2Апр

Самодельный стробоскоп: Самодельный стробоскоп для настройки зажигания. Как сделать самодельный стробоскоп для настройки зажигания. Делаем стробоскоп для настойки зажигания своими руками.

Радиосхемы. — Самодельный стробоскоп на ИФК-120

материалы в категории

Стробоскопический эффект— довольно завораживающее явление. Суть его в том, что при освещении, скажем, танцующих в затемненном помещении периодическими яркими вспышками, движения наблюдаются не непрерывными, а как бы состоящими из отдельных, следующих один за другими, «застывших» положений. 

Яркие вспышки проще всего получить, от специальной импульсной лампы ИФК-120 которая использовалась в промышленных фотовспышках. Выглядит она вот так:

А вот чтобы зажечь такую лампу необходимо довольно высокое напряжение. В промышленных фотовспышках для этой цели используется разрядный ток конденсатора который через импульсный трансформатор поступает на «поджигающий» электрод.
Реально он выглядит как металлическая перемычка внизу лампы.

Нам же необходимо чтобы мигание было постоянным (а еще лучше чтобы и регулировалось. ..), поэтому потребуется генератор. Смотрим схему:

Когда на устройство подают сетевое напряжение, начинает заряжаться конденсатор С1. При достижении на конденсаторе напряжения, равного напряжению пробоя динистора, через обмотку I трансформатора Т1 проходит импульс тока. Трансформатор повышающий, с большим коэффициентом трансформации (т.е. с большим соотношением витков вторичной и первичной обмоток), поэтому на обмотке II, а значит, и на поджигающем электроде лампы появляется импульс высокого напряжения. Лампа вспыхивает, и конденсатор С1 разряжается через нее. Затем процесс повторяется.

Частота вспышек зависит от номиналов деталей R1, R2, С1. Ее можно плавно регулировать переменным резистором R2. Энергию вспышки определяет емкость конденсатора C1, а также напряжение, до которого он успевает зарядиться. Оно, в свою очередь, ограничивается напряжением включения динистора. Если нужно увеличит энергию вспышки, достаточно поставить конденсатор С2 большей емкости и включить последовательно с динисгором стабилитрон на соответствующее напряжение стабилизации.

Но сумма напряжений включения динистора и стабилизации стабилитрона не должна превышать номинального напряжения конденсатора С1, иначе конденсатор выйдет из строя. 
Переменный резистор R2 может быть СПО-0,5 или СП-1, постоянные резисторы R1 и R3 — МЛТ-0,5. Конденсатор С1 — типа КЭ или другой оксидный, с номинальным напряжением не ниже 200 В, С2 — бумажный, например МБМ. Трансформатор может быть готовый от промышленной фотовспышки, но его можно изготовить самим на кольцевом сердечнике типоразмера К10х6х3 из феррита М2000НМ. Обмотка I должна содержать 4 витка провода ПЭЛШО 0,31, охватывающих возможно большую поверхность кольца, обмотка II — 60 витков ПЭЛШО 0,1. 
Если вспышки неустойчивы или отсутствуют вовсе, попробуйте поменять полярность включения выводов любой из обмоток трансформатора. Убедившись в устойчивой работе стробоскопа, детали его монтируют в корпусе из изоляционного материала, а импульсную лампу устанавливают сверху корпуса. Чтобы вспышки были более яркими, а свет исходил в виде луча, за лампой нужно установить рефлектор, как это сделано в промышленной фотовспышке.

Обсудить на форуме

СТРОБОСКОП ДЛЯ ДИСКОТЕКИ


   Итак, на рисунке вы можете видеть принципиальную электрическую схему концертного дискотечного стробоскопа. Удвоенное напряжение поможет нам получить достаточно высокое напряжение для поджига лампы, около 600 В. Прикладывается оно между катодом и анодом. Выполняют роль удвоителя напряжения у нас диоды D2 и D1. Конденсатор С1 заряжается до самого большого значения сетевого напряжения, пока у нас будет положительный период. При этом диод D2 находится в закрытом состоянии и запрещает подачу напряжения на конденсатор С2. 

   Далее на импульсную лампу L1 у нас подаётся достаточно высокое напряжение, около 600 В. На внешний электрод подаётся высокое напряжение, что вызывает свечение. Что касательно яркости вспышки лампы, то она зависит от того количества энергии, что накопилось в конденсаторах С2 и С1. Это является функцией напряжения U на выходе, и ёмкости С. В общем, внимание на формулу:

     Е = 0,5 х С х U2.

   Ограничение мощностью Рmах ограничивают возможности применения лампы. В таком случае мы определяем максимальную ёмкость Сmах конденсаторов С2 и С1 по следующей формуле:

     Cmax=(1/3102)x(Pmax/Fmax)

   Fmax – максимальная частота разряда через импульсную лампу

   В тот момент, когда мы наблюдаем вспышку, значение сопротивления между катодом и анодом достаточно небольшое. Потому резисторы R1 и R2 ограничивают мощность, что передаётся лампе, если запуск лампы начинается в момент амплитудного значения сетевого напряжения. Подобная защита продлевает срок эксплуатации лампы и облегчает условия работы.

   Частота вспышек лампы задаётся релаксационным генератором. Основа его – динистор. На самом деле динистор D3 будет закрытым до тех пор, пока напряжение на выходах не достигнут своего максимального значение, которое обычно равно 32 В. При этом в этот промежуток времени он начинает вести себя как выключатель. Конденсатор С4 начинает заряжаться через потенциометр Р1 и резистор R7 в то время, пока закрыт симметрический динистор. Частоту колебаний генератора и ток заряда конденсатора С4 может регулировать потенциометр Р1.

   Симметричный динистор переключается тогда, когда напряжение на контактах С4 конденсатор начинает достигать достаточной величины напряжения, при этом динистор переходит в проводящее состояние. После того, как произошёл новый заряд конденсатора С4, мы увидим следующий цикл. 

   Итак, после этого конденсатор С4 начинает периодически разряжаться по цепи электрода симистора, который становится проводящим. После того, как произошло замыкание симистора, разряд конденсатора С3 начинает протекать через первичную обмотку. В том случае, если симистор Q1 закрыт, конденсатор С3 будет заряжаться примерно до 310 В через первичную обмотку TR1 и резистор R5. Появление импульса в обмотке TR1 вызвано мгновенным разрядом конденсатора С3. На пусковой электрод импульсной лампы с учётом трансформации подаётся достаточно большое напряжение (около 6 кВ).  

   Газ, что содержится в лампе, в тот момент становится проводящим, а конденсаторы С2 и С1 разряжаются, а лампа начинает давать вспышку. Поток света при этом равен ёмкости конденсаторов С2 и С1, а также мощности лампы. 

   Необходимо проявить осторожность во время проведения испытаний, так как схема связана с сетевым напряжением. Также стоит отметить, что на плате происходит генерация ещё более высоких напряжений. Обязательно, перед включением питания, проверьте, правильно ли расположены полярные радиоэлементы, в том числе два диода D1 и D2.

   Если мы обратим внимание на импульсный трансформатор ТR1, то именно по нему определяется ёмкость конденсатора С3. Нужно учитывать, что первичная обмотка типа TS8 может выдержать нагрузку вплоть до 4 Дж. Также вполне может подойти конденсатор на 400 В. При этом не стоит увеличивать значение ёмкости, т.к. этим можно повредить обмотку. 

   Будьте крайне осторожны, работая с импульсной лампой. Не рекомендуется касаться лампы руками.

Подключать лампы нужно ближе к плате, дабы уменьшить потери. Выводы лампы лучше не сгибать. В крайнем случае сгибать следует аккуратно, при помощи плоскогубцев. 

   Разводка печатной платы, а также размещение радиодеталей.

   Отражатель позволит направить максимум света на площадку дискотеки. Изготовить его можно из алюминиевой полоски либо картона. Во втором способе следует прикрепить лист фольги. Установить стробоскоп можно также в ненужной автомобильной фаре.

   Несколько важных практических советов для успешной работы со стробоскопом:

 1. Не стоит использовать стробоскоп долго. В таком случае вы существенно продлите срок жизни импульсной лампы. 

 2. У некоторых людей стробоскоп можно вызвать беспокойство и волнение. Будьте осторожны, и примите в отношении таких людей меры.

 3. Не освещайте рядом стоящих людей вспышкой, а также не смотрите непосредственно на лампу. 

 4. Настоятельно не рекомендуем касаться пальцами резисторов R2 и R1.

После 3-х минут работы температура может быть выше 100°С.

 5. Наденьте солнцезащитные очки, если желаете принять меры предосторожности.

 6. Резисторы обязательно должны быть на 5 и более ватт.


Поделитесь полезными схемами



РЕГУЛЯТОР СКОРОСТИ ЭЛЕКТРОДВИГАТЕЛЯ КАРТИНГА

   Принцип регулирования скорости вращения электроприводов постоянного тока основан на регулировании среднего значения напряжения, подводимого к двигателю. Импульсное регулирование позволяет создавать приводы с высокими энергетическими показателями.


ПРОСТЕЙШИЙ РАДИОПЕРЕДАТЧИК

   Как и на какой диапазон можно самому сделать простейший радиопередатчик — схема и фото собранного трансмиттера на одном транзисторе.


КАК ЗАРЯДИТЬ НОУТБУК ОТ АВТО

    Иногда возникает необходимость зарядить ноутбук от бортовой сети автомобиля, но 12 вольт явно маловато для зарядки ноутбука. Так как же быть? На помощь приходит достаточно простой преобразователь 12-18 вольт с достаточно мощным выходным током 3 ампера. Основа преобразователя отечественная микросхема серии КР1006ВИ1, которую можно заменить на более распространенный импортный аналог NE555. 


ПРОСТОЙ САМОДЕЛЬНЫЙ ДИКТОФОН

   В этой статье мы рассмотрим схему простейшего диктофона. Иногда возникает необходимость записи сигналов или фрагментов речи с небольшой длительностью. Данное устройство предназначено для записи звука в течении не длительного времени. Микрофон использован электретный, его можно найти повсюду, например в китайском магнитофоне.  


КОМПРЕССОР ДЛЯ МИКРОФОННОГО УСИЛИТЕЛЯ
    Качественный и быстродействующий компрессор аудиосигнала для микрофонного усилителя можно собрать на основе оптопары.

Как сделать стробоскопическую ракету — Skylighter, Inc.


Что такое стробоскопическая ракета?

Если бы мне пришлось сделать выбор в пользу создания ракеты только одного типа, это было бы трудным решением. Я действительно люблю низкоуровневую простоту и эффект Spectacular Glitter-Tailed Rocket with Willow-Diadem-Horsetail Finish.

Но в плане чистой, мощной, внушающей благоговение и вызывающей восхищение публики демонстрации ракеты со стробоскопом, безусловно, трудно превзойти.

Однофунтовая самодельная стробоскопическая ракета, выпущенная ночью.

Следующее видео шестифунтовой стробоскопической ракеты. Я сконструировал эту 1,5-дюймовую модель удостоверения личности на семинаре, который я проводил в местном клубе пиротехники.

Примечание: Обозначения ракетных двигателей «один фунт» и «шесть фунтов» не имеют ничего общего с фактическим весом ракеты. Это термины фейерверков, которые относятся к внутреннему диаметру трубы ракетного двигателя (ID) и уходят корнями в старинную терминологию ракетостроения.

Дневной полет самодельной шестифунтовой стробоскопической ракеты.

Этот ребенок действительно был там к концу своего полета. Вы можете сказать это по задержке между видео и аудио в заголовке отчета. Эти большие стробоскопические ракетные двигатели действительно звучат как вертолеты в полете. Для такого относительно простого фейерверка они, безусловно, приносят удовлетворение и привлекают внимание, когда работают хорошо.

Даже когда они «не работают» и CATO (взрываются) на стартовой площадке, эти ракеты впечатляют! В эту трубу двигателя упакована большая мощность, поэтому стоит поставить на них длинный кусок вязкостного предохранителя и на всякий случай держать всех подальше от места запуска.

Взрыв ракеты-свистка на стартовой площадке (Фото любезно предоставлено Джерри Дюрандом)

Это третья статья в серии статей о свистках. Первая часть была посвящена изготовлению топлива для свистков и простых свистков для фейерверков. Это же топливо будет использоваться в этих стробоскопических ракетах. Во второй статье описывалась конструкция основных ракет-свистков. Многие из тех же методов будут использоваться сейчас для создания стробоскопических ракет. Итак, вам стоит ознакомиться с этими основными методами, прежде чем приступить к этому проекту.

Примечание: Я не буду повторять все основные детали конструкции из учебника по ракете-свистку. Вам действительно нужно быть знакомым с этими методами, если вы собираетесь заняться этим проектом стробоскопической ракеты.

Стробоскопическая ракета использует свистящее топливо для питания, а также стробоскопическое топливо для создания уникального для них хлопающего звука и мигающего света.

Прижимные ракеты

Примечание. Опять же, как и в проектах со свистком, с этим топливом и устройствами никогда не используется ручной таран с помощью молотка. Для прессования этих изделий следует использовать только пресс, оснащенный защитным кожухом. Советы по фейерверкам № 121 подробно описали конструкцию такого гидравлического ракетного пресса. Для небольших ракет некоторые люди используют ручной оправочный пресс для уплотнения (прессования) топлива.

Гидравлический ракетный пресс с защитным экраном

Стробоскопическое ракетное топливо

В дополнение к свистковому топливу, о котором я говорил выше, для этих стробирующих ракет необходимо еще одно топливо — стробирующее топливо. Это топливо очень похоже на состав, который использовался для изготовления стробоскопов. Пожалуйста, изучите методы и меры предосторожности, изложенные в этом эссе.

Это стробоскопическое топливо придает этим ракетам характерный хлопающий звук и мигающий свет во время полета. Но одного только стробоскопического топлива недостаточно, чтобы заставить ракету летать.

Еще в 80-х Док Барр начал экспериментировать с простейшей стробоскопической ракетой, используя черный порох для увеличения мощности стробоскопического топлива. Его результаты описаны на странице 58 The Best of AFN II.

Забавная и поучительная цитата из статьи Дока: «Все ракеты могут взорваться при взлете, но они делают это с раздражающей частотой. Примерно 1 из 10 действует больше как открытый салют, чем как ракета. «Зажечь фитиль и быстро удалиться» — моя Одиннадцатая Заповедь».

В конце 80-х и начале 90-х такие люди, как Док и Стив ЛаДьюк, начали работать со свистковым топливом в ракетах, в результате чего появились мощные ракеты-свистки для фейерверков, подобные тем, которые я описал в упомянутой выше статье о ракетах-свистках.

В какой-то момент этим первопроходцам ракетостроения пришла в голову блестящая идея объединить мощное ракетное топливо для свистков с впечатляющим стробирующим топливом, и так родилась современная стробоскопическая ракета.

Традиционно нитроцеллюлозный (НЦ) лак добавляется в стандартный белый состав стробоскопа, указанный в моей статье о стробоскопе. В своей статье на BAFN Док Барр сказал, что он нажал на стробоскопическое топливо, слегка смоченное лаком NC. Многие современные строители увлажняют свое топливо лаком NC, гранулируют смоченное топливо через сито с размером ячеек 12 и высушивают гранулы перед прессованием топлива в ракетном двигателе.

Несколько лет назад я немного изменил этот метод. Вместо того, чтобы использовать лак NC, я теперь смачиваю свое стробоскопическое топливо дополнительным 2%-ным минеральным маслом, диспергированным в топливе Coleman, как я описал в процедуре свистящего топлива.


Белая стробоскопическая ракета Топливо

Химическая Процент 16 унций 450 грамм
Перхлорат аммония 0,57 9,15 257,1
Магналиум, 200 меш 0,24 3,8 107. 1
Сульфат бария 0,14 2,3 64,3
Дихромат калия 0,05 .75 21,5
Минеральное масло +0,02 0,3 9

Примечание: Перхлорат аммония, сульфат бария и дихромат калия измельчаются по отдельности в лопастной кофемолке, пока они не станут достаточно мелкими, чтобы пройти через сито 100 меш.

Предупреждение: Дихромат калия токсичен и известен как канцероген. При работе с этим химическим веществом, а также при использовании его в пиротехнических составах необходимы хороший респиратор и резиновые перчатки. Не вдыхайте это вещество и не попадайте на кожу. Носите защитное снаряжение, даже когда вы прессуете готовое топливо в ракетном двигателе.

Я буду делать стробоскопические ракетные двигатели размером 3/4 дюйма (один фунт). Каждый двигатель будет использовать около 39граммов свисткового топлива и 25 граммов стробоскопического топлива. Итак, 450-граммовой партии строб-топлива, приведенной в формуле выше, хватит примерно на 18 моторов.

Все сухие химикаты взвешивают по отдельности, затем тщательно перемешивают, осторожно пропуская их через сито 20 меш или кухонный дуршлаг. Я положил этот смешанный порошок в маленькое пластиковое ведерко.

Я отвешиваю минеральное масло в чистую литровую банку, например, в банку для соуса для спагетти, а затем добавляю в масло 1/2 стакана Coleman Fuel. Плотно закрутив крышку банки, я встряхиваю жидкость, чтобы полностью смешать два ингредиента.

Эта смешанная жидкость затем добавляется к сухому порошку и полностью перемешивается руками в перчатках. Затем влажный состав высушивается над кастрюлей с горячей водой, как описано в руководстве по изготовлению топлива для свистков. Опять же, топливо никогда не проносится в непосредственной близости от открытого огня или источника искр.

Через пару часов сушки над котелком с теплой водой топливо высохнет, перестанет пахнуть коулмановским топливом и будет напоминать серовато-зеленый песок. Я использую руки в перчатках, чтобы разбить комки топлива, пока оно высыхает.

Стробоскопическое ракетное топливо на подносе из крафт-бумаги

Ракетное оборудование

Чтобы сделать 3/4-дюймовые стробоскопические ракеты ID для этого проекта, я буду использовать свои инструменты, которые очень похожи на набор инструментов Skylighter TL1361. Инструменты для стробоскопической ракеты почти такие же, как и для ракеты-свистка. Основное отличие состоит в том, что шпиндель примерно в два раза длиннее. Количество трамбовок («пробойников») может варьироваться от инструмента к инструменту.

Инструменты для однофунтовой стробоскопической ракеты Skylighter

Так же, как и в проекте ракеты-свистка, я полирую оправки и шпиндель, используя очень мелкую наждачную бумагу и полироль для металла, чтобы облегчить удаление осадков во время штамповки.

Трубки стробоскопического ракетного двигателя

Еще раз, из-за высокого давления, используемого для изготовления этих двигателей, и высокой тяги, которую они развивают, я использую сверхпрочные бумажные трубки TU1065 с внутренним диаметром 3/4 дюйма. Для этих моторов я вырезал трубы длиной 6 дюймов.

Резка труб TU1066 на трубы стробоскопического ракетного двигателя длиной 6 дюймов

Опора для труб

6-дюймовая водопроводная труба из ПВХ и опора для ленточных зажимов используются для усиления бумажной трубы во время строительства.

Опора трубы из ПВХ для бумажной трубы двигателя стробоскопа-ракеты

Сверление отверстия для предохранителя

Точно так же, как я сделал с двигателями ракеты-свистка, я просверлил отверстие диаметром 1/8 дюйма в боковой части бумажной трубы двигателя, прямо там, где будет дно топливной гранулы.

Сверление отверстия для предохранителя в трубе стробоскопа-ракеты

Маркировка проточки оснастки для безопасности

Допускается зазор не менее 1/8 дюйма между шпинделем и точкой, где оправки соприкасаются с ним. Я помечаю оправки инструментов малярной лентой, чтобы быть абсолютно уверенным, что они никогда не защемят топливо между оправкой и шпинделем во время подачи топлива. Зажатое топливо может взорваться при нажатии. Этого зазора в 1/8 дюйма достаточно, чтобы предотвратить это.

В моем конкретном наборе инструментов есть только одна полая трамбовка и одна сплошная трамбовка. Некоторые инструменты поставляются с двумя или тремя полыми оправками, и каждая из них должна быть соответствующим образом помечена лентой для безопасности.

Стробоскоп-роскошный инструмент, отмеченный маскирующей лентой для обеспечения безопасности

Нажатие на мотор-стробоскоп

9009 Секс-сечение стробопоклета

I DO в этом процессе прессования вычерпайте бумажный стаканчик, полный свисткового топлива, и бумажный стаканчик, полный стробоскопического топлива, отложите их в сторону и уберите большие емкости с моим топливом в безопасное место. Как я уже говорил, это, пожалуй, самая важная мера безопасности: ограничение количества воздействующего горючего состава при работе с ним.

Для моей стробоскопической ракеты я вдавливаю топливо в трубку таким же образом и с тем же давлением, что и при изготовлении ракетных двигателей. Нажатие трех 7-граммовых приращений и одного 4-граммового приращения топлива для свистка перемещает это топливо на полпути вверх по шпинделю. Эти приращения прессуются полым трамбовщиком.

Я использую черные резиновые уплотнительные кольца на трамбовках, чтобы свести к минимуму попадание пыли во время прессования. Эти уплотнительные кольца, как видно в верхней части твердой оправки на фотографии инструмента выше, также служат для другой цели.

Каждый раз, когда трамбовку нужно снова вставить в трубу, я сдвигаю/прокатываю уплотнительное кольцо вниз к концу трамбовки. Затем, когда я вставляю и вдавливаю осадок в трубку, уплотнительное кольцо плотно прилегает к верхней части трубки и предотвращает выдувание большого количества пыли. Когда оправка удаляется после этого приращения, положение уплотнительного кольца указывает, где была верхняя часть трубки, и насколько далеко в трубу зашла оправка при нажатии на это приращение.

Когда оправка удаляется из двигателя после нажатия шага, уплотнительное кольцо остается на оправке точно в том месте, где была верхняя часть трубы двигателя до того, как оправка была удалена.

Критическое: Я держу полномасштабный эскиз двигателя на рабочем столе, пока нажимаю на двигатель. Я помещу оправку с маркировкой уплотнительного кольца там, где была верхняя часть трубы двигателя, внизу на эскизе и буду следить за тем, насколько высоко прессованное топливо поступает в двигатель. Таким образом, я могу точно определить, когда топливо свистка нажато до нужного уровня, и переключиться на приращения топлива стробоскопа.

Гидравлическое прессование стробоскопического ракетного двигателя

Я держу пустотелую трамбовку чистой, когда выжимаю топливо, потому что я никогда не хочу выдавливать топливо внутри трамбовки, между ней и шпинделем.

Очистка горючего из пустотелого штрека

Затем я нажимаю три порции стробоскопического топлива по 7 грамм полым трамбовщиком и одну порцию этого топлива по 4 грамма твердым трамбовщиком, что очень будьте осторожны, чтобы не надавить на линию страховочной ленты на трамбовке.

Это приводит к тому, что топливо для стробоскопа поднимается примерно на 3/16–1/4 ​​дюйма над концом шпинделя, что еще раз проверено путем сравнения оправки и уплотнительного кольца с моим эскизом. Окончательное приращение топлива стробоскопа регулируется таким образом, чтобы оно достигло этого уровня.

Это расстояние от строб-топлива над шпинделем имеет решающее значение. Слишком малое количество строб-топлива приведет к тому, что двигатель начнет работать с задержкой со свистом слишком рано. Слишком много стробоскопического топлива над шпинделем приведет к тому, что двигатель будет гореть слишком долго, повернется обратно к земле и, возможно, даже вернется на землю до того, как заголовок взорвется.

Примечание: Спросите меня как-нибудь, откуда я знаю об эффекте, создаваемом, когда над шпинделем нажимается слишком много строб-топлива. История повествует о шестифунтовой стробоскопической ракете, возвращающейся на землю, пробивающей крышу палатки для собраний, когда в толпе произошло «расхождение морей», отскакивающей от трамплина для прыжков в бассейне, и взрыве головы почти напугать Дока Барра до смерти или, по крайней мере, вернуть память о большей части его предыдущей сексуальной жизни. О, сейчас я могу смеяться над этим, но тогда это было чертовски неловко.

После того, как стробоскопическое топливо было выдавлено на это критическое расстояние над шпинделем, над стробоскопическим топливом вдавливаются еще две 7-граммовые порции свисткового топлива, как показано на рисунке выше. Эта свистящая топливная секция создает свистящую часть «задержки» полета ракеты перед воспламенением коллектора.

Как я упоминал в статье про свисток-ракету, могут быть созданы и другие эффекты «задержки». Вместо топлива для задержки свистка можно использовать цветное топливо, или к топливу для задержки свистка можно добавить титан. Количество топлива задержки должно быть подобрано для получения желаемого эффекта и продолжительности полета.

Затем двигатель закрывается 7-граммовой порцией переборочной глины, в которой вручную просверливается сквозное отверстие. Я никогда не сверлил свистковым топливом с титаном в нем, как я предупреждал в статье про свисток-ракету.

Если я использую свистковое топливо, содержащее титан, в секции задержки, я закрываю его 1/8-дюймовым топливом без металла. Затем я аккуратно вручную просверливаю отверстие для проходного огня.

Ручное спиральное бурение проходного отверстия через глиняную переборку

Устранение неполадок: Различное количество топлива и расстояние до шпинделя между двумя видами топлива были рассчитаны для моего собственного топлива и инструментов. Если ваш прессованный ракетный двигатель взорвется на стартовой площадке, то следует использовать меньше топлива для свистков и больше топлива для стробоскопов. С другой стороны, если ваша ракета не имеет достаточной мощности при запуске, следует использовать больше топлива для свистков и меньше топлива для стробоскопов.

Итак, готовая стробоскопическая ракета. И последнее, что я сделаю, это аккуратно расширим отверстие предохранителя шилом, так как отверстие может немного закрыться и заполниться топливом во время нажатия на двигатель.

Увеличение отверстия для взрывателя с помощью острого шила

Создание заголовка ракеты

Эти ракеты могут летать так высоко, что мне нравится использовать только заголовки отчетов о них. На такой высоте эффект звездчатого снаряда мог потеряться. Как я показал на ракетах-свистках, полый конец трубы двигателя можно заполнить свободным топливом для свистков, возможно, содержащим немного титана, а затем закрыть крышкой, чтобы создать небольшой заголовок отчета.

Таким же образом можно использовать и незакрепленное стробоскопическое топливо, которое также является мощным взрывчатым веществом. Если требуется больше полого пространства, трубку двигателя можно удлинить с помощью дополнительного куска той же трубы двигателя, приклеенной и приклеенной к трубе двигателя, чтобы удлинить ее.

Для более крупного и впечатляющего заголовка отчета можно использовать пластиковые гильзы Skylighter PL1020 или PL1022 #5. Эти пластиковые банки имеют диаметр чуть менее 2 дюймов и хорошо подходят для этих однофунтовых ракет.

Я заливаю выемку в крышке банки горячим клеем, просверливаю четвертьдюймовое отверстие в дне банки и приклеиваю в это отверстие кусок шуруповерта или фьюзера. При вклеивании запала в банку слежу, чтобы все зазоры вокруг запала были заполнены клеем, чтобы какой-либо состав не вытек из банки после ее заполнения.

Взрыватель перенесет огонь с верхней части ракетного двигателя на курс.

Отверстия диаметром 1/4 дюйма, просверленные в днищах пластиковых банок, утопленные крышки заполнены горячим клеем
Горячий клей Quickmatch на дно пластиковой банки

Затем я наполняю банку композицией по своему выбору. Традиционной начинкой был бы порошок для вспышек, но изготовление вспышек стало для некоторых немного проблематичным в нынешнем правовом климате.

Если у кого-то есть законный доступ к необходимым химическим веществам, я опишу безопасный способ сделать экспресс-отчет с помощью одной из этих банок. Но сначала я подробно опишу три варианта составления отчета без пороха.

Простой отчет можно сделать, наполнив банку рисовой шелухой, покрытой черной пудрой, с добавлением небольшого количества крупнозернистого титана, если желательны серебряные искры. Одна из банок может вместить 45 граммов корпуса с покрытием BP и 14 граммов титана.

Пластиковый кожух, наполненный рисовой шелухой с черным порошковым покрытием

Два других варианта: наполнить канистру рассыпным топливом для свистка или стробоскопическим топливом. В банку помещается 57 грамм топлива для свистка или 67 грамм топлива для стробоскопа. Для серебряных искр 14 граммов титана можно добавить к любому из этих видов топлива, поместив топливо и титан в небольшой бумажный стаканчик и осторожно перемешав их вместе, чтобы смешать их перед заливкой в ​​банку.

Пластиковые корпуса канистр, заполненные стробоскопическим топливом свистка

Примечание: Я упоминаю об этом варианте составления оперативного отчета из чувства ответственности. Люди будут делать флэш-отчеты. Это давняя традиция во всех видах фейерверков. Но порох для вспышек является самым мощным составом, с которым работают фейерверки, и с ним связаны многие действительно серьезные пиропатроны.

Независимо от того, какой состав для отчетов я использовал, я приклеивал крышки к пластиковым банкам с помощью сантехнического клея из ПВХ от Home Depot. Я делал это на улице из-за испарений, вытирая лишний клей бумажным полотенцем.

Затем я укрепил обшивку обвязочной лентой шириной 1/2 дюйма, армированной стекловолокном. Так как мой рулон ленты был шириной 1 дюйм, я разделил конец ленты пополам. Это позволило оторвать только половину ширины, когда я ее использовал.

Примечание: Во время этого процесса записи обычной обработки бинарно-смешанного флэш-отчета достаточно для достаточного смешивания ингредиентов. Нет необходимости в грубом встряхивании. Как только банка закрыта, обращение с этим отчетом не более опасно, чем обычное обращение с коммерческим фейерверком.

Пластиковые корпуса, армированные обвязочной лентой

Затем я покрыл заголовки слоем клейкой ленты из алюминиевой фольги.

Заголовки ракет, покрытые лентой из алюминиевой фольги

Вот видео каждой из четырех различных композиций отчета, сделанных, как описано выше.

Черный порох, горючее для свистка, стробоскопическое топливо и оперативные отчеты

Сначала я обрезаю взрыватель коллектора так, чтобы он был достаточно длинным, чтобы пройти насквозь до дна проходного отверстия, и прижимался к топливному зерну ракеты. Я обнажил последние 3/4 дюйма предохранителя.

Предохранитель ракетного блока, обрезанный и очищенный

Затем я нанес каплю горячего клея вокруг верхней части трубы двигателя и быстро установил головку, тщательно следя за тем, чтобы предохранитель вошел в отверстие до упора. проходное отверстие, как я это делаю. Я усиливаю соединение между коллектором и трубой двигателя дополнительным галтелем из горячего клея.

Я обнаружил, что гладкая сторона бумажной подложки от клейкой ленты из алюминиевой фольги удобна для разглаживания галтелей горячего клея, не обжигая при этом пальцы.

Головка ракеты, приклеенная горячим клеем к трубе двигателя

Затем соединение укрепляется несколькими вертикальными 3-дюймовыми полосами обвязочной ленты, которые заканчиваются горизонтальными полосами ленты вокруг головки и трубы двигателя. . Это действительно укрепляет связь.

Затем ракетная палка из тополя длиной 45 дюймов и площадью 5/16 дюйма со скошенным концом приклеивается горячим клеем и прикрепляется лентой к двигателю. Если ракету нужно запустить немедленно, то в отверстие для предохранителя двигателя вставляется 6-дюймовый кусок вязкостного предохранителя.

Усиление конечного соединения
Завершенная ракета с рукоятью и установленным вязкостным предохранителем

Если я собираюсь хранить двигатель некоторое время перед его запуском, я не буду устанавливать вязкостной предохранитель сейчас, а вместо этого запечатаю конец двигателя и отверстие для предохранителя с лентой из алюминиевой фольги, чтобы топливо для свистка не впитывало влагу.

Заключение

Что ж, это было небольшое путешествие, но в последних 3 проектах мы сделали свистковое топливо, свистки, свистковые ракеты, стробоскопическое топливо, стробоскопические ракеты и впечатляющие заголовки отчетов. Хотя эти мощные виды топлива и устройства не являются проектами для начинающих, если подходить к ним шаг за шагом, с хорошими безопасными рабочими привычками, они действительно могут быть одними из самых впечатляющих и удовлетворительных устройств для фейерверков, как для строителя, так и для изготовителя. аудитория.

Оставайтесь зелеными и получайте удовольствие,
Нед

Необходимые материалы

  • Перхлорат аммония (CH5000)
  • Шило
  • Ленточные хомуты
  • Сульфат бария (CH8030)
  • Переборочная глина
  • Кофемолка
  • Коулман Топливо
  • Сверло, 1/8″
  • Гидравлический пресс
  • Банка, 1 кварта
  • Магналиум, 200 меш (Ch3073)
  • Малярная лента
  • Минеральное масло
  • Труба из ПВХ, внутренний диаметр 1 дюйм, длина 6 дюймов
  • Бумажный стаканчик
  • Горшок с горячей водой
  • Дихромат калия (CH5525)
  • Ракетная рукоятка, длина 5/16 дюйма, 45 дюймов
  • Резиновые уплотнительные кольца
  • Наждачная бумага мелкозернистая
  • Пила
  • Сетка, 20 ячеек (TL2003)
  • Экран, 100 ячеек (TL2009)
  • Набор инструментов для стробоскопической ракеты (TL1361)
  • Трубка, внутренний диаметр 3/4 дюйма (TU1065)
  • Виско-предохранитель (GN1000, GN1005)
  • Свисток топливный (КТ1110)

2 простых способа создать ослепительный эффект стробоскопа в вашем видео

Эффект стробоскопа или эффект стробоскопического света — это популярный метод видеомонтажа, который добавляет короткие и интенсивные вспышки света к частям клипа, чтобы вызвать атмосферу ужаса, ускорить визуальный ритм или представить неожиданное событие.

Стробоскопический эффект широко используется в трейлерах к фильмам и во всех видах видео и фильмов, таких как боевики, саспенсы, триллеры, научная фантастика и так далее.

В этом посте мы познакомим вас с двумя простыми способами быстрого добавления кинематографических стробоскопических эффектов в ваше видео с помощью бесплатного онлайн-редактора видео и Adobe Premiere Pro.

Классический стробоскопический эффект в трейлере к фильму Аннабелла

Вот чему вы научитесь :

Как создать мерцающий стробоскопический эффект в видео онлайн с помощью FlexClip

Как сделать стробоскопический эффект в видео с помощью Adobe Premiere Pro

Теперь дело за вами

Как создать мерцающий стробоскопический эффект в онлайн-видео с помощью FlexClip

Что ж, если вы новичок в редактировании видео или в настоящее время у вас нет профессиональных видеоредакторов, таких как Premiere Pro, тогда Простой и быстрый способ добавить мерцающий стробоскопический эффект в ваше видео — использовать универсальный онлайн-редактор видео.

В этом случае мы рекомендуем использовать FlexClip, бесплатный и многофункциональный видеоредактор в браузере, который предлагает вам беспроблемный процесс редактирования видео. Он не содержит водяных знаков и не требует загрузки программного обеспечения.

FlexClip позволяет легко создавать эффект стробоскопа в видео.

Создать сейчас

Вы можете легко добавить стробоскопический эффект к своему видео и использовать более 4 миллионов бесплатных стоковых ресурсов FlexClip, включая звуковые эффекты, музыку, HD-видео и фотографии, чтобы поднять ваше видео на ступеньку выше, не говоря уже о тысячах дизайнерских шаблонов видео и множество удобных инструментов для редактирования, таких как триммеры, переходы, видеоподборщики и т. д.

Как добавить стробоскопический эффект к видео с помощью FlexClip:

После загрузки видеоматериала в медиатеку и добавления его на временную шкалу. Что ж, если у вас в настоящее время нет видеоматериалов, не стесняйтесь выбрать стоковое видео на вкладке «Stock Media» для теста.

Загрузка клипов в FlexClip

Создать сейчас

Шаг 2

Разделить видеоматериал на разные части

Переместите указатель воспроизведения, чтобы найти начало и конец кадров для добавления стробоскопических эффектов > используйте инструмент «Разделить», чтобы разрезать видеоматериал на три части > продолжайте разделение между клипами на несколько клипов> перетащите каждый клип влево, чтобы сократить его продолжительность до минимума (около 0,3 секунды).

Разделить клипы на разные части и обрезать их минимум до 0,3 с

Создать сейчас

Шаг 3

Вставка белого фона для стробоскопического эффекта

Перейдите на вкладку «Фон» на левой боковой панели > перетащите «Белый фон» между каждым коротким клипом> установите его продолжительность на 0,3 секунды > повторите то же движение пока все промежутки между разными короткими клипами не будут заполнены белым фоном.

Добавьте белый фон между каждым клипом, чтобы создать эффект стробоскопа в видео

Создать сейчас

Теперь при воспроизведении всего видео эффект стробоскопа должен быть успешно добавлен. Конечно, вы можете использовать разные цвета фона, такие как черный, синий, красный, или даже добавить динамическое фоновое видео или стековое изображение для уникального стробоскопического эффекта.

Дополнительные советы: добавьте звуковые эффекты или музыку для рамок с эффектом стробоскопа.

Поскольку добавленный стробоскопический эффект ускоряет визуальный ритм, обычно к кадрам добавляется соответствующий звуковой эффект или музыка, чтобы обеспечить визуальный и звуковой баланс.

С помощью FlexClip вы можете легко искать и находить идеальные звуковые эффекты или музыку, а также перетаскивать звуковую дорожку, чтобы она соответствовала вибрации кадров с эффектом стробоскопического света.

Добавление бесплатных звуковых эффектов или музыки к видео со стробоскопическим эффектом

Результирующее видео со стробоскопическим эффектом и звуковыми эффектами из нашего примера:

Эффект стробоскопа, примененный к видео с помощью FlexClip

Создать сейчас

Шаг 4

Предварительный просмотр и загрузка видео с мерцающим стробоскопическим эффектом

Как сделать эффект стробоскопа в видео с помощью Adobe Premiere Pro

Все дороги ведут в Рим. Помимо использования FlexClip для добавления эффекта стробоскопа к видео, Adobe Premiere Pro предлагает вам еще одну гибкую альтернативу. Если вам случится редактировать видео с помощью Premiere Pro, вот что вы можете сделать, чтобы добиться аналогичного эффекта стробоскопа в своем видео.

Как создать эффект Stobe в Premiere Pro

Шаг 1

Запустите Adobe Premiere Pro и добавьте клип на временную шкалу

Шаг 2

Добавить эффект стробоскопического света к клипу

Нажмите на панель «Эффект» > введите ключевые слова «Строб» в строку поиска и перетащите эффект «Стробоскоп» на клип

Шаг 3

Настройте стробоскоп Световой эффект

Перейдите на вкладку «Элементы управления эффектами» > по умолчанию «Цвет стробоскопа будет белым». Установите «Длительность строба» на 0,1 секунды и «Период строба» на 0,2 секунды. Или вы можете сами поиграть с этими двумя свойствами, чтобы получить наилучшие эффекты стробоскопа, которые вы хотите.

Шаг 4

Предварительный просмотр и экспорт видео

Теперь дело за вами

Итак, вот два простых и простых способа создать стробоскопический эффект в вашем видео.