4Авг

Виды стартеров: что это такое, устройство и принцип работы

Содержание

Как выбрать стартер | Новости автомира

С каждым годом мы наблюдаем быстрое развитие технологий и механизмов в автомобильной сфере. Так как к деталям требуются все большие требования. Например, тот же автомобильный стартер, все знают о его огромной важности в работе автомобиля. Так как при его неисправности, возможности привести автомобиль в движение невозможно. Вследствие этого, большинство автолюбителей окружают его дополнительным вниманием. 

Основные функции

Ни для кого не секрет, что двигатель внутреннего сгорания вырабатывает необходимую энергию для движения автомобиля с помощью оборотов коленвала. Аналогично от этой энергии функционирует все электрооборудование автомобиля. Когда авто не находится в движении, двигатель не может выдать крутящий момент, а также генерировать электрическую энергию.  Из-за вот такого «недостатка» его приходится крутить, и прекрасно с этой задачей справляется специальный электродвигатель в союзе с аккумулятором.

 

Устройство стартера

Большое количество стартеров аналогичны между собой и всегда имеют штатные компоненты. Разница может был, но лишь несущественная. Такое несоответствие чаще всего можно заметить в системе, служащей для автоматические отсоединения шестеренок. Она нужна для того, чтобы предотвратить запуск двигателя на включенной передаче в те моменты, когда автомобиль движется.

Основные компоненты и их назначение:

  1. Электромотор. Служит для того, чтобы устройство начало свое движение; Втягивающее реле — предназначена для непосредственной передачи тока от замка зажигания к электродвигателю стартера. Также выполняет довольно важную задачу – выталкивает обгонную муфту; 
  2. Бендикс. Служит для отлаженной передачи момента вращения с электромотора на коленвал с помощью маховика; 
  3. Коммутирующие устройства. Подключение стартера к электросети происходит при участии плюсовой клеммы аккумулятора — это толстый кабель.
    А вот блок зажигания проходит уже через тонкий провод. Заземление осуществляется через контакт с двигателем, но не напрямую с заземлением. Знание этих вещей поможет вам лучше сориентироваться в том, где что находится.

Когда вы поворачиваете ключ зажигание, то электричество от аккумулятора начинает проходить на обмотку втягивающего реле. Благодаря якорю втягивающего реле бендикса имеется возможность осуществлять движение. Он соприкасается с маховиком и это приводит к замыканию контакта на электромоторе. Мотор начинает свою работу, вращает бендикс, и он же за счет сцепления с маховиком вращает коленвал. 

Когда двигатель приведен в действие и коленвал движется быстрее мотора стартера, бендикс разрывает свое соединение с маховиком и становится в свое исходное положение. Это происходит с помощью возвратной пружины. По истечении процесса водитель может повернуть ключ влево – выключить стартер, поскольку ток на него поступать уже не будет. 

Виды стартеров

Автомобильные стартеры отличаются друг от друга конструктивно. А именно:

  • Безредукторный стартер имеет самую обычную конструкцию, в которой бендикс располагается прямо на валу якоря. В большинстве случаев такой стартер можно увидеть на маломощных бензиновых двигателях. Вследствие очень простой конструкции такие стартеры ремонтопригодны. В них невелико значение времени срабатывание (соединение бендикса и маховика происходит очень быстро). Соответственно, он не тяжелый и не дорогой. Но у такого механизма не могут быть одни плюсы. Значимым минусом безредкуторного стартера является малый показатель мощности. Из-за этого он не непригоден для запуска высокомощных двигателей. Также он чувствителен к холоду;
  • Редукторный стартер. Тут же вал якоря соединяется с бендиксом с помощью планетарного редуктора. Внедрение редуктора в стартер позволило увеличить мощность и пусковой момент, при этом стартер ничуть не изменился в размерах. А по весу где-то в два раза легче безредукторного. Его характерным плюсом является то, что даже при аккумуляторе с неполным зарядом, обеспечит запуск двигателя. Вот такой стартер способен заводить мощные дизельные, бензиновые двигатели не только в легковых автомобилях. А также в грузовых и на спецтехнике. Главный недостаток — это дополнительный узел, в нем могут возникать дополнительные неисправности. 

Технические характеристики

Как и каждой детали в электрооборудовании автомобиля, характеристики стартера четко подогнаны под характеристики смежных узлов. Все эти соответствия описаны в руководствах от автоконцернов. Резюмируем те, что касаются стартером: 

  1. Напряжения. Напряжение питания должно находиться в соответствии с номинальным напряжением для аккумулятора. У легкового автомобиля этот показатель равен 12 вольт; 
  2. Мощность. Мощность – определение максимального усилия, которого достигает стартер для прокручивания коленвала. Может варьироваться от 0,7 до 8 кВт;
  3. Потребляемый ток. Так называются энергозатраты стартера. Когда автомобиль не движется, но двигатель работает на холостом ходу, определить потребляемый ток не составит проблем; 
  4. Момент сопротивления проворачиванию. Это показатель, который скорее описывает двигатель, нежели сам стартер. А именно, это та сила, без приложения которой невозможно вращение осуществить вращение коленвала. Через значение моменты инженеры можно рассчитать мощность и потребляемый ток;
  5. Направление вращения. Обращайте на это внимание при выборе стартера с асимметричным креплением;
  6. Количество зубцов у шестерни бендикса
  7. Дополнительные параметры. К ним относят тип крепления, тип используемых разъемов, количество отверстий и т.д. 


Поломки и их причины 

Неисправности стартера могут возникнуть по абсолютно разным причинам. Начиная от банального механического износа деталей, с которым со временем столкнется любая техника, до человеческого фактора. К тому же поломки в стартере работают по эффекту домино – одна неисправность провоцирует возникновения второй, чаще всего более серьезной. Но не все так плохо, ведь стартер можно отремонтировать. Поскольку устройство разборное, непригодный узел в нем можно заменить на новый. Чаще всего люди сталкиваются с поломками таких компонентов: 

  • Тяговое реле
  • Щеточный узел
  • Коллектор якоря

Виновниками являются не только неправильная эксплуатация и действие времени. На стартер оказывает влияние, аккумулятор, маховик коленвала, проводка, заземление, замок зажигания – коротко говоря, вся система, отвечающая за запуск двигателя. 

Втулки вала быстрее всех подвергаются механическому износу. Из-за этого начинается биение вала во время вращение. От этого очень быстро приходит в непригодность коллектор якоря, редуктор, а также зубцы маховика. 

Иные неприятности со стартером и причины их возникновения: 

  1. Стартер отказывается работать, когда вы поворачиваете ключ зажигания.
    Основных причин может быть две: замыкание обмотки тягового реле и заклинивание якоря втягивающего реле. В обоих случаях реле меняется на новое или подвергается ремонту;
  2. Отсутствие тока от аккумулятора. Тут уже много причин начиная от банально разряженного аккумулятора до проблем с проводкой или клеммами. Вполне возможно, что и замок зажигания неисправен;
  3. Стартер вроде издает звуки работы, но коленвал не прокручивается. Вероятнее всего, причина неисправности в уже ненадлежащем состоянии шестерен бендикса, редуктора или маховика коленвала. Или же нерабочая обгонная муфта. Она обеспечивает отсоединение бендикса от маховика после того, как двигатель начал свою работу; 
  4. Стартер выполняет свою работу не так быстро, из-за чего коленвал крутится медленно. Механический износ щеток, а из-за этого плохой контакт с коллектором, замыкание или пригорание в коллекторе, замыкание в обмотках якоря, разрывы обмотки – все это может быть причинами данной проблемы.
    Но также недостаточная мощность является результатом низкого заряда аккумулятора или окисления клемм; 
  5. Нехарактерные звуки (скрип) во время работы стартера. С вероятностью 99% звуки вызваны изношенными шестернями; 
  6. Стартер продолжает свою работу даже после пуска двигателя. Скорее всего, это поломка возвратной пружины или неисправность тягового реле. Стоит также проверить замок зажигания.

Порой бывает сложно с высокой точностью определить причину неисправности. Она может проявлять себя на нерегулярной основе: сначала стартер скрипит изредка, а потом чаще. Так что если вы заподозрили малейшую неисправность или вам просто не нравится работа устройства, обращайтесь на СТО, где вам проведут диагностику и в случае нужды осуществят ремонт.

По какой причине сгорает стартер

Зимой вероятность сжечь свой стартер намного выше, чем в другие времена года. Связано это напрямую с температурой окружающей среды. Запустить двигатель зимой сложнее, чем летом. Следовательно, в холодные периоды нагрузка на стартер будет максимальной. Неопытные водители по неаккуратности запросто могут сжечь свой стартер. 

Есть ряд причин, по которым зимний период является самым неблагоприятным для автомобильного стартера:

  1. Аккумулятор не держит заряд;
  2. Моторное масло густеет;
  3. Тяжелее запустить двигатель.

Стартеру и аккумулятора придется выполнять работу, на которую они могут быть не рассчитаны. При попытке запустить двигатель на стартер подается достаточно большой ток, и если работа в таком режиме будет продолжительной, контакты и электрические обмотки начнут быстро перегреваться. Длительная работа в этом режиме гарантированно заканчивается перегоранием компонентов.

Еще одна проблема относится только к дизельным двигателям. В дизтопливо часто добавляют специальные присадки. Иногда они провоцируют детонацию топлива в цилиндрах, из-за чего маховик коленвала делает быстрый рывок, который ломает стартер.  

Чтобы никогда не столкнуться с вышеперечисленными проблемами, нужно запомнить одну вещь: непрерывная работа стартера свыше 8-16 секунд категорически запрещена. После такой жесткой эксплуатации стартеру потребуется время для охлаждения (около минуты, иногда больше). При некорректно работающем аккумуляторе и в случае окисления контактов вероятность сжечь стартер возрастает в разы. Так что во время сильных морозов уделяйте больше внимания всем электромеханизмам и стартеру в частности. 

Ремонтируется ли устройство 

Мы уже разобрались с тем, что стартер – это довольно сложный механизм, состоящий из нескольких компонентов. Его можно отремонтировать в случае локализированной поломки, т.е. выхода из строя одного из блоков. Приобрести и заменить бендикс или втягивающее реле выйдет намного дешевле, нежели покупать устройство в сборе. Ремонт будет хорошей идеей лишь в том случае, когда он проводится сразу после возникновения проблем.
 
Вот пример: втулка со временем подвергается механическому износу. Приобрести ремкомплект и произвести замену расходников просто и недорого. Но если это не сделать своевременно, то придется покупать полностью новый стартер, так как успеют износиться смежные узлы. Никак не избежать полной замены сгоревшего стартера, но как уменьшить вероятность подобного исхода мы уже рассказали. Ресурса у стартера как такового нет, все зависит от условий его эксплуатации. 

Рекомендуем автолюбителям не давать на стартеру нагрузки и на регулярной основе проводить его осмотр. 

Правила подбора и выбор бренда 

Стартер надо выбрать так, чтобы его характеристики соответствовали мощности двигателя и параметрам аккумулятора. Так вы будете уверены в том, что двигатель запустится без осечек. Первый вариант: искать запчасть по параметрам вашего автомобиля. Второй: искать по VIN-коду. 

Если же возникло желание установить неродные компоненты, выбирайте стартер в соответствии с характеристиками, которые покажут наилучшую производительность в заданных условиях работы.  

Глядя на сравнительно небольшую стоимость стартера, пытаться сэкономить на нем довольно глупая затея. И самый лучший вариант при покупке – обращать внимание лишь на оригинал и забыть о существовании недорогих аналогах. 

Лидерами продаж автомобильных стартеров в странах Европы являются немецкий производитель Bosch и французский VALEO. Они производят стартеры не только для рынка автозапчастей, но также поставляют их автоконцернам напрямую. А это говорит нам о том, что производители транспорта этим брендам доверяют.
 
Из бюджетных вариантов можно посоветовать польский Lauber и JP Group из Дании. Их популярность обусловлена приятной ценой и хорошим качеством за свои деньги. 

Вывод 

Из всего вышесказанного можно легко понять, что стартер далеко немаловажная деталь автомобиля, которая требует к себе пристального внимания. В устройстве стартера нет ничего сложного, но это и является его неотъемлемым плюсом. Так как стартер делится на несколько компонентов, можно говорить о его ремонтопригодности. Поломки стартера могут возникнуть абсолютно по разным причинам, но в основном их две:

  • Механический износ в следствии истечении времени;
  • Отсутствие должного внимания к детали.

Так что не забывайте о своевременном ТО. Если вы заподозрили неисправность стартера, осмотр нужно проводить обязательно. При покупке нового стартера не экономьте деньги. Лучше купить оригинальную и надежную деталь, которая будет служить дольше недорого фальсификата. Это экономия на перспективу. Сделать это довольно просто: подбирайте стартер в соответствии с характеристиками вашего авто, отдавая предпочтения продукции указанных выше фирм.


Как устроен автомобильный стартер, принципы работы

Большинство водителей очень быстро переходят от желания просто ездить к желанию проводить самостоятельно некоторые ремонтные работы своего авто. Для того чтобы совершенствовать свой автомобиль нужно знать принцип его работы и внутренне устройство. А приступить к изучению лучше с самого начала, то есть со стартера автомобиля – то, без чего движение ТС изначально невозможно.

Стартер, его назначение

Стартер – это устройство относительно маленьких размеров, которое, в силу своей конструкции, преобразовывает электрический поток энергии в механический. Из самого названия следует, что служит деталь для запуска двигателя.

Визуально, стартер – это небольшой мотор постоянного тока, который имеет механический привод. Он запускает первичное движение коленвала с частотой, необходимой для запуска ДВС и является обязательно составляющей электрического оборудования транспортного средства.

Если разбирать структуру стартера более детально, то можно понять, что он выглядит как четырехполюсный двигатель. Питает такой мотор аккумулятор автомобиля – сразу после поворота ключа зажигания, на клемму реле поступает ток. Мощность у элемента бывает разная, но производители предусматривают для большинства бензиновых ДВС стартеры на 3кВт. Напряжение от АКБ автомобиля значительно усиливает работу электромотора.

Поскольку, в идеале, стартер – единственный способ завести двигатель, автомобильные производители изобретают массу дополнительных функций и блокирующие механизмы для повышения безопасности при запуске двигателя и снижения риска угона.

К примеру, некоторые модели автомобиля предусматривают запуск двигателя только при выжатом сцеплении. При АКПП включение стартера происходит, только если селектор находится в положении «parking».

Виды стартеров

Среди всего спектра автомобильных деталей выделяют только два типа стартеров двигателя:

  1. Без редуктора. Не имея редуктора, такие детали обладают возможностью прямого воздействия на шестерню. Кроме того, после момента получения тока на контроллер, стартер обеспечивает более быстрое зажигание, за счет мгновенной цепкости шестерни и маховика. Такие устройства имеют большое преимущество в виде простой конструкции, легкой возможности ремонта и очень низкой вероятности поломки из-за влияния электричества. Однако среди недостатков автомобилисты выделяют иногда перебойную работу в условиях низкой температуры.
  1. С редуктором. Казалось бы, после большого списка преимуществ безредукторного стартера, выбор можно остановить, но нет. Большинство специалистов настаивают на эксплуатации стартера с редуктором. За счет последнего эффективная работа возможна, даже если заряд АКБ на исходе. Сниженная потребность тока усиливается наличием постоянных магнитов. Подобный тандем снижает вероятность проблем с обмоткой практически к нулю. С другой стороны, продолжительная эксплуатация такого устройства чревата поломками основной шестерни. Хотя чаще к этому приводит производственный брак.

Внутреннее устройство и особенности

ДВС генерирует энергию для работы при помощи оборотов коленвала. Другие электрические системы транспортного средства работают от этой же энергии. Чтобы запустить ТС с неподвижной точки необходимо правильное взаимодействие электродвигателя и внешнего источника – аккумулятора.

Общий тандем обеспечивается благодаря некоторым составляющим:

  • Якорь. Имеет запрессованный сердечник и несколько коллекторных пластин. Основа изготовляется из легированной стали.
  • Щетки и держатели. По ходу главного цикла, щетки способствую повышению мощности. В первую очередь, служат для подачи рабочего напряжения на набор пластин якоря.
  • Реле. Главное назначение втягивающего реле – подача питания от зажигания и выталкивание обгонной муфты. Производители предусмотрели в структуре несколько силовых контактов и специфичную перемычку.
  • Непосредственно электромотор. Включает несколько сердечников и обмотки возбуждения; имеет форму цилиндра.
  • Бендикс и шестерня. Главный рабочий механизм стартера, который перенаправляет момент вращения на венец маховика ДВС через шестерню при помощи роликового механизма. После запуска система разрывает связь венца маховика и приводной шестерни, сохраняя работоспособность всего устройства.

Подобным образом устроено большинство автомобильных стартеров, хотя могут быть некоторые отличия. В целом, если разобрать элемент, можно насчитать порядка 50 различных составляющих компонентов.

Чаще всего отличия между разными устройствами заключаются в механизме рассоединения шестерен.

В автомобилях с АКПП стартер может иметь несколько дополнительных обмоток, чтобы предотвратить запуск мотора при ходовой позиции селектора.

Принцип работы автомобильного стартера

Автомобильный стартер относится к ряду электромеханических приспособлений ТС. В основе лежит преобразование природы одной энергии в другую, и чтобы в итоге завести двигатель, происходят следующие процессы:

  1. Ток попадает на обмотку тягового реле после прохождения по реле стартера, исключительно после замыкания контакта замка зажигания.
  2. Якорь взаимодействует с бендиксом. Через втягивающее реле внутри мотора бендикс заставляет венец маховика и шестерню сцепиться.
  3. При достижении верхней точки, контакты взаимодействуют для передачи напряжения к обмотке стартера.
  4. Движение вала провоцирует запуск ДВС. В момент, когда скорости маховика и вала отличаются в положительную сторону, зацепление прекращается и бендикс возвращается в стартовую позицию за счет пружины.
  5. Подача энергии прекращается при повороте ключа.

С виду может показаться, что механизм работы стартера достаточно запутан, но это чувство преследует водителя до первого самостоятельного ремонта элемента.

Возможные проблемы стартера

Естественно, что на стартер приходится гораздо меньше нагрузки, чем на многие другие узлы транспортного средства, но даже при лояльных нагрузках полностью исключить вероятность поломки невозможно.

  • Стартер «отказывается» запускаться. Причин для такого поведения устройства может быть несколько, и все они напрямую связаны с внутренней конструкцией элемента – неисправности реле, нарушение контактов или обмотки.
  • Медленное движение коленвала. Возможной основой для замедленного вращения вала может стать повышенная вязкость масла, снижение заряда внешнего источника питания или окислением контактов проводов.
  • Вращение якоря не приводит в движение коленчатый вал. Скорее всего, подобная неприятность возникает из-за буксировки муфты свободного хода привода или помехи в передвижении элемента по винтовой нарезке вала.
  • Скрежет шестерни. За нехарактерным поведением шестерен стоит неправильно отстроенное замыкание контактов или задиры на зубчиках венца маховика ДВС. Маловероятной, но все-таки причиной, может быть ослабление пружины привода.
  • Излишне продолжительная работа стартера. Специалисты считают, что причина кроется в заедании замка зажигания или обмотки в структуре стартера, неправильная работа контактов.
  • Усиление шума. Нехарактерные громкие звуки появляются по причине ослабевания креплений деталей стартера или из-за медленного выхода шестерни из зацепления.

Проблем в работе стартера лучше не допускать. Естественно, что практически любую его поломку можно компенсировать грамотным ремонтом, но правильнее будет приобрести новое исправное устройство, не стараясь при этом сэкономить на стоимости элемента.

Чтобы разбираться в пусковой системе автомобиля, необходимо не только знать устройство стартера, но и разбираться в его технических характеристиках: напряжение, мощность, потенциальная скорость движения вала, величина крутящего момента и необходимый ток. Естественно, что любые знания лучше закрепить практикой. Для начала можно ознакомиться с некоторыми видео в сети:

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

Всё про автомобильный стартер

Во время работы двигателя часть полученной энергии расходуется на поддержание процесса, то есть вращение коленвала и движение поршней. Но для перехода в рабочий режим двигатель нужно подтолкнуть извне. Обеспечение этого начального импульса и берет на себя стартер.

 

Немного истории

Необходимость «стартовать» двигатель существует столько же, сколько и сам двигатель внутреннего сгорания. Первым стартером была «заводная рукоятка», с помощью которой коленвал прокручивался за счет усилий самого водителя. Свою функцию она, несомненно, выполняла, но конструкторы постоянно искали способ сделать пуск автомобиля более простым и удобным. В поисках решения пытались использовать и сжатый воздух, и пружинный механизм, и множество других идей, но серьезной и надежной альтернативы не было до 1910 года. Именно в тот год погиб друг владельцев компании «Cadillac», которому при попытке запустить двигатель автомобиля отскочившая рукоятка попала в голову. Этот трагический случай побудил начать разработку реальной альтернативы механическому пуску, и первый электрический моторчик, запускающий двигатель, был установлен на Cadillac Model 30 уже в 1912 году. Для уменьшения нагрузки на электромотор использовался редуктор, и даже маломощный агрегат вполне справлялся со своей задачей.

Cadillac Model 30 – первый в мире автомобиль
с электрическим стартером и электрическими фарами

Более 100 лет от экспериментального прототипа до обязательного элемента каждого транспортного средства – такой путь прошел автомобильный стартер.

 

Устройство и принцип работы

Основные элементы стартера и их функции:

  • электромотор приводит в движение всё устройство;
  • втягивающее реле подводит бендикс к маховику коленвала, а после сцепления зубцов шестерен бендикса и коленвала замыкает контакты электромотора;

  • бендикс передает момент вращения от электромотора на коленвал через маховик.

Стартер подключается к плюсовой клемме аккумулятора (через толстый кабель) и к блоку зажигания (через тонкий провод). Заземление происходит через контакт с двигателем и от него – с «массой».

Электрическая схема подключения стартера

При повороте ключа зажигания в крайнее правое положение ток от аккумулятора начинает поступать на обмотку втягивающего реле.

Якорь втягивающего реле приводит в движение бендикс.

В крайнем выдвинутом положении бендикс входит в зацепление с маховиком, после чего замыкается контакт на электромотор.

Мотор приходит в движение, вращает бендикс, а он в свою очередь вращает коленвал через зацепление с маховиком.

Как только двигатель запускается и коленвал начинает вращаться быстрее, чем мотор стартера, бендикс отсоединяется от маховика и возвращается в исходное положение благодаря возвратной пружине. После этого можно повернуть ключ зажигания влево, и ток не будет подаваться на стартер.

 

Виды стартеров

Стартеры для легковых автомобилей различаются по типу конструкции.

  • Безредукторный (простой) стартер имеет более простую конструкцию с бендиксом установленным непосредственно на валу якоря.

Такие стартеры применяются на маломощных бензиновых двигателях. Благодаря более простой конструкции они легче ремонтируются, быстрей срабатывают (сцепление бендикса и маховика происходит почти мгновенно), легче по весу и ниже по стоимости. Минусом этой конструкции является сравнительно небольшая мощность, из-за которой их не применяют для запуска мощных двигателей. Еще один недостаток – чувствительность к низким температурам.

  • Редукторный стартер – конструкция, в которой вал якоря соединяется с бендиксом через планетарный редуктор.

Использование редуктора позволило усилить мощность и пусковой момент без увеличения размеров самого агрегата (редукторные стартеры почти в 2 раза легче, чем безредукторные), обеспечивает нормальный пуск даже при подсевшем аккумуляторе. Такая конструкция позволяет запускать мощные бензиновые и дизельные двигатели, в том числе на грузовиках и спецтехнике. Основной недостаток – наличие дополнительного узла, в котором могут возникать неисправности.

 

Технические характеристики

Как и любое электрооборудование автомобиля, стартер должен соответствовать остальным компонентам, с которыми он непосредственно связан. Это соответствие можно определить по техническим характеристикам, которые указывает производитель.

Напряжение питания (V) должно соответствовать номинальному напряжению аккумулятора. Для легковых автомобилей это 12V.

Мощность (кВт) – показатель максимального усилия, которое развивает стартер для прокручивания коленвала. Может составлять от 0,7 до 9 кВт.

Потребляемый ток (А) – это энергозатраты стартера. Определяется в режимах максимальной мощности, в заторможенном состоянии и на холостом ходу. Напрямую зависит от показателя тока холодной прокрутки аккумулятора.

Пусковая частота вращения (об/мин) зависит от характеристик двигателя. Запустить бензиновый мотор на порядок легче, чем дизельный. Частота вращения может составлять от 40-60 до 100-250 об/мин (для мощных дизелей).

Момент сопротивления проворачиванию (Нм) – это скорей характеристика двигателя, чем стартера. Обозначает усилие, необходимое для прокручивания коленвала. Исходя из этого показателя рассчитывается мощность и потребляемый ток стартера.

Направление вращения (влево или вправо) учитывается при выборе стартера с асимметричным креплением.

Количество зубцов шестерни бендикса (обычно от 8 до 13, чаще 9 или 10).

Передаточное отношение – зависимость между оборотами электромотора и бендикса. В безредукторных стартерах составляет 1:1, в редукторных – больше, до 1:4.

Линейные размеры, тип и количество отверстий под крепление, типы используемых клемм и разъемов и т.д.

 

Неисправности и их причины

Проблемы стартера возникают по разным причинам: это и механический износ деталей, от которого не застрахована ни одна техника, и человеческий фактор, и неисправности связанных со стартером элементов. При этом проблемы в стартере нарастают лавинообразно: даже маленькая неисправность быстро приводит к более серьезным. Но есть и хорошая новость: в некоторых случаях стартер можно отремонтировать, если заменить вышедшую из строя часть или ремкомплект.

Детали стартера, которые чаще всего выходят из строя

Помимо стартера, проблемы с запуском может давать аккумулятор, проводка, маховик коленвала, замок зажигания и заземление двигателя. Иногда вместо дорогостоящего ремонта достаточно просто очистить клеммы от слоя окислов, чтобы полностью устранить проблему.

Механическому износу подвержены в первую очередь втулки вала (в некоторых моделях вместо них устанавливаются подшипники). При этом начинается биение вала во время вращения, отчего быстро выходит из строя коллектор якоря, шестерня бендикса, редуктор и даже зубцы маховика.

Другие проблемы со стартером и их причины:

  • Стартер никак не реагирует на поворот ключа зажигания. Причиной может быть замыкание обмотки тягового реле или заедание якоря втягивающего реле. В этом случае тяговое реле ремонтируется или заменяется. Другие причины – отсутствие тока от АКБ: разряженный аккумулятор, проблемы с клеммами и проводкой, проблемы с замком зажигания.
  • Стартер работает, но коленвал не проворачивается. Причина, скорей всего, в износе шестерен бендикса, редуктора или маховика коленвала. Другая причина – неисправность обгонной муфты, которая отвечает за отсоединение бендикса от маховика после старта двигателя.

Износ редуктора

  • Стартер работает медленно и коленвал проворачивает тоже медленно. Причины: износ щеток и, как следствие, плохой контакт с коллектором, подгорание или замыкание в коллекторе, замыкание в обмотках якоря или статора, обрывы обмотки. Другие причины – недостаточная мощность тока из-за недозаряженного аккумулятора или сильно окисленных клемм.

Результат износа токосъемного коллектора

  • Посторонние звуки при работе стартера (скрип, скрежет) – износ шестерен.
  • Стартер не отключается после запуска двигателя. Причина может быть в поломке возвратной пружины или заедании тягового реле. Другая причина – неисправность в замке зажигания.

Иногда достаточно сложно выявить причину неисправности: на первых порах проблема может появляться не постоянно, а от случая к случаю, и только в мастерской удается найти ее источник. Тем не менее, даже при однократном сбое работы стартера лучше обращаться на СТО сразу: чем меньше «мучить» проблемный агрегат, тем больше шансов обойтись только ремонтом, а не заменой.

 

Отчего сгорает стартер?

Зимой спрос на стартеры заметно повышается: на холоде запустить двигатель намного сложней, и у начинающих водителей (да и опытных тоже) стартеры буквально сгорают от чрезмерной нагрузки. Почему так происходит и как этого избежать?

Зима – не самое благоприятное время для автомобиля: аккумулятор разряжается быстрей, моторное масло загустевает, провернуть двигатель становится намного трудней, мотор, особенно дизельный, не запускается за секунду, как это было летом. И вся нагрузка падает на стартер и аккумулятор, которые в паре вынуждены бороться с трудностями. При запуске на стартер подается достаточно мощный ток, который в считаные секунды перегревает электрические обмотки и контакты. Если ток будет подаваться достаточно долго, от перегрева агрегат в буквальном смысле сгорает и ремонту уже не подлежит.

Вторая причина досрочной смерти стартера – присадки в дизтопливо, которые, опять-таки, используются зимой. В некоторых случаях примеси в топливе вызывают во время запуска детонацию в цилиндрах, отчего маховик коленвала делает резкий рывок, выводящий из строя стартер.

Чтобы избежать этих неприятностей, нужно помнить, что непрерывная работа стартера не должна превышать 10, максимум 15 секунд, после чего потребуется время на его охлаждение (около 0,5-1 минуты). При неисправном аккумуляторе, окисленных контактах или проблемной проводке шансы сжечь стартер возрастают в несколько раз. Зима – это то волшебное время, когда следить за состоянием всей автоэлектрики нужно особенно тщательно.

 

Подробнее о том, как выбирать стартер и на что обращать внимание, читайте наш «Гид покупателя».

 

Устройство стартера автомобиля, принцип работы

Для того чтобы двигатель внутреннего сгорания начал работать, нужно заставить его коленвал вращаться. В зависимости от вида энергии используемой для пуска ДВС, устройство стартера будет сильно отличаться. Запустить мотор можно несколькими способами:

  1. Силой мышц человека.
  2. Электродвигателем.
  3. Пневматическим пусковым агрегатом.

Так как для пуска двигателя автомобиля чаще всего использует электрическую энергию, остальные виды пусковых устройств мы рассматривать не станем. Рассмотрим только принцип работы стартера использующего энергию аккумулятора.

Виды стартеров и их составляющие

Редуктор

Все стартеры можно разделить на две группы:

  1. Без редуктора.
  2. С редуктором.

Устройство и работа стартера принадлежащего к первой и ко второй группе, как понятно из названия, отличается только наличием или отсутствием редуктора.

Итак, из чего состоит электрический стартер автомобиля. Как любой двигатель постоянного тока он состоит из ротора, статора, и коллекторно-щеточного узла. Помимо этого, для передачи вращения якоря маховику в его состав входит обгонная муфта с шестерней (бендикс), а для включения вращения и введения бендикса в зацепление с венцом маховика втягивающие реле. Вилка в стартере передает усилие от втягивающего реле к бендиксу.

Безредукторный

Устройство стартера автомобиля с редуктором, как правило, отличается тем, что на статор устанавливаются вместо катушек электромагнитов постоянные магниты. Стартер с постоянными магнитами в статоре отличается от укомплектованных электромагнитами тем, что потребляет меньший ток и развивает меньшую мощность. Редуктор такому стартеру обязательно нужен для увеличения крутящего момента. Такое устройство имеет как свои преимущества, так и недостатки. Преимущество состоит в малом токе, необходимом для пуска мотора. Недостаток в более сложной, чем у пускателя без редуктора, конструкции.

Электрическая схема любого автомобильного стартера аналогична схеме электродвигателя постоянного тока с добавлением схемы втягивающего реле.

Схема включения стартера с постоянными магнитами в статоре такая же, как для пускового агрегата с электромагнитами. Поэтому изготовленные для одной модели автомобиля они взаимозаменяемы.

Принцип работы стартера автомобиля: при включении замка зажигания в положение start реле стартера подает управляющие напряжение на втягивающие реле, которое вводит шестерню бендикса в зацепление с венцом маховика и включает вращение стартера, подавая на него питание. При повороте ключа зажигания из положения start в любое другое реле стартера отключает питание от втягивающего. Возвратная пружина сердечника выбрасывает его из корпуса катушек. А он выводит бендикс из зацепления с венцом маховика и отключает питание.

Втягивающие

Втягивающие реле для уменьшения потребляемого тока, как правило, имеет две катушки. Одна катушка, из более толстого провода потребляющая больший ток, срабатывает только в момент включения стартера для того, чтобы уверенно втянуть сердечник. Вторая из более тонкого провода потребляет меньший ток. Она предназначена для удержания сердечника, в то время пока ключ зажигания находится в положении start. Схема их включения такова:

  • один вывод каждой катушки присоединяется к управляющей клемме реле;
  • второй вывод удерживающей катушки присоединяется к массе.

Так как второй вывод, удерживающей катушки, подключен к массе, ток через нее идет всегда, когда ключ зажигания находится в положении start. Второй вывод втягивающий катушки подключен к плюсовому выводу стартера, то есть в момент подачи питания на втягивающие реле он через катушки статора и ротора тоже подключен к массе. После того как втягивающие сработает, оно подаст на стартер питание. И на обоих выводах втягивающей катушки будет положительный потенциал, а значит, ток через втягивающую катушку прекратится. Далее будет работать только удерживающая катушка. Применением двух катушек достигается значительное усилие втягивания сердечника при небольшом токе его удержания.

Подшипники

Ось ротора вращается в двух меднографитовых втулках, являющихся подшипниками скольжения. От их состояния зависит не только звук, который будет издавать узел при работе. При их чрезмерном износе пластины сердечника ротора при работе будут касаться магнитов статора. Когда между пластинами ротора и магнитами статора нет воздушного зазора говорят что стартер «башмачит». Потери энергии при этом столь велики, что его ротор с трудом вращается и не в состоянии провернуть коленчатый вал двигателя.

Потери складываются из потерь механической энергии, возникающих за счет сильного затормаживания ротора статором, и потерь на коллекторно-щеточном узле, возрастающих из-за поперечных колебаний якоря и ухудшения контакта щеток с ламелями коллектора. Еще сильнее описанных возрастают потери в стали ротора, они становятся больше за счет замыкания якорных пластин, из-за чего сильно увеличиваются вихревые токи в пластинах сердечника ротора. Эти процессы приводят к тому, что ток, проходящий через обмотки, по большей части нагревает их, не преобразуясь в механическую энергию.

Устраняют эту неисправность заменой втулок. С удалением изношенных втулок трудностей обычно не бывает. Ставить вместо них лучше неразвернутые втулки. Забивать их следует через деревяшку, так как они очень хрупкие. После установки их внутреннюю поверхность следует обработать разверткой соответствующего диаметра. Диаметр большинства валов роторов стартеров легковых авто бывает около 12 мм. Точнее узнаете, померив вал после разборки штангенциркулем. После развертки немного смажьте втулки изнутри литолом и можете собирать агрегат. Перед установкой узла не забудьте почистить клеммы на втягивающем реле и поменять гайку и шайбу крепления провода питания, так как в процессе работы они сильно греются и окисляются.

Типы стартеров и их работа

Пользуясь механическими характеристиками существующих типов стартеров, построенных с учетом работы стартера с возможными для данного стартера  [c. 85]

Типы стартеров и их работа  [c.309]

Стартеры этого типа применимы при любых мощностях и, отличаясь солидной конструкцией и качественным выполнением, работают надёжно. Однако расчёт их сложен, и они трудны в производстве кроме того, из-за перемещения всего якоря, имеющего большой вес, при больших углах наклона (танки, вездеходы) они отказывают. Поэтому эта система не может считаться перспективной, хотя применение её и продолжается.  [c.324]


Регулятор напряжения типа РН-180 предназначен для стабилизации напряжения стартеров-генераторов типа СТГ-12, СТГ-18 и генераторов ГС-12 всех модификаций и включения их в параллельную работу.  [c.227]

Система пуска обеспечивает принудительное проворачивание коленчатого вала при пуске двигателя. Исполнительным устройством системы является стартер, представляющий собой электромеханическое устройство. В автомобиле он устанавливается на двигателе и является самым мощным потребителем энергии. Электродвигатель стартера потребляет ток в сотни ампер. В систему также входят устройства, обеспечивающие дистанционное управление стартером. Питание стартера обеспечивается аккумуляторной батареей. К системе пуска можно отнести устройства электрооборудования, обеспечивающие работу различного типа подогревателей, облегчающих пуск при низких температурах.  [c.133]

Угольный регулятор напряжения РУГ-82 используется для совместной работы с генераторами и стартер-генератора.чи, ток возбуждения которых изменяется в пределах от 1,9 до 15 А. Регулятор работает совместно с выносным сопротивлением типа ВС-20.  [c.319]

Регулятор напряжения типа РН-180 используется для совместной работы со стартер-генераторами типа СГТ-12 и генераторами типа ГС-12.  [c.319]

По типу и принципу работы приводных механизмов выделяют две группы стартеров  [c.121]

У стартеров типа МАФ-4006 шестерня привода при работе должна перемещаться по направлению от конца вала к корпусу, а у стартеров типа МАФ-4007 и МАФ-31 — от корпуса к концу вала.[c.617]

Стенд (рис. 58) работает от сети переменного трехфазного тока напряжением 220/380 в, частотой 50 гц и от двух аккумуляторных батарей типа 6СТ-68 при проверке стартеров и генераторов в режиме двигателя с общим напряжением 12 или 24 в.  [c.152]

Пуск дизеля. Для приведения во вращение коленчатого вала дизеля используется стартер типа ЭС-2 постоянного тока смешанного возбуждения с механизмом зацепления и тяговым электромагнитом. Режим работы стартера кратковременный с продолжительностью включения до 6 с. Допускается трехкратный пуск с интервалами 10—15 с. Перерыв после трехкратного пуска для охлаждения стартера до температуры 60° С — 30 мин. Максимальная мощность стартера 30 л. с. при п— = 2500 об/мин.  [c.54]


Регулятор типа РНТ-3 проверяется и настраивается на напряжение 1]0 1 в. Во вре.мя испытаний и в эксплуатации могут иметь место нарушения нормальной работы регулятора. При обрыве провода или соединения на хомутике потенциометра выходе из строя тиристора ТЗ, обрыве цепи стабилитронов ri—СтЗ, пробое диода Д8 будет заброс напряжения стартер-генератора.  [c.47]

Жидкостная, закрытого типа, с принудительной циркуляцией охлаждающей жидкости, оборудована термостатическим устройством для поддержания постоянного теплового режима работы двигателя Электрический стартер типа СТ-103, 24 в Отлит Из легированного чугуна вместе с верхней частью картера  [c.7]

К источникам электроэнергии относятся генератор двигателя и аккумуляторная батарея. Генератор типа Г-15Б мощностью 220 вт работает в комплекте с реле-регулятором типа РР-24. Стартер типа СТ-15Б питается от аккумуляторной батареи типа ЗСТ-98 напряжением 12 в, емкостью 98 а-ч.  [c.86]

Типы приводов вспомогательного оборудования. Вспомогательная мощность может передаваться от вала дизеля к агрегатам-потребителям следующими способами механическим (непосредственное соединение, клиноременная или зубчатая передача) гидравлическим (гидростатический привод или гидродинамическая муфта), электрическим (электродвигатели переменного или постоянного тока с питанием либо от тягового генератора, либо от специального вспомогательного генератора, например стартер-генерато-ра). Привод любого типа может быть групповым или индивидуальным. Разные агрегаты вспомогательного оборудования предъявляют различные требования к приводу в зависимости от особенностей режимов своей работы.  [c.344]

Если после нормального запуска двигателя во время его работы со стороны стартера слышен металлический стук или звон, это может быть сломанная упорная пружина (привод инерционного типа].  [c.85]

Обмотка возбуждения стартеров выполняется из медной шины, которая свертывается в спираль вместе с полоской из прессшпана или литероида. Ширина полоски изоляции равна ширине медной шины. Число витков в каждой катушке в зависимости от типа стартера бывает в пределах от 5 до 10 (табл. 18). После намотки такой катушки производят ее онлетку тесьмой из хлопчатобумажной ткани, придают ей нужную форму под прессом и пропитывают лаком. При разборке и сборке индуктора стартера используется то же оборудование, что и для генераторов. Места соединения катушек между собою, а также медных канатиков, соединяющих щетки, требуют надежной пайки, так как стартер работает при больших токах и величина переходного сопротивления имеет большое значение.[c.300]

Через определенный пробег автомобиля, зависящий от типа стартера, производится проверка технического состояния стартера. Например, у стартера СТ130АЗ рекомендуется выполнять эти работы при каждом восьмом ТО-2, а у стартера 25.3708 — через 150 тыс. км пробега при очередном ТО-2. Для этой цели стартер снимают с автомобиля и очищают его наружные поверхности от масла и грязи.  [c.167]

У некоторых типов стартеров наряду с регулировкой положения шестерни привода в конце хода якоря тягового реле предусмотрена возможность регулировать исходное положение этой шестерни. Для этой цели служит регулировочный винт с контргайкой на крышке стартера со стороны привода. В эксплуатации необходимость в регулировке исходного положения шестерни привода воз-йикает редко (в случае, когда во время работы двигателя торцы зубцов маховика задевают за торцы зубцов шестерни стартера).  [c.57]

При включении стартера крутящий момент от втулки 1 передается роликами 10 на ступицу шестерни. В этом случае ролики заклинены (рис. 12.5,6) между ступицей шестерни и обоймой 8. Как только двигатель будет запущен, ступица шестерни станет ведомой (ведущим будет зубчатый венец маховика), ролики 10 расклиниваются и муфта начинает пробуксовывать (рис. 12.5, в). На рис. 12.5, г показана конструкция бес-плунжерной муфты свободного хода, применяемой на новых типах стартеров (СТ-230 и др.). Бесплунжерная конструкция обеспечивает более надежную работу муфты. стартерах большой мощности муфты свободного хода не при еняются, так как в этих условиях они работают ненадежно.  [c.137]

В зависимости от типа стартера используются включатели различных типов. Стартеры с непосредственным включением (без включающего электромагнита) приводятся в действие ногой при помощи смонтированной на полике и установленной на изоляционной панели кнопки (фиг. 89) в некоторых случаях включатель монтируют непосредственно на самом стартере. Включение стартеров с дистанционным управлением (с включающими электромагнитами) может осуществляться при помощи кнопки. В дизелях со свечами накаливания используют комбинированные включатели, осуществляющие включение как свечей накаливания, так и стартера такие включатели имеют ручной привод. В комбинированных включателях с двумя ступенями включения (фиг. 90) на первой ступени включаются свечи накаливания, а на второй — стартер, причем одновременно с включением стартера происходит закорачивание индикатора работы свечей накаливания. При отпускании рукоятки пружина возвращает детали переключателя в их исходное положение.  [c.359]

Наименование типа стартера расшифровывается следующим образом РИМ-24ИР — ручной, инерционный, модернизированный, для работы от аккумуляторной батареи напряжением 24 в, редукторный СКД-2В — стартер комбинированного действия, одифнкацин 2В.  [c.98]

Освещение включается ручным переключателем света ПС, имеющим, как обычно, три позиции а) всё выключено б) малый свет и задний фонарь в) главные фары и задний фонарь. Переключение главных фар с дальнего света на ближний (во избежание ослепления встречных) производится отдельным ножным переключателем ЯЯ(ДС—дальний свет С—ближний свет). Манометр мас а М, термометр воды Т и указатель бензина (бензиномер) УБ работают на электрическом принципе передачи показаний от своих датчиков манометр и термометр—термовибрационной (импульсной) Системы, бензиномер же—реостатный. На схеме фиг. 47 означают СТ — стартер (типа СТ-15) Я—распределитель (типа Р-21) С—звуковой сигнал (гудок) S —выключатель стоп-сигнала, связанный с тормозной педалью ЯЛ — контрольная лампа дальнего света /У — выключатель освещения приборов ЗЖ—замок (выключатель) зажигания LUT — штепсельная розетка для переносной лампы ЛТ—кнопка гудка ДМ—датчик манометра ДТ—датчик термометра Р Б-реостат бензиномера ЗФ — комбинированный задний фонарь и стоп-сигнал  [c.327]

Однако после первых успешных испытаний автомобилей с двигателями внутреннего сгорания они все более и более привлекали внимание не только конструкторов, но и предпринимателей. В результате автомобили быстро совершенствовались. Первые карбюраторы, сконструированные в 70-х годах, заменялись более прогрессивными карбюраторами поплавкового типа, в конце 80-х годов было создано магнето, в 1910 г. Ч. Кеттеринг создал электрический стартер и т. д. Первоначально работы проводили отдельные изобретатели, которые очень мало или ничего не знали о других, работавших в этой же области. Так, Даймлер и Бенц не обменивались никакой технической информацией, хотя жили вблизи друг от друга. Точно так же ничего не знали друг о друге жившие неподалеку Дьюреа и Максим, Поуп и Винтон и т. д.  [c.244]

Основными типами авиационных генераторов постоянного тока (табл. 5.1) являются генераторы типа ГСР (генераторы самолетные с расширенным диапа зоном скоростей вращения) и стартер-генераторы типа ГСР-СТ и СТГ. Стартер генераторы во время запуска авиадвигателя используются как стартеры, т. е работают в двигательном режиме и используются для запуска авиадвигателей  [c.317]

Генератор, имея специальную пусковую обмотку, работает как стартер. Аккумуляторная батарея типа 32-ТН-450 свинцовокислотная, с напряжением 64 в.  [c.107]

Механизм привода электростартера южeт быть механическим и электромагнитным. В механическом приводе шестерня стартера вводится в зацепление с венцом маховика рычажным устройством, включаемым машинистом. Электрическая цепь стартера подключается к аккумуляторной батарее после того, как его шестерня войдет в зацепление г [ .енцом маховика. Спепление шестерен при таком приводе происходит без удара, механизм привода выключается, когда машинист опустит рычаг включения. Чтобы предотвратить разносные обороты стартера после того как двигатель начнет работать, шестерню стартера устанавливают иа муфте свободного хода роликового типа, а в лющных стартерах применяют фрикционные муфты свободного хода.  [c.224]

Тип системы пуска определяется видом используемой энергии и конструкцией основного пускового устройства — стартера, который преобразует потребляемую от источника энергию в механическую работу вращения коленчатого вала. Для пуска двигателей внутреннего сгорания используют механические стартерь , пусковые бензиновые двигатели, пневматические, гидропневматические, электроинерционные и электростартерные пусковые системы. При выборе типа пусковой системы исходят из условия обеспечения надежного пуска, необходимого быстродействия, удобства управления и обслуживания, минимальной стоимости, массы и размеров.  [c.52]

Для привода компрессора на тепловозе 2ТЭ116 применен двигатель постоянного тока смешанного возбуждения типа ЭКТ-5 мощностью 30 кВт при напряжении ПО В, токе 340 А и частоте вращения 1450 об/мин. Масса двигателя 395 кг. Двигатель питается от стартера-генератора и работает в повторно-кратковременном режиме с продолжительностью включения ПВ — 50%. Это означает, что из общей продолжительности рабочего цикла (20—30 с) двигатель работает 50% времени. Пуск производится при снижении давления в главных резервуарах до 750 кПа по сигналу реле давления. При этом напряжение стартера-генератора снижается до 22—25 В. По мере увеличения частоты вращения двигателя напряжение в течТение 2—5 с увеличивается до номинального значения. Напряжение при пуске регулируется автоматически воздействием регулятора напряжения на независимую обмотку возбуждения стартера-генератора. После окончания пуска компрессор включается под нагрузку. Двигатель отключается, когда давление в главных резервуарах достигает значения 900 кПа.  [c.90]

Блок обеспечивает заряд аккум ляторной батареи и предотвращает протекание тока от нее через якорь вспомогательного генератора (или стартер-генератора для 2ТЭ116). Кремниевый диод типа ВК2-200-6Б включается между вспомогательным генератором ВГ и резистором заряда батареи СЗБ таким образом, чтобы ток мог проходить от генератора к батарее (рис. 114, а). Ток не будет проходить, если напряжение вспомогательного генератора станет ниже напряжения аккумуляторной батареи. Диоды с воздушным охлаждением могут работать при температуре окружающей среды от —40 до -4-120° С, значительной влажности и вибрации. Однако эти диоды обладают небольшой перегрузочной способностью для защиты их от перегрузки используют предохранитель ПР-2. Блок Крис. 114,6) представляет собой пластмассовую панель, на Которой при помощи скобы крепится диод. Диод и его присоединения закрыты кожухом. Панель соединена с воздуховодом так, что ра- дигтор диода обдувается воздухом.  [c.163]

Работу генератора, снятого с автомобиля, проверяют на стенде модели 532 (рис. 80). Стенд предназначен для проверки генераторов, реле-регуляторов и стартеров, устанавливаемых на автобусах и дизельных автомобилях. На панели стенда размещены амперметр 17, вольтметр 12 и тахометр-омметр 15, а также необходимые переключатели, гнезда и зажимы для присоединения испытуемых приборов электрооборудования. Внутри стенда размещены электродвигатель трехфазного переменного тока мощностью 4,5 кет, клиноременный вариатор, позволяющий плавно увеличивать скоросгь вращения приводной муфты стенда от О до 5 000 об/мин, ползунковый реостат нагрузки, управляемый рукоят-кой 2, а также две аккумуляторные батареи типа 6-СТ-68 и селеновый выпрямитель, используемый при проверке генераторов переменного тока. Подъемно-поворотный стол 22 позволяет точно совмещать ось вала проверяемого генератора с осью приводной муфты стенда.[c.167]

По типу и принципу работы механизма принодз можно выделить следующие основные группы стартеров с принудительным механическим или электромеханическим вводом шестерни в зацепление и выводом из зацепления с  [c.23]

Двигатель типа 5П4-4Ч-8,5/11 четырехтактный, бескомпрессорный, вертикальный, иереверсив-ный, дизельный простого действия с водяным принудительным охлаждением. Двигатель снабжен центробежным регулятором скорости вращения, динамо для зарядки аккумуляторов, стартериым электродвигателем, устройством для запуска в холодную погоду, тахометром и щитком с приборами для контроля работы.  [c.25]

Электрический генератор питает электрические цепи тепловоза при частоте вращения коленчатого вала дизеля свыше 750 об/мин и заряжает аккумуляторную батарею. Реле-регулятор РРТ-32 поддерживает напряжение генератора при любой частоте вращения коленчатого вала дизеля в пределах 27—29 В, обеспечивает совместную работу аккум-уляторной батареи и генератора. Для йуока днзеля предусмотрен стартер типа СТ-722.  [c.138]

Для приведения во вращение коленчатого вала дизеля при пуске пользуются два стартера типа СТ-700. Стартер этого типа пред-1вляет собой электродвигатель постоянного тока сериесного воз-ждения, его максимальная мощность 15 л. с., напряжение 24 в, ссчитан он для кратковременной работы (не более 6 сек). На старее имеется реле привода РСТ-20.  [c.123]

Стартер-генераторы типов СТГ-12ТМО-1000 и СТГ-18ТМ применяются в различных системах питания и запуска (СПЗ). Все системы по принципу работы очень сходны они различаются лишь некоторыми особенностями запуска двигателей различных типов и требованиями, которые предъявляются к системам. Независимо от типа и количества двигателей, установленных на самолете (вертолете), почти во всех применяемых системах запуск каждого двигателя можно осуществлять как от аккумуляторных батарей, установленных на борту самолета (вертолета), так и от аэродромных источников питания. Как правило, питание стартер-генераторов в стартерном режиме осуществляется постоянным напряжением 24 в с последующим переключением питания якоря стартер-генераторов в процессе запуска на 48 в. Регламентация работы агрегатов запуска двигателей в СПЗ осуществляется как по времени — специальным программным механизмом, так и по числу оборотов двигателя с помощью автоматических устройств, отключающих стартер-генераторы при определенном числе оборотов. По окончании запуска двигателя стартер-генераторы автоматически переводятся в генераторный режим и подключаются для питания бортовой электрической сети.  [c.49]


Стартер — как он работает

Как известно, машина – штука, устроенная очень сложно и запутанно. Это целый комплекс сложных механизмов, которые взаимодействуют между собой, в результате чего Вы можете передвигаться по городу с комфортом и удобством. В современных автомобилях есть много новых наворочек, без которых передвигаться в машину можно, но, возможно, будет не так удобно.

Но вот есть детали, без которых эта груда железа и с места не сдвинется. К таким необходимым механизмам относится стартер.

Стартер – это электрическая машина, вернее, ее разновидность. Стартер потребляет постоянный ток и нужен для того, чтобы запустить двигатель внутреннего сгорания. Этот механизм у всех машин практически одинаков, отличия минимальные.

Основные составляющие стартера

Любой стартер является объединением 40 – 60 отдельных деталей, из которых состоят главные части этого сложного механизма. Стартер является композицией 5 элементов:

Корпус

Корпус имеет цилиндрическую форму, изготовлен обычно из стали. Внутри на стенку крепят 4 обмотки возбуждения вместе с сердечниками. Крепление винтовое. Винт, который накручивают на полюс, прижимает обмотку к стенке. В корпусе сделаны специальные отверстия с резьбой, через которые крепится передняя часть, где двигается обгонная муфта.

Якорь стартера

Эта деталь состоит из оси, которая выполнена из легированной стали, к которой плотно прилегает сердечник якоря и коллекторные пластины. В сердечнике выполнены пазы, куда укладываются обмотки якоря. Концы обмоток крепятся к пластинам. Эти самые пластины крепятся по кругу на диэлектрической основе. Диаметральный размер сердечника зависит от внутреннего диаметра корпуса, измеряемый вместе с обмотками.

Якорь закрепляется спереди и сади стартера с помощью втулок, которые делаю или из латуни, или из меди. Втулки одновременно с этим выполняю роль подшипников.

Втягивающее реле

Крепится к корпусу стартера. Другое название – тяговое реле. Сзади тягового реле установлены, так называемые, «пятаки» — силовые контакты, вместе с подвижным контактом-перемычкой. Эти контакты делаются из мягкого металла.

Внешне эти «пятаки» являются обычными болтами, которые спрессовали в эбонитовую крышку реле. Гайками к ним прикрепляются силовые провода аккумулятора и плюсовые щетки стартера. Сердечник реле подключен к обгонной муфте через подвижное «коромысло».

Обгонная муфта (бендикс)

Бендикс – это роликовый механизм, подвижно прикрепленный к валу якоря и связанный с шестерней зацепления с венцом маховика. Данный механизм сконструирован так, что, когда на бендикс с одной стороны подается крутящий момент, ролики, которые расположены в сепараторе, покидают пазы сепаратора и жестко скрепляют шестерню с наружной обоймой.

Когда вращение выполняется в противоположном направлении, ролики западают в сепаратор, а шестерня вращается самостоятельно, вне зависимости от обоймы снаружи.

Щеткодержатель

Через щеткодержатель идет рабочее напряжение, которое идет и щетки из меди и графита. После этого напряжение идет на якорные пластины. Щеткодержатель представляет собой диэлектрическую обойму, в которой есть металлические вставки, внутри которых установлены щетки. Контакты щеток, которые имеют вид мягких многожильных проводков, крепятся к полюсным пластинам точечной сваркой. В роли полюсных пластин выступают «хвосты» обмоток возбуждения.

Функции стартера

Этот маленький электрический двигатель с 4мя полосами отвечает за приведение в действие коленвала двигателя. Коленчатый вал нужно привести в движение для того, чтобы потом можно было увеличить частоту его вращения до такой отметки, чтобы потом мог запуститься двигатель внутреннего сгорания.

Чтобы двигатель со средним объемом цилиндров запустился, нужно, чтобы мощность стартера была, как минимум, 3 кВт. Стартер получает энергию от батареи аккумулятора, а свою мощность увеличивает посредством использования четырех щеток, которые установлены в любом автомобильном стартере.

Виды стартеров

С редуктором

Именно этот вид стартера рекомендуют использовать специалисты, так как ему нужно не так много тока для того, чтобы работать эффективно. При использовании такого стартера коленвал будет двигаться даже тогда, когда заряд аккумулятора минимален. Еще один плюс стартера с редуктором – это наличие постоянных магнитов, благодаря которым проблемы с обмоткой минимальны. Но если очень долго использовать подобный стартер, то очень вероятна поломка вращающей шестерни. Но эта вероятность обусловлена или заводским браком, или некачественным производством.

Без редуктора

Подобный стартер действует на вращение шестерни непосредственно, то есть прямо. Превосходство стартера без редуктора перед аналогичным механизмом, но с редуктором, заключается в более простых конструкторских решениях, а также в более простом доступе в случае необходимости ремонта.

Плюс ко всему, в случае использования такого стартера шестерня с маховиком моментально сойдутся после того, как подастся ток. таким образом зажигание будет более быстрым. Такие стартеры очень выносливы, не сломаются под воздействием электричества. Но устройство без редуктора могут плохо работать при пониженных температурах, что очень плохо.

Принципы работы стартера с редуктором

Когда происходит замыкание зажигания, ток от батареи аккумулятора передается на стартер, после чего заряд идет через редуктор на якорь, благодаря чему в несколько раз увеличивается мощность проходящего напряжения. Потом крутящий момент передается от якоря к шестерне.

Происходит все благодаря наличию редуктора, в котором установлены магниты, которые постоянно работают. Также в стартере есть специальные щетки, которые вырабатывают сопротивление с большим показателем, нежели аналогичный показатель на обычном стартере. Благодаря этому стартер работает постоянно и эффективно.

Стартер с инерционным приводом

Такой стартер будет связан с кольцевым венцом маховика через маленькую шестеренку. Связь зубчатой шестеренки и спирального паза на валу якоря осуществляется через резьбовое соединение. В этом случае винт вращается в шестеренке посредством воздействия якоря в то время, когда стартер начинает работать.

Из-за инерционных явлений шестеренка не двигается, а за счет винта, который вращается внутри шестеренки, эта самая шестеренка смещается и сцепляется с зубчатым венцом маховика.

После того, как двигатель запущен, и по истечении определенного времени работы на своей мощности, шестеренка станет быстрее вращаться, что заставит вал якоря вращаться. Из-за этого шестеренка будет скручиваться назад по спиральному позу, а через время она вообще отсоединиться от махового колеса. Буфером будет главная пружина во время движения шестерни.

Главным минусом подобного устройства является чрезмерно агрессивная манера вхождения в зацепление, поэтому время эксплуатации кольцевого венца и механизма зацепления сильно сокращалось.

Стартер – штука очень важная, поэтому за состоянием этого механизма нужно следить постоянно и тщательно.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Как выбрать стартер для люминесцентных ламп: как работает, устройство, маркировка


Стартер для люминесцентных ламп входит в комплектацию электромагнитного пускорегулятора (ЭМПРА) и предназначен для зажигания ртутной лампочки.

Каждая модель, выпущенная определенным разработчиком, обладает различными техническими характеристиками, однако используется для светотехники, питающейся исключительно от сети переменного тока, с предельной частотой, не превышающей 65 Гц.

Предлагаем разобраться, как устроен стартер для люминесцентных ламп, какова его роль в осветительном приборе. Кроме того, мы обозначим особенности разных пусковых приборов и расскажем, как выбрать нужный механизм.

Содержание статьи:

Как устроено приспособление?

Опционально стартер (пускатель) достаточно прост. Элемент представлен небольшой газоразрядной лампой, способной формировать при низком давлении газа и малом токе, тлеющий разряд.

Этот стеклянный малогабаритный баллон заполнен инертным газом – смесью гелия или неоном. В него впаяны подвижные и неподвижные электроды из металла.

Все электродные спирали лампочки оснащены двумя клеммными блоками. Одна из клемм каждого контакта задействована в цепи . Остальные — подключены к катодам пускателя.

Расстояние между электродами пускателя не существенно, поэтому посредством напряжения сети его легко можно пробить. При этом образуется ток и нагреваются элементы, входящие в электроцепь с определенной долей сопротивления. Именно стартер и входит в число этих элементов.

Конструкции стартеров для люминесцентных ламп имеют практически идентичное устройство: 1 – дроссель; 2 – стеклянная колба; 3 – пары ртути; 4 – клеммы; 5 – электроды; 6 – корпус; 7 – биметаллический контакт; 8 – инертная газовая субстанция; 9 – вольфрамовые нити накала ЛДС; 10 – капля ртути; 11 – разряд дуги в колбе (+)

Колба размещена внутри корпуса из пластмассы или металла, выполняющего роль защитного кожуха. В некоторых образцах сверху крышки дополнительно есть специальное смотровое отверстие.

Самым востребованным материалом для производства блока считается пластик. Постоянное воздействие высоких температурных режимов позволяет выдержать специальный состав пропитки — люминофор.

Приспособления выпускаются с парой ножек, выполняющих роль контактов. Они изготовлены из разных видов металла.

В зависимости от типа конструкции электроды могут быть симметричными подвижными или асимметричными с одним подвижным элементом. Их выводы проходят через патрон лампы.

Параллельно электродам колбы подключен конденсатор, емкостью 0,003-0,1 мкф. Это важный элемент, снижающий уровень радиопомех и также участвующий в процессе загорания лампы

Обязательной деталью в устройстве является конденсатор, способный сглаживать экстратоки и в тоже время размыкать электроды прибора, осуществляя гашение дуги, возникающей между токоведущими элементами.

Без этого механизма есть большая вероятность спайки контактов при возникновении дуги, что существенно снижает срок эксплуатации пускателя.

В быту наиболее популярны образцы балластов с симметричной системой контактов и электросхемой пуска. Такие образцы меньше подвергаются влиянию падения напряжения в электрической сети

Правильная работа стартера обусловлена напряжением питающей сети. При снижении номинальных величин до 70-80%, люминесцентная лампа может не зажечься, т.к. не будет производиться достаточный нагрев электродов.

В процессе подбора нужного пускателя, учитывая конкретную модель  (люминесцентной или ЛЛ), необходимо дополнительно проанализировать технические характеристики каждого вида, а также определиться с производителем.

Принцип работы аппарата

Подав сетевое питание на светотехнический прибор, напряжение проходит через витки и нить накала, выполненную из монокристаллов вольфрама.

Далее подводится к контактам стартера и образует между ними тлеющий разряд, при этом воспроизводится свечение газовой среды посредством ее нагрева.

Поскольку в устройстве есть еще один контакт – биметаллический, он также реагирует на изменения и начинает изгибаться, видоизменяя форму. Таким образом этот электрод замыкает электрическую цепь между контактами.

Величина тока, сформированного тлеющего разряда варьируется от 20 до 50 мА, чего вполне достаточно для разогрева биметаллического электрода, который отвечает за замыкание цепи (+)

Образовавшийся в электросхеме люминесцентного прибора замкнутый контур проводит через себя ток и нагревает вольфрамовые нити, которые, в свою очередь, начинают испускать электроны со своей нагретой поверхности.

Таким образом формируется термоэлектронная эмиссия. В это же время воспроизводится разогревание ртутных паров, находящихся в баллоне.

Образованный поток электронов способствует снижению напряжения, приложенного от сети к контактам пускателя, примерно вдвое. Степень тлеющего разряда начинает падать вместе с температурой накала.

Пластина из биметалла уменьшает свою степень деформации тем самым размыкая цепочку между анодом и катодом. Течение тока через этот участок прекращается.

Изменение его показателей провоцирует внутри дроссельной катушки, в проводящем контуре, возникновение электродвижущей силы индукции.

Биметаллический контакт моментально реагирует произведением краткосрочного разряда в подсоединенной к нему схеме: между вольфрамовыми нитями ЛЛ.

Его значение доходит нескольких киловольт, чего вполне достаточно для пробивания инертной среды газов с нагретыми ртутными парами. Между концами лампы образуется электродуга, продуцирующая ультрафиолетовое излучение.

Поскольку такой спектр света не видимый для человека, в конструкции лампы есть люминофор, поглощающий ультрафиолет. В итоге визуализируется стандартный световой поток.

При изменении тока в контуре или его полного прекращения пропорционально происходят изменения магнитного потока через поверхность пластины, что ограничивает этот контур и приводит к возбуждению в этой схеме ЭДС самоиндукции

Однако напряжения на пускателе, подсоединенного параллельно лампе, недостаточно для формирования тлеющего разряда, соответственно, электроды остаются в разомкнутой позиции в период свечения лампы дневного света. Далее стартер не используется в рабочей схеме.

Поскольку после продуцирования свечения показатели тока нужно лимитировать, в схему вводится электромагнитный балласт. За счет своего индуктивного сопротивления он выполняет роль ограничивающего устройства, предотвращающего поломки лампы.

Виды стартеров для люминесцентных приборов

В зависимости от алгоритма работы, пусковые устройства делят на три основных вида: электронные, тепловые и с тлеющим разрядом. Несмотря на то, что механизмы имеют различия в элементах конструкции и в принципах работы, они выполняют идентичные опции.

Пускатель электронного типа

Процессы, воспроизводимые в системе контактов стартеров, не являются управляемыми. Помимо этого, значительное воздействие на их функционирование оказывает температурный режим окружения.

Например, при температуре ниже 0°C скорость нагревания электродов замедляется, соответственно, прибор будет затрачивать больше времени на зажигание света.

Также при нагреве контакты могут спаиваться друг с другом, что приводит к перегреванию и разрушению спиралей лампы, т. е. ее порче.

Большинство моделей электронных балластов для ЛДС выпущены на базе микросхемы UBA 2000T. Такой тип устройства позволяет устранить перегрев электродов, за счет чего существенно увеличивается эксплуатационный срок контактов лампы, соответственно, и период ее работы

Даже корректно функционирующие устройства с течением времени имеют свойство изнашиваться. Они дольше сохраняют накал контактов лампы, тем самым уменьшая ее производственный ресурс.

Именно для устранения такого рода недостатков в полупроводниковой микроэлектронике стартеров были задействованы сложные конструкции с микросхемами. Они дают возможность лимитировать количество циклов процесса имитации замыкания электродов пускателя.

В большинстве представленных на рынках образцах, схемотехническое устройство электронного стартера составлено из двух функциональных узлов:

  • управленческой схемы;
  • высоковольтного узла коммутации.

В качестве примера можно привести микросхему электронного зажигателя UBA2000T фирмы PHILIPS и высоковольтный тиристор TN22 производства STMicroelectronics.

Принцип работы электронного стартера основан на размыкании цепи посредством нагревания. Некоторые образцы обладают существенным преимуществом – опцией ждущего режима зажигания.

Таким образом размыкание электродов производится в необходимой фазности напряжения и при условии оптимальных температурных показателей нагрева контактов.

Полупроводниковые элементы электронного балласта должны подходить по ключевым рабочим характеристикам, а именно, соотношению значения мощности и напряжения сети подсоединенного светотехнического прибора

Важно, что при поломках лампы и неудачных попытках ее запуска такого типа механизм выключается, если их число (попыток) достигнет 7. Поэтому о досрочном выходе из строя электронного стартера и не может быть и речи.

Как только произойдет замена лампочки на исправную, приспособление сможет возобновить процесс запуска ЛЛ. Единственный минус этой модификации – высокая цена.

В схеме со стартером в качестве дополнительного метода снижения радиопомех могут использоваться симметрированные дросселя с обмоткой, разделенной на идентичные участки, с равным количеством витков, накрученных на общее устройство – сердечник.

На сегодняшний день, выпускаемые балласты имеют сборно-стержневую конструкцию. Вырубка магнитного провода осуществляется из стальных листов. Как правило, такие дроссели имеют две симметричные обмотки

Все области катушки соединены в последовательном порядке с одним из контактов лампы. При включении оба его электрода будут работать в одинаковых техусловиях, таким образом снижая степень помех.

Тепловой вид пускателя

Ключевой отличительной характеристикой тепловых зажигателей является длительный период пуска ЛЛ. Такой механизм в процессе функционирования использует много электричества, что негативно сказывается на его энергозатратных характеристиках.

Тепловой стартер также называют термобиметаллическим. Разогрев контактов происходит с замедлением, что эффективно сказывается на работе светотехнического прибора в низкотемпературной среде

Как правило, этот вид применяется в условиях низкого температурного режима. Алгоритм работы существенно разнится с аналогами других видов.

В случае отключения питания электроды устройства находятся в замкнутом состоянии, при подаче – образуется импульс с высоким напряжением.

Механизм тлеющего разряда

Пусковые механизмы, основанные на принципе тлеющего разряда, имеют в своей конструкции биметаллические электроды.

Они выполнены из металлических сплавов с различными коэффициентами линейного расширения при нагреве пластины.

Минусом зажигателя тлеющего разряда является низкий уровень импульса напряжения, из-за чего нет достаточной надежности загорания ЛЛ

Возможность розжига лампы определяется длительностью предшествующего нагрева катодов и показателей тока, протекающего через светотехнический прибор в момент размыкания цепи контактов стартера.

Если при первом рывке пускатель не зажигает лампу, он будет автоматически воспроизводить попытки до того момента, пока лампа не засветится.

Поэтому такие устройства не используются при низких температурных режимах или неблагоприятном климате, например, при повышенной влажности.

Если не будет обеспечиваться оптимальный уровень нагрева контактной системы лампа будет затрачивать много времени на розжиг или же будет выведена из строя. Согласно стандартам ГОСТа, потраченное стартером время на зажигание не должно превышать 10 секунд.

Пусковые приборы, выполняющие свои функции посредством теплового принципа или тлеющего разряда, в обязательном порядке оборудуются дополнительным устройством – конденсатором.

Роль конденсатора в схеме

Как уже было отмечено ранее, конденсатор располагается в кожухе приспособления параллельно его катодам.

Этот элемент решает две ключевые задачи:

  1. Понижает степень электромагнитных помех, создаваемых в диапазоне радиоволн. Они возникают в результате контакта системы электродов пускателя и образуемых лампой.
  2. Влияет на процесс зажигания люминесцентной лампы.

Такой дополнительный механизм снижает величину импульсного напряжения, сформированного при размыкании катодов стартера, и наращивает его продолжительность.

Конденсатор снижает вероятность слипания контактов. Если в устройстве не предусмотрен конденсатор, напряжение на лампе довольно быстро увеличивается и может доходить до нескольких тысяч вольт. Такие условия снижают степень надежности розжига ламп

Поскольку использование подавляющего устройства не позволяет достичь полного нивелирования электромагнитных помех, на входе схемы вводят два конденсатора, общая емкость которых составляет не менее 0,016 мкф. Они соединяются в последовательном порядке с заземлением средней точки.

Основные недостатки пускателей

Главным минусом стартеров является ненадежность конструкции. Отказ запускающего механизма провоцирует фальстарт – визуализируются несколько вспышек света до начала полноценного светового потока. Такие неполадки снижают ресурс вольфрамовых нитей лампы.

Пусковые аппараты образуют внушительные потери энергии и понижают КПД устройства лампы. К недостаткам также относится зависимость от напряжения и значительный разброс времени срабатывания электродов

У люминесцентных ламп со временем наблюдается повышение рабочего напряжения, тогда как у стартера, наоборот, чем выше срок службы, тем ниже напряжение зажигания тлеющего разряда. Таким образом выходит, что включенная лампа может провоцировать его срабатывание, из-за чего свет погаснет.

Разомкнувшиеся контакты пускателя вновь зажигают свет. Все эти процессы осуществляется в доли секунды и пользователь может наблюдать только мерцание.

Пульсирующий эффект вызывает раздражение сетчатки глаза, а также приводит к перегреванию дросселя, снижению его ресурса и выходу из строя лампы.

Такие же негативные последствия ожидают и от значительного разброса времени контактной системы. Его зачастую недостаточно для полноценного предварительного разогрева катодов лампы.

В итоге прибор загорается после воспроизведения ряда попыток, что сопровождаются увеличенной длительностью процессов перехода.

Если стартер подключен в цепь одноламповой схемы, в этом случае нет возможности снизить световую пульсацию.

С целью снижения негативного эффекта рекомендуется использовать такого рода схемы только в помещениях, где применены группы ламп (по 2-3 образца), включать которые необходимо в разные фазы трехфазной цепи.

Расшифровка маркировочных значений

Общепринятой аббревиатуры для моделей стартеров отечественного и зарубежного производства не существует. Поэтому рассмотрим основы обозначений по отдельности.

Декодировка значения 90С-220 выглядит так: стартер, функционирующий с люминесцентными образцами, сила которых составляет 90 Вт, а номинальное напряжение 220 В (+)

Согласно ГОСТу, расшифровка буквенно-цифровых значений [ХХ][С]-[ХХХ], нанесенных на корпус прибора, выглядит следующим образом:

  • [ХХ] – цифры, указывающие на мощность световоспроизводящего механизма: 60 Вт, 90 Вт или 120 Вт;
  • [С] – стартер;
  • [ХХХ] – напряжение, применяемое для работы: 127 В или 220 В.

Для реализации зажигания ламп иностранные разработчики выпускают приспособления с различными обозначениями.

Электронный форм-фактор выпускается многими фирмами.

Наиболее известная на отечественном рынке — Philips, производящая стартеры таких типов:

  • S2 рассчитаны на мощность 4-22 Вт;
  • S10 — 4-65 Вт.

Фирма OSRAM ориентирована на выпуск стартеров как для одиночного подключения осветительных приборов, так и для последовательного. В первом случае это маркировка S11 с ограничением по мощности 4-80 Вт, ST111 — 4-65 Вт. А во втором, например, ST151 — 4-22 Вт.

Выпускаемые модели стартеров представлены в широком ассортименте. Ключевые параметры, учитывающиеся при подборе — соразмерные значения характеристикам ламп люминесцентного типа.

На что смотреть при выборе?

В процессе выбора пускового механизма недостаточно основываться на имени разработчика и ценовом диапазоне, хотя и эти факторы должны быть учтены, т.к. указывают на качество прибора.

В этом случае выигрывают надежные аппараты, положительно зарекомендовавшие себя на практике. Стоит обратить внимание на такие фирмы: Philips, Sylvania и OSRAM.

Стартер FS-11 бренда Sylvania. Подбирается к лампам дневного света, мощностью 4-65 Вт. Может использоваться в сети переменного тока. Работает по принципу тлеющего разряда

Самыми основными эксплуатационными параметрами пускателя считаются такие технические особенности:

  1. Ток зажигания. Этот показатель должен быть выше рабочего напряжения лампы, но не ниже сети питания.
  2. Базисное напряжение. При подключении в одноламповую схему применяется аппарат на 220 В, двухламповую – на 127 В.
  3. Уровень мощности.
  4. Качество корпуса и его огнеустойчивость.
  5. Эксплуатационный срок. При стандартных условиях применения, стартер должен выдерживать не менее 6000 включений.
  6. Длительность разогрева катодов.
  7. Тип применяемого конденсатора.

Также необходимо учитывать индуктивное противодействие катушки и коэффициент выпрямления, отвечающий за соотношение обратного сопротивления к прямому при постоянном напряжении.

Дополнительная информация об устройстве, работе и подключении пускорегулирующего механизма люминесцентных ламп представлена в .

Выводы и полезное видео по теме

Помощь в подборе необходимо балласта для лампы дневного света:

Пускатель для люминесцентных приборов: основы маркировки и конструктивное устройство аппарата:

Теоретически, время работы пускателя эквивалентно сроку службы лампы, которую он зажигает. Тем не менее стоит учесть, что с течением времени, интенсивность напряжения тлеющего разряда падает, что отражается на работе люминесцентного прибора.

Однако производители рекомендуют одновременно менять и стартер, и лампу. Для приобретения нужной модификации изначально стоит изучить основные показатели приборов.

Поделитесь с читателями вашим опытом выбора стартера для люминесцентных ламп. Пожалуйста, оставляйте комментарии, задавайте вопросы по теме статьи и участвуйте в обсуждениях – форма для отзывов расположена ниже.

Что такое пускатель двигателя

Основная функция пускателя двигателя — запускать и останавливать двигатель, к которому он подключен. Это специально разработанные электромеханические переключатели, похожие на реле. Основное различие между реле и стартером заключается в том, что стартер содержит защиту двигателя от перегрузки.

Таким образом, пускатель преследует двоякую цель: автоматически или вручную переключать мощность на двигатель и в то же время защищать двигатель от перегрузки или неисправностей.

Пускатели двигателей

доступны в различных номиналах и размерах в зависимости от номинала и размера двигателя (двигатель переменного тока). Эти статеры безопасно переключают необходимую мощность на двигатель, а также не позволяют двигателю потреблять большие токи.

В этой статье мы будем иметь дело только с пускателями двигателей переменного тока, так как они очень интересны в промышленности и коммерческом применении.

Зачем нужно подключать стартер к асинхронному двигателю?

Статор необходим для асинхронного двигателя (трехфазного типа) для ограничения пускового тока.В трехфазном асинхронном двигателе ЭДС, индуцированная ротором, пропорциональна скольжению (это относительная скорость между статором и ротором) асинхронного двигателя. Эта ЭДС ротора пропускает ток через ротор.

Когда двигатель находится в состоянии покоя (при пуске), скорость двигателя равна нулю и, следовательно, скольжение максимальное. Это вызывает очень высокую ЭДС в роторе при пуске, и, таким образом, через ротор течет очень большой ток.

Поскольку ротору требуется большой ток, обмотка статора потребляет очень большой ток от источника питания. Этот начальный потребляемый ток может быть в 5-8 раз больше тока полной нагрузки двигателя.

Этот большой ток при запуске двигателя может повредить обмотки двигателя, а также этот ток может вызвать большое падение напряжения в линии.

Эти скачки напряжения могут повлиять на другие устройства, подключенные к той же линии. Поэтому для ограничения пускового тока необходим пускатель, чтобы избежать повреждения двигателя, а также другого прилегающего оборудования.

Пускатель — это устройство, которое снижает начальный высокий ток двигателя за счет снижения напряжения питания, подаваемого на двигатель.Такое уменьшение применяется в течение очень короткого промежутка времени, и как только двигатель ускоряется, значение скольжения уменьшается, и, следовательно, затем применяется нормальное напряжение.

Помимо защиты от пускового тока, пускатель двигателя также обеспечивает защиту от перегрузки, однофазную защиту и защиту от низкого напряжения.

Защита от перегрузки необходима, потому что двигатель потребляет больше тока в состоянии перегрузки, и это вызывает чрезмерное нагревание обмоток. Это дополнительное тепло сокращает срок службы двигателя и может вызвать возгорание обмоток и, как следствие, возгорание.

Все пусковые устройства снабжены некоторыми элементами защиты от перегрева для ограничения высокого тока во время перегрузки. Большинство этих устройств работают по принципу синхронизированной перегрузки, при которой ток перегрузки допускается на короткое время (очень несколько секунд), а затем останавливается двигатель, если ток существует дольше этого времени.

Большинство пускателей оснащено биметаллическими полосами для выполнения этой операции.

Некоторые двигатели мощностью менее 5 л.с. подключаются напрямую (с помощью стартера DOL) без снижения напряжения питания (в исходном состоянии), но они имеют защиту от перегрузки, низкого напряжения и однофазную защиту.Это потому, что такие двигатели могут выдерживать высокий пусковой ток в течение короткого времени.

Как работает стартер двигателя?

По сути, стартер — это коммутационное устройство, состоящее из электрических контактов (как входящих, так и выходных). По принципу действия пускатели в основном делятся на устройства с ручным и электрическим приводом.

Ручной стартер состоит из рычага сбоку, который можно включать и выключать. Обычно они используются для небольших двигателей, поскольку они не могут работать удаленно.

Пускатели двигателей этого типа заставляют двигатели перезапускаться сразу после отключения электроэнергии. Эта мгновенная работа двигателя после сбоя питания может привести к протеканию опасных токов в двигатель и, следовательно, двигатель будет поврежден. По этой причине большинство пускателей оснащено электрическими выключателями.

В пускателях с электрическим приводом для коммутации токоведущих проводов используются электромеханические реле. Эти реле называются контакторами.Когда катушка в контакторе находится под напряжением, она создает электромагнитное поле, которое подтягивает контакты переключателя.

И когда катушка обесточена, контакты возвращаются в нормальное положение пружинным устройством. Обычно пускатели двигателей снабжены кнопками (кнопками пуска и останова), чтобы включать и выключать катушку, чтобы контакты работали. Эти пускатели с электрическим приводом не перезапустятся после сбоя питания, пока не будет нажата кнопка пуска.

Типы пускателей двигателей

Различные методы, используемые в пускателях двигателей

В большинстве промышленных предприятий используются трехфазные асинхронные двигатели по сравнению с любыми другими двигателями. Существуют различные методы запуска трехфазного асинхронного двигателя. Прежде чем знакомиться с различными типами пускателей, давайте сначала обсудим методы, используемые для пускателей асинхронных двигателей.

Техника полного напряжения

Этот метод часто называют прямым пуском от сети (DOL), и он является наиболее распространенным способом пуска трехфазного асинхронного двигателя.В этом методе на двигатель подается полное напряжение (или номинальное напряжение), поскольку это самозапускающийся двигатель, для запуска которого требуется полное напряжение.

Этот метод применяется только к двигателям мощностью менее 5 л.с., как описано выше. Пускатели двигателей, использующие этот метод, называются пускателями прямого включения.

Метод пониженного напряжения: этот метод используется для больших двигателей мощностью от 100 л.с. и выше (или для двигателей, требующих очень высоких пусковых токов).Как обсуждалось ранее, эти двигатели с высоким номиналом потребляют очень высокие пусковые токи, а также могут вызывать падение напряжения в сети.

В таких случаях используется метод пониженного напряжения, когда напряжение на двигателе сначала снижается на несколько секунд, пока двигатель не вращается, а затем приложенное напряжение увеличивается до номинального напряжения питания, в результате чего двигатель вращается до своей номинальной скорости.

Пускатели двигателей, использующие метод понижения напряжения, называются пускателями пониженного напряжения.Обычно используемые пускатели пониженного напряжения включают пускатель сопротивления статора, пускатель автотрансформатора и пускатель треугольником.

Двунаправленный стартер

В некоторых процессах необходимо управлять двигателем как в прямом, так и в обратном направлении. Как правило, направление трехфазного двигателя можно изменить, изменив любые два провода (то есть изменив последовательность RYB) трехфазного источника питания.

В этом методе используются два контактора с подходящим механизмом соединения и блокировки между ними для достижения двунаправленной работы.

Многоскоростная техника

В этом методе пускатели двигателей предназначены для подачи на двигатель разных напряжений для работы двигателя на разных скоростях.

Обычно эти пускатели предназначены для работы двигателя на двух или трех разных скоростях с использованием двух или более контакторов. Большинство этих пускателей выпускаются с полным и пониженным напряжением.

На основе описанных выше методов ниже перечислены наиболее распространенные типы стартеров.

  1. Статор резистивный пускатель
  2. Автостартер
  3. Пускатель звезда-треугольник
  4. Устройство прямого пуска
  5. Устройство плавного пуска

Эти пускатели двигателей подробно рассматриваются в следующем разделе.

Типы
Стартер сопротивления статора

В этом методе пониженное напряжение подается на асинхронный двигатель путем последовательного подключения внешних сопротивлений к каждой фазе обмотки статора.

Во время запуска двигателя эти сопротивления поддерживаются в максимальном положении, так что на двигатель подается пониженное напряжение из-за большого падения напряжения на сопротивлениях. Принципиальная схема этого типа пускателя показана на рисунке ниже.

Когда двигатель набирает скорость, сопротивление, подключенное к каждой фазе, постепенно уменьшается в цепи статора.Когда эти сопротивления удаляются из цепи, на двигатель подается номинальное напряжение (полное напряжение), и, следовательно, он работает с номинальной скоростью.

В этом методе важно поддерживать пусковой момент двигателя, минимизируя пусковой ток. Это связано с тем, что ток изменяется пропорционально напряжению, тогда как крутящий момент изменяется в квадрате с приложенным напряжением.

Предположим, что если приложенное напряжение уменьшится на 50 процентов, ток будет уменьшен до 50 процентов, а крутящий момент уменьшится на 25 процентов.

Конструкция этого стартера проста и является наиболее экономичным методом, чем все методы. Кроме того, этот пускатель можно использовать для двигателей, подключенных по схеме звезды или треугольника. Однако из-за высокой рассеиваемой мощности на резисторах в двигателе происходят большие потери мощности.

Кроме того, пониженное напряжение вызывает уменьшение крутящего момента при запуске двигателя. Из-за этих ограничений метод сопротивления ограничен для некоторых приложений.

Автоматический пускатель трансформатора

В этом методе трехфазный автотрансформатор подключается последовательно к двигателю.Этот трансформатор снижает приложенное к двигателю напряжение и, следовательно, ток. Принципиальная схема этого типа пускателя показана на рисунке ниже.

Этот стартер состоит из переключающего переключателя, который переключает двигатель между пониженным и полным напряжением. Когда этот переключатель находится в исходном положении, на двигатель подается пониженное напряжение.

Это напряжение зависит от доли обмоток в процентах и ​​регулируется путем изменения положения ползунка автотрансформатора.

Когда двигатель достигает 80 процентов своей номинальной скорости, переключающий переключатель автоматически переводится в положение РАБОТА с помощью реле. В связи с этим на двигатель подается номинальное напряжение. Эти трансформаторы также снабжены цепями перегрузки, холостого хода и выдержки времени.

В этом методе напряжение на клеммах двигателя выше для заданного пускового тока на стороне сети по сравнению с другими методами пониженного напряжения. Следовательно, этот метод дает самый высокий пусковой момент на линейный ток в амперах.

Этот статор может быть подключен к трехфазным двигателям, подключенным как звездой, так и треугольником. Однако эти пускатели более дорогие, чем пускатели сопротивления статора.

Стартер звезда треугольник

Это наиболее часто используемый пускатель пониженного напряжения, так как это самый дешевый пускатель среди всех. В этом методе асинхронный двигатель подключается звездой во время пуска и треугольником при работе с номинальной скоростью.

Эти пускатели предназначены для работы на статоре асинхронного двигателя, соединенном треугольником.Принципиальная схема этого пускателя представлена ​​на рисунке ниже.

В этом стартере используется переключатель TPDT (трехполюсный двухпозиционный), который соединяет обмотку статора звездой во время запуска. Благодаря такому соединению звездой подаваемое на двигатель напряжение уменьшается в 1 / √3 раз. Это пониженное напряжение приводит к уменьшению тока через двигатель.

Когда двигатель набирает скорость, переключатель TPST автоматически переключается на другую сторону с помощью реле, так что теперь обмотка соединена треугольником через источник питания.Таким образом, на двигатель подается нормальное напряжение (поскольку при соединении треугольником напряжение такое же, VL = VP), и, следовательно, двигатель работает с нормальной скоростью.

Этот метод дешев и не требует обслуживания по сравнению с другими методами. Однако это подходит только для двигателей, подключенных по схеме треугольника, а также коэффициент, на который снижается пусковое напряжение, т.е. 1 / √3, не может быть изменен.

Устройство прямого пуска

Как обсуждалось ранее, двигатели малой мощности (ниже 5 л.с.) не имеют очень высоких пусковых токов.И без использования пускателя такие моторы выдерживают пусковые токи.

Нет необходимости снижать напряжение на двигателе при запуске, и, следовательно, двигатель можно подключить непосредственно к линиям питания. Этот тип устройства, применяемый в пускателе, называется пускателем прямого включения или просто пускателем прямого тока.

Хотя этот пускатель не снижает пусковое напряжение, он обеспечивает защиту двигателя от перегрузки, однофазного режима и низкого напряжения. Принципиальная схема прямого онлайн-пускателя показана на рисунке ниже.

Во время условия запуска нормально разомкнутый контакт (NO) нажат на долю секунды, и это вызывает возбуждение катушки намагничивания. Этот магнитный поток, создаваемый катушкой, притягивает контактор, так что двигатель теперь подключен к источнику питания.

Контактор сохраняет это положение, пока катушка получает питание от дополнительного переключателя. При нажатии нормально замкнутого (NC) переключателя катушка обесточивается, и контактор разъединяется пружинным расположением, при этом питание двигателя прекращается.

При любой перегрузке двигатель потребляет большой ток, вызывающий перегрев. Этот чрезмерный нагрев приводит в действие тепловые реле, использующие датчики перегрузки. Затем срабатывают контакты перегрузки, чтобы отключить питание двигателя.

Это самый простой, дешевый и надежный метод, поэтому он широко используется. Основным недостатком прямого пускателя является то, что двигатель в течение короткого периода времени потребляет очень высокий ток.

Чтение: Прямой онлайн-запуск

Устройство плавного пуска

В этом методе используются полупроводниковые переключатели мощности для снижения пускового тока асинхронного двигателя. Это еще один тип пускателя пониженного напряжения, который подключается последовательно с сетевым напряжением, подаваемым на двигатель. Принципиальная схема устройства плавного пуска представлена ​​на рисунке ниже.

Этот пускатель состоит из встречных тиристоров или симисторов в каждой фазе обмотки статора. Регулируя угол включения этих тиристоров, напряжение, подаваемое на двигатель, будет плавно снижаться. Этот тип снижения напряжения обеспечивает более плавную работу по сравнению с другими методами, описанными выше.

Это приводит к отсутствию пульсаций крутящего момента и, как следствие, рывков при пуске двигателя. Как только двигатель набирает нормальную скорость, к тиристорам прикладывается такой угол зажигания, который обеспечивает полное напряжение двигателя.

Для двигателей большего размера используются частотно-регулируемые приводы с функцией плавного пуска. Такие приводы регулируют пусковой ток, а также скорость двигателя до желаемого значения.

Эти пускатели также снабжены дополнительной защитой, такой как защита от перегрузки, низкого напряжения и однофазность.

Авторы изображения:

1) img.directindustry

2) knoware-online.com

3) image.made-in-china.com

4) pimg.tradeindia.com

5) www.neweysonline.co.uk

Много типов электростартеров

Магнитный пускатель двигателя

Другой основной тип пускателя — пускатель магнитного двигателя переменного тока. Эти пускатели широко используются, и часто термин пускатель двигателя используется в ссылка на пускатель магнитного двигателя переменного тока.Пускатели двигателей предлагают некоторые дополнительные возможности, недоступные в ручных пускателях, большинство главное дистанционное и автоматическое управление. Другими словами, пускатель магнитного двигателя переменного тока удаляет оператора из непосредственной близости. Как и магнитные контакторы, пускатель двигателя зависит от магнитов и магнетизма. Эти дополнительные возможности обусловлены, в частности, к электромагнитному срабатыванию пускателей двигателей и цепи управления.

Схема пускателя магнитного двигателя

Пускатель двигателя имеет две цепи: цепь питания , и цепь управления , . Цепь питания проходит от линии к двигателю. Электричество проходит через контакты стартера, реле перегрузки и выходит на двигатель. Силовые (главные) контакты несут двигатель. текущий.
Схема управления управляет контактором (вкл / выкл).Контакты, которые прерывают или пропускают основной ток к двигателю: управляется размыканием или замыканием контактов в цепи управления. Схема управления возбуждает катушку, создавая электромагнитное поле, которое замыкает силовые контакты, тем самым подключая двигатель к линии. Схема управления обеспечивает дистанционное управление возможное.
Схема управления может получать питание одним из двух способов.Если схема управления получает питание от того же источника, что и двигатель, это называется Common Control .
Другой тип — Separate Control . Это наиболее распространенная форма контроля. При таком расположении цепь управления получает питание от отдельного источника, обычно более низкого напряжения, чем источник питания двигателя.
Кроме того, есть два способа подключения цепи управления.Один из распространенных методов подключения цепи управления известен как двухпроводной. В нем используется пилотное устройство с поддерживаемым контактом, такое как термостат, поплавковый выключатель или датчик присутствия. Эта схема обеспечивает автоматический режим (старт-стоп) нагрузки.
Другой распространенный метод подключения цепи управления — трехпроводное управление. Он использует мгновенные контактные пилотные устройства и удержание контурный контакт. Контакт удерживающей цепи обычно является вспомогательным контактом пускателя или контактора.Если питание отключено, цепь должна быть перезапущена оператором или другой промежуточной логикой.

Магнитные пускатели двигателя, подобные изображенному выше, способны работать без использования ручного вмешательство. Таким образом, оператор по-прежнему может запуск мотора, правда, из удаленного места. Типы пускателей двигателей

— Руководство по покупке Thomas

Пускатели двигателей

— это электромеханические устройства, которые обеспечивают запуск и остановку электродвигателей с помощью ручных или автоматических переключателей и обеспечивают защиту цепей двигателя от перегрузки. Основные характеристики включают предполагаемое применение, тип пускателя, электрические характеристики, включая количество фаз, ток, напряжение и номинальную мощность, а также характеристики. Пускатели двигателей используются везде, где работают электродвигатели с мощностью более определенной мощности. Существует несколько типов пускателей, в том числе ручные, магнитные, плавные, многоскоростные и пускатели полного напряжения. Некоторые пускатели двигателей также имеют функцию реверсирования, а также функции управления крутящим моментом и толчкового режима. Большинство из них также имеют стандартные монтажные конфигурации, обозначенные в размерах NEMA.

Пример нескольких пускателей двигателя на монтажной панели.

Изображение предоставлено: AndyPositive / Shutterstock.com

Типы и типы стартеров двигателя

Ручная

Ручные пускатели электродвигателей используются в так называемых линейных цепях полного напряжения для одно- и трехфазных двигателей малого и среднего размера. Ручной пускатель двигателя, состоящий из переключателя включения / выключения и реле перегрузки, обычно не обеспечивает отключения мощности двигателя в случае прерывания подачи электроэнергии, что может быть полезно для небольших насосов, вентиляторов и т. Д.поскольку они возобновят работу после восстановления энергоснабжения. Ручные пускатели двигателей с защитой от пониженного напряжения обеспечивают возможность обесточивания цепи пускателя после отключения электроэнергии и, следовательно, используются для конвейеров и т. Д., Где существует опасность автоматического перезапуска как для оборудования, так и для персонала. Ручные пускатели двигателей с защитой от пониженного напряжения используются на станках, деревообрабатывающем оборудовании и т. Д., Где требования безопасности требуют отключения двигателя после сбоя питания. Ручные пускатели двигателей доступны в конфигурациях и стандартных размерах NEMA и IEC.

Магнитный

Магнитные пускатели двигателей

полагаются на электромагниты для замыкания и удержания контакторов, а не на использование механической фиксации двухпозиционных переключателей, как в ручных пускателях. Они используются в линейных приложениях и в качестве пускателей пониженного напряжения для одно- и трехфазных двигателей. Магнитные пускатели двигателей, использующие управляющие устройства с мгновенным контактом (переключатели, реле и т. Д.), Требуют перезапуска после того, как потеря мощности или низкое напряжение вызывает отключение контактора.Магнитные пускатели двигателей также могут быть подключены для автоматического перезапуска двигателей, если этого требует приложение, например, удаленный насос. Магнитные пускатели двигателей доступны как в конфигурациях NEMA и IEC, так и в стандартных размерах.

Реверс

Реверсивные пускатели

содержат два набора контакторов, которые обеспечивают обратное направление электродвигателей, позволяя им вращаться в любом направлении. Реверсивные пускатели обычно обеспечивают как электрические, так и механические блокировки, которые предотвращают одновременное замыкание обоих наборов контактов.Они доступны в стандартных размерах NEMA.

Мягкий

Устройства плавного пуска

обеспечивают цифровое управление электромеханическими пускателями и позволяют двигателям последовательно набирать скорость, как для предотвращения повреждения приводных механизмов, продуктов и т. Д., Так и для предотвращения перенапряжения службы распределения электроэнергии из-за высокого пускового тока среднего и большие двигатели, запускаемые при полном напряжении.

Комбинация

Комбинированные пускатели, как правило, представляют собой блоки, которые включают в себя устройства отключения и защиты от короткого замыкания (в виде предохранителей или автоматических выключателей) вместе с компонентами пускателя двигателя

Приложения и отрасли

Пускатели двигателей

— это электрические устройства специального назначения, предназначенные для обработки высокого электрического тока, который двигатели мгновенно потребляют при запуске из состояния покоя, при этом защищая двигатели от чрезмерного нагрева при перегрузках во время нормальной работы. Пусковой ток может в несколько раз превышать ток, потребляемый двигателем при его рабочей скорости. Если бы использовался только предохранитель или автоматический выключатель, это устройство сработало бы или отключилось при каждом запуске.

Вместо этого в двигателях используются тепловые или магнитные реле перегрузки, чтобы ввести временную задержку во время запуска, когда двигатель подвергается воздействию высокого «пускового» тока. Если двигатель заклинивает — так называемый сценарий с заблокированным ротором — он будет постоянно потреблять такой же пусковой ток. В этом случае реле перегрузки будут нагреваться сверх времени, отведенного для нормальных мгновенных уровней броска тока, и отключат переключатель или контактор и, следовательно, двигатель.

Пускатели двигателей

доступны в открытых конфигурациях, которые устанавливаются в панели управления, или они могут быть автономными устройствами с собственными корпусами, сертифицированными NEMA или IEC. Стандартные размеры NEMA варьируются от 00 до 9, чтобы покрыть диапазон типоразмеров двигателей от 1,5 л. с. до 900 л.с.

Соображения

Ручные пускатели двигателей ограничены размером двигателя, который они могут запускать, начиная с дробных уровней л.с. и обычно увеличивая максимум до 10-15 л.с., в зависимости от напряжения.Они, как правило, используются с оборудованием, которое запускается нечасто или работает непрерывно с несколькими остановками. Кроме того, спецификаторам необходимо рассмотреть магнитные пускатели или даже устройства плавного пуска. Особые случаи, такие как реверсирование или многоскоростное обслуживание, решаются с помощью стилей для конкретных приложений. Другие соображения, помимо размера двигателя и напряжения, включают взрывозащиту, характеристики корпуса, защиту предохранителя или прерывателя и т. Д.

Большинство производителей стартеров предлагают продукцию как в соответствии с рейтингом NEMA, так и IEC.Пускатели NEMA, как правило, больше и дороже, чем пускатели IEC, но могут быть указаны на основе только мощности и напряжения, тогда как спецификации пускателей IEC более точно настроены. См. Ссылку ниже для обсуждения. В общем, североамериканские инженеры-конструкторы будут указывать применимость либо NEMA, либо IEC, а для новых покупок специалисты по спецификациям могут выбирать из соответствующих предложений поставщиков в этих двух диапазонах. Машиностроители в Северной Америке часто используют пускатели IEC в своих панелях управления из-за их способности более точно настраивать пускатель в соответствии с приложением, что необходимо в соответствии с более детальными критериями выбора IEC.

При выборе комбинированного пускателя разработчики обычно выбирают конфигурацию корпуса, пускатель и реле перегрузки соответствующего размера, управляющие напряжения, варианты связи и соответствующие контрольные устройства (лампы, аварийные остановки, переключатели ручного / выключения / автоматического переключения, нажимные переключатели, так далее.). Специалисты также могут выбирать между защитой от короткого замыкания с предохранителем или автоматическим выключателем. Многие производители имеют в наличии стандартные устройства, которые можно быстро доставить.

Устройства плавного пуска

больше похожи на приводы двигателей переменного тока, чем на традиционные пускатели, поскольку они используют твердотельную электронику для управления пусковыми токами.Часто их можно запрограммировать на управление пуском двигателя. Их можно заказать как открытые, так и закрытые.

Важные атрибуты

Отраслевые стандарты / Сертификация

Выбор NEMA или IEC сузит выбор для начинающих среди этих двух организаций по стандартизации.

Типы стартеров

Выбор среди этих различных вариантов, как описано выше, сузит поле до определенных типов пускателей, например, полного напряжения, ручного запуска и т. Д.

Размер стартера NEMA

Пускатели

NEMA классифицируются по размеру в зависимости от напряжения и мощности двигателя.Процесс выбора для начинающих МЭК более сложен, поэтому простого подхода «размер по количеству» не существует.

Характеристики

Характеристики пускателей включают корпуса, вспомогательные контакты, взрывозащищенные корпуса и т. Д.

Категории связанных продуктов

  • Двигатели см. Наше Руководство по покупке двигателей.
  • Контроллеры двигателей и приводы см. Наше Руководство по покупке контроллеров двигателей и приводов.
  • Автоматические выключатели — это электромеханические устройства, обычно устанавливаемые в электрические шкафы и используемые для защиты электрических цепей от перегрузок.
  • Реле защиты — это электромеханические переключатели, используемые для защиты различных устройств от перенапряжения, тока или тепловых перегрузок.
  • Электрические предохранители — это устройства, которые ограничивают прохождение тока через электрические цепи путем «размыкания» на заранее определенных уровнях тока, тем самым прерывая поток электричества .
  • Электрические контакторы — это электронные или электромеханические устройства, используемые для переключения электрических нагрузок.
  • Реле защиты — это электромеханические переключатели, используемые для защиты различных устройств от перенапряжения, тока или тепловых перегрузок.

Ресурсы

Техническое обсуждение методов запуска двигателя

http://www05.abb.com/global/scot/scot234.nsf/veritydisplay/18cb6349632fe21583257861003d9507/$file/technical%20note%20tm008%20low.pdf

Загружаемое руководство по выбору пускателя двигателя от одного поставщика

http: //www.schneider-electric.com / products / ww / en / 5100-software / 5110-electric-design-software / 61210-lv-motor-starter-solution-guide-v34 /

Обсуждение различий между пускателями NEMA и IEC

http://www.ussg.com.sa/pdf1.pdf

http://ecmweb.com/content/differentiating-between-nema-and-iec-style-products

Прочие изделия для стартеров двигателей

Прочие «виды» статей

Больше от Machinery, Tools & Supplies

Типы стартеров — Политехнический хаб

Пускатели различных типов:

  • Статор резистивный пускатель.
  • Пускатель звезда-треугольник.
  • Автотрансформатор пусковой.
  • Пускатели сопротивления ротора.
  • Пуск с переменной частотой статора.

Статор резистивный пускатель

Пусковое сопротивление подключено в каждой линейной серии с каждой фазной обмоткой статора.
Изначально все сопротивления пускателя поддерживаются в положении «Пуск» , чтобы обеспечить максимальное сопротивление.
Переключатель включается для подключения трехфазного источника переменного тока к обмотке статора.
По мере ускорения двигателя сопротивление пускателя уменьшается за счет перемещения регулируемого контакта сопротивления в положение «Работа» .

Статор резистивный пускатель

Пускатель звезда-треугольник

Обмотка статора двигателя соединена треугольником во время пуска.
Когда двигатель ускоряется, статор подключается по схеме треугольника для подачи номинального напряжения на обмотки.
Пусковой крутящий момент уменьшается, поскольку крутящий момент пропорционален квадрату напряжения статора, и при переключении со звезды на треугольник наблюдается рывок.

Пускатель звезда-треугольник

Автотрансформатор пусковой

Автотрансформатор используется для подачи низкого напряжения на обмотку статора во время пуска. Когда скорость двигателя достигает желаемого уровня, автотрансформатор отключается, и двигатель подключается непосредственно к источнику питания. Управляется двухпозиционным переключателем, т.е. вручную / автоматически с использованием таймера для переключения из исходного положения в рабочее.
В исходном положении питание подключается к обмоткам статора через автотрансформатор, который снижает подаваемое напряжение до 50, 60 и 70% от нормального значения в зависимости от используемого ответвления.Закваски, используемые в лагерной промышленности, крупнее и дороже.

Автотрансформатор пусковой

Ротор стартера сопротивления

Этот тип управления используется в асинхронных двигателях с контактным кольцом. В цепь ротора подключено внешнее переменное сопротивление, которое во время пуска этой переменной устанавливается на максимально возможное значение, равное току двигателя при пуске.
Три подвижных контакта соединены между собой и образуют стартовую точку для резисторов.
Чтобы гарантировать, что двигатель не может быть запущен, пока все сопротивление ротора не будет в цепи, установлена ​​блокировка, которая предотвращает замыкание контакторов до тех пор, пока это условие не будет выполнено.

Ротор стартера сопротивления

Пуск с переменной частотой

Вместо того, чтобы контролировать только напряжение статора во время пуска, частота статора также должна поддерживаться низкой во время пуска двигателя.

Пуск с переменной частотой

Класс41 Дизлайк4

Что такое стартеры, разные типы и как они работают

Что делает стартер?

В нормальном режиме работы двигатель продолжает работать. Это не совсем вечный двигатель, так как он требует ввода энергии в форма газа, воздуха и искры, но сгорание в одной камере вызывает сжатие в соседней камере через коленчатый вал. Это то, что поддерживает горение езда на велосипеде и поддерживает работу двигателя.

Однако цикл должен где-то начинаться. Итак, в вашем двигателе должен быть какой-то первичный двигатель, и это стартер.

Стартер представляет собой небольшой электродвигатель с якорем. заканчивая передачей.Маховик двигателя имеет зубчатый венец, шестерня стартера, называется ведущей шестерней, зацепляется с. Когда стартер работает, он раскручивает ведущая шестерня, которая вращает коронную шестерню и маховик. Это заводит двигатель и запускает цикл сгорания.

В качестве примечания, поскольку стартер вращает двигатель, хотя и на очень низкой скорости можно было бы в критической ситуации переместить ручной трансмиссия легкового или грузового автомобиля со стартером. Вы можете поставить передачу в сначала, и проверните стартер, пока он медленно, болезненно не потянет автомобиль к безопасность. Однако это почти наверняка приведет к износу стартера. Теперь, если вам случится оказаться на железнодорожных путях с приближается поезд, мы бы посоветовали выйти из машины, а не попробовать какой-нибудь трюк, о котором вы однажды читали в Интернете

Краткая история стартеров

Использование электростартеров, как и ваш двигатель на холодный день, потребовалось немного времени, чтобы начать работу. Поначалу большинство автомобилей заводились вручную с помощью рукоятки.Это был трудный и порой опасный процесс. Используемые кривошипы имели механизм свободного хода, который не позволял им продолжать работу. чтобы повернуть после запуска двигателя — вы не хотите, чтобы кривошип начал вращаться при сотнях оборотов в минуту (об / мин) в руке. Проблема заключалась в том, что иногда эти двигатели отключались и вращались в обратном направлении. Шатуны не были предназначены для этого случая и будут вращаться задом наперед вместе с двигателем. Автопроизводители рекомендовали водителям поднимать кривошипную ладонь ладонью вверх чашеобразной формы. так что мятежный кривошип выскользнул из руки водителя.Эта хватка была довольно неестественно, поэтому многие водители использовали более привычный закрытый кулак. Неуправляемый рычаг в руке может привести к сломанному пальцу или сломанное запястье, и это часто случалось.

Некоторые ранние автомобили использовали другие методы механического запуска. Некоторые использовали шнурки. Отдача в этих системах может подтолкнуть водителя к двигатель или дико крутить свободный шнур. Некоторые ранние двигатели должны были быть началось с небольшого порохового взрыва.

Даже если они не представляли опасности, эти способы запуска часто были неудобны. В то время как механический запуск, например, запуск двигателя мотоцикл или запуск снегохода, все еще имеет смысл для небольших двигатели сегодня, они быстро стали непригодными для быстрорастущих автомобильных двигатели. Представьте, если бы вам приходилось каждое утро запускать свой четырехлитровый пикап. перед работой.

Необходимо было придумать способ более легкого запустить двигатель автомобиля.Инженеры Cadillac первыми разработали электрический стартер. Он дебютировал в 1912 году. Продвигал проект Кадиллак. Президент Генри Лиланд, недавно потерявший друга из-за фатального запуска автомобиля неудача. Их изобретение сделало автомобили безопаснее и доступнее для большего числа людей. но все же потребовалось время, чтобы это понять. Ford Model T продолжал использовать ручную чудаки до 1919 года.

Типы стартеров

Было использовано несколько разных типов электростартеров. на протяжении всей автомобильной истории.Их основная работа всегда в основном то же самое, но они немного отличаются по способу зацепления с зубчатым венцом. Эти разные конструкции должны компенсировать высокое передаточное отношение между коронная шестерня и шестерня привода стартера.

Чтобы стартер оставался компактным, необходимо довольно маленький. У него гораздо меньше зубьев, чем у зубчатого венца. Требуется больше оборотов ведущей шестерни для однократного вращения коронной шестерни. Итак, он получает двигатель запускается сначала на относительно низком уровне оборотов.В конце концов, однако, двигатель набирает обороты. Если ведущая шестерня остается в зацеплении с коронной шестерней, она будет закручиваться на очень высокой скорости. На каждый оборот двигателя привод шестерня крутилась несколько раз. Так же, как кривошипы человеческих двигателей рисковали получить их руки сломаны, стартер рисковал бы сломаться, если бы в нем не было способ отсоединения от зубчатого венца.

Пускатели инерционные

Есть два метода, чтобы зубчатый венец не сломал стартер.в Старые модели, называемые инерционными пускателями, шестерня навинчивается на двигатель. вал как гайка на болте. Когда вал вращается, шестерня выходит наружу. Там это упор, который удерживает его, когда он достигает конца, и входит в зацепление с зубчатым венцом. Как только двигатель начинает вращаться, гораздо более быстрое движение коронной шестерни по существу закручивает шестерню назад и ввинчивает ее обратно в вал.

Для этих типов стартеров требуется, чтобы шестерня начала вращаться. прежде чем он войдет в зацепление с зубчатым венцом.Когда вращающаяся шестерня входит в зацепление с с неподвижным зубчатым венцом может произойти некоторый износ шестерен.

Предварительно включенные стартеры

Для уменьшения износа шестерен, были изобретены предварительно задействованные стартеры. В них ток от АКБ активирует соленоид, который выталкивает шестерню, затем начинается другой ток мотор. Шестерня на них имеет одностороннюю муфту, как у свободного колеса. механизм, позволяющий двигаться накатом на велосипеде.

Редуктор передачи

Некоторые более поздние разработчики используют процесс, называемый передачей. уменьшение.В них шестерня не прикреплена напрямую к якорю. Вместо, якорь заканчивается шестерней, которая приводит в движение промежуточную шестерню, которая приводит в движение шестерня на задней части узла шестерни. Промежуточная передача позволяет более благоприятное передаточное число, что означает, что шестерня вращается быстрее с меньшим сливом на батарее. Это используется в основном в high-end исполнении. Приложения.

В конечном счете, эти разные типы закусок в значительной степени историческое любопытство.Велика вероятность того, что ваш автомобиль использует предварительно включили стартер.

Какой тип стартера лучше всего подходит для моего автомобиля?

Вам не нужно знать различные типы закусок, если вам нужен новый стартер для вашего автомобиля или грузовика. Вам просто нужно найти стартер, который разработан для вашей конкретной модели.

Как узнать, плохой ли у меня стартер?

Есть несколько признаков и симптомов плохого стартера. Как правило, автомобиль не заводится, и это обычно сопровождается звуком одиночного щелчка, а в некоторых случаях загораются световые индикаторы, но не включается автомобиль, или дребезжащий звук.Двигатель также может медленно проворачиваться или не запускаться вообще, и иногда вы можете услышать, как стартер не срабатывает, когда это происходит.

Как работает стартер?

Стартер работает так же, как и любой другой электрический двигатель. С обеих сторон установлены фиксированные магниты с противоположными полюсами арматура. Якорь действует как электромагнит. В нем две пластины, называемые коммутаторы — по одному с каждой стороны. Коммутаторы получают заряд от аккумулятор через неподвижные медные или стальные щетки, которые касаются их.Это поворачивает арматуру в двухполюсный магнит. Каждый полюс якоря отталкивается своим фиксированный магнит с одинаковым полюсом и притягиваемый магнитом с противоположным полюсом. Положительный заряд соответствует южному полюсу, а отрицательный заряд — северному полюсу. Это скажем, сторона якоря с положительно заряженным коммутатором будет вращаться к северному магниту и стороне якоря с отрицательным заряженный коммутатор будет вращаться в сторону южного магнита.

Можно ожидать, что как только якорь достигнет магнита, он прилипнет, и вы были бы правы, если бы не щетки несут заряд коммутаторам.Как только якорь перевернется, коммутаторы переместятся в положение, при котором они будут контактировать с противоположные кисти. Это означает, что теперь у них противоположный заряд и они отталкиваются. и привлечены к противоположному полюсу по сравнению с тем, чем они были раньше, поэтому они чтобы снова перевернуть. Он продолжает вращаться (как будто ваша голова может быть в этом точка), пока стартер не перестанет получать электричество от аккумулятора.

Процедура замены стартера своими руками

Это потребует некоторых усилий, но, безусловно, можно замените стартер самостоятельно.Самая сложная часть замены стартера может получить к нему доступ.

Стартер обычно располагается под двигателем. рядом с местом соединения трансмиссии с двигателем. В некоторых случаях стартер может быть найден в верхней части двигателя возле впускного коллектора. В большинстве случаев вы придется поднять и закрепить автомобиль и получить доступ к стартеру из под.

Обязательно отключите аккумулятор перед работой с электрические компоненты, и убедитесь, что двигатель остыл, прежде чем пытаться снимаем стартер. Имея это в виду, вам просто нужно отключить проводку к стартеру, открутите его и подключите новый. Убедитесь, что у вас есть правильный стартер для вашего автомобиля. Они могут отличаться в зависимости от конкретного трансмиссия и маховик вашего автомобиля.

Потребность Замена стартера?


Если вам нужен замена стартера, вы попали в нужное место. 1А Авто не только все знает о стартерах для автомобилей, но у нас в наличии самые качественные и надежные доступны послепродажные стартеры.Везем новые стартеры для многих автомобилей, грузовиков, фургонов. и внедорожники, и все по отличным ценам, так что вы можете вернуть свой автомобиль снова в хорошем рабочем состоянии!

Мы в 1A Auto готовы помочь вам получите подходящий стартер для своего автомобиля. Вы можете просмотреть наши большие выбор стартеров послепродажного обслуживания и покупки прямо здесь, на 1AAuto. com.


Пускатели двигателей | Через линию | Миннеаполис, Миннесота

ISC Companies является дистрибьютором деталей механической передачи энергии и компонентов промышленной автоматизации.Мы также гордимся тем, что являемся сертифицированным магазином панелей UL 508A / 698A. Для получения дополнительной информации о брендах, которые мы предлагаем, и / или о ценах, свяжитесь с нами по телефону 763-559-0033, по электронной почте [email protected] или заполнив нашу онлайн-форму для связи.


Пускатель двигателя включает или выключает электродвигатель, обеспечивая защиту от перегрузки. Существует два основных типа пускателей: ручной и магнитный. В меньших размерах пускатель двигателя представляет собой переключатель с ручным управлением. Защита от низкого напряжения (LVP), которая предотвращает автоматический перезапуск после сбоя питания, обычно невозможна с ручным пускателем.В более крупных двигателях или в двигателях, требующих дистанционного или автоматического управления, используются магнитные контакторы. Очень большие двигатели, работающие от источников питания среднего напряжения, могут использовать силовые выключатели.

Пускатели магнитных двигателей переменного тока

для одно- и трехфазной работы состоят из двух основных частей; контактор (подключает двигатель к входящей мощности) и перегрузка (вызывает электрическое отключение контактора (срабатывание), когда он определяет ток, превышающий нормальный).

Все пускатели двигателей имеют следующие функции:

  • Номинальный ток (амперы) или мощность (лошадиные силы)
  • Дистанционное включение / выключение
  • Защита двигателя от перегрузки
  • Запуск и остановка (электрическая долговечность)
  • Заткание и толчковый режим (быстрый включающий и отключающий ток)

Пускатели полного напряжения

Пускатели полного напряжения

, также называемые линейными пускателями или пускателями прямого включения (DOL), являются нереверсивными (FVNR) при полном напряжении и подключают двигатель к линии питания. Ручные пускатели ограничены однофазными двигателями мощностью около 5 л.с. при 320 В переменного тока и трехфазными до 10 л.с. при 460 и 575 В переменного тока. Пускатели обычно разрабатываются в соответствии со стандартами NEMA (США) или IEC (Европа). Два типа пускателей различаются номиналами, сроком службы и типами перегрузки.

Номинальные характеристики рамы
Стандарты

NEMA определяют 11 размеров магнитных пускателей (00–9) для низковольтных пускателей и указывают номинальную мощность в лошадиных силах для каждого размера. Номинальные параметры пускателей IEC включают 15 размеров, и их физический размер может быть меньше.

Срок службы контактора
Стандарты

NEMA требуют, чтобы производители проектировали все контакторы для тяжелых условий эксплуатации; поэтому они обычно больше, чем соответствующие контакторы IEC. Стандарты IEC определяют различные уровни обслуживания, называемые категориями использования. Стартеры NEMA обычно имеют более длительный срок службы.

Реле перегрузки

Промышленность практически прекратила использование устройств защиты от перегрузок нагревательных элементов в пользу электронных полупроводниковых устройств защиты от перегрузок, которые обеспечивают большую защиту.Электронная система защиты от перегрузки контролирует фактический ток двигателя и отключает его за три секунды или меньше, когда он превышает предварительно установленный номинал. Они также защищают от потери фазы, фазового дисбаланса и короткого замыкания.

Стандарты

NEMA требуют, чтобы реле перегрузки имели сменные нагреватели или электронные устройства защиты от перегрузки для обеспечения характеристик отключения класса 20 при 600% тока полной нагрузки. Большинство электронных перегрузок имеют выбираемые на месте классы срабатывания от 5 до 30.


Реверсивные стартеры

Двигатели с тремя фразами меняются местами путем переключения любых двух из трех выводов питания на двигатель.Пускатели с реверсивным полным напряжением (FVR) имеют два контактора (прямой и обратный ход). Когда двигатель работает в одном направлении, а контактор противоположного направления находится под напряжением, это называется заглушкой. Двигатель быстро замедляется и ускоряется в противоположном направлении. Когда приложение требует быстрого замедления, но не последующего обратного вращения, двигатель может быть оснащен выключателем. Штекерный выключатель — это центробежный выключатель, который передает на двигатель противоположную мощность вращения для быстрого замедления, но полностью отключается, когда скорость двигателя приближается к нулю.


Пускатели пониженного напряжения

Пускатели пониженного напряжения (RVS) используются в приложениях с двигателями большой мощности. Они используются для уменьшения пускового тока, ограничения выходного крутящего момента и механической нагрузки на нагрузку.

Пускатель пониженного напряжения предотвращает бросок тока, позволяя двигателю набирать скорость небольшими шагами за счет меньших приращений тока. Этот стартер не является регулятором скорости. Уменьшает шок только при запуске.

  • Пускатели с первичным резистором : В простейшем пускателе пониженного напряжения резисторы вставляются последовательно с двигателем во время фазы пуска.При запуске система рассеивает мощность в виде тепла. В приложениях, в которых потери были бы неприемлемыми, часто используются реакторы, а не резисторы. Пускатели реакторов стоят дороже и имеют меньший коэффициент мощности при запуске.
  • Пускатели автотрансформатора : Во время разгона пониженное входное напряжение подается на двигатель через автотрансформатор, который ограничивает ток и предотвращает перенапряжение цепи двигателя. Когда достигается рабочая скорость, срабатывает второй контактор для обхода трансформатора и подает полное напряжение на двигатель.Третий контактор используется для заполнения временного интервала во время переключения (пускатель с закрытым переходом). Если третий контактор не используется, это пускатель с открытым переходом.

Пускатели с пониженным пусковым током

  • Пускатели звезда-треугольник : Во время пуска пускатель звезда-треугольник последовательно соединяет три набора обмоток статора, чтобы увеличить электрическое сопротивление и ограничить пусковой ток. Когда достигается рабочая скорость, таймер подключает их параллельно, и все три набора обмоток получают одинаковое линейное напряжение.Они используются в устройствах с низким пусковым моментом, таких как воздуходувки или центробежные насосы.
  • Пускатели с частичной обмоткой : Для них требуются двигатели, которые имеют специальную разводку, позволяющую пускателю подключаться только к части обмоток во время запуска. Во время разгона таймер вызывает замыкание второго контактора, запитывая другие обмотки. Пускатель с частичной обмоткой является наименее дорогим, но пусковой ток выше и требуется специальная проводка.

Твердотельные пускатели

В твердотельных пускателях тиристоры используются в качестве клапанов переменного напряжения. Они включают в себя рампы ускорения и замедления с регулируемым напряжением для медленного увеличения напряжения и скорости двигателя, чтобы избежать ударных нагрузок и ограничить пусковой ток. Твердотельные пускатели могут использовать либо линейное изменение предельного тока, либо обратную связь от тахометра. Твердотельные устройства плавного пуска доступны как автономные устройства, когда пускатель уже используется. Они популярны при перекачивании.


Пускатели комбинированные

Североамериканские электрические нормы и правила требуют, чтобы, если в ответвленной цепи есть двигатель, она также должна иметь устройство защиты от короткого замыкания и устройство отключения в дополнение к пускателю двигателя.В случае короткого замыкания требуется дополнительная защита в виде предохранителя или автоматического выключателя. Когда отключающее устройство, устройство защиты от короткого замыкания и пускатель двигателя объединены как узел, это называется комбинированным пускателем.

  • Предохранители-разъединители : Предохранители с выдержкой времени позволяют переносить тяжелые нагрузки в течение короткого времени и обеспечивают долгосрочную защиту от перегрузки. У них есть токоограничивающие возможности.
  • Автоматические выключатели : Удобнее, но по более высокой цене.Они служат средством отключения двигателя и пускателя от сети и защиты параллельной цепи от чрезмерного тока.

Существует три класса напряжения: низкий (менее 600 В), средний (от 600 до 15 000 В) и высокий (более 15 000 В). Три типа конструкции: литой корпус, изолированный корпус и низковольтный источник питания. Автоматические выключатели срабатывают или отключаются, когда ток превышает номинальное значение выключателя после временной задержки.


Контент на этой странице был создан с использованием выдержек из Руководства по передаче электроэнергии (5 издание) , которое написано и продается Ассоциацией дистрибьюторов силовых передач (PTDA).

Закажите копию здесь

▷ 5 наиболее распространенных типов пусковых устройств (пускатели двигателей низкого / среднего напряжения)

Привет, Стивен Милл. Я думаю, что никогда раньше не писал на эту тему, поэтому позвольте мне рассказать вам о пускателях двигателей…

Стартер более или менее выполняет роль контролера двигателя. Он контролирует электропитание, предотвращает переключение при перегрузках, а также берет на себя обязанность по отключению двигателя от сети, когда это считается необходимым.

Как мы можем прочитать по теме:

«Стартер можно определить как комбинированный контроллер электродвигателя, который может запускать или останавливать электродвигатель с помощью внешних переключателей, защищать электродвигатели от перегрузки и отключать их от сети в случае серьезного напряжения или колебания нагрузки за счет встроенных отключающих устройств ».

Наиболее важные компоненты и функции стартера

Контакторы или магнитные контроллеры

Пусковой контактор двигателя — одно из наиболее распространенных устройств, используемых для пуска двигателей низкого и среднего напряжения. В общих чертах, контактор в электрическом устройстве, который сам включается и выключается, пытаясь защитить электрооборудование при возникновении опасных перегрузок. Эти типы контакторов также известны как магнитные контроллеры.

Контактор против автоматического выключателя

Следует отметить, что пусковые контакторы двигателей не предназначены для работы в качестве выключателей короткого замыкания; Фактически, они предназначены для оптимизации работы двигателей низкого и среднего напряжения и увеличения срока их службы за счет защиты от коммутационных перегрузок.

Имея это в виду, следует понимать, что, несмотря на наличие контактора, электрическая цепь все же нуждается в автоматическом выключателе для защиты от коротких замыканий.

Примечание : Пускатели двигателей низкого и среднего напряжения доступны с номинальными характеристиками не более долей л.с. (лошадиных сил). Эти контакторы могут оказать большую помощь в повышении эффективности и срока службы двигателей малого и среднего размера, которые в основном используются в бытовых целях.

Внешние переключатели или ручные контроллеры

Контакторы малой мощности

также доступны в виде управляющих переключателей, которыми можно управлять вручную. Они известны как ручные контроллеры.

Их можно определить как отдельное устройство или группу подобных устройств, которые помогают контролировать мощность, подаваемую на двигатель (или любое электрическое оборудование) от сети. Контроллеры, как правило, предварительно запрограммированы на работу в определенном диапазоне напряжений, которые указаны заранее и считаются безопасными для электрического оборудования.

Комбинированные контроллеры

Пускатели двигателей низкого и среднего напряжения также доступны в виде комбинации контакторов и контроллеров. Это означает, что контактор в электрической цепи может управляться людьми извне с помощью управляющих переключателей.

Когда эти пускатели двигателей низкого и среднего напряжения объединяются вместе, они известны как «комбинированные контроллеры».

5 наиболее распространенных типов пусковых устройств

Типы пускателей низкого напряжения

В зависимости от используемых контакторов и контроллеров низковольтные пускатели можно разделить на класс A, класс B и класс V.

Класс A : Пускатели класса A предназначены для двигателей, работающих на переменном токе (AC). Они бывают трех видов, а именно:

  • Air-Break
  • Вакуум-разрыв
  • Масло-погруженный

Все эти варианты доступны с ручным или магнитным управлением. Эти пускатели способны выдерживать напряжение до 600 В и могут эффективно противостоять перегрузкам при нормальных условиях эксплуатации. Они не способны столкнуться с перегрузками, неисправностями или короткими замыканиями, выходящими за рамки рабочих перегрузок.

Класс B : Пускатели класса B предназначены для двигателей, работающих на постоянном токе (DC). Они относятся к типу пускателя с воздушным прерывателем и доступны с ручным или магнитным управлением.

Эти пускатели способны выдерживать напряжение до 600 В и могут эффективно противостоять перегрузкам при нормальных условиях эксплуатации. Они не способны столкнуться с перегрузками, неисправностями или короткими замыканиями, выходящими за рамки рабочих перегрузок.

Класс V : Пускатели класса V предназначены для двигателей, работающих на переменном токе (AC).Они относятся к типу пускателей с вакуумным прерыванием и доступны только с магнитными контроллерами.

Эти пускатели способны выдерживать напряжение до 1500 В и могут эффективно противостоять перегрузкам при нормальных условиях эксплуатации. Они также не способны к перегрузкам, неисправностям или коротким замыканиям, выходящим за пределы рабочих перегрузок.

Это означает, что почти все типы низковольтных пускателей двигателей, доступные сегодня, не способны справляться с короткими замыканиями, которые возникают выше рабочих перегрузок.Однако пускатели двигателей среднего напряжения могут с легкостью добиться этого.

Типы стартеров среднего напряжения


Существует два основных типа пускателей двигателей среднего напряжения.

Класс E1 : Как и любые другие пускатели, пускатели класса E1 также могут запускать и останавливать двигатель.

Помимо этого, эти пускатели также способны отключать короткие замыкания и отказы, которые возникают помимо рабочих перегрузок.Они используют вакуум как среду прерывания для обхода электрического оборудования от коротких замыканий и неисправностей.

Класс E2 : Пускатели класса E2 также могут запускать и останавливать двигатель.

Помимо этого, эти пускатели также способны отключать короткие замыкания и неисправности, которые возникают помимо рабочих перегрузок, и оснащены предохранителями, которые способны обнаруживать малейшие прерывания и мгновенно отключать электрооборудование.

В пускателях типа

класса E2 также используется вакуум в качестве среды для прерывания коротких замыканий и неисправностей.