12Мар

Рядный тнвд устройство: Топливный насос высокого давления — виды, устройство, работа

Топливный насос высокого давления. Рядный ТНВД

Примером рядного топливного насоса высокого давления применяемого на легковых автомобилях является насос дизеля Мерседес 190, состоящий из нескольких одинаковых секций. В передней части этого насоса расположен вакуумный насос 14, приводимый в движение эксцентриком 2, расположенным на торце кулачкового вала.

В нижней части  корпуса насоса установлен кулачковый вал, который соединяется со звездочкой привода через муфту опережения впрыска.

На кулачковом валу имеются про­филированные кулачки для каждой насосной секции и эксцентрик для приведения в движение насоса низкого давления, который крепится к привалочной плоскости насоса высокого давления.

Рис. Топливный насос высокого давления Мерседес:
1 – штуцер подключения вакуумного усилителя тормозов; 2 – эксцентрик привода вакуумного насоса; 3 – звездочка приводной цепи; 4 – автоматическая муфта опережения впрыска; 5 – винт установки начала впрыска; 6 – подача топлива; 7 – трубопровод высокого давления; 8 – рычаг перекрытия подачи топлива; 9 – вакуумная камера остановки двигателя; 10 – вакуумная камера увеличения частоты вращения коленчатого вала; 11 – регулятор частоты вращения; 12 – пробка для установки приспособления регулировки начала впрыска; 13 – топливоподкачивающий насос; 14 – вакуумный насос

В перегородке корпуса против каждого кулачка установлены роликовые толкатели 14. Оси роликов своими концами входят в пазы корпуса насоса, предотвращая проворачивание толкателей.

Рис. Секция рядного ТНВД:
1 – зубчатый сектор; 2 – регулирующая поворотная втулка плунжера; 3 – боковая крышка;  4 – штуцер нагнетательного клапана; 5 – корпус нагнетательного клапана; 6 – нагнетательный клапан; 7 – гильза плунжера; 8 – плунжер; 9 – рейка ТНВД; 10 – поводок плунжера; 11 – возвратная пружина плунжера; 12 – нижняя тарелка возвратной пружины; 13 – регулировочный болт; 14 – роликовый толкатель; 15 – кулачковый вал

Насосные секции установлены в верхней части корпуса и крепятся винтами. Основной частью каждой насосной секции является плунжерная пара, состоящая из плунжера 8 и гильзы 7. Плунжерную пару изготовляют из хромомолибденовой стали и подвергают закалке до высокой твердости. После окон­чательной обработки подбором производят сборку плунжеров и гильз так, чтобы обеспечить в соединении зазор, равный 3…5 мкм. Этим достигается  максимальная плотность сопряжения взаимодейст­вующих деталей обеспечивающих давление впрыскивания топлива до 1200 кгс/см2.

Сверху каждой плунжерной пары установлен нагнетательный клапан 6, размещенный в корпусе 5.

При вращении кулачкового вала 15 насоса выступ кулачка набегает на роликовый толкатель 14, который через регулировочный болт воздействует на плунжер 8 и перемещает его вверх. Когда выступ кулачка выходит из-под ролика толкателя, пружина 11, упирающаяся в тарелки, возвращает плунжер в первоначаль­ное положение. Рейка 9 входит в зацепление с зубчатым венцом поворотной втулки 2, надетой на гильзу.

Регулирование состава топливовоздушной смеси в дизельном двигателе происходит изменением подачи топлива при неизменном количестве воздуха, в отличие от бензиновых двигателей, где изменяется и то и другое. В рядных ТНВД изменение подачи топлива, обычно осуществляется за счет рейки, однако изменение подачи может осуществляться и за счет золотника, который перемещается по плунжеру. В рассматриваемом ТНВД при перемещении рейки 9 вдоль ее оси втулка 2  поворачивается на гильзе и, действуя на выступы  плунжера, поворачивает его, в результате чего изменяется количество топлива, подаваемого к форсункам. Ход рейки ограничивается стопорным винтом, входящим в ее продольный паз. Задний конец рейки соединен с тягой  регулятора частоты вращения коленчатого вала, установленного в корпусе ТНВД.

Принцип работы секции насоса

Принцип работы секции насоса заключается в следующем. При движении плунжера 1 вниз внутреннее пространство гильзы 12 наполняется топливом, и одновременно оно подается насосом низкого давления в подводящий канал 10 корпуса 11 насоса.

Рис. Схема работы секции насоса высокого давления:
а – впуск топлива; б – начало подачи; в – конец подачи;
1 – плунжер; 2 – продольный паз; 3 – выпускное отверстие; 4 – сливной канал; 5 – пружина; 6 – нагнетательный клапан; 7 – разгрузочный поясок; 8 – надплунжерное пространство;  9 – впускное отверстие; 10 – подводящий канал; 11 – корпус насоса; 12 – гильза; 13 – винтовая кромка

При этом открывается впускное отверстие 9, и топливо поступает в надплунжерное пространство 8. Затем под действием кулачка плунжер начинает подниматься вверх, перепуская топливо обратно в под­водящий канал 10 до тех пор, пока верхняя кромка плунжера 1 не перекроет впускное отверстие 9 гильзы. После перекрытия этого отверстия давление топлива резко возрастает и при рабочем давлении  топливо, преодолевая усилие пружины 5, поднимает нагнетательный клапан 6 и поступает в топливопровод.

Дальнейшее перемещение плунжера вверх вызывает повышение давления, превышающее давление, создаваемое пружиной форсунки, в результате чего игла форсунки приподнимается и проис­ходит впрыскивание топлива в камеру сгорания. Подача топлива про­должается до тех пор, пока винто­вая кромка 13 плунжера не откроет выпускное отверстие 3 в гильзе, в результате чего давление над плунжером резко падает, нагнетательный клапан 6 под действием пружины закрывается и надплунжерное пространство разъе­диняется с топливопроводом высокого давления. При дальнейшем движении плунжера вверх топливо перетекает в сливной канал 4 через продольный паз 2 и винтовую кромку 13 плунжера.

Нагнетательный клапан 6 разгружает топливопровод высокого давления, так как он снабжен цилиндрическим разгрузочным пояском 7, который при посадке клапана на седло обеспечивает увеличение объема топливопровода. Этим достигается резкое прекращение впрыскивания топлива и устраняется возможность его подтекания через распылитель форсунки, что улучшает процесс смесе­образования и сгорания рабочей смеси, а также повышает надежность работы форсунки.

Клапаны ТНВД

В ТНВД с рядным расположением плунжерных пар применяются нагнетательные клапана объемного течения и ограничения обратного течения, а также клапана постоянного давления.

Клапана обратного течения применяются для демпфирования волн обратного давления топлива, возникающих при закрытии распылителя форсунки, что уменьшает износ распылителя и подвпрыски топлива в цилиндры двигателя. Клапан  устанавливается как дополнительный над обычным клапаном перед топливопроводом высокого давления, идущим к форсунке.

Рис. Штуцер ТНВД с нагнетательным клапаном:
а – с клапаном объемного течения и ограничением обратного течения; b – с клапаном постоянного течения; 1 – корпус нагнетательного клапана; 2 – обратный клапан; 3 – промежуточный объем; 4 – разгрузочный поясок; 5 – сферический клапан; 6 – втулка клапана; 7 – нагнетательный клапан; 8 – жиклер; 9 – обратный клапан

Клапан состоит из головки с запорной конической фаской, разгрузочного пояска 4 и хвос­товика с прорезями для прохода топлива.

Сверху на клапан установлена пружина 3, которая прижимает его к седлу. При подаче топлива разгрузочный поясок вместе с конусом клапана приподнимается над направляющей втулкой и топливо под давлением поступает к форсунке. При закрытии основного клапана клапан обратного течения перекрывает доступ обратных волн топлива.

Клапана постоянного течения применяются на ТНВД с давлением впрыска более 800 кг/см2, для уменьшения кавитации. При подаче топлива через нагнетательный клапан в конце хода нагнетания шариковый обратный клапан под действием обратных волн давления топлива открывается и система топливоподачи действует как нагнетательный клапан с перепускным дросселем. При уменьшении давления клапан закрывается, при этом в магистрали сохраняется постоянное давление.

Перемещение плунжера во втулке с момента закрытия впускного отверстия до момента открытия вы­пускного отверстия  называется активным  ходом  плунжера, который в основном и определяет количество подаваемого топлива за цикл работы топливной секции.

Изменение количества топлива, подаваемого секцией за один цикл, происходит в результате поворота плунжера зубчатой рейкой 5. При различных углах поворота плунжера благодаря винтовой кромке смещаются моменты открытия выпускного отверстия. При этом, чем позднее открывается выпускное отверстие, тем большее количество топлива может быть подано к форсункам.

Рис. Схема изменения подачи топлива:
1 – гильза; 2 –  впускное отверстие; 3 – плунжер; 4 – винтовая кромка; 5 –рейка

На рисунке показаны следующие положения винтовой кромки плунжера за цикл работы топливной секции:

  • положение а – нулевая подача топлива. Плунжер 3 повернут так, что его продольный паз расположен против выпускного отверстия, в результате чего при перемещении плунжера вверх топливо вытесняется в сливной канал, подача топлива прекращается и двигатель останавливается
  • положение  б – промежуточная подача, так как при повороте плунжера 3 по часовой стрелке объем вытесненного топлива уменьшается так как выпускное отверстие открывается раньше
  • положение в – максимальная подача топлива и наибольший активный ход плунжера 3. В этом случае расстояние от винтовой кромки 4 плунжера до выпускного отверстия будет наибольшим

Топливный насос высокого давления: устройство и назначение

Топливный насос высокого давления в инжекторном двигателе выполняет функцию по поддержанию высокого давления для обеспечения полноценного впрыска топлива в камеры сгорания цилиндров.

Если же не знаете и двигатель машины для вас это очень сложное устройство, состоящее из тысяч различных деталей и узлов, которые трудятся в унисон, останьтесь и  получите удовольствие от новой информации.

Топливный насос высокого давления можно встретить и у дизелей, и у бензиновых агрегатов.

Устройство насоса сложное, но крайне важное для функционирования силового агрегата, поэтому мы постараемся поговорить о реальных разновидностях этого узла, встречающиеся под капотами наших авто.

Наверное, заядлые дизелисты с ревностью скажут, что топливный насос высокого давления – это прерогатива исключительно двигателей на солярке. Так и есть, вернее, было до изобретения бензиновых моторов с непосредственным впрыском, где также необходимо создавать высокое давление для инжекции горючего.

Но стоит отметить, что бензиновым двигателям нужно гораздо меньшее давление, развиваемые насосами двух типов моторов, и отличаются они примерно в 10 раз.

Оглавление

  • 1 Топливный насос высокого давления
  • 2 Такие разные и одинаковые ТНВД
    • 2.1 Рядный
    • 2.2 Распределительный
    • 2.3 Магистральный

Топливный насос высокого давления

Какой бы ни была разновидность ТНВД, главным элементом его схемы в любом случае остаётся плунжерная пара.

Что же это за штуковина? Проще говоря, она представляет собой поршень (плунжер), вставленный в цилиндр (втулку). Но не думайте, что это такая уж простая деталь. На самом деле плунжерная пара крайне прецизионное устройство, изготовить которое можно только на высокоточном оборудовании.

Только представьте себе, расстояние между поршнем и втулкой должно составлять микроны! Кстати, это одна из причин, по которой дизельные моторы выходят из строя – некачественное топливо, имеющее в составе микрочастицы грязи, пагубно влияют на работоспособность плунжеров, царапая и загрязняя их.

Такие разные и одинаковые ТНВД

Переходим к разновидностям ТНВД. Так как инженерная мысль находится в постоянном поиске и попытках сделать мир лучше, появляются всё новые и новые технические решения.

В современном автомобилестроении топливный насос высокого давления представлен в трех основных типах:

  • рядные;
  • распределительные;
  • магистральные.

Давайте попробуем разобраться, зачем их столько навыдумывали.

Рядный

Итак, рядный топливный насос высокого давления. В принципе, название этого типа насосов говорит само за себя. В них плунжерные пары расположены в один ряд, причём их количество равно количеству цилиндров мотора.

В одном корпусе с плунжерами расположен кулачковый вал, который и приводит их в действие, а сам вал имеет привод от коленвала двигателя. Такая вот система.

 

Управление подачей дизтоплива к форсункам может происходить как механически, так и при помощи электронных блоков управления.

Считается, что рядные ТНВД очень надёжны и неприхотливы к качеству горючего. Тем не менее, из-за своих внушительных габаритов они перестали использоваться на легковых авто с начала 2000-х годов.

Распределительный

Следующий топливный насос высокого давления, о которых мы вспомнили – распределительный.

Главным его отличием от предыдущей разновидности является наличие всего лишь одного или двух плунжеров. Чтобы обеспечить питание для всех цилиндров и никого не обидеть, плунжер вращается, попеременно подавая горючее в магистраль каждого.

Грубо говоря, его работу можно сравнить с револьвером, в котором бы по кругу вращался не барабан, а ствол.

Регулировка подачи солярки может быть и механической и электронной при помощи клапана, работающего под руководством блока управления двигателя.

Сам плунжер в распределительных ТНВД может иметь несколько вариантов привода:

  • торцевой кулачковый;
  • внутренний кулачковый;
  • внешний кулачковый.

Первые два варианта из списка считаются наиболее оптимальными, так как меньше изнашивают механизмы насоса, хотя, в целом, данный топливный насос высокого давления нельзя назвать долговечным.

Магистральный

Ну и наконец, третий тип насосов – магистральный. В его составе может быть до трёх плунжеров, привод которых обеспечивается кулачковым валом или кулачковой шайбой, движущихся внутри ТНВД.

В отличие от своих собратьев, этот насос может развить очень высокое давление, а его главная задача заключается в нагнетании горючего в топливную рампу (аккумулятор), которое потом при помощи форсунок распределяется по цилиндрам.

Контролирует подачу горючего электронный клапан дозировки, находящийся в ведении блока управления мотором. Нужный объём топлива рассчитывается на основе информации, поступающей от многочисленных датчиков, разбросанных по силовому агрегату.

Кстати, о системе подачи топлива дизелей, в которой используются магистральные ТНВД, мы уже говорили в предыдущих статьях – это Common Rail, наиболее любимая технология у автопроизводителей.

Вот так всё просто. Надеюсь, дорогие читатели, эта статья раскрыла определённые секреты в строении автомобилей.

Подписывайтесь на рассылку, и вы никогда не пропустите свежие и полезные публикации.

Пока!

Как работают инжекторные дизельные насосы

Главная >

1Новости>Как работают инжекторные дизельные насосы

Seletron Performance

4 апреля 2022 г.

Рядные дизельные ТНВД и как они работают.

 

Поскольку мы рассмотрели работу роторных ТНВД с электронным управлением, насосов с радиальными поршнями, а затем систем впрыска ТНВД и более поздних систем Common-Rail, кто-то заметил, что мы не охватили Рядные ТНВД для дизельных двигателей . Мы этого не сделали, потому что рынок автомобилей с двигателями, использующими рядный ТНВД с электронным управлением, настолько мал, что это не влияет на нашу компанию, которая занимается электронным тюнингом (дизельных и бензиновых).

 

Первым автомобилем, который приходит на ум, в котором используется эта система впрыска с электронным управлением, является Mercedes 250td с 5-цилиндровым двигателем 2500, 4 клапанами на цилиндр и мощностью 150 л.с. Речь идет об автомобиле из 1990-х годов, прямой конкурент BMW 525tds, и Audi A6 2.5TDI V6 с той же мощностью, что и Mercedes. На этой модели фактически установлен встроенный впрыскивающий насос с электронным управлением . Проблема в том, что на момент написания статьи другие в голову не приходят… в любом случае, мы здесь, чтобы сообщить, как работает такой ТНВД, так что приступим…

 

Это тип впрыска насос, который очень подходит для модульности. Это означает, что насос имеет часть, в которой приводной вал с его 9Установлен регулятор минимума-максимума 0011 и центробежный регулятор опережения . После этого различных насосных агрегатов может быть 3, 4, 5, 6 и т. д., что означает, что эти насосы легко адаптируются к архитектурам, подходящим для двигателей с регулируемыми (и многими) цилиндрами.

 

Как и в случае с другими системами впрыска, сегодня от этой отказываются в пользу системы Common Rail. Однако давайте посмотрим, как работает этот тип насоса. Мы упомянули о проблеме раннего впрыска: по мере увеличения оборотов двигателю необходимо опережать момент впрыска, чтобы успеть сжечь распыленное дизельное топливо. ТНВД включает (в полностью механических версиях без электронного управления) центробежный регулятор , способный опережать (в зависимости от оборотов) положение распределительного вала, приводящего в движение различные насосы, примерно на 15-20°. Второй центробежный регулятор воздействует на подачу впрыска, чтобы поддерживать холостой ход двигателя и ограничивать максимальную скорость двигателя.

 

Ступень впрыска и подачи в рядных ТНВД

 

Фаза впрыска в этом типе насоса создается положением кулачков, расположенных на распределительном валу самого насоса. Каждый кулачок управляет насосным элементом, который создает давление впрыска для одного цилиндра двигателя. Подача определяется вращением элемента, который действует как байпас на насосный элемент. При минимальной подаче байпас открывается после очень короткого хода насосного элемента, а при высокой подаче байпас открывается после более длинного хода насосного элемента.

 

Избыток дизельного топлива попадает в канал регенерации дизельного топлива низкого давления, который повторно направляется на вход насоса. Различные механизмы, регулирующие (вращающие) подачу дизеля, соединены с реечной тягой , которая одновременно перемещает все регуляторы различных насосных агрегатов (4-6-8-10 и т.д., в зависимости от типа насоса). . Эта зубчатая рейка приводится в движение двумя элементами: педалью акселератора и холостого и максимального центробежного регулятора . На двигателях с турбонаддувом дополнительный элемент на рядном насосе состоит из пневматический клапан , соединенный небольшой трубкой с контуром наддува. Эта система предназначена для обогащения подачи впрыска по мере увеличения давления турбонаддува. Эта система аналогична той, что используется в полностью механически управляемых роторных инжекторных насосах .

 

В рядных ТНВД с электронным управлением нет центробежного регулятора холостого хода и максимальной скорости, поскольку управление подачей (и, следовательно, холостой ход и ограничение числа оборотов) делегировано ЭБУ (или EDC) двигателя. блок управления, воздействующий на насос посредством электрического управления PWM (например, на некоторых ТНВД John Deere). То же самое относится к любым рядным ТНВД, в которых ступень впрыска также контролируется электронным блоком управления впрыском. Кроме того, в этом случае, как с с электронным управлением, роторные насосы (если вы хотите узнать больше по этой теме, прочитайте статью https://seletron.com/it/news/83_funzionamento-centraline-aggiuntive-vp37, в которой объясняется, как именно этот тип насоса работает в деталь), имеется датчик, определяющий положение подачи дизеля и обеспечивающий ЭБУ необходимой обратной связью в качестве контура обратной связи для точного управления этим параметром.

 

Чип-тюнинг несколько дополнительных узлов для рядных ТНВД воздействуют на значения этого датчика, чтобы изменить обратную связь и соответственно увеличить подачу впрыска (таким образом, крутящий момент и мощность). Другие элементы управления блоком настройки чипа могут быть на датчике давления наддува, чтобы ограничить пиковые показания ECU или EDC. Следовательно, его функция заключается в предотвращении восстановления ЭБУ двигателя и не обязательно в качестве активной функции для повышения производительности. Даже в прошлом этот тип ТНВД не получил широкого распространения в автомобилях. Рядные ТНВД широко использовались на тяжелых грузовиков s и транспортных двигателей в целом, а также EMM (землеройные машины) и судовых двигателей , во все из которых позже вошла система впрыска Common Rail.

 

Что ж, надеемся, мы утолили жажду любопытства тех, кто сегодня снова следует за нами. Пожалуйста, помните, что мы освещали и продолжаем освещать различные технические темы; Возвращайтесь и читайте нас каждый день!

Поиск вашего автомобиля

Вам также может понравиться

Как работают наши блоки чип-тюнинга для дизельных двигателей с электронными роторными насосами VP37 >>> ПРОЧИТАЙТЕ СЕЙЧАС

Как работают наши блоки чип-тюнинга для двигателей с радиально-поршневыми ТНВД VP44 >>> ПРОЧИТАЙТЕ СЕЙЧАС

Как наш чип-тюнинг дополнительно блоки для двигателей с общей топливной рампой >>> ПРОЧИТАЙТЕ СЕЙЧАС

Как работают наши дополнительные блоки чип-тюнинга для двигателей с насос-форсунками >>> ПРОЧИТАЙТЕ СЕЙЧАС

Китайский производитель учебного оборудования, оборудование для обучения электромобилям, поставщик электрического и электронного учебного оборудования

Горячие продукты

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Популярные продукты

Видео

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Рекомендуется для вас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Профиль компании

{{ util. each(imageUrls, функция(imageUrl){}}

{{ }) }}

{{ если (изображениеUrls.length > 1){ }}

{{ } }}

Вид бизнеса: Производитель/завод, Торговая компания
Основные продукты: Учебное оборудование , Учебное оборудование для электромобилей , Электрические и электронные.
..
Зарегистрированный капитал:
500000 юаней
Площадь завода: 5000 квадратных метров
Сертификация системы менеджмента: ИСО 9001
Среднее время выполнения: Время выполнения заказа в сезон пиковой нагрузки: 1-3 месяца
Время выполнения заказа в межсезонье: один месяц

Guangzhou Guangtong Educational Equipment Co.