10Авг

Сквозная коррозия: Что такое сквозная коррозия 🚩 гарантия от сквозной коррозии ваз 🚩 Ремонт и сервис

Содержание

Что такое сквозная коррозия 🚩 гарантия от сквозной коррозии ваз 🚩 Ремонт и сервис

Сквозная коррозия – сквозное отверстие на кузове автомобиля или, по-простому, «дырка». Причины, по которым ржавчина разъедает автомобиль изнутри, могут быть связаны с нарушением технологического процесса или использованием некачественных материалов. Причем от этого не застрахованы ни бюджетные отечественные авто, ни дорогие импортные представители.

Теорема о «нержавеющем импортном автомобиле» доказательств не нашла, машины как ржавели, так и продолжают ржаветь. Единственное отличие состоит только в скорости и количестве очагов коррозии, а эти факторы напрямую зависят от следующих причин:

Индивидуально спроектированная геометрия кузова и просчеты инженеров в технологии изготовления, нечестность некоторых производителей, которые только «мажут губы» машине, «забывая» об обработке труднодоступных мест. Нередко узким слоем антикоррозийного состава обрабатывается лишь поверхность некоторых швов.

При этом днище авто и скрытые от глаз полости остаются практически незащищенными. Нередки случаи, когда покупатель обнаруживает первые признаки коррозии еще на стадии осмотра автомобиля в салоне-магазине. Высокая концентрация серных соединений и солевых растворов в атмосфере крупных городов и мегаполисов.

Если требуется провести антикоррозийную обработку автомобиля с целью борьбы с коррозией, то необходимо добиться полного ее удаления. Если полностью удалить ржавчину не получится, кузов будет разрушаться и дальше. На практике применяется несколько способов удаления коррозии, самыми популярными остается механический и химический способы.

Виды механической обработки:
— пескоструйная обработка, предусматривающая выбивание ржавчины с поверхности металла песком под большим давлением;
— шлифование вручную наждачной бумагой;
— машинное шлифование.

Химическая обработка заключается в уничтожении имеющегося повреждения химическим путем. Для этого используются смываемые и несмываемые преобразователи ржавчины.

Смываемые растворы справляются со своей задачей на 100%, но главное условие их применения – быстрая сушка поверхности после обработки водой. Иначе ремонт кузова может затянуться надолго. Несмываемые составы реагируют с ржавчиной, преобразовывая ее в покрытие, пригодное для покраски. Данные смеси принято называть грунт-преобразователями. И хотя качество такой обработки не сравнить с качеством покрытия на чистый металл, у этого способа большое будущее, т. к. с каждым днем преобразователи справляются со своей задачей все лучше и лучше.

ГОСТ 5272-68 Коррозия металлов. Термины (с Изменениями N 1, 2)



УТВЕРЖДЕН Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР 28 июня 1968 г.

Дата введения установлена 01.01.69

ВЗАМЕН ГОСТ 5272-50

* ПЕРЕИЗДАНИЕ с Изменениями N 1, 2, утвержденными в апреле 1971 г., в мае 1982 г. (ИУС 5-71, 8-82).


Настоящий стандарт устанавливает применяемые в науке, технике и производстве термины и определения основных понятий в области коррозии металлов.

Термины, установленные настоящим стандартом, обязательны для применения в документации всех видов, учебниках, учебных пособиях, технической и справочной литературе.

Для каждого понятия установлен один стандартизованный термин. Применение терминов — синонимов стандартизованного термина запрещается. Недопустимые к применению термины-синонимы приведены в стандарте в качестве справочных и обозначены пометой «Ндп».

Основные термины набраны полужирным шрифтом, их краткие формы — светлым, недопустимые — курсивом.


Для отдельных стандартизованных терминов в стандарте приведены в качестве справочных их краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования.

В случаях, когда существенные признаки понятия содержатся в буквальном значении термина, определение не приведено и, соответственно, в графе «Определение» поставлен прочерк.


1. Коррозия металлов

Разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой

1. Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса — «коррозионное разрушение».

2. Под металлом следует понимать объект коррозии, которым может быть металл или металлический сплав

2. Коррозионная среда

Среда, в которой происходит коррозия металла

2а. Жидкая коррозионная среда

2б. Газообразная коррозионная среда

2в. Окислительная газовая среда

Газовая среда, вызывающая окисление металла

2г. Инертная газовая среда

Газообразная среда, не взаимодействующая с металлом

3. Корродирующий металл

Металл, подвергающийся коррозии

4. Коррозионные потери

Количество металла, превращенного в продукты коррозии за определенное время

5. Продукты коррозии

Химические соединения, образующиеся в результате взаимодействия металла и коррозионной среды

При электрохимической коррозии образование продуктов коррозии является результатом анодной и катодной реакций коррозионного процесса

6. Скорость коррозии

Коррозионные потери единицы поверхности металла в единицу времени

Применим для терминов 1, 30-34

7. Скорость проникновения коррозии

Глубина коррозионного разрушения металла в единицу времени

8. Коррозионная стойкость

Способность металла сопротивляться коррозионному воздействию среды

Коррозионная стойкость определяется качественно и количественно (скоростью коррозии в данных условиях, группой или баллом стойкости по принятой шкале). Коррозионная стойкость может быть оценена:

а) изменением веса металла в результате коррозии, отнесенным к единице поверхности и единице времени;

б) объемом выделившегося водорода (или поглощенного кислорода) в процессе коррозии, отнесенным к единице поверхности и единице времени;

в) уменьшением толщины металла вследствие коррозии, выраженным в линейных единицах и отнесенным к единице времени;

г) изменением какого-либо показателя механических свойств за определенное время коррозионного процесса, выраженным в процентах, или временем до разрушения образца заданных размеров;

д) изменением отражательной способности поверхности металла за определенное время коррозионного процесса, выраженным в процентах;

е) плотностью тока, отвечающей скорости данного коррозионного процесса;

ж) временем до появления первого коррозионного очага на образце заданных размером или числом коррозионных очагов на образце по истечении заданного времени

9. Коррозионностойкий металл

Металл, обладающий высокой коррозионной стойкостью

10. Внутренние факторы коррозии

Факторы, влияющие на скорость, вид и распределение коррозии, связанные с природой металла (состав, структура, внутренние напряжения, состояние поверхности)

11. Внешние факторы коррозии

Факторы, влияющие на скорость, вид и распределение коррозии, связанные с составом коррозионной среды и условиями коррозии (температура, давление, скорость движения металла относительно среды и т.д.)

12. Коррозионный очаг

Участок поверхности металла, на котором сосредоточен коррозионный процесс

13. Критическая влажность

Значение относительной влажности, выше которой наступает быстрое увеличение скорости атмосферной коррозии металла


14. Электрохимическая коррозия

Взаимодействие металла с коррозионной средой (раствором электролита), при котором ионизация атомов металла и восстановление окислительной компоненты коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала

15. Химическая коррозия

Взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительной компоненты коррозионной среды протекают в одном акте


16. Газовая коррозия

Химическая коррозия металла в газах при высоких температурах

Коррозия, протекающая в условиях любого влажного газа, относится к атмосферной коррозии

17. Атмосферная коррозия

Коррозия металла в атмосфере воздуха

18. Коррозия при неполном погружении

Коррозия металла, частично погруженного в жидкую коррозионную среду

19. Коррозия по ватерлинии

Коррозия металла вблизи ватерлинии при неполном погружении его в жидкую коррозионную среду

20. Коррозия при полном погружении

Коррозия металла, полностью погруженного в жидкую коррозионную среду

21. Подводная коррозия

Коррозия металла, полностью погруженного в воду

22. Коррозия при переменном погружении

Коррозия металла при переменном погружении его целиком или частично в жидкую коррозионную среду

23. Подземная коррозия

Коррозия металла в почвах и грунтах

24. Биокоррозия

Коррозия металла под влиянием жизнедеятельности микроорганизмов

25. Коррозия внешним током

Электрохимическая коррозия металла под воздействием тока от внешнего источника

26. Коррозия блуждающим током

Электрохимическая коррозия металла под воздействием блуждающего тока

27. Контактная коррозия

Электрохимическая коррозия, вызванная контактом металлов, имеющих разные стационарные потенциалы в данном электролите

28. Коррозия при трении

Разрушение металла, вызываемое одновременным воздействием коррозионной среды и трения

29. Фреттинг-коррозия

Коррозия при колебательном перемещении двух поверхностей относительно друг друга в условиях воздействия коррозионной среды

30. Сплошная коррозия

Коррозия, охватывающая всю поверхность металла

31. Равномерная коррозия

Сплошная коррозия, протекающая с одинаковой скоростью по всей поверхности металла

32. Неравномерная коррозия

Сплошная коррозия, протекающая с неодинаковой скоростью на различных участках поверхности металла

33. Местная коррозия

Коррозия, охватывающая отдельные участки поверхности металла

34. Подповерхностная коррозия

Местная коррозия, начинающаяся с поверхности, но преимущественно распространяющаяся под поверхностью металла таким образом, что разрушение и продукты коррозии оказываются сосредоточенными в некоторых областях внутри металла

Обычно начало коррозионного разрушения не обнаруживается макроскопическим обследованием поверхности, но всегда обнаруживается при микроскопическом обследовании

Подповерхностная коррозия часто вызывает вспучивание металла и его расслоение

35. Точечная коррозия

Местная коррозия металла в виде отдельных точечных поражений

Питтинг

36. Коррозия пятнами

Местная коррозия металла в виде отдельных пятен

37. Сквозная коррозия

Местная коррозия, вызвавшая разрушение металла насквозь

38. Послойная коррозия

Коррозия, распространяющаяся преимущественно в направлении пластической деформации металла

39. Нитевидная коррозия

Коррозия, распространяющаяся в виде нитей, преимущественно под неметаллическими защитными покрытиями

40. Структурная коррозия

Коррозия, связанная со структурной неоднородностью металла

41. Межкристаллитная коррозия

Коррозия, распространяющаяся по границам кристаллов (зерен) металла

Ндп. Интеркристаллитная коррозия

42. Избирательная коррозия

Коррозия, разрушающая одну структурную составляющую или один компонент сплава

Ндп. Селективная коррозия

43. Графитизация чугуна

Избирательная коррозия серого литейного чугуна, протекающая вследствие растворения ферритных и перлитных составляющих с образованием относительно мягкой массы графитного скелета без изменения формы

44. Обесцинкование

Избирательное растворение латуней, приводящее к обеднению сплава цинком и образованию на поверхности губчатого медного осадка

45. Щелевая коррозия

Усиление коррозии в щелях и зазорах между двумя металлами, а также в местах неплотного контакта металла с неметаллическим коррозионно-инертным материалом

Ндп. Щелевой эффект

46. Ножевая коррозия

Локализованный вид коррозии металла в зоне сплавления сварных соединений в сильно агрессивных средах

47. Коррозионная язва

Местное коррозионное разрушение, имеющее вид отдельной раковины

48. Коррозионное растрескивание

Коррозия металла при одновременном воздействии коррозионной среды и внешних или внутренних механических напряжений растяжения с образованием транскристаллитных или межкристаллитных трещин

49. Коррозия под напряжением

Коррозия металла при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений

50. Коррозионная усталость

Понижение предела усталости металла, возникающее при одновременном воздействии циклических растягивающих напряжений и коррозионной среды

51. Предел коррозионной усталости

Максимальное механическое напряжение, при котором еще не происходит разрушение металла после одновременного воздействия установленного числа циклов переменной нагрузки и заданных коррозионных условий

52. Коррозионная хрупкость

Хрупкость, приобретенная металлом в результате коррозии

Под хрупкостью следует понимать свойство материала разрушаться без заметного поглощения механической энергии в необратимой форме


53. Жаростойкость

Способность металла сопротивляться коррозионному воздействию газов при высоких температурах

54. Окалина

Продукт газовой коррозии

55. Обезуглероженный слой

Поверхностный слой стали или чугуна, потерявший частично (или весь) углерод вследствие взаимодействия с коррозионной средой


56. Коррозионный элемент

Гальванический элемент, возникающий при взаимодействии металла и среды, влияющей на скорость и характер коррозии металла

57. Коррозионный макроэлемент

Коррозионный элемент, электроды которого имеют размеры, хорошо различаемые невооруженным глазом

58. Коррозионный микроэлемент

Коррозионный элемент, электроды которого могут быть обнаружены лишь при помощи микроскопа (структурные составляющие сплава, включения примесей и др.)

59. Коррозионный субмикроэлемент

Коррозионный элемент, электроды которого имеют величину, лежащую за пределами разрешающей способности оптического микроскопа

60. Многоэлектродный элемент

Коррозионный элемент, имеющий более двух электродов

61. Концентрационный элемент

Коррозионный элемент с электродами из одного и того же металла, возникающий за счет различной концентрации реагирующих веществ у поверхности металла

62. Аэрационный элемент

Коррозионный элемент с электродами из одного и того же металла, возникающий за счет большего притока кислорода к одной из частей поверхности металла

63. Поляризация

Изменение потенциала электрода в результате протекания тока

64. Контролирующий процесс

Процесс, кинетика которого определяет скорость коррозии

65. Поляризационный контроль

Ограничение скорости электрохимической коррозии поляризационными явлениями на электродах

66. Анодный контроль

Ограничение скорости электрохимической коррозии анодной реакцией

67. Катодный контроль

Ограничение скорости электрохимической коррозии катодной реакцией

68. Омический контроль

Ограничение скорости электрохимической коррозии омическим сопротивлением

69. Диффузионный контроль

Ограничение скорости коррозии диффузией исходных или конечных продуктов электродных реакций

70. Поляризационная коррозионная диаграмма

Диаграмма зависимости истинных скоростей сопряженных анодной и катодной реакций коррозионного процесса от потенциала

71. Коррозионный ток

Скорость электрохимической коррозии, выраженная величиной электрического тока

Ндп. Ток саморастворения

72. Максимальный коррозионный ток

Максимально возможное значение коррозионного тока, отвечающее точке пересечения анодной и катодной кривых на поляризационной диаграмме

73. Потенциал коррозии

Потенциал металла, установившийся в результате протекания сопряженных анодного и катодного процесса без внешней поляризации

74. Поляризационная кривая

Кривая зависимости скорости электродного (анодного или катодного) процесса от потенциала

75. Идеальная поляризационная кривая

Кривая зависимости истинной скорости электродного процесса (с учетом скорости саморастворения) от потенциала

76. Реальная поляризационная кривая

Кривая зависимости измеряемой скорости электродного процесса от потенциала

77. Деполяризация

Уменьшение поляризации электрода

78. Водородная деполяризация

Катодная реакция восстановления ионов водорода

79. Окислительная деполяризация

Катодная реакция восстановления окисленных частиц среды

80. Кислородная деполяризация

Катодная реакция восстановления (ионизации) кислорода

81. Разностный эффект

Изменение скорости саморастворения металла при внешней поляризации

Ндп. Дифференц-эффект

82. Положительный разностный эффект

Уменьшение скорости саморастворения металла при внешней поляризации

83. Отрицательный разностный эффект

Увеличение скорости саморастворения металла при внешней поляризации

84. Пассивация

Резкое уменьшение скорости коррозии вследствие торможения анодной реакции ионизации металла при образовании на его поверхности фазовых или адсорбционных слоев

85. Пассивное состояние

Состояние относительной высокой коррозионной стойкости, вызванное торможением анодной реакции ионизации металла в определенной области потенциала

Пассивность

86. Условия пассивации

Сумма всех условий, необходимых для наступления пассивного состояния металла

87. Устойчивость пассивного состояния

Способность металла сохранять пассивное состояние при изменении внешних условий

88. Анодная пассивность

Пассивность, вызванная анодной поляризацией металла

89. Потенциал начала пассивации

Потенциал, соответствующий переходу металла из области активного анодного растворения в область активно-пассивного состояния

90. Плотность тока пассивации

Плотность тока анодного растворения металла при потенциале начала пассивации

91. Потенциал полной пассивации

Потенциал, соответствующий переходу металла в пассивное состояние

92. Плотность тока полной пассивации

Плотность тока анодного растворения металла при потенциале полной пассивации

93. Пассивирующее вещество

Вещество, способствующее переходу металла в пассивное состояние в условиях пассивации

Пассиватор

94. Активация

Переход металла из пассивного состояния в активное

Ндп. Депассивация

95. Активирующее вещество

Вещество (реагент), способствующее переходу металла из пассивного состояния в активное или затрудняющее наступление пассивности

Активатор

96. Перепассивация

Резкое увеличение скорости анодного растворения металла (при смещении потенциала в положительную сторону) вследствие нарушения пассивного состояния

При нарушении пассивного состояния и увеличении скорости растворения металла лишь на отдельных участках поверхности наблюдается пробой пассивной пленки

97. Потенциал активации

Потенциал, соответствующий переходу металла из пассивного состояния в активное при смещении потенциала к более отрицательным значениям

В большинстве случаев соответствует потенциалу пассивации

97а. Потенциал питтингообразования

Потенциал, соответствующий возникновению точечной коррозии в результате локального нарушения пассивности металла

98. Потенциал перепассивации

Потенциал, соответствующий переходу металла из пассивного состояния в состояние перепассивации

99. Ржавчина

Продукты коррозии железа и его сплавов, образующиеся при электрохимической коррозии и состоящие преимущественно из окислов


100. Ингибитор коррозии

Вещество, которое при введении в коррозионную среду (в незначительном количестве) заметно снижает скорость коррозии металла

101. Ингибитор кислотной коррозии

Ингибитор, снижающий скорость коррозии металла в кислой среде

102. Ингибитор щелочной коррозии

Ингибитор, снижающий скорость коррозии металла в щелочной среде

103. Ингибитор коррозии в нейтральных средах

Ингибитор, снижающий скорость коррозии металла в нейтральных средах

104. Ингибитор атмосферной коррозии

Ингибитор, снижающий скорость коррозии металлов в атмосферных условиях

105. Контактный ингибитор

Ингибитор, действие которого проявляется при искусственном нанесении его на поверхность металла

106. Летучий ингибитор

Ингибитор, способный в обычных условиях испаряться и самопроизвольно попадать из газовой фазы на поверхность металла

107. Универсальный ингибитор

Ингибитор коррозии, пригодный для защиты черных и цветных металлов

108. Анодный ингибитор

Ингибитор, защитное действие которого обусловлено торможением анодной реакции коррозионного процесса

109. Катодный ингибитор

Ингибитор, защитное действие которого обусловлено торможением катодной реакции коррозионного процесса

110. Анодно-катодный ингибитор

Ингибитор, защитное действие которого обусловлено торможением анодной и катодной реакций коррозионного процесса

111. Стимулятор коррозии

Вещество, которое при введении в коррозионную среду увеличивает скорость коррозии

112. Противокоррозионная защита

Процессы и средства, применяемые для уменьшения или прекращения коррозии металла

112а. Ингибирование

Противокоррозионная защита, осуществляемая введением ингибиторов

113. Степень защиты

Оценка эффективности выбранного метода защиты от коррозии

114. Защитная пленка

Пленка, образующаяся на металле в естественных условиях при его взаимодействии с коррозионной средой или создаваемая искусственно путем химической или электрохимической обработки и затрудняющая протекание процесса коррозии

115. Адсорбционный слой

Слой, возникающий на металле в результате адсорбции атомов или молекул окружающей среды и затрудняющий протекание процесса коррозии

116. Окисная пленка

Пленка, состоящая преимущественно из окислов металла

117. Покрытие

По ГОСТ 9.008-82

117а, 117б (Исключены, Изм. N 2).

118. Электрохимическая защита

Защита металла от коррозии, осуществляемая поляризацией от внешнего источника тока или путем соединения с металлом (протектором), имеющим более отрицательный или более положительный потенциал, чем у защищаемого металла

В зависимости от направления поляризации различают катодную и анодную защиты

118а. Защитный потенциал

Потенциал металла, при котором достигается определенная степень защиты

Защитный потенциал может задаваться анодной или катодной поляризацией от внешнего источника или путем соединения с протектором

119. Протектор

Металл, применяемый для электрохимической защиты и имеющий более отрицательный или более положительный потенциал, чем у защищаемого металла

120. Катодная защита

Электрохимическая защита металла, осуществляемая катодной поляризацией от внешнего источника тока или путем соединения с металлом, имеющим более отрицательный потенциал, чем у защищаемого металла

121. Анодный протектор

Металл, имеющий более отрицательный потенциал, чем у защищаемого металла

122. Анодная защита

Электрохимическая защита металла, способного пассивироваться анодной поляризацией, осуществляемая от внешнего источника тока или посредством соединения с металлом, имеющим более положительный потенциал, чем у защищаемого металла

123. Катодный протектор

Металл, имеющий более положительный потенциал, чем у защищаемого металла

124-125а

(Исключены, Изм. N 2).

126. Неметаллическое изолирующее покрытие

Неметаллическое покрытие, механически изолирующее металл от воздействия коррозионной среды

126а. Полимерное защитное покрытие

127. Грунт

Прилегающий к металлу слой покрытия, обеспечивающий прочность сцепления с металлом и улучшающий защитные свойства покрытия

128. Внешний слой покрытия

Слой многослойного покрытия, соприкасающийся с коррозионной средой

129-142б (Исключены, Изм. N 2).

Сквозная коррозия кузова. Как решить проблему? Мнение мастера

Сквозная коррозия кузова. Как решить проблему? Советы мастеров.

Из-за воздействия окружающей среды и отсутствия обработки возникает сквозная коррозия кузова. Как решить проблему? Это сложный вопрос, желательно заменить старую деталь со ржавчиной на новую. Но очень часто она стоит нереальных денег, поэтому можете попробовать убрать коррозию с кузова. Существует несколько способов, они трудоемкие и сложные. Мы расскажем вам о самом доступном, простом и действенном способе.

Зачистка

Для начала необходимо зачистить жесткой щеткой место, где есть ржавчина. Наденьте ее на дрель и приступайте к снятию краски и налета. Нельзя применять болгарку, она пережжет поверхность ,в результате металл просто сгниет.

Удаление сквозной коррозии

Для начала нужно запаять все дырки припоем из олова. Возьмите паяльник (самый мощный), припой, флюс и фен. Перед пропаиванием ремонтного места нужно удалить ржавчину, потому что к ней припой не будет приставать. Для ее удаления подходит шкурка абразивная и ножик. С помощью шкурки вы сможете снять самый верхний слой ржавчины. Затем приступайте к удалению налета, который уже успел въесться. Если такие места плохо видно, нанесите на них специальное средство (преобразователь) и подождите пару минут. Те места, которые вам необходимо обработать, станут черного цвета. Процесс очищения трудоемкий, поэтому приготовьтесь к длительной работе.

Нанесите на поверхность преобразователь, и быстро наложите нагретым паяльником один слой припоя на поверхность, где есть дыры от коррозии. Если металл толстый, и паяльник недостаточно мощный, воспользуйтесь феном. Работу лучше провести на улице, так как начинает испаряться кислота, она навредит дыхательным путям. В конце с помощью света проверьте, нет ли на поверхности сквозных отверстий.

Защита ремонтного места

Для продления срока службы детали, которую вы отремонтировали, вам нужно защитить ее от воздействия атмосферного характера. На металл нанесите кислотный грунт, а после него – акриловый. Все, можно приступать к шпаклеванию.
Из-за воздействия внешних факторов на автомобиле появляется сквозная коррозия кузова. Как решить проблему? Прочитайте внимательно эту статью и начинайте действовать. Также не забудьте защитить ремонтное место не только с внешней, но и с внутренней стороны, это обеспечит долговечность результата. Главное условие любой защиты кузова – предотвратить доступ влаги к поверхности.

Компания Докер Кемикал ГмбХ Рус предлагает большой выбор средств для борьбы с коррозией.

Сквозная коррозия кузова — решение проблемы

Сквозная коррозия кузова — методы эффективного ремонта

Коррозионное поражение кузова автомобиля – это его разрушение вследствие неправильного обращения и конструирования под действием агрессивной внешней среды.

Что делать, если кузов стал ржаветь?

Одно из наиболее правильных решений – замена заржавевшей детали. Но это не всегда осуществимо, бывает, что деталь не получается найти или ее цена очень высока.

Существует немало методов борьбы с коррозией, но все они являются очень сложными для выполнения. Мы расскажем об одном из них подробно.

Первый этап

На начальном этапе необходимо зачистить коррозийное место, сняв с него краску, грунт и ржавую накипь. Затем оцените уровень коррозионного поражения, продув место обработки и посмотрев его на свет.

Второй этап

На данном этапе уже конкретно удаляется сквозная коррозия кузова.

Для запаивания дырок с помощью оловянного припоя вам потребуется:

  • паяльник с высокой мощностью.
  • оловянно-свинцовый припой.
  • флюс либо преобразователь ржавчины.
  • может быть, потребуется использование строительного фена.

Перед пропайкой места, пораженного коррозией, удалите ржавчину, которая осталась. Для этого нужен нож и абразивная шкурка. Обработайте ею верхний слой ржавчины, а затем удалите ножом особо въевшиеся участки коррозионного поражения.

Это самый долгий и сложный процесс, но если не выполнить его добросовестно, то смысла продолжать ремонт, нет.

После этого нужно нанести флюс, и, не дав ему высохнуть, нанести паяльником оловянный припой по всем пораженным местам. Фен нужно использовать в случае, если металл очень толстый и паяльник не может справиться.

Пайка производится в хорошо проветриваемом помещении или даже на открытом воздухе, так как испарения кислоты очень вредны для органов дыхания.

Когда вы закончили работу, необходимо проверить, все ли отверстия запаяны.

Третий этап

Если вы хотите, чтобы сквозная коррозия кузова не возникла вновь, а срок службы реставрированной детали увеличился вам необходимо нанести на пораженный участок кислотный и акриловый грунт, а затем зашпатлевать. Тоже самое нужно проделать с обратной стороны участка.

Если при шпатлевании в некоторых местах поверхность протирается до металла – это нормально.

Существует множество способов защиты металла от коррозийного поражения, но самое главное условие – это отсутствие влаги. Чтобы добиться этого, загрунтуйте поверхность грунтом (акриловым и кислотным), нанесите герметик или мастику.

Конечно, нужно учитывать возможность доступа участка, который вы ремонтируете. Для лучшей защиты, в идеале, необходимо загрунтовать участок кистью, если до него не добраться с помощью распылителя.

Компания Докер Кемикал ГмбХ Рус предлагает большой выбор средств для борьбы с коррозией.

О безопасности кузова и Техническом регламенте

В статье «Надежность кузова: а судьи кто?» («АБС-авто» № 7/2017) мы ознакомили читателей с тезисами доклада, подготовленного для одной из конференций AGORA. Иинформационная площадка AGORA будет работать на VIII Московском Международном форуме автомобилестроения (IMAF) с 21 по 24 августа. Сегодня текст доклада приводится полностью.

Без прикрас

Уважаемые участники конференции! Цель моего выступления – привлечь внимание профессионального сообщества, а затем и государственных структур к проблемам безопасной эксплуатации автомобилей.

Не спорю, определенное внимание этому уделяется. Особенно когда речь идет о снижении токсичности, тормозных системах, световых приборах и некоторых других автомобильных системах. Но есть на этой карте и белые пятна. Точнее, не белые, а ржавые. Речь об автомобильном кузове.

Журнал «АБС-авто» не впервые обращается к вопросам безопасности ржавого кузова. Актуальна ли эта тема сегодня? Еще как актуальна! Вот несколько картинок из автомобильной жизни.

Москва, поток иномарок разбавлен новенькими «Калинами», «Приорами» и «Грантами». И тут же старенькие «Жигули» в роли извозчиков для оптовых рынков. Гнилых среди них предостаточно. Несвежие «газели»… Есть среди них ржавые? Не будем обольщаться – есть!

Ну ладно, столица. Настоящий российский автопарк – за МКАД. Реальный, не придуманный автомир. Спору нет, там достаточно новых автомобилей. Но немало и таких, что никогда не попадут на обложки глянцевых журналов. Потому что ржавые и разболтанные. Но что интересно: они проходят техосмотр и получают страховые полисы! Впору задать сакраментальный вопрос: а куда смотрит государство?

Был такой ГОСТ…

Действительно, куда оно смотрит? Почему не регламентирует эксплуатацию ржавых автомобилей? Давайте разбираться.

Давным-давно у нас появился ГОСТ Р 51709–2001 «Автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки». Иными словами – руководство для проведения Государственного технического осмотра. Все было в этом ГОСТе – только вот о коррозии кузова ничего не говорилось.

В марте 2006 года родилась новая редакция документа. Среди многочисленных поправок и дополнений появились и такие:

«4.7.25. Нe допускаются:

– ненадежное крепление амортизаторов вследствие сквозной коррозии мест или деталей крепления;

– чрезмерная общая коррозия рамы и связанных с ней деталей крепления или элементов усиления прочности основания кузова автобуса, грозящая разрушением всей конструкции;

– сквозная коррозия или разрушение пола пассажирского помещения автобуса, способные служить причиной травмы;

– коррозия либо трещины и разрушения стоек кузова, нарушающие их прочность;

– вмятины и разрушения кузова, нарушающие внешние очертания и узнаваемость модели АТС.

4.7.26. Грозящие разрушением грубые повреждения и трещины или разрушения лонжеронов и поперечин рамы, щек кронштейнов подвески, стоек либо каркасов бортов и приспособлений для крепления грузов не допускаются».

Мы еще тогда отметили: в документе нет количественных оценок коррозионного поражения! И методик нет, и приборы не прописаны.

Вот для двигателя есть свои нормативы и оборудование. И для тормозов есть, и для фар… А для коррозии – нет. Сплошь визуальные, а значит, субъективные оценки.

В чем-то наши нормативные документы правы: зоны крепления амортизаторных стоек нуждаются в особом контроле

Вдумаемся. Что такое «ненадежное креп­ление амортизаторов вследствие сквозной коррозии мест или деталей крепления»?

А чего стоит сентенция «вмятины и разрушения кузова, нарушающие внешние очертания и узнаваемость модели АТС»?

Какой-то фильм ужасов, а не ГОСТ. Несется по шоссе смятый кузов. Внешние очертания настолько нарушены, что его и опознать-то невозможно. Это, значит, нельзя. А если автомобиль не развалился, очертания сохранил, то пусть ездит?

Регламент вместо ГОСТа

Но ГОСТы – это пройденный этап. Теперь живут по иным документам – Техническим регламентам.

Когда готовился Технический регламент «О безопасности колесных транспортных средств», затеплилась надежда: теперь методика инструментального контроля состоя­ния кузова уж точно появится. Но когда Постановлением Правительства РФ от 10 сентября 2009 года № 720 регламент утвердили, оказалось, что о коррозии кузова в нем не сказано ничего.

Правда, Правительство РФ распоряжением от 12 октября 2010 года № 1750-р утвердило перечень документов для исполнения Технического регламента. И было тех документов аж 139.

Под номером 35 там значится… внимание! – все тот же ГОСТ Р 51709–2001. С теми же страшилками о потере узнаваемости и сквозной коррозии. И опять ни слова об инструментальных методах контроля коррозионных поражений. Не проваливается пол в автобусе, и ладно…

Многие иномарки прибывают в Россию с голым днищем. Уже через год оно «зацветает»

Смотрите: Технический регламент разрабатывали не один год. И со времен последней редакции ГОСТ Р 51709–2001 прошло немало лет. И за эти годы громадный коллектив не осилил два десятка строк для Технического регламента.

Вот это я понимаю – темпы! И в итоге кузов отдельно, коррозия отдельно, нормативные документы отдельно, а безопасность… да кого она волнует? Вам не стыдно, господа разработчики?

Еще один регламент!

Следующий лучик надежды затеплился, когда появился новый документ – Технический регламент Таможенного союза «О безопасности колесных транспортных средств». И вот с января 2015 года его ввели в действие. Может, там сказано о защите от коррозии?

Внимательно смотрим текст, читаем:

10.15. Ослабление крепления амортизаторов вследствие отсутствия, повреждения или сквозной коррозии деталей их крепления не допускается.

13.6. Сквозная коррозия или разрушение пола пассажирского помещения не допускаются.

Те же помидоры, вид сбоку… Опять ни защита днища, ни обработка скрытых полостей автомобилю не нужны. По мнению авторов, это никак не связано с безопасностью. А чему удивляться, если документ один к одному копирует прежний Технический регламент – российский.

И снова повторяю вопрос: вам не стыдно, господа разработчики регламентов? Тревогу надо бить задолго до потери внешних очертаний. И до появления сквозной коррозии.

Заглянем в автосалоны

Существует ли заводская гарантия от коррозии кузова? Автопроизводитель выдает лишь формальные сведения: гарантия от сквозной коррозии кузова шесть лет при условии регулярного обслуживания на дилерской станции. Или восемь лет. Или двенадцать лет. Еще раз, внимательно: от сквозной коррозии!

В автосалоне покупателя встречает менеджер по продажам. Он очень мало знает о заводской антикоррозионной защите автомобилей, которыми торгует. Что сообщили в рамках корпоративных правил, то и вещает.

Иными словами, продавцу нечего добавить к заявлениям производителя о «гарантии от сквозной коррозии». Его бесполезно спрашивать о конвейерной защите сварных швов, ML-препаратах, залитых в полости и толщине защитной пленки на днище. Как правило, он не ведает, есть ли она вообще, эта защитная пленка.

Журнал «Vi Bilagare» тесно сотрудничает со Шведским институтом металла и коррозии KIMAB, серьезно исследуя проблемы коррозии кузова

А покупатель о коррозии не думает вообще. Он считает ее второстепенной проблемой. Или находится под властью мифа «Иномарки не ржавеют». И, купив эту самую иномарку, даже не вспоминает о каких-то антикоррозионных материалах. А зачем? Не гниют иномарки! Пожизненный иммунитет! Protection forever! Да и гарантию обещали…

При этом от его внимания ускользает, что гарантия дается на срок до появления сквозных дыр, когда придется не обрабатывать машину, а заниматься серьезным и дорогим кузовным ремонтом.

Продавцы редко освещают столь безрадостное будущее, а счастливый обладатель новой иномарки еще реже задает вопросы. Так и уезжает во власти мифа, что пять-шесть лет с кузовом ничего не надо делать. А тот может «зацвести» года через три – уж изнутри-то точно. Но сквозных дыр еще не будет, значит, и претензий никто не примет.

Скандинавский опыт

Опыт российских сервисных станций, поставщиков антикоррозионных препаратов и нашего журнала говорит, что от коррозии страдают не только отечественные авто. На зарубежных заводах тоже не шибко заботятся о конвейерной антикоррозионной защите кузовов. В результате многие популярные иномарки прибывают к российским дилерам с голым днищем. Катафорезный грунт, штатная окраска да скромные полоски пластизоля на сварных швах – вот и вся защита. Надолго ли ее хватит на наших дорогах?

Столь же безрадостно выглядят внутренние полости кузова, если заглянуть в них с помощью видеоэндоскопа (бороскопа). Очень редко в автомобильных внутренностях можно встретить антикоррозионный барьер из ML-препарата. Чаще мы видим очаги ржавчины в порогах, дверях и в полостях капота и багажника.

Но автомобильные мифы живучи, иномарки заманчивы, а сознание потребителя инертно. Что ж, обратимся к зарубежному опыту. Например, к публикации в независимом шведском издании «Vi Bilagare».

Этот журнал тесно сотрудничает со Шведским государственным институтом металла и коррозии KIMAB. И уже много лет наряду с испытаниями новых автомобилей оценивает и коррозионную стойкость их кузовов.

Шведские ученые вырезают участки вблизи порогов, угловых участков дверей, соединений арок колеса с порогом и тому подобных местах и изучают степень их пораженияНаиболее подвержены коррозии участки соединения панелей, включая отбортовки, нахлесты и сварные швы

Коррозия кузовных панелей нового автомобиля начинается незаметно, исподволь. А видимая их поверхность покрывается ржавчиной после окончания гарантийного «антикоррозионного» периода, отмечает журнал. А еще эксперты издания убеждены в следующем:

– большинство автомобилей сконструировано без учета будущих коррозионных атак;

– на сборочных заводах недостаточно эффективно защищают внутренние полости;

– оцинковка в условиях северного климата, когда на дорогах применяются антигололедные соляные реагенты, от коррозии не спасает;

– для обеспечения долголетия кузова требуется дополнительная (послепродажная) обработка антикоррозионными материалами.

Журнал оценивает коррозионную стойкость автомобилей по 5-балльной шкале: 1 – очень плохо; 2 – плохо; 3 – удовлетворительно; 4 – хорошо; 5 – очень хорошо.

Скандинавские коллеги используют эти таблицы как весомый аргумент в спорах о необходимости дополнительной антикоррозионной обработки. А именно:

– при оценке 1 или 2 обработка необходима немедленно;

– при оценке 3 обработка необходима не позднее чем через 3 года;

– при оценке 4 обработка необходима не позднее чем через 4 года;

– при оценке 5 обработка необходима не позднее чем через 6–7 лет.

В благополучной и ухоженной Европе с ее великолепными дорогами и мягким климатом, новейшими, дружественными к металлу антигололедными реагентами и повсеместными мойками, теплыми гаражами и удобными паркингами существует целая сеть антикоррозионных станций. Они оснащены профессиональным оборудованием для нанесения защитных покрытий. Работает на нем специально обученный персонал. Однако не все владельцы пользуются этими услугами. Как видите, напрасно. Иначе картина, описанная журналом «Vi Bilagare», выглядела бы иначе.

KIMAB

Миф о небывалой коррозионной стойкости иномарок развеял и только что упоминавшийся шведский институт KIMAB. Ученые института доказали: даже оцинкованный кузов нуждается в регулярной обработке напыляемыми защитными материалами с ингибиторами коррозии. Опровергнуть их выводы пока что никому не удалось. Наоборот, методики института стали эталонами для всей Европы.

Шведские ученые выбирают сотни кузовов хорошо потрудившихся автомобилей. Вырезают участки вблизи порогов, угловых участков дверей, соединений арок колеса с порогом и тому подобных местах и изучают степень их поражения.

Оцинковка, конечно, играет важную роль в защите кузова от коррозии. Но посмотрим на график внизуЛишь владелец автомобиля с «толстой» оцинковкой и дополнительной антикоррозионной обработкой может ездить спокойно – 5-процентная поверхностная коррозия грозит ему лишь через семь лет эксплуатации

Исследованные кузовные панели защищены от коррозии оцинковкой и (или) антикоррозионными препаратами. Итак, оцинковка и антикор.

Поделим оцинковку на три группы: «толстый» слой – от 7 до 10 мкм; «тонкий» слой – от 2 до 5 мкм; и «нулевой» слой (панель не оцинкована).

Под словом «антикор» будем понимать современные профессиональные антикоррозионные материалы. Получается шесть видов обработки панели:

– «толстая» оцинковка плюс антикор;

– «толстая» оцинковка без антикора;

– «тонкая» оцинковка плюс антикор;

– «тонкая» оцинковка без антикора;

– «нулевая» оцинковка плюс антикор;

– «нулевая» оцинковка без антикора, что означает просто окрашенную панель без дополнительной защиты.

Так вот, KIMAB утверждает, что последние пять вариантов плохи. Лишь владелец автомобиля с «толстой» оцинковкой и (внимание!) дополнительной антикоррозионной обработкой может ездить спокойно – 5-процентная поверхностная коррозия грозит ему лишь через семь лет эксплуатации.

Выводы очевидны: оцинковка – не панацея; основа долголетия кузова – регулярная дополнительная антикоррозионная защита.

Работы KIMAB дают колоссальный статистический материал по коррозионной стойкости автомобильных кузовов. Именно он ложится в основу совершенствования технологий защиты от коррозии – как заводских, так и послепродажных.

К сожалению, у нас в России столь масштабные исследования не проводятся.

Шведские стандарты

Для примера ознакомимся с некоторыми стандартами испытаний антикоррозионных материа­лов для защиты внутренних полостей кузова. Они представлены в таблице.

Даже беглое знакомство с таблицей убеждает в профессиональности подхода к оценке свойств материалов. А главное – в практическом смысле испытаний.

Возьмем, например, стандарт SS18 60 11. Когда автомобиль обрабатывается антикором, неизбежны его попадания на лакокрасочную поверхность кузова. Отсюда требование: даже после высыхания антикоррозионный материал должен легко удаляться с кузова без обес­цвечивания, вздутия и размягчения краски. И вообще – без малейших следов!

Или документ SS18 60 16 – как следует понимать его? Обработанный антикором автомобиль может оказаться на жарком солнце или в сушильной камере при ремонте лакокрасочного покрытия кузова. Пленка не должна размягчаться и стекать с вертикальных внутренних поверхностей дверей, порогов и других полостей. А если это и допускается, то в строго определенных границах – на то и контроль по массе.

Документы, регламентирующие свойства антикоррозионных материалов для защиты скрытых сечений (внутренних полостей) автомобильного кузова

Еще один наглядный пример – стандарт SS18 60 21. Совместимость антикоров от различных производителей, когда препарат наносят то на ПВХ, то на «послепродажный» антикор, то на материал трехлетней давности. Согласитесь: актуальнейшие задачи для антикоррозионных участков сервисов.

А вот стойкость в соляном тумане оценивается по стандарту ASTM B117. К слову, ряд производителей антикоров взяли на вооружение такую формулу: 100 часов испытаний в соляном тумане соответствуют одному году эксплуатации. Практика подтверждает ее справедливость.

Нужны нормативы безопасности

Но вернемся к нашим регламентам. По уму надо было делать так.

Первое. Прописать в нормативных документах о проведении государственного Технического осмотра обязательный контроль скрытых полостей кузова. И прежде всего лонжеронов, порогов, стоек и других силовых элементов. В несущем кузове они играют роль каркаса, скелета. Именно от него зависит, способен кузов что-либо «нести» или пора выносить его самого – в последний путь под шредеры и прессы.

Проконтролировать скрытые полости просто – надо лишь обзавестись диагностическим видеэндоскопом (бороскопом). Подключенный к компьютеру, он дает возможность наблюдать на экране любую внутреннюю поверхность. И оценить степень коррозионного поражения в процентах. И тогда можно решать – опасен данный кузов или нет.

Второе. Кузов необходимо регулярно обрабатывать профессиональными антикоррозионными препаратами.

Что такое профессиональный антикор? Прежде всего, это высокотехнологичный продукт. Кроме основы (например, синтетических восков или битума) в рецептуру препарата входят ингредиенты, определяющие все технологические и функциональные свойства будущих антикоррозионных материалов. И едва ли не самые важные здесь – ингибиторы коррозии.

Основа долголетия и безопасности кузова – регулярная антикоррозионная обработка профессиональными материалами

Производитель настоящих антикоров выпускает не просто материалы – он создает комплексную систему антикоррозионной защиты. В нее входят и оборудование, и оснастка, и диагностические приборы для изучения состояния кузова, и технологические карты, и методика обучения мастеров.

Третье. Гарантию на кузов надо определить четко и ясно. Никаких «сквозных дыр». Обработка при продаже автомобиля, и каждые три-четыре года повторная обработка – вот вам и гарантия. Работать строго по технологической карте данной модели! Тогда ржавчина в кузове не заведется. И автомобиль всю свою жизнь будет иметь безопасный кузов.

Кстати, подтверждение тому – опыт Скандинавских стран, о котором уже говорилось.

Четвертое. Для решения означенных задач необходимо создание профессиональной Ассоциации.

Что сказать на прощание? Занявшись этой темой, мы ее не оставим. Будем добиваться включения оценок безопасности кузова в Технический регламент и в процедуру проведения технического осмотра. А пока идет сбор материалов, статистики, мнений экспертов и прочей необходимой информации. Так что продолжение следует.

Это публичное выступление прошу считать официальным обращением журнала к организациям, уполномоченным заниматься безопасностью транспорта. Спасибо за внимание.

Что такое сквозная коррозия


Что такое сквозная коррозия

Инструкция

Геометрия – это на сегодняшний день достаточно обширная наука, причем основополагающие утверждения для одних ее разделов могут противоречить настолько же важным утверждениям для других. Поэтому Феликс Клейн (автор односторонней поверхности, известной как бутылка Клейна) создал классификацию разделов геометрии. За основу был взят принцип о том, что каждый раздел должен изучать те свойства геометрических объектов, которые при преобразовании этих объектов оставались бы постоянными по правилам именно этого раздела (иными словами, это свойства-инварианты). Евклидова геометрия – это раздел этой науки, изучаемый в школе. Этот вид геометрии характеризуется тем, что градусные меры углов при их перемещении в пространстве не меняются, размеры отрезков также остаются постоянными величинами. Иными словами, такие преобразования фигур, как отражение, вращение и перенос, оставляют сами фигуры неизменными. Евклидова геометрия, в свою очередь, делится на два основных раздела. Это планиметрия – наука, исследующая поведение фигур на плоскости, а также стереометрия, рассматривающая фигуры в пространстве.

Проективная геометрия – раздел, в котором изучаются способы построения проекций различных типов фигур при разных условиях. Считается, что если одну фигуру заменить на подобную ей, но имеющую другой размер, то все основополагающие в этом разделе геометрии свойства этой фигуры остаются неизменными.

Аффинная – это вид геометрии, изучающий различные аффинные преобразования фигур. Прямые при такого рода преобразованиях обязательно переходят в аналогичные по свойствам прямые, в то время как длины объектов и величины углов могут изменяться.

Начертательная – это прикладной вид геометрии, то есть дисциплина относится к инженерным. Методом ортогональных или косоугольных проекций начертательная геометрия представляет трехмерный объект на плоскости, предоставляя о нем исчерпывающую информацию, необходимую для его воспроизведения.

Существует также современная геометрия, в которую входят такие разделы, как геометрия многомерных пространств, различные виды неевклидовой геометрии (в числе которых геометрия Лобачевского и сферическая), Риманова, многообразий, а также топология. Каждая из них имеет свои интересные свойства. Все виды геометрии при вычислении позволяют пользоваться определенными методами, и на основе этого критерия они делятся на две категории. Первая из них, аналитическая геометрия, в которой все объекты подлежат описанию с помощью уравнений или декартовых (реже аффинных) координат. Вычисления производятся с помощью алгебраических методов и матанализа. Дифференциальная геометрия позволяет задавать объекты с помощью дифференцируемых функций и изучает их, соответственно, с помощью дифференциальных уравнений.

Видео по теме

www.kakprosto.ru

Понятие о коррозии металлов и классификация

Коррозия металлов — самопроизвольное разрушение металлов вслед­ствие химического или электрохимического взаимодействия их с внешней средой. Коррозионный процесс — гетерогенный (неоднородный), протекает на границе раздела металл — агрессивная среда, име­ет сложный механизм.    При этом атомы металла окисляются, т.е.J теряют валентные электроны, атомы переходят через границу раздела во  внешнюю среду, взаимодействуют с ее компонентами и образуют продукты коррозии. В большинстве случаев коррозия металлов пройм ходит неравномерно по поверхности, имеются  участки, на  которых возникают локальные поражения. Некоторые продукты   коррозии, образуя поверхностные пленки, сообщают металлу коррозионную стойкость. Иногда могут появляться рыхлые продукты коррозии, имеющие слабое сцепление

Эрозионная коррозия — причины и профилактика. WebCorr Консультационные услуги по коррозии, короткие курсы по коррозии и эксперт по коррозии. типы коррозии, формы коррозии, коррозия труб, общая коррозия, точечная коррозия, гальваническая коррозия, коррозия MIC, эрозионная коррозия, коррозия под изоляцией, M.I.C., MIC, CUI-коррозия

Что вызывает эрозионную коррозию?

Механический эффект потока или скорости жидкость в сочетании с коррозионным действием жидкости вызывает ускоренную потерю металл.Начальный этап включает в себя механическое удаление металла защитная пленка, а затем коррозия голого металла протекающим коррозионным имеет место. Процесс является циклическим до тех пор, пока не произойдет перфорация компонента.

Эрозионная коррозия обычно наблюдается при высоких скорость потока вокруг засоров в трубках, на впускных концах труб или в рабочих колесах насоса. Фотография показывает эрозионную коррозию литого алюминиевого корпуса насоса из-за чрезмерного высокий расход теплоносителя.

В чем разница между эрозионной коррозией и кавитацией?

Кавитация-коррозия — особая форма эрозионно-коррозионная. Это вызвано пузырьками воды, возникающими из-за высокоскоростного рабочее колесо, которое затем разрушается и вызывает ямки на поверхности металла.

В чем разница между эрозионной коррозией и ускоренным потоком Коррозия?

В литературе по коррозии эрозионная коррозия и коррозия, ускоренная потоком, часто используются как взаимозаменяемые.Между ними нет четко определенной границы. Некоторые утверждают, что существует тонкая разница между эрозионной коррозией и ускорением потока Коррозия. В FAC поток жидкости удаляет слой магнетита (Fe3O4), обнажая сталь к коррозии, что приводит к истончению стенки. Нет или тоньше магнетита на поверхности в месте расположения ПТ за счет эффекта потока, чем на в местах, не подвергшихся FAC. Щелкните значок Ссылка FAC для получения подробной информации.

Коррозия

19.6 Коррозия

Цель обучения

  1. Чтобы понять процесс коррозии.

Коррозия Гальванический процесс, при котором металлы разрушаются в результате окисления — обычно, но не всегда, до их оксидов. представляет собой гальванический процесс, при котором металлы разрушаются в результате окисления — обычно, но не всегда, до их оксидов. Например, при воздействии воздуха ржавчина железа, потускнение серебра, а также медь и латунь приобретают голубовато-зеленую поверхность, называемую патиной .Из различных металлов, подверженных коррозии, железо является наиболее важным в коммерческом отношении. По оценкам, только в Соединенных Штатах ежегодно тратится 100 миллиардов долларов на замену железосодержащих объектов, разрушенных коррозией. Следовательно, разработка методов защиты металлических поверхностей от коррозии является очень активной областью промышленных исследований. В этом разделе мы описываем некоторые химические и электрохимические процессы, вызывающие коррозию. Мы также исследуем химическую основу некоторых распространенных методов предотвращения коррозии и обработки корродированных металлов.

Обратите внимание на узор

Коррозия — это гальванический процесс.

В условиях окружающей среды окисление большинства металлов является термодинамически спонтанным, за исключением золота и платины. Поэтому на самом деле несколько удивительно, что какие-либо металлы вообще полезны во влажной, богатой кислородом атмосфере Земли. Однако некоторые металлы устойчивы к коррозии по кинетическим причинам. Например, алюминий в банках для безалкогольных напитков и в самолетах защищен тонким слоем оксида металла, который образуется на поверхности металла и действует как непроницаемый барьер, предотвращающий дальнейшее разрушение.Алюминиевые банки также имеют тонкий пластиковый слой для предотвращения реакции оксида с кислотой в безалкогольном напитке. Хром, магний и никель также образуют защитные оксидные пленки. Нержавеющие стали отличаются высокой устойчивостью к коррозии, поскольку они обычно содержат значительную долю хрома, никеля или того и другого.

В отличие от этих металлов, когда железо корродирует, оно образует красно-коричневый гидратированный оксид металла (Fe 2 O 3 · ​​ x H 2 O), широко известный как ржавчина , который не обеспечьте плотную защитную пленку (рисунок 19.17 «Ржавчина, результат коррозии металлического железа»). Вместо этого ржавчина постоянно отслаивается, обнажая свежую металлическую поверхность, уязвимую для реакции с кислородом и водой. Поскольку для образования ржавчины требуются кислород и вода, железный гвоздь, погруженный в деоксигенированную воду, не ржавеет даже в течение нескольких недель. Точно так же гвоздь, погруженный в органический растворитель, такой как керосин или минеральное масло, насыщенное кислородом, не будет ржаветь из-за отсутствия воды.

Рисунок 19.17 Ржавчина, результат коррозии металлического железа

Железо окисляется до Fe 2+ (водн.) На анодном участке на поверхности железа, который часто является примесью или дефектом решетки. Кислород восстанавливается до воды в другом месте на поверхности железа, которое действует как катод. Электроны передаются от анода к катоду через электропроводящий металл. Вода является растворителем для Fe 2+ , который образуется изначально и действует как солевой мостик.Ржавчина (Fe 2 O 3 · ​​ x H 2 O) образуется в результате последующего окисления Fe 2+ кислородом воздуха.

В процессе коррозии металлическое железо действует как анод в гальванической ячейке и окисляется до Fe 2+ ; кислород восстанавливается на катоде до воды. Соответствующие реакции следующие:

Уравнение 19.96

катод: O2 (г) + 4H + (водн.) + 4e− → 2h3O (l) E ° = 1,23 В

Уравнение 19.97

анод: Fe (s) → Fe2 + (водн.) + 2e− E ° = −0,45 В

Уравнение 19.98

всего: 2Fe (т) + O2 (г) + 4H + (водн.) → 2Fe2 + (водн.) + 2h3O (ж) E ° = 1,68 В

Ионы Fe 2+ , образующиеся в начальной реакции, затем окисляются кислородом воздуха с образованием нерастворимого гидратированного оксида, содержащего Fe 3+ , как представлено в следующем уравнении:

Уравнение 19,99

4Fe 2+ (водный раствор) + O 2 (г) + (2 + 4 x ) H 2 O → 2Fe 2 O 3 · ​​ x H 2 O + 4H + (водн.)

Знак и величина E ° для процесса коррозии (Уравнение 19.98) указывают на то, что существует сильная движущая сила для окисления железа O 2 при стандартных условиях (1 M H + ). В нейтральных условиях движущая сила несколько меньше, но все же заметна ( E = 1,25 В при pH 7,0). Обычно реакция атмосферного CO 2 с водой с образованием H + и HCO 3 обеспечивает достаточно низкий pH для увеличения скорости реакции, как и кислотный дождь. (Дополнительную информацию о кислотном дожде см. В главе 4 «Реакции в водном растворе», раздел 4.7 «Химия кислотного дождя». Производители автомобилей тратят много времени и денег на разработку красок, которые плотно прилегают к металлической поверхности автомобиля, чтобы предотвратить контакт насыщенной кислородом воды, кислоты и соли с лежащим под ним металлом. К сожалению, даже самая лучшая краска подвержена царапинам или вмятинам, а электрохимическая природа процесса коррозии означает, что две относительно удаленные друг от друга царапины могут работать вместе как анод и катод, что приводит к внезапному механическому отказу (Рисунок 19.18 «Небольшие царапины на защитном лакокрасочном покрытии могут привести к быстрой коррозии железа»).

Рисунок 19.18 Мелкие царапины на защитном лакокрасочном покрытии могут привести к быстрой коррозии железа

Отверстия в защитном покрытии позволяют восстанавливать кислород на поверхности при большем контакте с воздухом (катод), в то время как металлическое железо окисляется до Fe 2+ (водн.) На менее открытой части (анод). Ржавчина образуется, когда Fe 2+ (водный) диффундирует в место, где он может реагировать с атмосферным кислородом, который часто находится далеко от анода.Электрохимическое взаимодействие между катодным и анодным участками может привести к образованию большой ямы под окрашенной поверхностью, что в конечном итоге приведет к внезапному отказу с небольшим видимым предупреждением о том, что произошла коррозия.

Одним из наиболее распространенных методов предотвращения коррозии железа является нанесение защитного покрытия из другого металла, который труднее окисляется. Например, смесители и некоторые внешние детали автомобилей часто покрывают тонким слоем хрома с помощью электролитического процесса, который будет обсуждаться в разделе 19.7 «Электролиз». Однако с увеличением использования полимерных материалов в автомобилях использование хромированной стали в последние годы сократилось. Точно так же «жестяные банки», в которых хранятся супы и другие продукты, на самом деле сделаны из стали, покрытой тонким слоем олова. Ни хром, ни олово по своей природе не устойчивы к коррозии, но оба образуют защитные оксидные покрытия.

Как и в случае с защитной краской, царапины на защитном металлическом покрытии могут вызвать коррозию. Однако в этом случае присутствие второго металла может фактически увеличить скорость коррозии.Значения стандартных электродных потенциалов для Sn 2+ ( E ° = -0,14 В) и Fe 2+ ( E ° = -0,45 В) в таблице 19.2 «Стандартные потенциалы для выбранной половины восстановления. Реакции при 25 ° C »показывают, что Fe легче

Коррозионно-стойкие покрытия для различных типов коррозии

Изображение предоставлено: GaViAl / Shutterstock.com

Высокопроизводительные структурные компоненты и технологическое оборудование часто подвергаются той или иной форме коррозии независимо от типа используемого материала, а коррозионно-стойкие покрытия могут увеличить срок службы детали, а также снизить затраты на техническое обслуживание и замену.Однако, чтобы выбрать подходящее покрытие, важно определить вид коррозии, которой подвержена деталь. В зависимости от того, как используется деталь и в каких условиях она подвергается, вид коррозии может отличаться.

Какие бывают типы коррозии металла?

У многих металлов, подвергающихся воздействию сухого воздуха, на поверхности образуется слой коррозии, который может защитить лежащий под ним металл, пока воздух остается сухим. Например, алюминий быстро образует на своей поверхности пленку из оксида алюминия, которая плотно прилегает к основному металлу и препятствует дальнейшей коррозии, даже если атмосферные условия меняются.С другой стороны, железо и сталь образуют слой ржавчины в сухих условиях, но по мере увеличения влажности и температуры эта ржавчина будет продолжать формироваться в основном материале. Но железный пруток в сухом воздухе может образовывать слой защитного оксида железа, пока воздух остается сухим.

Явление электрохимической коррозии хорошо известно. Два разнородных металла, таких как медь и цинк, погруженные в воду, быстро установят электрохимическую реакцию, при которой один металл — в данном случае цинк — станет анодом и отдаст электроны другому материалу — меди.Медь в этом случае действует как катод и называется. С химической точки зрения, цинк подвергается процессу окисления, при котором атомы металла теряют один или несколько электронов и становятся ионами металлов. Между тем, поскольку два металла электрически соединяются через водяную баню, медь подвергается процессу реакции и получает ионы цинка. Это принцип, лежащий в основе гальванического элемента.

Любые два разнородных металла в контакте будут испытывать это отношение анод-катод. Чтобы определить склонность любой комбинации разнородных металлов к коррозии, используется понятие электродного потенциала.Он назначает стандартный электродный потенциал (в вольтах) каждому металлу, используя газообразный водородный электрод в качестве нулевого эталона. Ниже приведен список металлов с электродным потенциалом, показанным для двух крайних случаев (магний и золото).

Магний -2,363

Бериллий

Алюминий

Марганец

Цинк

Хром

Утюг

Кадмий

Никель

Олово

Свинец

Водород 0

Медь

Меркурий

Серебро

Палладий

Платина

Золото +1.420

Для любых двух соприкасающихся металлов тот, который находится выше в таблице, станет анодом и коррозирует. Таким образом, использование жертвенных цинковых анодов для защиты корпусов судов.

Хотя химические вещества могут вызывать прямую коррозию металлов, большая часть коррозии металлов, которые удерживаются или погружены в воду, или которые подвергаются образованию влагообразующих пленок из-за атмосферного воздействия, имеет электрохимическую природу.

Существует пять основных типов коррозии: гальваническая, растрескивание под напряжением, общая, локальная, и коррозия, вызванная едким веществом .

Гальваническая коррозия чрезвычайно распространена и возникает, когда два металла с разными электрохимическими зарядами соединяются токопроводящим путем. Коррозия возникает, когда ионы металла перемещаются от анодного металла к катодному. В этом случае будет нанесено антикоррозийное покрытие, чтобы предотвратить перенос ионов или условия, которые его вызывают. Гальваническая коррозия также может возникнуть при наличии одного загрязненного металла. Если металл содержит комбинацию сплавов с разными зарядами, один из металлов может подвергнуться коррозии.Это известно как межкристаллитная коррозия. Анодный металл является более слабым, менее стойким и уступает ионы более сильному, положительно заряженному катодному металлу. Без воздействия электрического тока металл равномерно корродирует; тогда это называется общей коррозией.

Коррозионное растрескивание под напряжением (SCC) может серьезно повредить компонент, не подлежащий ремонту. Под воздействием экстремального растягивающего напряжения металлический компонент может испытывать SCC вдоль границы зерен — образуются трещины, которые затем становятся объектами дальнейшей коррозии.Существует несколько причин SCC, включая напряжение, вызванное холодной работой, сваркой и термической обработкой. Эти факторы в сочетании с воздействием окружающей среды, которая часто увеличивает и усиливает растрескивание под напряжением, могут означать, что деталь переходит от незначительной коррозии под напряжением к отказу или непоправимому повреждению. В латуни разрушение из-за коррозионного растрескивания под напряжением называют «сезонным растрескиванием»; в стали это известно как «едкое охрупчивание». Водородное охрупчивание стали также считается явлением коррозии.

Общая коррозия возникает в результате ржавчины. Когда металл, особенно сталь, подвергается воздействию воды, поверхность окисляется и появляется тонкий слой ржавчины. Как и гальваническая коррозия, общая коррозия также является электрохимической. Чтобы предотвратить окисление, защитное покрытие должно препятствовать реакции.

Локальная коррозия возникает, когда небольшая часть компонента подвергается коррозии или контактирует с определенными вызывающими коррозию напряжениями.Поскольку небольшая «локальная» область корродирует гораздо быстрее, чем остальная часть компонента, а коррозия действует параллельно с другими процессами, такими как напряжение и усталость, конечный результат намного хуже, чем результат одного напряжения или усталости.

Едкий агент коррозии возникает, когда загрязненный газ, жидкости или твердые частицы изнашивают материал. Хотя большинство нечистых газов не повреждают металл в сухом виде, при воздействии влаги они растворяются с образованием вредных коррозионных капель.Сероводород является примером одного такого едкого агента.

Коррозионно-стойкие покрытия

Коррозионно-стойкие покрытия для металла различаются в зависимости от типа металла и типа необходимой защиты от коррозии. Чтобы предотвратить гальваническую коррозию в сплавах железа и стали, полезны покрытия из цинка и алюминия. Крупные компоненты, такие как мосты и энергетические ветряные мельницы, часто обрабатываются антикоррозийными покрытиями из цинка и алюминия, поскольку они обеспечивают надежную долгосрочную защиту от коррозии.Крепежные детали из стали и железа, резьбовые соединения и болты часто покрываются тонким слоем кадмия, который помогает блокировать поглощение водорода, что может привести к растрескиванию под напряжением.

Помимо покрытий из кадмия, цинка и алюминия, часто в качестве коррозионных покрытий используются никель-хромовые и кобальт-хромовые покрытия из-за их низкой пористости. Они чрезвычайно влагостойкие и, следовательно, препятствуют развитию ржавчины и возможному разрушению металла. Оксидная керамика и смеси металлокерамики являются примерами покрытий, которые обладают высокой износостойкостью, помимо устойчивости к коррозии.

Цинковое покрытие (гальванизация) стали — это расходный анод. Цинк разъедает и защищает сталь, на которую он нанесен. Толщина покрытия определяет срок службы стальной детали. Аналогично, расходуемые аноды могут быть размещены на конструкциях для защиты металла. Вместо стали «горит» анод. Для таких конструкций, как трубопроводы, которые слишком велики для защиты с помощью расходуемых анодов, для защиты от коррозии используется так называемый наведенный ток.Здесь отрицательная сторона источника питания постоянного тока подключена к конструкции, а положительная клемма подключена к электродам, которые вставлены рядом со структурой.

Анодирование — это еще один метод покрытия, используемый для предотвращения коррозии, особенно алюминия. В результате оксид алюминия наносится на поверхность более толстым слоем, чем это происходит в естественных условиях.

Стойкость стали к атмосферной коррозии можно улучшить, добавив примерно 0,20% меди. Однако высокопрочные низколегированные (HLSA) стали обладают еще большей стойкостью.

Многие металлы по своей природе устойчивы к коррозионным агентам: сталь устойчива к концентрированной серной кислоте; нержавеющая сталь устойчива к азотной кислоте; олово устойчиво к дистиллированной воде и т. д.

Покрытия, содержащие хроматы и фосфаты, являются эффективными ингибиторами коррозии. Также для защиты от коррозии используются многочисленные покрытия на основе полимеров.

Сводка

В этой статье представлено краткое обсуждение коррозионных и коррозионно-стойких покрытий. Для получения дополнительной информации о связанных продуктах или процессах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Прочие изделия из покрытий

Прочие «виды» изделий

Больше от Chemicals

Условия, способствующие подземной коррозии меди

Этот документ представляет собой отредактированную версию статьи, опубликованной в журнале American Water Works Association Journal , август 1984 г., и перепечатывается с разрешения American Water Works Association .

Дж. Р. Майерс
JRM Associates, 4198 Merlyn Drive, Franklin, OH 45005

A.Коэн
Copper Development Association Inc., 260 Madison Ave., New York, NY 10016

Медь, благородный металл, который встречается в природе в своей элементарной форме, почти полностью невосприимчив к коррозии, вызываемой почвами, встречающимися во всем мире. Но было бы ошибкой делать вывод о том, что медь не подвержена коррозии. В этой статье описывается множество возможных ситуаций, в которых медные трубы или трубки могут подвергаться внешней коррозии. Эти ситуации подробно обсуждаются, и даются предложения о том, как определить подземную коррозию медных труб без выемки грунта и как смягчить существующие условия коррозии.

Убеждение знающих инженеров, архитекторов и персонала водоканала в том, что на медь не оказывает негативного воздействия на большинство почв во всем мире, вполне обосновано. Медные артефакты необычной хорошей сохранности продолжают находить в Месопотамии из-под глины, отложившейся в результате «Великого Потопа», который, как полагают, произошел около 4000 г. до н. Э. 1 Многие подземные медные трубы, использовавшиеся для транспортировки воды в Египте около 5000 лет назад, все еще существуют. Кроме того, медь — один из немногих металлов, который существует как элемент в своей естественной форме.Медные трубы имеют также выдающуюся историю как материал с высокой коррозионной стойкостью в большинстве подземных сред. Однако есть условия, которые могут вызвать коррозию меди при контакте с определенными почвами. К ним относятся:

  • аномально агрессивные почвы,
  • концентрационных ячеек локализованного и длинного типа, образованных различиями в составе почвы,
  • действие блуждающих постоянных токов (DC), протекающих в земле,
  • дефект конструкции и изготовления,
  • определенные условия, создаваемые переменным током (AC),
  • термогайванических эффектов и
  • гальваническое воздействие на разнородные материалы.
Вернуться к началу

Аномально агрессивные почвы

Медь практически не подвержена коррозии. В большинстве подземных сред он ведет себя как благородный металл из-за естественной защитной пленки, образующейся на поверхности металла. Если эта пленка, которая часто состоит из красновато-коричневой закиси меди (Cu 2 0), будет разрушена и не подлежит ремонту, медь подвергнется коррозии. К счастью, защитная пленка на меди остается неповрежденной или легко ремонтируется в большинстве почвенных условий.

Проведены три окончательных исследования подземной коррозии меди. 2-4 Очень вероятно, что это очевидное отсутствие интереса к коррозии меди со стороны почвы является результатом известной коррозионной стойкости металла в подземных средах.

Анализ результатов этих трех независимых исследований ясно показывает, что подземная коррозия меди необычайно сложна. В общем, коррозия не может быть напрямую связана с каким-либо одним или даже несколькими факторами, поскольку в ней задействовано множество взаимосвязанных почвенных условий.Данные, представленные в трех исследованиях, и результаты других 5,6 позволяют сделать некоторые предварительные выводы относительно коррозии меди в подземных средах. К ним относятся:

  • Коррозия часто связана с сочетанием повышенного содержания сульфатов или хлоридов в почве в сочетании с плохим дренажем, почвой, обладающей значительной способностью удерживать влагу, и умеренным или сильным годовым количеством осадков (обычно более 76 см [30 дюймов]). ]).
  • Повышенные концентрации сульфата или хлорида или того и другого в почве, вероятно, являются основным фактором процесса подземной коррозии, но для поддержания электрохимического воздействия требуется значительная влажность.Сульфаты и хлориды не могут отрицательно повлиять на медь, если выпадают небольшие осадки и достаточный дренаж.
  • Очень низкое удельное сопротивление почвы (т.е. менее 100-500 Ом-см) обычно указывает на то, что почва может быть агрессивной.
  • Почвы, содержащие большое количество органических веществ (особенно почвы, содержащие органические кислоты), могут вызывать коррозию
  • Влажные огарочные засыпки обычно вызывают коррозию либо из-за присутствующих сульфидов, либо из-за гальванического воздействия, создаваемого частицами углерода в огарках
  • Строительный щебень, содержащий значительное количество извести, не должен быть особенно коррозионным, при условии, что ячейки локальной концентрации, особенно ячейки дифференциального кислорода, не образуются во время засыпки.
  • Грунты, такие как глина, песок, гравий, суглинок и мел, редко обладают сочетанием свойств, связанных с коррозией
  • Органические почвы, поддерживающие активные анаэробные бактерии (т.е.например, сульфатредуцирующие вещества) могут образовывать сульфиды, агрессивные по отношению к меди
  • Почвы, содержащие неорганические кислоты, могут быть необычно агрессивными по отношению к меди

Почвы, содержащие значительное количество соединений аммиака, обычно вызывают коррозию меди. Внешний вид медной поверхности и идентификация продуктов коррозии обычно позволяют понять причину ухудшения качества. Например, продуктами коррозии зеленой меди часто являются основной карбонат меди, основной сульфат меди или оксихлориды меди.Присутствие заметных количеств оксихлоридов меди в продуктах коррозии можно было бы ожидать для медной водяной трубы, которая была закопана в приливно-болотной среде с низким удельным сопротивлением. Плотный черный слой на меди предполагает присутствие сульфида меди и возможность активности анаэробных бактерий как причины коррозии. Присутствие аммиака в сочетании с сульфатными соединениями на поверхности меди указывает на то, что причиной коррозии могут быть удобрения для газонов.

Коррозия подземной меди может быть как равномерной, так и локализованной (рисунок ниже).

Локальная коррозия предполагает наличие ячеек местного действия, например, создаваемых неоднородной засыпкой. Также подозревается местная коррозия электролизера, когда нижняя сторона горизонтальной медно-водяной трубы подвержена преимущественной коррозии.

Вернуться к началу

Коррозия ячеек концентрации

Существует как минимум три типа электрохимических концентрационных ячеек, которые вызывают коррозию металла или сплава из-за различий в окружающей среде.К ним относятся кислородные, нейтрально-солевые и водородно-ионные элементы.

Области на металлической поверхности, контактирующие с почвой, которая имеет повышенное содержание кислорода, обычно будет катодной по сравнению с теми участками, где присутствует меньше кислорода. Кислород обычно действует как катодный деполяризатор; кроме того, участки с повышенным содержанием кислорода, как правило, являются предпочтительными катодными участками, где может происходить восстановление кислорода:

2H 2 0 + 0 2 + 4e — 40H

Это обычно называется ячейкой с дифференциальной концентрацией кислорода.Коррозия концентрационных ячеек кислородного типа часто является объяснением преимущественной коррозии нижней стороны медных водяных трубок. Нижняя сторона трубы часто контактирует с ненарушенной почвой с пониженным содержанием кислорода, тогда как верхняя часть трубы подвергается засыпке с воздухом. Коррозия на нижней стороне трубки усугубляется существующим большим отношением площади катода к площади анода. Ячейки с дифференциальной концентрацией кислорода также могут быть созданы за счет неоднородной засыпки.Металлы и сплавы, контактирующие с кусками глины, почти всегда будут анодными по отношению к ближайшему металлу, когда основным материалом засыпки является супесчаный суглинок. Точно так же могут существовать протяженные токи коррозии, если линия обслуживания проходит через участки с большими перепадами почвы.

Коррозия подземной меди может быть вызвана определенными ячейками с концентрацией нейтральных солей. Области повышенного содержания хлорида обычно анодны по отношению к областям пониженного содержания хлорида. Такие концентрационные ячейки хоридного типа иногда создаются с помощью противообледенительных солей, например, в траншеях с технологической магистралью, которые могут действовать как подземный дренаж в течение нескольких лет после ее выемки и обратной засыпки.

Есть также основания полагать, что области на поверхности металла, контактирующие с почвой, имеющей низкий рН, будут катодными по сравнению с областями на том же металле, где локализованный рН несколько выше. Концепция ячеек с концентрацией водородных ионов частично подтверждается наблюдением, что потенциал коррозии металла или сплава обычно становится все более положительным по мере снижения pH окружающей среды. 7

Вернуться к началу

Коррозия от рассеянного постоянного тока

Коррозия или помехи из-за рассеянного тока, которые слишком часто ошибочно называют «электролизом», могут возникать на подземных медных водопроводных трубах, когда в этом районе существуют неконтролируемые постоянные токи.Эта форма коррозии связана с величиной и направлением постоянных токов, протекающих в земле не по предназначенным путям. Когда блуждающие токи протекают по подземной конструкции, коррозия не происходит, поскольку эти участки имеют катодную защиту. Эти паразитные токи также не вызывают ухудшения, когда они протекают внутри и вдоль конструкции. Однако токи должны в конечном итоге покинуть структуру, вернуться на землю и течь к своему источнику генерации. Области, где эти токи покидают конструкцию и входят в почву, являются анодными, и в этих местах может возникнуть серьезная коррозия.

Обычным источником паразитной электроэнергии постоянного тока являются системы катодной защиты с подаваемым током, такие как те, которые широко используются коммунальными предприятиями, компаниями по транспортировке газа и нефти для снижения коррозии подземных стальных трубопроводов. Системы электропередачи высокого напряжения постоянного тока (HVDC), транспортные системы с питанием от постоянного тока, сварочное оборудование и горнодобывающее оборудование также являются потенциальными источниками паразитного постоянного тока.

Вернуться к началу

Неисправность конструкции и изготовления

В дополнение к проблемам, создаваемым аномально агрессивными почвами, концентрационными ячейками и случайным постоянным током, коррозия подземной меди может усугубляться неправильной конструкцией и производством.

Необходимо сделать поправку на тепловое расширение и сжатие, когда медные водопроводные трубы проходят через бетонную плиту здания. Если этого не сделать, иногда может возникнуть коррозионная усталость на выпуклой поверхности труб вблизи того места, где они проходят через бетон. 5, 8 Коррозионная усталость проявляется при наличии хрупкого типа, поперечных трещин в пластичной трубе. Хотя случаи коррозионной усталости редки, они могут возникать на неправильно установленных, находящихся под плитой, линиях горячего водоснабжения, где имеют место периодические расширения и сжатия.

Также известно, что неправильно подготовленные или установленные развальцованные трубные соединения на подземных коммуникациях, вызванные наличием остаточных заусенцев на посадочной поверхности, могут привести к локальной эрозии и коррозии. Когда это происходит, проблема легко распознается по U-образным ямкам на пораженных участках, которые практически свободны от остаточных продуктов коррозии (рисунок ниже).

Это может усугубляться аномально высокой скоростью воды в системе распределения.

Вернуться к началу

Действие переменного тока

Роль переменного тока в подземной коррозии меди изучена недостаточно. 9 Некоторые исследователи утверждают, что любой металл, растворенный во время анодного полупериода, должен быть переотложен во время катодного полупериода. Другие считают, что эффективность анодного полупериода выше, чем эффективность катодного полупериода, и, следовательно, может возникнуть коррозия, вызванная переменным током. Сохраняется аргумент относительно того, может ли оксид меди на внешней поверхности подземной медной водопроводной трубы исправлять переменный ток, хотя некоторые недавние исследования показывают, что такого исправления не происходит. 10, 11

Некоторые исследователи полагают, что для возникновения коррозии на переменном токе необходимо превышение критической плотности переменного тока. 12, 13 Также возможно, что переменный ток способствует деполяризации локальных анодов и катодов на подземной поверхности меди. 11 Ожидается, что эта деполяризация увеличит плотность тока коррозии и, как следствие, скорость коррозии.

До тех пор, пока эти разногласия не будут согласованы и результаты недавних исследований не подтверждены, разумно полагать, что обычно применяемая практика заземления электрических систем на подземные медные водные системы может привести к коррозии.Если медная водопроводная система подключена к непроводящей магистрали, такой как асбестоцемент, можно ожидать некоторого коррозионного повреждения там, где ток выходит из меди, даже если ток переменный. Кроме того, закись меди может стать полупроводником при определенных условиях pH почвы и напряженности электрического поля. Заземление системы переменного тока к подземным медным водопроводным трубам и дисбаланс в системе переменного тока вполне могут быть вовлечены в процесс подземной коррозии.

Вернуться к началу

Термогальванические эффекты

Движущий потенциал для коррозии меди может быть создан из-за разницы температур в линиях горячей и холодной воды под плитой, которые находятся в металлическом контакте друг с другом в водонагревателе.Это явление следует заподозрить, если внешняя коррозия медных водопроводов происходит только на трубах с горячей водой.

Тепловые эффекты в непосредственной близости от подземных водопроводных труб могут иногда усугублять проблему коррозии из-за концентрации солей в этих местах за счет испарения воды, которая может стекать через почву.

Гальваническое действие. Хотя медь обычно является катодом по отношению к наиболее часто используемым подземным металлам и сплавам, таким как сталь, гальванизированная сталь и чугун, подземные медные трубопроводы могут иметь две формы гальванической коррозии. 14 Это углеродно-медные ячейки, связанные с определенными заполнителями из шлака, и ячейка «медь-почва-медь-бетон», связанная со строительством на плите.

Медь анодна по отношению к углероду, и можно ожидать возникновения коррозии, если огарки, используемые для засыпки, содержат заметные количества углерода. Однако для этого гальванического действия должна присутствовать влага.

Также известно, что медь, внедренная в бетон, обычно будет катодной по отношению к меди, находящейся рядом с почвой.Эта тонкая форма гальванической коррозии может вызвать разрушение меди, контактирующей с почвой в непосредственной близости от границы раздела грунт-бетон. Сообщается, что эта форма коррозии является причиной того, что в некоторых районах Южной Калифорнии требуется полное бетонное покрытие медных водяных труб. 5

Вернуться к началу

Выявление проблемы коррозии без выемки грунта

Обследование потенциала трубы-грунт с близким интервалом может часто использоваться для прогнозирования тех областей, где имеет место активная коррозия подземной меди. 15-17

На основании одного исследования, 17 , которое подтверждается другим, 18 , предполагается, что данные в Таблице 1 могут быть использованы для прогнозирования коррозионной активности подземной системы медных водопроводных труб.

Подобные потенциальные исследования могут быть использованы для выявления основных областей коррозии от блуждающих токов.

Таблица 1 . Ориентировочная корреляция между потенциалом между трубами и почвой и подземной коррозионной активностью меди 17
V-потенциал относительно медно-медного сульфата Коррозионная активность
-0.5 или более отрицательных Медь хорошо защищена; предполагает, что медь имеет катодную защиту
-0,25 или более отрицательное Отсутствие коррозии в большинстве почв
-0,1 или менее отрицательное Может вызывать коррозию
0,0 или положительный Возможно коррозия

Как правило, отрицательные потенциалы регистрируются там, где паразитный ток входит в медную трубку и материал имеет катодную защиту.Гораздо меньше отрицательных и даже положительных потенциалов будет получено там, где блуждающий ток покидает подземную конструкцию, возвращается в землю и вызывает коррозию. Блуждающая коррозия также может быть подтверждена с помощью метода исследования потенциала от трубы до почвы. Прерывание источника тока, вызывающего нарушение, часто выявляет значительные потенциальные различия между показаниями обесточенного и включенного тока, особенно если эталонная ячейка расположена в месте основной анодной активности.

Вернуться к началу

Устранение подземной коррозии меди

Подземную коррозию меди можно эффективно уменьшить с помощью ряда методов.К ним относятся:

  • катодная защита,
  • дренаж улучшенный,
  • Избегание неоднородных и золошлаковых засыпок,
  • разумное использование выборочных неагрессивных ответных действий,
  • — надлежащая конструкция системы и производственные стандарты, а
  • уменьшение любой коррозии, вызванной паразитными токами.

Катодная защита является одним из наиболее экономичных методов уменьшения коррозии меди, подверженной воздействию агрессивных сред. 17, 19 Контроль коррозии достигается, когда потенциалы катодов на корродирующей поверхности меди поляризованы до потенциалов холостого хода анодов местного действия. Для большинства систем медь-водопроводная труба это легко сделать с помощью расходных анодов. Цинковые аноды могут использоваться в засыпных засыпках при условии, что удельное сопротивление грунта составляет менее 2000 Ом-см. Упакованные магниевые аноды следует использовать, если удельное сопротивление почвы превышает примерно 2000 Ом-см.

Хотя ток, необходимый для катодной защиты подземной меди, будет варьироваться в зависимости от местных почвенных условий, медь, очевидно, довольно легко поляризуется в большинстве почв. Ток, необходимый для защиты квадратного фута голой меди, может составлять всего 0,4–1,7 мА. 20 Убеждение, что для катодной защиты подземной меди требуются относительно небольшие токи, подтверждается наблюдением, что эта форма контроля электрохимической коррозии обычно достигается автоматически, когда рабочие линии находятся в металлическом контакте с литой водопроводной сетью.Общие рекомендации по проектированию работоспособной системы катодной защиты подземной меди доступны в технической литературе.

Для устранения проблем подземной коррозии меди можно использовать усовершенствования в схеме дренажа, позволяющие отводить воду от здания или технологической линии. Траншея, в которой проходит линия обслуживания, не должна располагаться непосредственно после дренажных систем канализации или водосточных водостоков. Точно так же траншея не должна быть резервуаром для противогололедных солей и удобрений для газонов.

Для тех участков, где известно, что подземная медь будет подвергаться воздействию аномально агрессивных почв, можно полностью заключить металл в выборочную засыпку. Эти засыпки могут быть приготовлены путем смешивания песка с цементным порошком, просеянного грунта с мелом или просеянного грунта с измельченным известняком. Однако выборочная засыпка может не достичь поставленной цели, если дренаж таков, что агрессивные частицы могут концентрироваться и вступать в контакт с медью.

Ответственная организация должна предотвратить коррозию подземной меди, вызванную рассеянным током. Эта опасная форма подземной коррозии легко становится безвредной за счет резистивных соединений и правильной установки расходуемых анодов на поврежденную конструкцию. В тяжелых условиях, когда источником тока, вызывающего нарушение, является система катодной защиты с подаваемым током, иногда необходимо переместить анодный слой, связанный с причиной помех.

Трудно переоценить тот факт, что подземные медно-водопроводные системы должны быть правильно спроектированы и установлены. Необходимо предусмотреть возможность теплового расширения в местах прохождения медных труб для горячей воды через бетонные плиты. Следует избегать неправильной установки развальцованных трубных соединений на медных коммуникациях.

Вернуться к началу

Сводка

Медные водопроводные трубы обладают выдающейся устойчивостью к коррозии в большинстве подземных сред. Медь не подвергается естественной коррозии в большинстве глин, мелов, суглинков, песков и гравий.Однако некоторые агрессивные почвенные условия могут вызвать коррозию. Основная предпосылка коррозии — присутствие значительного количества влаги. Другие факторы, которые могут способствовать процессу коррозии, включают почвы, имеющие: (1) повышенные концентрации сульфатов, хлоридов, соединений аммиака или сульфидов; (2) плохая аэрация, которая поддерживает активность анаэробных бактерий; (3) большие количества органической или неорганической кислоты; и (4) большой перепад кислорода или нейтральных солей (особенно хлоридов).

Медь также подвержена коррозии из-за рассеянного электричества постоянного тока. Очевидно, на него могут отрицательно повлиять определенные условия в системе переменного тока, к которым он может быть заземлен. Сообщается, что подземная медь подвержена термогальваническим эффектам и коррозии разнородных материалов. Медные водяные трубы могут иногда испытывать коррозионную усталость.

К счастью, в тех редких случаях, когда медь подвергается коррозии в подземной среде, можно определить причину ухудшения качества.Как только это будет достигнуто, коррозию можно экономически уменьшить с помощью различных методов.

Вернуться к началу

Список литературы

  1. Медный грунт: устойчивость к коррозии почвы.
    Copper Development Assn. Publ. 40. Лондон (1947).
  2. ДЕНИСОН, И.А. Электролитическое поведение черных и цветных металлов в почвенно-коррозионных контурах.
    Пер. Electrochemical Soc., 81: 435 (1942).
  3. GILBERT, P.T. Коррозия образцов меди, свинца и свинцовых сплавов после захоронения в ряде почв на срок до 10 лет.
    Jour. Inst. металлов, 73: 139 (1947).
  4. РОМАНОФФ, М. Подземная коррозия.
    Natl. Бу. Циркуляра стандартов 579. NBS, Вашингтон, округ Колумбия (1957).
  5. WOODSIDE, R.D .; WATERS, F.O .; И CORNET, Коррозия и другие проблемы в медных трубах в некоторых жилых районах Южной Калифорнии.
    Proc. Третий международный Конгресс Металлической Коррозии, Москва (1966).
  6. KROON D.H. Обнаружение коррозии медных концентрических нейтралей на кабеле URD.
    Proc. Энн. Краткий курс обучения подземной коррозии Аппалачей, Моргантаун, В.Ва. (1979).
  7. MYERS, J.R .; BECK, F.H .; И ФОНТАНА, М.Г. Анодное поляризационное поведение никель-хромовых сплавов в растворах серной кислоты.
    Коррозия, 21: 277 (1965).
  8. WATERS, D.M. Внутренняя и внешняя коррозия меди в системах водоснабжения.
    Proc. AWWA Ann. Конф., Анахайм, Калифорния (май 1977 г.).
  9. ZASTROW, O.W. Влияние переменного тока на коррозию подземных электрических распределительных кабелей.
    Materials Performance, 20:12:41 (декабрь 1981 г.).
  10. УИЛЬЯМС, Дж.F. Коррозия металлов под действием переменного тока.
    Защита материалов, 5: 2: 52 (февраль 1966 г.).
  11. COMPTON, K.G. Коррозия концентрических нейтралов.
    Представление материалов, 16:12 (1974).
  12. KRUGER, S. & BIRD, C.E. Коррозия металлов под действием переменного тока.
    British Corrosion journal, 13: 163 (1978).
  13. SERRA, E.T .; DE ARAUJO, M.M .; И MANN. HFIMER, W.A. О влиянии переменного тока на коррозию алюминия и меди при контакте с почвой.
    Proc. Коррозия ’79, Атланта (1979).
  14. ДЕНИСОН, И.А. И РОМАНОФФ, М. Исследования коррозии почвы, 1946 и 1948: медные сплавы, свинец и цинк.
    Jour. Res. Natl. Бу. Стандарты, 44: 259 (1950).
  15. KROON, D.H. Подземная коррозия меди.
    Proc. Коррозия ’75, Торонто, Онтарио, Канада (1975).
  16. HUSOCK, B. Использование возможных измерений для анализа коррозии концентрических нейтралов в кабелях URD.
    Proc. Коррозия ’78, Хьюстон (1979).
  17. Руководство по подземной коррозии в сельских электрических системах.
    Администрация электрификации сельских районов. Бык. 161-23. Министерство сельского хозяйства США, Вашингтон, округ Колумбия (1977).
  18. KROON, D.H. Оценка коррозии и катодная защита кабеля URD.
    Proc. Коррозия ’76, Хьюстон (1976).
  19. ROGERS, P.C .; GROSS, E.E .; И ХАСОК Б. Катодная защита подземных теплотрасс.
    Защита материалов, 1: 7 (1962).