого может быть изменен снаружи, относительной фазой двух волн можно управлять, и, следовательно, интерферометр можно использовать в качестве модулятора света.
В модуляторах, разработанных исследователями ETH, через интерферометр шириной всего полмикрона проходят не световые пучки, а плазмон-поляритоны. Путем подачи напряжения можно изменять показатель преломления и, следовательно, скорость плазмонов в одном плече интерферометра, что, в свою очередь, изменяет их амплитуду колебаний на выходе. После этого плазмоны повторно преобразуются в свет, который подается в оптоволоконный кабель для дальнейшей передачи.
Более быстрая связь с меньшим энергопотреблением
Модулятор, построенный Лейтхольдом и его коллегами, имеет сразу несколько преимуществ. «Он невероятно маленький и простой, и, кроме того, это самый дешевый модулятор из когда-либо созданных», — объясняет Лейтхолд. И это просто, состоящее из слоя золота на стекле толщиной всего 150 нанометров и органического материала, показатель преломления которого изменяется при приложении электрического напряжения и, таким образом, модулирует плазмоны внутри интерферометра.Поскольку такой модулятор намного меньше обычных устройств, он потребляет очень мало энергии — всего несколько тысячных ватт при скорости передачи данных 70 гигабит в секунду. Это соответствует всего лишь сотой доли потребления коммерческих моделей.
В этом смысле он способствует защите окружающей среды, учитывая, что количество энергии, используемой во всем мире для передачи данных, является значительным — в конце концов, модуляторы есть в каждой отдельной оптоволоконной линии. С каждым годом все большие объемы данных необходимо передавать со все большей скоростью, что приводит к увеличению потребления энергии.Поэтому стократная экономия энергии была бы более чем желанной. «Наш модулятор обеспечивает большую коммуникацию с меньшим энергопотреблением», как вкратце выразился профессор ETH. В настоящее время надежность модулятора проходит длительные испытания, что является важным шагом на пути к его коммерческому использованию.
История Источник:
Материалы предоставлены ETH Zurich . Оригинал написан Фабио Бергамином. Примечание. Содержимое можно редактировать по стилю и длине.
HOKUYO AUTOMATIC CO., LTD.
- Политика конфиденциальности
- Карта сайта
- Япония
- Корея
- США
Поиск продукта |
---|
- 2021-08-06
- Уведомление о закрытии летних каникул (август)
- 2021-04-27
- Уведомление о закрытии праздничных дней «Золотая неделя»
- 2021-04-06
- 北 阳 在 中国 正式 成立 客户 服务 中心
- 2020-09-30
- «Counter» Уведомление о прекращении производства
- 2020-08-07
- Уведомление о закрытии в праздничные дни (8–16 августа)
- 2020-02-18
- MODEX 2020 (9 — 12 марта)
- 2019-12-24
- Уведомление о новогодних праздниках
- 2019-05-15
- TOC Europe 2019 (18-20 июня Роттердам)
Сканирующий дальномер
- UST-10 / 20LX
- Самый маленький и легкий в своем роде.
Легкость всего 130 г позволяет легко …
Сканирующий дальномер
- UAM-05LP-T301 / T301C
- Датчик безопасности
Компактный д …
Сканирующий дальномер
- YVT-35LX-F0 / FK
- 3D LRF
3D-дальномер сканирования. …
Сканирующий дальномер
- UST-05LX
- Новая модель: Дистанционный тип вывода серии UST-05.
Модернизирован более широким детектором …
Сканирующий дальномер
- URM-40LC-EWT
- НОВАЯ МОДЕЛЬ
Новый диапазон сканирования 2D …
Фотоэлектрический переключатель
- PGL-050W3 / 180W3
- НОВИНКА 180 м Расстояние (максимальное)
…
Сканирующий дальномер
- УСТ-10 / 20ЛН
- Дальность сканирования 10 м и 20 м и компактность!
Улучшен с более широким диапазоном обнаружения…
Сканирующий дальномер
- UGM-50LXP / UGM-50LXN
- Макс. расстояние 120 м для улицы. …
Сканирующий дальномер
- UGM-50LAP / UGM-50LAN
- Макс. расстояние 120 м для улицы.
Площадь …
Сканирующий дальномер
- UST-30LX
- Уличная модель малого размера
Самый маленький и легкий в своем роде.
…
- ЭЛЕКТРОННАЯ ПОЧТА (ID)
- Пароль
- Сохранить данные
Забыли пароль?
- ДОМ
- О нас
- Продукты
- Загрузки
- О членстве
- Войти
- Регистрация
- Свяжитесь с нами
- Условия использования
- Карта сайта
- Политика конфиденциальности
HOKUYO AUTOMATIC CO., LTD.
- Политика конфиденциальности
- Карта сайта
- Япония
- Корея
- США
Поиск продукта |
---|
- 2021-08-06
- Уведомление о закрытии летних каникул (август)
- 2021-04-27
- Уведомление о закрытии праздничных дней «Золотая неделя»
- 2021-04-06
- 北 阳 在 中国 正式 成立 客户 服务 中心
- 2020-09-30
- «Counter» Уведомление о прекращении производства
- 2020-08-07
- Уведомление о закрытии в праздничные дни (8–16 августа)
- 2020-02-18
- MODEX 2020 (9 — 12 марта)
- 2019-12-24
- Уведомление о новогодних праздниках
- 2019-05-15
- TOC Europe 2019 (18-20 июня Роттердам)
Сканирующий дальномер
- UST-10 / 20LX
- Самый маленький и легкий в своем роде.
Легкость всего 130 г позволяет легко …
Сканирующий дальномер
- UAM-05LP-T301 / T301C
- Датчик безопасности
Компактный д …
Сканирующий дальномер
- YVT-35LX-F0 / FK
- 3D LRF
3D-дальномер сканирования. …
Сканирующий дальномер
- UST-05LX
- Новая модель: Дистанционный тип вывода серии UST-05.
Модернизирован более широким детектором …
Сканирующий дальномер
- URM-40LC-EWT
- НОВАЯ МОДЕЛЬ
Новый диапазон сканирования 2D …
Фотоэлектрический переключатель
- PGL-050W3 / 180W3
- НОВИНКА 180 м Расстояние (максимальное)
…
Сканирующий дальномер
- УСТ-10 / 20ЛН
- Дальность сканирования 10 м и 20 м и компактность!
Улучшен с более широким диапазоном обнаружения…
Сканирующий дальномер
- UGM-50LXP / UGM-50LXN
- Макс. расстояние 120 м для улицы. …
Сканирующий дальномер
- UGM-50LAP / UGM-50LAN
- Макс. расстояние 120 м для улицы.
Площадь …
Сканирующий дальномер
- UST-30LX
- Уличная модель малого размера
Самый маленький и легкий в своем роде.
…
- ЭЛЕКТРОННАЯ ПОЧТА (ID)
- Пароль
- Сохранить данные
Забыли пароль?
- ДОМ
- О нас
- Продукты
- Загрузки
- О членстве
- Войти
- Регистрация
- Свяжитесь с нами
- Условия использования
- Карта сайта
- Политика конфиденциальности
Двунаправленная передача оптического сигнала между двумя идентичными устройствами с использованием перовскитных диодов
Shi, Z. et al. Переносная монолитная фотонная схема iii – нитрида для многофункциональной оптоэлектроники. Заяв. Phys. Lett. 111 , 241104 (2017).
Артикул Google ученый
Jiang, Y. et al. Функциональность одновременного обнаружения света несколькими диодами InGaN / GaN с квантовыми ямами. IEEE Electron Device Lett. 38 , 1684–1687 (2017).
Артикул Google ученый
Кларк Дж. И Ланзани Г. Органическая фотоника для связи. Nat. Фотоника 4 , 438–446 (2010).
Артикул Google ученый
Клаук, Х. Органическая электроника: материалы, производство и применение (Wiley, 2006).
Муччини, М. Светлое будущее для органических полевых транзисторов. Nat. Матер. 5 , 605–613 (2006).
Артикул Google ученый
Ширасаки Ю., Супран Г. Дж., Бавенди М. Г. и Булович В. Появление светоизлучающих технологий на основе коллоидных квантовых точек. Nat. Фотоника 7 , 13–23 (2013).
Артикул Google ученый
Гарсиа Де Аркер, Ф. П., Армин, А., Мередит, П. и Сарджент, Э. Х. Полупроводники, обработанные на растворе, для фотоприемников нового поколения. Nat. Rev. Mater. 2 , 16100 (2017).
Артикул Google ученый
Zhang, G. et al. Высокоэффективный фотоэлектрический диод на основе органического ультрафиолетового фотодетектора и сильная электролюминесценция, возникающая в результате чистого эксиплексного излучения. Org. Электрон.Phys. Матер. Прил. 10 , 352–356 (2009).
Google ученый
Али, Ф., Периасами, Н., Патанкар, М. П. и Нарасимхан, К. Л. Интегрированный органический синий светодиод и видимый слепой УФ-фотодетектор. J. Phys. Chem. С 115 , 2462–2469 (2011).
Артикул Google ученый
Yoshino, K. et al. Заметное усиление фотопроводимости и тушение люминесценции в поли (2,5-диалкокси- p -фениленвинилен) при легировании C 60 . Jpn J. Appl. Phys. 32 , L357 – L360 (1993).
Артикул Google ученый
Mashford, B. S. et al. Высокоэффективные светоизлучающие устройства на квантовых точках с улучшенной инжекцией заряда. Nat. Фотоника 7 , 407–412 (2013).
Артикул Google ученый
Dai, X. et al. Реалистичные высокопроизводительные светодиоды на основе квантовых точек. Природа 515 , 96–99 (2014).
Артикул Google ученый
Oh, N. et al. Светочувствительные светодиоды с двойным гетеропереходом и наностержнями для дисплеев. Наука 355 , 616–619 (2017).
Артикул Google ученый
Эртель Д. К., Бавенди М. Г., Аранго А. К. и Булович В. Фотодетекторы на основе обработанных пленок квантовых точек CdSe. Заяв. Phys. Lett. 87 , 213505 (2005).
Артикул Google ученый
Clifford, J. P. et al. Быстрые, чувствительные и спектрально настраиваемые фотодетекторы на коллоидных квантовых точках. Nat. Nanotechnol. 4 , 40–44 (2009).
Артикул Google ученый
Tan, Z. K. et al. Яркие светодиоды на основе металлоорганического перовскита. Nat. Nanotechnol. 9 , 687–692 (2014).
Артикул Google ученый
Сазерленд Б. Р. и Сарджент Э. Х. Перовскитные фотонные источники. Nat. Фотоника 10 , 295–302 (2016).
Артикул Google ученый
Dou, L. et al. Гибридные перовскитовые фотоприемники с обработкой на растворе и высокой детектирующей способностью. Nat. Commun. 5 , 5404 (2014).
Артикул Google ученый
Feng, J. et al. Монокристаллические слоистые металлогалогенные перовскитные нанопроволоки для сверхчувствительных фотоприемников. Nat. Электрон. 1 , 404–410 (2018).
Артикул Google ученый
Фанг, Й. и Хуанг, Дж. Устранение слабого света субпиковатт на квадратный сантиметр гибридными перовскитными фотодетекторами на основе шумоподавления. Adv. Матер. 27 , 2804–2810 (2015).
Артикул Google ученый
Shen, L. et al. Гибридный перовскитовый фотодетектор с автономным питанием и субнаносекундным откликом для определения времени жизни фотолюминесценции с временным разрешением. Adv. Матер. 28 , 10794–10800 (2016).
Артикул Google ученый
Bao, C. et al. Малошумящие фотоприемники с большим линейным динамическим диапазоном на основе тонких монокристаллов гибридного перовскита. Adv. Матер. 29 , 1703209 (2017).
Артикул Google ученый
Bao, C. et al. Высокопроизводительные и стабильные фотодетекторы на основе полностью неорганических галогенидов металлов и перовскита для приложений оптической связи. Adv. Матер. 30 , 1803422 (2018).
Артикул Google ученый
Wang, N. et al. Перовскитовые светодиоды на основе самоорганизующихся множественных квантовых ям с обработкой раствора. Nat. Фотоника 10 , 699–704 (2016).
Артикул Google ученый
Chiba, T. et al. Анионообменные квантовые точки красного перовскита с солями йода аммония для высокоэффективных светоизлучающих устройств. Nat. Фотоника 12 , 681–687 (2018).
Артикул Google ученый
Zhao, B. et al. Высокоэффективные светодиоды с объемной гетероструктурой перовскит – полимер. Nat. Фотоника 12 , 783–789 (2018).
Артикул Google ученый
Cao, Y. et al. Перовскитовые светодиоды на основе спонтанно образующихся структур субмикронного размера. Природа 562 , 249–253 (2018).
Артикул Google ученый
Lin, K. et al. Перовскитовые светодиоды с внешним квантовым выходом более 20%. Природа 562 , 245–248 (2018).
Артикул Google ученый
Xu, W. et al. Рациональная молекулярная пассивация для высокоэффективных перовскитовых светодиодов. Nat. Фотоника 13 , 418–424 (2019).
Артикул Google ученый
Deschler, F. et al. Высокая эффективность фотолюминесценции и генерация с оптической накачкой в полупроводниках на основе смешанных галогенидов перовскита, обработанных на растворе. J. Phys. Chem. Lett. 5 , 1421–1426 (2014).
Артикул Google ученый
Xing, G. et al. Перовскиты с перестраиваемой длиной волны, обработанные низкотемпературными растворами, для генерации. Nat. Матер. 13 , 476–480 (2014).
Артикул Google ученый
Stranks, S. D. et al. Длина диффузии электронов и дырок превышает 1 микрометр в металлоорганическом тригалогенидном перовскитном поглотителе. Наука 342 , 341–344 (2013).
Артикул Google ученый
Le, Q., Van, Jang, H. W. & Kim, S.-Y. Последние достижения в области высокоэффективных галогенидных перовскитных светодиодов: обзор и перспективы. Малые методы 2 , 1700419 (2018).
Артикул Google ученый
Yuan, M. et al. Энергетические воронки из перовскита для эффективных светодиодов. Nat. Nanotechnol. 11 , 872–877 (2016).
Артикул Google ученый
Wei, M. et al. Сверхбыстрая узкополосная маршрутизация экситонов внутри слоистых перовскитных нанопластинок позволяет создавать люминесцентные солнечные концентраторы с низкими потерями. Nat. Энергетика 4 , 197–205 (2019).
Артикул Google ученый
Liao, C. L., Chang, Y. F., Ho, C. L. & Wu, M. C. Высокоскоростные синие светодиоды на основе GaN с распределяющим ток слоем из легированного галлием ZnO. IEEE Electron Device Lett. 34 , 611–613 (2013).
Артикул Google ученый
Ляо, К.Л., Хо, К. Л., Чанг, Ю. Ф., Ву, К. Х. и Ву, М. С. Высокоскоростные светодиоды, излучающие на длине волны 500 нм с полосой модуляции 463 МГц. IEEE Electron Device Lett. 35 , 563–565 (2014).
Артикул Google ученый
Ким, Дж. С., Каджи, Х. и Омори, Ю. Характеристики оптического отклика в красных органических светодиодах с использованием системы двух примесей для применения в устройствах оптической связи. Тонкие твердые пленки 499 , 343–348 (2006).
Артикул Google ученый
Барлоу И. А., Креузис Т. и Лидзи Д. Г. Модуляция высокоскоростной электролюминесценции светоизлучающего диода из сопряженных полимеров. Заяв. Phys. Lett. 94 , 243301 (2009).
Артикул Google ученый
Bowring, A. R., Бертолуцци, Л., О’Реган, Б. К. и МакГихи, М. Д. Обратное смещение галогенидных перовскитных солнечных элементов. Adv. Energy Mater. 8 , 1702365 (2018).
Артикул Google ученый
Лохнер, К. М., Хан, Ю., Пьер, А., Ариас, А. С. Полностью органический оптоэлектронный датчик для пульсовой оксиметрии. Nat. Commun. 5 , 5745 (2014).
Артикул Google ученый
Gong, S. et al. Переносной и высокочувствительный датчик давления с ультратонкими золотыми нанопроводами. Nat. Commun. 5 , 3132 (2014).
Артикул Google ученый
Йокота, Н., Нисака, К., Ясака, Х. и Икеда, К. Модуляция спиновой поляризации для высокоскоростных лазеров с вертикальным резонатором, излучающих поверхность. Заяв. Phys. Lett. 113 , 171102 (2018).
Артикул Google ученый
Ferreira, R. X. G. et al. Микро-светодиоды на основе GaN с высокой пропускной способностью для передачи данных в видимом свете со скоростью до нескольких Гбит / с. IEEE Photonics Technol. Lett. 28 , 2023–2026 (2016).
Артикул Google ученый
Симидзу, Н., Ватанабе, Н., Фурута, Т. и Ишибаши, Т. Фотодиод InP – InGaAs с унифицированной бегущей несущей с улучшенной полосой пропускания 3 дБ более 150 ГГц. IEEE Photonics Technol. Lett. 10 , 412–414 (1998).
Артикул Google ученый
Тройной массив камер с исключительной оптикой ZEISSДля настоящей свободы творчества Xperia PRO оснащен тройной камерой с разным фокусным расстоянием: 16 мм, 24 мм и 70 мм.Объективы представляют собой оптику ZEISS, откалиброванную специально для вашего смартфона Xperia с покрытием ZEISS T *, которое способствует превосходному рендерингу и контрасту за счет уменьшения отражений, что делает креативные снимки такими, как задумано. | До 20 кадров в секунду и 60 вычислений AF / AE в секундуXperia PRO может запечатлеть моменты, недоступные другим смартфонам.Благодаря непрерывной съемке со скоростью до 20 кадров в секунду *, а также автофокусом и автоматической экспозицией вы можете запечатлеть сотни моментов за секунды. Сохраняйте концентрацию, что бы ни происходило перед вами. Благодаря новым алгоритмам, обеспечивающим точность и производительность автофокусировки, Xperia 1 II непрерывно вычисляет автофокусировку и экспозицию до 60 раз в секунду *, поэтому вы будете получать четкие и четкие снимки даже в быстро движущихся сценах. | Быстрая фокусировка в любых условиях — днем или ночьюНаш инновационный датчик с двойным фотодиодом обеспечивает невероятно быструю и точную фокусировку в любых условиях — днем или ночью.Благодаря системе автофокусировки с 247 точками фазовой автофокусировки, покрывающим почти 70% сенсора 24-мм камеры, получение автофокуса выполняется всего за 0,03 секунды. В сценах с низким или ограниченным освещением вы по-прежнему будете наслаждаться быстрой автофокусировкой, даже когда ваш объект движется, благодаря трем мощным технологиям, работающим вместе: 3D iToF (непрямому датчику времени полета) *, большому 1 / 1,7-дюймовый сенсор Exmor RS на 70-мм камере и движке BIONZ X for Mobile. | Оцените автофокусировку по глазам в реальном времени — для людей и животныхСоздавайте потрясающие портреты людей и животных * с яркостью и живостью идеального глаза в фокусе с функцией Eye-AF.Не каждый снимок представляет собой полный профиль, когда оба глаза вашего объекта смотрят в камеру. Даже когда один глаз закрыт или перед объектом проходит другой объект, Xperia PRO все равно найдет глаз и быстро сфокусируется. |