23Июл

Схема поршня: Схема поршня в сборе с шатуном

Содержание

Поршень двигателя (назначение, устройство, принцип работы)

В цилиндро-поршневой группе (ЦПГ) происходит один из основных процессов, благодаря чему двигатель внутреннего сгорания функционирует: выделение энергии в результате сжигания топливовоздушной смеси, которая впоследствии преобразуется в механическое действие – вращение коленвала. Основной рабочий компонент ЦПГ — поршень. Благодаря ему создаются необходимые для сгорания смеси условия. Поршень — первый компонент, участвующий в преобразовании получаемой энергии.

Поршень двигателя имеет цилиндрическую форму. Располагается он в гильзе цилиндра двигателя, это подвижный элемент – в процессе работы он совершает возвратно-поступательные движения и выполняет две функции.

  1. При поступательном движении поршень уменьшает объем камеры сгорания, сжимая топливную смесь, что необходимо для процесса сгорания (в дизельных моторах воспламенение смеси и вовсе происходит от ее сильного сжатия).
  2. После воспламенения топливовоздушной смеси в камере сгорания резко возрастает давление.
    Стремясь увеличить объем, оно выталкивает поршень обратно, и он совершает возвратное движение, передающееся через шатун коленвалу.

Что такое поршень двигателя внутреннего сгорания автомобиля?

Устройство детали включает в себя три составляющие:

  1. Днище.
  2. Уплотняющая часть.
  3. Юбка.

Указанные составляющие имеются как в цельнолитых поршнях (самый распространенный вариант), так и в составных деталях.

Днище

Днище — основная рабочая поверхность, поскольку она, стенки гильзы и головка блока формируют камеру сгорания, в которой и происходит сжигание топливной смеси.

Главный параметр днища — форма, которая зависит от типа двигателя внутреннего сгорания (ДВС) и его конструктивных особенностей.

В двухтактных двигателях применяются поршни, у которых днище сферической формы – выступ днища, это повышает эффективность наполнения камеры сгорания смесью и отвод отработанных газов.

В четырехтактных бензиновых моторах днище плоское или вогнутое. Дополнительно на поверхности  проделываются технические углубления – выемки под клапанные тарелки (устраняют вероятность столкновения поршня с клапаном), углубления для улучшения смесеобразования.

В дизельных моторах углубления в днище наиболее габаритны и имеют разную форму. Такие выемки называются поршневой камерой сгорания и предназначены они для создания завихрений при подаче воздуха и топлива в цилиндр, чтобы обеспечить лучшее смешивание.

Уплотняющая часть предназначена для установки специальных колец (компрессионных и маслосъемных), задача которых — устранять зазор между поршнем и стенкой гильзы, препятствуя прорыву рабочих газов в подпоршневое пространство и смазки – в камеру сгорания (эти факторы снижают КПД мотора). Это обеспечивает отвод тепла от поршня к гильзе.

Уплотняющая часть

Уплотняющая часть включает в себя проточки в цилиндрической поверхности поршня — канавки, расположенные за днищем, и перемычки между канавками. В двухтактных двигателях в проточки дополнительно помещены специальные вставки, в которые упираются замки колец. Эти вставки необходимы для исключения вероятности проворачивания колец и попадания их замков во впускные и выпускные окна, что может стать  причиной их разрушения.

Перемычка от кромки днища и до первого кольца именуется жаровым поясом. Этот пояс воспринимает на себя наибольшее температурное воздействие, поэтому высота его подбирается, исходя из рабочих условий, создаваемых внутри камеры сгорания, и материала изготовления поршня.

Число канавок, проделанных на уплотняющей части, соответствует количеству поршневых колец (а их может использоваться 2 — 6). Наиболее же распространена конструкция с тремя кольцами — двумя компрессионными и одним маслосъемным.

В канавке под маслосъемное кольцо проделываются отверстия для стека масла, которое снимается кольцом со стенки гильзы.

Вместе с днищем уплотнительная часть формирует головку поршня.

Вас также заинтересует:

Юбка

Юбка выполняет роль направляющей для поршня, не давая ему изменить положение относительно цилиндра и обеспечивая только возвратно-поступательное движение детали. Благодаря этой составляющей осуществляется подвижное соединение поршня с шатуном.

Для соединения в юбке проделаны отверстия для установки поршневого пальца. Чтобы повысить прочность в месте контакта пальца, с внутренней стороны юбки изготовлены специальные массивные наплывы, именуемые бобышками.

Для фиксации пальца в поршне в установочных отверстиях под него предусмотрены проточки для стопорных колец.

Типы поршней

В двигателях внутреннего сгорания применяется два типа поршней, различающихся по конструктивному устройству – цельные и составные.

Цельные детали изготавливаются путем литья с последующей механической обработкой. В процессе литья из металла создается заготовка, которой придается общая форма детали. Далее на металлообрабатывающих станках в полученной заготовке обрабатываются рабочие поверхности, нарезаются канавки под кольца, проделываются технологические отверстия и углубления.

В составных элементах головка и юбка разделены, и в единую конструкцию они собираются в процессе установки на двигатель. Причем сборка в одну деталь осуществляется при соединении поршня с шатуном. Для этого, помимо отверстий под палец в юбке, на головке имеются специальные проушины.

Достоинство составных поршней — возможность комбинирования материалов изготовления, что повышает эксплуатационные качества детали.

Материалы изготовления

В качестве материала изготовления для цельнолитых поршней используются алюминиевые сплавы. Детали из таких сплавов характеризуются малым весом и хорошей теплопроводностью. Но при этом алюминий не является высокопрочным и жаростойким материалом, что ограничивает использование поршней из него.

Литые поршни изготавливаются и из чугуна. Этот материал прочный и устойчивый к высоким температурам. Недостатком их является значительная масса и слабая теплопроводность, что приводит к сильному нагреву поршней в процессе работы двигателя. Из-за этого их не используют на бензиновых моторах, поскольку высокая температура становится причиной возникновения калильного зажигания (топливовоздушная смесь воспламеняется от контакта с разогретыми поверхностями, а не от искры свечи зажигания).

Конструкция составных поршней позволяет комбинировать между собой указанные материалы. В таких элементах юбка изготавливается из алюминиевых сплавов, что обеспечивает хорошую теплопроводность, а головка – из жаропрочной стали или чугуна.

Но и у элементов составного типа есть недостатки, среди которых:

  • возможность использования только в дизельных двигателях;
  • больший вес по сравнению с литыми алюминиевыми;
  • необходимость использования поршневых колец из жаростойких материалов;
  • более высокая цена;

Из-за этих особенностей сфера использования составных поршней ограничена, их применяют только на крупноразмерных дизельных двигателях.

Видео: Принцип работы поршня двигателя. Устройство

Поршень ДВС функции,конструкция,виды,применение

Поршень двс

Поршень одна из важных деталей двигателя внутреннего сгорания благодаря которой передается энергия на шатун. В этой статье поговорим про устройство поршня узнаем его назначения и рассмотрим его фото.

Поршень двc на первый взгляд имеет простую конструкцию. Тем не менее не все так просто инженеры постоянно работают над облегчением поршня и увеличением его прочности. Другими словами стараются найти золотую середину. Найти золотую середину бывает не просто, так как поршень постоянно эксплуатируется в экстремальных условиях при высоких температурах и повышенных инерционных нагрузках. Под действием энергии топливно-воздушной смеси поршень отправляется в НМТ ( нижнюю мертвую точку). Поршень в свою очередь передает энергию на коленвал через шатун с которым поршень связан через поршневой палец.

Основные функции поршня двс:

1) Отвод излишков тепла.

2) Благодаря поршню камера сгорания становится герметичной.

3) Передача энергии на коленвал через шатун.

Если сказать кратко задача поршня передать энергию газов на коленвал чтобы последний преобразовал ее в механическую энергию.

Устройство

В последнее время поршень двс изготавливают из алюминия так как этот материал лёгкий и прочный.

Поршни бывают литые и кованные. Литые поршни изготавливаются литьём под давлением. Кованные поршни изготавливают методом штамповки из алюминиевого сплава с небольшим добавлением кремния 15%. Что увеличивает их прочность и износостойкость.

Обсудим основные детали поршня, более подробно устройство поршня можно рассмотреть на схеме.

Днище

Днище поршня может иметь 5 разных видов поверхностей у каждого типа свои преимущества и недостатки.

Плоское. Такой тип поверхности используется довольно часто. Недостаток поршня такого типа, в том что при обрыве ремня поршни гнут клапана.

Вогнутое. Обеспечивает более эффективную работу камеры сгорания. Тем не менее способствует большему образованию отложений при сгорании топлива.

OLYMPUS DIGITAL CAMERA

Выпуклое. Улучшает производительность поршня, но при этом понижает эффективность сгорания топлива.

С циковками. Предотвращают столкновение поршней с клапанами за счёт специальных углублений называемых циковками. Из-за канавок может быть небольшая потеря мощности.

С лужей.Такой тип поршней также оснащен канавками только большего размера. Цель таких поршней понизить степень сжатия. Например они отлично подходят для турбокомпрессора.

Компрессионные кольца

Обычно в двc устанавливается 2 компрессионных кольца и одно маслосъемное. Поршневые кольца изготавливаются из высокопрочного чугуна. Расстояние от днища поршня до первого кольца носит огневой пояс. Функция поршневых колец состоит в том, чтобы поршень плотно прилегал к цилиндру. Для уменьшения трения используется моторное масло.

Одно из важных предназначений поршневых колец заключается в препятствии попадания газов из камеры сгорания в картер. Благодаря добавлению хрома, молибдена, никеля или вольфрама прочность и термостойкость поршневых колец значительно повышается. При износе поршневых колец ресурс поршня понижается.

Маслосъемное кольцо

Маслосъемные кольца служат для того чтобы отводить излишки масла. Маслосъемные кольца обладают дренажными отверстиями.

Юбка

Юбка поршня и есть его тело служит направляющей. Благодаря специальным добавкам в сплав юбка поршня обладает высокой стойкостью к расширению.

Поршневой палец

Поршневой палец соединяет поршень с шатуном. Благодаря стопорному кольцу достигается их прочное соединение.

Ответы на частые вопросы

Для чего в днище поршня дизельного двигателя делают выемку ?

Выемка в поршнях дизельного двигателя называется вихревой камерой( камерой сгорания). Топливо перемешиваясь с воздухом в вихревой камере сгорает более эффективно и быстро.

Температура поршня двс ?

Кратковременно при работе двс поршень может нагреться до 2000 градусов и более. В целом температура поршня при работе может достигать 200 градусов.

Как продлить срок службы поршней ?

Для того чтобы продлить срок службы поршней двс необходимо во время менять масло. Лучше даже немного раньше срока как советуют многие водители.

norfin arcticthe hermitage st petersberg

Как правильно установить поршни и шатуны

Большие и маленькие хитрости при монтаже поршней и шатунов в двигатель

Когда приходит время собирать двигатель, особенно V-образный, правильная взаимная установка поршней и шатунов, а также по отношению к блоку цилиндров и коленчатому валу, может поставить в тупик многих мотористов. Этой статьей мы постараемся им помочь.
Как правильно устанавливать поршни на шатуны?

Если вы собираете V-образной двигатель, то следует иметь в виду: если нижняя головка шатуна имеет с одной стороны более широкую фаску, то она должна быть обращена к галтели (закруглению) шатунной шейки коленчатого вала.  

Если же шатуны предназначены для использования с коленчатым валом, без четко выраженных галтелей, то они могут быть и без несимметричных фасок. Тогда ориентация шатуна может определяться по положению «замков» вкладышей: обращенных наружу блока или внутрь (в сторону распредвала – если он находится в развале блока цилиндров). 

К примеру, «замки» вкладышей SBC и BBC должны быть обращены наружу. У других вкладышей «замки» могут быть направлены внутрь. На работу собственно вкладышей расположение «замков» не оказывает никакого влияния. Надо лишь правильно ориентировать шатун.

Если же на нижней головке шатуна отсутствуют фаски с обеих сторон, то вкладыш должен быть смещен от галтели шатунной шейки, чтобы его край не попал на закругление.

Сквозные отверстия в верхней и нижней головках шатуна

Часто шатун имеет на нижней головке сквозное отверстие, которое нужно для смазки стенки цилиндра. Эти отверстия предназначены не для смазывания распределительного вала, как полагают некоторые. 

Бывает, что отверстие расположено только с одной стороны нижней головки шатуна. Подобные шатуны надо устанавливать так, чтобы отверстие в нижней головке было обращено в сторону распределительного вала (в сторону развала блока цилиндров).

Отверстие в верхней головке шатуна (будь оно сверху или под сбоку – углом) служит для смазки поршневого пальца. Поэтому его ориентация в двигателе роли не играет.

«Замки» шатунных вкладышей

«Замки» (фиксирующие выступы) на вкладышах и соответствующие пазы на нижней головке шатуна и его крышки нужны лишь для правильного позиционирования вкладышей. От «проворота» вкладышей они не спасают, поскольку вкладыши в своей «постели» фиксируются за счет натяга, возникающего при правильной затяжке крепежных болтов крышки нижней головки. 

«Правильные» вкладыши, при надлежащем монтаже, слегка выступают за линию разъема нижней головки. Поэтому, после затягивания болтов, они надежно фиксируются в «постели». 

В последнее время во многих двигателях используют «беззамковые» вкладыши (примером могут служить двигатели Chrysler 3.7L и 4.7L). За счет устранения операций по механической обработке пазов в шатуне и его крышке, а также «замков» на самих вкладышах снижаются затраты на их изготовление. При монтаже подобных вкладышей их надо ставить строго посередине нижней головки шатуна.

Рис. 1 Если в V-образном двигателе на одну шатунную шейку коленчатого вала монтируют два шатуна, то сторона нижней головки шатуна с более узкой фаской должна быть обращена к соседнему шатуну…

Рис. 2 … в этом случае бОльшая фаска на нижней головке шатуна оказывается обращенной в сторону галтели шатунной шейки коленчатого вала.

Рис. 3 Фиксирующий выступ («замок») на вкладыше и соответствующий ему паз в нижней головке шатуна нужны только для того, чтобы правильно установить вкладыши в шатуне. «Замки» никогда не удержат вкладыши от проворачивания в шатуне, если при сборке были допущены какие-либо нарушения. К примеру: болты нижней головки шатуна не затянуты как следует или отверстие в нижней головке потеряло свою форму.

Рис. 4 Вкладыши фиксируются в шатуне только за счет радиального усилия, которое возникает от натяга установленных вкладышей, когда крепежные болты нижней головки затянуты надлежащим моментом. Чтобы получить требуемый натяг вкладыш сделан чуть длиннее своего посадочного места. Поэтому, когда вы «от руки» установите вкладыш в «постель», он будет немного выступать над плоскостью разъема. Так и должно быть – ни в коем случае не надо подпиливать или подрезать края вкладышей!

Crush Height Each Half Bearing — выступание вкладышей над плоскостью разъема
Bearing — вкладыш
Cap — крышка нижней головки шатуна
Radial Pressure — радиальное усилие

Рис. 5 Измерять максимальный диаметр поршня надо в строго определенном месте, поскольку юбка поршня имеет «бочкообразный» профиль и результаты измерений, по высоте поршня, будут существенно различаться.

Рис. 6 Сквозное отверстие на боковой поверхности ВГШ (верхней головки шатуна) (верхнее фото) может указывать на прессовую посадку пальца в шатуне. На втором фото показан тот же самый шатун, но снаружи. А вот отверстие сверху ВГШ (третье фото) служит для улучшения смазки «плавающего» поршневого пальца.

Рис. 7 На днище поршня обычно есть специальные метки (например, изображена стрелка и надпись «FRONT» — как на фото) помогающие правильно сориентировать поршень при сборке двигателя.

Рис. 8 Если поршни предназначены для V-образного двигателя, то обычно с «изнанки» таких поршней ставят метку «L» — если их монтируют в левый ряд цилиндров или «R» — для правого ряда цилиндров.

Смещение шатуна

Существуют двигатели, у которых стержень шатуна смещен относительно верхней или нижней головок (если смотреть на шатун сбоку – «в профиль»). Подобные шатуны применяют в V-образных двигателях, у которых левый и правый ряды цилиндров стоят «со сдвигом», вперед и назад, относительно друг друга. В зависимости от конкретной модели двигателя, стержень шатуна может иметь смещение 2,5 мм или даже более. 

Если есть какие-то сомнения, то при монтаже обратите внимание, что верхняя головка шатуна центрируется по поршню – в бобышках под палец.

Нужно ли в двигателях с вращением против часовой стрелки устанавливать поршни в «обратную» сторону?

На двигателе с обратным вращением – когда коленвал вращается против часовой стрелки, если смотреть с передней части двигателя – шатуны обычно устанавливаются так же, как и в обычном моторе, коленвал которого вращается по часовой стрелке. То есть, бОльшая фаска нижней головки шатуна все равно будет обращена к галтели шатунной шейки.

Однако, если применяются поршни со смещенным поршневым пальцем, то в этом случае поршень должен быть установлен «назад» (развернут на 180 град) относительно его «стандартного» положения. Поршневой палец в подобном поршне смещен к нагруженной стороне юбки поршня. 

В двигателе с вращением по часовой стрелке нагруженная сторона цилиндра обращена к впускному коллектору на левом ряду цилиндров («водительской» стороне) и к выпускному коллектору на правом ряду цилиндров («пассажирской» стороне) стороне. 

В двигателе с обратным вращением давление на стенку цилиндра от поршня направлено в другую сторону: со стороны выхлопа – слева и со стороны впуска – справа. Если поршни симметричны (т. е. не имеют смещенного пальца), то их ориентация зависит только от цековок под клапанные тарелки на днище – они должны быть сориентированы в соответствии с положением клапанов.

Конструкция юбки поршня

Форма, площадь и масса юбки поршня играют важную роль в потерях на трение и стабилизации поршня при перекладке в верхней и нижней мертвых точках. Здесь мы покажем роль нагруженных и ненагруженных сторон поршня и разработку асимметричных юбок, предназначенных преимущественно для снижения веса. 

Левая и правая стороны поршня при работе двигателя нагружены по-разному. Поэтому конструкция юбки поршня играет важную роль в распределении воспринимаемых нагрузок – с точки зрения прочности и веса поршня. 

Юбка поршня должна выдерживать давление на стенку цилиндра при одновременном уменьшении трения. А ее площадь должна быть такой, чтобы быть прочной, обеспечивая при этом стабильность поршня, чтобы свести к минимуму «раскачивание» относительно оси пальца, когда поршень движется вверх-вниз. Причем нагруженная поверхность юбки испытывает наибольшую нагрузку на такте расширения. 

Если коленчатый вал вращается по часовой стрелке (глядя на двигатель спереди), то нагруженная поверхность юбки поршня обращена к впускному коллектору на левом ряду цилиндров («водительской» стороне) и к выпускному коллектору на правом ряду цилиндров («пассажирской» стороне).  

Менее нагруженная сторона юбки воспринимает усилие на такте сжатия. Эта разница в нагрузках обусловлена положением, углом между шатуном и поршнем, при его перемещении. 

За весь рабочий цикл разница в нагрузке на разные стороны юбки поршня различается в десять раз! Причем, нагрузка на юбку поршня может варьироваться в зависимости от хода поршня, длины шатуна и максимального давления в цилиндре.

Поэтому асимметричные поршни должны быть специальными – для левого и правого ряда цилиндров. На днище поршня в таком случае наносятся стрелки или иные метки, указывающие на переднюю часть двигателя.

Рис. 9 На этом фото показаны асимметричные поршни для левого и правого рядов цилиндров V-образного двигателя. Их особенностью является расширенная часть юбки поршня на нагруженной стороне и зауженная – на стороне с меньшей нагрузкой.

Рис. 10 Другой пример асимметричного поршня. Обратите внимание, как сближены бобышки под поршневой палец, что позволяет сделать поршневой палец короче и легче. Кроме того, хотя это почти невозможно заметить глазом, ось пальца смещена к нагруженной стороне поршня (в сторону более широкой части юбки) на 0,50 мм – для уменьшения дисбаланса из-за разницы в массе «узкой» и «широкой» частей юбки.

Нагруженная сторона юбки поршня

Когда поршень движется вниз на такте расширения, он испытывает значительное сопротивление, пытаясь провернуть коленчатый вал. С ростом нагрузки увеличивается и сопротивление. При этом нагруженная сторона юбки поршня воспринимает боковое давление, которое увеличивает нагрузку (с ростом трения и износа) на соответствующей стороне стенки цилиндра.  

Если на днище поршня имеется какая-либо метка (к примеру точка, или стрелка, или надпись «Front»), важно установить поршень в соответствии с этой меткой, обычно указывающей на переднюю часть двигателя.

 

Ненагруженная сторона юбки поршня

Эта часть юбки поршня противоположна нагруженной стороне. Она работает, когда поршень движется вверх на такте сжатия, из-за сопротивления, создаваемого сжимаемой топливно-воздушной смесью. Основная ее задача, в том, чтобы обеспечить стабильность поршня при движении в цилиндре. Поэтому эта часть юбки может быть поуже, для экономии веса. 

Так что, для точной настройки в распределении этих сил между разными сторонами юбки были разработаны асимметричные поршни, которые имеют более широкую юбку на нагруженной стороне и зауженную юбку с противоположной стороны. Это обеспечивает оптимальное распределение нагрузок на юбку поршня, одновременно снижая массу поршня.  

В качестве примера можно привести «асимметричную» (или Т-образную) конструкцию поршней FSR компании JE Pistons, которые имеют расширенную часть юбки на нагруженной стороне, а со стороны бобышек юбка отсутствует вовсе, что позволяет сделать поршневой палец короче и легче. Подобные поршни изначально разрабатывались для гоночных двигателей. 

Еще одним преимуществом подобных поршней является улучшение условий работы поршневых колец. Но, в основном, подобная конструкция юбки, в сочетании со слегка смещенным пальцем, позволяет существенно снизить потери на трение.

Рис. 11 Из этой схемы видно, как определить нагруженную и ненагруженную стороны юбки поршня.

Thrust Load — действие боковой силы
Minor Thrust Side — ненагруженная сторона цилиндра
Major Thrust Side — нагруженная сторона цилиндра
Красная изогнутая стрелка — направление вращения коленчатого вала

Рис. 12 На этом фото хорошо видно, как различается ширина юбки поршня на нагруженной (слева) и ненагруженной (справа) сторонах поршня.

Рис. 13 Компьютерное моделирование показывает, как распределяются механические нагрузки в поршне, возникающие при работе двигателя на частичных нагрузках. (Чем темнее цвета – тем меньше нагрузка, а чем ярче – тем больше).

Рис. 14 А на этой схеме видно, как нагружен поршень сразу после воспламенения смеси.

Рис. 15 Здесь поршень показан снизу. На этой схеме хорошо видно, что во время рабочего хода наиболее нагружены верхние части отверстий под поршневой палец (они выделены красным цветом) и элементы юбки поршня, непосредственно примыкающие к ним.

Рис. 16 Тонкий слой антифрикционного покрытия (темного цвета) на юбке поршня помогает удерживать масло и снижает трение между поршнем и цилиндром – особенно при холодном запуске мотора.

Смещение пальца

Асимметричные поршни также могут иметь смещение поршневого пальца. При этом ось пальца смещена от оси поршня к нагруженной стороне примерно на 0,51 мм. Это небольшое смещение «балансирует» поршень, компенсируя разницу в массе юбки, а также снижая усилие, прикладываемое к нагруженной стороне поршня. 

Опять же, ссылаясь на опыт компании JE Pistons, асимметричный поршень позволяет сделать поршневые пальцы короче, жестче и легче (примерно на 10 грамм).

 

Заключение

Надеемся, эта статья поможет вам лучше ориентироваться в тонкостях сборки двигателя. Помните, что лучше всего пометить поршни и шатуны перед разборкой. Грамотные ответы на ваши вопросы и помощь в технических проблемах с двигателями – наша главная задача.

ХОТИТЕ СТАТЬ АВТОРОМ?

Пришлите свою статью


Гидросистема с распределителями последовательного включения

Если удлинить магистраль слива первого гидравлического распределителя простой гидросистемы, установив на ней один или несколько распределителей, то мы получим так называемое последовательное включение.

При последовательном включении необходимо, чтобы сила и скорость включаемых одновременно потребителей регулировалась.

Точнее говоря, дело обстоит следующим образом. Чтобы привести в движение гидроцилиндр 2, необходимо давление, соответствующее силе подъема и площади поршня. Это давление действует на кольцевую поверхность поршня цилиндра 1. Действующее на цилиндр 1 давление складывается из внешнего усилия, действующего на шток поршня, и давления, состоящего из давления, действующего на цилиндр 2, и площади кольцовой поверхности поршня цилиндра 1.

Если давление, действующее на цилиндр 1, больше суммы действующих сил, то оба гидроцилиндра выдвигаются. Отношение скоростей движения гидроцилиндров 1 и 2 пропорционально отношению плошади поршня цилиндра 2 к кольцевой поверхности цилиндра 1.

Циркулирующая гидравлическая жидкость через фильтр сливается в бак.

Принципиальная схема включения распределителей

 

Параллельное включение элементов распределителей.

 

Каждый распределитель соединен с каналом Р, все потребители управляются одновременно.

 

Распределение рабочей жидкости производится в соответствии с сопротивлением в гидросистемах потребителей.

Сдвоенная схема. Подача рабочей жидкости производится только через циркуляционный канал.

 

Потребители включаются не одновременно.

 

Эта схема применяется в качестве предохранительной схемы.

Последовательное включение. Используется слив рабочей жидкости.

 

Рабочая жидкость от потребителя 1 сливается в распределитель 2.

 

Таким образом, потребитель 2 имеет принудительное управление, т.е. скорости потребителей зависят от подачи рабочей жидкости, а рабочие давления суммируются.

Короткий ход поршня

Рудольф Дизель родился 18 марта 1858 года в семье Теодора Дизеля и Элис Штробель — эмигрантов из Германии, осевших во Франции и владевших небольшой переплетной мастерской в Париже. С самого раннего детства у Рудольфа проявился интерес к разным машинам и механизмам: излюбленным времяпровождением умного, послушного, аккуратного и трудолюбивого мальчика было посещение парижского Музея искусств и ремесел.

В 1870 году началась Франко-прусская война, и из-за роста антинемецких настроений Дизелям пришлось перебраться в Англию, где вскоре они оказались в нищете. На семейном совете было принято решение отправить Рудольфа в Германию, в семью брата, любезно согласившуюся принять племянника. Дядя Дизеля был профессором и преподавал математику в Королевском земском училище, куда в 1871 году пристроил и Рудольфа, заметив у того склонность к технике, а уже в 1873-м юноша его успешно закончил, опередив по успеваемости всех остальных учеников.

Уже в 12 лет Рудольф испытывал склонность к технике

Иллюстрация: mandieselturbo.com

Затем Рудольф отправляется в Аугсбург, в Техническую школу, а через два года досрочно поступает в престижный Королевский баварский политехнический институт в Мюнхене. Во время учебы произошла судьбоносная для Дизеля встреча — его заметил один из преподавателей, профессор Карл фон Линде, помимо научной работы занимавшийся коммерцией, а именно созданием холодильного оборудования. В 1880 году, когда Дизель окончил институт, Линде пригласил его на работу в свою компанию на должность директора парижского филиала. В наше время Linde — одна из крупнейших и авторитетнейших в мире химических компаний, инжиниринговое подразделение которой занимается строительством «под ключ» крупнотоннажных химических производств, в том числе заводов по сжижению природного газа.

«Инженер все может»

Так ответил студент Рудольф Дизель на вопрос директора Высшей технической школы в Мюнхене профессора Бауэрфайнда о возможности создать двигатель внутреннего сгорания, способный заменить паровой. Теперь амбициозному молодому человеку предстояло доказать это на практике.

К концу XIX века в мире существовало множество поршневых двигателей, однако их КПД не превышал 10–12%, поскольку воспламенение горючей смеси в них производилось либо при помощи электричества, либо за счет тепла, идущего от стенок камеры сгорания. Однако уже в 1824 году французский инженер Сати Карнопредложил более перспективную схему работы двигателя. По его мнению, следовало «сперва сжать воздух насосом, затем пропустить его через вполне замкнутую топку, вводя туда маленькими порциями топливо при помощи приспособления, легко осуществимого; затем заставить воздух выполнять работу в цилиндре с поршнем или в любом другом расширяющемся сосуде и, наконец, выбросить его в атмосферу…». Эта схема, получившая наименование «цикла Карно», стала эталоном цикла теплового двигателя. Ее и попытался на практике реализовать Рудольф Дизель.

Забегая вперед, надо сказать, что у него это получилось не в полной мере: в дизелевском варианте в цилиндре сжималась не топливная смесь, а воздух, причем до запредельных для того времени значений.

Двенадцать лет проб и ошибок

А пока в течение десяти лет, с 1880-го по 1892-й, работая на фирме Линде, он постоянно занимался этим проектом, пытаясь найти такое рабочее тело, которое при соединении с топливом, создавало бы необходимую для воспламенения температуру. В его качестве последовательно использовались аммиак, уголь и бензин, но все было безрезультатно.

Помогла случайность. Использование воздуха в пневматической зажигалке для прикуривания сигар натолкнуло Рудольфа на мысль, что таким рабочим телом может стать сжатый воздух. «Не могу сказать, — писал позже изобретатель, — когда именно возникла у меня эта мысль. В неустанной погоне за целью, в итоге бесконечных расчетов родилась наконец идея, наполнившая меня огромной радостью: нужно вместо аммиака взять сжатый горячий воздух, впрыснуть в него распыленное топливо и одновременно со сгоранием расширить его так, чтобы возможно больше тепла использовать для полезной работы».

Основываясь на этом, Дизель разработал новую схему двигателя, в котором воздух должен был быть сжат с такой силой, чтобы при его соединении с топливом возникшая смесь воспламенилась до температуры 600–650 °С и в цилиндр начало поступать уже готовое для работы двигателя топливо.

Есть прототип!

В 1892 году Рудольф покидает компанию Линде и организовывает собственное предприятие, на котором в течение четырех лет изготавливает несколько опытных образцов. В том же году он получает свой первый патент № 67207 «Рабочий процесс и способ конструирования двигателя внутреннего сгорания для машин», которым закрепил за собой право собственности на «рациональный тепловой двигатель», и издает книгу, в которой дает теоретическое обоснование созданной им конструкции такого двигателя. «Моя идея, — писал он семье в Мюнхен, — настолько опережает все, что создано в данной области до сих пор, что можно смело сказать: я первый в этом новом и наиважнейшем разделе техники на нашем маленьком земном шарике! Я иду впереди лучших умов человечества по обе стороны океана!»

В 1897 году с третьей попытки ему наконец удалось построить готовый к практическому использованию прототип. Современники вспоминали, что это «был двигатель высотой три метра, который развивал 172 об/мин имел диаметр единственного цилиндра 250 мм, ход поршня 400 мм и мощность от 17,8 до 19,8 л. с., расходуя при этом 258 г нефти на 1 л. с. в час. Термический КПД был у него 26,2%, намного выше, чем имели паровые машины». Кроме того, двигатель Дизеля работал на дешевых видах топлива вроде керосина и не имел системы зажигания.

Как удалось достичь такого очень высокого для того времени КПД? Главным образом за счет многократного увеличения давления сжатия с помощью специального компрессора — в двигателе англичанина Герберта Акройда-Стюарта, наиболее похожего по конструкции на дизелевский, оно равнялось шести атмосферам, а в устройстве Рудольфа достигало 36 атмосфер.

#image-kit_1496

В связи с этим неоднократно вставал вопрос: кто первый изобрел ДВС, Стюарт или Дизель? Известно, что основные признаки современного дизельного двигателя — непосредственный впрыск топлива (без применения сжатого воздуха) и компрессионное зажигание. В 1890 году Стюарт получил патент № 7146 «Усовершенствование в работе двигателей при помощи взрыва воспламеняемых паров или смеси газа с воздухом». Но этот патент был дан только на компрессионное зажигание, о применении сжатого воздуха для воспламенения смеси там речи не шло.

Спустя некоторое время Стюарт построил экспериментальный образец устройства, функционировавшего на бензине и проработавшего всего несколько часов. Дизель же патент на компрессионное зажигание получил только в 1892 году, но в отличие от Стюарта в его патент уже была включена идея о сжатом воздухе, которую позже, в 1897 году, он и воплотил. Так что если вести отсчет от идеи, то первенство в изобретении ДВС принадлежит, безусловно, Дизелю. А поскольку идею придумал он и он же построил реально работающий образец, то и сам двигатель стали называть по его фамилии. Топливо такого двигателя, состоит из керосиново-газойлевых фракций переработанной нефти и имеет высокую — 200–350 °С — температуру кипения, в дизельном двигателе оно самовоспламеняется при сильном сжатии. В бензиновом двигателе горючую смесь образуют бензин и воздух, она воспламеняется от искры зажигания.

Развитие изделия

Это был успех. На Всемирной выставке в Париже в 1900 году изделие Дизеля произвело фурор, началась массовая скупка лицензий на производство его двигателей. Однако в начале промышленного изготовления дизелевских двигателей возникли серьезные трудности: первые партии оказывались бракованными, часто ломались и выходили из строя, на многих заводах не было необходимого оборудования и рабочей силы нужной квалификации.

Постепенно болезни роста были преодолены, и двигатель Дизеля стал постепенно использоваться во многих сферах жизнедеятельности, связанных с техникой. А его изобретатель стал миллионером. Дизеля стали приглашать повсюду — во Францию, Швейцарию, Австрию, Бельгию, Россию, Америку… Особый интерес к нему был проявлен в России. Уже в 1898 году Людвиг Нобель, купив у Дизеля лицензию на двигатель, организовал его производство на своем заводе в Санкт-Петербурге (сейчас это известное на всю страну предприятие «Русский дизель»).

Устройство быстро завоевало популярность и стало использоваться всюду — на электростанциях, водонапорном оборудовании, с его помощью освещались крупные магазины и центральные улицы Санкт-Петербурга и других известных городов Российской империи.

Велись работы по его модификации. Известный русский инженер Вадим Аршаулов создал так называемый русский дизель, который, в отличие от своего прототипа, работал на нефти, а не на керосине, и имел топливный насос высокого давления, работавший от сжатого в цилиндре воздуха. На Путиловском заводе инженер Густав Тринклер построил «Тринклер-мотор», который отличался от дизелевского варианта тем, что не имел воздушного компрессора для накачки воздуха, его роль играла гидравлическая система для нагнетания и впрыска топлива.

Дизеля наконец-таки признали и на родине: сам кайзер Вильгельм II вручил ему диплом о присвоении почетного звания доктора-инженера и пригласил в оборонные проекты. Занялся Дизель и совершенствованием конструкции реверсивного судового четырехтактного мотора и созданием двигателя для грузовых автомобилей.

Закат

Дизель жил на широкую ногу. Построил в Мюнхене дворец стоимостью 900 тысяч марок, покупал нефтяные участки в Баварии, где, как выяснялось потом, не было нефти, широко и необдуманно спекулировал акциями, вкладывал деньги в католические лотереи. В итоге финансовые дела стали настолько плохи, что, как пишут его биографы, «пришлось рассчитать почти всю прислугу и заложить дом».

Нервы Дизеля были издерганы постоянными нападками недоброжелателей и конкурентов, среди которых были как малоизвестные инженеры, так и могущественные люди вроде угольных и нефтяных магнатов, постоянно таскавшие его по судам по обвинениям в плагиате и других неблаговидных поступках.

Характерный пример — намерение его ярого противника профессора Людерса издать книгу под названием «Миф Дизеля», пытаясь доказать, что ничего нового в его изобретении нет, поскольку основа работы его двигателя была известна и раньше, а сам Дизель присвоил себе чужие заслуги.

Третьи вспоминали «нобелевскую» историю: незадолго до своей смерти, изобретатель обратился с письмом к председателю Нобелевского комитета Эммануилу Нобелю, в котором намекал на возможность получения Нобелевской премии за свое изобретение, рассчитывая, таким образом, поправить свои финансовые дела и заодно напомнив всем о себе. Но тот отказал. И это ввергло Дизеля в пучину черной депрессии.

К лету 1913 года Дизель стал полным банкротом и, по всей видимости, не видя другого выхода, решился на самоубийство. На это указывает его странное поведение: сначала он вместе с женой объехал всю Европу, как будто прощаясь с ней. Когда он погиб, его жена вспомнила странную фразу, которую он как-то обронил: «Мы можем попрощаться с этими местами. Больше мы их никогда не увидим». Затем он поехал в Баварские Альпы, где участвовал в опасных горных путешествиях и рискованных мероприятиях.

29 сентября 1913 года, в Антверпене 55-летний Рудольф Дизель и еще двое его друзей сели на паром «Дрезден», идущий в Англию, где он собирался работать инженером-консультантом на одном из двигателестроительных заводов. И ночью пропал. А через десять дней в Северном море рыбаки выловили труп. В одежде были найдены некоторые личные вещи, и сын Дизеля подтвердил, что они принадлежали его отцу.

Двигатели будущего: чувство такта — журнал За рулем

Умы изобретателей неустанно рождают альтернативные конструкции традиционных агрегатов. Чаще всего это один из главных узлов автомобиля — двигатель. Отделим реальность от утопии?

У OPOC единый коленвал в центре двигателя. Сделать мотор легче и компактнее, отказавшись от второго коленвала, позволила оригинальная компоновка шатунов. За открытие впускных и выпускных окон в стенках цилиндров отвечают сами поршни.

У OPOC единый коленвал в центре двигателя. Сделать мотор легче и компактнее, отказавшись от второго коленвала, позволила оригинальная компоновка шатунов. За открытие впускных и выпускных окон в стенках цилиндров отвечают сами поршни.

У OPOC единый коленвал в центре двигателя. Сделать мотор легче и компактнее, отказавшись от второго коленвала, позволила оригинальная компоновка шатунов. За открытие впускных и выпускных окон в стенках цилиндров отвечают сами поршни.

Все схемы открываются в полный размер по клику.

ВСТРЕЧНОЕ ДВИЖЕНИЕ

Особенность двухтактного дизеля профессора Питера Хофбауэра, посвятившего 20 лет своей жизни работе в концерне «Фольксваген», — два поршня в одном цилиндре, движущиеся навстречу друг другу. И название это подтверждает: Opposed Piston Opposed Cylinder (OPOC) — встречные поршни, встречные цилиндры.

Похожую схему еще в середине прошлого века использовали в авиации и танкостроении, например, на немецких «Юнкерсах» или советском танке T-64. Дело в том, что в традиционном двухтактном двигателе оба окна для газообмена перекрывает один поршень, а в двигателях с встречными поршнями в зоне хода одного поршня располагается впускное окно, в зоне хода второго — выпускное. Такая конструкция позволяет раньше открывать выпускное окно и благодаря этому лучше очищать камеру сгорания от отработавших газов. И заранее закрывать, чтобы сберечь некоторое количество рабочей смеси, которое у двухтактного двигателя обычно выбрасывается в выхлопную трубу.

В чем же изюминка конструкции профессора? В центральном (между цилиндрами) расположении коленвала, обслуживающего сразу все поршни. Это решение привело к довольно замысловатой конструкции шатунов. Их по паре на каждой шейке коленвала, причем на внешние поршни приходится по паре шатунов, расположенных по обе стороны цилиндра. Это схема позволила обойтись одним коленвалом (у прежних моторов их было два, размещенных по краям двигателя) и сделать компактный, легкий агрегат. В четырехтактных двигателях циркуляцию воздуха в цилиндре обеспечивает сам поршень, в моторе OPOC — турбонаддув. Для лучшей эффективности быстро разогнать турбину помогает электромотор, который в определенных режимах становится генератором и рекуперирует энергию.

Опытный образец, сделанный для армии без оглядки на экологические нормы, при массе 134 кг развивает 325 л.с. Подготовлен и гражданский вариант — с примерно на сотню сил меньшей отдачей. Как заявляет создатель, в зависимости от исполнения мотор ОРОС на 30–50% легче прочих дизелей сравнимой мощности и в два — четыре раза компактнее. Даже по ширине (это самое внушительное габаритное измерение) ОРОС всего вдвое превосходит один из самых компактных автомобильных агрегатов в мире — двухцилиндровый фиатовский «Твинэйр».

Мотор OPOC — образец модульной конструкции: двухцилиндровые блоки можно компоновать в многоцилиндровые агрегаты, соединяя их электромагнитными муфтами. Когда полная мощность не требуется, для экономии топлива один или несколько модулей могут отключаться. В отличие от обычных двигателей с отключаемыми цилиндрами, где коленвал шевелит даже «отдыхающие» поршни, механических потерь можно избежать. Интересно, а как обстоят дела с топливной экономичностью и вредными выбросами? Разработчик предпочитает обходить этот вопрос молчанием. Понятное дело — тут позиции двухтактников традиционно слабы.

РАЗДЕЛЬНОЕ ПИТАНИЕ

В двигателе Кармело Скудери классические четыре такта распределены между двумя цилиндрами: впуск и сжатие происходят в одном, а рабочий ход и выпуск — в другом.

В двигателе Кармело Скудери классические четыре такта распределены между двумя цилиндрами: впуск и сжатие происходят в одном, а рабочий ход и выпуск — в другом.

В двигателе Кармело Скудери классические четыре такта распределены между двумя цилиндрами: впуск и сжатие происходят в одном, а рабочий ход и выпуск — в другом.

Еще один пример ухода от традиционных догм. Кармело Скудери покусился на святое правило четырехтактных моторов: весь рабочий процесс должен происходить строго в одном цилиндре. Изобретатель поделил цикл между двумя цилиндрами: один отвечает за впуск смеси и ее сжатие, второй — за рабочий ход и выпуск. При этом традиционные четыре такта двигатель, именуемый мотором с разделенным циклом (SCC — Split Cycle Combustion), проходит всего за один оборот коленвала, то есть в два раза быстрее.

Вот как этот мотор работает. В первом цилиндре поршень сжимает воздух и подает его в соединительный канал. Клапан открывается, форсунка впрыскивает топливо, и смесь под давлением врывается во второй цилиндр. Сгорание в нем начинается при движении поршня вниз, в отличие от двигателя Отто, где смесь поджигают чуть раньше, чем поршень достигнет верхней мертвой точки. Таким образом, сгорающая смесь не препятствует в начальной стадии горения движущему навстречу поршню, а, наоборот, подталкивает его. Создатель мотора обещает удельную мощность в 135 л. с. с литра рабочего объема. Причем при значительном сокращении вредных выбросов благодаря более эффективному сгоранию смеси — например, с уменьшением выхода NOx на 80% в сравнении с этим же показателем для традиционного ДВС. Заодно утверждают, что SCC на 25% экономичнее равных по мощности атмосферных моторов. Однако лишний цилиндр — это дополнительная масса, увеличение габаритов, возрастающие потери на трение. Что-то не верится… Особенно если взять в пример новое поколение наддувных двигателей, сделанных под девизом даунсайзинга.

Кстати, для этого двигателя придумана оригинальная схема рекуперации и наддува «в одном флаконе» под названием Air-Hybrid. Во время торможения двигателем цилиндр рабочего хода отключается (клапаны закрыты), а цилиндр сжатия наполняет специальный резервуар сжатым воздухом. При разгоне происходит обратное: не работает цилиндр сжатия, а в рабочий нагнетается запасенный воздух — своего рода наддув. Собственно, при такой схеме не исключается и полный пневморежим, когда воздух будет толкать поршни в одиночку.

МОЩНОСТЬ ИЗ ВОЗДУХА

Лино Гуззелло использовал для улучшения характеристик двигателя рекуперацию воздуха. Он аккумулируется в дополнительном резервуаре, связанном с двигателем.

Лино Гуззелло использовал для улучшения характеристик двигателя рекуперацию воздуха. Он аккумулируется в дополнительном резервуаре, связанном с двигателем.

Лино Гуззелло использовал для улучшения характеристик двигателя рекуперацию воздуха. Он аккумулируется в дополнительном резервуаре, связанном с двигателем.

Профессор Лино Гуззелла также использовал идею накопления сжатого воздуха в отдельном резервуаре: один из клапанов открывает путь от баллона к камере сгорания. В остальном это обычный двигатель с турбонаддувом. Опытный образец построили на базе 0,75-литрового двигателя, предложив его как замену… 2-литровому атмосферному мотору.

Разработчик для оценки эффективности своего творения предпочитает сравнивать его с гибридными силовыми агрегатами. Причем при схожей экономии топлива (около 33%) конструкция Гуззеллы удорожает мотор всего лишь на 20% — сложная бензоэлектрическая установка обходится почти в десять раз дороже. Однако в тестовом образце топливо экономится не столько за счет наддува из баллона, сколько благодаря малому рабочему объему самого двигателя. Но перспективы у сжатого воздуха в работе обычного ДВС все же есть: его можно использовать для пуска мотора в режиме «старт-стоп» или для движения автомобиля на малых скоростях.

КРУТИТСЯ, ВЕРТИТСЯ ШАР…

Среди необычных ДВС мотор Герберта Хюттлина выделяется наиболее примечательной конструкцией: традиционные поршни и камеры сгорания здесь размещены внутри шара. Поршни движутся в нескольких направлениях. Во-первых, навстречу друг другу, образуя между собой камеры сгорания. Кроме того, они соединены попарно в блоки, посаженные на единую ось и вращающиеся по хитрой траектории, заданной кольцевой фигурной шайбой. Корпус поршневых блоков объединен с шестерней, передающей крутящий момент на выходной вал.

Из-за жесткой связи между блоками при наполнении смесью одной камеры сгорания одновременно происходит выпуск отработавших газов в другой. Таким образом, за поворот поршневых блоков на 180 градусов происходит 4-тактный цикл, за полный оборот — два рабочих цикла.

Устройство шарового двигателя со встроенным электромотором: 1 — приводная шестерня; 2 — статор электромотора; 3 — постоянные магниты; 4 — ротор электро- мотора; 5 — камера сгорания 1; 6 — шаровые направляющие поршней; 7 — коль- цевая направляющая для движения поршней; 8 — подшипник ротора; 9 — камера сгорания 2; 10 — свеча зажигания; 11 — отвод выхлопных газов; 12 — забор воздуха; 13 — выходной вал.

Устройство шарового двигателя со встроенным электромотором: 1 — приводная шестерня; 2 — статор электромотора; 3 — постоянные магниты; 4 — ротор электро- мотора; 5 — камера сгорания 1; 6 — шаровые направляющие поршней; 7 — коль- цевая направляющая для движения поршней; 8 — подшипник ротора; 9 — камера сгорания 2; 10 — свеча зажигания; 11 — отвод выхлопных газов; 12 — забор воздуха; 13 — выходной вал.

Устройство шарового двигателя со встроенным электромотором: 1 — приводная шестерня; 2 — статор электромотора; 3 — постоянные магниты; 4 — ротор электро- мотора; 5 — камера сгорания 1; 6 — шаровые направляющие поршней; 7 — коль- цевая направляющая для движения поршней; 8 — подшипник ротора; 9 — камера сгорания 2; 10 — свеча зажигания; 11 — отвод выхлопных газов; 12 — забор воздуха; 13 — выходной вал.

Первый показ шарового двигателя на Женевском автосалоне привлек всеобщее внимание. Концепция, безусловно, интересная — за работой 3D-модели можно наблюдать часами, пытаясь разобраться, как работает та или иная система. Однако за красивой идеей должно последовать воплощение в металле. А разработчик пока ни слова не говорит о хотя бы приблизительных значениях основных показателей агрегата — мощности, экономичности, экологичности. И, главное, о технологичности и надежности.

МОДНАЯ ТЕМА

Роторно-лопастной двигатель изобрели чуть меньше века назад. И, наверное, еще долго не вспоминали бы о нем, не появись амбициозный проект российского народного автомобиля. Под капотом «ё-мобиля» пусть и не сразу, но должен появиться именно роторно-лопастной двигатель, да еще в паре с электромотором.

Вкратце о его устройстве. На оси установлены два ротора с парой лопастей на каждом, образующих камеры сгорания переменной величины. Роторы вращаются в одном направлении, но с разными скоростями — один догоняет другой, смесь между лопастями сжимается, проскакивает искра. Второй начинает движение по окружности, чтобы на следующем круге «подтолкнуть» соседа. Посмотрите на рисунок: в правой нижней четверти происходит впуск, в правой верхней — сжатие, затем против часовой стрелки — рабочий ход и выпуск. Воспламенение смеси осуществляется в верхней точке окружности. Таким образом, за один оборот ротор происходит четыре рабочих такта.

Схемы роторно-лопастного двигателя.

Схемы роторно-лопастного двигателя.

Схемы роторно-лопастного двигателя.

Очевидные преимущества конструкции — компактность, легкость и хороший КПД. Однако есть и проблемы. Из них главная — точная синхронизация работы двух роторов. Задача эта непростая, а решение должно быть недорогим, иначе «ё-мобиль» никогда не станет народным.

Схема и принцип работы газлифта

   Для всех желающих узнать что-то новое, мы предлагаем ознакомиться со схемой газлифта или пневмопатрона. Принцип работы его довольно прост. В металлическом корпусе находится цилиндр, в котором свободно ходит шток с поршнем. Сам цилиндр состоит из двух резервуаров, между которыми находится специальный клапан, который можно открыть или закрыть. Когда кресло находится в самом нижнем положении, поршень расположен в верхней части цилиндра. Когда нажимаем на рычаг, чтобы поднять кресло, он давит на кнопку, которая открывает клапан между камерами. В этот момент газ из резервуара 1 начинает поступать в резервуар 2 и давить на поршень, тот медленно опускается, тем самым поднимая кресло. Когда вы отпускаете кнопку, клапан закрывается, газ больше не может перемещаться по цилиндру и кресло фиксируется в данном положении.  Когда же вы садитесь в кресло и нажимаете рычаг, чтобы опустить кресло,  то вы опять открываете клапан, своим весом вы воздействуете на цилиндр, он опускается вниз, поршень идет вверх выталкивая газ обратно во внешний резервуар, кресло при этом плавно опускается вниз.

   Функции, которые выполняет газовый поршень:

1.     Регулировка кресла по высоте (ход газлифта зависит от его размера)
2.    Кручение вокруг своей оси, в обе стороны, 360 градусов
3.    Функция пружины при посадке в кресло, снимает резкую нагрузку на позвонки

   Необходимо упомянуть о такой важной детали газлифта — подшипнике, который позволяет крутиться поршню с цилиндром вокруг своей оси, благодаря этому офисное кресло может совершать вращательные движение.

   Большой железный корпус служит для поддержки штока в правильном вертикальном положении.

   На рисунке можно увидеть схему газлифта, а так же его изображение в разобранном виде.

Класс отличается по толщине стенки средней трубки и наружной трубки.

Class 1 — 1.2 mm

Class 2 — 1.5 mm

Class 3 — 2.0 mm — обычно на кресла до 120 кг

Class 4 — 2.5 mm — обычно на кресла до 150 кг

 

Кожух газлифта:

Статья: «Можно ли собрать офисное кресло без чехла для газлифта»

   Эта деталь идет в комплекте, как декоративная, которая закрывает сам черный стакан и делает низ кресла, более законченным. Для хромированных пневмопатронов телескопический чехол не предусмотрен, и не комплектуется в коробках. Это сделано для того, чтобы хромированная крестовина, составляла единое целое, и весь низ был металлическим.

 

P.S. Будьте внимательны, в самом газпатроне (это обычно блестящий шток) находиться газ под большим давлением! Следует избегать его повреждение. Вскрывать не рекомендуется!

Раздел каталога: Купить новый газлифт

Описание деталей и функций поршня

Детали поршня, в отличие от конструкции и материала, не различаются для разных поршней. Они остаются такими же, с различиями только в размерах.

В этой статье рассматриваются компоненты автомобильного поршневого узла с подробным описанием функции каждого из них.

Чтобы упростить идентификацию каждой детали, мы добавили изображения в описания.

Компоненты поршня проходят от части, граничащей с камерой сгорания, до конца, который соединяется с коленчатым валом. Вместе эти детали составляют поршневой узел.

Это компоненты, на которых мы сосредоточимся. Прежде чем продолжить, вот схема, показывающая все детали поршня.

Источник: http://www.pinterest.com

Теперь перейдем к подробному описанию каждого компонента.

1. Кольцо поршневое

Источник: http://www.japbikespares.com

Определение поршневого кольца

Кольца поршневые представляют собой части разрезных колец, которые устанавливаются на углублении поршня. Там Обычно это 3 поршневых кольца в типичном автомобильном двигателе.Количество варьируется, а поршневой может даже одно кольцо. Области или поверхности между этими кольцами называется землей поршневого кольца. Канавки для крепления колец предназначены для поддержания положения поршневого кольца и вы можете услышать что-то вроде конической конструкции.

Разъемная конструкция поршневого кольца имеет несколько преимуществ. Он обеспечивает пружинное действие, которое помогает кольцам поддерживать правильный зазор поршневых колец. Разъем также упрощает установку поршневого кольца. Чтобы обеспечить постоянство пружины при нагревании, нагрузке, давлении и других условиях, производители предпочитают в качестве материала поршневых колец чугун или куски стали.

Функция поршневого кольца

Основная функция поршневых колец — предотвращение сгорания. камеры и регулируют использование смазочного масла. Кольца также служат для проведения тепло от цилиндра скучно. Как уже упоминалось раньше поршни большинства автомобильных двигателей имели три кольца; два верхних компрессионных кольца и нижнее маслосъемное кольцо. Для наглядности поясняются различные кольца. ниже.

  • Компрессионное кольцо — это верхнее боковое кольцо и ближайшее к камере сгорания.Его еще называют газовым или напорным кольцом. Кольцо предотвращает утечку продуктов сгорания. Компрессионные кольца также помогают передавать тепло от поршня к стенкам цилиндра.
  • Скребок / Грязесъемник кольцо — находится между компрессионным и масляным кольцами. Оно имеет коническую поверхность и выполняет функцию обоих колец: герметизирует камеру сгорания и вытирает масло со стенок поршневого цилиндра.
  • Масло контрольное кольцо — поршневое масляное кольцо является нижним кольцом на поршне.Он состоит из двух тонких поверхностей с отверстиями по периметру. Прорези позволяют маслу стекать обратно в поддон. Как следует из названия, функция поршневого маслосъемного кольца заключается в удалении излишков масла со стенок цилиндра. Это происходит, когда поршень движется вперед и назад.

2. Юбка поршня

Определение юбки поршня

Юбка поршня относится к цилиндрическому материалу, установленному на круглой части поршня. Деталь обычно изготавливается из чугуна из-за его превосходной износостойкости и самосмазывающихся свойств.Юбка содержит канавки для крепления масляного кольца поршня, а также компрессионных колец. Юбки поршней бывают разных стилей, чтобы соответствовать конкретным приложениям.

Функция юбки поршня

Юбка направляет поршень при его движении вверх и вниз по цилиндру. Его конструкция помогает поршню преодолеть боковые силы, создаваемые изменяющимся углом шатуна. Если юбка изношена, получение надлежащего поршня печать для эффективного горение окажется затруднительным.

Поршень также может неконтролируемо раскачиваться в цилиндре и вызывать удары поршня.Когда это Случается, вы можете услышать пресловутый звук хлопка поршня, особенно при холодном пуске. Поршневой удар будет часто уходят после прогрева двигателя. Это потому, что в результате возникающее расширение закрывает зазор между поршнем и цилиндром.

Если шум не утихает, возможно, потребуется подтянуть цилиндр, среди прочего меры. В противном случае проблема не представляет особой опасности, и вы можете управляйте автомобилем, если шум появляется только при запуске двигателя.

Есть два основных типа юбки поршней:

Также известна как однотонная юбка. Пышная юбка имеет трубчатую форму. Он обычно используется в двигателях больших автомобилей.

Тип поршневой юбки используется на поршнях мотоциклов и некоторых автомобилей. У него вырезана часть юбки, чтобы оставить только поверхности на задней и передней стенке цилиндра. Это помогает снизить вес и минимизировать площадь контакта между стенкой цилиндра и поршнем.

3. Поршневой палец

Источник: http://www.ebay.com

Определение поршневого пальца

Поршневой палец, также известный как поршневой палец или поршневой палец, является полым или сплошным. вал в секции юбки.Шток поршня поворачивается на этом пальце, удерживаемом во втулке поршневого кольца. По прочности на разрыв поршневые пальцы обычно изготавливается из легированной стали и обрабатывается под поршневой подшипник. Отверстия в шатуне доставляют масло к запястью штифт, помогающий уменьшить трение.

Поршневые пальцы в сборе и способы монтажа различаются. Их можно разделить на 3 конструкции: свободно вращаться как в поршне, так и в шатуне, закреплены на шатуне и жестко закреплены на бобышках поршня.

Функция поршневого пальца

Поршневой палец образует точку соединения или шарнирного соединения поршней и шатун.Они обеспечивают поддержку подшипников и помогают поршням функционировать должным образом. Другими словами, штифт облегчает движение вперед и назад поршень.

Как мы видели, поршневые пальцы устанавливаются на поршневой узел тремя способами. Это приводит к появлению следующих типов штифтов.

  • Стационарный / фиксированный палец — палец крепится к бобышкам поршня с помощью винта. Затем шток поршня поворачивается на штифте.
  • Semi плавающий — палец прикрепляется к шатуну посередине, а концы пальцев свободно перемещаются внутри подшипника поршня и на бобышках.
  • Полный плавающий — в этом типе пальца палец не прикреплен к пальцу или шатуну поршня. Вместо этого он фиксируется заглушками, зажимами или стопорным кольцом, прикрепленным к бобышкам поршня. Тогда штифт может колебаться как на выступах, так и на стержне.

4. Головка поршня / корона

Источник: http://www.agkits.com

Определение головки поршня

Также известна как головка поршня или купол, головка поршня — его верхняя поверхность. Это часть, которая контактирует с горение газы.В результате это нагревается до чрезвычайно высоких температур. Для предотвращения плавления детали головки поршня изготавливаются из специальных сплавов, в том числе из стали. сплав.

Головка поршня обычно имеет каналы и полости. Это помогает создать завихрение, улучшающее сгорание. В разных двигателях используются разные типы головок поршней. Причины различий бывают разные. Предпочтительная конструкция головки поршня зависит от многих факторов, таких как ожидаемая производительность и тип двигателя.

Функции головки поршня

Корона, как ее еще называют, образует поверхность, которая принимает давления, температуры и другие напряжения расширяющихся газов. Среди цели, которым он служит:

  • Создание завихрения для равномерного сгорания и регулирования детонации
  • Действует как тепловой барьер между камерой сгорания и нижними частями поршня
  • Сдерживает давление, возникающее в результате детонации в цилиндре

5. Шатун

Источник: http://carparts4sale.com

Определение шатуна

Часто укороченный для шатуна или стержня шатун является одним из самые важные детали поршня.Он связывает поршень с коленчатым валом двигателя и перемещает поршень входит и выходит из камеры сгорания. Шатуны должны иметь много механических нагрузок и должен быть достаточно прочным. По этой причине детали в основном кованые, хотя часто применяется и литье.

Производители автомобильных поршней часто предпочитают сталь для изготовления этих штоков. Легированная сталь также является популярным материалом для шатунов, особенно для высокопроизводительных двигателей. Для более мягких двигателей может быть предпочтителен алюминий из-за его легкости. Штоки небольших двигателей, таких как скутеры, могут быть сделаны даже из железа.

Функция шатуна

шатун вращает коленчатый вал, производя движение, которое позволяет автомобилю шаг. В некоторых двигателях шток поршня имеет отверстие или расточку для подачи смазочного масла. к стенкам цилиндра и булавке. Производители изготавливают шатуны в различных конструкции. Версии включают соединение с трещиной, фрезерованное соединение, прямое и угловое соединение. разделительный стержень, а также конструкция с параллельным и коническим стержнем.

шатун разделен на несколько частей. Их:

  • Малый конец — это меньший конец стержня. Он состоит из проушины штока и втулки поршня. Малый конец соединяется с поршнем через поршневой палец.
  • Большой конец — большой конец — это часть, противоположная малому концу шатуна. Он соединяется с коленчатым валом и имеет прорезь, позволяющую установить его.
  • Соединительный стержень Балка — это участок между малой и большой частями стержня.Обычно это двойная Т-образная конструкция, балка может содержать или не содержать масляное отверстие для подачи смазки к цилиндру.

6. Болт шатуна

Источник: http://www.ebay.com

Определение болта шатуна

Также в списке деталей поршня — шатунный болт. Эти болты прижимают шток к коленчатый вал. Нижним концом болта шатуна являются крышки шатуна и подшипники, удерживаемые в место гайкой. Штифт на гайке предотвращает соскальзывание сборки отменено.

Шатунные болты обычно изготавливаются из стали. В приложениях, где снижение веса является важной характеристикой, обычно используются алюминиевые болты. Стержень также может быть сделан из никеля. Никелевые болты шатуна более прочные и в основном используются в сверхмощных шатунах.

Функция болта шатуна

Как мы видели, болты крепления шатуна к коленвалу. Они помогают шатун, чтобы выдерживать напряжение, вызванное вращающимся коленчатым валом. В их В противном случае шток может сломаться, что повлияет на работу других деталей двигателя.Штоки направляют каждый поршень ход, обеспечивающий плавную работу двигателя.

Шатун болты выполнены с возможностью немного гнуться под действием движений поршня и коленвала. Это защищает крышки штоков от разрушения из-за чрезмерного напряжения, вызванного движущийся коленчатый вал и поршень.

Болты шатуна бывают разных конструкций. Они могут быть шестиугольными, круглыми, плоскими или рельефными. Некоторые идут с резьбой, другие без резьбы. Болты с резьбой являются лучшими деталями из-за их более прочного сцепления.

7. Подшипники поршневые

Источник: http://www.mfgsupply.com

Подшипники представляют собой поршневые детали, расположенные в точках, где происходит поворотное вращение. Обычно они полукруглые металлические детали, которые входят в отверстия этих точек. Подшипники поршня включают Корпуса обнаружены на большом конце, где шток соединяется с коленчатым валом. Есть также подшипники на малом конце, где шток соединяется с поршнем.

Поршневые подшипники

обычно изготавливаются из композитных металлов, таких как свинцовая медь, силиконовый алюминий и другие.Подшипники часто имеют покрытие для повышения твердости и способности выдерживать нагрузку от движений поршня и шатуна.

Вопросы по деталям поршня

1. Есть ли у поршней двигателя возвратные пружины?

Нет, это не так. В этих поршнях не требуется возвратная пружина поршня. Однако вы найдете пружины в сборках барабанных тормозов. Здесь они помогают убрать тормозные колодки, когда вы отпускаете педаль тормоза.

2. Что такое поршень лайнер?

Это своего рода гильза, устанавливаемая на стенках цилиндра двигателя.Обычно гильза изготавливается из материала более высокого качества, чем материал внутренней части цилиндра. обеспечивает износостойкую поверхность. Автовладельцы устанавливают его для защиты цилиндр или отремонтировать при восстановлении двигатель.

Поскольку гильза сменная, ее использование увеличивает срок службы двигателя. Гильза поршня также называется гильзой поршня и не является частью поршневого узла. Вы также найдете его под названием гильза цилиндра или втулка.

3 . Что детали поршня можно заменить?

Большинство компонентов поршневого узла можно заменить.В их число входят поршневые кольца, поршневые подшипники, болты поршневого штока и некоторые другие детали. Эти можно приобрести отдельно или в виде поршневого комплекта.

Поршневые кольца быстро изнашиваются. Это одна из наиболее часто заменяемых деталей поршня. При повреждении эти кольца вызывают различные проблемы с поршнем и двигателем. Это может привести к дополнительным расходам. Учитывая, что цена поршневых колец составляет всего несколько сотен долларов, замена этих деталей может избавить вас от дорогостоящего ремонта.

4. Сколько стоит замена поршня запчасти ?

Сумма может превышать 1000 или даже 2000 долларов.Цена комплекта поршня или отдельных компонентов может быть низкой, но не итак сумма, которую вы платите механику за выполнение работы. Замена всего скрытого внутри блока двигателя предполагает несколько часов работы, что почему стоит дорого.

Добавьте это к тому, что обычно бывает поршневой установлен на изменение, и сумма может быть довольно высокой. Ты можешь выбрать, конечно, замену поршня или детали поршня самостоятельно. Однако вы потребуются подходящие инструменты, в том числе следующие:

Кольцо поршневое компрессор для установки кольца, микрометр к поршню измерение и щуп набор датчиков для измерения зазора поршня и поршневого кольца.Также может понадобиться поршневое кольцо. файлер, чтобы отточить кольца до правильные спецификации. Также нужно понимать, как заменить поршень. правильно. (У нас есть целая статья, посвященная процессу установки поршня). На рынке автомобильных поршней представлено множество типов поршней.

Чтобы найти подходящий для своего двигателя, просмотрите сайты производителей. Обычно они предоставляют каталог автомобильных поршней. Они содержат бесценную информацию о конкретном поршне, который вы, возможно, ищете.Это включает таблицу размеров поршня для зазора между поршнем и цилиндром, диаграмму глубины поршня и многое другое. У вас также будет возможность определить цену среди продавцов.

Заключение

Осмотрев детали поршня, теперь вы знаете, как каждый Внешний вид компонента и его расположение на поршневом узле. У нас есть больше статей о автомобильных поршнях, а вы можете просматривать их. Статьи охватывают несколько тем, в том числе измерение поршней при восстановлении двигателя. И если ищем подходящий поршень для двигателя вашего автомобиля, у нас есть полная статья о типах поршней.

Узел силового поршня


Принципиальная схема узла силового поршня. Воздух под высоким давлением заставляет силовой поршень опускаться (или подниматься), что заставляет шатун вращать кривошип. Впускные отверстия для сжатого воздуха не показаны.

Принципиальная схема силового агрегата показана на рисунке выше. Многие предметы будут вам знакомы тем, кто знаком с автомобильными двигателями, включая поршень, цилиндр, шатун, кривошип и маховик.Мы подробно опишем каждый из этих элементов ниже, а также предоставим некоторые (очень приблизительные) рекомендации по проектированию. Если вы хотите перейти к более подробной процедуре проектирования, см. Страницу «Схема Reuleax».




Принципиальная схема силового поршня. На левой диаграмме показан ход вниз , где HP air на верхней грани поршня заставляет его двигаться влево. На правой диаграмме показан ход вверх .

Визуализация силового поршня.Шток изготовлен из шлифованной стали, а поршень — из ацеталя.

Силовой поршень

На рисунке выше показан изолированный силовой поршень. На левой диаграмме воздух под высоким давлением заставляет поршень двигаться вниз; это называется «спуском вниз». На правой диаграмме показан ход вверх. В то время работа поршня такая же, как и в автомобильном двигателе, вы, наверное, заметили, что поршень «двойного действия»; то есть он получает питание как при движении вверх, так и при движении вниз.В результате движение получается более плавным, чем если бы поршень приводился в действие только на ходу вниз, как в автомобильном двигателе. Непрактично иметь камеры сгорания по обе стороны от поршня в автомобильном двигателе, поэтому для создания плавное вращательное движение.




Схема, показывающая слишком короткий шатун (слева) и слишком длинный (справа).

Шатун

Сила шатуна (розовый) и сила крутящего момента (фиолетовый).

Шатун прикрепляет силовой поршень к кривошипу. Это просто звено, обычно сделанное из алюминия, с булавками на обоих концах. Штифты могут быть установлены в крошечные шарикоподшипники, если требуется меньшее трение. Основным ограничением конструкции шатуна является то, что он не должен быть слишком длинным или слишком коротким. Как показано на рисунке выше, слишком короткий шатун будет «заедать», когда кривошип находится почти вертикально. И наоборот, соединительный слишком длинный шток потребует излишка материала для размещения подшипников цилиндра и выходного вала.В Кроме того, большие шатуны создают больше движущейся массы, что часто приводит к проблемам с вибрацией. Пытаясь преодолеть эту проблему, сделав шатун длинным и тонким, может привести к проблемам с короблением. В итоге, проектировщик должен сделать шатун как можно короче и легче, избегая при этом проблемы с заеданием. показано на рисунке вверху слева.

Еще одно последствие короткого шатуна показано на рисунке справа.Поскольку стержень имеет штифтовые соединения на обоих концах передаваемая сила должна быть параллельна стержню; эта сила показана розовым цветом. Цель шатун, однако, должен создавать крутящий момент на кривошипе. Сила, создающая крутящий момент, перпендикулярна к рукоятке и показан фиолетовым цветом. Составляющая силы шатуна, которая не совпадает с крутящий момент «тратится впустую», поскольку он не производит крутящего момента (и фактически увеличивает трение в подшипниках).Там наиболее вероятно является оптимальной длиной шатуна, которая сводит к минимуму перекос между шатуном сила и крутящий момент сила, но я не получил ее. Отзывы читателей приветствуются!

Рендеринг «шатуна».

На рисунке справа показано изображение шатуна, используемого в конструкции прототипа Rowan. Обратите внимание «осветительное отверстие» в центре стержня и небольшой шарикоподшипник, используемый для уменьшения трения с шатунной шейкой. Шатун изготовлен из алюминия, вырезанного с использованием абразивного гидроабразивного станка с ЧПУ, но также может быть вырезан лазером. в оргстекле.



Длина хода определяется длиной кривошипа

Кривошип

Кривошип передает возвратно-поступательное движение шатуна во вращательное движение выходного вала. Как вы можете видеть на рисунке выше, кривошип также определяет общую длину хода поршня. Как и с шатун, конструкция кривошипа — компромисс. Длинный кривошип будет производить высокий крутящий момент (хорошо!) но потребует большей длины хода и потребляет большее количество воздуха за один ход (плохо!) длина кривошипа обычно определяется требованиями к крутящему моменту для двигателя и остается такой маленькой, как возможно




Маховик

Плохая (слева) и хорошая (справа) конструкция маховика

Маховик используется для сглаживания колебаний частоты вращения выходного вала, вызванных импульсами сжатый воздух на торцы поршня.Без маховика выходной вал внезапно ускоряется. когда воздух высокого давления впервые поступил в силовой цилиндр, а затем замедлился, поскольку воздух в цилиндре разрешен расширять. Как мы увидим, это особенно верно для конструкций с малым коэффициентом отсечки, где допускается воздух высокого давления. к цилиндру в течение небольшой части хода.

Как и все другие части пневматического двигателя, конструкция маховика является компромиссом. Если мы сделаем маховик слишком маленьким, ему не хватит инерции вращения, чтобы сгладить колебания скорости.И наоборот, чрезмерно большой маховик заставит двигатель вяло реагировать на желаемые изменения скорости (например, когда контроллер сообщает двигатель разгоняться с 1000 до 2000 об / мин). В любом случае, мы должны спроектировать маховик с такой же инерцией вращения. по возможности для данной массы.

На этом обзор узла силового поршня завершен. Следующим шагом будет осмотр поршня клапана. Подробно сборка, которую можно увидеть здесь.

Диаграмма давление-объем (pV) и то, как работает ДВС — x-engineer.org

Двигатель внутреннего сгорания — это тепловая машина . Принцип его работы основан на изменении давления и объема внутри цилиндров двигателя. Все тепловые двигатели характеризуются диаграммой давление-объем , также известной как диаграмма pV , которая в основном показывает изменение давления в цилиндре в зависимости от его объема для полного цикла двигателя.

Также, работа , производимая двигателем внутреннего сгорания, напрямую зависит от изменения давления и объема внутри цилиндра.

К концу этого руководства читатель должен уметь:

  • понимать значение диаграммы pV
  • , как строится диаграмма pV для 4-тактного двигателя внутреннего сгорания
  • при впуске и выпуске клапаны приводятся в действие во время цикла двигателя
  • , когда зажигание / впрыск производится во время цикла двигателя
  • как работа производится двигателем внутреннего сгорания
  • какая разница между указанным и тормозной работой
  • каков механический КПД двигателя

Давайте начнем с рассмотрения pV-диаграммы четырехтактного атмосферного двигателя внутреннего сгорания.

Изображение: диаграмма давление-объем (pV) для типичного 4-тактного ДВС

где:

S — ход поршня
V c — зазорный объем
V d — смещенный (рабочий) объем
p 0 — атмосферное давление
W — работа
ВМТ — верхняя мертвая точка
НМТ — нижняя мертвая точка
IV — впускной клапан
EV — выпускной клапан
IVO — открытие впускного клапана
IVC — закрытие впускного клапана
EVO — открытие выпускного клапана
EVC — закрытие выпускного клапана
IGN (INJ) — зажигание (впрыск)

Диаграмма давление-объем (pV) построена путем измерения давления внутри цилиндра и нанесения его значения в зависимости от угла поворота коленчатого вала на протяжении всего цикл двигателя (720 °).

Давайте посмотрим, что происходит в цилиндре во время каждого хода поршня, как изменяются давление и объем внутри цилиндра.

Обратите внимание, что синхронизация впускных и выпускных клапанов имеет опережение , и задержку , относительно положения поршня. Например, впускной клапан открывается во время такта выпуска поршня и закрывается во время такта сжатия. В то же время, когда начинается такт впуска, выпускной клапан еще некоторое время открыт.Открытие выпускного клапана происходит до завершения рабочего хода.

ВПУСК (a-b)

Цикл двигателя начинается в точке a . Впускной клапан уже открыт, и поршень движется от ВМТ к НМТ. Объем постоянно увеличивается по мере того, как поршень перемещается по длине хода. Максимальный объем достигается, когда поршень находится в НМТ. Давление ниже атмосферного во время всего хода, потому что движение поршня создает объем, а воздух втягивается внутрь цилиндра из-за эффекта вакуума.

СЖАТИЕ (b-c)

После того, как поршень прошел НМТ, начинается такт сжатия. В этой фазе объем начинает уменьшаться, а давление увеличиваться. Требуется некоторое время, пока давление в цилиндре не превысит атмосферное, чтобы впускной клапан оставался открытым даже после прохождения поршнем НМТ. По мере того, как поршень приближается к ВМТ, давление постепенно увеличивается. Примерно за 25 ° до ВМТ запускается зажигание, и давление быстро повышается до максимального.

МОЩНОСТЬ (c-e)

После события зажигания / впрыска давление в цилиндре резко возрастает, пока не достигнет максимальных значений p max . Значение максимального давления зависит от типа двигателя, на каком топливе он используется. Для обычного двигателя легкового автомобиля максимальное давление в цилиндре может составлять около 120 бар (бензин) или 180 бар (дизель). Рабочий ход начинается, когда поршень движется от ВМТ к НМТ. Высокое давление в цилиндре толкает поршень, поэтому объем увеличивается, а давление начинает постепенно падать.

ВЫХЛОП (e-a)

После рабочего хода поршень снова находится в НМТ. Объем цилиндра снова равен максимальному значению, а давление — примерно минимальному (атмосферное давление). Поршень начинает двигаться в сторону ВМТ и выталкивает сгоревшие газы из цилиндра.

Как видите, давление и объем внутри цилиндров двигателя постоянно меняются. Мы увидим, что работа, производимая ДВС, зависит от изменений давления и объема.

Работа Вт [Дж] — это произведение силы F [Н] , которая толкает поршень, и смещения, которое в нашем случае составляет ход S [м] .

\ [W = F \ cdot S \ tag {1} \]

Мы знаем, что давление — это сила, разделенная на площадь, поэтому:

\ [F = p \ cdot A_p \ tag {2} \]

, где p [ Па] давление внутри цилиндра, а A p 2 ] — площадь поршня.

Замена (2) в (1) дает:

\ [W = p \ cdot A_p \ cdot S \ tag {3} \]

Мы знаем, что умножая расстояние на площадь, мы получаем объем, следовательно:

\ [W = p \ cdot V \ tag {4} \]

Это мгновенная работа , произведенная в цилиндре при определенном давлении и объеме.Чтобы определить работу для полного цикла двигателя, нам нужно интегрировать мгновенную работу:

\ [W = \ int F \ cdot dx = \ int p \ cdot A_p \ cdot dx \ tag {5} \]

, где x ход поршня.

Произведение между ходом поршня и площадью поршня дает дифференциальный объем dV , смещенный поршнем:

\ [dV = A_p \ cdot dx \ tag {6} \]

Замена (6) в (5 ) дает работу , произведенную в цилиндре за полный цикл :

\ [\ bbox [# FFFF9D] {W = \ int p \ cdot dV} \ tag {7} \]

Поскольку подавляющее большинство Если двигатель внутреннего сгорания имеет несколько цилиндров, мы собираемся ввести более подходящий параметр для количественной оценки работы, которым является удельная работа Вт [Дж / кг] .

\ [w = \ frac {W} {m} \ tag {8} \]

где м [кг] — масса топливовоздушной смеси внутри цилиндров за полный цикл.

Мы можем также определить удельный объем v [m 3 / кг] как:

\ [v = \ frac {V} {m} \ tag {9} \]

Производная от удельного объем будет:

\ [dv = \ frac {1} {m} \ cdot dV \ tag {10} \]

, откуда мы можем записать:

\ [dV = m \ cdot dv \ tag {11} \]

Замена (7) в (8) дает:

\ [w = \ frac {1} {m} \ int p \ cdot dV \ tag {12} \]

Из (11) и (12) получаем математическое выражение удельной работы для полного цикла двигателя:

\ [\ bbox [# FFFF9D] {w = \ int p \ cdot dv} \]

Работа, производимая внутри цилиндров двигателя, называется , указывается удельная работа , w i [Дж / кг] . То, что мы получаем на коленчатом валу, — это удельная работа тормоза w b [Дж / кг] . Это называется «тормозной», потому что при испытании двигателей на испытательном стенде они подключаются к тормозному устройству (гидравлическому или электрическому), которое имитирует нагрузку.

Чтобы получить работу тормоза, мы должны вычесть из указанной работы все потери двигателя. Потери связаны с внутренним трением и вспомогательными устройствами, которые требуют энергии от двигателя (масляный насос, водяной насос, нагнетатель, компрессор кондиционера, генератор и т. Д.). Эти потери имеют эквивалент удельной работы на трение w f [Дж / кг] .

\ [w_b = w_i — w_f \]

Глядя на приведенную выше диаграмму давление-объем (pV), мы можем увидеть, что есть две отдельные области:

  • верхняя область, образованная во время тактов сжатия и мощности ( + W)
  • нижняя область, образующаяся во время тактов выпуска и впуска (-W), также называемая насосная работа

В зависимости от значения давления всасывания рабочая область нагнетания может быть отрицательной или положительной. Для атмосферных двигателей насосная работа является отрицательной, потому что она использует энергию двигателя для выталкивания выхлопных газов из цилиндров и всасывания свежего воздуха во время впуска.

Для бензиновых атмосферных двигателей из-за дросселирования всасываемого воздуха насосные потери выше и максимальны на холостом ходу. Дизельные двигатели более эффективны, чем бензиновые, потому что на впуске нет дроссельной заслонки, а нагрузка регулируется посредством впрыска топлива.

Если разделить удельный крутящий момент тормоза на указанный удельный крутящий момент, мы получим механический КПД двигателя η м [-] :

\ [\ bbox [# FFFF9D] {\ eta_m = \ frac {w_b} {w_i}} \]

Для большинства двигателей механический КПД составляет около 80-85% при полной нагрузке (широко открытая дроссельная заслонка) и падает до нуля на холостом ходу, когда весь крутящий момент двигателя используется для поддержания холостого хода скорость, а не движущая сила.

По любым вопросам, наблюдениям и запросам относительно этой статьи используйте форму комментариев ниже.

Не забывайте ставить лайки, делиться и подписываться!

Идеальный цикл Отто

Чтобы переместить самолет по воздуху, тяга создается какой-то двигательная установка. Начиная с братьев Райт ‘ первый полет, многие самолеты использовали двигатель внутреннего сгорания превратить пропеллеры для создания тяги. Сегодня большинство самолетов гражданской авиации или частных самолетов с двигателем внутреннего сгорания (IC) , как и двигатель в вашем семейном автомобиле.Обсуждая двигатели, мы должны учитывать как механическая работа машина и термодинамический процессы, которые позволяют машине производить полезные Работа. На этой странице мы рассматриваем термодинамику четырехтактный Двигатель IC .

Чтобы понять, как работает двигательная установка, мы должны изучать основы термодинамики газы. Газы имеют различные свойства, которые мы можем наблюдать с помощью наших чувства, включая газ давление р , температура T , масса, и объем В который содержит газ. Тщательное научное наблюдение показало, что эти переменные связаны друг с другом, и значения этих свойства определяют штат газа. Термодинамический процесс , такой как отопление или сжатие газа, изменяет значения переменных состояния в способ, который описывается законы термодинамики. В работа сделана газом и тепло передается газу зависят от начального и конечного состояний газа и о процессе, используемом для изменения состояния.Возможно выполнение ряда процессов, в которых состояние меняется во время каждого процесса, но газ со временем возвращается в исходное состояние. Такая последовательность процессов называется цикл и формирует основу для понимания работы двигателя.

На этой странице мы обсуждаем термодинамический цикл Отто , который используется в все двигатели внутреннего сгорания. На рисунке показан диаграмма p-V цикла Отто. Использование двигателя система нумерации этапов, мы начинаем в нижнем левом углу с Этап 1 является началом такт впуска двигателя. Давление близко атмосферное давление и минимальный объем газа. Между этапом 1 и этапом 2 поршень вытягивается из цилиндра с впускной клапан открыт. Давление остается постоянным, а объем газа увеличивается. поскольку топливно-воздушная смесь всасывается в цилиндр через впускной клапан. Этап 2 начинает такт сжатия двигателя с закрытие впускного клапана. Между этапом 2 и стадия 3, поршень возвращается в цилиндр, объем газа уменьшается, и давление увеличивается, потому что работа сделана на газ поршневой. Этап 3 — начало горение топливовоздушной смеси. Горение происходит очень быстро и объем остается постоянным. Высокая температура выделяется во время горения, что увеличивает как температура и давление, согласно уравнение состояния. Этап 4 начинает рабочий ход двигателя. Между этапом 4 и этапом 5, поршень приводится к коленчатому валу, объем увеличивается, а давление падает как работа сделана по газу на поршне.На этапе 5 выпускной клапан открывается а остаточное тепло в газе равно обменялся с окружением. Громкость остается постоянным, а давление возвращается к атмосферным условиям. Этап 6 начинает такт выпуска двигателя, во время которого поршень возвращается в цилиндр, объем уменьшается, а давление остается постоянным. В конце такта выпуска условия вернулись к этапу 1, и процесс повторяется.

Во время цикла Работа осуществляется на газе поршнем между ступенями 2 и 3.Работу выполняет газ на поршне между ступенями 4 и 5. Разница между работой, проделанной газ и работа, проделанная с газом, — это область, ограниченная кривая цикла и произведенная работа по циклу. Время работы, умноженное на скорость цикла (циклов в секунду), составляет равно мощность произведен двигателем.

Площадь, ограниченная циклом на диаграмме p-V пропорциональна работе, произведенной в цикле. На этой странице у нас есть показан идеальный цикл Отто , в котором нет поступления тепла (или уходящий) газ при сжатии и силовых тактах, трения нет потери и мгновенное горение, происходящее при постоянном объеме. В действительности, идеального цикла не происходит, и есть много потерь, связанных с каждый процесс. Эти потери обычно учитываются коэффициентами эффективности. которые умножают и видоизменяют идеальный результат. Для реального цикла форма диаграммы p-V аналогичен идеальному, но площадь (работа) равна всегда меньше идеального значения.



Деятельность:

Экскурсии с гидом

Навигация ..


Руководство для начинающих Домашняя страница

Типы поршневых колец и техническое обслуживание поршневых колец

Поршневые кольца производятся и классифицируются в зависимости от функции и удобства использования.Первичное использование поршневого кольца — герметизация камеры (в которой движется поршень), которая может быть камерой сгорания двухтактного или четырехтактного двигателя. Судовые двигатели имеют три или более типа колец, установленных по окружности поршня.

Поршневое кольцо является важной частью поршня, его количество и функциональность различаются в зависимости от типа и мощности двигателя.

В 2-тактных больших двигателях поршневые кольца компрессионного типа используются для уплотнения камеры сгорания, а грязесъемные кольца устанавливаются под ними для удаления отложений с гильзы и распределения масла по поверхности гильзы.

Прочтите по теме: Причины износа гильз цилиндров и способы их измерения

Однако в небольших судовых двигателях используются разные типы поршневых колец для специальных целей. Например. Маслосъемное кольцо используется в 4-тактном двигателе, поскольку это двигатель магистрального типа, а масло картера имеет прямой доступ к гильзе цилиндра и поршню. В этой статье мы рассмотрим различные типы поршневых колец, используемых в морских двигателях.

Типы и функции поршневых колец

Компрессионные кольца или кольца давления

Компрессионные кольца обеспечивают уплотнение над поршнем и предотвращают утечку газа со стороны сгорания.Компрессионные кольца расположены в первых канавках поршня.

Однако это может отличаться в зависимости от конструкции двигателя. Основная функция этих колец — герметизировать газообразные продукты сгорания и передавать тепло от поршня к стенкам поршня.

Масло регулируется путем срезания слоя масла, оставленного масляным кольцом, таким образом обеспечивая достаточную смазку верхних компрессионных колец. Кроме того, он также помогает верхнему компрессионному кольцу в уплотнении и передаче тепла.

Стеклоочистительное кольцо

Грязесъемное кольцо, также называемое кольцом Напье или резервным компрессионным кольцом, устанавливается под компрессионным кольцом. Их основная функция является для очистки поверхности гильзы от избыточного масла и действовать в качестве вспомогательной резервного кольца на остановку любой утечки газа дальше вниз, который избегал компрессионного кольца сверху. Большая часть грязесъемных колец имеет поверхность с углом сужения, которая обращена к нижней части для обеспечения очищающего действия при движении поршня к коленчатому валу.

Связанное чтение: Как внутренние силы в морских двигателях влияют на их работу?

Если грязесъемное кольцо установлено неправильно с углом конуса, ближайшим к компрессионному кольцу, это приводит к чрезмерному расходу масла. Это вызвано тем, что грязесъемное кольцо вытирает излишки масла в сторону камеры сгорания.

Маслосъемные кольца / скребки

Маслосъемные кольца регулируют количество смазочного масла, проходящего вверх или вниз по стенкам цилиндра.Эти кольца также используются для равномерного распределения масла по окружности гильзы.

Масло разбрызгивается на стенки цилиндра. Эти кольца также называются скребковыми кольцами, поскольку они соскабливают масло со стенок цилиндра и отправляют обратно в картер.

Эти кольца не позволяют маслу выходить из пространства между лицевой стороной кольца и цилиндром.

Связанное чтение: Интеллектуальная система смазки цилиндров для современных судовых двигателей

В масляном кольце отверстия или прорези прорезаны в радиальном центре кольца, что позволяет избыточному маслу стекать обратно в резервуар.

Масляные кольца могут быть цельными или двухчастными. Чтобы увеличить контактное давление между кольцом и поверхностью гильзы, кольца могут иметь скошенные кромки либо на внешних сторонах площадок, либо напротив камеры сгорания, чтобы снизить расход масла за счет улучшенного соскабливания масла из отверстия.

Двухкомпонентные маслосъемные кольца состоят из чугуна или профилированного стального кольца и винтовой пружины, изготовленной из жаропрочной пружинной стали, которая действует по всей окружности кольца для поддержания давления и контакта.

Материал поршневого кольца

Один из самых известных материалов, используемых при производстве поршневых колец, — чугун. Это связано с тем, что он содержит графит в пластинчатой ​​форме, который сам действует как смазка, помогая скользящему движению между кольцами и гильзой.

На поршневые кольца нанесены сплавы и покрытия, и они будут варьироваться в зависимости от типа кольца, так как функции этих колец отличаются друг от друга.

Наиболее распространенной формой легирования чугуна является хром, молибден, ванадий, титан, никель и медь.

Материал поршневых колец держится тверже, чем гильза цилиндра, что обеспечивает максимальный срок службы.

Связанное чтение: Как сделаны поршневые кольца?

Поршень главного двигателя

Камера сгорания двухтактного морского двигателя — это большое пространство, производящее огромное количество тепла и напряжений.

Верхние кольца поршня находятся в непосредственном контакте с камерой сгорания, поэтому они нуждаются в лучшей защите и покрытии, чтобы справиться с тепловым напряжением и обеспечить надлежащее уплотнение.

Многие новые конструкции были разработаны специально для больших двухтактных судовых двигателей. Некоторые из представленных важных разработок:

Двигатель MAN

Самое верхнее поршневое кольцо относится к типу регулируемого сброса давления, в котором на поверхности имеется несколько наклонных неглубоких канавок (с твердым хромированием), позволяющих некоторому давлению газа проходить через 2-е кольцо, тем самым снижая нагрузку на верхнее кольцо. На концах колец имеется соединение типа «S».

Недавно была представлена ​​новая конструкция, представляющая собой модифицированную версию колец CPR, известную как кольца CPR Port on Plane (CPR POP).

Изменено положение канавок, которые теперь расположены на нижней стороне кольца, поскольку было отмечено, что износ канавок колец CPR на рабочей стороне был быстрее, чем обычно.

Второе или промежуточное кольцо

Остальные кольца имеют косой вырез на концах. Все поршневые кольца имеют алюминиевое покрытие на внешней поверхности для облегчения приработки.

Двигатель Wartsila

В 2-тактном двигателе Wartsila канавки для поршневых колец на поверхности поршня закалены для обеспечения превосходной износостойкости. Верхнее поршневое кольцо (также известное как газонепроницаемое (GT) кольцо в Wartsila) имеет перекрывающиеся концы, чтобы избежать утечки газа благодаря асимметричной форме цилиндра. Они имеют хромокерамическое (CC) покрытие вместе с покрытием для приработки (RC).

Количество поршневых колец зависит от размера двигателя. Например. RTflex 35 будет иметь очень короткую юбку и оснащен тремя поршневыми кольцами, но двигатель RTA может иметь 5 поршневых колец.3

Двигатель четырехтактный

Требование к поршневому кольцу в 4-тактном двигателе отличается, поскольку узел гильзы поршня открыт для отстойника. Следовательно, в 4-тактном пакете поршневых колец дополнительно требуются маслосъемные кольца. Обычно он состоит из 2-5 колец в зависимости от типа и спецификации двигателя. Обычно предусмотрены 2-4 компрессионных кольца для герметизации газов из камеры сгорания и 1-3 маслосъемных кольца для предотвращения попадания масла в камеру сгорания.

Компрессорные кольца обычно цилиндрического типа с конической поверхностью для эффективного газового уплотнения. Профили маслосъемного кольца содержат две площадки и вставленную цилиндрическую пружину для поддержки предварительного натяжения кольца.

Как работают поршневые кольца?

Как уже объяснялось, в поршне на разных уровнях предусмотрены кольца разных типов, которые выполняют разные задачи.
Самая верхняя канавка поршня состоит из компрессионного кольца, основная функция которого заключается в герметизации любых утечек внутри камеры сгорания во время процесса сгорания.

При воспламенении топливовоздушной смеси давление газов сгорания прикладывается к головке поршня, заставляя поршень двигаться к коленчатому валу.

Сжатые газы проходят через зазор между стенкой цилиндра и поршнем в канавку поршневого кольца.

В процессе сгорания сила газов под высоким давлением прижимает поршневое кольцо к стенке гильзы цилиндра, что помогает ему образовывать эффективное уплотнение. Это давление, толкающее поршневое кольцо, пропорционально давлению газов сгорания.

Следующий набор колец в поршне, который находится под компрессионным кольцом и над масляными кольцами, называется грязесъемными кольцами.

Они имеют конструкцию с конической поверхностью и служат для дополнительного уплотнения камеры сгорания. Как следует из названия, они помогают очистить стенку гильзы от излишков масла и загрязнений. Если какой-либо из дымовых газов смог пройти через компрессионное кольцо, эти газы будут заблокированы грязесъемным кольцом в хорошем состоянии.

Последний набор колец представляет собой масляные кольца, которые расположены в нижних канавках поршня, ближайшего к картеру.Основная функция масляного кольца — соскребать излишки масла со стенок гильзы цилиндра во время движения поршня.

Большая часть протертого масла направляется в картер обратно в масляный поддон. Эти масляные кольца поставляются с пружиной, установленной сзади в 4-тактном двигателе, чтобы обеспечить дополнительный толчок для очистки гильзы.

Почему выходят из строя поршневые кольца?

Камера сгорания оказывает огромное давление на поршневые кольца. Если давление сгорания газа, производимого внутри камеры, выше обычного, это может повлиять на работу кольца.

Это может быть из-за детонации и звона топлива из негерметичной форсунки или когда топливо смешано с грязным воздухом.

Загрязненное жидкое топливо или неправильный сорт цилиндрового масла также может повлиять на работу кольца. Когда кольцо начнет изнашиваться, станет очевидной их способность герметизировать дымовые газы.

Плохое качество топлива или масла в цилиндре, плохой процесс сгорания, неправильная синхронизация подачи топлива, изношенная гильза и т. Д. Являются нормальной причиной износа поршневых колец. Наиболее частым признаком или признаком изношенного кольца является прохождение газа в картер или под поршень, известное как продувка.

Заедание кольца из-за нагара или отложений шлама, а также поломка или трещина на кольце из-за износа.

Что необходимо проверить при осмотре поршневого кольца

Осмотр поршневых колец является важной задачей для определения надлежащей работы поршневых колец с последующей очисткой или заменой поршневых колец (если они сломаны или изношены).

В двухтактных двигателях отверстие, содержащее верхнее кольцо, обычно находится в более высоком положении, чем канавка верхнего кольца четырехтактного двигателя.

Во время текущего осмотра

При обычном осмотре продувочного пространства поршневые кольца нажимаются с помощью отвертки. Это делается для проверки действия пружины или натяжения колец. Это также говорит о том, сломано кольцо или нет. Если кольцо сломано, пружина не сработает.

Кольца проверяются на предмет их мягкости в канавках, так как они могут застрять из-за нагара и, наконец, сломаться, что приведет к значительным повреждениям гильзы.

Также проверяется зазор между кольцом и канавкой и рассчитывается износ. Кольцо проверяется на наличие царапин и повреждений, а также оценивается общее состояние.

Связанное чтение: Основное руководство по техническому обслуживанию судовых двигателей для морских инженеров

В процессе капитального ремонта

При капитальном ремонте поршневые кольца полностью заменены на новый комплект. Но для списания колец необходимо учитывать следующие шаги: —

1) Если поршневое кольцо застряло в канавке.
2) Если осевая высота колец уменьшена, а зазор в кольцах и канавке велик.
3) Если слой хрома отслоился или поврежден.

Во время капитального ремонта канавки необходимо тщательно очистить от нагара и проверить на наличие повреждений кольцевые канавки.

Перед тем, как поставить поршневое кольцо, его нужно предварительно прокатить по канавкам округлить. При этом кольцо полностью перемещается внутри канавок.

С помощью этого теста мы можем проверить, что глубина канавок превышает радиальную ширину кольца.

Вставляя поршень с замененными кольцами во гильзу, используйте хорошо смазанный инструмент для сжатия поршневых колец, который гарантирует, что кольца не будут прилипать к поверхности гильзы при входе в камеру сгорания.

Поршневые кольца вставляются внутрь изношенной гильзы, также проверяется стыковой зазор. Для колец небольшого поршня (например, компрессора) концы можно обработать с помощью фильтра для поршневых колец, но для судовых двигателей кольца необходимо отправить в береговую мастерскую для ремонта, если стыковой зазор необычный.При надевании колец их следует проверять на наличие отметок о том, какая часть находится вверху или внизу, а также проверять различные отметки для разных положений.

Кольца следует укладывать с помощью автодорожки, т.е. с помощью расширителя колец. Зазор между кольцом и канавкой проверяется с помощью щупа.

Осевой и радиальный зазор старого кольца проверяется и записывается для оценки степени износа за несколько часов эксплуатации.

Как выполняется установка поршневого кольца?

Перед установкой поршневого кольца новое или запасное кольцо проверяется на наличие маркировки и сравнивается со старым на тот же уровень или положение.Если старая маркировка поршневого кольца стерлась, проверьте руководство по идентификации поршневого кольца, чтобы его можно было поместить в соответствующую канавку.

Канавку необходимо тщательно очистить, чтобы в ней не осталось нагара и шлама. При очистке следует учитывать, что некоторые канавки поршня покрыты специальной защитной пленкой. Они не должны быть повреждены ножом или шлифовальным инструментом.

После того, как канавка будет должным образом очищена, поршневое кольцо устанавливается с помощью инструмента для поршневых колец, который расширяет кольцо для вставки в канавку, сдвигая его с верхней части головки поршня.Убедитесь, что кольцо вставлено, удерживая отметку на верхней стороне.

Большинство поршневых колец снабжено маркировкой «TOP», или поверхность с оттиском идентификационного номера считается верхней поверхностью, если нет специальной маркировки.

Чрезвычайно важно правильно использовать расширитель колец, так как неправильное использование может повредить кольцо или нанести вред оператору, поскольку кольцо находится под постоянным натяжением.

В небольших 4-тактных двигателях, если инструмент недоступен, кольцо можно расширить, используя одежду или тряпки, имеющиеся в машинном отделении.

Две ветоши помещаются с каждой стороны концов колец, и их вытягивают так, чтобы кольца можно было расширить и вставить через верхнюю часть поршня.

После установки всех поршневых колец убедитесь, что отверстие или торец всех поршневых колец не совмещены, чтобы избежать утечки газа из камеры.

Ресурс поршневых колец

Как и все другие детали машинного оборудования, поршневое кольцо также подлежит капитальному ремонту и замене через определенный период времени.Срок службы поршневого кольца полностью зависит от типа поршневого кольца, размера двигателя, на котором оно установлено, а также от рабочего состояния кольца и гильзы.

Для большого двухтактного поршневого кольца с внутренним диаметром примерно 900 мм общий срок службы кольца может составлять до 24 000 часов, а для двигателей меньшего размера с внутренним диаметром 500 мм — до 16 000 часов.

Для вспомогательных судовых 4-тактных двигателей, имеющих высокую скорость, срок службы поршневых колец обычно меньше, чем у 2-тактных двигателей. Средний срок службы морского 4-тактного высокоскоростного двигателя составляет примерно 8000 часов, после чего требуется обновление.

Возможно, вы также прочитаете:

Заявление об ограничении ответственности: Мнения авторов, выраженные в этой статье, не обязательно отражают точку зрения Marine Insight. Данные и диаграммы, если они используются в статье, были получены из доступной информации и не были подтверждены каким-либо установленным законом органом.Автор и компания «Марин Инсайт» не утверждают, что они точны, и не принимают на себя никакой ответственности за них. Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих принципов или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.

Статья или изображения не могут быть воспроизведены, скопированы, переданы или использованы в какой-либо форме без разрешения автора и Marine Insight.

Теги: руководство по машинному отделению поршневые кольца

Iame X30 Piston Diagram

На этот раз я хотел бы поблагодарить всех в Acceleration karting за их обширные знания о своих продуктах и ​​картах, а также за их профессиональную вежливость.Несмотря на то, что мы живем на противоположной стороне Соединенных Штатов (Нью-Йорк), вы собираетесь стать нашей компанией для удовлетворения потребностей моего внука в картинге. Еще раз спасибо. С уважением, Джон Агулия ~ 12/2020

Кертис, Кори и вся команда, мне просто нужно было написать огромное спасибо Acceleration Karting за еще один фантастический опыт работы с клиентами. С самого первого дня все, с кем я имел дело, делали все возможное, чтобы помочь мне — от объяснения продуктов, проверки статуса заказа, и сегодня Кори нашел мне деталь просто по описанию в телефоне! Кертис был так щедр на свои обширные знания, и, будучи новичком в мире картинга, я не могу сказать вам, как мне повезло, что я нашел Acceleration. Я хвастался тобой и твоим магазином всем, кого встречу, и отправлю к тебе всех и каждого за ВСЕ их потребности в картинге. Я никогда не пишу обзоров, но Acceleration вдохновила меня на то, чтобы найти время, чтобы поздравить и поблагодарить вас за редкий товар в море посредственности: реальных людей, которые заботятся о своих клиентах и ​​своей отрасли. Джо Скальф ~ 3/2019

«Я удивлен, насколько быстро вы обрабатываете все заказы. Я заказывал товары у вас 4 раза, и каждый раз вы выполняете так же быстро, как и предыдущий заказ… Ты потрясающий! «Кристиан ~ 03/2019

» Ранее на этой неделе я заказал CRG Kid Kart вместе с Холденом. Я действительно хочу передать, насколько замечательным был этот опыт. У нас был небольшой дефицит времени, не говоря уже о том, что я действительно хотел получить лучшее оборудование. Итак, мы получили карт вовремя, полностью собраны и готовы к гонке. Это было совершенно неожиданно и сильно удивило. Не говоря уже о том, что Холден нашел способ сэкономить мне деньги (а в этом виде спорта каждая сэкономленная копейка — это бонус). Итак, мы получили картинг, мой ребенок проскользнул в сиденье, и он идеально подошел. Размер сиденья и расположение были идеальными. Холден всегда отличался высочайшим профессионализмом. В следующем году мне нужно купить 2 кадетских карта. В итоге, если не произойдет ничего волшебного, я буду иметь дело с Холденом в следующем году, покупая мои 2 карта для кадетов. Спасибо вам и вашим сотрудникам за фантастические впечатления. «Steve ~ 10/2018

» Я новичок в картинге, этот сайт мне нравится. Кажется, у вас всегда есть время ответить на мои вопросы, даже связанные с технологиями, больше, чем у некоторых местных дилеров.Деньги идут туда, куда лучше всего относятся ». Дэн ~ 8/2018

« Ребята, вы такие хорошие и такие быстрые. Намного выше остальных. Спасибо. «John ~ 7/2018

» Просто хотел сказать небольшой привет всей команде AKR. В это межсезонье я заказал все наши детали и шлем исключительно у AKR для нового картинга моих сыновей. Все всегда доставляется так быстро и без проблем. Спасибо вам за это и не могу дождаться, чтобы наконец запустить его здесь, в Нью-Йорке, чтобы увидеть все это воедино.»Брайан ~ 3/2018

» ОГРОМНОЕ спасибо вашей команде за помощь в ответе на все мои вопросы и за доставку моего заказа владельцу в ночное время. Они были потрясающими. Мы обязательно будем использовать вас снова и порекомендовать друзей ». Dawn ~ 3/2018

« Спасибо, Магазин AKR, за то, что мы являемся нашим поставщиком номер один! Вы, ребята, никогда нас не подводили, и у вас безупречное обслуживание клиентов. . » Натали ~ 1/2018

«Вы, ребята, единственные, у кого я заказываю, и я ценю вашу помощь в прошлом году, особенно от Холдена и Кертиса.В прошлом году я прошел путь от новичка с картом 20-летней давности к тому, что теперь могу подниматься на подиумы на местных уровнях на более новом и более конкурентоспособном CR125; вы, ребята, сыграли важную роль в моем продвижении и путешествии. Я ценю это, и вы всегда будете моим первым выбором для любого продукта, который мне нужен, и моей рекомендацией номер один для других ». Дэн ~ 12/2017

« Привет, я только что разместил свой третий заказ, и я просто хочу сказать , Я работаю не по найму и в прошлом имел дело со многими компаниями.Приятно найти такую ​​компанию, которая ценит обслуживание клиентов. Несколько раз я позвонил, и мне понравилось. Заказы, которые я разместил, были выполнены и отправлены в тот же день. Вы приобрели покупателя на всю жизнь, я всегда буду заказывать у вас принадлежности для картинга. Еще раз спасибо. «Деннис ~ 6/2017

» Вы, ребята, классные, вы делаете отличную работу по хорошей цене. «Трэвис ~ 7/2017

» Пожалуйста, передайте мою благодарность Рэймонду и владельцам Acceleration Karting. Вы действительно поддерживаете товары, которые продаете, за что я благодарен.Благодарим вас за замену неисправного аккумулятора на новый. Я позабочусь о том, чтобы Racers здесь «

«. Я хотел воспользоваться возможностью, чтобы поблагодарить вас за столь быструю доставку моего заказа, это, конечно, не ожидалось, но очень ценно. Продолжайте в том же духе, и я обязательно буду помнить вас, ребята, для будущих покупок !! «

» Отлично. Серьезно, еще раз спасибо за помощь и информацию, я действительно ценю. Разрушив свой карт несколько недель назад, я был очень расстроен. Так что получить новое ходовое шасси — это довольно увлекательно.Вы мне очень помогли и проявили терпение. «

» Я звонил сегодня утром и говорил с Холденом о шлемах Zamp, в частности, о RZ-42 Honeycomb. Он был великолепен и предоставил всю информацию, необходимую мне, чтобы принять решение о покупке шлема. Я не мог пожаловаться на его служебный номер «

«. Как всегда, ребята, большое вам спасибо за то, что у вас есть отличный магазин, и вы всегда готовы ответить на любые наши вопросы.

«Я просто хочу поблагодарить вас всех за своевременное выполнение и доставку моего заказа.И все идеально подходит! Обязательно поблагодарите всех, кто причастен ко мне, пожалуйста. «

» Большое спасибо за то, что помогли мне всеми возможными способами! Раймонд ответил на многие мои вопросы в мире, о котором я ничего не знаю! Отличная компания! Обслуживание клиентов высшего качества! Спасибо, Пол «

» Пожалуйста, передайте мою благодарность Раймонду и владельцам Acceleration Karting. Вы действительно поддерживаете товары, которые продаете, за что я благодарен. Благодарим вас за замену неисправного аккумулятора на новый.Я позабочусь о том, чтобы Racers здесь «

«. Я хотел воспользоваться возможностью, чтобы поблагодарить вас за столь быструю доставку моего заказа, это, конечно, не ожидалось, но очень ценно. Продолжайте в том же духе, и я обязательно буду помнить вас, ребята, для будущих покупок !! «

Основы поршневого двигателя

— AOPA

Это не двигатель в Oldsmobile

вашего отца
Марк Э. Кук

По сравнению с автомобильными или мотоциклетными двигателями поршневые двигатели самолетов просты и, как некоторые говорят, примитивны.Тем не менее, пока вы учитесь летать, этот старый дрожащий шумоглушитель перед брандмауэром таит в себе и тайну, и неизвестность. Что там происходит? Будет ли он продолжать движение, пока я пересечу эту линию гребня?

Вы, вероятно, много слышите о авиационных двигателях, которые находятся на одном уровне в пищевой цепочке от обычных газонокосилок или садовых тракторов, и это правда, если не считать самых грубых упрощений. Силовые установки самолетов — это, за исключением нескольких повстанцев, упрощенные, с воздушным охлаждением, горизонтально расположенные, четырехтактные устройства внутреннего сгорания с низкими рабочими скоростями и низкой удельной мощностью.Если бы вам пришлось описать автомобильный эквивалент, наиболее близкий к среднему авиационному, вы бы указали на почтенный двигатель Volkswagen Beetle.

Как и в случае с народным автомобилем, подавляющее большинство поршневых авиационных двигателей, используемых сегодня, используют цикл Отто, изобретенный Николаусом Августом Отто в 1876 году. Эти двигатели, также называемые четырехтактными или четырехтактными, содержат цилиндр, в который вставлен поршень ; Поршень воздействует на коленчатый вал через шатун. Коленчатый вал, который в большинстве случаев применения в самолетах крепится болтами непосредственно к гребному винту, преобразует линейные (вперед и назад) движения поршня во вращательную работу.

В схеме цикла Отто есть четыре различных цикла, различающихся ходами поршня внутри цилиндра. При первом такте поршень движется вниз, втягивая топливо и воздух через кошмар домовладельца по водопроводу в камеру сгорания внутри цилиндра. При втором такте поршень поднимается в канале ствола, сжимая эту смесь. Топливо в простом виде не отличается особой летучестью — то есть не загорится ни при малейшей провокации. Но в сжатом виде будет.Типичные авиационные двигатели пытаются сжать эту топливно-воздушную смесь в 6,5-8,5 раза; это называется степенью сжатия. Степень сжатия фактически измеряется путем определения объема всего цилиндра с поршнем в нижней мертвой точке хода (нижняя мертвая точка) до объема с поршнем в верхней мертвой точке хода (верхняя мертвая точка). Общий объем всех цилиндров, измеренный при НМТ, называется смещением. Итак, 1,6-литровый двигатель в вашей машине имеет рабочий объем 1.6 литров (около 96 кубических дюймов), а Lycoming O-235 имеет рабочий объем около 235 кубических дюймов.

После того, как поршень сжал смесь, свеча зажигания (или две в авиационных приложениях) зажигает смесь. Возникающий в результате взрыв толкает поршень в направлении НМТ и называется рабочим ходом. При последнем движении вверх в стволе поршень выталкивает отработанные газы через выхлопную систему в небо.

Движение впускных и выхлопных газов в цилиндр и из него регулируется клапанами в форме тюльпана, расположенными в верхней части головки цилиндров.Клапаны, в свою очередь, приводятся в действие короткими коромыслами через длинные толкатели (вы найдете их над коленчатым валом на большинстве Lycoming и ниже на Continentals). Распределительный вал, в основном стальной стержень с яйцевидными выступами по длине, приводит в действие толкатели с помощью подъемников размером с пленочную банку (или гидравлических регуляторов зазора) в корпусе двигателя, непосредственно примыкающего к распределительному валу и коромыслам на клапанной стороне толкателей. .

Чтобы лучше понять компоновку оборудования, давайте посмотрим на Lycoming O-235, используемый в Cessna 152; другие распространенные типы, такие как Continental O-200 в Cessna 150 и другие версии силовых установок обеих марок, имеют одинаковую базовую компоновку. Между прочим, эти номера моделей что-то означают. О означает «против»; ряды цилиндров расположены на 180 градусов друг от друга или плоские, как у двигателя Beetle. (Умные инженеры иногда называют эти 180-градусные V-образные двигатели, но что они знают?) Следующее число — это общий объем двигателя в кубических дюймах, округленный до ближайшего 0 или 5. Буква I в префиксе обозначает впрыск топлива. Для Continentals приставка TS означает «с турбонаддувом» или «с турбонаддувом», а для Lycomings вы найдете приставку T.Наличие буквы G в приставке означает двигатель с редуктором, у которого винт вращается медленнее, чем сам двигатель; Однако подавляющее большинство популярных двигателей имеют прямой привод. Эти приставки являются аддитивными, поэтому GTSIO-520 — это двигатель с турбонаддувом, оппозитный, 520 кубических дюймов с редуктором. Суффиксы к смещению обозначают вариации типа. Lycoming O-235-C2A — это, например, 115-сильный вариант двигателя, а O-235-F2A — на 10 лошадиных сил больше.

Вот и все.Проще говоря, двигатель внутреннего сгорания вырабатывает энергию, преобразовывая тепло в движение. Тепло происходит от горения топлива (в сочетании с большим количеством воздуха, обычно в соотношении 15: 1). Поскольку они имеют воздушное охлаждение, в цилиндрах используются тонкие ребра — в отличие от Cadillac 1959 года — для содействия передаче тепла, производимого в процессе сгорания, воздушному потоку, направляемому вокруг них через капот и металлические перегородки вокруг цилиндров.

Цилиндр состоит из литой алюминиевой головки, которая постоянно — по крайней мере, для пилота — соединена со стальным стволом, на который можно наносить покрытие или обрабатывать с помощью любого количества процессов.

Если вы сравните средний авиадвигатель с новейшими двигателями из Германии, Японии или Детройта, вы будете сильно разочарованы. Вы не найдете высокотехнологичного электронного впрыска топлива, верхних распределительных валов, сверхвысоких скоростей или приемлемой для инженеров высокой удельной мощности.