Влияние степени сжатия на процесс сгорания
Влияние степени сжатия на процесс сгорания
Одним из наиболее эффективных способов улучшения энергоэкономических показателей поршневых двигателей является повышение степени сжатия е = VJVV. При повышении степени сжатия обычно уменьшают объем камеры сгорания Vc, вследствие чего уменьшается относительное количество остаточных газов (уменьшается коэффициент остаточных газов г = Mr/M4ltlil).
Одновременно с повышением степени сжатия возрастают давление и температура свежего заряда к моменту подачи искры на электроды свечи. Нагрев свежего заряда до более высоких температур приводит к развитию во всей массе смеси экзотермических предпла-менных реакций с появлением большого количества химически активных частиц. Такое развитие предиламенных процессов и низкая концентрация инертных молекул остаточных газов благоприятно влияет на условия формирования первонача!ьного очага воспламенения от электрической искры, сокращая длительность ф, начальной фазы процесса сгорания.
Возросшая химическая активность свежего заряда способствует также повышению скорости распространения фронта пламени по основной массе свежего заряда, несколько сокращая тем самым длительность Гц основной фазы быстрого сгорания (рис. 2.15).
Анализ кривых показывает, что повышение степени сжатия при прочих равных условиях приводит к повышению максимального давления сгорания Р. и приближению максимума давления к ВМТ, но одновременно возрастает противодавление в конце такта сжатия и в начале сгорания. Для получения максимально возможной мощности в этих условиях угол опережения зажигания обычно уменьшают, сдвигая воспламенение и сгорание основной массы свежего заряда ближе к ВМТ.
Сокращение длительности процесса сгорания в минимальном объеме цилиндра приводит к сокращению потерь теплоты в систему охлаждения и с отработавшими газами, что повышает экономичность двигателя.
О наличии положительного влияния предпламенных химических реакций на скорости процесса сгорания при повышении степени сжатия свидетельствует тот факт, что наивысшая мощность и экономичность двигателя достигаются при использовании топлива с предельно допустимым для данной степени сжатия октановым числом из условия бездетонационной работы двигателя на пороге детонации.
Если октановое число применяемого топлива достаточно высоко для данного двшателя с относительно низкой степенью сжатия, то из-за пониженных температур и отсутствия предпламенных реакций процесс сгорания в цилиндре по времени затягивается, переносится на такт расширения, что приводит к увеличению теплоотдачи в систему охлаждения и с отработавшими газами. Это приводит к перегреву двигателя и возможному обгоранию выпускных клапанов.
Увеличение степени сжатия е из-за уменьшения объема камеры сгорания приводит к возрастанию относительного количества свежего заряда, заключенного в щелевых зазорах между днищем поршня и поверхностью головки цилиндра, в пристеночных слоях при наличии вытеснителей, что приводит к уменьшению доли активного тепловыделения к моменту достижения максимальных значений давления Р. и температуры Т:. Это обстоятельство приводит к увеличению доли тепловыделения в 4-й фазе процесса сгорания — фазе догорания на такте расширения.
Возврат к списку
Японские автомобили с аукционов и со стоянки
звоните (495) 411-04-95
Тюнинг
Тюнинг эктерьера
Тюнинг интерьера
Тюнинг подвески
Тюнинг двигателя
Аксессуары
Автозвук
Производители
Сабвуферы
Фронтальная акустика
Тыловая акустика
Подиумы
Материалы для звукоизоляции
Как повысить мощность двухтактного двигателя.
К-55 и К-175
При подготовке мотоцикла к соревнованиям спортсмены и механики основное внимание уделяют повышению мощности двигателя — его форсировке. Достигается это, как показывает опыт мастеров мотоциклетного спорта, за счет увеличения степени сжатия, улучшения наполнения цилиндра рабочей смесью, повышения числа оборотов коленчатого вала и уменьшения потерь на трение.
Рассмотрим подробно первые два способа применительно к двигателям мотоциклов К-55 и К-175.
Увеличение степени сжатия — это один из самых эффективных и доступных способов форсировки. Степень сжатия двигателей мотоциклов К-55 и К-175 равна 6,5. Для спортивных целей ее поднимают до 8,5—9,5. Достигаемое при этом повышение мощности двигателя объясняется увеличением максимального давления вспышки и, следовательно, среднего эффективного давления на поршень. Если повышать степень сжатия больше чем до 9,5, прирост мощности получается незначительный, но максимальное давление вспышки резко увеличивается.
А это отрицательно сказывается на кривошипном механизме.
На двигателях К-55 и К-175 увеличение степени сжатия достигается путем уменьшения камеры сгорания. Чтобы получить степень сжатия 8,5, головку цилиндра двигателя К-55 необходимо подрезать с торца на глубину примерно 2,83 мм, а двигателя К-175 — на глубину 2,7 мм. После этого протачивают углубление для уплотнения головки по прежним размерам. Сферу ее делают с плавным закруглением и полируют.
Для определения величины степени сжатия ставят головку на место и измеряют объем камеры сгорания. С этой целью заливают из мерной мензурки в головку масло. Перед заливкой вывертывают свечу зажигания и устанавливают поршень в положение ВМТ. Затем наклоняют двигатель, чтобы торец отверстия занял верхнее положение.
Залитый объем масла будет равен объему камеры сгорания. Степень сжатия E подсчитывают по формуле:
E = ( Vh + Vc ) / Vc
где Vh — рабочий объем цилиндра в см3; Vc — объем камеры сгорания в см3.
Улучшение условий наполнения цилиндра. На мотоциклетных двухтактных двигателях эта задача решается комплексно: путем увеличения фаз газораспределения, уменьшения гидравлических потерь в каналах, специальным подбором глушителя и карбюратора.
Порядок выполнения этих работ на двигателях К-55 и К-175 следующий. Обкатывают двигатель согласно заводской инструкции, затем снимают головку цилиндра, выпускную трубу, карбюратор. Вращая кривошип, осматривают выпускное, продувочное и впускное окна, уточняют совпадение их с кромками поршня, симметричность расположения каналов и углов.
Необходимость такого осмотра обусловливается тем, что при литье цилиндра бывают отклонения от чертежа в размерах окон. С этим можно мириться в условиях обычной эксплуатации мотоцикла, но при использовании его для спортивных целей такие отклонения недопустимы. Ведь изменения в расположении окон даже на 1 мм по сравнению с чертежом заметно ухудшают продувку и наполнение цилиндра.
Хорошие мощностные показатели получаются, когда окна имеют размеры (в мм), приведенные в таблице. (Ширина окон взята по хорде).
| Двигатель | Выпускное окно | Продувочное окно | Впускное окно | |||
| высота | ширина | высота | ширина | высота | ширина | |
| К-55 | 19—20 | 31—36 | 10 — 12 | 17—18 | 19—21 | 32—34 |
| К-175 | 19—20 | 21—22 | 12—13 | 26—30 | 20—21 | 15—48 |
Для уточнения размеров при исправлении окон производят развертку цилиндра: смазывают его рабочую поверхность тонким слоем масла, вставляют лист бумаги и делают рукой оттиск всех окон.
Развертка цилиндра двигателя К-175 показана на рис. 1.
Рис. 1. Развертка цилиндра двигателя К-175.
Доводка окон двухтактного двигателя— трудоемкая работа, связанная с применением бормашины, имеющей набор разных шарошек и напильников. Вначале исправляют размеры каждого окна, а затем приступают к окончательной отделке и полировке.
Выпускной канал. Делают внутреннюю поверхность с плавным переходом от исходного внутреннего размера окна до места установки выпускной трубы, в соответствии с размерами, указанными в таблице. Лишний металл снимают и полируют всю поверхность.
Продувочные каналы. Контуры их тщательно подгоняют по контурам цилиндра. Проверяют совмещение поочередным надеванием цилиндра на шпильки обеих половинок картера. Удаляют излишний металл с картера, делают плавные переходы. Шлифуют и полируют внутренние стенки продувочных каналов. Последние должны иметь одни и.
Необходимо обращать особое внимание на создание одинаковых условий для выхода рабочей смеси из обоих окон (как по скорости истечения, так и по направлению струи под общим углом 120°).
Чтобы добиться хорошего наполнения цилиндра, не надо снимать металл с внутренней перегородки у места, обозначенного цифрой 1 (рис. 2). Эта кромка окна должна быть с острым углом. Противоположную кромку у места, которое обозначено цифрой 2, наоборот, делают с плавным закруглением в сторону внутреннего диаметра цилиндра с радиусом примерно 50 мм.
Рис. 2. Обработка продувочных каналов.
Рис. 3. Лабиринтное уплотнение, применяемое вместо самоподжнмающихся сальников.
Впускное окно и патрубок карбюратора. Площадь впускного окна увеличивают до размеров, указанных в таблице. В связи с этим нужно соответственно изменить размеры патрубка карбюратора.
Размеры патрубка карбюратора подбираются для каждого двигателя опытным путем. Наивыгоднейшая длина патрубка двигателя К-55 составляет 65— 70 мм, а двигателя К-175—80 мм. Карбюратор ставят один — К-28-Б. Для двигателя К-55 он должен иметь диффузор диаметром 24 мм, а для К-175 — диаметром 26—27 мм.
Картер. Поверхность обеих его половинок полируют, проверяют качество подшипников и сальников. В целях уменьшения трения мастер спорта Б. Панферов, например, успешно применяет на двигателе К-55 лабиринтное уплотнение (рис. 3) вместо самоподжимающихся сальников с пружиной.
Кривошипно-шатунный механизм. В целях уменьшения сопротивления трения маховика в воздушно-масляной среде обе половинки его тщательно полируют. Кроме того, полируют шатун. Так как делают это без разборки кривошипа, нужно предохранить нижний подшипник шатуна от попадания наждачной пыли.
После обработки кривошипа его промывают в бензине.
Поршень. В связи с расширением окон цилиндра стопоры, фиксирующие установку замка поршневых колец, необходимо перенести в другое место. Оно должно быть таким, чтобы каждый замок, проходя по рабочей поверхности цилиндра, миновал окна.
Напомним вкратце еще и о важности правильного подбора глушителя.
Во время работы двигателя в выпускной трубе и в глушителе возникают колебания газов. Частота этих колебаний зависит от размеров выпускной трубы, числа оборотов коленчатого вала и устройства глушителя. Изменяя размеры трубы и применяя тот или иной глушитель, можно ухудшить или улучшить мощностные показатели. Хорошие результаты получаются при работе двигателей К-55 и К-175 с глушителем, показанным на рис. 4.
Рис. 4. Глушитель, обеспечивающий наилучшие показатели мощности двигателей мотоциклов К-55 И К-175.
Особенности эксплуатации форсированного двигателя.
Для двигателя с увеличенной степенью сжатия необходимо применять топливо с октановым числом 70—80. Свечу зажигания надо ставить с повышенным калильным числом. При степени сжатия 8,5—9,5 хорошо работают свечи ВКС 17—19 и СДЧ. Чем выше степень сжатия, тем с большим запаздыванием следует устанавливать зажигание.
Инженер А. СИЛКИН,
заслуженный мастер спорта.
1960N03P22-23
Технология производительности | Степень сжатия 101 Деталь: 2
O Шестерни как жопы и есть у всех. Загляните на форум , в блог, в Instagram или на YouTube, и вы обнаружите, что несколько «создателей двигателей» делятся своими мыслями и мнениями о наилучшей степени сжатия для конкретного движка или приложения. Если вы уберете что-то большее, чем человек, который потратил время на публикацию этого контента, имеет такого же мудака, как и я, есть 98-процентная вероятность того, что вас ввели в заблуждение. Чтобы не быть обманутым, вам нужно потратить время, чтобы понять последствия повышения или понижения степени сжатия двигателя.
Эти эффекты не имеют ничего общего с чувствами или эмоциями. Вместо этого эти эффекты основаны на науке. В дополнение к пониманию эффектов повышения или понижения степени сжатия двигателя, вам также необходимо понимать, как октановое число топлива, процентное содержание алкоголя, тип впрыска топлива (распределенный или прямой), уровни наддува и типы вождения будут влиять на выбор идеальной степени сжатия. соотношение для вашего приложения.
Майкл Феррара
ДСПОРТ Выпуск #211
Вот что может вас удивить. Первоначальная степень сжатия OEM вашего двигателя является идеальной степенью сжатия для двигателя. Конечно, нам нужно определить, что подразумевается под «идеальным». Степень сжатия OEM идеальна для рекомендуемого минимального октанового числа бензина, для заводских уровней выходной мощности, для заводских уровней наддува, для соответствия требованиям по выбросам и для режима вождения, который, по мнению OEM, будет использоваться.
OEM-производитель выбирает степень сжатия, которая достаточно высока, чтобы обеспечить максимальную тепловую эффективность, и в то же время достаточно низка, чтобы не вызвать детонацию (детонацию) в самых неблагоприятных условиях. Эти наихудшие условия могут возникнуть при чрезмерном накоплении углерода в двигателе с большим пробегом. Даже в этих условиях заводская степень сжатия не будет слишком высокой.
Несмотря на то, что степень сжатия OEM очень хорошо работает для двигателя OEM в условиях OEM с предполагаемым использованием OEM, существует вероятность того, что степень сжатия OEM может не быть идеальной степенью сжатия для максимальной производительности вашего приложения. То, чем вы питаете свой двигатель, напрямую влияет на идеальную степень сжатия. Октановое число топлива и содержание алкоголя будут влиять на идеальную степень сжатия. Топливо с более высоким октановым числом и топливо с более высоким процентным содержанием спирта позволяют использовать более высокие степени сжатия.
Прямой впрыск также позволяет работать с более высокой степенью сжатия. К сожалению, возможность работать с более высокой степенью сжатия не означает, что это идеальная степень сжатия. Это еще не все. Уровни повышения, которые будут установлены, также будут учитываться в идеальной степени сжатия. По мере увеличения уровней наддува идеальная степень сжатия для пиковой мощности будет уменьшаться. Мы рассмотрим это более подробно позже, но важно помнить, что увеличение давления наддува снижает идеальную степень сжатия. Наконец, тип гонок и/или вождения, которым будет подвергаться двигатель, также влияют на идеальную степень сжатия. В гоночных сериях, где снижение расхода топлива обеспечивает конкурентное преимущество, использование более высокой степени сжатия, которая жертвует некоторой мощностью при более высоких уровнях наддува, но обеспечивает лучшую экономию топлива, может быть выходом. Нынешние двигатели IndyCar являются хорошими примерами двигателей с наддувом и высокой степенью сжатия.
В зависимости от типа курса буст ограничен 19и 21,7 фунтов на квадратный дюйм с наддувом 24 фунта на квадратный дюйм. Хотя ни один производитель не сообщает свою фактическую степень сжатия для своего двигателя IndyCar, ожидаемый диапазон степени сжатия для этих двигателей составляет от 11,5 до 12,5: 1, согласно большинству источников. В приложении для дрэг-рейсинга, где уровни наддува составляют от 50 до 60 фунтов на квадратный дюйм, работа со степенью сжатия в этом диапазоне будет иметь более низкую выходную мощность, чем работа с более низкой степенью сжатия. В то время как двигатель будет более экономичным с более высокой степенью сжатия, трасса в ¼ мили без пит-стопов не принесет пользы.
Настройка двигателя для работы на Е85 вместо бензонасоса расширяет диапазон возможных степеней сжатия, которые можно использовать. Однако использование максимально возможной степени сжатия не обеспечивает наилучшую производительность для всех высокопроизводительных приложений.
В то время как все знакомы с неверными суждениями, которые могут возникнуть у человека, употребляющего алкоголь, мало кто понимает, что использование двигателем топлива на основе спирта также открывает дверь для некоторых неверных суждений.
Это неправильное суждение обычно является результатом менталитета «если немного хорошо, то лучше больше». Топливо с высоким содержанием этанола, такое как E85, очень устойчиво к детонации (детонации). Причина в том, что спирт обладает гораздо лучшим охлаждающим эффектом, чем бензин, когда испаряется. Поскольку двигатель может не детонировать при давлении наддува 30 фунтов на квадратный дюйм даже при степени сжатия 11,0: 1, люди ошибочно полагают, что эти более высокие степени сжатия идеальны для E85. В зависимости от приложения может быть. Но 9Двигатель .0:1 будет производить больше мощности, чем двигатель 11.0:1, при давлении примерно от 22 до 30 фунтов на кв. дюйм. Для приложения перетаскивания, где вы не тратите время на низкие уровни повышения, низкая степень сжатия, скорее всего, будет идеальной. Для уличного применения или применения в цепях увеличение мощности без наддува и при низком наддуве за счет более высокой степени сжатия может быть наиболее идеальным.
Детонационная стойкость топлива и коэффициент охлаждения влияют на допустимый диапазон степеней сжатия.
Если двигатель будет работать исключительно на гоночном газе, степень сжатия может быть выше, чем у насосного газа.
Задолго до того, как система наддува появилась на заводских двигателях, поршни с высокой степенью сжатия были одной из оригинальных модернизаций для повышения скорости. Если у вас полностью моторная установка, обычно лучше всего использовать максимально возможную степень сжатия для используемого топлива. Однако есть исключение. Если средства, используемые для достижения этой сверхвысокой степени сжатия, снижают эффективность сгорания (процент воздушно-топливной смеси, сгорающей в цилиндре), идеальной будет несколько более низкая степень сжатия, которая не оказывает такого влияния.
Увеличение степени сжатия безнаддувного двигателя увеличивает его тепловой КПД. Это означает, что больше энергии извлекается из процесса сгорания и меньше тратится впустую на систему охлаждения и выхлопную систему. На каждую произведенную лошадиную силу требуется меньше топлива.
Увеличивается экономия топлива. Поскольку в систему охлаждения затрачивается меньше энергии, степень повышения температуры в системе охлаждения при полном открытии дроссельной заслонки будет меньше на двигателе с более высокой степенью сжатия, чем на двигателе с более низкой степенью сжатия. Поскольку скорость горения воздушно-топливного заряда увеличивается при более высоких степенях сжатия, идеальное опережение зажигания для двигателя с более высокой степенью сжатия будет меньше, чем для двигателя с более низкой степенью сжатия. При степени сжатия от 8,0:1 до 12,0:1 двигатель с более высокой степенью сжатия будет производить больше мощности, когда наддув находится в диапазоне от нуля до 20 фунтов на квадратный дюйм. Поскольку принудительная индукция не была распространена до начала 90s, и он в основном устанавливался на импорт, многие старожилы никогда не сталкивались с негативными компромиссами производительности, связанными с увеличением степени сжатия на форсированном двигателе.
Что не так с повышением степени сжатия на двигателе, работающем на сверхвысоком уровне? Основная проблема с более высокими степенями сжатия — повышенная вероятность детонации.
Поскольку температура воздушно-топливной смеси во время воспламенения повышается с увеличением степени сжатия, повышение степени сжатия увеличивает вероятность самовоспламенения (воспламенение из-за тепла и давления до фактического возникновения искры) и детонации (неконтролируемый взрыв). топливовоздушной смеси). Эти опасения сводятся на нет, когда в качестве топлива для двигателя используется бензин с более высоким октановым числом и/или E85. В то время как повышение степени сжатия оказывает положительное влияние на повышение теплового КПД двигателя, оно также оказывает отрицательное влияние на снижение объемного КПД двигателя. Это снижение объемной эффективности является результатом меньшего неуправляемого объема, который можно было бы заполнить. По мере того, как давление наддува становится выше, количество мощности, теряемой из-за уменьшения нерабочего объема, увеличивается. Также наблюдается небольшое снижение энергии выхлопа при более высокой степени сжатия. Это означает, что для питания турбонагнетателя требуется меньше энергии, поэтому турбонаддув может достигать пикового наддува при немного более высоких оборотах двигателя на двигателе с более высокой степенью сжатия.
Однако этот недостаток производительности часто компенсируется тем фактом, что более высокая степень сжатия позволяет двигателю развивать большую мощность без наддува. Это может означать, что двигатель уже разгоняется быстрее, прежде чем «включится» наддув.
Преимущество снижения степени сжатия заключается в потенциальном повышении объемного КПД двигателя при одновременном снижении теплового КПД.
На этой диаграмме показано, что именно происходит при изменении степени сжатия двигателя. Серебряная линия представляет исходную степень сжатия 9,5:1. Темно-синяя линия показывает эффект резкого снижения степени сжатия до 7,5:1. Есть прирост мощности при высоком наддуве и потери мощности ниже 20 фунтов на квадратный дюйм наддува. Обратное происходит, когда степень сжатия увеличивается до 10,5 или 11,5 к 1.
Снижение степени сжатия двигателя имеет эффект, прямо противоположный повышению степени сжатия. Преимущества снижения степени сжатия двигателя заключаются в увеличении объемного КПД, снижении температуры топливовоздушной смеси в момент воспламенения и снижении вероятности детонации.
Улучшения объемной эффективности на самом деле не начинают перевешивать снижение тепловой эффективности до тех пор, пока давление наддува не превысит примерно 20 фунтов на квадратный дюйм. Чем выше давление наддува за пределами этой точки пересечения, тем выше прирост мощности при более низкой степени сжатия. С другой стороны, снижение степени сжатия снижает расход топлива двигателем. Двигатель с более низкой степенью сжатия также будет производить меньшую мощность ниже отметки давления наддува 20 фунтов на квадратный дюйм. Мы включили диаграмму, показывающую ожидаемое изменение мощности, если вы начали с 90,0 к 1, и вы рассматривали возможность перехода на двигатель с коэффициентом сжатия 10,0 к 1 или 11,0 к 1 или снижение компрессии до двигателя с коэффициентом сжатия 8,0 к 1 и 7,0 к 1.
Если принять во внимание только ту разницу, которую изменение степени сжатия оказывает на термический КПД двигателя, это будет следующим влиянием на экономию топлива. При рассмотрении влияния на выходную мощность необходимо учитывать влияние, оказываемое изменением объемного КПД двигателя.
Если у вас полностью моторная установка, вы можете использовать следующую таблицу для оценки влияния изменения степени сжатия. Обратите внимание: чем выше степень сжатия, тем выше прирост производительности в приложении All-Motor.
Используя диаграммы, представленные в этой статье, вы получите хорошее представление о том, как два двигателя с разной степенью сжатия будут работать при разных уровнях наддува. Если ваше приложение требует большей мощности без наддува и примерно до 20 фунтов на квадратный дюйм, следует рассмотреть вопрос о повышении степени сжатия, если используемое топливо обладает требуемой детонационной стойкостью. Если ваше приложение требует большей мощности от 20 фунтов на квадратный дюйм наддува до бесконечности, следует рассмотреть возможность уменьшения степени сжатия двигателя. Просто помните, что резкие сокращения действительно повредят выходной мощности и мощности без наддува, пока вы не преодолеете отметку наддува в 15 фунтов на квадратный дюйм.
Для приложений с низким наддувом эта диаграмма показывает влияние изменения степени сжатия при наддуве 15 фунтов на квадратный дюйм. Обратите внимание, чем выше степень сжатия, тем выше прирост производительности на этих низких уровнях наддува.
Для приложений с умеренным наддувом увеличение степени сжатия фактически снижает пиковую выходную мощность при 29,4 фунтов на квадратный дюйм. Точка пересечения, в которой степень сжатия увеличивается, помогает или вредит пиковой мощности, обычно составляет около 20 фунтов на квадратный дюйм.
Для приложений с высоким наддувом увеличение степени сжатия снижает пиковую выходную мощность при 44,1 фунта на квадратный дюйм, в то время как мощность будет соответственно уменьшаться при высоких уровнях наддува, при выключенном наддуве и при более низких уровнях наддува.
Хотя диаграммы могут помочь определить направление, ничто не сравнится с реальным тестированием. Если у вас есть программа двигателя для вашей гоночной команды, которая позволяет разрабатывать двигатели, попробуйте построить два идентичных двигателя, которые имеют немного разные степени сжатия (возможно, на полбалла).
Сравните и оцените два двигателя, чтобы увидеть, какой из них дает лучшие результаты. Промойте и повторите несколько раз, и в конце концов вы найдете идеальную степень сжатия для вашей установки. Конечно, этот процесс предполагает, что метод, используемый для получения различной степени сжатия на каждом двигателе, имеет наименьшее влияние на изменение полноты сгорания. В третьей части мы рассмотрим наилучшие способы достижения идеальной степени сжатия, обеспечивающей максимальную эффективность сгорания. Следите за обновлениями.
| Цикл Отто Увеличение сжатия за счет изменения рабочего объема, объема камеры или того и другого увеличивает крутящий момент во всем диапазоне оборотов и особенно полезно при частичном дросселировании. Однако увеличение наиболее эффективно в тех случаях, когда исходная степень сжатия относительно низкая. Добавление 1 точки сжатия; например, 8,0-1, увеличенное до 9,0-1, изменение соотношения на +12,5%, повышает эффективность на 4,3%, является более эффективным, чем такое же процентное увеличение, начиная с более высокого соотношения: 12,0-1, увеличенное до 13,5-1, также +12,5%, но повышает эффективность всего на 3,4%. Сравнение, основанное на определенном приращении степени сжатия (а не на пропорции), еще более показательно. Добавление 1 балла к двигателю 9.0-1 добавляет 3,6%, но добавление 1 балла к двигателю 12.0-1 добавляет только 2,3%. «Эффективность» относится к относительному использованию энергии, содержащейся в топливе, а не к количеству или проценту потребляемого топлива или воздуха. Эффективность предполагает, что при изменении степени сжатия не вносятся другие изменения, такие как гашение, кожух клапанов, маскировка купола поршня и т. д., и что используется топливо с достаточным октановым числом, чтобы обеспечить наилучшую настройку зажигания для максимальной эффективности. С практической точки зрения увеличение степени сжатия иногда изменяет другие факторы: дыхание, гашение, завихрение, распространение пламени и т. д. поэтому прямое численное сравнение не совсем точно — более высокие коэффициенты всегда будут показывать меньшие улучшения, чем указано, но у меня нет метода включения этих факторов в расчеты. В расчетах модели «идеального» цикла Отто в качестве показателя степени (мощности) используется традиционное «адиабатическое отношение переменных тепловыделений» для воздуха и подобных газов (1.4). Ошибка здесь в том, что при сжатии всегда есть потери тепла в сам цилиндр, поэтому вместо 1,4 следует подставить более низкое значение политропы. Показатель степени, используемый здесь для расчетов, равен 1,25, что более реалистично для безнаддувных 4-тактных двигателей внутреннего сгорания. Чтобы использовать Таблицу 1: найдите степень сжатия в верхней строке. Ячейка непосредственно под покажет КПД, рассчитанный по приведенной ниже формуле, где E = КПД, R = статическая (номинальная) степень сжатия и K = 1,25. Чтобы сравнить эффективность различных коэффициентов сжатия, разделите значение эффективности нового коэффициента на значение эффективности исходного (уже заполненного в таблице 2 ниже). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Чтобы использовать Таблицу 2: найдите существующую степень сжатия в столбце 1 (слева) и следуйте этой строке до предполагаемой (будущей) степени сжатия. Число в этой ячейке представляет собой мощность, выраженную в процентах от исходной. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

00
Число в этой ячейке представляет собой мощность, выраженную в процентах от исходной.