Система впрыска топлива | Диагностика двигателя
Существует несколько методов впрыска топлива:непрерывный впрыск топлива, точечный впрыск топлива, распределённый
впрыск топлива и непосредственный впрыск топлива. Непрерывный впрыск
топлива осуществлялся механическими и электромеханическими системами
впрыска топлива. Остальные электронные системы впрыска топлива подают
топливо строго дозированными порциями.
Системы непрерывного впрыска топлива Наиболее распространёнными примерами непрерывного
впрыска топлива являются механическая система впрыска топлива BOSCH
K-Jetronic и электромеханическая система впрыска топлива BOSCH
KE-Jetronic. Здесь топливо впрыскивается непрерывным потоком при помощи
механических форсунок, распыляющих топливо пред впускными клапанами
каждого цилиндра. Количество топлива регулируется путём изменения
интенсивности потока впрыскиваемого топлива. Данные системы применялись
на ранних системах питания двигателя, и были вытеснены более надёжными и
точными электронными системами подачи топлива.

электромагнитной форсункой (иногда двумя форсунками работающими в паре,
на двигателях с раздельными группами цилиндров), впрыскивающей топливо
во впускной тракт перед дроссельной заслонкой. Как и в случае
карбюраторного питания, во время работы двигателя оборудованного
точечным впрыском, впускной коллектор двигателя весь заполняется готовой
топливовоздушной смесью.
Впрыск топлива здесь осуществляется не
непрерывной струёй, а подаётся порциями. Количество подаваемого топлива
регулируется путём изменения продолжительности открытого состояния форсунки.
Форсунка точечной системы впрыска топлива за два оборота коленчатого
вала двигателя (один полный цикл работы четырёхтактного двигателя)
впрыскивает топливо четыре раза. Недостатки такой системы приготовления
топливовоздушной смеси схожи с карбюраторными системами, связанные с
задержкой и неравномерностью подачи топливовоздушной смеси для разных
цилиндров, не столь хорошей приемистостью двигателя, оседание топлива на
стенках впускного коллектора, особенно во время холодного запуска
двигателя.
Хотя для такой системы впрыска не предъявляются высокиетребования к качеству распыла топлива, так как отводится достаточно
времени на испарение и смешивание топлива с поступившим в впускной
коллектор воздухом.
Осциллограммы напряжения сигналов системы
управления двигателем BOSCHMONO-Motronic, демонстрирующие схему впрыска
топлива данной системы.
1 Осциллограмма
напряжения выходного сигнала датчика Холла, встроенного в корпус
механического распределителя зажигания. Датчик генерирует четыре
импульса за два оборота коленчатого вала двигателя.
2 Осциллограмма
цикл работы двигателя форсунка осуществляет четыре впрыска топлива.
3 Импульс синхронизации с моментом зажигания в первом цилиндре.
Обмотка топливной форсунки точечной системы
впрыска, имеет низкое электрическое сопротивление — единицы Ома
(топливные форсунки с низким электрическим сопротивлением встречаются и в
других систем впрыска топлива).
За счёт уменьшения сопротивления
обмотки увеличивается быстродействие форсунки, что позволяет впрыскивать
небольшие порции топлива. Для уменьшения нагрева обмотки форсунки,
применяются меры, ограничивающие величину протекающего через обмотку
форсунки тока.
В некоторых системах с этой целью используется
мощный токоограничивающий резистор, включённый последовательно в цепь
питания форсунки.
Осциллограммы напряжения питания и
управляющего импульса на выводах обмотки низкоомной форсунки (система
точечного впрыска топлива BOSCH MONO Jetronic).
1 Осциллограмма напряжения на управляющем выводе обмотки форсунки.
2 Осциллограмма напряжения на питающем выводе обмотки форсунки (после токоограничивающего резистора).
Как видно по приведённым осциллограммам, за счёт
возникновения падения напряжения на токоограничивающем резисторе,
напряжение питания обмотки форсунки автоматически снижается.
В некоторых системах, применяются более сложные
алгоритмы управления форсункой. В таких случаях, импульс управления
форсункой имеет более сложную форму и делится уже на две фазы: фаза
открывания клапана топливной форсунки и фаза удержания клапана топливной
Осциллограмма напряжения управляющего
импульса низкоомной форсункой системы управления двигателем с точечным
впрыском топлива Multec IEFI автомобиля производства OPEL.
A: Значение напряжения в
момент времени указанный маркером. В данном случае соответствует
напряжению питания обмотки форсунки и равно 14,6 V.
1 Момент
открытия управляющего форсункой силового транзистора. С этого момента
на обмотку форсунки действует напряжение величиной около 14 V.
2 Фаза открывания клапана топливной форсунки.
3 Момент переключения управляющего форсункой силового транзистора в режим ограничения тока в цепи форсунки.
4 Фаза
удержания клапана топливной форсунки в открытом состоянии Управляющий
форсункой силовой транзистор работает в режиме ограничения тока в цепи
форсунки, обеспечивая подвод к обмотке форсунки пониженного напряжения.
A-B: Значение разницы
напряжений между указанными маркерами моментами времени. В данном случае
соответствует величине воздействующего на обмотку форсунки напряжения
во время фазы удержания клапана топливной форсунки в открытом состоянии и
равно ~1,7 V
5 Момент закрытия управляющего форсункой силового транзистора.
Как можно видеть по приведённой выше
осциллограмме, в первоначальный момент времени на низкоомную обмотку
форсунки кратковременно подаётся напряжение, близкое к напряжению на
клеммах аккумуляторной батареи, что обеспечивает ускорение процесса
открытия клапана топливной форсунки. Продолжительность фазы открывания
клапана
топливной форсунки здесь составляет около 1 mS.
Теперь, когда клапан форсунки открыт, для удержания клапана в открытом
состоянии достаточно уже меньшего тока. Величина протекающего через
обмотку тока ограничивается путём уменьшения величины воздействующего на
обмотку напряжения. В данном случае, уменьшение воздействующего на
обмотку форсунки напряжения достигается путём «призакрытия» управляющего
силового транзистора. Тем самым уменьшается чрезмерный нагрев обмотки
форсунки (дополнительное охлаждение форсунки обеспечивается за счёт
омывающего форсунку топлива). Продолжительность фазы удержания клапана
топливной форсунки в открытом состоянии может изменяться и зависит от
того, какую порцию топлива в данный момент требуется впрыснуть.
В некоторых системах, ограничение протекающего
через обмотку форсунки тока во время фазы удержания клапана в открытом
состоянии реализовано другим способом.
Осциллограмма напряжения управляющего
импульса низкоомной форсункой системы управления двигателем BDZ с
точечным впрыском топлива, устанавливаемого на автомобили Peugeot 405.
Здесь во время фазы удержания, управляющий
обмоткой форсунки силовой транзистор переключается в режим
Широтно-Импульсной Модуляции (ШИМ). Благодаря этому, обмотка форсунки
многократно подключается к источнику напряжения и отключается от него,
после чего процесс повторяется. Частота процесса подключения /
отключения обмотки настолько высока, что механическая система форсунки
(клапан) «не успевает» закрываться в моменты, когда питающее напряжение
отключено.
топлива обслуживается собственной электромагнитной форсункой. Каждая
впускными клапанами каждого цилиндра. Таким образом, только часть
внутреннего объёма впускного коллектора работающего двигателя
заполняется подготовленной топливной смесью. Как и в системе точечного
впрыска топлива, здесь впрыск осуществляется не непрерывной струёй
топлива, а подаётся порциями.
Количество подаваемого топливарегулируется путём изменения продолжительности открытого состояния
форсунки.
Электромагнитные топливные форсунки имеют
некоторую инерционность. Проявляется эта инерционность как задержка
открытия и задержка закрытия клапана форсунки относительно управляющего
напряжения. Задержка открытия клапана форсунки может составлять около
1,5 mS, кроме того, она может изменяться с изменением величины
напряжения на аккумуляторной батарее. Задержка закрытия клапана форсунки
может составлять около 1,0 mS. Когда двигатель работает под нагрузкой,
длительность впрыска топлива может составлять несколько единиц или даже
десятки миллисекунд, то есть -длительность впрыска топлива при этом
значительно превышает время задержки срабатывания клапана форсунки, и за
счёт этого инерционность форсунки сказывается мало заметно.
Когда двигатель работает при малых нагрузках или
на холостом ходу, длительность впрыска значительно уменьшается, и
становится сравнимой с временем задержки срабатывания клапана форсунки.
Из-за этого, инерционность форсунки может сказываться значительно
сильнее и точность дозирования количества впрыскиваемого топлива может
сильно снизиться. Поэтому, для таких форсунок не используют управляющие
импульсы продолжительностью менее 1,5 mS. Кроме того, инерционность
значительным пробегом может заметно различаться, что вносит
дополнительную погрешность дозирования малых порций топлива.Классификация систем распределённого впрыска топлива Распределённые системы впрыска топлива
различаются по схеме работы впрыска топлива: параллельный впрыск,
попарно-параллельный, фазированный (последовательный).Параллельный впрыск топлива Топливные форсунки многих ранних распределённых
систем впрыска топлива соединены параллельно. При такой схеме,
управление форсунками двигателя происходит одновременно — все форсунки
такой системы работают синхронно.
Осциллограммы напряжения сигналов системы
управления 4-х цилиндрового 4-х тактного двигателя, осуществляющей
параллельный впрыск топлива, демонстрирующие схему впрыска топлива
данной системы.
1 Осциллограмма напряжения управляющих импульсов топливной форсункой 1-го цилиндра.
2 Осциллограмма напряжения управляющих импульсов топливной форсункой 2-го цилиндра.
3 Осциллограмма напряжения управляющих импульсов топливной форсункой 3-го цилиндра.
4 Осциллограмма напряжения управляющих импульсов топливной форсункой 4-го цилиндра.
7 Импульс синхронизации с моментом зажигания в первом цилиндре.
В системах параллельного впрыска, за один полный
цикл работы двигателя (за два оборота коленчатого вала 4-х тактного
двигателя), каждая форсунка впрыскивает топливо дважды. То есть, каждая
порция топлива, попадающего впоследствии в цилиндр во время
такта впуска, впрыскивается «за два приёма».
Из-за того, что подача каждой порции топлива осуществляется за два
впрыска, в сравнении с точечным впрыском, точность дозирования
получается несколько лучшей; но в сравнении с фазированным впрыском,
точность дозирования получается несколько хуже, особенно на переходных
режимах работы двигателя.
Блок управления параллельной системы впрыска
топлива должен учитывать инерционность открытия клапана форсунки,
которая сильно зависит от величины напряжения в бортовой сети
автомобиля. При больших порциях впрыскиваемого топлива, к примеру, во
время ускорения автомобиля или во время холодного пуска, часть топлива
оседает на стенках впускного коллектора и попадает в цилиндр с некоторой
задержкой, что сказывается на приемистости двигателя. Но к качеству
распыла топлива здесь предъявляются немного меньшие требования, так как
отводится достаточно времени на испарение топлива и смешивание его с
воздухом.
Недостаток параллельного впрыска заключается в
неодинаковом для всех цилиндров времени от начала впрыскивания топлива
форсункой до момента открытия впускного клапана цилиндра.
При
одновременном впрыске топлива порядок работы цилиндров не учитывается,
соответственно время подготовки топливовоздушной смеси (время испарения
топлива) для каждого цилиндра получается разным.
Попарно-параллельный впрыск топлива Для уменьшения зависимости качества подготовки
топливовоздушной смеси от момента впрыска топлива, а так же для
улучшения точности дозирования топлива на переходных режимах работы
двигателя, топливные форсунки были разделены на группы согласно порядку
работы цилиндров и соединены попарно-параллельно — половина форсунок
соединена параллельно и управляется своим выходным силовым транзистором
блока управления двигателем, другая половина форсунок так же соединена
параллельно и управляется своим, вторым выходным силовым транзистором
блока управления двигателем.
Управление форсунками одной группы происходит
одновременно — все форсунки одной группы работают синхронно. Когда
форсунки первой группы впрыскивают топливо, форсунки второй группы
закрыты, и наоборот.
При этом, первая и вторая группы форсунок, так жекак и в системе параллельного впрыска топлива, впрыскивают топливо
дважды за один цикл работы 4-х тактного двигателя (за два оборота
коленвала).
Осциллограммы напряжения сигналов системы
управления 4-х цилиндрового 4-х тактного двигателя, осуществляющей
попарно-параллельный впрыск топлива, демонстрирующие схему впрыска
топлива данной системы. Порядок работы цилиндров 1 — 3 — 4 — 2. В данном
случае в первую пару объединены форсунки, обслуживающие цилиндры №1 и
№4, а во вторую пару объединены форсунки, обслуживающие цилиндры №2 и
№3. Но встречаются системы, где при таком же порядке работы цилиндров
двигателя, форсунки объединены в пары по-другому.
напряжения управляющих импульсов топливной
напряжения управляющих импульсов топливной
напряжения управляющих импульсов топливной
напряжения управляющих импульсов топливной
форсункой форсункой форсункой форсункой
1 Осциллограмма 1-го цилиндра.
2 Осциллограмма 2-го цилиндра.
3 Осциллограмма 3-го цилиндра.
4 Осциллограмма 4-го цилиндра.
5 Осциллограмма
напряжения выходного сигнала датчика положения / частоты вращения
коленчатого вала. За один полный оборот коленвала датчик генерирует 58
импульсов и один пропуск, продолжительность которого соответствует
продолжительности двух импульсов. Соответственно, за один полный цикл
работы 4-х тактного двигателя (за два оборота коленвала) датчик
генерирует такие пропуски дважды.
7 Импульс синхронизации с моментом зажигания в первом цилиндре.
Следует заметить, что в момент пуска двигателя
блок управления двигателем переключается на параллельную схему впрыска
топлива, то есть, включает и выключает все топливные форсунки
одновременно.
впрыскиваемого топлива при малых длительностях впрыска путём уменьшения
негативного влияния инерционности электромагнитных топливных форсунок,
каждую форсунку стали обслуживать собственным выходным транзистором
блока управления двигателем.
Такая схема впрыска называется фазированнымвпрыском или последовательным впрыском топлива. За счёт уменьшения
частоты срабатывания форсунки по сравнению с параллельным и
попарно-параллельным впрыском в два раза, потребовалось уже более
продолжительное открытие форсунки для обеспечения подачи того же
количества топлива. То есть, схема управления форсунками была
модернизирована так, что вместо двух коротких впрысков топлива
осуществляется один более продолжительный впрыск. Таким образом, замена
параллельной схемы впрыска топлива на фазированную позволила заметно
повысить точность дозирования впрыскиваемого топлива при малых
длительностях впрыска.
Осциллограммы
напряжения сигналов системы управления 4-х цилиндрового 4-х двигателя,
осуществляющей фазированный впрыск топлива, демонстрирующие схему
впрыска топлива данной системы.
1 Осциллограмма напряжения управляющих импульсов топливной 1-го цилиндра.
2 Осциллограмма напряжения управляющих импульсов топливной 2-го цилиндра.
3 Осциллограмма напряжения управляющих импульсов топливной 3-го цилиндра.
4 Осциллограмма напряжения управляющих импульсов топливной 4-го цилиндра.
5 Осциллограмма напряжения
выходного сигнала датчика положения / частоты вращения коленчатого
вала. За один полный оборот коленвала датчик генерирует 58 импульсов и
один пропуск, продолжительность которого соответствует продолжительности
двух импульсов. Соответственно, за один полный цикл работы 4-х тактного
двигателя (за два оборота коленвала) датчик генерирует такие пропуски
дважды.
6 Осциллограмма
напряжения выходного сигнала датчика положения распределительного вала
(датчика фаз).
За два полных оборота коленвала датчик генерирует одинимпульс.
7 Импульс синхронизации с моментом зажигания в первом цилиндре.
Здесь, впрыск топлива осуществляется тогда, когда
обслуживаемый данной форсункой цилиндр находится на такте выпуска
отработавших газов, то есть, незадолго до такта впуска. За два полных
оборота коленчатого вала двигателя соответствующих одному полному циклу
работы четырёхтактного двигателя, каждая форсунка впрыскивает топливо
только один раз. То есть, по сравнению с параллельным и
попарно-параллельным впрыском, здесь частота срабатывания форсунки
уменьшена в два раза. За счёт этого, для обеспечения подачи заданного
количества топлива потребовалось более продолжительное открытие
форсунки, а за счёт увеличения продолжительности открытого состояния
форсунки уменьшилось негативное влияние инерционности электромагнитных
топливных форсунок на точность дозирования топлива. Таким образом,
замена попарно-параллельной схемы впрыска топлива на фазированную
позволила ещё больше повысить точность дозирования впрыскиваемого
топлива при малых длительностях впрыска.
Для реализации фазированной схемы впрыска топлива
потребовались заметные доработки системы управления двигателем,
обеспечивающие привязку алгоритма управления форсунками к фазам рабочего
цикла цилиндров. По этому, двигатели, оборудованные фазированным
впрыском топлива, дополнительно оснащены датчиком положения
распределительного вала (датчиком фаз). Кроме того, блок управления
такого двигателя потребовалось дооснастить ещё несколькими силовыми
транзисторами, для управления каждой форсункой индивидуально. Кроме
внесения изменений в блок управления двигателем, потребовалось
применение форсунок с более тонким распылом топлива, так как уменьшилась
продолжительность процесса испарения топлива и смешивания его с
воздухом. На некоторых двигателях, дополнительно, это позволило
использовать режим работы при более бедной смеси (дополнительно
потребовалось изменение конструкции впускного коллектора и применение
заслонок завихрителей, для формирования вертикальных потоков воздуха в
цилиндре).

Следует заметить, что в момент пуска двигателя
блок управления двигателем переключается на параллельную схему впрыска
топлива, то есть, включает и выключает все топливные форсунки
одновременно до тех пор, пока не распознает сигнал от датчика положения
распределительного вала.
Дополнительно применяется асинхронный режим
впрыска. В момент, когда водитель очень резко нажимает на педаль
акселератора, некоторые блоки управления могут осуществлять впрыскивание
дополнительного количества топлива несколькими малыми порциями в
цилиндры, которые в данный момент находятся перед или вначале такта
впуска.
Осциллограммы напряжения сигнала управления
форсункой и сигнала от датчика положения дроссельной заслонки системы
фазированного впрыска топлива в момент резкой перегазовки.
4 Осциллограмма напряжения выходного сигнала датчика положения дроссельной заслонки.
6 Осциллограмма напряжения управляющих импульсов топливной форсункой одного из цилиндров.
Как видно из приведённым выше осциллограммам, на
переходных режимах работы двигателя, в данном примере в момент резкого
открытия дроссельной заслонки, система фазированного впрыска топлива
может осуществлять дополнительные циклы впрыска топлива, дополнительно
обогащая таким образом состав приготовляемой топливовоздушной смеси.
Благодаря этому снижается вероятность возникновения пропусков
воспламенения топливовоздушной смеси в цилиндрах при работе двигателя на
переходных режимах.
В системах точечного впрыска топлива подавляющего
большинства двигателей современных автомобилей реализован именно
фазированный впрыск топлива.
двигателем являются системы с непосредственным впрыскиванием топлива.
Здесь топливная форсунка впрыскивает топливо непосредственно в камеру
сгорания, то есть, во внутренний объём цилиндра.
Благодаря этому, приработе двигателя с низкой нагрузкой (холостой ход, равномерное движение
автомобиля с небольшой скоростью…) удалось достичь приготовления
внутри цилиндра топливовоздушной смеси с неоднородным соотношением
воздух-топливо. Вблизи электродов свечи зажигания образуется нормальная
или немного обогащённая смесь, за счёт чего происходит устойчивое
воспламенение этой смеси от искрового разряда между электродами свечи
зажигания. В остальном объёме цилиндра образуются бедные и сверхбедные
смеси, которые сгорают от пламени горения нормальной по составу смеси
вблизи электродов свечи зажигания. За счёт послойного приготовления
топливовоздушной смеси (состав смеси в объёме камеры сгорания
неоднороден), усреднённый состав приготовляемой и сжигаемой таким
образом топливовоздушной смеси оказывается сверхбедным — соотношение
воздух-топливо при работе двигателя в таком режиме может достигать
значений 30:1…40:1. Для сравнения, на бензиновом двигателе с подачей
топлива во впускной коллектор и оборудованном специальными завихрителями
потока воздуха (для создания послойной смеси в камере сгорания) не
удаётся достичь обеднения топливовоздушной смеси с соотношением
воздух-топливо более 25:1.
А, как известно, обеднение топливовоздушнойсмеси позволяет заметно снизить количество расходуемого двигателем
топлива.
Системы управления двигателем с непосредственным
впрыскиванием топлива, да и сами двигатели, обслуживаемые подобными
системами, имеют ряд отличий от обычных систем с точечным впрыскиванием
топлива. Это: вертикальные каналы ввода потока воздуха в цилиндры,
поршни с закругленной выборкой для направления топливной смеси в сторону
свечи зажигания, вихревые инжекторы высокого давления, топливный насос
высокого давления. Кроме того, при работе двигателя на сверхбедных
смесях, впрыскивание топлива в камеру сгорания происходит в конце такта
сжатия. Из-за высокого давления в камере сгорания в момент впрыска
топлива, а так же для обеспечения направленного перемещения впрыснутого
топлива к свече зажигания, давление топлива в топливной рейке здесь
существенно увеличено, соответственно изменена и конструкция топливной
форсунки.
С целью повышения давления в топливной рейке, кроме
электрического топливного насоса, размещённого внутри бака, здесь
дополнительно применён механический топливный насос высокого давления,
приводимый от распределительного вала двигателя. Механический топливный
насос высокого давления обеспечивает поддержание давления в топливной
рейке на уровне нескольких десятков Bar.
Для обеспечения правильного послойного
образования топливовоздушной смеси, движение воздушного потока внутри
цилиндра было оптимизировано за счёт изменения конструкции двигателя —
изменены форма и направление впускного воздушного канала для создания в
камере сгорания вертикально направленных воздушных потоков. Так же здесь
применена специальная форма днища поршня. За счёт изменённой формы
днища поршня, струя впрыскиваемого форсункой топлива «отражается» от
наклонного углубления в днище поршня и направляется к свече зажигания,
где образуется область с достаточно богатым содержанием топлива.
В связи с повышением давления топлива в топливной
рейке, потребовалось значительно сократить длительность открытия
топливной форсунки, измеряемое здесь в единицах десятых долей милли
Секунды. Для уменьшения инерционности топливных форсунок, величина
управляющего форсунками напряжения была значительно увеличена и
достигает нескольких десятков Вольт. Для управления топливными
форсунками многих систем непосредственного впрыска топлива применяется
специальный модуль, преобразующий низковольтные импульсы от блока
управления двигателем в высоковольтные импульсы для управления
топливными форсунками.
Осциллограммы напряжений сигналов управления топливной форсункой системы непосредственного впрыска топлива.
1 Осциллограмма напряжения на одном из выводов топливной форсунки системы непосредственного впрыска топлива.
2 Осциллограмма напряжения на втором из выводов топливной форсунки системы непосредственного впрыска топлива.
3 Осциллограмма напряжения, воздействующего на обмотку топливной форсунки системы непосредственного впрыска топлива.
Следует отметить, что при работе двигателя на
холостом ходу, для поддержания необходимой температуры нейтрализатора
выхлопных газов приготовление сверхбедной топливовоздушной смеси
периодически чередуется с приготовлением обычный однородной смеси
(послойное смесеобразование чередуется с гомогенным смесеобразованием).
При гомогенном смесеобразовании впрыск топлива в камеру сгорания
происходит не во время такта сжатия, а на такте впуска. Переключения
между послойным и гомогенным смесеобразованием заметны по
незначительному изменению частоты вращения двигателя на холостом ходу.
На определенных режимах работы двигателя возможен
комбинированный режим приготовления смеси, когда топливо впрыскивается
форсунками на такте впуска и дополнительно в конце такта сжатия.
Из-за низкого качества топлива, повышается
степень износа деталей некоторых узлов системы непосредственного
впрыскивания топлива.
Высокое содержание серы и нерегламентированных
присадок в бензине фактически сводит на нет экономические, экологические
и мощностные показатели данных двигателей. Поэтому, не многие
производители автомобилей одобряют эксплуатацию таких двигателей в
странах СНГ.
Устройство и принцип работы системы управления впрыском топлива
Автор Павел Александрович Белоусов На чтение 5 мин Просмотров 1.4к. Обновлено
Содержание
- Конструкция системы впрыска
- Управление процессом впрыска
- 1. Датчик фазы и метка
- 2. Датчик температуры жидкости в системе охлаждения
- 3. Датчик кислорода
- Техническое обслуживание
- Видео: Управление системой впрыска топлива
Современная система впрыска топлива устанавливается на бензиновые и дизельные двигатели, обеспечивая оптимальные условия для создания наиболее эффективной топливно-воздушной смеси.
От нее во многом зависят параметры мощности и экономичности двигателя, поэтому поломка системы приводит к серьезным проблемам. Несмотря на многообразие конструкций, впрыск топлива работает по единым принципам.
Конструкция системы впрыска
Бензин или дизельное топливо подается в цилиндры через впрыск топлива в цилиндр и топливные форсунки, каждая из которых устанавливается в соответствующий впускной трубопровод. Снизу он закрывается впускным клапаном, перекрывающим свободный доступ в камеру сгорания.
При опускании поршня вниз, за счет увеличения объема камеры сгорания, образуется разрежение, приводящее к открытию впускного клапана. По этому каналу через впускной трубопровод засасывается атмосферный воздух, проходя через воздушный фильтр.
Воздух доходит до дроссельной заслонки, частично перекрывающей просвет трубопровода. При ее полном открытии в цилиндр попадает наибольшее количество воздуха и топлива, что приводит к повышению мощности за счет увеличения оборотов двигателя.
При перекрытии дроссельной заслонки поток воздуха и, соответственно, топлива уменьшается, мощность и обороты двигателя снижаются. Управление заслонкой осуществляется путем нажатия на педаль газа. При не нажатой педали режим работы двигателя называется «холостой ход» при минимальной мощности и оборотах двигателя.
Когда воздух доходит до места подключения форсунки, через нее происходит непосредственный впрыск топлива, которое перемешивается с воздухом. В результате в камеру сгорания цилиндра поступает готовая топливно-воздушная смесь, которая затем воспламеняется, обеспечивая полезную работу поршня.
Управление процессом впрыска
Чтобы подача горючего осуществлялась своевременно и в нужных для создания оптимальной смеси количествах, требуется специальное управление системой впрыска топлива. В современных автомобилях за это отвечает электронный блок управления (ЭБУ).
Чтобы передать команду на форсунку для впрыска топлива, ЭБУ должен получить нужный сигнал от двигателя.
Он передается при помощи соответствующих датчиков. В различных автомобилях для контроля работы двигателя используется до десятка датчиков, среди которых используется три основных, через которые и контролируется электронный впрыск топлива:
1. Датчик фазы и метка
Датчик фазы или датчик положения газораспределительного вала. Его срабатывание является сигналом для начала процесса впрыска топлива. На шестерне или самом распределительном вале устанавливается задающая метка. Рядом с ней — датчик фазы. Когда метка приближается к датчику, импульс передается в блок управления, сигнализируя о начале такта впуска. ЭБУ подают команду, и форсунка впрыска топлива открывается, подавая его в камеру сгорания.
2. Датчик температуры жидкости в системе охлаждения
Он устанавливается в рубашке охлаждения и передает на ЭБУ информацию о температуре двигателя. Если двигатель холодный и не набрал рабочую температуру, то смесь делается богаче за счет того, что топливо впрыскивается дольше и смесь обогащается.
Например, бензин впрыскивается не 8, а 10 миллисекунд.
3. Датчик кислорода
Устанавливается в выпускном трубопроводе системы выхлопа. Он подает сигнал в том случае, если количество топлива превышает то, которое необходимо для полного сгорания при максимальной концентрации кислорода. Это заставляет блок управления снижать подачу бензина или солярки, регулируя его расход.
Такая система позволяет оперативно собрать информацию от датчиков, проанализировать его в ЭБУ, после чего подать оптимальную управляющую команду на форсунку. В результате в каждом из режимов работы обеспечивается оптимальная мощность при минимальных затратах топлива и токсичности выхлопа. Такт впуска топлива – это очень быстрый процесс, проходящий за сотые доли секунды.
Техническое обслуживание
Как любой узел автомобиля, система питания с впрыском топлива требует периодического обслуживания. Прежде всего, это своевременная замена воздушного фильтра, которую нужно делать каждые 20-30 тыс.
км пробега. Если фильтр не заменить, то пыль и мелкий мусор извне будут проходить в топливный трубопровод, что приведет к засорению форсунок, неправильному сгоранию топлива, преждевременному износу двигателя.
При выходе из строя любого из датчиков, на приборной панели загорится лампочка CHECK ENGINE или CHECK. Это означает, что в системе двигателя зарегистрирована ошибка, но какая, поможет узнать только электронная диагностика. При этом двигатель продолжит работать по резервной программе, предусмотренной в электронном блоке управления, усредняющей показания датчика, который вышел из строя. Это может никак не сказаться на режиме работы мотора, а в ряде случаев, он переводится на щадящий режим работы с минимальной мощностью, пригодный только для того, чтобы потихоньку доехать до СТО. Иногда наблюдаются перебои в работе или необычный по цвету, более интенсивный выхлоп.
После обращения в автосервис требуется провести компьютерную диагностику, которая точно выявит, какой из датчиков вышел из строя.
После потребуется провести его ремонт или замену, и система управления впрыском топлива заработает в нормальном режиме, а индикатор CHECK ENGINE перестанет загораться при работающем моторе. Единственный датчик, при поломке которого автомобиль заглохнет и уже не заведется – датчик положения коленчатого вала.
Устройство системы впрыска топлива на современных автомобилях имеет достаточно сложную конструкцию, которая управляется при помощи цифрового устройства. Поэтому при нарушении ее регулировки или поломке необходимо обращаться в автосервис. Там мастер, применяя специализированное оборудование, выявит причины неполадок и проведёт профессиональный ремонт.
Своевременное обслуживание, эксплуатация двигателя в нормативных режимах и использование качественного топлива позволят избежать серьезных поломок и увеличат интервал между такими дорогостоящими операциями, как замена топливных форсунок, которые стоят достаточно дорого, особенно на дизельных авто.
Видео: Управление системой впрыска топлива
youtube.com/embed/1FQBqVyBN8Y» frameborder=»0″ allowfullscreen=»allowfullscreen»>Печать
Summit Racing SUM-240505 Системы впрыска топлива Summit Racing™ MAX-efi 500
Марка:
Гонки на высшем уровне
Номер детали производителя:
СУМ-240505
Тип детали:
Системы впрыска топлива
Линейка продуктов:
Системы впрыска топлива Summit Racing™ MAX-efi 500
Номер по каталогу Summit Racing:
СУМ-240505
СКП:
190861216914
Тип впрыска топлива:
Корпус дроссельной заслонки
Тип системы впрыска топлива:
Одинарная 4-камерная дроссельная заслонка (фланец 4150)
Максимальная мощность на газу:
500
Синхронизация Совместимость:
№
Совместимость с сумматором мощности :
№
ECM В комплекте:
Да
Самонастройка:
Да
Пользовательская настройка:
Да
Топливный насос В комплекте:
№
Система рециркуляции отработавших газов:
№
Контроллер трансмиссии В комплекте:
№
Стиль замера:
Плотность скорости
Впускной коллектор В комплекте:
№
Многопортовые топливные рейки В комплекте:
№
Корпус дроссельной заслонки В комплекте:
Да
Монтажный фланец корпуса дроссельной заслонки:
4-ствольный квадратный ствол
Вентури Количество:
4
Диаметр Вентури (мм):
45,00 мм
Материал корпуса дроссельной заслонки:
Литой алюминий
Отделка корпуса дроссельной заслонки:
Черный матовый
Форсунки В комплекте:
Да
Размер инжектора (фунт/час):
66 фунтов/час.
Модуль калибровки В комплекте: 9 шт.0004
Да
Жгут проводов В комплекте:
Да
Датчик кислорода В комплекте:
Да
Регулятор давления топлива В комплекте:
№
Распределитель В комплекте:
№
Датчик абсолютного давления В комплекте:
Да
Датчик IAT В комплекте:
Да
Датчик TPS В комплекте:
Да
Двигатель IAC В комплекте:
Да
Количество:
Продается комплектом.
Примечания:
Имеет один впускной фитинг для подачи топлива с наружной резьбой -6AN. Эта система должна быть снабжена постоянным топливным давлением 58 фунтов на квадратный дюйм.
Доступные варианты насосов и регуляторов см. на вкладке «Предлагаемые детали».
Summit Racing™ представляет свою систему топливных форсунок MAX-efi 500, наиболее эффективный способ преобразовать ваш карбюраторный двигатель в первоклассную производительность EFI. Эти самонастраивающиеся блоки корпуса дроссельной заслонки крепятся болтами непосредственно к большинству 4-цилиндровых коллекторов; затем с помощью широкополосного кислородного датчика системы постоянно регулируют подачу топлива, чтобы обеспечить оптимальное соотношение воздух/топливо в любых климатических и высотных условиях. MAX-efi будет поддерживать мощность до 500 л.с., а самообучающийся блок управления двигателем позволяет легко настраивать его.
С заботой о безопасности эти системы также разработаны с саморегулирующимся режимом «аварийного режима» для защиты двигателя в случае отказа датчика. Кроме того, они включают функцию регистрации данных для отслеживания системы во время ее работы для обеспечения оптимальной производительности.
* Работает на основе самой передовой технологии самообучения
* 4-х инжекторная система способна поддерживать стоковые двигатели мощностью до 500 л.с.
* Высокопроизводительный алюминиевый корпус дроссельной заслонки с четырьмя дроссельными отверстиями диаметром 45 мм.
* В комплект входят широкополосный датчик 02 оригинального качества и датчик TPS
* Ручной контроллер с цветным сенсорным экраном
* Заготовка топливной рампы из анодированного алюминия
* Компактный внешний ЭБУ для удобного монтажа
* Привязь в стиле оригинальных комплектующих имеет четкую маркировку для простоты установки и долговечности в экстремальных условиях.
* Все датчики, кроме широкополосного датчика 02 и датчика температуры охлаждающей жидкости, встроены в блок
* Используются общедоступные датчики для легкой замены в случае необходимости
* Система использует датчик абсолютного давления в температурном коллекторе (TMAP) вместо датчика MAP, считывая как давление воздуха, так и температуру
* Подходит для впускных коллекторов с квадратным или расширенным отверстием.
(Расширенный коллектор требует недорогой пластины, чтобы избежать утечек. См. SUM-G1420)
* Работает с оригинальным распределителем карбюраторного типа, дроссельной заслонкой заводского типа и большинством впускных коллекторов с 4 цилиндрами.
Системы впрыска топлива — самонастройка
Результаты 1–25 из 841
…Загружается
Ориентировочная дата отгрузки в США: пятница 14.07.2023 Расчетная дата международной отправки: Четверг, 13.07.2023
.
..Загружается
Ориентировочная дата отгрузки в США: пятница 14.07.2023 Расчетная дата международной отправки: Четверг, 13.07.2023
…Загружается
Ориентировочная дата отгрузки в США: 9 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.
07.2023
…Загружается
Ориентировочная дата отгрузки в США: Понедельник, 17.07.2023 Расчетная дата международной отправки: Четверг, 13.07.2023
…Загружается
Ориентировочная дата отгрузки в США: пятница 14.07.2023 Расчетная дата международной отправки: Четверг, 13.
07.2023
…Загружается
Ориентировочная дата отгрузки в США: 7 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.07.2023
…Загружается
Ориентировочная дата отгрузки в США: 9 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.
07.2023
…Загружается
Ориентировочная дата отгрузки в США: 19 июля 2023 г. Расчетная дата международной отправки: 20 июля 2023 г.
…Загружается
Ориентировочная дата отгрузки в США: 24 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.
07.2023
…Загружается
Ориентировочная дата отгрузки в США: 7 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.07.2023
…Загружается
Ориентировочная дата отгрузки в США: 24 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.
07.2023
…Загружается
Ориентировочная дата отгрузки в США: 9 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.07.2023
…Загружается
Ориентировочная дата отгрузки в США: 7 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.
07.2023
…Загружается
Ориентировочная дата отгрузки в США: 9 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.07.2023
…Загружается
Ориентировочная дата отгрузки в США: 9 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.
07.2023
…Загружается
Ориентировочная дата отгрузки в США: Понедельник, 17.07.2023 Расчетная дата международной отправки: Четверг, 13.07.2023
…Загружается
Ориентировочная дата отгрузки в США: 7 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.
07.2023
…Загружается
Ориентировочная дата отгрузки в США: 23 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.07.2023
…Загружается
Ориентировочная дата отгрузки в США: 19 июля 2023 г. Расчетная дата международной отправки: Четверг, 13.
07.2023
…Загружается
Ориентировочная дата отгрузки в США: Понедельник, 17.07.2023 Расчетная дата международной отправки: Четверг, 13.07.2023
…Загружается
Ориентировочная дата отгрузки в США: 2 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.
07.2023
…Загружается
Ориентировочная дата отгрузки в США: пятница 14.07.2023 Расчетная дата международной отправки: Четверг, 13.07.2023
…Загружается
Ориентировочная дата отгрузки в США: 7 августа 2023 г. Расчетная дата международной отправки: Четверг, 13.
