10Июл

Характеристики дизельного топлива: Виды и качество дизельного топлива

Содержание

Технические характеристики дизельного топлива

Цетановое число, не менее ГОСТ 3122 51 51 53,1
Цетановый индекс, не менее EN ISO 4264 46 55,3
Плотность при 15 °С, кг/м3 ГОСТ Р 51069-97 820-845 834,5
Массовая для полициклических ароматических углеводородов %, не более ГОСТ EN 12916 8 8 4,1
Массовая доля серы, мг/кг, не более ГОСТ ISO 20846 10 10
9
Температура вспышки, определяемая в закрытом тигле, °С ГОСТ 6356 не ниже 55 выше 55 69
Коксуемость 10%-ного остатка, не более ГОСТ 32392 0,30 0,02
Зольность, %, не более ГОСТ 1461 -0,01 отсутствие*
Содержание воды, мг/кг, не более EN ISO 12937 200 12
Общее загрязнение, мг/кг, не более EN 12662
24
8
Коррозия медной пластинки (3ч. при 50 °С) единицы по шкале ГОСТ 32329 Класс 1 Класс 1
Окислительная стабильность: общее количество осадка, г/м3, не более ГОСТ Р EN ISO 12205 25 5
Смазывающая способность: скорректированный диаметр пятна износа при 60 °С, мкм, не более ГОСТ ISO 12156-1-2012 460 460 354
Кинематическая вязкость при 40 °С, мм2/с ГОСТ 33 2,000-4,500 3,06
Фракционный состав: ГОСТ ISO 3405 ASTM D 86
отгоняется до температуры 250° С об.,не более 65 27
отгоняется до температуры 350 °С об., не менее 85 98
95% объема отгоняется при температуре, °С, не выше 360 360 338
Предельная температура фильтруемости, °С, не выше ГОСТ 22254-92 минус 20 минус 20

характеристики, основные виды и показатели

Сегодня все больше автолюбителей предпочитают авто с дизельными моторами. Основная причина – экономичность, надежность, простота эксплуатации. Но есть и недостатки, которые перечеркивают все плюсы – плохое топливо для дизельных двигателей и нехватка знаний о солярке у отечественных автолюбителей. Как следствие, возникает множество проблем в эксплуатации – загрязнение топливной системы, снижение мощности двигателя, замерзание солярки в морозную погоду и так далее. Чтобы избежать неприятностей, стоит знать о дизтопливе как можно больше и главное – уметь его выбирать.

Характеристики дизельного топлива

По своей структуре топливо для дизельных двигателей отличается от привычного бензина. В народе такой состав называется «соляркой». По сути, это смесь углеводородов, которые формируются путем перегонки нефтепродуктов и выбора из них необходимых фракций. В основе дизельного топлива углеводороды, которые отличаются высокой температурой кипения – около 300-350 градусов Цельсия.

Столь разные составы бензина и дизеля объясняют и различность подходов в работе двигателей. К примеру, в бензиновом моторе воспламенение топлива происходит от искры (источник последней – свеча зажигания). Для бензина ключевое значение имеет устойчивость к детонации, то есть октановое число. В свою очередь, дизельный двигатель работает за счет создания более мощной степени сжатия.

Основной параметр, характеризующий качество смеси – цетановое число. Именно по нему можно судить, насколько быстро воспламеняется дизтопливо в цилиндре силового узла. Чем больше цетановое число, тем меньше затрат времени на воспламенение горючей смеси и тем эффективнее работа двигателя. Собственно, цетановое число отображает временную задержку между впрыском топливной смеси в камеру сгорания цилиндров и ее воспламенением.

В случае если цетановое число ниже 40, то работа двигателя будет неудовлетворительной. Появляются сильные задержки при воспламенении, падает мощность, возникает детонация, снижается общий ресурс мотора. У топлива нормального качества цетановое число должно находиться на уровне 48-52. Что касается солярки более высокого качества, то ее цетановое число и вовсе может достигать 53-55.

Российские стандарты в отношении соляры считаются одними из самых «мягких». Здесь допускается применение дизельного топлива с цетановым числом от 48 единиц и выше (для зимнего топлива). Но есть исключения. К примеру, для некоторых зимних видов солярки, имеющих депрессорные присадки в составе, разрешается выпуск и продажа соляры с описываемым нами параметром от 40 и более.
Хотелось бы отметить, что слишком высокое цетановое число – также не очень хорошо. К примеру, если показатель будет превышать отметку «60», то топливо просто не будет успевать сгорать, повышается дымность выхлопа, увеличивается «прожорливость» транспортного средства и так далее.

Ещё кое-что полезное для Вас:

Основные виды топлива для дизельных двигателей

Часто новички забывают о главном недостатке солярки – его способности замерзать уже при небольшом морозе. В такой ситуации авто не заведется, а для решения проблемы приходится применять целый комплекс мер по прогреву основных элементов и повышению температуры солярки в системе. Чтобы этого не допустить, важно правильно выбирать дизельное топливо, знать его виды и особенности.

Из основных классов солярки можно выделить:

1. Летнее дизтопливо

Его особенность – жидкое состояние при температуре от «нуля» градусов Цельсия и более. К основным параметрам можно отнести:

  • цетановое число, как правило, от 45 градусов Цельсия и более;
  • вязкость. При температуре 20-22 С составляет 4-6 кв. мм/с;
  • плотность. При температуре 20-22 С составляет до 850-860 кг/куб метр;
  • температура полного замерзания – от -10 градусов Цельсия и ниже. На практике такое топливо может застывать и раньше (от -3-5 градусов Цельсия).

Главный недостаток летнего топлива – появление конденсата влаги внутри бака, отслаивание влаги и ее скопление в нижней части емкости. Подобная особенность доставляет массу проблем автолюбителям:

  1. летом водная «пробка» может блокировать топливную систему и привести к сбоям в работе;
  2. зимой влага замерзает и обездвиживает авто даже при минимальном морозе.Вот почему еще до наступления холодов летнюю солярку нужно полностью сливать из бака и заменять его на более качественный зимний состав.
2. Зимняя солярка 

Данный вид солярки пользуется наибольшей популярностью в России. При этом нельзя забывать о главной его особенности – замерзании при достижении 30 градусов мороза. Для регионов с суровой зимой такое топливо для дизельных двигателей – не лучший вариант.
К основным характеристикам зимнего дизтоплива можно отнести:

  • цетановое число – от 44-45;
  • плотность – до 830-840 кг/кубический метр;
  • вязкость – от 1,9 до 4,9-5,0 кв.мм/с.

Параметры вязкости и плотности приведены для температуры 20-22 градусов Цельсия.ъ

3. Арктическая 

Это лучший вариант для районов, где температура на улице может опускаться намного ниже тридцати градусов. Такая солярка способна достойно выдержать морозы до -50 градусов Цельсия, что существенно ниже, чем у конкурентов. Из основных характеристик арктического топлива можно выделить:

  • цетановое число – от 40;
  • плотность – до 820-830 кг/куб. метр;
  • вязкость – от 1,5 до 4,0 кв. мм/с.

Параметры вязкости и плотности, как и в предыдущих случаях, приведены для температуры в 20-22 градуса Цельсия.

Видео: Как завести замерзший дизельный мотор?!

Стандарты экологичности топлива для дизелей

  1. Евро-3 – это уже устаревший стандарт дизельного топлива, который был актуален до 2005 года (в ЕС). После появления новых требований Евро-3 перестало удовлетворять нормам, и было снято с производства;
  2. Евро-4 – сравнительно новый стандарт, который пришел на смену вышедшего из оборота стандарта Евро-3. В ЕС Евро-4 начал использоваться с 2005 года. С начала 2013 года весь транспорт, который завозится в Россию, должен соответствовать данному классу. Единственное исключение – авто, выпущенные до конца 2012 года. Для них еще допускается соответствие более старому стандарту;
  3. Евро-3. В ближайшее время планируется вообще запретить эксплуатацию авто со стандартом ниже Евро-4;
  4. стандарт Евро-5 является самым новым. В ЕС его соблюдение обязательно для грузовых авто, выпущенных начиная с 10.2008 года, а для легковых авто – с 09.2009 года. Действует стандарт и на территории РФ. В частности, он распространяется на все автомобили, которые ввозятся на территорию государства;
  5. К особому виду топлива можно отнести биодизель. Его особенность – наличие в составе животных и растительных жиров. Собственно, сама структура дизтоплива является полностью натуральной, а состав является результатом переработки сои, рапса и прочих растений. Особенность топлива в том, что оно может применяться как в чистом виде, так и в качестве специальной добавки к обычным видам топлива.

Распознать биодизель можно по специальному обозначению. Так, в США о наличии биодизеля в составе можно судить по наличию буквы «В» в названии. Далее стоит цифра, которая показывает процентное содержание специального состава в общей массе. Что касается цветанового числа, то для такого вида топлива оно составляет около 50-51.

Эксплуатационные показатели дизельного топлива

К основным показателям топлива для дизельных двигателей можно отнести:

  1. Цетановое число (о нем мы говорили выше). Его величина позволяет судить о будущих экономических показателях силового узла и его мощности. Чем больше данный параметр, тем лучше работает двигатель;
  2. Фракционный состав позволяет определить, насколько качественно будет сгорать топливо, какова токсичность отработанных газов, каким будет уровень дымности и так далее;
  3. Низкотемпературные свойства. Данный параметр определяет температуру замерзания топлива и особенности его хранения;
  4. Вязкость и плотность. От этих характеристик зависит, насколько качественной будет подача топлива к двигателю, его распыление и фильтрация;
  5. Температура вспышки. Этот параметр определяет, насколько безопасно использовать дизтопливо в дизельных моторах;
  6. Уровень чистоты. Чем чище соляра, тем больший ресурс будут иметь различные фильтры авто и ЦПГ силового узла;
  7. Наличие серы. Подобная примесь может привести к образованию коррозии, повышенному нагару и износу на внутренних элементах двигателя и топливной системы.
Вывод

Если вы отдали предпочтение автомобилю с дизелем, то важно как можно больше знать о топливе для них, особенностях его выбора и эксплуатации. В этом случае можно добиться лучшей экономичности авто, исключить проблемы с лишней водой в баке и замерзанием топлива.

Эксплуатационные показатели дизельного топлива

К основным эксплуатационным показателям дизельного топлива относятся:

Цетановое число, которое является показателем его воспламеняемости. Его величина отображает способность топлива к воспламенению и период задержки (временной промежуток от его впрыска до начала горения). Цетановое число дизельного топливо влияет на его расход, жесткость работы двигателя, дымность газов и запуск двигателя. Чем выше это число, тем лучше воспламеняемость топлива, короче временные промежутки между впрыском и воспламенением, плавность работы двигателя и экономико-технические показатели работы двигателя.

Цетановый индекс – цетановое число (расчетное), до добавления повышающей присадки в дизельное топливо. Цетаноповышающие присадки по-разному влияют на физический и химический состав топлива, поэтому следует избегать их передозировки. Во избежание изменения состава, необходимо чтобы разница между цетановым числом и цетановым индексом была минимальной. Цетановый индекс является определяющим фактором качества дизельного на промежуточной стадии его производства.

Фракционный состав, как и цетановое число, – это показатель качества дизельного топлива. Он определяет расход топлива во время работы двигателя, легкость запуска и бесперебойность работы, износ деталей, образование нагара и закокосованности на форсунках, пригорания колец. Средняя испаряемость (температура выкипания половины объема топлива) отображает рабочие фракции топлива, от которых зависит запуск двигателя, время прогрева, стабильность и приемистость работы, плавность переключения режимов работы. Полнота испарения топлива – температура, при которой выкипает 95% топлива. Если ее значение велико, то топливо не успевает полностью испариться и оседает на стенках цилиндра в виде пленки или капель, что в свою очередь приводит к образованию нагара, разжижается масло и снижается рабочий ресурс.

Температура вспышки в закрытом тигле – самое низкое значение температуры топлива, при которой над поверхностью образуется воспламеняющаяся смесь паров, газов и воздуха.

Массовая доля серы – характеристика по своей сути двойственная. С одной стороны, повышенное содержание серы указывает на «грязный» выхлоп, а также приводит к образованию кислотных соединений, которые снижают качество масла в двигателе. Ухудшается качество смазывающих, износостойких и моющих характеристик масла, а также образовывается серный нагар. Результат – малый ресурс работы двигателя. Во избежание износа двигателя, приходится сокращать межсервисный промежуток для обслуживания автомобиля, а, следовательно, повышаются расходы владельца.

Другая сторона — уменьшение содержания серы в топливе приводит к снижению смазывающих свойств топлива, что влечет за собой уменьшение рабочего ресурса ТНВД и форсунок. Тогда необходимо вводить в него специальные противоизносные присадки.

Кинематическая вязкость и плотность топлива – характеристики, которые определяют и обеспечивают нормальную и бесперебойную подачу топлива, его распыляемость в камере сгорания.

Смазывающая способность дизельного топлива – характеристика, которая определяет срок службы элементов топливной системы.

«Магнум Ойл» предлагает дизельное топливо высокого качества по выгонным ценам.

Способы обмана при покупке дизельного топлива

  • 04.02.2020 12:04:17

Согласно нововведениям, с февраля 2020 года нефтяные компании РФ должны продавать через внутреннюю биржу не менее до 6% выпускаемого дизтоплива. Такое увеличение нормативов предусмотрено новой редакцией приказа Антимонопольной службы совместно с Министерством энергетики. Напомним, что в прошедшем году данная норм предусматривала продажу 5% выпускаемого дизеля через биржу.

  • 04.02.2020 11:58:27

В январе 2020 года наблюдался плавный рост стоимости нефтепродуктов на АЗС. Эксперты связывают такую ситуацию с увеличением акцизов на топливо, а также с вступившими в силу нормами компенсации доходов добывающих компаний. При этом, аналитики утверждают, что резких изменений стоимости горючего на заправках России в 2020 году не будет.

  • 20.12.2019 15:07:36

Тюменское управление Федеральной Антимонопольной Службы предоставило свои комментарии по вопросу роста стоимости дизтоплива.

  • 20.12.2019 15:01:58

Межправительственная организация государств, экспортирующих нефть, была организована, чтобы контролировать квоты добычи «черного золота». Ее участники договорились о снижении добываемых объемов на первый квартал 2020 года до 500 000 баррелей/сутки.  

  • 20.12.2019 14:54:27

Куда пропал дизель? Этот вопрос становится все более актуальным для автолюбителей и других жителей всего региона. Из разных районов поступают сообщения об отсутствии дизельного топлива. Эта тема все чаще освещается в различных новостных изданиях.

  • 20.12.2019 14:47:43

Заместитель руководителя Антимонопольной службы Анатолий Голомолзин на встрече с журналистами рассказал о ситуации, которая сложилась на рынке нефтепродуктов, а именно, в сегменте дизельного топлива.

  • 04.12.2019 18:26:01

Согласно Техническому регламенту Таможенного союза “О требованиях к автомобильному и авиационному бензину, дизелю и судовому топливу, топливу для реакционных силовых установок и мазуту”, а также госстандарту Р 52368-2005 (ЕН 590:2009) с изменениями №1, летний дизель ЕВРО сорта С вида III (ДТ-Л-К5) принадлежит к экологической категории К5 (серы в нем содержится менее 10 мг/кг).

  • 02.12.2019 12:06:03

С 29 ноября в Москве и Подмосковье начались проблемы с поставкой дизельного топлива. На данный момент приобрести его можно только на АЗС «Роснефть» и «Лукойл». 

  • 29.11.2019 13:53:00

Дизель считается самым фальсифицируемым видом топлива в нашей стране. Каждый четвёртый литр проданного дизеля – подделка. Как сообщают «Известия», ссылаясь на источник в Росстандарте, нередко вместо дизельного топлива на АЗС продают судовое либо печное маловязкое топливо.

  • 29.11.2019 13:45:58

По всей России владельцы независимых автозаправочных станций предупреждают о том, что не имеют возможности приобретать дизельное топливо у крупных компаний. Нефтяные холдинги предпочитают продавать дизтопливо на собственных АЗС.

  • 29.11.2019 13:08:28

Многие думают, что бизнесом, связанным с нефтью и нефтепродуктами, под силу заниматься только очень богатым людям. Это лишь миф. Да, добыча и перевозка такой продукции требует значительных инвестиций, а вот торговать конечным продуктом могут и обычные люди с довольно ограниченным бюджетом.

  • 14.10.2019 12:14:42

При понижении температуры воздуха меняется вязкость дизельного топлива. Вследствие этого ухудшается его проходимость по топливной системе. При сильных морозах топливо может вообще замерзнуть в баке и повредить элементы подачи топлива.

  • 14.10.2019 11:59:49

Довольно часто водители жалуются, что у автомобиля “запарафинились” форсунки. Современные дизельные агрегаты хоть и являются надежными и выносливыми, но подержанны данной проблеме. Так почему появляется парафин в форсунках?

  • 27.09.2019 13:22:56

Дизельные ДВС современных автомобилей очень чувствительны к качеству топлива. К наиболее важным параметрам дизтоплива относится предельная температура фильтруемости. В этой статье мы рассмотрим, как отражается этот показатель на работе машины.

  • 20.08.2019 07:53:34

Качество топлива, которое реализуется на автозаправочных комплексах – важный момент, который волнует, как частных автовладельцев, так и транспортные компании. Лаборатория компании ООО «Рынок Нефтепродуктов» проводит независимую экспертизу нефтепродуктов и ГСМ. Многих заказчиков волнует вопрос можно ли полностью доверять лабораторным исследованиям, и какую ответственность несет лаборатория за качество анализов топливных материалов

  • 29.07.2019 12:57:36

После заправки автомобиль теряет тягу, глохнет или вообще не запускается. С такой ситуацией сталкивались многие автовладельцы. Бензин, дизель или газ, которые реализуют на вполне, казалось бы, приличных автозаправочных станциях могут нанести серьезный ущерб автомобилю. Причиной этого является несоответствие топлива действующим нормам. Одним из этапов контроля качества нефтепродуктов является правильный отбор проб и их анализ в лаборатории ООО «Рынок Нефтепродуктов».

  • 27.07.2018 13:00:13

Качество дизтоплива оценивают по многим параметрам. Одно из важных свойств хорошего горючего – способность сохранять чистоту мотора и топливоподающей системы. При оптимальной работе двигателя отложения, образуемые в процессе эксплуатации, удаляются самостоятельно и не препятствуют его функционированию. Такой режим называется “равновесным”.

  • 20.07.2018 15:15:10

Аналоги дизельного топлива являются популярным энергоносителем, которые используют для работы котлов автономного отопления в частных домах и общественных зданиях. Использование дизельного котла позволяет организовать полностью независимую и экономичную систему для обогрева объекта любой площади.

  • 05.06.2018 13:53:14

По данным официальной статистики в 2018 году значительно увеличились объемы топлива, поставляемо за рубеж. Нефтяные и нефтеперерабатывающие компании по информации аналитиков прекратили сдерживание экспорта и увеличили цифру заграничных поставок в несколько раз.

  • 11.05.2018 12:41:52

Осень в Казахстане началась с сильнейшего топливного кризиса – на АЗС закончился бензин АИ-92 и дизельное топливо, а АИ-95 значительно увеличился в цене. Официальные власти в срочном порядке приняли решение обеспечить страну необходимым количеством топлива за счет импорта не менее 120-150 тысяч тонн бензина АИ-92 и порядка 90 тысяч тонн дизельного топлива. Ключевым партнером в этом направлении для Казахстана будет Россия, по словам заместителя министра энергетики Республики Казахстан А. Магауова.


Новости 1 — 20 из 38
Начало | Пред. | 1 2 | След. | Конец

Летнее дизельное топливо, эксплуатационные показатели и характеристики дизельного топлива

Физические свойства летнего дизтоплива (ДТЛ):

  • плотность: не более 860 кг/м³
  • температура помутнения и предельная температура фильтруемости: −5 °C
  • температура застывания: −10°C
  • температура вспышки: для тепловозных и судовых дизелей и газовых турбин: 62 °C, для дизелей общего назначения: 40°C
  • вязкость при 20°C: 3,0-6,0 мм2/с

Получение летнего дизтоплива

Летнее дизтопливо получают при перегонке нефти в ректификационных колоннах при выкипании парафиновых, нафтеновых, ароматических углеводородных фракций и их производных с температурой 280—360°C.

Применение летнего дизтоплива

На работоспособность двигателя и его ресурс непосредственное влияние оказывает качество и состав топлива. Заправка двигателя дизельным топливом в соответствии с сезоном гарантирует его быстрый запуск в любое время года.

Летнее дизельное топливо используют для газотурбинных и быстроходных дизельных двигателей, работающих при температуре окружающего воздуха выше 0°С. Обычно летнее дизтопливо покупают для заправки двигателей в период с апреля по октябрь.

От степени вязкости и показателей плотности дизтоплива напрямую зависит работа фильтровальной и топливной системы автомобиля, образование качественной горючей смеси и ее полное сгорание в цилиндре двигателя.

Применение летнего дизтоплива в холодное время года приводит к его помутнению, застыванию и кристаллизации парафинов. Парафины и нафтены оказывают влияние на температуру фильтруемости – предельные показатели, при которых топливо проходит сквозь фильтры и обеспечивает эффективную работу двигателя.

Застывшее дизтопливо плохо распыляется форсунками в камере сгорания, оседает на поверхности деталей крупными каплями и образует нагар. Самовоспламениться такая воздушно-топливная смесь в условиях подачи в цилиндры холодного воздуха, не может.

Помутнение топлива при температуре –5°С свидетельствует о нарушении фазовой однородности жидкого топлива, при котором в жидкости появляются мелкие кристаллы и хлопья. Такое топливо еще не теряет своей текучести, но наличие в нем взвеси твердых частиц не позволяет свободно проходить через фильтры, со временем полностью забивая поры фильтра тонкой очистки. Это приводит к засорению топливной системы, прекращению подачи топлива и остановке двигателя.

Использование летнего дизтоплива при температуре ниже −10°C приводит к кристаллизации парафинов, застывании топлива и превращении его в желеобразную массу, которую невозможно перекачать по топливной системе и запустить двигатель. При попытке запуска двигателя с застывшим дизтопливом возможна поломка ТНВД и выход со строя всей топливной системы.

Поскольку визуально отличить летнее и зимнее дизтопливо невозможно, покупайте качественное топливо только у проверенных поставщиков – компании Market Oil, работающих напрямую с нефтеперерабатывающими предприятиями. И тогда эксплуатация автомобилей и агрегатов будет комфортной и безаварийной.

Свойства дизельного топлива и их влияние на область использования |

Основными и важнейшими свойствами дизельного топлива являются следующие параметры и характеристики: испаряемость, цетановое число, температурные показатели, вязкость, содержание серы и температура. Рассмотрим, как перечисленные показатели влияют на использование дизельного топлива.

Воспламеняемость (цетановое число)

Этот показатель определяет, насколько легко запускается двигатель. От него зависит и то, какое время после запуска дизельного двигателя будет «белое дымление» и жесткость работы двигателя на холостом ходу, которое еще называют «дизельный стук». Воспламеняемость дизтоплива влияет на наличие вредных компонентов в отработанных газах, таких как СО и СН. Чем меньше период воспламеняемости, тем быстрее происходит сгорание топлива. Это ускоряет работу двигателя и увеличивает его мощность.

Различные модели дизельных двигателей имеют свои требования к цетановому числу. Так, например, быстроходные двигатели требуют дизельное топливо с более высоким цетановым числом, а двигатели менее оборотистые благополучно используют топливо с небольшим цетановым числом. Для примера можно привести работу крупного судового двигателя, который работает на топливе с ЦЧ около 15 и высокооборотных двигателей легковым машин, цетановое число дизельного топлива которых не менее 50. Для грузовых машин нормальным цетановым числом дизельного топлива является значение от 40 до 45.

Если цетановое число высокое, скорость нарастания давления будет ниже, а значит двигатель будет работать не так жестко. С увеличением цетанового числа выше нормы ухудшается экономичность двигателя и увеличивается дымность выхлопных газов. Для отечественных дизельных двигателей цетановое число равно 40-50. Для топлива в зимних условиях цетановое число должно быть не менее 45.

Вязкость и плотность

Такие показатели, как вязкость и плотность определяют уровень испарения и смесеобразования дизельного топлива. Более плотное и вязкое топливо хуже воспламеняется и сгорает, что приводит к большему расходу дизельного топлива и дымности выхлопных газов. Маловязкое топливо в процессе эксплуатации увеличивает износ деталей топливного насоса. Для уменьшения износа часто в дизельное топливо добавляют противоизносные присадки, что частично компенсирует этот недостаток маловязкого дизельного топлива.

Испаряемость

Сам процесс сгорания дизельного топлива зависит от его химического состава и характеризуется испаряемостью. Что бы спалить определенное количество топлива легкого фракционного состава, необходимо меньше воздуха, чем для дизельного топлива более плотного фракционного состава. Фракционный состав дизельного топлива влияет на работу двигателей с разным смесеобразованием по-разному. Предкамерные и вихревые образующие двигатели имеют небольшую чувствительность к составу топливо, в то время как двигатели с непосредственным впрыском более чувствительны. Нагретые стенки предкамеры двигателя способствуют благоприятному смесеобразованию. Слишком сильное облегчение фракционного состава способно привести к увеличению более жесткой работе двигателя.

Низкотемпературные свойства

Это свойство определяет температуру, при которой дизельное топливо начинает мутнеть, застывать и превращаться в кристаллы. От него зависит область применения и условия эксплуатации дизельного топливо, в частности, климатические показатели региона. Так же, температурные свойства дизельного топлива определяют условия, при которых можно хранить дизтопливо на складе. На нефтеперерабатывающих заводах, применяя специальные технологии, производят специальное низкотемпературное топливо.

Степень чистоты дизтоплива

Чем более чистое дизельное топливо, тем качественнее и эффективнее работает двигатель. Эта характеристика дизельного топлива является очень важной. Для определения характеристики чистоты топлива используют коэффициент фильтруемости. Фильтруемость определяют соотношением времени, за которое топливо проходит через фильтр при определенном атмосферном давлении. В основном, фильтруемость дизтоплива зависит от содержания воды, механических примесей, смол и нафтеновых кислот в дизельном топливе. Согласно ГОСТ 6370-83, если в дизельном топливе количество механических примесей не превышает 0,002-0,004%, считается, что примесей в топливе нет.

Содержание серы

От содержания серы в дизельном топливе зависит содержание вредных веществ в выхлопных газах, что и определяет экологичность топлива. При содержании серы до 0,035% топливо считается экологически чистым. Уменьшение количества серы в топливе приводит к повышению износа двигателя, поэтому, в некоторых случаях в дизтопливо добавляют присадки, которые способны уменьшить износ деталей и механизмов двигателя.

Температура вспышки

Этот показатель определяет пожарную опасность топлива. В двигателях, которые эксплуатируются в закрытых помещениях, а так же в пожароопасных местах, применяется топливо с повышенной температурой вспышки. По ГОСТ 305-82 дизельное топливо является общего назначения и применения, и имеет температуру вспышки не менее 40°С. Для топлива, применяемого в судовых и тепловозных двигателях, горных машин температура вспышки не менее 60°С. Такое топливо имеет ограничение по использованию.

Просмотров: 388

Евро 5: дизельное топливо зимнее и технические характеристики новой эмульсии

На современные стандарты переходят не только отечественные автопроизводители – с января 2015 года происходит модернизация производства горючего, соответствующего параметрам Euro V. Инновационные технологии позволили повысить низкотемпературные свойства дизтоплива для зимы. Автомобилистам же остается заправляться качественной соляркой, а также более ответственно подходить к обслуживанию и апгрейду топливной системы своего автомобиля.

Что ждать от дизельного топлива по стандартам Евро 5?

В России введение экологического моторного горючего класса Euro V отложено до лета 2016 года. Однако же Москва переходит на современные стандарты уже с 1 января. Основная причина нововведения – чрезмерная загрязненность воздуха, особенно в условиях мегаполиса. Лидирующие позиции в производстве нового горючего занимают концерны Лукойл и ТНК.


Современное дизельное топливо зимнее и его технические характеристики напрямую связаны с низкотемпературными свойствами солярки, а именно:

  1. Температурой помутнения.
  2. Номинальной температурой фильтруемости.
  3. Температурой застывания.

Одним из базовых требований нового регламента – это снижение содержания серы в составе горючего до 8-10 мг на 1 кг веса. Такие нормативы в 10-15 раз ниже аналогичных показателей в остальных видах дизтоплива. Этот фактор скептики преподносили как негативный, аргументируя тем, что двигатель лишится своеобразной смазки на основе серных соединений.

Однако специалисты напоминают о наличии в новом горючем комплекса присадок, поддерживающих отличную смазывающую способность. Более того, экологическое зимнее дизельное топливо Евро 5 при сгорании не образует серную и сернистую кислоты. Это благотворно сказывается не только на природе, но и продлевает срок службы силового агрегата. Определенная часть экспертов уверяет, что необходимость установки дополнительного оборудования в виде сепаратора с подогревом отпадает по причине низкого порога застывания.

Авторитетные исследования показали, что повышение доли серы в объеме ДТ до 1% отрицательно влияет на состояние цилиндро-поршневой группы, а именно – двигатель выйдет из строя в два раза быстрее. В соответствии с принятыми стандартами, горючее нового поколения демонстрирует улучшенные параметры эксплуатационного характера:

  • снижение интенсивности коррозионных процессов компонентов топливной системы;
  • уменьшение нагрузки на систему нейтрализации отработанных газов;
  • повышение отбора мощности с единицы объема силовой установки;
  • в форсированных режимах улучшается приемистость мотора;
  • уменьшение дымности выхлопных газов;
  • снижение расхода горючего.

Основные технические характеристики нового зимнего дизельного топлива стандарта Euro V

Некоторые автомобилисты интересуются, какие обозначения отечественного горючего соответствуют европейской маркировке Euro V. Согласно техническому регламенту Таможенного союза, группа символов ДК-З-К5 обозначает дизтопливо для зимы, параметры которого полностью аналогичны пятому экологическому классу. В паспортах качества производители этот же нефтепродукт представляют как «Сорт F вид III», а иногда указывают и обе маркировки.

Основные технические характеристики экологического зимнего дизельного топлива Евро 5 выражаются следующими показателями:

  • Цетановое число – 51,0.
  • Цетановый индекс – 46,0.
  • Содержание серы – 10 мг/кг.
  • Температура вспышки – 55°С.
  • Содержание воды – 200 мг/кг.
  • Осадок – не более 25 мг/кг.
  • Окислительная стабильность – 25 г/м³.

Один из самых важных параметров солярки – это цетановое число, которое характеризует то, как быстро запустится и прогреется мотор. Кроме того, данный фактор влияет на эффективность работы двигателя. Стандарт пятого класса дизтоплива определяет цетановое число минимум в 51 единицу, но регламент приближает его уже к отметке 55.

Номинальное содержание воды в 200 мг/кг, конечно, избавляет водителей от необходимости реализовывать своими руками подогрев узлов топливной системы. Но практика показывает, что особо расслабляться не стоит. Концентрация воды может резко повыситься в результате определенных физических явлений, например, перепада температур и появления конденсата в баке. Избавиться от вредных компонентов в дизтопливе помогут депрессорно-диспергирующие присадки, которые положительно характеризуются автолюбителями.

В нормативах особое внимание уделено энерговооруженности горючего, которое выражается плотностью эмульсии. Теперь этот показатель приблизился к цифре 845 кг на единицу объема, что свидетельствует о высокой экономичности новой солярки.

Отвечая на многочисленные вопросы, специалисты утверждают, что маркировка «Euro V» указывает не на температуру помутнения и фильтрации, а на содержание эмульсии. Да, свойства новой солярки сохраняются до -20°C, но зимнее дизельное топливо стандарта Евро 5 делится по ГОСТ Р 52368-2005 на пять классов, что и видно из таблицы.

Параметры

Классы зимнего топлива

0

1

2

3

4

Предельная температура фильтруемости, °C

-20

-26

-32

-38

-44

Номинальная температура помутнения, °C

-10

-16

-22

-28

-34

Цитановое число

49,0

49,0

48,0

47,0

47,0

Кинематическая вязкость при 40°C, мм²/с

1,5-4,0

1,5-4,0

1,5-4,0

1,4-4,0

1,2-4,0

Плотность при 15°C, кг/м³

800-845

800-845

800-840

800-840

800-840

Минимальная температура вспышки, °C

55

55

40

30

30

Инновации от Лукойл: особенности дизтоплива для холодных климатических зон

Выпустив линейку современных топливных составов под маркой «ЭКТО», компания моментально выбилась в лидеры. Опираясь на отзывы автомобилистов, нужно отметить следующие факты:

  • отсутствие опасности появления коррозии на поверхностях узлов топливной системы;
  • отличные смазывающие характеристики топливной суспензии;
  • при использовании сертифицированной продукции ЭКТО-Арктика отсутствует необходимость в дополнительном оборудовании для подогрева горючего;
  • оптимизированный процесс сгорания смеси и облегченный пуск силовой установки;
  • новый уровень экономичности.

Совершенная технология перегонки нефти позволила снизить до минимума содержание парафиновых углеводородов. А ведь именно эти компоненты непосредственно влияют на процесс кристаллизации и как следствие, на возникновение проблем с запуском мотора в суровых зимних условиях. К сказанному следует добавить, что солярка марки Арктика имеет предельную фильтруемость на уровне -32°C. Согласно документации, парафиновые соединения начинают терять текучесть только при -16°C.

Нужны ли дополнительные присадки в дизтопливо?

Этот актуальный вопрос притягивает как отрицательные, так и положительные мнения. Одни автолюбители не советуют использовать в современном горючем дополнительные компоненты ввиду их отрицательного влияния на узлы топливной системы. Другие утверждают обратное – присадки в зимнее дизельное топливо могут улучшить его технические характеристики и увеличить моторесурс.


По утверждениям производителей депрессорно-диспергирующие присадки имеют свои определенные цели:
  • вывести из горючего воду;
  • повысить значение цетанового числа;
  • снизить температурные показатели помутнения;
  • облегчить пуск двигателя в зимних условиях;
  • повысить смазочные свойства дизтоплива;
  • снизить расход горючего и износ деталей цилиндро-поршневой группы.

Оптимизирующие добавки способны реализовать как часть вышеописанных свойств, так и улучшить их все одновременно. Покупать нужный продукт следует из соображений уровня качества топлива на автозаправке.

Важно! Жителям глубинки рекомендовано использовать присадки для повышения цетанового числа, потому что качество горючего на местных АЗС всегда оставляет желать лучшего. Антигель способен растворить кристаллизованный парафин.

Все положительные отзывы основаны на опыте применения модифицирующих составов только известных компаний:

  • Liqui Moly;
  • Castrol;
  • Тотек;
  • SMT;
  • BBF.

В свою очередь, специалисты считают, что использование присадок в горючем Euro V, которое итак имеет улучшенные параметры, нецелесообразно. Свое мнение они объясняют тем, что разброс основных характеристик имеет небольшой разброс, чем и отличается от предшествующих нормативов. После добавления активного вещества в зимнее дизельное топливо стандарта Евро 5 можно внезапно получить изменение его вязкости или цетанового числа, что сразу же скажется на работе силового агрегата.

В итоге

В холодное время лучше воспользоваться соответствующим горючим. В случае когда топливоподающая магистраль не оборудована системой подогрева, рекомендуется возить с собой депрессорно-диспергирующие присадки (антигель). Жителям окраин нужно задуматься о приобретении компонента для качественного повышения горения топлива (цетанового числа) по причине его неудовлетворительной добротности на местных АЗС.

Проверка свойств топлива: смазывающая способность

Проверка свойств топлива: смазывающая способность

Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Смазывающая способность дизельного топлива может быть измерена в ходе испытаний транспортных средств, стендовых испытаний насосов или стендовых испытаний. Наиболее важными стендовыми испытаниями являются высокочастотная поршневая установка (HFRR) и прибор для оценки смазывающей способности шариков на цилиндре под действием задира (SLBOCLE).Поскольку различные испытания основаны на различных типах механизмов износа, корреляция между методами не всегда является удовлетворительной.

Обзор

Термин Смазывающая способность часто определяется как способность смазочного материала — в данном случае дизельного топлива — минимизировать трение между поверхностями и повреждение поверхностей при относительном движении под нагрузкой. Обычно тесты, используемые для оценки смазывающей способности дизельного топлива, пытаются создать условия граничной смазки. Более конкретно, результаты испытаний, которые количественно определяют смазывающую способность топлива, являются мерой способности топлива минимизировать трение между и / или повреждение поверхностей при относительном движении в условиях граничной смазки.

Для измерения смазывающей способности топлива были разработаны различные типы методов:

  • Испытания автомобилей. При испытании транспортного средства [1241] транспортное средство работает на топливе в течение определенного промежутка времени или определенного расстояния. Затем компоненты топливной системы можно разобрать и проверить на износ. Преимущество этого испытания состоит в том, что он является наиболее репрезентативным для реальных условий и может измерять все возможные отказы, связанные с износом, а не только отказы, связанные с граничной смазкой.Однако испытания такого рода очень дороги и требуют много времени, и они не позволяют испытать большое количество топливных комбинаций.
  • Стендовые испытания насосов. Альтернативой испытанию транспортного средства является испытание на насосной установке (ASTM D6898) [1243] [1244] [1520] [1549] [1522] [1523] . При испытании на стенде насоса топливный насос высокого давления устанавливается на испытательном стенде и приводится в действие электродвигателем. Топливо циркулирует через насос в течение определенного периода времени.Насос и любое другое присоединенное к нему оборудование можно затем разобрать и проверить на предмет износа и других вредных воздействий. Это испытание имеет то преимущество, что оно менее затратно, чем полное испытание транспортного средства, при этом сохраняется возможность проверки на многие отказы, связанные с износом, помимо отказов, связанных с граничной смазкой. Это по-прежнему требует много времени и средств в эксплуатации. На один тест может потребоваться от 500 до 1000 часов тестового времени. Стендовые испытания насоса часто необходимы для оценки эффективности более простых стендовых испытаний.
  • Стендовые испытания. Был разработан ряд стендовых испытаний, которые пытаются воссоздать граничные условия смазки, аналогичные тем, которые встречаются в оборудовании для впрыска топлива, чтобы позволить быстрые и относительно недорогие измерения смазывающей способности топлива:
    • Оценщик смазывающей способности шарика на цилиндре (BOCLE) был разработан для авиационного реактивного топлива. Он продолжает использоваться для этого приложения. Это особенно полезно для измерения влияния топлива и присадок на окислительный износ — важный механизм износа в авиационных топливных системах.
    • Устройство для оценки смазывающей способности шарика на цилиндре (SLBOCLE) было разработано в середине 1990-х годов в ответ на отказы системы дизельного топлива, возникшие в результате внедрения низкосернистого дизельного топлива. Он аналогичен тесту BOCLE, но с изменениями, которые делают его менее чувствительным к окислительному износу и более чувствительным к истиранию клея.
    • Высокочастотная поршневая установка (HFRR) также была разработана в 1990-х годах, чтобы сделать ее полезной для оценки смазывающей способности дизельного топлива.Он может производить широкий спектр механизмов износа в зависимости от испытываемого топлива.
    • Шарик на трех дисках Метод (BOTD) появился сравнительно недавно и все еще находится в стадии разработки. Это компактная и более экономичная версия аппарата Ball on Three Seats.

Из стендовых методов испытаний HFRR чаще всего используется для оценки дизельного топлива. SLBOCLE был распространен в 1990-х годах, но практически не нашел применения с 2005 года. Оба метода более подробно обсуждаются в следующих разделах, а их основные характеристики перечислены в таблице 1.Следует проявлять осторожность при интерпретации результатов испытаний на смазывающую способность с любым из этих стендовых испытаний. Они воспроизводят лишь ограниченное количество механизмов износа, которые могут повлиять на дизельные топливные системы. Хотя воспроизводимые ими механизмы износа обычно важны для дизельных топливных систем, их относительная важность в любой конкретной топливной системе очень сильно зависит от конструкции топливной системы и условий эксплуатации.

Таблица 1
Сводка основных характеристик различных методов лабораторных испытаний смазывающей способности
ASTM D6078 SLBOCLE ASTM D6079 HFRR ISO 12156-1 HFRR
Параметр мин.нагрузка при коэффициенте трения ≥ 0,175 след износа на шаре след износа на шарике
Температура жидкости 25 ° C 25 или 60 ° C. 60 ° C предпочтительнее, если летучесть или разложение не являются проблемой 60 ° C
Объем жидкости 50 мл 2 мл 2 мл
Воздух 25 ° C, относительная влажность 50% > 30% относительной влажности см. Рисунок 6
Нагрузка 500 г — 5000 г 200 г 200 г
Продолжительность 60 с при каждом приращении нагрузки 75 мин 75 мин
Шар: неподвижный возвратно-поступательный, 50 Гц / ход 1 мм возвратно-поступательный, 50 Гц / ход 1 мм
— диаметр 12.7 мм 6 мм 6 мм
— материал AISI E-52100 AISI E-52100 хромистая сталь AISI E-52100
— отделка 5-10 EP R a <0,05 мкм R a <0,05 мкм
— твердость твердость по Роквеллу C 64-66 твердость по Роквеллу C 58-66 твердость по Роквеллу C 58-66
Кольцо / Диск: Кольцо Диск стационарный Диск стационарный
— частота вращения 525 об / мин
— размер 49.2 мм 10 мм 10 мм
— материал SAE 8720 Сталь хромистая AISO E-52100, отожженная. Точил, шлифовал и полировал. Сталь хромистая AISO E-52100, отожженная. Точил, шлифовал и полировал.
— отделка 0,04-0,15 мкм Ra <0,02 мкм Ra <0,02 мкм
— твердость твердость по Роквеллу C 58-62 «HV 30» по Виккерсу: 190-210 Vickers «HV 30»: 190-210
— скорость 1.3 м / с постоянная в среднем 0,1 м / с, возвратно-поступательное движение Среднее значение 0,1 м / с, возвратно-поступательное движение
Топливо топливо аэрировано
Контакт контактная поверхность не погружена в топливо контактная поверхность погружена контактная поверхность погружена
диапазон точности данных 1100-6200 г 143-772 мкм при 25 ° C,
175-1000 мкм при 60 ° C
360 — 600 мкм При 60 ° C
Воспроизводимость 900 г 62 мкм при 25 ° C,
80 мкм при 60 ° C
63 мкм при 60 ° C
Воспроизводимость 1500 г 127 мкм При 25 ° C,
136 мкм при 60 ° C
102 мкм при 60 ° C

###

Тестирование свойств топлива: сера

Тестирование свойств топлива: сера

Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием.Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Методы испытаний на содержание серы важны для соблюдения установленных нормативов содержания серы в топливе. Методы измерения содержания серы в топливе включают влажную химию, рентгеновскую флуоресценцию, атомную спектроскопию и различные методы термического сгорания. Наиболее распространенные методы испытаний ASTM включают D 2622, D 5453 и D 7039.

Обзор

Методы испытаний на содержание серы всегда были важны для соблюдения установленных нормативов содержания серы в топливе.Поскольку нормативы по содержанию серы в топливе ужесточились, например, до 15 мг / кг для дизельного топлива со сверхнизким содержанием серы (ULSD) в Северной Америке, пределы методов испытаний были расширены. Очень сложно точно и точно определить количество серы в топливе на этих уровнях. Многие методы испытаний нельзя использовать из-за низкой точности и / или точности.

Методы получения серы в топливе включают влажную химию, рентгеновскую флуоресценцию, атомную спектроскопию и различные методы термического сжигания с различными методами обнаружения, такими как микрокулометрия, УФ-флуоресценция и электрохимия.

В таблице 1 представлены некоторые из наиболее распространенных методов испытаний, используемых для количественного определения серы в среднедистиллятных топливах. Также показан диапазон концентраций серы и марок дизельного топлива ASTM D975, к которым они применимы.

Таблица 1
Общие методы испытаний на содержание серы, диапазон применимости и применимость марки топлива ASTM D975
Метод Название Диапазон Марки
Д 129 Стандартный метод определения содержания серы в нефтепродуктах (общий метод бомбы)> 0.1% массы № 1-D S5000
№ 2-D S5000
№ 4-D
Д 1266 Стандартный метод определения содержания серы в нефтепродуктах (ламповый метод) от 0,0005 до 0,4% массы
от 5 до 4000 мг / кг
№ 1-D S500
№ 2-D S500
Д 1552 Стандартный метод определения содержания серы в нефтепродуктах (высокотемпературный метод)> 0,06% по массе № 1-D S5000
№ 2-D S5000
№4-Д
Д 2622 Стандартный метод определения содержания серы в нефтепродуктах с помощью спектрометрии рентгеновской флуоресценции с дисперсией по длине волны от 0,0003 до 5,3% по массе
от 3 до 53000 мг / кг
Все марки
Д 3120 Стандартный метод определения следовых количеств серы в легких жидких нефтяных углеводородах с помощью окислительной микрокулометрии от 3,0 до 100 мг / кг № 1-D S15
№ 2-D S15
№1-D S500
№ 2-D S500
Д 4294 Стандартный метод определения содержания серы в нефти и нефтепродуктах с помощью энергодисперсионной рентгенофлуоресцентной спектрометрии от 0,0150 до 5,00% по массе
от 150 до 50 000 мг / кг
№ 1-D S5000
№ 2-D S5000
№ 4-D
Д 5453 Стандартный метод определения общего содержания серы в легких углеводородах, моторных топливах и маслах с помощью ультрафиолетовой флуоресценции 0.0001 до 0,8% по массе
от 1,0 до 8000 мг / кг
Все марки
Д 6920 Стандартный метод определения общего содержания серы в нафте, дистиллятах, реформулированном бензине, дизельном, биодизельном и моторном топливе путем окислительного горения и электрохимического обнаружения от 1 до 40 мг / кг № 1-D S15
№ 2-D S15
Д 7039 Стандартный метод определения содержания серы в бензине и дизельном топливе с помощью монохроматической спектрометрии рентгеновской флуоресценции с дисперсией по длине волны от 2 до 500 мг / кг №1-D S15
No. 2-D S15
No. 1-D S500
No. 2-D S500

Когда EPA первоначально опубликовало правила, требующие 15 мг / кг серы в дорожном дизельном топливе в 2001 году, назначенным методом испытаний был ASTM D 6428. Этот метод испытаний позже был признан неадекватным, поскольку он был первоначально разработан для ароматических углеводородов, а не для нефти. продукты и их точность не соответствовали статистическим протоколам, используемым для нефтепродуктов (D 6428 был позже пересмотрен с новыми данными о точности и выпущен отдельно как D 6920).После судебного иска EPA изменило требования к методам испытаний в 2004 году. Вместо требования конкретного метода испытаний были приняты критерии, основанные на характеристиках. Любой метод испытаний может считаться одобренным EPA методом при условии, что он соответствует минимальным требованиям к рабочим характеристикам, изложенным в 40 CFR 80.584.

Чтобы метод испытаний соответствовал требованиям EPA, каждый испытательный центр, запрашивающий одобрение, должен показать, что точность и точность их испытательного центра соответствуют требованиям EPA. Эти требования к установкам для измерения серы в ULSD изложены в таблице 2.

Таблица 2
Требования EPA к рабочим характеристикам для объектов, измеряющих содержание серы в ULSD
Точность Стандартное отклонение минимум 20 повторных испытаний, проведенных в течение 20 дней на одном гомогенном коммерчески доступном дизельном топливе с содержанием серы в диапазоне 5-15 мг / кг, должно быть менее 0,72 мг / кг .
Точность Среднее арифметическое непрерывной серии из минимум 10 испытаний коммерчески доступного гравиметрического стандарта серы в диапазоне 1-10 мг / кг серы не должно отличаться от принятого эталонного значения более чем на 0. .54 мг / кг .
Среднее арифметическое непрерывной серии минимум из 10 испытаний коммерчески доступного гравиметрического стандарта серы в диапазоне 10-20 мг / кг серы не должно отличаться от принятого эталонного значения более чем на 0,54 мг / кг .

###

Дизель Свойства и проблемы

Общие проблемы с дизельным топливом и хранением

Существует распространенное заблуждение, что дизельное топливо после хранения «полезно для жизни».Однако это не так. Дизельное топливо со временем разрушается, что может снизить эффективность генератора. Когда дело доходит до критически важных объектов, включение света при отключении электроэнергии является главным приоритетом. Целостность дизельного топлива в баках генератора делает или нарушает этот особый императив. В этой серии статей, состоящей из нескольких частей, мы рассмотрим ряд факторов, в том числе качество топлива и неблагоприятные факторы, срок хранения, способы повреждения дизельного топлива, срок хранения, причины проблем, продление и улучшение срока хранения, а также системы очистки топлива.Вот несколько интересных фактов о свойствах дизельного топлива и связанных с этим проблемах.

Во-первых, давайте рассмотрим, что такое дизель. Согласно Википедии, дизельное топливо бывает разных форм. Для наших целей мы будем ссылаться на нефтяное дизельное топливо. Нефтяное дизельное топливо, также называемое нефтяным дизельным топливом, или ископаемое дизельное топливо, является наиболее распространенным типом дизельного топлива. Его получают путем фракционной перегонки сырой нефти при температуре от 200 ° C (392 ° F) до 350 ° C (662 ° F) при атмосферном давлении, что приводит к смеси углеродных цепей, которые обычно содержат от 8 до 21 атома углерода на молекулу. .

В идеальном состоянии дизельное топливо представляет собой прозрачную жидкость коричневого цвета. Однако есть много факторов, которые могут повлиять на качество топлива. Это, в свою очередь, может повлиять на работу двигателя. Современные дизельные двигатели имеют очень сложный набор компонентов, эффективность работы которых зависит от конкретных характеристик топлива. Эти свойства включают (но не ограничиваются ими) плотность, вязкость, характеристики горения, смазывающую способность, коррозионную активность при температуре вспышки, содержание воды, образование золы и скорость окисления. Когда топливо не соответствует спецификации, проблемы могут включать:

  • Низкая плотность топлива (отсутствие дыма)
  • Высокая плотность топлива (черный дым)
  • Высокая вязкость (черный дым)
  • Низкая вязкость (недостаток мощности, плохой запуск)
  • Низкое цетановое число (плохое сгорание, грубая работа, выбросы, шум)
  • Низкая летучесть (плохой старт, образование отложений)
  • Высокое содержание серы (повышенные выбросы)
  • Низкая смазывающая способность (износ инжекционного оборудования)
  • Высокое содержание парафина (замерзание в холодную погоду)
  • Высокое золообразование (отложения в двигателе, плохая работа)
  • Плохая стабильность (образование смол и отложений)
  • Содержание воды (коррозия инжекционного оборудования)
  • Низкая температура воспламенения (возможная опасность при обращении)
  • Высокоуглеродный остаток (отложения в двигателе, увеличение выбросов)
  • Высокая коррозионная активность (эрозия поверхностей впрыска и топливного насоса / бака)
  • Повышенная кислотность (коррозия топливного насоса и бака)
  • Высокие ароматические углеводороды (повышенные выбросы)
  • Низкое содержание моющих средств (повышенные отложения, выбросы)
  • Низкая противопенная способность (плохие наполняющие свойства, утечка топлива)

Многие из этих свойств взаимосвязаны, и дизельное топливо имеет относительно узкий диапазон работы между конфликтующими требованиями.Дизельное топливо, как правило, очень высокого качества, но может быть загрязнено смешиванием или плохими условиями хранения.

В следующем посте мы рассмотрим эти условия хранения, а также типы загрязняющих веществ, которые могут привести к порче дизельного топлива.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Произошла ошибка при установке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать. \ circ \ mathrm {C}} {\ to} {\ mathrm {ZnO}} _ { (\ mathrm {s})} + {\ mathrm {CO}} _ {2 (\ mathrm {g})} \ uparrow.$$

(2)

При температуре 80 ° C и коротком интервале в 2 часа полученный осадок затем обезвоживали в сушильном шкафу с циркуляцией воздуха вскоре после отделения от смеси. Этот процесс проводился с использованием вакуумного фильтра с тремя интервалами с использованием конденсированной воды, а затем этанола. Затем высушенный порошок извлекают из печи и прокаливают при 500 ° C в течение 3 часов с получением белых кристаллических наночастиц оксида цинка. Наконец, нанопорошок измельчали ​​в шаровой мельнице со скоростью 200 об / мин в течение 5 часов для получения тонкого порошка наночастиц ZnO.

На рис. 1а показан ИК-Фурье-спектр наночастиц ZnO, который показывает два заметных и более низких интенсивных пика в области от 4000 до 400 см -1 . Соответствующий широкий пик при 3460 см -1 был признан валентным колебанием поверхностных связей O – H наночастиц ZnO. Острый пик, наблюдаемый при 490 см -1 , который можно объяснить перекрытием валентных колебаний связей Zn – O, соответствующих тетраэдрической и октаэдрической структурам наночастиц ZnO.FTIR от 430 до 420 см -1 , приписываемый валентному колебанию Zn – O тетраэдрической структуры наночастиц ZnO, в то время как валентное колебание Zn – O их октаэдрической структуры находится между 540 и 620 см -1 . Наблюдаемый пик, отнесенный к валентным колебаниям Zn – O, хорошо согласуется с результатами предыдущих исследований 32, 33 . Было подтверждено, что в обоих случаях наностержней ZnO это крайнее валентное колебание Zn – O (490 см -1 ) находится между 507 и 423 см -1 .В то же время сферические НЧ ZnO продемонстрировали максимальное перекрытие при 471 см -1 34, 35 . Кроме того, FTIR-спектр наночастиц ZnO демонстрирует два более низких интенсивных пика при 1627 и 1377 см -1 из-за органических загрязнений, возникающих из-за промежуточных продуктов реакции, которая рассматривается как комплекс цинк-гидроксоацетатов 36 или кластер из четырехъядерный оксо Zn ацетат (Zn 4 O (CH 3 COO) 6 ) 37, 38 .

Рисунок 1

Структурная характеристика наночастиц оксида цинка ( a ) Анализ инфракрасной спектроскопии с преобразованием Фурье (FTIR), ( b ) Картина дифракции рентгеновских лучей (XRD), ( c ) Энергодисперсионная рентгенография (EDS) анализ.

Рентгенограмма синтезированных наночастиц ZnO проиллюстрирована на рис. 1b, на ней показаны характерные дифракционные пики наночастиц ZnO для значений 2θ 31,6, 34,3, 36,8, 48,1, 57,4, 63,2, 66,8, 68,1, 69,3, 73,4 и 77,6 с относительно соответствующих кристаллографических плоскостей (100), (002), (101), (102), (110), (103), (200), (112), (201), (202) и (104).Уравнение Шеррера использовали для определения зарегистрированного размера кристаллитов около 22,5 нм. Картина XRD наночастицы ZnO показала усиление дифракционных максимумов при значении 2θ 34,3 вместе с направлением кристаллографической плоскости (002) по сравнению с другими направлениями, за исключением (100) и (101) (ось c) 39 . Преимущественный рост стержней вюрцита наблюдался по интенсивности кристаллографической плоскости, и это наблюдение согласуется с предыдущими исследованиями 40 .EDX-анализ, показанный на фиг. 1c, был проведен с использованием Nova Nano FEG-SEM 450; было идентифицировано, что три пика представляли существование Zn с резкими и интенсивными пиками при 1,0 кэВ и слабыми интенсивными пиками при 0,1 кэВ, соответственно. Кислородный элемент, аналог атома Zn наночастицы ZnO, показал пик при 0,5 кэВ. Кроме того, незначительные количества Al и C наблюдались на соответствующих пиках 1,5 кэВ и 0,8 кэВ соответственно. Эти результаты предполагают, что приготовленный образец содержит сильные сигналы цинка и кислорода со слабым сигналом примесей, которые могут быть представлены через прекурсоры.Следовательно, было подтверждено, что тестируемый образец имел высокую чистоту синтезированных наночастиц ZnO.

Анализ SEM показывает трехмерную морфологию наночастиц ZnO, как показано на рис. 2a, b, при уровнях увеличения 5 и 1 мкм, демонстрируя сферическую морфологию наночастиц ZnO. Фигуры 2c, d иллюстрируют изображения ПЭМ при 100 нм и 20 нм; они подтверждают двумерные структуры, которые включают наностержни и сферические формы, а также размер синтезированных наночастиц ZnO. Кроме того, межплоскостное пространство между полосами решетки моделировалось с использованием изображений ПЭМВР, как показано на рис.2f. Было обнаружено, что измеренное межплоскостное расстояние составляло 0,282 нм относительно кристаллографической плоскости (100) и полярной оси c наночастиц ZnO. В дополнение к диаграмме XRD, диаграмма SAED была использована для исследования кристалличности полученных наночастиц ZnO, как показано на рис. 2e. Морфологическая структура наночастиц ZnO, меньшая диаметра отверстия сопла, не препятствовала потоку топлива.

Рисунок 2

Морфологические исследования Наночастица оксида цинка ( a , b ) Изображения с помощью сканирующей электронной микроскопии (SEM), ( c , d ) просвечивающая электронная микроскопия (TEM), ( e ) селективная диаграмма электронной дифракции (SAED) и ( f ) просвечивающая электронная микроскопия высокого разрешения (HRTEM).

Анализ неопределенности

Анализ неопределенности включает среднее значение повторных измерений для оценки фактического значения. Среднее значение трех показаний выбранного параметра было учтено для анализа ошибок 1, 2 . Планки погрешностей были представлены для всех характеристик двигателя, чтобы указать на погрешность измерения.

Процент погрешностей вычисленных и измеренных параметров показан в таблице 1.

Таблица 1 Погрешности и погрешности вычисленных параметров.

Свойства топливных смесей

Условия исследования, окружающая среда и оборудование сопровождались предварительными исследованиями Soudagar et al. 1, 2, 41 . Таблица 2 демонстрирует свойства смесей дизельного топлива (D100), биодизеля (MOME20) и нанотоплива (D10030 и MOME2030). Содержание свободных жирных кислот в топливе влияет на кинематическую вязкость топливной смеси. Кинематическая вязкость MOME20 была выше, чем у других топливных смесей; смеси нанотоплива продемонстрировали небольшое снижение вязкости в результате добавления 2 об.% DEE. Дизельное топливо показало самую низкую вязкость из-за отсутствия наночастиц ZnO. Теплотворная способность топливных смесей D10030 и MOME2030 увеличивается за счет добавления наночастиц ZnO. Кроме того, смеси нанотоплива продемонстрировали улучшенные свойства текучести на холоде.

Таблица 2 Свойства смесей дизельного топлива, биодизеля и нанотоплива.

Влияние различных факторов, влияющих на характеристики сгорания двигателя

В этом разделе рассматривается влияние геометрии корпуса поршня, отверстий топливных форсунок и смесей нанотоплива на характеристики сгорания двигателя.Скорость тепловыделения (HRR) и давление в цилиндре были проанализированы для инжектора с 7 отверстиями при максимальных нагрузках. Эти параметры иллюстрируют влияние большего количества отверстий и TRCC на характеристики сгорания двигателя CRDI, работающего на дизельном, биодизельном и нанотопливном смесях. Наночастицы ZnO выделяют больше тепла при сгорании для тестового топлива из-за высокой теплопроводности и лучшей термической стабильности. Скорость тепловыделения определялась с использованием математического уравнения Хейвуда. Уравнение 3 иллюстрирует модель скорости тепловыделения, принятую в текущем исследовании,

$$ \ frac {{dQ_ {total}}} {d \ theta} = \ left ({\ frac {{\ gamma_ {s}}} { {\ gamma_ {s} — 1}}} \ right) \ left ({P_ {c}} \ right) \ left ({\ frac {dV} {{d \ theta}}} \ right) + \ left ( {\ frac {1} {{\ gamma_ {s} — 1}}} \ right) \ left (V \ right) \ left ({\ frac {dP} {{d \ theta}}} \ right) + \ слева ({\ frac {{dQ_ {w}}} {d \ theta}} \ right) $$

(3)

, где \ (\ frac {d {Q} _ {total}} {d \ theta} \) указывает скорость тепловыделения, P c и γ s показывает давление в цилиндре и удельную теплоемкость соотношение, \ (\ left (\ frac {d {Q} _ {w}} {d \ theta} \ right) \), а V показывает скорость передачи тепла от газов к стенке цилиндра и объему камеры сгорания.На рис. 3а показано изменение HRR при разных углах поворота коленчатого вала.

Рисунок 3

Изменение скорости тепловыделения ( a ) и давления в цилиндре ( b ) при разных углах поворота коленчатого вала.

Когда нанотопливо впрыскивается в камеру сгорания, оно получает избыточное тепло от термически активных наночастиц ZnO, что приводит к преждевременному воспламенению испытуемого топлива. Топливный инжектор с 7 отверстиями и TRCC продемонстрировали более высокую скорость тепловыделения для всех топливных смесей из-за лучшего смешивания воздуха и топлива и развития эффективного вихревого движения.HRR для топливной смеси MOME20 оказался самым низким по сравнению с дизельным топливом из-за более высокой молекулярной массы и более низкой скорости ламинарного горения. Когда начинается сгорание, HRR становится положительным, и, следовательно, быстрое сгорание топливных смесей происходит во время фазы сгорания с предварительной смесью, что приводит к более высокой скорости тепловыделения. Скорости тепловыделения для дизельного топлива и топлива D10030 составили 99,5 Дж ° / CA и 107,5 Дж ° / CA соответственно. Нанодизельное топливо продемонстрировало улучшенный HRR по сравнению с другими топливными смесями из-за комбинированных физико-химических свойств дизельного топлива DEE и наночастиц ZnO.Такой подход приводит к улучшенной скорости передачи звука, высокой теплопроводности и более низкой вязкости. Наночастицы оксида цинка в топливной смеси MOME2030 приводят к увеличению цетанового числа топлива и сокращению периода задержки воспламенения, HRR для MOME2030 (90,7 Дж ° / CA) был сопоставим с D100. Топливная смесь MOME20 продемонстрировала более низкий HRR (80,6 Дж ° / CA) по сравнению со всеми другими топливными смесями из-за плохого распыления, слабой летучести, более высокой вязкости, поверхностного натяжения и плотности. На рис. 3b показано давление в цилиндре для тестовых топливных смесей при максимальной нагрузке для топливной форсунки с 7 отверстиями.Вообще, углы поворота кривошипа для TRCC и FI с 7 отверстиями из-за лучшего смешивания воздуха и топлива и высокой энергии активации наночастиц ZnO, которые приводят к усиленному завихрению и сдавливанию в чаше поршня 42 . Вязкость и меньшая величина нагрева MOME20 снижают давление в баллоне. Следовательно, максимальное давление в баллоне 51,9 бар наблюдалось для MOME20 при 365 ° CA. При максимальной нагрузке давление в цилиндре, обнаруженное для MOME2030 (MOME20 + 30 ppm ZnO), составляло 57,9 бар, давление в цилиндре улучшается за счет каталитического эффекта, более короткой задержки зажигания, большей площади поверхности наночастиц ZnO 43,44,45 .

Влияние давления открытия форсунки (IOP) на характеристики двигателя

Влияние давления открытия форсунки (IOP) на рабочие характеристики двигателя

На рисунке 4 показаны BSFC и BTE для топливной форсунки с 7 отверстиями при нагрузке 80% при различных IOP . BSFC для дизельного и других видов топлива следует общей тенденции, при которой расход топлива неуклонно снижается с увеличением давления с 600 до 900 бар.

Рисунок 4

Изменение давления открытия впрыска: ( a ) удельный расход топлива тормоза и ( b ) тепловой КПД тормоза.

Повышение IOP обеспечивает отличное сгорание топлива до определенного верхнего предела. После 900 бар любое дальнейшее увеличение давления впрыска приводило к уменьшению заушного слухового прохода и увеличению BSFC. Причина может заключаться в характере импульса распыления топлива в плотность сжатого воздуха, что приводит к потребности в большем количестве топлива для той же выходной мощности. Следовательно, увеличение давления впрыска вызывает более эффективное сгорание топлива до определенного предела за пределами условия, в то время как впрыск топлива увеличивает производительность 45,46,47 .Высокая вязкость и более низкая теплотворная способность MOME20 были еще одной причиной более низкого BTE 48, 49 .

Статистический анализ рабочих характеристик и давления открытия впрыска

В таблице 3 показан дисперсионный анализ (ANOVA) параметров двигателя для ВГД и смеси биодизеля, которые влияют на BTE. Ошибка была только 1. Следовательно, требуемые параметры в значительной степени повлияли на работу двигателя. Степень свободы (DF) составляла 4 для давления впрыска и 6 для смеси.Скорректированная сумма квадратов (SS) показала, что смесь внесла значительный вклад в основной эффект BTE, т. Е. 2265,76. Комбинированный эффект ВГД и смеси был минимальным. Среднеквадратичное значение (MS), F-значение и значение P указывают на одинаковый уровень воздействия давления и смеси на заушные слуховые аппараты, как показано прил. SS. Основное влияние на среднее значение BSFC показано на рис. 5. ВГД указывает, что основное влияние на увеличение значений и снижение расхода топлива. Позже, для ВГД в 1000 бар, расход топлива увеличивается, как было объяснено ранее в отношении Рис.6. Расход топлива для дизельного топлива низкий и экспоненциально увеличивается с добавлением смеси. Смеси 1–4 обозначают дизельное топливо, D10030, MOME20 и MOME2030 соответственно.

Таблица 3 Дисперсионный анализ, показывающий уровень влияния параметров на заушные слуховые аппараты. Рисунок 5

Основные эффекты на графике среднего удельного расхода топлива тормозами (BSFC) от давления открытия впрыска и смеси на BSFC.

Рисунок 6

Изменение частоты в зависимости от: ( a ) теплового КПД тормоза и ( b ) удельного расхода топлива тормоза.

На рисунке 6 показана гистограмма частоты BSFC и BTE в разных диапазонах. На рисунке 4a показано, что процент заушных слуховых аппаратов, полученный в этом исследовании, составляет в среднем 30–32%. Точно так же BSFC, указывающий количество израсходованного топлива, является самым высоким в среднем диапазоне. Из 20 наблюдаемых значений заушные слуховые аппараты 31% появлялись четыре раза. Пик в центре кривой указывает на частое появление BTE и BSFC в среднем диапазоне. В таблице 4 представлены статистические данные по BTE и BSFC с учетом влияния ВГД и смесей.Упомянутые значения среднего, стандартного отклонения и Q1 / Q2 указывают на то, что отклонение от среднего было высоким, что свидетельствует о более существенном влиянии задействованных параметров. Значение Q1 указывает на середину первой половины, а Q2 — на середину второй половины.

Таблица 4 Описательная статистика BTE и BSFC, полученная для различного давления впрыска и смеси.

Влияние ВГД на характеристики выбросов двигателя

Вариации выбросов оксида углерода (CO) и дыма при нагрузке 80% и FI с 7 отверстиями при различных ВГД показаны на рис.7а. Повышение давления открытия форсунки обеспечивало равномерное смешивание топливовоздушной смеси, близкое к стехиометрическому. Это происшествие было надлежащим образом проверено измерениями расхода как воздуха, так и топлива, чтобы установить соотношение воздух-топливо, которое было химически правильной смесью для различных условий нагрузки 50 . При работе двигателя с нагрузкой 80% с выбранными топливными комбинациями соотношение воздух-топливо изменялось от 16,84 до 22,97%, что предполагает соответствующее стехиометрическое состояние смеси.Кроме того, количество отверстий сопла уменьшило выброс CO в стехиометрических условиях 51 . Дизельное топливо выделяет меньше CO с добавлением 30 ppm наночастиц ZnO, потому что увеличение давления впрыска повышает температуру сгорания и давления из-за правильного смешивания A: F и, таким образом, полностью использует доступный воздух, что приводит к улучшенному сгоранию 25, 52 . Более низкий BTE биодизеля был основной причиной увеличения выбросов из двигателя CRDI даже при более высоких давлениях 53 .Для топливной смеси MOME20 добавление наночастиц ZnO при любом давлении впрыска продемонстрировало снижение выбросов CO и HC. На рис. 7b представлены выбросы NOx и HC двигателя CRDI при различном ВГД для разных топливных смесей. Более высокий выброс NOx из смеси MOME20 по сравнению с дизельным топливом при всех давлениях связан с интенсивной реакцией сгорания 53 . Дизельное топливо выделяет меньше NOx, поэтому добавление наночастиц ZnO еще больше снижает NOx. Кроме того, наночастицы ZnO снижают предварительно смешанные фракции горения в камере сгорания из-за меньшего периода задержки воспламенения и, таким образом, способствуют снижению температуры горения 19, 54 .

Рисунок 7

Изменение давления открытия впрыска: ( a ) Выбросы окиси углерода и дыма, ( b ) Выбросы оксидов азота и углеводородов.

Аналогичная тенденция наблюдалась для выбросов УВ и СО с увеличением ВГД. При более высоком IOP, равном 900 бар, малый размер капли топлива привел к уменьшению дымовыделения. Кроме того, добавление 30 ppm наночастиц ZnO в дизельное топливо и MOME20 снижает выбросы дыма. Кроме того, снижение объясняется эффектом 2% DEE, который улучшает цетановое число и приводит к полному сгоранию топлива, тем самым уменьшая выбросы 55 .

Влияние момента впрыска (IT) на характеристики двигателя
Влияние момента впрыска (IT) на рабочие характеристики двигателя

На рисунке 8 показано изменение BSFC и BTE для момента впрыска (IT) от 20 ° CA до 5 ° CA для топливной форсунки с 7 отверстиями при нагрузке 80%. Изначально BTE уменьшился из-за более высокого расхода топлива и постепенно увеличивался из-за отложенного угла впрыска, что привело к снижению расхода топлива 27 .

Рисунок 8

Изменение момента впрыска в зависимости от удельного расхода топлива и термического КПД тормозов.

IT 10 ° CA продемонстрировал максимальное снижение и улучшение BSFC и BTE, соответственно, для всех топливных смесей. Топливные смеси D10030 и MOME2030 продемонстрировали снижение расхода топлива на 11,7% и 12,2% соответственно по сравнению с дизельным топливом и MOME20. Кроме того, BTE увеличивается с добавлением наночастиц ZnO на 9,6% и 16,4% для D10030 и MOME2030, соответственно, в отличие от дизельного топлива и MOME20 из-за усиленного явления микровзрыва 56 . Кроме того, снижение расхода топлива связано с улучшенным сжатием в TRCC, что способствует улучшению скорости завихрения; аналогичные наблюдения были описаны в предшествующей литературе 27, 57 .

Влияние момента впрыска (IT) на характеристики выбросов двигателя

На рис. 9a, b показаны изменения выбросов CO и дыма, а также NOx и HC при изменении IT для FI и TRCC с 7 отверстиями. Наночастицы оксида цинка в дизельном топливе (D10030) обеспечивают дополнительные молекулы кислорода, усиливают явление микровзрыва и улучшают общие характеристики сгорания 43, 46, 58 . Выбросы CO были немного выше при 20 ° CA и 15 ° CA из-за неполного сгорания топливных смесей, увеличение задержки приводит к накоплению несгоревших углеводородов в цилиндре двигателя , 27, .При 10 ° CA, благодаря лучшему использованию воздуха, меньшему расстоянию проникновения, уменьшению ударов стенок и массовому расходу, что снижает выбросы 27, 59 . Если предварительный впрыск топлива происходит слишком рано, он образует обедненную смесь, увеличивая расход топлива 27 . Улучшенное движение воздуха в TRCC и подача более высоких молекул кислорода за счет добавления наночастиц ZnO и MOME20 приводит к улучшенному сгоранию топлива по сравнению с MOME20, что приводит к сокращению выбросов CO и HC на 10.6% и 15,7% для топливной смеси MOME2030. Смесь MOME20 влияет на процесс горения и выброса и приводит к медленному образованию брызг, что приводит к плохому распылению и испарению из-за неправильного впрыска. Факторами, влияющими на NOx, являются температура пламени, время впрыска и свойства топлива 60 . Предварительно смешанная фаза сгорания приводит к образованию NOx из сгоревших газов, образующихся при сгорании, близком к стехиометрии, и обедненным горючим смесям 57 .

Рисунок 9

Изменение времени впрыска: ( a ) выбросы окиси углерода и дыма и ( b ) выбросы оксида азота и углеводородов.

Топливо от пилотного впрыска инициирует сгорание, при этом более высокие температура и давление в цилиндре приводят к быстрому сгоранию впрыскиваемого топлива во время основного впрыска. Такой впрыск сдерживает резкое повышение давления во время фазы быстрого сгорания и в конечном итоге снижает детонацию и, как следствие, образование NOx.Дополнительное обоснование повышения NOx может быть связано с тем фактом, что более существенная часть сгорания достигается до ВМТ для MOME20 и его смесей по сравнению с дизельными и нанодизельными смесями из-за более низкой задержки воспламенения 41, 61 . Максимальный тепловой КПД нанодобавок усиливает явление горения за счет увеличения коэффициента конвективной теплопередачи 1, 43 . Кроме того, 2% DEE улучшили полноту сгорания. Таким образом было сожжено меньше топлива, что привело к снижению выбросов 55, 62 .

Тенденция к блокированию фильтра (FBT)

За последнее десятилетие преждевременное засорение фильтра дизельного топлива значительно увеличилось из-за чрезмерного использования биодизеля в дизельных двигателях, холодных погодных условий, образования загрязняющих веществ, характеристик растворимости базового дизельного топлива и использования двигателей высокого давления Common Rail (HPCR). Это засорение приводит к более длительному периоду задержки, ухудшению управляемости и увеличению необходимости технического обслуживания в различных применениях топливных фильтров. Кроме того, известно, что ограничения в размере пор топливных фильтров, небольшие зазоры в инжекторах HPCR, неравномерный размер наночастиц и карбоксилатные соли в топливе ускоряют засорение фильтра дизельного топлива 63 .FBT помогает охарактеризовать влияние различных видов топлива и присадок на установку фильтрации топлива. FBT анализировали в соответствии со стандартами ASTM D2068-17.

В настоящем исследовании оценка FBT была взята из предыдущего исследования Alexandra S. Fersner et al. 64 . Первоначально 300 мл топлива прокачивали через стекловолоконный фильтр с размером пор 1,6 мкм (Whatman, GF / A) со скоростью 20 мл / мин. После того, как 300 мл топлива прошло через фильтр из стекловолокна, наблюдали конечное давление, и FBT рассчитывали по формуле.{2}} $$

(4)

где «P» — максимальное давление, полученное в кПа (диапазон значений от 1 до 1,41).

Значения FBT топливных смесей, измеренные с помощью Multi Filtration Tester (MFT, модель: 10-325-000), продемонстрировали хорошие фильтрующие свойства. Биодизель и нанодобавки немного увеличили значения FBT из-за высокой вязкости. Однако наноразмеры добавок оксида цинка обеспечивали прохождение наночастиц через микрометрический стекловолоконный фильтр.Результаты FBT испытательных топлив показаны на рис. 10; результаты иллюстрируют значения для всех смесей нанотоплива; он находится в пределах допустимого 1,4. Таким образом, нанокись цинка может использоваться в качестве топливной добавки в дизельных и биодизельных топливных смесях без какого-либо риска засорения топливного фильтра.

Рисунок 10

Тенденция к блокированию фильтров (FBT) топливных смесей.

Центр данных по альтернативным видам топлива: основы биодизельного топлива

Биодизель — это возобновляемое, биоразлагаемое топливо, производимое внутри страны из растительных масел, животных жиров или переработанного ресторанного жира.Биодизель соответствует требованиям как к дизельному топливу на основе биомассы, так и к общим современным требованиям к биотопливу Стандарта на возобновляемые источники топлива. Возобновляемое дизельное топливо, также называемое «зеленым дизельным топливом», отличается от биодизеля.

Биодизель — это жидкое топливо, которое часто называют B100 или чистым биодизелем в его чистой, несмешанной форме. Как и нефтяное дизельное топливо, биодизель используется в качестве топлива для двигателей с воспламенением от сжатия. См. Таблицу физических характеристик биодизеля.

Характеристики биодизеля в холодную погоду зависят от смеси биодизеля, исходного сырья и характеристик нефтяного дизельного топлива.В целом смеси с меньшим процентным содержанием биодизеля лучше работают при низких температурах. Обычно обычный дизель №2 и В5 примерно одинаково работают в холодную погоду. И биодизель, и дизельное топливо № 2 содержат некоторые соединения, которые кристаллизуются при очень низких температурах. В зимнюю погоду производители топлива и поставщики борются с кристаллизацией, добавляя присадку, улучшающую хладотекучесть. Для достижения наилучших характеристик в холодную погоду пользователи должны сотрудничать со своим поставщиком топлива, чтобы убедиться, что смесь подходит.

Физические характеристики биодизеля
Удельный вес 0.88
Кинематическая вязкость при 40 ° C от 4,0 до 6,0
Цетановое число от 47 до 65
Высшая теплота сгорания, БТЕ / галлон ˜127,960
Нижняя теплота сгорания, БТЕ / галлон ˜119,550
Плотность, фунт / галлон при 15,5 ° C 7,3
Углерод, мас.% 77
Водород, мас.% 12
Кислород, по диф.вес% 11
Температура кипения, ° С 315-350
Температура вспышки, ° С 100-170
Сера, мас.% от 0,0 до 0,0015
Температура помутнения, ° С от -3 до 15
Температура застывания, ° C от -5 до 10

Источник: Руководство по обращению с биодизелем и его использованию

.