26Ноя

Тип впрыска при наличии датчика распредвала – Тип впрыска при наличии датчика распредвала это

Содержание

Фазированный впрыск без датчик фаз? Как? — DRIVE2

Расскажу немного о своих наблюдениях, относительно фазировки впрыска на некоторых автомобилях Renault с бензиновым мотором.
Фазированный впрыск — способ управления форсунками, при котором, на один полный цикл работы цилиндра (четыре такта — два оборота коленвала) приходится только одно открытие форсунки.
Попарно-параллельный впрыск — способ, при котором на полный цикл работы цилиндра приходится два открытия: на такте впуска на открытый впускной клапан, и на такте рабочего хода на закрытый впускной клапан.

Традиционно считается, что для реализации фазированного впрыска в систему внедряется датчик распредвала, он же датчик фаз. И что он сообщает блоку управления о текущем положении распредвала, который оборачивается за полный цикл работы цилиндра только один раз, соответственно, зная его положение, можно получить точку отсчета для вычисления такта в цилиндре. И при неисправности этого датчика, система переходит в режим попарно-параллельного впрыска, не имея возможности вычислить такт.

Такое описание можно встретить во многих статьях в интернете, в различных роликах об ЭСУД и т.п. И это в целом верно. Но, Рено не было бы Рено, если не придумало бы что-то интересное…

Дальше речь пойдет о снятии сигналов с четырех форсунок одновременно с бензинового мотора Рено, непосредственно перед запуском, и чуть-чуть после запуска.
Итак, чтобы было понятно, что мы будем наблюдать на скринах, привожу пояснение на одиночном импульсе на бензиновую форсунку.

Полный размер

одиночный импульс, поданный на форсунку, двигатель К4М838 (флюенс)


Я думаю, что пояснения на скрине достаточны. По оси времени на этом скрине можно понять, что время впрыска конкретно в этом случае примерно составляет 3 мс, что характерно для холостого хода и фазированного впрыска на моторе объемом 1.6 литра.
Далее, понаблюдаем как выглядит последовательность работы форсунок при фазированном впрыске на холостом ходу, мотор F4R:

Полный размер

Для наглядности номера цилиндров пронумерованы сверху вниз.


Выше представлено три полных цикла работы. Соотнеся последовательность импульсов и ось времени, явно видим, что порядок работы очевидно составляет 1-3-4-2.
Рассмотрим один цикл работы мотора, т.е. тоже самое, но крупнее:

Полный размер

Та же сам

www.drive2.ru

Тип впрыска при наличии датчика распредвала


«Датчик фаз» — ставить или не ставить? Как правильно выбрать фазу впрыска?

   Наверно все знают очередность открытия форсунок в различных видах впрыска, если не все — вот картинки для двигателя с порядком работы цилиндров 1-3-4-2 (ВАЗ) на различных типах впрыска реализуемых системами Январь-5.

   Итак поясню подробнее, фазированный впрыск подразумевает наличие на двигателе специального датчика фаз, установленного на впускном распределительном валу, по этому датчику система определяет фазу впуска 1 цилиндра. При фазированном впрыске форсунка открывается 1 раз за 2 оборота (1 раз за цикл в 4-х тактном двигателе). Фазированный впрыск штатно реализован на всех двигателях 2112, кроме самых старых систем (где в ГБЦ не предусмотрено место под ДФ). При попарно параллельном впрыске форсунки открываются 2 раза за цикл — таким образом всем цилиндрам обеспечиваются более менее равные условия, без применения датчика фаз. При отказе ДФ система также переходит в попарно параллельный режим. Ранее в таком режиме работали двигатели 2111 под нормы Евро-2. Одновременный впрыск не обеспечивает даже ,более менее равных условий сгорания топлива в цилиндрах, так что его рассматривать не будем вообще, это удел примитивных систем управления из прошлых веков, он приводится только для примера. Так же для примера скажу, что одновременный впрыск реализовывался на двигателях 2111 с эбу Я5.1.1-71 под нормы Россия-83.

   Вернемся к нашим баранам — а именно преимуществам фазированного впрыска:

1) Выше точность дозирования топлива на ХХ и низких нагрузках в случае применения форсунок с большой производительностью.

2) Отсутствует 2-й «лаг» (достаточно скользкий участок времени переходных процессов открытия и закрытия форсунки, зависящий от характеристик форсунки и напряжения бортсети в автомобиле, которое может быть довольно нестабильным в процессе эксплуатации). Кроме того это несколько увеличивает диапазон регулирования при выходе форсунок на большие времена впрыска (80% открытия и более).

3) Селекция детонации ведется поцилиндрово а не попарно. В принципе двигатели не идеальны, возможно небольшое различие в камерах сгорания, вызывающее одиночные детонационные стуки в одном из цилиндров при работе на достаточно ранних углах. В этом случае без ДФ отскок по детонации будет распространятся сразу на 2 цилиндра, что приведет к некоторой потере момента двигателем.

4) Возможность задать момент открытия форсунки четко связанный с рабочими процессами в двигателе.

   Подробнее остановимся на 4-м пункте, что же такое фаза впрыска и как она влияет. Для ответа следует немножко ознакомится с теорией двигателя. Наверно все знают, что на режимах частичных нагрузок, особенно в зонах малых дросселей, предел обеднения смеси фактически определяется пределом ее воспламеняемости. Если мы будем обеднять смесь дальше — возникнут пропуски в работе двигателя, провалы и рывки. Для холостого хода таким пределом является порог, когда обороты двигателя в результате пропусков будут дестабилизироватся. Но как не странно двигатель работающий в фазированном режиме допускает гораздо более бедные смеси на режимах как низких нагрузок так и хх.

   В принципе это несложно объяснить. Впускной клапан обычно открывается с некоторым опережением ВМТ а выпускной закрывается с запаздыванием от ВМТ, это состояние называется перекрытием (overlap). Мы возьмем для примера попарно параллельный режим, — часть топлива в любом случае попадает на закрытый впускной клапан, некоторые фракции испаряются некоторые находится в виде взвеси. Если нагрузка не велика — в ресивере как правило давление небольшое (20-40kpa), а в цилиндре в конце такта выпуска давление все еще может сохранятся достаточно высоким. В этом случае при открытии впускного клапана возникает мощный обратный выброс, топливовоздушная смесь которая находилась перед клапаном выбрасывается в ресивер, в результате этого отдельные фракции топлива могут конденсироваться на стенках ресивера и вовлекаться в процесс сгорания гораздо позднее, чем это нужно. Еще одна аномальная ситуация может возникать в режимах где перекрытие обеспечивает продувку камеры. В этом случае часть концентрированной топливовоздушной смеси находящейся перед впускным клапаном может пролететь в выпуск в несгоревшем виде, что ведет к росту CH и расхода топлива. Все это возможно не так важно если вы пытаетесь получить от двигателя максимальную отдачу, но для гражданского двигателя очень желательно еще обеспечить минимальный эксплуатационный расход топлива.

   Проанализировав сказанное несложно сформулировать критерии выбора «фазы впрыска», исключающей описанные нежелательные эффекты:

1) На низких оборотах и нагрузках оптимальный момент открытия форсунки должен совпадать с закрытием выпускного клапана (либо чуть чуть раньше за счет ее лага и скорости движения воздуха).

2) Если время впрыска больше фазы впуска момент открытия надо сдвигать раньше от прежней точки с таким расчетом, чтоб форсунка закрылась чуть раньше, чем закроется впускной клапан. Опять же необходимо учитывать время пролета струи топлива от форсунок до камеры сгорания — т.е. фаза впрыска должна зависеть от того где именно установлены форсунки.

3) Соседние цилиндры могут оказывать сильное влияние в случае асимметричных схем впуска или схем с «пустыми» сегментами впуска (такое наблюдается с 4-х тактными двигателями у которых 2 или 3 цилиндра). При выборе фазы это обязательно должно учитыватся.

   Очевидно, что просто установка датчика фаз дает не много преимуществ, но если поработать с фазой впрыска на конкретных распределительных валах и правильно выбрать составы на низких нагрузках — можно получить серьезную экономию топлива. Поэтому я для себя решил — датчик фаз обязательно должен быть если машина используется для езды по городу. Для многих тюнеров препятствием установки ДФ является отсутствие пластинки маркера ДФ на регулируемом шкиве впускного вала, эта проблема решается элементарно — просто переставьте пластинку с стандартного шкива и закрепите винтами М4.

ДМРВ или ДАД?

   Сначала следует вкратце описать отличия прямой методики измерения расхода воздуха от косвенной. ДМРВ термоанемометрического типа работает следующим образом: сквозь нить или пленку пропускается импульс тока, этот ток вызывает нагрев пленки, при этом сопротивление пленки растет, микрочип смонтирован

autoprivat.ru

Тип впрыска при наличии датчика распредвала


Попарно-параллельный впрыск против фазированного — бортжурнал Лада 2113 Чёрная Буря 2007 года на DRIVE2

Всем привет моим читателям и гостям.

Солнышко с каждым днём светит всё ярче, на улице становиться всё теплее, птички поют, в гаражах потопы, не проехать. На дорогах разбитый асвальт, как всегда бывает весной в Ижевске. Уже совсем скоро можно будет переобуваться на красивые летние катки, но пока ждём, еще рано!

8 марта был отличный весенний день, настроение отличное, на дороге сухой асвальт. Не упустил момент и провёл экcперимент на секретном полигоне. Ровная прямая на 400 метров, машин на дороге мало, поэтому легко сделал 4 ускорения до 130 км/ч.

Задача эксперимента: выяснить на каком типе впрыска: попарно-параллельном или фазированном машина быстрее всего ускоряется при 100% выжатом Вин Дросселе.

Сделал вначале два ускорения на фазированном впрыске, затем отключил датчик фаз и сделал два ускорения на попарно-параллельном впрыске. Датчик фаз отключается очень просто — снимаем фишку с него и машина тут же переходит с фазированного впрыска на попарно-параллельный.

Проводил ускорения следующим образом. Трогался на 1й, чуть разгонялся, включал 3ю и затем сразу же Вин Дросселя в пол. Разгонялся до 130 км/ч. Во время ускорения снимал лог с помощью программы Atomic logger.

Дома, в спокойной обстановке стал анализировать логи разгонов и получил следующие результаты:

Фазированный впрыск:1) Набор скорости от 37 км/ч до 120 км/ч за 12,6 сек

2) Набор скорости от 36 км/ч до 120 км/ч за 13,14 сек

Попарно-параллельный впрыск:1) Набор скорости от 36 км/ч до 121 км/ч за 13,14 сек

2) Набор скорости от 37 км/ч до 121 км/ч за 12,96

Проводил эксперимент со своей лучшей фазой впрыска в открытый клапан. Как видно по результатам, попарно-параллельный впрыск нисколько не уступает фазированному. Кто не верит, могу прислать логи разгона, но я не вижу смысла доказывать что-то кому-то, я просто провёл эксперимент а вы уже сами решайте. Пару слов я всё же скажу.

Фазированный впрыск подаёт полную порцию топлива в закрытый либо открытый впускной клапан. Попарно-паралельный делит полную порцию топлива на пополам и еще к каждой порции прибавляет небольшую добавку (которая также задаётся в прошивке). Затем каждую такую порцию подаёт вначале на открытый клапан, затем на закрытый. На ускорении и на больших оборотах мотора в этом эксперименте не видно разницы между двумя типами впрыска. На попарно-параллельном впрыске во время двух ускорений я слышал детонацию, на фазированном впрыске такого я не заметил. Думаю на маленьких скоростях и оборотах фазированный впрыск будет лучше, он будет меньше расходовать бензина, форсунки будут открываться в два раза реже. Но всё равно, разницы практически не видно. Поэтому у кого мотор без датчика фаз, не переживайте, вы не проиграете в разгоне против фазированного впрыска.

Схема работы 3х типов впрыска

А на старых автомобилях года так 2002 например, впрыск вообще одновременный! На каждые 360гр коленвала все 4 форсунки брызгают. На таком типе впрыска мне приходилось настраивать моторы, я вам скажу что они тоже нормально так едут, если постараться их настроить!

Всем удачи в настройке и чиповке моторов!

Цена вопроса: 0 ₽ Пробег: 123000 км

www.drive2.ru

Датчик положения распредвала — Автоэлектрик

electroshemi.ru

Фазированный впрыск топлива.

Дальнейшего повышения точности дозирования впрыскиваемого топлива при малых длительностях впрыска путём уменьшения негативного влияния инерционности электромагнитных топливных форсунок, каждую форсунку стали обслуживать собственным выходным транзистором блока управления двигателем. Такая схема впрыска называется фазированным впрыском или последовательным впрыском топлива. За счёт уменьшения частоты срабатывания форсунки по сравнению с параллельным и попарно-параллельным впрыском в два раза, потребовалось уже более продолжительное открытие форсунки для обеспечения подачи того же количества топлива.

То есть, схема управления форсунками была модернизирована так, что вместо двух коротких впрысков топлива осуществляется один более продолжительный впрыск. Таким образом, замена параллельной схемы впрыска топлива на фазированную позволила заметно повысить точность дозирования впрыскиваемого топлива при малых длительностях впрыска.

  Осциллограммы напряжения сигналов системы управления 4-х цилиндрового 4-х тактного  двигателя, осуществляющей фазированный впрыск топлива, демонстрирующие схему впрыска топлива данной системы.

  1. Осциллограмма напряжения управляющих импульсов топливной  форсункой 1-го цилиндра.
  2. Осциллограмма напряжения управляющих импульсов топливной  форсункой 2-го цилиндра.
  3. Осциллограмма напряжения управляющих импульсов топливной  форсункой 3-го цилиндра.
  4. Осциллограмма напряжения управляющих импульсов топливной  форсункой 4-го цилиндра.
  5. Осциллограмма напряжения выходного сигнала датчика положения / частоты вращения коленчатого вала. За один полный оборот коленвала датчик генерирует 58 импульсов и один пропуск, продолжительность которого соответствует продолжительности двух импульсов. Соответственно, за один полный цикл работы 4-х тактного двигателя (за два оборота коленвала) датчик генерирует такие пропуски дважды.
  6. Осциллограмма напряжения выходного сигнала датчика положения распределительного вала (датчика фаз). За два полных оборота коленвала датчик генерирует один импульс.
  7. Импульс синхронизации с моментом зажигания в первом цилиндре. 

     Здесь, впрыск топлива осуществляется тогда, когда обслуживаемый данной форсункой цилиндр находится на такте выпуска отработавших газов, то есть, незадолго до такта впуска. За два полных оборота коленчатого вала двигателя соответствующих одному полному циклу работы четырёхтактного двигателя, каждая форсунка впрыскивает топливо только один раз. То есть, по сравнению с параллельным и попарно-параллельным впрыском, здесь частота срабатывания форсунки уменьшена в два раза. За счёт этого, для обеспечения подачи заданного количества топлива потребовалось более продолжительное открытие форсунки, а за счёт увеличения продолжительности открытого состояния форсунки уменьшилось негативное влияние инерционности электромагнитных топливных форсунок на точность дозирования топлива. Таким образом, замена попарно-параллельной схемы впрыска топлива на фазированную позволила ещё больше повысить точность дозирования впрыскиваемого топлива при малых длительностях впрыска.

    Для реализации фазированной схемы впрыска топлива потребовались заметные доработки системы управления двигателем, обеспечивающие привязку алгоритма управления форсунками к фазам рабочего цикла цилиндров. По этому, двигатели, оборудованные фазированным впрыском топлива, дополнительно оснащены датчиком положения распределительного вала (датчиком фаз). Кроме того, блок управления такого двигателя потребовалось дооснастить ещё несколькими силовыми транзисторами, для управления каждой форсункой индивидуально. Кроме внесения изменений в блок управления двигателем, потребовалось применение форсунок с более тонким распылом топлива, так как уменьшилась продолжительность процесса испарения топлива и смешивания его с воздухом. На некоторых двигателях, дополнительно, это позволило использовать режим работы при более бедной смеси (дополнительно потребовалось изменение конструкции впускного коллектора и применение заслонок завихрителей, для формирования вертикальных потоков воздуха в цилиндре).

   Следует заметить, что в момент пуска двигателя блок управления двигателем переключается на параллельную схему впрыска топлива, то есть, включает и выключает все топливные форсунки одновременно до тех пор, пока не распознает сигнал от датчика положения распределительного вала. Дополнительно применяется асинхронный режим впрыска. В момент, когда водитель очень резко нажимает на педаль акселератора, некоторые блоки управления могут осуществлять впрыскивание дополнительного количества топлива несколькими малыми порциями в цилиндры, которые в данный момент находятся перед или вначале такта впуска.

Осциллограммы напряжения сигнала управления форсункой и сигнала от датчика положения дроссельной заслонки системы фазированного впрыска топлива в момент резкой перегазовки.

4  Осциллограмма напряжения выходного сигнала датчика положения дроссельной заслонки.

6  Осциллограмма напряжения управляющих импульсов топливной форсункой одного из цилиндров.

    Как видно из приведённым выше осциллограммам, на переходных режимах работы двигателя, в данном примере в момент резкого открытия дроссельной заслонки, система фазированного впрыска топлива может осуществлять дополнительные циклы впрыска топлива, дополнительно обогащая таким образом состав приготовляемой топливовоздушной смеси. Благодаря этому снижается вероятность возникновения пропусков воспламенения топливовоздушной смеси в цилиндрах при работе двигателя на переходных режимах.

    В системах точечного впрыска топлива подавляющего большинства двигателей современных автомобилей реализован именно фазированный впрыск топлива.

auto-master.su

Датчик распредвала

Предоставляет в систему управления зажиганием или ЭБУ двигателем информацию о фазовом положении распределительного вала.

ПРИНЦИП РАБОТЫ

Рассмотрим часто встречающиеся типы датчиков фазового положения распределительного вала.

Индукционные датчики или датчики генераторного типа более распостранены и представляют собой катушку индуктивности намотанную на каркасе, внутри которого расположен магнитный сердечник. При прохождении маркерного штифта мимо магнитного сердечника датчика в катушке наводится Э.Д.С.

Аналоговый сигнал преобразуется в ЭБУ и используется в качестве параметра для управления работой двигателя.

На рисунке изображен в разрезе такой датчик.

Рис. Индуктивный датчик: 1 — постоянный магнит, 2 — корпус, 3 — место крепления, 4 — сердечник, 5 — обмотка, 6 — диск с маркерным штифтом.

Рис. Датчик распредвала.

На рисунке ниже показана осциллограмма датчика распредвала. Некоторые производители используют одинаковые индукционные датчики распредвала и коленвала.

Рис. Осциллограмма датчика распредвала.

Магнитоэлектрический датчик Холла (Hall/MRE) используют для получения импульсов напряжения при прохождении стального цилиндрического экрана между постоянным магнитом с одной стороны и полупроводником, по которому протекает ток — с другой. Некоторые производители систем управления используют одинаковый сигнал, некоторые — сложный (форма экрана), по которому можно вычислить деффектный цилиндр при неравномерной работе двигателя.

Рис. Датчик распредвала.

Рис. Осциллограмма датчика распредвала.

На рисунке ниже приведена схема системы управления, в которой используется датчик распредвала, использующий эффект Холла.

Рис. Электросхема системы управления автомобилем ОПЕЛЬ Вектра: 40 — датчик распредвала (Hall/MRE), 39 — индукционный датчик коленвала, 10 — модуль зажигания, 11 — катушка зажигания, 154 — соленоидальный клапан EGR.

РАСПОЛОЖЕНИЕ

Индукционные датчики располагаются над маркерным диском. Датчики Холла обычно расположены в непосредственной близости к распредвалу, на котором закреплена металлическая маркерная часть.

НЕИСПРАВНОСТИ

Первым признаком неисправности датчика распредвала или его цепей является переобогащение топливной смеси в бензиновых двигателях, т.к. ЭБУ двигателем переходит от режима фазированного, на режим одновременного впрыска топлива. В некоторых системах управления (Audi 100, 2.8 л, двигатель ААН) отключаются функции управления зажиганием.

Дизельные двигатели обычно работают до выключения зажигания.

В индукционных датчиках случаются обрывы обмотки, межвитковое замыкание, повреждение проводов или колодки соединения.

Датчики Холла выходят из строя из-за неисправности электрической части.

МЕТОДИКА ПРОВЕРКИ

Индукционные датчики имеют сопротивление от 200 до 900 Ом.

Датчики на эффекте Холла можно проверять в отсоединённом и в присоединённом к общей схеме состоянии. На сигнальном выводе при вращении должно появляться и исчезать питающее напряжение.

РЕМОНТ

Ремонту не подлежат.

ustroistvo-avtomobilya.ru

 

«Питер — АТ»
ИНН 780703320484
ОГРНИП 313784720500453

      Датчик положения распредвала часто называют датчиком фаз (датчиком Холла), а  впрыск в этом случае называют фазированным распределённым. Датчик расположен на головке блока цилиндров. На шкиве впускного распределительного вала находится задающий диск с прорезью. Прохождение прорези возле датчика соответствует моменту открытия впускного клапана первого цилиндра. Таким образом, датчик фаз выдает на контроллер импульсный сигнал, синхронизирующий впрыск топлива с открытием впускных клапанов, то есть поочерёдно открывается только одна форсунка для конкретного цилиндра. Принцип действия датчика основан на эффекте Холла. Его назначение в том, чтобы помочь модулю управления определить — какая фаза имеется в первом цилиндре: заканчивается, скажем такт сжатия или заканчивается такт выпуска отработавших газов. Ведь поршень первого цилиндра  проводит все такты за два оборота коленвала. И только распредвал имеет такую возможность – его положение как раз и определяет, какой клапан открыт, какая фаза газораспределения. Иными словами, датчик положения распредвала предназначается для того, чтобы определять угловое положение механизма газораспределения, в соответствие с положением коленвала. Затем информация с датчика поступает в систему управления двигателя для управления впрыском топлива и зажиганием.

Проверка ДПРВ

   Чтобы проверить датчик положения распредвала, на него необходимо подать питание. Для этого потребуется собрать отдельную электрическую схему, что неудобно. Можно использовать другой известный способ. Его суть в следующем. Поскольку ДПРВ обеспечивает фазированный впрыск топлива, то для одного какого-либо конкретного цилиндра такт впуска будет происходить один раз за два оборота коленвала. Допустим, обороты холостого хода составляют 720 об/мин или 720:60=12 об/сек. Значит, впрыск топлива будет происходить с частотой 12:2=6 Гц. С такой частотой будут поступать импульсы на форсунку.

   Отказ датчика положения распредвала приведёт к тому, что контроллер будет руководствоваться сигналами только ДПКВ, то есть производить впрыск топлива одновременно в форсунки двух цилиндров (в одном поршень будет находиться возле верхней мертвой точки, а в другом-возле нижней). Такой режим топливоподачи называется попарно-параллельным (используется в двигателях ВАЗ-2111, где датчика фаз нет). Следовательно, за один оборот коленчатого вала форсунка будет открываться дважды, то есть с частотой не 6, а 12 Гц.

   Разобравшись с теорией, приступаем к практической проверке. Прогреваем двигатель до устойчивых оборотов холостого хода. Снимаем с одной форсунки разъём жгута и подсоединяем к его контактам маломощную лампочку 12 В, 5 Вт. Допустимо заменить её на светодиод с резистором, как указано на схеме выше. Запускаем двигатель и наблюдаем за частотой моргания лампочки. Затем снимаем разъём с ДПРВ и сравниваем частоту с той, что была перед этим. Если она увеличилась в два раза, то датчик исправен (изменение частоты в два раза можно заметить на глаз). Если частота моргания лампы не изменилась, то датчик положения распредвала неисправен.

Видео — датчик положения распредвала

Это должен знать каждый владелец авто:
Предохранители Рено

    Большинство цепей питания электрооборудования автомобилей марки Рено (различных моделей и модификаций) защищено предохранителями. Фары, электрические двига…

Управление автомобилем через iphone

   Управлять через iPhone своим Porsche — и это уже возможно! Обзор новинок от немецкой компании из Штутгарта – Porsche. В статье рассмотрен ожидаемый в России хэтчбек Porsche Panamera, тюнингованны…

Ремонт обратного клапана

    Ремонт обратного клапана ВАЗ-2109. Регулятор давления топлива — он же обратный клапан или перепускной клапан, установлен на топливной рейке и пред…

piter-at.ru

«Датчик фаз» — ставить или не ставить? Как правильно выбрать фазу впрыска? — DRIVE2

«Датчик фаз» — ставить или не ставить? Как правильно выбрать фазу впрыска?

Наверно все знают очередность открытия форсунок в различных видах впрыска, Итак поясню подробнее, фазированный впрыск подразумевает наличие на двигателе специального датчика фаз, установленного на впускном распределительном валу, по этому датчику система определяет фазу впуска 1 цилиндра. При фазированном впрыске форсунка открывается 1 раз за 2 оборота (1 раз за цикл в 4-х тактном двигателе). Фазированный впрыск штатно реализован на всех двигателях 2112, кроме самых старых систем (где в ГБЦ не предусмотрено место под ДФ). При попарно параллельном впрыске форсунки открываются 2 раза за цикл — таким образом всем цилиндрам обеспечиваются более менее равные условия, без применения датчика фаз. При отказе ДФ система также переходит в попарно параллельный режим. Ранее в таком режиме работали двигатели 2111 под нормы Евро-2. Одновременный впрыск не обеспечивает даже, более менее равных условий сгорания топлива в цилиндрах, так что его рассматривать не будем вообще, это удел примитивных систем управления из прошлых веков, он приводится только для примера. Так же для примера скажу, что одновременный впрыск реализовывался на двигателях 2111 с эбу Я5.1.1-71 под нормы Россия-83.

Вернемся к нашим баранам — а именно преимуществам фазированного впрыска:

1) Выше точность дозирования топлива на ХХ и низких нагрузках в случае применения форсунок с большой производительностью.

2) Отсутствует 2-й «лаг» (достаточно скользкий участок времени переходных процессов открытия и закрытия форсунки, зависящий от характеристик форсунки и напряжения бортсети в автомобиле, которое может быть довольно нестабильным в процессе эксплуатации). Кроме того это несколько увеличивает диапазон регулирования при выходе форсунок на большие времена впрыска (80% открытия и более).

3) Селекция детонации ведется поцилиндрово а не попарно. В принципе двигатели не идеальны, возможно небольшое различие в камерах сгорания, вызывающее одиночные детонационные стуки в одном из цилиндров при работе на достаточно ранних углах. В этом случае без ДФ отскок по детонации будет распространятся сразу на 2 цилиндра, что приведет к некоторой потере момента двигателем.

4) Возможность задать момент открытия форсунки четко связанный с рабочими процессами в двигателе.

Подробнее остановимся на 4-м пункте, что же такое фаза впрыска и как она влияет. Для ответа следует немножко ознакомится с теорией двигателя. Наверно все знают, что на режимах частичных нагрузок, особенно в зонах малых дросселей, предел обеднения смеси фактически определяется пределом ее воспламеняемости. Если мы будем обеднять смесь дальше — возникнут пропуски в работе двигателя, провалы и рывки. Для холостого хода таким пределом является порог, когда обороты двигателя в результате

www.drive2.ru

принцип работы и способы диагностики

Датчик положения распределительного вала (ДПРВ), или датчик фаз (ДФ), необходим для согласования взаимодействия системы впрыска топлива с механизмами двигателя. Он работает в паре с датчиком коленвала и регистрирует угол положения ГРМ. Как можно догадаться по названию, датчик распредвала находится в непосредственной близости от деталей привода ГРМ, а именно шестерён или звёздочек.
На шестерне или звёздочке распредвала есть задающие метки для формирования скачкообразных изменений магнитного поля, создаваемого ДФ. Метка может иметь форму выступа или, наоборот, углубления на шестерне ГРМ. На многих моторах установлены специальные задающие диски, имеющие максимально возможный для конструкции двигателя диаметр. Метка указывает на угол поворота распредвала и чем больше диаметр задающего диска, тем точнее метка обозначит угол поворота.
Наглядно это можно представить, попробовав расчертить круги диаметром, скажем, 1 сантиметр и 10 см, на секторы по одному градусу. На маленьком круге это сделать практически невозможно, а размеры большого вполне позволят ещё и отметить необходимые точки, находящиеся на определённом угловом расстоянии друг от друга.

Содержание статьи

Принцип работы датчика распредвала

Датчик положения распредвала

На ДФ подаётся напряжение, возбуждающее магнитное поле катушкой датчика. Задающая метка, попадая в это поле, создаёт скачкообразное его изменение, которое воспринимает датчик и преобразует в электрический импульс, посылаемый в электронный блок управления (“мозги”) двигателя.

Функционирование датчика распредвала основано на эффекте Холла.

Устройства подобного типа называются датчиками Холла и широко применяются в современной технике – бензопилы, косы и т.д. Отсутствие подвижных деталей делает их в несколько раз надёжнее, чем, допустим, применение контактных систем зажигания.
Аналогичное устройство считывает угол поворота коленчатого вала. Сигналы обеих обрабатываются ЭБУ по заданной программе. Датчик распределительного вала отвечает за своевременную подачу напряжения на топливные форсунки.
На бензиновых двигателях обычно делается метка, указывающая на фазу ГРМ, соответствующая нахождению поршня первого цилиндра в верхней мёртвой точке. На современных дизельных моторах таких меток (реперов) несколько, для регистрации угла (фазы) на каждом цилиндре. Это позволяет точнее сформировать сигнал, открывающий форсунки. Дизельные топливные системы Common Rail предусматривают точное управление процессом сгорания топливной смеси, для чего топливо может впрыскиваться форсункой несколько раз во время одной вспышки. Это, в свою очередь, требует точности определения фазы. Именно для этого и нужен датчик распредвала.
Кроме того, на двигателях с гидравлической подстройкой фаз сигналы ДПРВ, обработанные ЭБУ, позволяют изменять подачу масла в гидромуфты за счёт изменения напряжения, подающегося на управляющие соленоиды (например, на двигателях BMW).

Симптомы неисправности датчика положения распредвала

Диагностика датчика положения распредвала

При поломке ДПРВ двигатель переходит на попарно-параллельный тип впрыска топлива. Это означает, что форсунки осуществляют впрыск сразу по две для цилиндров, поршни которых находятся в сходных положениях, но разных рабочих тактах. То есть, например, поршни первого и третьего цилиндров двигаются вниз, но первый под действием вспышки топливной смеси в процессе такта рабочего хода, а третий – в такте впуска, но форсунки обеих осуществляют впрыск. Для третьего цилиндра это необходимо, но клапаны первого закрыты. В результате в третий цилиндр попадёт переобогащённая смесь. При дальнейшем вращении коленвала такты поменяются, и сложится аналогичная ситуация в первом цилиндре.
Такой тип впрыска происходит потому, что при поломке ДФ ЭБУ подаёт напряжение на форсунки, считывая только показания датчика коленвала, а тот не регистрирует фазы газораспределения, а только углы поворота маховика. В результате этого управляющий сигнал подаётся одновременно и на свечи зажигания и на форсунки. Проскочившая «лишний» раз искра на свече никак не повлияет на работу мотора, чего нельзя сказать об излишнем впрыске топлива.
Признаки поломки датчика распределительного вала:

  • затруднённый пуск двигателя, вне зависимости от того, холодный он или прогретый;
  • резкое увеличение расхода топлива;
  • горит лампа «Check engine»;
  • неустойчиво работает двигатель;
  • повышенная рабочая температура охлаждающей жидкости.

При диагностике двигателя неисправности в цепи датчика положения распредвала ошибки имеют коды р0340 (ошибка датчика фазы) и р0343 (высокий уровень сигнала цепи ДПРВ). Причины сбоев работы датчика следующие:

  • поломка датчика;
  • обрыв в проводке;
  • окисление контактов в соединительной колодке, вплоть до «отгнивания» проводов;
  • неправильная (не по меткам) установка цепи или ремня ГРМ;
  • отклонение от нормы бортового напряжения автомобиля;
  • поломка или выпадение штифта (репера) на шестерне или задающем диске – в зависимости от конструкции.

Поиск неисправности

Диагностика датчика положения распредвала мультиметром

Перед началом работ по поиску причины отказа в любой электрической цепи автомобиля имейте в виду, что разъединять колодки («фишки») в проводке можно только при выключенном зажигании – иначе Вы рискуете спровоцировать скачок напряжения, ведущий к выходу из строя некоторых элементов системы управления двигателем.
Сначала произведите визуальный осмотр ДПРВ и ведущих к нему проводов. Зачастую провода, входящие в колодку датчика, окисляясь, отваливаются от клемм. Допускается проверить соединение, слегка подёргав отдельные проводки.

Замеры напряжения необходимо производить высокоомным вольтметром (в составе мультиметра), чтобы через слаботочные приборы не пропускать ток, могущий их сжечь.

Если осмотр не выявил ничего подозрительного, приступайте к проверке датчика распределительного вала мультиметром. Сначала отсоедините колодку от ДПРВ и замерьте питающее напряжение датчика. К его разъёму подходят три провода – питающие «+» и «-« и провод на ЭБУ. Между питающими (крайними) напряжение должно быть, как в бортовой сети автомобиля (при включенном зажигании). Минусовой («массовый») провод, как правило, чёрного цвета. Затем измерьте напряжение между минусовым проводом питания ДПРВ и «массой» двигателя. Норма – не более 0,2 вольта. Затем измерьте напряжение на среднем проводе, «врезав» в него вольтметр. Прокручивая двигатель стартером, измерьте напряжение. Исправный датчик будет выдавать колебания напряжения от 0,4 до 5 вольт.
Осуществив прозвонку, несложно сделать вывод, что неисправно – питающая цепь или сам ДПРВ. Проще проверить датчик, заменив его заведомо исправным, потому что тестером невозможно определить форму импульса, посылаемого устройством в ЭБУ. Такая задача по силам лишь осциллографу.
После того, как Вы обнаружите причину неисправности, последующий ремонт – восстановление проводки или замена датчика положения распредвала – не составит особого труда.

Подробнее о принципе работы датчика Холла – смотрите в видео на нашем сайте

mytopgear.ru

Что из себя представляет импульсный датчик положения распредвала (ДПРВ) — DRIVE2

Доброго времени суток Уважаемые читатели.

Сегодня решил я написать про импульсный датчик положения распредвала, что он из себя представляет и как понять рабочий ли он…

И так:
Датчик положения распредвала является интегральным датчиком, включающим чувствительный элемент и вторичный преобразователь сигнала. 
Чувствительный элемент выполнен на основе магниторезистивного эффекта, который заключается в изменении электрического сопротивления при воздействии (изменении) слабого магнитного поля. 
Вторичный элемент содержит мостовую схему, операционный усилитель и выходной каскад, выполненный в виде открытого коллектора.
При появлении штифта-отметчика датчик формирует сигнал низкого уровня, близкий к массе. 

Гибель» датчика положения распредвала неопытному ремонтнику без диагностического оборудования обнаружить весьма сложно. Хотя двигатель и работает в нештатном режиме попарно-параллельной подачи топлива, когда каждая форсунка срабатывает в два раза чаще (один раз за каждый оборот коленвала) — определить это на слух пытаться не стоит. Выхлоп теряет былую чистоту, но поймать увеличение токсичности удается только замерами по ездовому циклу. Понять, что мотор нездоров, можно по возросшему расходу топлива. Еще один признак неисправности — сбои в работе системы самодиагностики. К другим неприятным для двигателя последствиям отказ датчика распредвала привести не должен…

НАИБОЛЕЕ ЧАСТЫМИ НЕИСПРАВНОСТЯМИ ДАТЧИКА ПОЛОЖЕНИЯ РАСПРЕДЕЛИТЕЛЬНОГО ВАЛА (ДПРВ) ОТНОСЯТСЯ:

Причина 1: датчик не подключен к жгуту проводов. 
Причина 2: наличие воды в соединителе датчика. 
Причина 3: замыкание на массу сигнального провода датчика. 
Причина 4: обрыв сигнального провода датчика. 
Причина 5: замыкание на бортсеть сигнального провода датчика. 
Причина 6: обрыв экранирующей оболочки проводов датчика или жгута. 
Причина 7: обрыв провода электропитания датчика. 
Причина 8: перепутано подключение проводов электропитания датчика. 
Причина 9: неисправность датчика положения распредвала. 
Причина 10: неисправность высоковольтных цепей зажигания. 
Причина 11: неисправность блока управления двигателем. (Крайне редкая неисправность)
Причина 12: большой монтажный зазор между датчиком и отметчиком. (Тут причиной могут быть природные факторы, например скопившаяся грязь в совокупности с моторным маслом)
Причина 13: малый монтажный зазор между датчиком и отметчиком. 
Причина 14: повышенное торцевое биение шестерни распредвала. (в данном случае, необходимо вскрыть крышку двигателя и смотреть состояние самих валов)
Причина 15: возможно наличие стружки на самом датчике, т.к. он работает на импульсной основе, наличие стружки будет влиять на ошибочные показания датчика.

Способы проверки исправности цепи датчика. 

1. Проверьте подключение датчика к жгуту проводов. 
2. Если подключение датчика к розетке жгута проводов нормальное, то отсоедините от датчика розетку жгута проводов и проверьте наличие воды в его соединителе. При необходимости вытряхните воду из вилки и розетки соединителя датчика, очистите контакты от грязи. 
3. Внимательно осмотрите целостность кабеля датчика и его оболочки. Возможно повреждение кабеля. (кстати наиболее распространенная причина неисправности Д

www.drive2.ru

#10 Что такое впрыск топлива и как работает система впрыска? — DRIVE2

Что такое впрыск топлива и как работает система впрыска?

Впрыск топлива — это система дозированной подачи топлива в цилиндры двигателя. Существует много разновидностей систем впрыска — механический, моновпрыск, распределенный, непосредственный. В данной статье мы расскажем про современные электронные системы подачи топлива на основе системы управления двигателем, как они работает и из каких датчиков состоят.

Как работает система впрыска топлива?

На рисунке схематично показан принцип работы распределенного впрыска.

Подача воздуха (2) регулируется дроссельной заслонкой (3) и перед разделением на 4 потока накапливается в ресивере (4). Ресивер необходим для правильного измерения массового расхода воздуха (т.к измеряется общий массовый расход или давление в ресивере.

Последний должен быть достаточного объема для исключения воздушного «голодания» цилиндров при большом потреблении воздуха и сглаживания пульсаций на пуске. Форсунки (5) устанавливаются в канал в непосредственной близости от впускных клапанов.

Датчики системы впрыска топлива

Для функционирования электронной системы управления двигателем не обязательно наличие всех датчиков. Комплектации зависят от системы впрыска, от норм токсичности. В программе управления есть флаги комплектации, которые информируют ПО о наличии или отсутствии каких-либо датчиков. Например, в системах Евро-2 отсутствуют датчик неровной дороги.

Датчик кислорода (ДК) — рассчитывает содержание О2 в отработанных газах. Используется только в системах с катализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода — до катализатора и после него). Датчик фазы нужен для более точного расчета времени впрыска в системах с фазированным впрыском.

Датчик положения коленвала (ДПКВ) — считывает частоту вращения коленвала и его положение. Служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ — полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик массового расхода воздуха (ДМРВ) — определяет массовый расход воздуха, поступающего в двигатель. Служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

Датчик температуры охлаждающей жидкости (ДТОЖ) — следит за температурой охлаждающей жидкости. Служит для определения коррекции топливоподачи и зажигания по температуре и управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени

www.drive2.ru