23Апр

Вентиляция картера: Система вентиляции картера – назначение, устройство, принцип работы

Вентиляция картерных газов | Stuntex

Вентиляция картерных газов | Stuntex — Мото Журнал

Подольск,
15км Симферопольское ш. К контактам

#стантрайдинг #стантбайк

11 лет назад

Переделка вентиляции картерных газов — очень популярная модификация среди стантрайдеров. В сети много информации на этот счет, в том числе и противоречивой. На одних и тех же мотоциклах люди применяют разные схемы с разным успехом.

Проблема

Проблема заключается в том, что вместе с картерными газами в короб воздушного фильтра попадает масло из картера. В результате мотоцикл начинает коптить (белый дым из глушителя), также возможен гидроудар, когда достаточное количество масла попадает в камеру сгорания, т. к. масло несжимаемое, могут погнуться шатуны при ударе поршней о масляную прослойку. Этот эффект проявляется при езде на заднем колесе продолжительное время, и усугубляется значительным переливом масла из-за борьбы с масляным голоданием. Эта проблема актуальна для многих спортбайков, но в разной степени. Прежде чем вносить изменения, желательно убедится, что проблема имеет место. Для этого необходимо снять бак –> отключить от короба воздушного фильтра шланги вентиляции картерных газов –> проанализировать наличие масла и его количество в шлангах.

Если шланги сухие, то очевидно, что никакого масла по ним не поступает и делать ничего не надо. Если маслянистые, тогда необходимо открыть короб воздушного фильтра и оценить наличие масла в коробе. Если есть жирный масляный налет или еще хуже — масло, тогда необходимо переделать вентиляцию картерных газов.

Цель – предотвратить попадание масла в короб воздушного фильтра, не нарушая вентиляции картера. Вариантов может быть много.

Решение

  1. Отсоединить патрубки вентиляции картерных газов от короба воздухофильтра фильтра и заткнуть их фильтром нулевого сопротивления. При этом обязательно герметично заткнуть соответствующие отверстия в коробе воздухофильтра. Если масло кидает в малых количествах, такая схема вполне подойдет. Теоретически не нужен даже фильтр, т.к. в картере не создается разряжения (только давление) и всасывать через шланг он не может, только выбрасывает.
  2. Отсоединить патрубки вентиляции картерных газов от короба воздухофильтра фильтра и вывести их в емкость, которая не должна быть герметичной, т.к. необходимо сообщение с атмосферой для сброса газов. При этом обязательно герметично заткнуть соответствующие отверстия в коробе воздухофильтра. Размер емкости зависит от количества выбрасываемого масла, чем больше масла, тем больше емкость. При такой схеме необходимо контролировать количество масла в емкости и периодически выливать его.
  3. Врезать маслоуловитель (маслоотделитель) в шланг между сапуном и коробом воздухофильтра. При такой схеме сохранится подсос газов инжекторами. Собравшееся масло сливать обратно в картер через отверстие вентиляции, если не стоит обратный клапан или, если стоит, через заливную горловину, для этого сделать в крышке заливной горловины отверстие. Такая схема подойдет, если масла кидает очень много и слишком утомительно постоянно следить за его уровнем в емкости и подливать масло в картер, т.к. уровень падает. Маслоуловитель выполнит функцию отделения масла. Таким образом, в короб фильтра пойдет очищенный картерный газ, а масло сольется обратно в картер.

Реализация на примере YAMAHA R6 2005

Р6 не боится масляного голодания, большинство райдеров даже не переливают масло сверх нормы. Считается, что достаточно залить масло по максимуму. Таким образом, проблема вентиляции картерных газов не стоит остро для этого мотоцикла. Выбросы масла возможны при продолжительной езде в 12 часов или в негативном угле. Чтобы наверняка обезопасить мотор лучше сделать мод. Идеальный вариант – установить маслоотделитель (маслоуловитель). Маслоуловитель – очень примитивное устройство, это емкость с двумя отверстиями. Картерные газы вместе с маслом попадают в маслоуловитель через одно отверстие, масло конденсирует на стенках и очищенные газы выходят через другое отверстие. Для лучшей конденсации масла можно внутрь маслоуловителя засунуть бытовую металлическую губку-скраб, которой сковородки очищают от нагара))) Для установки маслоуловителя потребуется снять бак. Задача заключается в том, чтобы врезать маслоуловитель между отверстиями 1 (картер) и 2 (воздухофильтр).

Проблема установки маслоуловителя на р6 заключается в том, что очень мало места под баком. Представленный на фото образец китайского производства имеет критические размеры и помещается впритык. Такой маслоуловитель можно засунуть под проводку между картером и блоком инжекторов. На фото зеленым пунктиром показано как располагается маслоуловитель. Далее необходимо соединить отверстия 1 с 3 и 2 с 4.

Важно не передавить шланг, для этого желательно использовать армированный шланг и укладывать его без напряжения. Также надо правильно расположить отверстия маслоуловителя относительно друг друга так, чтобы в вилли скопившееся масло не попало в отверстие 4 и через него в воздухофильтр. Маслоуловитель установлен. Если масло поступит в него, то там и останется, в конце сезона жеалтельно достать и проверить. Таким образом, удалось отвести картерные газы (с маслом) от воздушного фильтра и не нарушить вентиляцию картера.

Примечание

Новичкам, которые не могут вилить хотя бы минуту, не нужно переливать масло и переделывать вентиляцию картерных газов.

Важно: замечания и критику в комменты.

Переделка Вентиляции Картерных Газов — Clean Air Mod

66 799

Рекомендуем

ТОП 10 Лучших Трюков и Комбо StuntArt Журнал Обучение Мотокросс Эндуро — Видео Школа Журнал Обзор стантбайков F4i ZX6R R6 CBR GSXR Французский Стант Romain Jeandrot

Фильтр, Вентиляция картера — DT Spare Parts

Фильтр, Вентиляция картера — DT Spare Parts 360-degreesarrow-downarrow-leftarrow-rightarrow-to-bottomarrow-topbadge-checkbarsbirthday-cakebookbriefcasecalenderchart-linecheckchevron-circle-rightchevron-downchevron-upcogscrowncubecubesdesktopenvelopeexclamation-squareexternal-linkeyefacebook-ffile-imagefile-pdffileflagforkliftgiftglobegoogle-plusgraduation-caphand-holding-boxhandshakehistoryhomeimageinstagramlanguagelinklinkedin-inlocation-arrowlockmalemap-marker-altmap-markermap-pinnewspaperpenphoneplus-squareprintquestion_filledquestionsafari-pinned-tabsearchseedlingshield-checkshopping-cartsitemapstarthumbs-uptimestwitterunlinkuserswhatsappwrenchxingyoutube
  • Файлы cookie отслеживания: Данные файлы cookie собирают информацию о просмотре посетителями наших веб-сайтов. Благодаря этому мы можем сделать структуру, навигацию и контент на нашем веб-сайте максимально удобными для пользователя.
  • Рекламные файлы cookie: Данные файлы cookie позволяют нам оптимальным образом адаптировать наш веб-сайт для каждого посетителя. Мы делаем это не только посредством контента на сайте, но также при помощи демонстрируемой рекламы.
  • Функциональные файлы cookie: Благодаря данным файлам cookie Вы можете воспользоваться важными функциональными особенностями сайта, такими как защищенные области на сайте. Включают анонимизированные аналитические файлы cookie.

Product Portrait

подходит для: Iveco

Арт. №: 7.74104

замены 5 0420 9107замены 5 0420 9107

Фильтр системы вентиляции картера 7. 74104 выделяется благодаря своему высокоэффективному материалу фильтра и превосходной точности подгонки. Полипропиленовый край обеспечивает постоянную прочность даже при условиях высокой температуры. Вентиляционный фильтр предотвращает попадание прорвавшихся газов, загрязненных моторным маслом, из картера в приемное отверстие турбонаддувного агрегата. Масло, которое отфильтровывается из воздуха, затем добавляется обратно к циркулирующему маслу, за счет чего потребление масла и общее количество выбросов двигателя эффективно сокращаются.

Partner Portal

Partner Portal: https://dtpi.de/7.74104

360° view

PDF

Дополнительные ссылки

Другие товары из ассортимента продукции бренда DT Spare Parts

Примечание: Аксессуары перечислены на соответствующей странице подробностей статьи на Partner Portal.

 

Полезные советы и рекомендации

Перед заменой следует оценить состояние износа снятого изделия. В случае если имеется остаточное моторное масло или остатки воды, следует также произвести замену моторного масла. Новое изделие необходимо монтировать без натяжения для обеспечения оптимального функционирования и уплотнения.

Отверстие в крышке следует проверить на предмет функционирования и чистоты. Для проверки подуйте через отверстие. Затем необходимо собрать крышку с соблюдением монтажного момента, указанного производителем.

Фильтр системы вентиляции картера в сборе

  1. Полипропиленовый край
  2. Материал фильтра
  3. Паз для прокладки
  4. Монтаж

Request article or order in Partner Portal

Partner Portal: https://dtpi.de/7.74104

Вернуться к обзору

Подписаться на новостную рассылку

  • ежемесячно
  • Информация о продукции, полезные советы, мероприятия, промо-акции …

browser hint

Your browser version is outdated. Please update your browser. We recommend Google Chrome for optimal use of the website.

Download

Управление прорывами газов в двигателе с помощью систем вентиляции картера

Содержание:

  1. Введение
  2. Что такое прорыв?
  3. Как создается прорыв?
  4. Как чрезмерная продувка повреждает двигатель?
  5. Что такое вентиляция картера?
  6. Какие существуют типы систем вентиляции картера?
  7. Каковы преимущества системы вентиляции картера?
    • Регулятор давления в картере
    • Снижение расхода масла
    • Повышение эффективности двигателя
    • Защита окружающей среды
    • Соответствие экологическим нормам
  8. Полная система. Помимо «Картерного фильтра»
  9. Заключение

 

Введение

 

В этой статье обсуждается прорыв газов в двигателе, причины прорыва газов и использование систем вентиляции картера для борьбы с прорывом газов в двигателе. Мы объясняем различные типы систем вентиляции картера, представленные на рынке, и преимущества каждого типа. Обсуждаемые здесь двигатели относятся к категории поршневых двигателей внутреннего сгорания (RICE) и включают конфигурации с искровым зажиганием (двигатель SI) или с воспламенением от сжатия (двигатель CI). Стационарные двигатели используются для выработки электроэнергии (например, в режиме ожидания, пикового/сглаживания, основной мощности) и механического привода. (например, газовые компрессоры и насосы). Двигатели также используются в морских силовых установках, бортовых силовых установках и локомотивах.

 

Что такое Blow-by?

 

Прорыв газов образуется, когда топливовоздушная смесь и продукты сгорания просачиваются через поршневые кольца двигателя. Топливовоздушная смесь под давлением и продукты сгорания просачиваются в картер двигателя через небольшие зазоры между кольцами и стенками цилиндров. Образовавшаяся смесь тумана смазочного масла и газов называется прорывом картерных газов.

 

Как создается прорыв?

 

В большинстве двигателей внутреннего сгорания используются поршни, клапаны и валы для преобразования энергии контролируемых взрывов в механическую энергию. Поршни — это сердце и душа двигателя. Они перемещают газы через двигатель и используют энергию, создаваемую во время рабочего такта. В двигателе поршни соединены с вращающимся коленчатым валом и движутся в прямолинейном направлении внутри неподвижного полого цилиндра. Коленчатый вал воспринимает линейное движение поршней и преобразует его во вращательное движение, которое можно использовать для привода электродвигателей генераторных установок, компрессоров и другого вращательного оборудования. Область двигателя, в которой находится коленчатый вал, называется картером.

Когда поршень завершает свое движение от нижней части цилиндра к верхней или от верхней части цилиндра к нижней части, это движение называется тактом. Когда двигатель называют двухтактным или четырехтактным, это указывает на количество тактов, необходимых для завершения цикла сгорания. В этой статье мы сосредоточимся на четырехтактном типе и четырех тактах, которые происходят в следующем порядке: впуск, сжатие, мощность и выпуск. Прорыв картера происходит во время такта сжатия и рабочего такта.

 

 

 

Как правило, новые двигатели имеют более низкий уровень прорыва газов по сравнению со старыми изношенными двигателями. По мере работы двигателя внутренние компоненты камеры сгорания начинают изнашиваться, что приводит к увеличению зазоров между стенками цилиндров и поршневыми кольцами. Этот износ позволяет большему количеству картерных газов просачиваться через поршневые кольца в картер двигателя. Хорошее эмпирическое правило состоит в том, что от «изношенного» двигателя следует ожидать в два раза больше прорыва газов, чем от «нового».

 

 

Как чрезмерный прорыв газов вредит двигателю?

 

Выхлопные газы двигателя необходимо выпускать из картера, чтобы предотвратить некоторые проблемы. Общие проблемы включают:

 

●    Избыточное давление в картере двигателя  — Повышенное давление в картере двигателя может привести к утечке масла через уплотнения двигателя, что способствует потере масла.

 

●     Повышенный расход масла  — Когда прорыв газов содержит большое количество масляного тумана, который выбрасывается в атмосферу и не регенерируется, эффективность системы смазки двигателя может снизиться из-за чрезмерного расхода масла.

 

●     Снижение мощности двигателя — Когда картерные газы направляются обратно через впускной патрубок двигателя (закрытый картер). Масло и другие загрязняющие вещества могут покрывать внутренние компоненты двигателя, такие как турбокомпрессоры и промежуточные охладители, что может значительно снизить эффективность и производительность.

 

Что такое вентиляция картера?

 

Вентиляция картера — это процесс вентиляции или удаления картерных газов из картера двигателя для предотвращения чрезмерного повышения давления внутри двигателя. Картерные газы смешиваются с масляным туманом и другими загрязнителями, которые могут повредить внутренние компоненты двигателя и загрязнить окружающую среду. Высокоэффективный фильтр вентиляции картера необходим для очистки выпускаемых газов перед возвратом на впуск двигателя или выпуском в окружающую среду.

 

Какие существуют типы систем вентиляции картера?

 

В зависимости от установки и требований к выбросам картерные газы удаляются с помощью двух типов систем: открытой вентиляции картера (OCV) и закрытой вентиляции картера (CCV).

 

Системы OCV применяются при выбросе картерных газов в атмосферу. Система OCV может представлять собой простую низкоэффективную систему с низким противодавлением, сапун из проволочной сетки или включать высокоэффективный коалесцирующий элемент, предназначенный для улавливания большого количества масляного тумана. Наиболее эффективные системы OCV объединяют высокоэффективный коалесцирующий фильтр с источником вакуума и механизмом регулирования давления в картере. Преимущество использования открытых систем вентиляции картера заключается в том, что возможность загрязнения и скопления масла внутри турбокомпрессора и промежуточных охладителей сводится к минимуму. Это особенно важно для свалочного газа, биогаза, синтез-газа и других объектов, где качество газа может быть проблемой (Solberg SME и ACVB).

 

Системы CCV применяются, когда картерные газы направляются обратно на впуск двигателя. В большинстве случаев он будет проходить перед турбиной (крыльчаткой компрессора) и после воздухоочистителя двигателя. Некоторые из них будут направляться в выхлоп двигателя. Поскольку экологические нормы становятся все более строгими, использование систем закрытой вентиляции картера (CCV) растет. Отвод картерных газов обратно через впускной тракт двигателя позволяет операторам контролировать общие выбросы через выхлопные газы двигателя и устранять источник выбросов. Закрытые системы вентиляции картера подходят для многих типов установок, особенно если в CCV встроена технология регулирования давления (Solberg ACV).

 

Оба типа систем могут эффективно регулировать давление в картере и соответствовать экологическим нормам. Дополнительную информацию см. в таблице 1.1 ниже.

Каковы преимущества системы вентиляции картера?

Хорошо спроектированная и правильно подобранная система вентиляции картера значительно помогает поддерживать надежность двигателя и со временем снижает затраты на техническое обслуживание. Это снизит расход моторного масла и повысит эффективность и производительность двигателя. Он делает это, регулируя давление в картере в заданном диапазоне и улавливая масло, уносимое картерными газами.

Регулирование давления в картере 

Давлением в картере можно управлять с помощью впуска двигателя в качестве источника вакуума (CCV) или внешнего источника вакуума, например, рекуперативного нагнетателя (OCV). В любом случае уровень вакуума необходимо регулировать, чтобы обеспечить поддержание давления в картере в заданном диапазоне. Обычно это достигается с помощью ручных клапанов, автоматических клапанов или приводов с регулируемой скоростью. Для систем CCV прогресс заключается в использовании автоматических клапанов регулирования вакуума, таких как те, что используются в линейках продуктов Solberg серий ACV и ACVB. Для систем OCV наиболее распространено ручное управление клапаном, однако другие технологии, такие как системы рециркуляции (SME-R) и автоматическое механическое управление (Solberg ACVB), набирают обороты в широком спектре двигателей. Спецификации всасывания или давления в картере двигателя обычно находятся в диапазоне от (-3) до (+2) дюймов водяного столба, от (-7,5) до (+5) мбар или от (-0,75) до (0,5) кПа. Спецификации двигателей OEM различаются в зависимости от марки и модели двигателя, и лучше всего проконсультироваться с руководством по эксплуатации OEM для идеального диапазона рабочего давления в картере для конкретного двигателя.

Снижение расхода масла

Картерный фильтр очищает выбрасываемые картерные газы, чтобы убедиться, что они не содержат загрязнений, прежде чем они будут выпущены в окружающую среду или возвращены на впуск двигателя. Масляный туман является основной проблемой при удалении картерных газов. Функция фильтра заключается в улавливании и объединении масляного тумана, захваченного картерными газами, и возвращении его в двигатель или в поддон для отработанного масла. При возврате масла в картер двигателя можно значительно снизить расход масла за счет вентиляции картера.

Повышение эффективности двигателя 

Как закрытая вентиляция картера (CCV), так и открытая вентиляция картера (OCV) удаляют загрязняющие вещества и загрязнения из картерных газов. Эффективность фильтра особенно важна для любого применения системы CCV. Высокоэффективные коалесцирующие фильтры очень эффективно уменьшают отложения на турбинах, промежуточных охладителях и других внутренних компонентах. Некоторые частицы и масляный туман все же проходят через фильтры. В конце концов, загрязняющие вещества будут накапливаться, что потенциально может повлиять на поверхности турбокомпрессора и снизить эффективность его работы. Следовательно, лучше всего выбирать фильтры с максимально возможной эффективностью при отводе картерных газов обратно через впуск двигателя.

(высокоэффективная фильтрация обычно составляет от 99% до 99,97% эффективности при 0,3 мкм)

Защита окружающей среды

Системы вентиляции картера с высокоэффективными фильтрами защищают от масляного тумана, дыма, запахов и других твердых частиц попадание в окружающую среду. Когда открытые системы вентиляции картера (OCV) выпускают неочищенные картерные газы в атмосферу, масляный туман скапливается в зданиях и на окружающем оборудовании, включая двигатель. По мере того, как масло скапливается на поверхностях, возникает опасность поскользнуться, а также возможна опасность возгорания. Скопление масляного тумана в плохо проветриваемых помещениях может вызвать проблемы с дыханием и раздражение глаз у персонала завода. Кроме того, утечки через уплотнения двигателя, вызванные избыточным давлением в картере, могут создать опасность поскользнуться для операторов установки.

Соответствие нормам по охране окружающей среды 

Национальные или региональные агентства (EPA, IMO и т. д.) могут потребовать уменьшения или устранения картерных выбросов. Конкретные требования обычно зависят от типа топлива, стационарной или морской установки и режима работы (постоянный или резервный). Даже если ваш двигатель не подпадает под действие конкретных правил, лучше всего способствовать экологической ответственности и безопасности путем улавливания выбрасываемых масляных картерных газов.

Полная система. BeyondJust A «Картерный фильтр»

Требования к вентиляции картера уникальны для каждой модели двигателя и места установки. Двигатели с каждым годом становятся все более эффективными и сложными. В результате продукты «один размер подходит всем» могут быть не лучшим решением для контроля выбросов и обеспечения оптимальной работы двигателя. Большинство современных высокоэффективных двигателей с низким уровнем выбросов требуют высокоэффективной фильтрации с минимальным противодавлением в картере двигателя. Специальная открытая или закрытая система вентиляции картера необходима для достижения целей по выбросам и выполнения конкретных требований. Полная система картера может включать определенную конфигурацию трубопровода, место установки, тип и расположение дренажной линии, консоли отработанного масла, место выхлопа, а также изоляционные кожухи для фильтров и трубопроводов.

 

 

 

Заключение

Установка идеальной системы для конкретного двигателя, установки или морского судна поможет повысить производительность двигателя, безопасность и соответствие экологическим требованиям, а также повысить надежность и снизить общую стоимость владения. Если у вас есть какие-либо вопросы относительно систем вентиляции картера, пожалуйста, свяжитесь с Solberg Manufacturing.

 

Таблица 1. 1

 

Вентиляция картера – Да, это важно

Так зачем исследовать такую ​​пустую тему? Потому что в системе клапанов PCV гораздо больше, чем может показаться на первый взгляд, и может быть множество преимуществ, если сосредоточить внимание на этой малоизвестной схеме. Если вы считаете, что сведение к минимуму утечек масла, снижение расхода масла, предотвращение образования нагара в картере, возможно, улучшение реакции дроссельной заслонки и, в основном, повышение эффективности двигателя — это хорошая идея, читайте дальше.

Начнем с того, как работает система клапанов PCV. Все двигатели внутреннего сгорания создают давление в картере, обычно называемое прорывом газов. Это образуется, когда давление в цилиндре просачивается через кольца и образует масляный туман в картере. Это давление должно быть сброшено, иначе накопление очень быстро вытолкнет прокладки клапанной крышки или поддона и вытолкнет масло через переднее и заднее главные уплотнения. Все это раздражает и приводит к бесконечной очистке моторного отсека. Просто спросите у парней с тряпками, обмотанными сапунами клапанных крышек.

До 1962 года в серийных автомобилях использовалась дорожная всасывающая труба, которая сбрасывала масляный туман на дорогу. В следующий раз, когда вы увидите фотографию автострады Лос-Анджелеса начала 60-х годов, обратите внимание на широкие черные полосы масла, просачивающиеся по центру каждой полосы. Только представьте, какими скользкими были эти автострады после первого в сезоне дождя!

Примерно с 1962 года клапан PCV стал первым устройством контроля выбросов двигателя. Это очень простой клапан, в котором плунжер с коническим седлом удерживается на месте легкой пружиной. Чаще всего клапан PCV располагался в клапанной крышке. Клапан использует разрежение в коллекторе для измерения небольшого количества вакуума в картере для удаления паров из картера во впускной коллектор. В заводских конфигурациях используется впуск фильтрованного воздуха на противоположной стороне двигателя, который использует давление окружающего воздуха для проталкивания паров через клапан PCV.

Если клапан правильно спроектирован для двигателя, он будет создавать небольшой вакуум в картере. Это помогает свести к минимуму утечки масла. Если система не работает должным образом или если двигатель просто вентилируется, в картере все время будет давление.

Пружина внутри клапана определяет положение клапана с коническим седлом, на которое воздействует нагрузка. Эта простая конструкция, к сожалению, делает эти клапаны нерегулируемыми и очень специфичными для применения. Выбор клапана PCV становится чем-то вроде игры в угадайку. Сегодня этот первоначальный список тысяч отдельных применений клапана PCV был радикально сокращен, так что один и тот же клапан теперь указан для каждого малого блока от скромного маленького блока Chevy 307ci до двигателя 454 Rat.

Когда в 1998 году на сцене Corvettes появился компактный блок Gen III LS, не потребовалось много времени, чтобы начать слышать рассказы о том, как эти двигатели собирали масло во впускных коллекторах. Многие предполагали, что это произошло из-за плохого контроля масла из-за конструкции тонких поршневых колец. Это оказывается неправдой. Реальность была совсем другой.

Когда GM проектировала LS, пространство моторного отсека для Camaro и Corvette было тесным, а клапанные крышки LS были спроектированы с минимальным зазором. Это оставило мало места для маслоотделителя внутри клапанной крышки, и двигатели начали втягивать жидкое масло прямо во впускной коллектор. Часть из них сгорела, а остальное скопилось во впускном коллекторе. Было обнаружено, что старые двигатели грузовиков с пробегом в сотни тысяч миль буквально капают маслом при снятии.

Это произошло не только из-за клапана PCV, а скорее из-за ограниченного пространства внутри крышки клапана, что не позволяло создать достаточно места для создания эффективного сепаратора, который мог бы удалять масло до того, как пар пройдет через клапан во впускной коллектор. .

Испытания, проведенные Мэттом Вагнером, разработчиком двухпоточных клапанов PCV компании M/E Wagner, показали, что большинство клапанов PCV работают не так, как ожидалось. Используя сложный расходомер, Вагнер протестировал открытые сапуны вторичного рынка, три различных серийных клапана PCV, а также свой собственный двухпоточный клапан. Испытания показали, что сапуны не полностью выпускали воздух из системы, допуская остаточное давление в картере. Оценка первых двух клапанов PCV показала, что они создавали вакуум в картере только в 20–30 процентах случаев, что означает, что давление в картере было в пределах 70–80 процентов рабочих условий. Третий клапан работал лучше, но ему все же удалось создать вакуум только в течение 70 процентов теста.

Когда Вагнер проверил свой собственный клапан, он создал вакуум, чтобы вытягивать пары из картера в 99% случаев. Этот последний 1 процент был, когда двигатель работал с полностью открытой дроссельной заслонкой (WOT), когда вакуум двигателя падает почти до нуля во впускном коллекторе, что отключает систему PCV. Более подробная информация об испытаниях доступна на веб-сайте M/E Wagner.

Это испытание показало, что существует очевидная необходимость в регулируемом клапане PCV, который обеспечивал бы достаточный поток для создания вакуума в картере. Двухпоточный клапан Wagner предлагает два уровня потока: один регулируемый поток для режима холостого хода и легкого дросселя, когда давление в картере должно быть минимальным, а второй «круизный режим» представляет собой режим с более высоким потоком, предназначенный для запуска в крейсерских условиях жесткого дросселя, когда вакуум в коллекторе падает. (и прорыв увеличивается). Клапан Вагнера выгоден тем, что оптимальную точку перехода между этими режимами потока можно настроить для каждого конкретного двигателя с помощью вакуумметра. Эта комбинация настроек позволяет пользователю полностью адаптировать профиль потока PCV к своему конкретному двигателю. Стандартные клапаны PCV предлагают только один путь воздушного потока, который никак не регулируется.

Отсутствие достаточного вакуума в картере важно, поскольку утечки через прокладки усиливаются, когда давление в картере достаточно для проталкивания масла через уплотнения. Веб-сайт Вагнера предлагает пример, когда стрит-роддер потратил более 2000 долларов на ремонт своего двигателя, чтобы решить проблему использования масла, которая позже была решена с помощью двухпоточного клапана M / E Wagner.

Если смотреть от первого лица, то у нас есть двигатель 350 TPI 1990 года в S-10, который является легальной заменой двигателя в Калифорнии. При слабо работающем клапане PCV двигатель постоянно выталкивал щуп из трубки примерно на ¾ дюйма и вытекало масло из уплотнения передней крышки. Это произошло даже после проверки двух разных клапанов PCV. После добавления двухступенчатого клапана PCV M / E Wagner, настроенного на наш двигатель, утечка масла из уплотнения передней крышки почти исчезла, и щуп теперь остается на своем месте.

Удивительно, но в дополнение к этим улучшениям почти исчез наш незначительный, но раздражающий рывок на холостом ходу при включенном сцеплении. Все эти улучшения стали результатом перехода на простой регулируемый клапан PCV, настройка и установка которого заняла менее 10 минут.

Как упоминалось ранее, ранние двигатели LS, как правило, попадают в ловушку чрезмерного расхода масла, а более эффективный клапан Wagner PCV может фактически усугубить эти проблемы. Это потому, что вместе с дополнительным потоком через картер идет неизбежное масло, которое тянется вместе с паром. Компания Wagner предлагает объединить бак-сепаратор паров с двухпоточным клапаном PCV.

Сепаратор представляет собой не что иное, как небольшой резервуар с впускным и выпускным патрубками и небольшим сливным краном на дне. Мы собирались построить один из использованной канистры привода кондиционера, когда друг обнаружил недорогой маслоотделитель, доступный на Amazon, который имеет съемный корпус с резьбой, герметизированный уплотнительным кольцом, который также имеет удобный щуп, чтобы сообщить вам, когда резервуар нуждается в дренаже. Приблизительно за 30 долларов это отличное маленькое устройство. Это также позволяет вам настроить контур холостого хода на клапане Вагнера, чтобы он был немного более агрессивным, используя резервуар для отделения масла от паров.

Мы решили установить один из этих резервуаров на Chevelle 67 года с подкачкой LS 5,7 л, сделав алюминиевый кронштейн, который крепится к болтам крепления усилителя тормозов. Мы заменили вакуумный шланг на лучший, с более толстой стенкой, чтобы заменить дрянной материал, с которым поставлялся резервуар. Этот дешевый шланг сломается под вакуумом и выведет всю систему из строя, поэтому мы его не использовали.

Мы проложили впускную линию отфильтрованного воздуха от корпуса дроссельной заслонки, которая идет выше по потоку от дроссельной заслонки, и проложили шланг клапана Dorman PCV с формованными изгибами, чтобы предотвратить перекручивание во впускное отверстие передней крышки клапана LS со стороны пассажира. Затем, сзади со стороны водителя, мы поместили один из заготовок клапанов PCV Wagner и подсоединили его к выходному отверстию маслоотделителя. Затем мы подсоединили вакуумный шланг диаметром ½ дюйма от впускного коллектора к входной стороне сепаратора паров.

Если после нескольких сотен миль использования цельного клапана PCV вы обнаружите, что система по-прежнему пропускает через сепаратор довольно много масла, одним из улучшений для двигателей Gen III LS может быть использование сепаратора паров большего размера. GM разработала крышку впадины подъемника для двигателей LS до AFM Gen III, которая предлагает более крупный блок в долине подъемника. Затем внешний ниппель будет присоединен к входу встроенного клапана PCV, который соединит канистру сепаратора паров. Это обеспечивает дополнительный способ минимизировать количество масла, которое может попасть в двигатель. Компания Wagner предлагает переходник для установки клапана PCV в горизонтальном положении.

Конечно, двигатели Chevy с малым и большим блоком также могут выиграть от применения сильного регулируемого клапана PCV, и большая часть приведенной выше информации будет применима. У некоторых энтузиастов может возникнуть искушение использовать простой сапун для входной стороны системы, но лучший способ — дублировать заводскую компоновку с фитингом, расположенным внутри типичного 14-дюймового основания воздухоочистителя с открытым элементом. Эта ¾-дюймовая впускная трубка предлагает большой, неограниченный вход для клапана PCV, а также фильтрует воздух, чтобы обеспечить его чистоту.