15Июн

Полярность при сварке порошковой проволокой: Сварка порошковой флюсовой проволокой | MastakSvarka

Содержание

Прямая и обратная полярность при сварке

Большинство современных сварочных аппаратов имеют в своей конструкции блок выпрямительных диодов, что, в свою очередь, обеспечивает постоянный сварочный ток. Для аппаратов, использующих в качестве сварочного материала проволоку (сварочных полуавтоматов) это является обязательным условием. Для аппаратов же, использующих для работы электроды это уже является опцией, позволяющей использовать практически любые марки электродов для проведения сварочных работ.

Классификация сварочной дуги по полярности постоянного тока:
а — прямая полярность; б — обратная полярность


При работе полуавтоматом необходимо обязательно соблюдать полярность подключения. Так, сварка обычной обмедненной проволокой в среде защитного газа производится током прямой полярности. То есть на изделие подается плюс, а на держак минус (прямая полярность при сварке). При таком подключении ток протекает от проволоки на изделие, в связи с чем нагрев изделия получается выше, нежели сварочной проволоки.
И это закономерно. Свариваемые части имеют значительно большую площадь, соответственно, требуют большего нагрева для образования сварочной ванны. Проволока же, имеющая меньшую площадь достаточно легко плавится и в место сварки попадает уже в виде расплавленной капли. Протекающий ток, а он протекает именно от плюса к минусу, захватывает расплавившийся материал, опять же способствуя формированию качественной сварочной ванны. Судя по комментариям посетителей нашего сайта, возникла небольшая путаница с тем, в каком все таки направлении течет ток в цепи. Давайте попытаемся внести ясность в этот вопрос!
Необходимо понимать, что «направление тока» в электротехнике — это больше условность, принятая для рисования схем. Традиционно, на схемах, принято рисовать от плюса к минусу, как будто движение тока происходит от плюса к минусу, хотя реальное движение носителей заряда в большинстве случаев происходит в обратном направлении! В случае, если проводником выступает металл (провод, электрод и т.
п.), реальные носители заряда — электроны, летят от минуса к плюсу (т.к. электроны — отрицательно заряженные частицы). Если проводником выступает ионизированый газ или жидкость с ионами, в таком случае ионы летят в обе стороны.
При работе полуавтоматом без защитной среды газа, используется специальная порошковая (флюсовая) проволока. В этом случае обязательно меняется полярность подключения держака и «массы». То есть на массе «минус», а на держаке плюс (обратная полярность при сварке). Обусловлено это тем, что температура плавления флюса примерно одинакова с температурой плавления металла, однако для получения качественного шва необходимо чтобы флюс сгорел и образовал небольшое газообразное облако в среде которого и будет происходить сварочный процесс. Как уже отмечалось выше, ток течет от минуса к плюсу, поэтому и падение расплавленной капли металла будет несколько более низким, что обеспечит меньший прогрев свариваемого металла, поскольку охлаждение последнего не осуществляется средой защитного газа и формирование сварочной ванны будет примерно таким же, как и при сварке в среде газа.

Сварка цветных металлов, в частности алюминия, производится, как правило, специальным вольфрамовым электродом. В этом случае обычно используют прямую полярность при сварке — минус на электроде. Такой тип подключения позволяет получить большую температуру в зоне нагрева, что особенно критично для того же алюминия, поскольку первоначально необходимо «пробить» оксидную пленку, тем более, что температура плавления у последней гораздо выше, нежели самого металла.
Прямая полярность помимо всего прочего позволяет получить более концентрированную и узкую электрическую дугу, более глубокое проплавление металла, а, соответственно, более качественный шов и, что немаловажно, использовать меньший диаметр дорогостоящего вольфрамового электрода, а также снизить расход не менее дешевого газа.
При подключении вольфрамового электрода в обратной полярности при сварке — с плюсом на держаке — шов получается менее глубоким. Такой способ хорош при сваривании тонких пластин — в этом случае отсутствует опасность прожечь свариваемый материал. Однако ещё одним минусом является эффект «магнитного дутья». В этом случае образующаяся дуга получается блуждающей и шов получается менее красивым и герметичным.

Кроме статьи «Прямая и обратная полярность при сварке» смотрите также:

Применение порошковой проволоки для сварки без газа

Ряд требований, предъявляемых к использованию порошковой проволоки для сварки без газа, сводится к правильному манипулированию сварщика электродом. Перемещение электрода должно быть максимально равномерным. Электрод должен передвигаться поступательно при сварке тонких листов металла. Если требуется сваривать толстые листы, то необходимо осуществление поперечных движений. Манипуляции сварщика электродом производятся в зависимости от его усмотрения.

Схема полуавтоматической сварки проволокой без газа.

Какие требования следует выполнять, применяя порошковую проволоку?

Сварщик способен двигать электродом вперед, ставить его в положение перпендикулярно по отношению рабочей поверхности, уводить сварочный элемент назад. Выбор угла наклона производится в интервале от 5 до 20 градусов. Необходимо следить за диаметром сварной ванны, который должен составлять около 30 мм. Вышеизложенные условия требований являются обобщенными.

Полярность проволоки при сварке полуавтоматом без газа: без газа (обратная полярность) и с газом (прямая полярность).

Для каждого вида соединений металлических конструкций, например таких, как тавровое или угловое либо другие, предполагается наличие иных требований. В процессе сварочных работ обязательно берут во внимание и вид металла, необходимый в условиях сварки.

без газа (обратная полярность) и с газом (прямая полярность).

Поскольку осуществление ручной сварки с применением покрытых электродов может быть наиболее востребованным, то при создании шва осуществляется не только визуальный контроль, но и подача расплавленной проволоки вместе со специальными защитными материалами на участок сварки.

Все эти качества присущи технологии сварки с использованием порошковой проволоки, не уступающей процессу сварки за счет флюса либо специального газа, который является защитным.

Флюсовая сварка вызывает сложности при наличии преимуществ, связанных с выбором направления использования электродов. Вместе с тем осуществляется сварка за счет инертных газов, что может повлечь выход из-под контроля качества по причине влияния сквозняков либо ветров.

Вернуться к оглавлению

Как применяют порошковую проволоку при сварочных работах без газа?

Проволока для сварки порошкового типа, имеющая электрод, включающий оболочку из металла, содержит сердечник порошковый. Оболочка выполняется с применением холоднокатаной ленты, имеющей особую мягкость.

Различия в составе порошкового сердечника зависят от того, какое предназначение имеет проволока. Здесь можно отметить необходимость применения железного порошка рутилового и флюоритового концентрата, газо- и шлакообразующих присадок, а также защитных. В основном компоненты, которые входят в сердечник, являются диэлектрическими.

Сварка осуществляется таким же способом, как и проведение сварочных работ с помощью электрода.

Защитную оболочку из металла следует расплавить за счет сварного тока. Раскаленный металл, а также наличие электрической дуги позволяет расплавить материал сердечника. При выполнении многослойной сварки производят очистку рабочих поверхностей от отложений шлаков предыдущего слоя перед покрытием новым слоем.

Схема устройства сварочного полуавтомата.

Производить сварочные работы с применением стандартных электродов не всегда является удобным. Все зависит от того, где расположено место проведения работ. Особенно трудно осуществлять сварку в условиях высоты и открытой местности. Признаки определенного дискомфорта становятся препятствием при формировании качественного соединения. Именно для обеспечения удобных условий в процессе сварки и создания качественного шва осуществлялась разработка расходного материала, который и представляет собой порошковую проволоку. С ее применением может быть выполнена сварка без создания специальных условий и газовой среды.

Данный материал применяют при соединении различных сталей, которые могут быть как низколегированными, так и низкоуглеродистыми. Различается два его вида, которые применяются для простой и особой сварки. Проволока с особым назначением включает разные виды, которые позволяют:

  • принудительно сформировать шов;
  • осуществлять сварку под водой;
  • производить сварку автоматически.

Вернуться к оглавлению

Какую конструкцию имеет проволока стальная порошковая?

Порошковая стальная проволока – это электрод, стальная оболочка которого заполнена набором защитных, деоксидирующих и шлакообразующих присадок. Важный компонент материала – это порошок железный, марка которого определяет уровень его содержания в общем объеме.

Содержание рутила с концентратом флюорита составляет до 60%. Выбор присадок осуществляется с учетом содержания важных веществ в процентах. Характеристики присадок и их область использования должны полностью соответствовать характеристикам электрода для сварки.

Таблица режимов сварки полуавтоматом.

Порошковая проволока может отличаться присутствием компонентов, обеспечивающих стабильность дуги даже без условий газовой среды. Она имеет конструкцию, которую отличает минимальный набор оборудования, а условия ее применения исключают использование редуктора, газовых баллонов и т.д. Если расплавка сердечника из стали происходит достаточно быстро, то это связано с наличием повышенного электрического сопротивления. При этом формирование качественного шва происходит за достаточно небольшой интервал времени.

Порошковая проволока имеет преимущества, позволяющие применять ее, не нанося вред глазам, даже в том случае, если они не защищены специальными средствами. Соединение не вызывает разбрызгивания металла, оно получается ровным и качественным. При выполнении сварочных работ необходим тщательный контроль. Производителями рекомендуются определенные режимы сварки, которые очень важно соблюдать.

Вернуться к оглавлению

Как используется газозащитная и самозащитная проволока?

Порошковую проволоку газозащитного типа используют для сварки на автоматах и полуавтоматах. Сварку производят при наличии инертного газа. Среди важных характеристик порошковой газозащитной проволоки выделяют:

  • разбрызгивание в малых количествах;
  • невысокую степень пористости;
  • легкость при отделении шлаков.

Материал для сварки самозащитного типа применяется для различных работ на открытом участке. Сердечник содержит необходимые защитные элементы. Вместе с тем в процессе проведения сварочных работ пользоваться инертным газом не обязательно.

Удобство сварки за счет порошковой проволоки самозащитного типа сводится к отсутствию необходимости в дополнительном оборудовании. Благодаря этому устройству для сварки придается компактная форма конструкции. Порошковую проволоку реализуют по цене, зависящей от ее размеров, назначения и т.д.

Вернуться к оглавлению

Как правильно проводится сварка порошковой проволокой без газа?

Формы оболочек порошковой проволоки.

Специфика конструкции самозащитной проволоки позволяет вести сварочные работы в положении снизу. Для некоторых случаев сварку проводят вертикально.

Объяснением этому является соответствующий объем ванны для сварки. Какая-либо модель данного материала может быть выбрана согласно ее характеристикам, в соответствии с режимом работы оборудования для сварки.

Важным преимуществом является возможность применения такой проволоки с целью создания шва в конструкции из определенной марки стали.

В целом процесс сварки не связан с образованием шлака в большом количестве, поры при этом полностью отсутствуют.

Порошковая проволока является оптимальным вариантом, позволяющим осуществлять работу на открытом воздухе.

Влияние сквозняков и ветра является незначительным для создания качественного соединения. Вместе с тем параметры создаваемых швов за счет порошковой проволоки уступают качественным характеристикам таких видов сварки, как газовая либо электродная.

Осуществление выбора порошковой проволоки связано с тем, что учитываются не только ее технические характеристики, но и размер диаметра, который должен быть не меньше 2,3 мм. Если изделие имеет меньшее сечение, то оно применяется с целью соединения металлических конструкций с наименьшей толщиной.

Для проведения сварочных работ обычно применяют специальный сварочный аппарат, который является шланговым автоматом или полуавтоматом, предусматривающим отсек для мотка с проволокой.

Ее крепление осуществляется с использованием фиксатора в рукоятке, а подача проволоки осуществляется за счет специального шланга. Это позволяет поддерживать стабильную дугу и полностью расплавить содержимое сердечника.

Полярность при сварке предоставляет все возможности качества

Типы сварки

Аппараты для сварки обладают блоком выпрямительных диодов. Это обеспечивает постоянную силу тока, что является непременным условием для сварочных полуавтоматов, материалом для которых служит проволока. Если для аппарата нужны электроды, то это обозначает опцию и возможность применения в процессе работы всех их марок. А полярность при сварке – основа ее качества.

Применяя полуавтомат, надо соблюсти полярность подключения. Сварка под защитой газа омедненной проволокой осуществляется при помощи тока прямой полярности. Фактически это означает:

  • на держак подается минус;
  • на само изделие – плюс.

Сила тока идет на него от проволоки. Изделие нагревается по сравнению со сварочной проволокой сильнее. В результате площадь свариваемого участка увеличивается. Он нуждается в значительном нагреве с целью формирования ванны для сварки. Проволока, которая обладает меньшей площадью, быстро расплавляется. Она попадает в нужное место уже расплавленной каплей. Током, протекающим от минуса к плюсу, увлекается расплавленный материал, образуется подходящая сварочная ванна.

Работая полуавтоматом вне защитной газовой среды, необходимо применять особую флюсовую (порошковую) проволоку. В таком случае меняется полярность подсоединения «массы» и держака. На последнем – плюс, а на «массе» — минус. Температура плавления флюса приблизительно соответствует температуре плавления металла. Чтобы добиться образования качественного шва, нужно, чтоб сгорел флюс. После чего ожидаются два следующих этапа:

  1. Должно появиться газообразное облачко.
  2. В его среде будет осуществляться процесс сварки.

Сила тока направляется к плюсу от минуса, и падение капли металла оказывается более низким. Как раз это обусловит меньший прогрев металла для сварки. Ведь его охлаждение не производится защитной газовой средой. По этой причине образование сварочной ванны почти не отличается от процесса сварки в среде газа. Сварка переменным током несет с собой свои преимущества. Она не имеет расхождения с дугой относительно первоначальной оси. А на качество шва как раз воздействует отклонение дуги.

Работая с генератором на переменном токе, несложно заметить: полярность его циклически меняется. Циклам присуща частота 50 Гц. Она, поднявшись до плюсового напряжения, может упасть до нуля либо опуститься до отрицательного показателя. Напряжение изменяется от плюса к минусу и наоборот.

Сваривая цветной металл и нержавейку

При сварке цветных металлов, включая алюминий, пользуются особым вольфрамовым электродом. При этом применяют в процессе сварки прямую полярность, минус на электроде. Данный тип подключения дает шанс иметь нужную температуру в зоне нагрева. Это важно для алюминия, так как сначала надо одолеть оксидную пленку. У нее температура плавления существенно выше в сравнении с самим металлом.
Полярность напрямую при сварке способствует получению:

  • узкой электрической, более концентрированной дуги;
  • более основательного проплавления металла, а также стали из нержавейки;
  • более качественного шва.

Есть также у процесса и немаловажная экономическая составляющая. Применяя дорогостоящий электрод из вольфрама меньшего диаметра, можно попутно добиться снижения затрат на газ. Если же подсоединить электрод из вольфрама при сварке в обратной полярности, то есть на держателе – с плюсом, то шов окажется менее глубоким. У этого метода имеются свои преимущества. Сваривая тонкие пластины, можно не бояться прожечь насквозь материал из цветного металла и нержавейки.

Существенным недостатком становится только эффект магнитного дутья. Получающаяся дуга выходит блуждающей, а шов – не очень герметичным и привлекательным. Пользуясь переменным током, нужно применять электроды для переменки. Сварщики, мастера своего дела, применяют постоянный ток. С его помощью сварка образует однонаправленный поток электронов. Полярность обеспечивает качество сварки материала, в том числе нержавейки.

Прямая полярность получается, когда с изделием соединяют «плюс» источника тока. Если соединяют электрод, то тогда налицо обратная полярность. Пользуясь сварочным инвертором, можно самому выбрать на нем полярность. Она определит для сварки направление маршрута для потока электронов. Фактически определяется подключением проводов к отрицательной и положительной клеммам. При сваривании полярность обратная означает:

  • на клемме земля – минус;
  • на электроде – плюс.

Ток направляется к положительному от отрицательного контакта. По данной причине электроны идут на электрод от металла. В итоге сильно нагревается конец электрода. Для традиционной сварки эффективно применяют минус на клемме, а плюс – на электроде. При сваривании полярность прямая предполагает плюс на клемме земля, минус – на электроде. Ток движется к металлу от электрода. Металл – горячий, а электрод – холодный. Такая особенность нашла применение в особых электродах, предназначенных для ускоренной сварки листов нержавейки.

Особая важность полярности при сварке

Ясно, что сварка на переменном токе не зависит от того, какой выбран зажим трансформатора для присоединения электрода и изделия. А вот постоянным током по давней традиции сваривают одним из двух способов. С прямой полярностью электрод, подключенный к отрицательному полюсу, становится катодом.

В анод превращается изделие, подключенное к положительному полюсу. Обратная полярность означает, что электрод после подключения к положительному полюсу является анодом. Катод в данном случае – это изделие, подключенное к отрицательному полюсу.

Материал электрода определяет характер дуги между плавящимися электродами из металла и неплавящимися электродами (вольфрамовыми либо угольными). Сварочной дуге присущ ряд как технологических, так и физических свойств. От них почти полностью зависит результат применения при сварке дуги. К свойствам физическим относят:

  • световые и электрические;
  • температурные и электромагнитные;
  • кинетические.

Главные технологические свойства включают три разновидности:

  1. Саморегулирование.
  2. Пространственную устойчивость.
  3. Мощность дуги.

Для поддержки горения дуги надо получить электрически заряженные частицы в пространстве между имеющимися электродами. Эти частицы представляют собой электроны, отрицательные и положительные ионы. Процесс их образования называют ионизацией. Газ, который содержит ионы и электроны, называют ионизированным.
Дуговой промежуток ионизируется при зажигании дуги, постоянно поддерживается во время ее горения. В дуговом промежутке обычно выделяют такие области:

  • катодную;
  • анодную;
  • область дугового разряда (столб дуги).

В анодной области имеет место существенное падение напряжения, которое вызвано скоплением возле электродов заряженных частиц (пространственных зарядов). На поверхности катода и анода происходит образование электродных пятен. Они представляют собой своеобразный фундамент столба дуги. Через них проходит путь тока к сварке. Электронные пятна отличаются яркостью свечения.

Сварка имеет общую длину дуги, которая состоит из суммы длин трех областей. Общее напряжение сварочной дуги образует сумма падений напряжения в каждой из областей дуги. Зависимость напряжения от длины дуги представляет сумму падения напряжения в прианодной и прикатодной областях. Удельное падение в дуге напряжения соотносится с 1 миллиметром столба дуги. А главной характеристикой дуги при сварке считается тепловая мощность источника нагрева.

Ее эффективность определяется количеством теплоты, которое вводится в металл (не исключая нержавейки) за определенную единицу времени и расходуется на его нагрев. Тепловая мощность – часть совокупной тепловой мощности дуги, из которой небольшая доля теплоты тратится непроизводительно:

  • на нагрев разбрызгивающихся капель;
  • излучение;
  • на теплоотвод в металле.

Отношение результативной тепловой мощности источника теплоты к полной является в процессе нагрева коэффициентом полезного действия.

Технология дуговой сварки

Популярность дуговой сварки неоспорима. Она различается по признакам:

  • по виду электродов;
  • по виду применяемого тока;
  • по среде, где имеет место дуговой разряд.

Для ремонта кузовов авто широко применяется дуговая сварка полуавтоматом в газовой защитной среде. Для индивидуального использования самой доступной считается ручная дуговая сварка. Она осуществляется плавящимися электродами на постоянном либо переменном токах. Предоставляет отличный шанс сварить в непроизводственной обстановке большую часть разновидностей сталей, не исключая нержавейки.

Расстояние между дном кратера и поверхностью главного металла считается глубиной его проплавления или глубиной провара. Она зависит:

  • от скорости перемещения дуги;
  • величины тока сварки.

Если длина сварочной дуги не больше, чем диаметр стержня электрода, то дугу называют короткой или нормальной. Она способна гарантировать превосходное качество сварного шва. Дугу, имеющую большую протяженность, считают длинной. Чересчур значительное наращивание длины дуги приводит к снижению качества сварки. Влияние электромагнитного поля приводит к отклонению дуги от намеченного направления. Это явление назвали магнитным дутьем.

Электрод в ходе процесса перемещается поперек и вдоль сварного шва в направлении оси, чтобы сохранить намеченную длину дуги. Ускоренное движение электрода приводит к появлению неплотного, неровного и узкого шва. При замедлении движения появляется опасность пережога металла, в том числе нержавейки. Ширина большого шва не должна превышать 15 миллиметров, ниточного – на два-три миллиметра больше в сравнении с диаметром электрода.
Сварные швы по своей форме могут быть:

  • нахлесточными,
  • тавровыми,
  • угловыми,
  • стыковыми.

По протяженности швы делятся на прерывистые и сплошные. По пространственному положению они имеют четыре разновидности:

  1. Потолочные.
  2. Вертикальные.
  3. Горизонтальные.
  4. Нижние.

Источники питания: генератор, выпрямитель, сварочный трансформатор – при внешней характеристике представляют связь величины тока нагрузки с напряжением на выходных зажимах. Вольтамперная характеристика дуги – это зависимость между током дуги и напряжением в статическом режиме. Внешние характеристики генераторов для сварки считаются падающими.

Длина дуги определяется напряжением. Напряжение будет выше, если сварочная дуга длинней. Равное изменение длины дуги (падение напряжения) означает, что при различной внешней характеристике источника изменение тока при сварке неодинаково. Лучше характеристика – значит, длина сварочной дуги оказывает меньшее влияние на ток для сварки.

Похожие статьи

Полуавтомат полярность для сварки — Морской флот

Насыщенность домашних мастерских сложным электроинструментом профессионального уровня впечатляет. Но не все паспортные возможности оборудования используются. Как настроить полуавтомат сварочный на металл различного сечения, перенастроить на алюминий, нержавейку – сухой информации инструкции недостаточно. Обратимся к знаниям производственников.

Внешнее влияние на настройки

Изменение пространственного положения шва, усиление катета, толщины, конфигурации стыков одного металла потребуют разных настроек. Основные настройки полуавтомата (ПА):

  • Напряжение дуги; регулировка отражается на изменении величины тока.
  • Ток – подача проволоки; увеличение скорости подачи проволоки отзывается пропорциональным ростом величины тока и наоборот.
  • Расход газа задаётся с опорой на основные параметры, регулируется оценкой качества шва при исключении порообразования.

Далее по результатам тестового прохода режимы электродуговой сварки в среде защитных газов подвергаются корректировке.

Для опытного практика даже звучание зажжённой дуги информативно. Придётся с приобретением полуавтомата привыкать к его особенностям, необходимости подстраивать под изменения:

  • Комплектация и сборка ПА с равноценными характеристиками отличаются начинкой, различие в настройке встречаются у одного производителя.
  • Перепады напряжения сбивают настройки; трансформаторный ПА отключится, а инвертор может сгореть.
  • Изменение состава защитного газа.
  • Смена марки и диаметра проволоки.
  • Повлияет даже незначительный ремонт или замена комплектующих.

Газозащита

Газопоток также относится к расчётным табличным величинам. Напрямую на настройку сварочного полуавтомата не влияет. Контроль упрощается, если редуктор оснащён 2 шкалами. Регистрация величины редуцированного потока воспринимается объективнее с установкой ротаметра.

Расходомер ротаметрический показывает подачу углекислоты (аргона) рабочего давления в постоянных величинах. Показание статического давление снизится, когда сработает курок горелки, создастся защитное облако. Начальный диапазон для ротаметра 6–10 л/мин, для редуктора с манометрами – 1–2 атм.

Экономный расход подбирается по пористости шва: газопоток увеличивается, пока не исчезнут поры. В помещении с принудительной вытяжкой и на ветру в целях экономии предпочтительно воспользоваться порошковой самозащитной проволокой.

Подбор газовой смеси

Выбор смеси определяют требования качества исполнения и свойства материала:

  • СО2 – идеальное предохранение сварочной ванны конструкционных сталей, глубокий проплав, но разбрызгивание и грубоватость шва для тонких работ не подходят.
  • Смесь аргона и углекислого газа С25 (75% Ar; 25% CO2) – сочетание подходит для сварки тонколистовых конструкций, создаётся равномерный шов с минимумом брызг.
  • Композиция из 98% Ar; 2% CO2 – для нержавеющих сталей.
  • Для алюминия – аргон в чистом виде.

Настройка напряжения

Затраты мощности на горение дуги и плавление металла определяет настройка вольтажа. Энергозатраты возрастают с увеличением глубины провара (толщины материала) и диаметра проволоки.

Настройки бытовых ПА ступенчатые. Огрубление режимами min/max или многорежимные, с мягкой подстройкой как расширенный диапазон регулировки сварочного напряжения полуавтомата Wester MIG-110i на 10 установок.

На внутренней стороне крышки кожуха находится таблица регламента установочных величин напряжения. Это главная подсказка производителя, печатается на модели, разнящиеся по мощности и техоснащению.

Итоговое решение, как настроить полуавтомат сварочный за оператором. Расплывчатые рекомендации не догма, основной критерий – глубина провара и прочность соединения.

Скорость подачи проволоки

Регулятор скорости подачи проволоки управляет силой тока. Величина подачи – одна из основных изменяемых характеристик. Устанавливается после выбора напряжения: скорость плавления определяет движение электрода в горелке.

Эта величина подлежит регулировке после смены марки и диаметра проволоки, изменения напряжения. Существуют ПА с автоматической подстройкой режима, но они в сегменте дорогостоящей аппаратуры.

Желательна тонкая настройка движения расходного материала для оптимизации корректировок. Излишнее ускорение приведёт к наплывам, замедление – к просадке, волнистости, разрывам шва. Баланс тока и напряжения, управляемого скоростью подачи, в сумме дают оптимальный валик.

Первый показатель несоответствия режима выявляется в действии – скорость подачи с зажжённой дугой снижается, но проволока не успевает плавиться, сгибается, липнет к заготовке, идёт активное разбрызгивание.

Недостаточность подачи – электрод инвертора сгорает до касания, забивается наконечник. Подбор режима скорость/ток под выставленное напряжение – первый шаг к профессионализму.

Скорости подачи проволоки в полуавтомате, таблица прямой зависимости влияния изменения настроек на конечный результат:

Полярность

Процедура изменения полярности проста. Под крышкой табличка с указанием, какой металл вид и проволоки требуют прямой или обратной полярности. Прямая – горелка подключается к клемме минус. При прямой полярности плавление проволоки ускоряется на 50%, но стабильность дуги падает.

Сварка порошковой самозащитной проволокой ведётся при прямой полярности. Максимум энергии тепловыделения расходуется на защиту шва. Флюс прореагирует без остатка. Склонность к разбрызгиванию компенсируется безразличием к недоочистке рабочих зон, и порывам ветра. Издержки в виде брызг и корки шлака – неизбежное зло.

Цельная омеднённая в газовом облаке подсоединяется к положительной клемме. Подготовка материала к сварке связана с зачисткой проявлений коррозии, загрязнений стыков, разделки. Токопроводность возрастает с увеличением диаметра. Для заготовок большого сечения есть резон увеличить сечение проволоки.

Вылет и выпуск проволоки

Длина вылета расходного электрода из контактной трубки (наконечника), величина рабочего зазора горелки влияют на качество неразъёмного соединения.

Взаиморасположение наконечника горелки относительно сопла в отдельных конструкциях меняется. Они располагаются на одном уровне, контактная трубка утапливается или выдвигается относительно сопла до 3,2 мм.

На коротком вылете ведётся швообразование конструкционных низколегированных сталей – увеличение расстояния разрежает прикрытие защитным газом. Флюсовую проволоку искусственно удлиняют для увеличения температуры плавления.

Настройка дуги

Уже простые модели ПА имеют верньер управления величинами индуктивности. Настройка жёсткости меняет температуру дуги, глубину проплавления при заметной выпуклости шва. Чувствительность деталей к перегреву, тонкие стенки теперь не препятствуют сварке.

Снижение сжатия токового канала (рост индуктивности) поднимает температуру плавления, проплав глубокий, сварочная ванна разжижается. Валик шва уплощается. Управление глубиной провара, температурой дуги и ванны – качественно новый уровень настройки сварочного полуавтомата.

Малые диаметры присадки делают дугу устойчивее, коэффициент наплавки растёт, глубина проплавления оптимизируется, разбрызгивание снижается. По выпуклости шва и величине разбрызгивания уточняется длина дуги: короткая даёт объёмный шов, длинная мешает концентрации расплава.

Индуктивность maxИндуктивность min
Проплав углубляетсяНизкотемпературная дуга
Разжижение сварочной ванныБрызгообразование усилено
Валик шва ровный, гладкийВалик шва объёмный
Угловые, усиленные швыНастройка полуавтомата для сварки тонкого металла
Управление скоростью подачи проволоки

Переключатель активизации подачи проволоки бывает двухпозиционный (High/Low) или многоступенчатый. Припой большего диаметра выдаётся с замедлением, что оптимизирует процесс.

Перед началом работы

Когда ПА подготовлен к работе согласно инструкции, нелишне потратить время на уточнение режимов настройки. В помощь предлагаем таблицу в качестве ориентира. Составление аналога с индивидуальными свойствами ПА поможет в определении лучших режимов и уточнении возможности техники.

Собственная таблица сварочного тока для полуавтомата имеет тенденцию к разрастанию с новым материалом, условий сварки. Уточнение на бумаге для памяти положения переключателя не повредит.

Выбирается рекомендуемое напряжение. Манипулированием с силой тока и скоростью подачи присадки подбираем оптимум при уменьшении тока и максимуме подачи. Затем при росте ампеража. Вольтаж меняется через 0,5 А. Подробная таблица станет личной инструкцией скоростной настройки.

Ориентировочная таблица: сварочный ток (скорость подачи проволоки), взаимозависимость компонентов процесса:

Влияние величины напряжения на качество шва

Выпуклый шов с достаточным проплавом без пористости, наплывов и подрезов выйдет только при сбалансированности основного компонента – напряжения с сопутствующими.

Низкие настройки дают зауженный высокий шов с малым проникновением вглубь. Высокие – уплощённый с расползанием и глубоким кратером ванны. Завышение напряжения негативно влияет на формирование шва: не удаётся создать валик достаточного объёма при глубине расплава на грани прожига.

  • теплотворность напряжения оптимальна;
  • недостаточна;
  • избыточна.

Возможные проблемы и ошибки

Проблемы и промахи при слепом следовании усреднённым рекомендациям – вина сварщика. Об этом упоминалось выше. Подбор режима сварки дело тонкое. Творческий подход и внимание к мелочам – половина пути к успеху.

Опора на опыт профи поможет:

  • Потрескивание, щелчки – сигнал недостаточной скорости подачи припоя.
  • Присадка плавится на удалении, до наконечника – скорость подачи занижена.
  • Избыток брызг – увеличьте подачу газа и индуктивность.
  • Пористость, оттенки коричневого и зелёного на шве – слабая газозащита.
  • Прожиг, непровар – перебор или недостаток напряжения, скорректируйте индуктивность.
  • Неравномерность шва, неустойчивость дуги, непровар – загрязнение сварочного поля, ослаб зажим массы.
  • Переменчивость полноты валика, зазубрины – скорость ведения горелки и положение относительно шва нарушены.
  • Шов прерывается, неконтролируемое разбрызгивание – превышена длина дуги.

Сегодня для сварки металлов применяют различные сварочные аппараты. При их выборе учитывают свойства и поведение металлов во время выполнения сварочных работ. Особый подход требует алюминий и его сплавы. Как и стальные сплавы, этот металл широко используется во многих сферах, поэтому вопрос соединения алюминиевых конструкций и отдельных изделий из него совсем не праздный. Чаще других для этих целей применяется сварка алюминия полуавтоматом.

Особые свойства алюминия

Широкое использование алюминия объясняется его небольшим удельным весом, достаточно стабильной прочностью и коррозионной устойчивостью. Но его поведение при тепловой обработке создает сложности при соединении алюминиевых конструкций и деталей с помощью сварки. Это объясняется спецификой физико-химических свойств алюминия:

  • он не изменяет свой цвет при сильном нагревании, поэтому трудно понять по цвету о степени прогрева металла;
  • имеет широкий температурный диапазон плавления в отличие от стальных сплавов и начинает плавиться при низком температурном пороге, теряя при этом свою прочность;
  • не проявляет склонности к намагничиванию;
  • обладает высокой теплопроводностью (в среднем в 5 раз больше, чем стальные сплавы), поэтому при нагреве зоны соединения тепло интенсивно распространяется по всей свариваемой детали. Чтобы его не терять, перед проведением сварочных работ, особенно больших алюминиевых изделий, предварительно проводят их нагрев;

Из-за активного взаимодействия алюминия с кислородом воздуха на его поверхности образуется окисная пленка. При достижении определенной толщины она затем начинает служить защитой алюминия от дальнейшего окисления. В то же время, окисная пленка создает сложности при сварке, т. к. плавится при температуре 2050-2200 о С, в отличие от самого металла, имеющего точку плавления в районе 660 о С.

Задачи сварщика при работе с алюминием

Учитывая особенности поведения алюминиевых сплавов при сварке, вы должны решить в процессе работы основные задачи: избавиться от оксидной пленки, обеспечить стабильную дугу во время сварки и своевременную подачу сварной проволоки, чтобы сварочный процесс алюминия был непрерывным, в противном случае его придется начать заново.

  • избавиться от окисной пленки в месте шва: пробить ее электрическим импульсом или провести механическую очистку поверхности с помощью металлической щетки или путем химического травления. Для пробивания пленки используют специальный импульсный режим работы оборудования;
  • при выборе режима сварки не допустить прожогов металла из-за повышенной теплопроводности и низкого порога плавления алюминия, приводящего к быстрой потере прочности при нагревании. Для этого он должен обеспечить нужную температуру процесса и дугу от 12 до 15 мм длиной, выбрать правильные электроды и размер присадочной проволоки, подходящий для толщины соединяемых алюминиевых деталей и сопла горелки;
  • учитывать склонность алюминия к значительной линейной усадке (почти вдвое больше, чем у сталей) при быстром остывании после нагрева, т. к. это ведет к созданию внутреннего напряжения с образованием деформационных трещин или кратеров в области шва. Для предотвращения этого начинать сварочный процесс нужно при большом сварочном токе, чтобы пробить оксидную пленку, а заканчивать — постепенно снижая его к концу процесса, это смягчит резкую смену температуры и не даст образоваться кратеру.

Технологические особенности сварки

Полуавтоматическая сварка алюминия должна выполняться под защитой инертного газа. В основном для этого используют аргон. Иногда к нему добавляется гелий.

Разбавление аргона углекислым газом при сварке алюминия, как это делают при соединении стальных конструкций аргонодуговым способом, недопустимо.

Допускается выполнение сварного шва полуавтоматом без применения нейтрального газа при условии использования порошковой расходной проволоки. При нагреве она начинает распылять железосодержащий порошок, который образует облако и служит диэлектриком, выполняющим защитную роль также, как инертный газ.

Использование порошковой проволоки в качестве защитного флюса при сварке алюминия стоит применять только в исключительных случаях, т. к. при таком методе сварной шов не будет отличаться высоким качеством.

Задачи, которые стоят перед сварщиком при работе с алюминием, успешно можно решить с помощью сварочного полуавтомата с использованием TIG и MIG технологий.

При TIG технологии используются неплавящиеся электроды на основе вольфрама и присадочная проволока, автоматически заполняющая стык между деталями. При использовании этой технологии необходимо наличие в полуавтоматическом устройстве режима переменного тока, а также высокочастотного розжига дуги.

В этом случае окисная пленка пробивается путем «катодного» распыления ее поверхности в моменты тока с обратной полярностью.

При MIG методе в качестве присадки используют сами электроды, т. к. они являются плавящимися. Такой электрод равномерно подается в сварную зону с помощью устройства автоматической подачи проволоки.

Сварка алюминиевых сплавов полуавтоматическим аппаратом MIG способом проводится с использованием постоянного тока, имеющего обратный характер полярности. Рассмотрим его подробно.

Сварка постоянным током обратной полярности

Процесс выполнения такой сварки изображен на рисунке:

При ее проведении сварочная дуга окружена парами металлического расплава электродной проволоки. Капли жидкого алюминия при постоянной подаче проволоки в виде ионов притягиваются «катодной» поверхностью сварной ванны. При этом происходит их нейтрализация с образованием дополнительного тепла.

В результате такого процесса поверхностная оксидная пленка разрушается. Если окисный слой значительный, то перед проведением сварки его нужно удалить с помощью механической чистки или травлением.

Плавящийся электродный металл заполняет каплями область между стыками деталей, образуя при застывании прочный шов.

Как использовать полуавтомат при сварке алюминия

Любой аппарат, работающий в полуавтоматическом режиме, должен обеспечить стабильную подачу присадочной проволоки, достаточный импульс для разрушения окисного слоя и дальнейшего поддержания дуги или работу с использованием переменного тока. Для этого нужно выполнять следующие правила:

  • Подача мягкой алюминиевой проволоки осуществляется специальным прижимным механизмом, который вращается с помощью четырех роликов, имеющих U–форму поверхностной канавки. Для обеспечения стабильной подачи проволоки необходимо отрегулировать давление на прижимной вращающийся механизм. Это поможет избежать зажимания проволочного алюминия во время проведения сварки.
  • Расплавление присадочной проволоки происходит способом струйного переноса. Такой режим может быть обеспечен применением переменного тока в 270 ампер или импульсного тока в 100 ампер. Поэтому сварочный аппарат должен иметь возможность настроек таких режимов с помощью блока генерации, т. е. представлять инверторный тип аппарата.
  • Аппарат при сварке алюминия должен работать в режиме обратной полярности сварного тока, когда «–» подается на клемму, закрепленную на детали, а электрод подсоединяется к «+». Это обеспечивает создание наивысшей температуры в сварной области.
  • Т. к. алюминиевые сплавы при нагревании расширяются больше, чем стальные, то при их сварке для полуавтоматической подачи проволоки в горелках должны использоваться контактные наконечники с диаметром отверстия заведомо с припуском на величину расширения, при этом должен соблюдаться хороший контакт для поддержания электрической искры.
  • Для меньшего контактного трения при прохождении проволоки внутри горелки нужно использовать специальный кабельный канал, рассчитанный на алюминий. Обычно он изготавливается из тефлонового материала или на основе графита.
  • Важным для успешного выполнения сварного шва является подбор подходящего диаметра сварной проволоки из алюминия. Т. к. этот металл является мягким, то использование тонкой проволоки до 8 мм в диаметре затруднительно ввиду сложности ее прохождения через горелку (она может запутываться с образованием петель и изгибов). Выходом является использование горелок с небольшим размером длины или применения дополнительного приспособления подачи проволоки внутри корпуса горелки.

При использовании толстой проволоки (от 1,2 до 1,6 мм в диаметре) нужно применять высокий сварной ток.

Плюсы и минусы сварки алюминия полуавтоматом

Любой полуавтомат для выполнения сварки имеет в своем устройстве источник получения сварочной дуги, горелки с защитным рукавом для проволоки, кабеля с зажимом на конце для подключения к детали, двигателя и редуктора.

Плюсы полуавтомата:

  • Такое устройство аппарата позволяет использовать его в широком диапазоне с разными настройками, помогающими выбрать нужный режим проведения сварочного процесса.
  • Контроль дуги можно проводить при любом положении горелки.
  • Можно проводить сварку деталей любого размера. При необходимости соединения конструкций больших размеров проводить работу можно без использования защитного аргона.
  • Аппарат обеспечивает высокую точность сварного шва.
  • Обеспечивается экономный расход расходных материалов и электроэнергии с большой эффективностью.
  • Аппараты полуавтоматического типа могут иметь небольшой вес и размеры, а также мобильность, позволяющую устанавливать их в нужном месте.
  • Имеют высокий КПД, достигающий 95%.
  • Основным недостатком полуавтомата инверторного типа является его высокая стоимость по сравнению с трансформаторными устройствами.
  • Такие аппараты боятся пыли, которой в производственных условиях или на стройке достаточно. Поэтому, в отличие от других устройств, они нуждаются в регулярной чистке с продувкой инвертора.
  • Электронные схемы управления регулировкой плохо реагируют на минусовые температуры, а перепады температур могут вызвать конденсат и вывести из строя систему.

Ознакомившись с процессом сварки алюминия с помощью полуавтоматического аппарата и его тонкостями, вы можете самостоятельно приступать к работе. Соблюдение всех рекомендаций статьи и правильного проведения технологического процесса позволит добиться качественного надежного соединения изделия из алюминия.

Направление движения электронов регулируется с помощью полярности путём переключения проводов на клемму «плюс» или «минус». То есть, при работе со сваркой постоянного тока возможны два варианта настройки:

  1. Прямая полярность. Минус подключён к электроду, плюс на клемме «земля». В этом случае ток движется от электрода к заготовке, и металл греется сильнее.
  2. Обратная полярность. К электроду подсоединяется плюс, на клемму «земля» — минус. Движение тока от минуса к плюсу (от заготовки к электроду) создаёт более сильный нагрев.

Прямая и обратная полярность подключения при сварке инвертором используется в зависимости от поставленных задач и качества материалов. При переменном токе тип подключения неважен, а при постоянном есть возможность менять полярность вручную.

Значение полярности для сварки

Постоянный ток создаёт термическое (анодное) пятно. Меняя полярность, можно его перемещать от электрода к заготовке. Основной нагрев создаётся на плюсовом гнезде, поэтому при прямой полярности сильнее нагревается заготовка, а при обратной – электрод. Таким образом формируются возможности инвертора в зависимости от характеристик металлов:

  • Толщина металла. При прямой полярности основной нагрев достаётся заготовке, поэтому ширина шва провара получается достаточно глубокой. Соответственно для тонких металлов правильнее использовать обратное подключение, при котором металл нагревается слабее электрода.
  • Тип металла. При сварке приходится работать с различными сплавами, обладающими определёнными свойствами. Например, алюминий относится к среднеплавким металлам, поэтому нужно обеспечить заготовке прямое подключение для нагрева. Нержавеющую сталь лучше не перегревать, выбрав обратную полярность. Настройки инвертора позволяют учитывать, какой сплав подвергается варке, поэтому предварительное изучение инструкции поможет эффективно справиться с задачей.
  • Тип электрода. Сварочные электроды имеют покрытие – флюс. При разогреве он сгорает, выполняя свою основную задачу: вытесняя воздух, предотвращает образование пор. Тип флюса определяет особенности использования электродов при разных температурных режимах. К примеру, угольные электроды не подходят для подключения с обратной полярностью. Рекомендации производителя позволят сделать правильный выбор. То же самое относится и к типам проволоки. К слову, инверторные полуавтоматы также имеют характеристики, которые стоит учитывать.


Если заготовка и электрод имеют характеристики, требующие противоречивых настроек, придётся найти компромиссный вариант, регулируя силу тока и время обработки шва. С опытом приходят и знания, позволяющие решать любые задачи.

Виды сварки

Ручная сварка дугой с помощью плавящегося электрода (ММА)

Здесь его роль играет особая плавящаяся проволока, покрытая шлаком. Способ очень популярен, но специалисты считают его не самым лучшим вариантом для получения качественных швов, если изделие по составу является сложным сплавом. Во время плавления проволока соединяет нужные детали, а её покрытие очищает от грязи и защищает от кислорода сварочную ванну. Способ подходит для сварки чугуна, чёрных металлов.

Сварка полуавтоматическая

Электродом является проволока, автоматически попадающая в зону сварки. Аппарат находится в режиме ручного передвижения, поэтому данный способ не подходит для обработки большой рабочей зоны, его используют для сварки тонких листов, цветных металлов, высоколегированной стали. Применяется как постоянный, так и импульсный ток. При использовании порошковой проволоки газ не нужен, в остальных случаях сварка током производится в среде активных или инертных защитных газов. Возможна сварка электродом без его плавки.

Сварка в среде защитных газов

Технологический процесс подразумевает использование газа аргона, который выжигает грязь и кислородные соединения. Электродом выступает неплавкий вольфрамовый либо графитовый стержень. Применение аргона очищает сварочную ванную от всех ненужных примесей и окислов. Образование шлака исключено, шов получается качественным и чистым, но сварка в среде защитных газов – довольно дорогая технология, требующая серьёзных навыков.

Разные типа сварки используются и в зависимости от условий работы сварки. Например, для ремонта кузовов автомобилей в сервисах используют дуговую сварку полуавтоматом с помощью среды защитного газа, что позволяет создавать качественную сварочную работу при её невысокой стоимости. Прямая и обратная полярность при сварке инвертором позволяет регулировать глубину плавления для любого типа сварочных работ.

Технология ручной сварки дугой

Дуговая сварка – самый распространённый тип сварки металла. Способ универсален, технологически прост и позволяет получать сварочные швы хорошего качества в непроизводственных условиях. Электроток сварочного источника образует дугу между изделием и электродом. На нём сгорает покрытие (флюс), выделяя газ, очищающий рабочую область от кислорода.

По форме и типам соединений сварочные швы разделяются на:

Разные углы наклона электрода позволяют создавать разные по типу швы. Самый удобный промежуток – между 45 и 90 градусами, при котором сварочная ванна полностью в зоне видимости. С опытом приходит и понимание, как именно нужно менять угол наклона.

Обычно сварочные аппараты комплектуются кабелем массы с держателем зажимного типа. С первого взгляда, это удобно, такое приспособление можно надежно закрепить к практически любой поверхности (листы, металлопрокат и прочие). Но бывают ситуации, когда нет возможности установить такую массу на заготовку или, еще чаще, она перегорает. Неплохой альтернативой станет магнитный контакт сварочного кабеля.

Главная задача для новичка – научиться «вести» сварочный шов. Основной металл прогревается до состояния расплавления, формируя сварочную ванну. В зависимости от ситуации сварщик меняет установки тока, ориентируясь на состояние ванны. Начинать нужно с настроек, рекомендованных производителями, а дальше постепенная практика поможет понять и правильно использовать все возможности инвертора.

Зачем менять полярность на полуавтомате

Прямая и обратная полярность при сварке инвертором (или любым другим сварочным аппаратом) задает тон всему рабочему процессу и правильный выбор этого параметра напрямую влияет на качество сварного соединения. При обратной полярности к металлическим деталям подают «минус», а к электроду подводят «плюс». В случае с прямой полярностью все наоборот. И это всего лишь одна из нескольких особенностей, которые нужно учесть при сварке. Но сегодня мы остановимся именно на обратной полярности.

В этой статье мы подробнее расскажем про обратную полярность при сварке. Вы узнаете, что такое обратная полярность, при каких условиях выбирается данный тип направленности тока, какое оборудование используется в работе с обратной полярностью и как настроить аппарат, чтобы выполнить работу качественно и быстро.

Общая информация

Что такое обратная полярность при сварке? Обратная полярность тока — это процесс подачи положительного электрического заряда на электрод, а отрицательного электрического заряда — на свариваемую металлическую деталь. При этом тепло распределяется в обратной последовательности: электрод существенно перегревается, а деталь наоборот не прогревается вовсе. По этой причине обратной полярностью при дуговой сварке пользуются в особых случаях, когда велик шанс деформировать металл при высокой температуре или требуется выполнить очень аккуратный шов. За счет воздействия высокой температуры металл легко прогревается, шов формируется быстро и ровно.

Обратная полярность просто необходима при сварке нержавейки, тонкого металла, легированной и высокоуглеродистой стали, алюминия и прочим сплавов, легко подвергающихся перегреву. Так, например, ток обратной полярности — обязательный спутник электродуговой сварки с применением флюса или сварки в среде инертного газа. У вас просто не получится качественно наплавить металл, если вы будете использовать, скажем, аргонодуговую сварку и установите прямую полярность.

Многие новички все равно задаются вопросом, почему при некоторых работах используется обратная или прямая полярность при сварке инвертором? Постараемся объяснить подробнее. Обратная полярность применяется в работе, поскольку при горении дуги на конце сварочного стержня образуются участки с высокой концентрацией анодов и катодов. При этом температуры существенно отличаются, область анода может быть горячее области катода на 700 градусов по Цельсию!

Исходя из этого нетрудно догадаться, что при обратной полярности выделяется огромное количество тепла, что способствует качественному провариванию металла. Если для сварки того или иного металла этот показатель важен, то применяется обратная полярность. Прямая направленность тока используется во всех остальных случаях.

Кстати, при работе с постоянным током обратной полярности электрод сгорает значительно быстрее, чем при работе с прямой полярностью. Это связано опять же с избыточным нагревом стержня. Так что будьте готовы к перерасходу комплектующих. Если вы используете переменный ток, то выбор полярности не актуален вовсе, поскольку направление тока будет постоянно меняться во время работы.

Итак, повторим: полярность устанавливается только при работе с постоянным током. Обратная полярность применяется при сварке особых легко деформирующихся металлов, когда шов нужно сформировать быстро и качественно.

Сварка током обратной полярности не может ни отразиться на свойствах используемого в работе электрода. Через стержень проходит большое количества тепла, а это значит, что и сама деталь очень быстро нагревается, металл легко и глубоко проваривается, при этом практически не разбрызгивается (особенно, при сварке с флюсом).

Можно ли менять полярность прямо во время работы, если на сварочном инверторе (или любом другом типе оборудования) есть такая возможность? Вы, конечно, можете попробовать этот способ в качестве эксперимента, но мы не станем рекомендовать вам это. В этом просто нет необходимости. Но иногда бывают ситуации, когда вы начали работу не с той полярности и внезапно обнаружили это, поэтому хотите выставить другие настройки. Постарайтесь закончить начатое без изменения полярности (если требования к сварному шву не очень высокие). Да, электрод будет прилипать, но с этим нужно смириться. Если шов должен получиться качественным и красивым, то лучше начните работу заново, установив другую полярность.

Выбор полярности

Давайте еще немного времени уделим правильному выбору полярности. Помимо самого металла важно учесть и электроды или проволоку, которую вы используете в работе. Выбор прямой или работа на обратной полярности при сварке зависит от типа покрытия. Если вы работаете угольным электродом, то подключение обратным способом нежелательно, поскольку такие стержни быстро разрушаются при перегреве. Если вы используете проволоку, которая не имеет никакого покрытия вовсе, то она без проблем расплавится и при прямой полярности, но при использовании с переменным током она даже не нагреется.

Также на выбор полярности влияет то, какой шов вы хотите сделать, какие у него должны быть размеры и форма. При работе с постоянкой и обратной направленностью швы хорошо проплавлены, сварное соединение узкое и неглубокое, поскольку процесс сварки длится недолго из-за высоких температур.

Оборудование

Сварка постоянным током обратной направленности осуществляется только на сварочных аппаратах, предназначенных для такой работы. Выбор сварочного аппарата — это отельная немаловажная тема, поэтому в рамках этой статьи мы расскажем только самое главное. Прежде всего, ваш сварочный аппарат должен иметь возможность работать с разными режимами и подавать проволоку с разной скоростью. Так вы сможете варить аргоном или углекислым газом (это очень важно при сварке нержавейки), но не сможете варить порошковой проволокой, поскольку для этого необходима прямая полярность.

С помощью обратной полярности появляется возможность использовать в своей работе полуавтоматическое сварочное оборудование. Здесь держак и масса подключаются к «плюсу» и «минусу» соответственно. За счет этого флюс выгорает постепенно и полностью, сама сварка происходит в образовавшемся газовом облаке.

Вместо заключения

Выбор полярности при сварке постоянным током — задача не из легких, если вы начинающий сварщик. Нужно учесть все возможные нюансы, связанные с типом и толщиной металла, используемым в работе электродом или присадочной проволокой, а также удачно выбрать сварочный аппарат с нужным вам набором функций. Все это кажется чем-то очень сложным, но поверьте, с опытом вы будете настраивать аппарат и подбирать комплектующие, даже не задумываясь. Изучайте много теории и не забывайте применять ее на практике.

Расскажите в комментариях о своем личном опыте сварки на обратной полярности, если вы опытный мастер. Это будет очень полезно для новичков. Также делитесь этой статьей в социальных сетях. Желаем удачи в работе!

Свар­ка MIG / MAG была изоб­ре­те­на в 1950‑х годах и основ­ные прин­ци­пы исполь­зу­ют­ся, в совре­мен­ных сва­роч­ных аппа­ра­тах по сей день. Она явля­ет­ся самой уни­вер­саль­ной и часто при­ме­ня­е­мой в кузов­ном ремон­те. Когда речь идёт о полу­ав­то­ма­ти­че­ской свар­ке, то, име­ют вви­ду, имен­но эту свар­ку. В отли­чие от дру­гих видов руч­ной свар­ки она отли­ча­ет­ся лёг­ко­стью при­ме­не­ния, при этом даёт каче­ствен­ный резуль­тат.

p, blockquote 1,0,0,0,0 –>

Более пра­виль­ное и пол­ное назва­ние это­го вида свар­ки GMAW (Gas metal arc welding – элек­тро­ду­го­вая свар­ка метал­ла в сре­де защит­но­го газа), но чаще исполь­зу­ют имен­но аббре­ви­а­ту­ру MIG / MAG (Metal Inert Gas/ Metal Active Gas).

p, blockquote 2,0,0,0,0 –>

MIG /MAG-свар­ка – это элек­тро-дуго­вая свар­ка, исполь­зу­ю­щая посто­ян­ный ток ( DC ). В каче­стве элек­тро­да в этом виде свар­ке исполь­зу­ет­ся про­во­ло­ка, кото­рая посту­па­ет в место свар­ки с опре­де­лён­ной задан­ной ско­ро­стью. Обыч­но такая свар­ка исполь­зу­ет­ся вме­сте с защит­ным газом. MIG – полу­ав­то­ма­ти­че­ская свар­ка, где в каче­стве защит­но­го газа исполь­зу­ет­ся инерт­ный газ (аргон, гелий..), а MAG – полу­ав­то­ма­ти­че­ская свар­ка, где в каче­стве защит­но­го газа исполь­зу­ет­ся актив­ный газ ( CO2 и сме­си).

p, blockquote 3,0,0,0,0 –>

Пер­во­на­чаль­но исполь­зо­вал­ся толь­ко аргон для свар­ки всех метал­лов, что было доро­го и недо­ступ­но. В даль­ней­шем ста­ли при­ме­нять дву­окись угле­во­да ( CO2 ) и сме­си и этот вид свар­ки стал более доступ­ным и полу­чил широ­кое рас­про­стра­не­ние.

p, blockquote 4,0,0,0,0 –>

MIG /MAG-свар­кой мож­но сва­ри­вать раз­лич­ные виды метал­ла: алю­ми­ний и его спла­вы, угле­ро­ди­стую и низ­ко­уг­ле­ро­ди­стую сталь и спла­вы, никель, медь и маг­ний.

p, blockquote 5,0,0,0,0 –>

Учи­ты­вая высо­кое каче­ство свар­ки и лёг­кость при­ме­не­ния, она, в допол­не­ние к это­му, рас­про­стра­ня­ет срав­ни­тель­но неболь­шой нагрев зоны, вокруг места свар­ки.

p, blockquote 6,0,0,0,0 –>

Принцип действия

p, blockquote 7,0,0,0,0 –>

Свар­ка MIG / MAG (Metal Inert Gas/ Metal Active Gas) осу­ществ­ля­ет­ся посред­ством элек­три­че­ской дуги, защи­щён­ной газом, обра­зу­е­мой меж­ду рабо­чей поверх­но­стью и про­во­ло­кой (элек­тро­дом), кото­рые авто­ма­ти­че­ски посту­па­ют к месту свар­ки при нажа­тии на курок. Ско­рость пода­чи про­во­ло­ки, напря­же­ние свар­ки и коли­че­ство газа уста­нав­ли­ва­ют­ся зара­нее. Из-за того, что сва­роч­ная про­во­ло­ка авто­ма­ти­че­ски посту­па­ет к месту свар­ки, а от свар­щи­ка зави­сят толь­ко мани­пу­ля­ции со сва­роч­ной горел­кой, такой вид свар­ки часто и назы­ва­ют полу­ав­то­ма­ти­че­ской.

p, blockquote 8,0,0,0,0 –>

При MIG /MAG-свар­ке очень важ­на настрой­ка сва­роч­но­го аппа­ра­та. При элек­тро­ду­го­вой свар­ке элек­тро­да­ми и при свар­ке TIG настрой­ки не так кри­тич­ны. Так­же важ­на чисто­та метал­ла перед нача­лом свар­ки.

p, blockquote 9,0,0,0,0 –>

Конец про­во­ло­ки дол­жен высту­пать на опре­де­лён­ное рас­сто­я­ние, ина­че слиш­ком длин­ная про­во­ло­ка-элек­трод не поз­во­лит защит­но­му газу нор­маль­но дей­ство­вать. Этот пара­метр мы рас­смот­рим ниже в этой ста­тье.

p, blockquote 10,0,0,0,0 –>

Оборудование для сварки MIG / MAG

Сва­роч­ный аппа­рат MIG / MAG содер­жит гене­ра­тор элек­три­че­ской дуги (транс­фор­ма­тор или инвер­тер), меха­низм пода­чи про­во­ло­ки, кабель «мас­сы» с зажи­мом, бал­лон для защит­но­го газа.

p, blockquote 11,0,0,0,0 –>

Защитный газ

Основ­ная зада­ча защит­но­го газа – защи­та рас­плав­лен­но­го метал­ла от атмо­сфер­но­го воз­дей­ствия (кис­ло­род окис­ля­ет, а азот и вла­га из воз­ду­ха вызы­ва­ют пори­стость шва) и обес­пе­чить бла­го­при­ят­ные усло­вия зажи­га­ния сва­роч­ной дуги.

p, blockquote 12,0,0,0,0 –>

Тип защит­но­го газа вли­я­ет на ско­рость плав­ле­ния, про­ник­но­ве­ние сва­роч­ной дуги, на коли­че­ство брызг при свар­ке, фор­му и меха­ни­че­ские свой­ства сва­роч­но­го шва. Опре­де­лён­ная смесь газов даёт суще­ствен­ный эффект ста­биль­но­сти элек­три­че­ской дуги и умень­ша­ет коли­че­ство брызг при свар­ке. Состав газа вли­я­ет на то, как рас­плав­лен­ный металл от про­во­ло­ки пере­да­ёт­ся к месту свар­ки.

p, blockquote 13,0,0,0,0 –>

Инерт­ные газы и их сме­си в каче­стве защит­но­го газа ( MIG ) исполь­зу­ют­ся для свар­ки алю­ми­ния и цвет­ных метал­лов. Обыч­но при­ме­ня­ют­ся аргон и гелий.

p, blockquote 14,0,0,0,0 –>

Актив­ные газы и сме­си ( MAG ) при­ме­ня­ет­ся для свар­ки ста­лей. Чаще все­го это чистая дву­окись угле­ро­да ( CO2 ), а так­же в сме­си с арго­ном.

p, blockquote 15,0,1,0,0 –>

Рас­смот­рим виды и сме­си защит­ных газов подроб­нее:

p, blockquote 16,0,0,0,0 –>

  • Чистая дву­окись угле­ро­да ( CO2 ) или дву­окись угле­ро­да с арго­ном, а так­же аргон в сме­си с кис­ло­ро­дом обыч­но исполь­зу­ют­ся, для свар­ки ста­ли. Если исполь­зо­вать дву­окись угле­ро­да ( CO2 ) в каче­стве защит­но­го газа, то полу­чи­те высо­кую ско­рость плав­ле­ния, луч­шую про­ни­ка­е­мость дуги, широ­кий и выпук­лый про­филь сва­роч­но­го шва. Когда исполь­зу­ет­ся чистая дву­окись угле­ро­да, то про­ис­хо­дит слож­ное вза­и­мо­дей­ствие сил вокруг рас­плав­лен­ных метал­ли­че­ских капель на кон­чи­ке насад­ки. Эти несба­лан­си­ро­ван­ные силы ста­но­вят­ся при­чи­ной обра­зо­ва­ния боль­ших неста­биль­ных капель, кото­рые пере­да­ют­ся в зону свар­ки слу­чай­ны­ми дви­же­ни­я­ми. Это явля­ет­ся при­чи­ной уве­ли­че­ния брызг вокруг сва­роч­но­го шва. Так­же чистый кар­бон диок­сид обра­зу­ет боль­ше испа­ре­ний.
  • Аргон, гелий и аргон­но-гели­е­вая смесь исполь­зу­ют­ся при свар­ке цвет­ных метал­лов и их спла­вов. Эти сме­си инерт­ных газов дают более низ­кую ско­рость плав­ле­ния, мень­шее про­ник­но­ве­ние и более узкий сва­роч­ный шов. Аргон дешев­ле гелия и сме­си гелия с арго­ном, а так­же даёт мень­шее коли­че­ство брызг при свар­ке. В отли­чие от арго­на, гелий даёт луч­шее про­ник­но­ве­ние, более высо­кую ско­рость плав­ле­ния и выпук­лый про­филь сва­роч­но­го шва. Но когда исполь­зу­ет­ся гелий, сва­роч­ное напря­же­ние воз­рас­та­ет при такой же длине сва­роч­ной дуги и рас­ход защит­но­го газа воз­рас­та­ет в срав­не­нии с арго­ном. Чистый аргон не под­хо­дит для свар­ки ста­ли, так как дуга ста­но­вит­ся слиш­ком неста­биль­ной.
  • Уни­вер­саль­ная смесь для угле­ро­ди­стой ста­ли состо­ит из 75% арго­на и 25% дву­оки­си угле­ро­да (может обо­зна­чать­ся 74/25 или C25 ). При исполь­зо­ва­нии тако­го защит­но­го газа обра­зу­ет­ся наи­мень­шее коли­че­ство брызг и умень­ша­ет­ся веро­ят­ность про­жи­га насквозь тон­ких метал­лов.

Подготовка металла к сварке

Металл дол­жен быть зачи­щен от крас­ки и ржав­чи­ны. Даже остат­ки крас­ки при свар­ке будут ухуд­шать каче­ство и проч­ность сва­роч­но­го соеди­не­ния. Место под зажим для мас­сы так­же долж­но быть зачи­ще­но.

p, blockquote 17,0,0,0,0 –>

Как держать сварочную горелку

p, blockquote 18,0,0,0,0 –>

Сва­роч­ной горел­кой полу­ав­то­ма­та MIG / MAG мож­но управ­лять одной рукой, но исполь­зо­ва­ние двух рук облег­чит кон­троль и уве­ли­чит акку­рат­ность и каче­ство сва­роч­но­го шва. Смысл в том, что­бы одной рукой дер­жать горел­ку и опи­рать­ся ей на дру­гую руку. Так мож­но лег­че кон­тро­ли­ро­вать рас­сто­я­ние от сва­ри­ва­е­мой поверх­но­сти и угол, а так­же делать горел­кой нуж­ные дви­же­ния при фор­ми­ро­ва­нии шва.

p, blockquote 19,0,0,0,0 –>

Что­бы рабо­тать дву­мя рука­ми, необ­хо­ди­мо исполь­зо­вать пол­но­раз­мер­ную сва­роч­ную мас­ку (луч­ше с авто­за­тем­не­ни­ем), кото­рая удер­жи­ва­ет­ся на голо­ве и руки оста­ют­ся сво­бод­ны­ми.

p, blockquote 20,0,0,0,0 –>

Движение сварочной горелкой во время сварки

p, blockquote 21,0,0,0,0 –>

  • Пря­мой шов, без каких-либо дви­же­ний в сто­ро­ну мож­но при­ме­нять на метал­лах, име­ю­щих прак­ти­че­ски любую тол­щи­ну, но здесь нужен опре­де­лён­ный опыт, что­бы удо­сто­ве­рить­ся, что сва­роч­ная дуга рав­но­мер­но дей­ству­ет на оба сва­ри­ва­е­мых метал­ла.
  • При свар­ке метал­ли­че­ских дета­лей, име­ю­щих тол­щи­ну мень­ше 1мм, луч­ше исполь­зо­вать элек­трод­ную про­во­ло­ку мень­ше­го диа­мет­ра, умень­шить пара­мет­ры силы тока, а так­же ско­рость пода­чи про­во­ло­ки. Нуж­но варить корот­ки­ми импуль­са­ми, делая пере­рыв меж­ду ними в пре­де­лах 1 секун­ды, что­бы металл успе­вал охла­дить­ся. Корот­кий пере­рыв нужен, что­бы сле­ду­ю­щий сег­мент сли­вал­ся с преды­ду­щим и полу­чал­ся моно­лит­ный гер­ме­тич­ный шов.
  • При свар­ке длин­но­го сег­мен­та, во избе­жа­ние пере­гре­ва метал­ла и теп­ло­вой дефор­ма­ции, мож­но сва­ри­вать неболь­ши­ми сег­мен­та­ми или точ­ка­ми с интер­ва­ла­ми, пооче­рёд­но, то с одно­го, то с дру­го­го кон­ца сва­ри­ва­е­мо­го отрез­ка. Таким обра­зом, мож­но про­ва­рить весь сег­мент, без полу­че­ния теп­ло­вой дефор­ма­ции листо­во­го метал­ла.

Скорость сварки

p, blockquote 22,0,0,0,0 –>

Ско­рость свар­ки – это ско­рость, с кото­рой элек­три­че­ская дуга про­хо­дит вдоль места свар­ки. Она кон­тро­ли­ру­ет­ся свар­щи­ком.

p, blockquote 23,0,0,0,0 –>

Ско­рость дви­же­ния сва­роч­ной горел­ки долж­на кон­тро­ли­ро­вать­ся свар­щи­ком и соот­вет­ство­вать ско­ро­сти пода­чи про­во­ло­ки и напря­же­нию элек­три­че­ской арки, выбран­ных, в соот­вет­ствии с тол­щи­ной сва­ри­ва­е­мо­го метал­ла и фор­мы шва.

p, blockquote 24,0,0,0,0 –>

Важ­но добить­ся пра­виль­ной ско­ро­сти свар­ки. Слиш­ком высо­кая ско­рость может вызвать слиш­ком мно­го брызг рас­плав­лен­но­го метал­ла. Защит­ный газ может остать­ся в быст­ро засты­ва­ю­щем рас­плав­лен­ном метал­ле, обра­зуя поры. Слиш­ком мед­лен­ная ско­рость свар­ки может стать при­чи­ной излиш­не­го про­ник­но­ве­ния сва­роч­ной дуги в сва­ри­ва­е­мый металл.

p, blockquote 25,0,0,0,0 –>

Ско­рость дви­же­ния сва­роч­ной горел­ки вли­я­ет на фор­му и каче­ство сва­роч­но­го шва. Мно­гие опыт­ные свар­щи­ки опре­де­ля­ют с какой ско­ро­стью нуж­но дви­гать сва­роч­ную горел­ку, гля­дя на тол­щи­ну и шири­ну шва в про­цес­се свар­ки.

p, blockquote 26,0,0,0,0 –>

Скорость потока защитного газа

Может зна­чи­тель­но вли­ять на каче­ство свар­ки. Ско­рость пото­ка защит­но­го газа долж­на стро­го соот­вет­ство­вать ско­ро­сти пода­чи про­во­ло­ки. Слиш­ком мед­лен­ный поток не даёт нор­маль­ной защи­ты от окис­ле­ния, в то вре­мя как слиш­ком высо­кая ско­рость пото­ка защит­но­го газа может создать завих­ре­ния, кото­рые так­же поме­ша­ют нор­маль­ной защи­те. Все откло­не­ния ведут к пори­сто­сти сва­роч­но­го шва. Важ­но создать ров­ный поток воз­ду­ха, без завих­ре­ний. На это может вли­ять нали­чие застыв­ших брызг на насад­ке.

p, blockquote 27,0,0,0,0 –>

Угол сварочной горелки во время сварки

Свар­ка MIG / MAG может сва­ри­вать раз­ные дета­ли под раз­ны­ми угла­ми, поэто­му не суще­ству­ет уни­вер­саль­но­го угла, кото­рый нуж­но соблю­дать при свар­ке. При свар­ке дета­лей, лежа­щих в одной плос­ко­сти иде­аль­ным будет угол в 15–20 гра­ду­сов (от вер­ти­каль­но­го поло­же­ния). При свар­ке двух дета­лей под углом удоб­нее дер­жать горел­ку под углом 45 гра­ду­сов. Прак­ти­ку­ясь, мож­но для себя опре­де­лить наи­бо­лее удоб­ный угол в кон­крет­ной ситу­а­ции.

p, blockquote 28,0,0,0,0 –>

Сварочное напряжение (длина электрической дуги)

Дли­на дуги одна из самых важ­ных пере­мен­ных в свар­ке MIG / MAG , кото­рую нуж­но кон­тро­ли­ро­вать. Нор­маль­ное напря­же­ние сва­роч­ной дуги в дву­оки­си угле­ро­да ( CO2 ) и гелии (He) намно­го выше, чем в Ароне (Ar). Напря­же­ние дуги вли­я­ет на про­ник­но­ве­ние, проч­ность и шири­ну шва.

p, blockquote 29,0,0,0,0 –>

С уве­ли­че­ни­ем напря­же­ния элек­три­че­ской дуги, шов ста­но­вит­ся более плос­ким и широ­ким и до опре­де­лён­ных пре­де­лов уве­ли­чи­ва­ет­ся про­ник­но­ве­ние. Низ­кое напря­же­ние даёт более узкий и выпук­лый шов и умень­ша­ет­ся про­ник­но­ве­ние.

p, blockquote 30,1,0,0,0 –>

Слиш­ком боль­шое и слиш­ком малень­кое напря­же­ние вызы­ва­ет неста­биль­ность дуги. Избы­точ­ное напря­же­ние явля­ет­ся при­чи­ной обра­зо­ва­ния брызг и пори­сто­сти шва.

p, blockquote 31,0,0,0,0 –>

Сварочная проволока

Сва­роч­ная про­во­ло­ка слу­жит при­са­доч­ным мате­ри­а­лом. При свар­ке про­во­ло­ка посту­па­ет к месту шва и рас­плав­ля­ет­ся вме­сте с кром­ка­ми метал­лов, запол­няя шов. У неё дол­жен быть хими­че­ский состав, схо­жий с соста­вом сва­ри­ва­е­мых мате­ри­а­лов. К при­ме­ру, содер­жа­ние угле­ро­да, от кото­ро­го зави­сит пла­стич­ность шва.

p, blockquote 32,0,0,0,0 –>

Тем­пе­ра­ту­ра плав­ле­ния элек­трод­ной про­во­ло­ки долж­на быть чуть ниже или такой же, как метал­лов, кото­рые сва­ри­ва­ют­ся. Если про­во­ло­ка будет пла­вить­ся поз­же, чем сва­ри­ва­е­мый металл, то уве­ли­чи­ва­ет­ся веро­ят­ность про­жже­ния метал­ла насквозь.

p, blockquote 33,0,0,0,0 –>

Для свар­ки алю­ми­ния и его спла­вов при­ме­ня­ет­ся про­во­ло­ка из чисто­го алю­ми­ния или с при­ме­сью маг­ния и крем­ния.

p, blockquote 34,0,0,0,0 –>

Диа­метр сва­роч­ной про­во­ло­ки

p, blockquote 35,0,0,0,0 –>

Диа­метр сва­роч­ной про­во­ло­ки вли­я­ет на раз­мер шва, глу­би­ну про­ник­но­ве­ния сва­роч­ной дуги, проч­ность шва и на ско­рость свар­ки.

p, blockquote 36,0,0,0,0 –>

Боль­ший диа­метр элек­тро­да (про­во­ло­ки) созда­ёт шов с мень­шим про­ник­но­ве­ни­ем, но более широ­кий. Выбор диа­мет­ра про­во­ло­ки зави­сит от тол­щи­ны сва­ри­ва­е­мо­го метал­ла и поло­же­ния сва­ри­ва­е­мых дета­лей.

p, blockquote 37,0,0,0,0 –>

В боль­шин­стве слу­ча­ев малень­кий диа­метр про­во­ло­ки под­хо­дит для тон­ко­го метал­ла и для свар­ки в вер­ти­каль­ном поло­же­нии.

p, blockquote 38,0,0,0,0 –>

Про­во­ло­ка боль­ше­го диа­мет­ра жела­тель­на для более тол­сто­го метал­ла. Ей нуж­но рабо­тать с умень­шен­ной ско­ро­стью пода­чи про­во­ло­ки, из-за более низ­ко­го про­ник­но­ве­ния.

p, blockquote 39,0,0,0,0 –>

Длина выхода сварочной проволоки

p, blockquote 40,0,0,0,0 –>

До каса­ния сва­ри­ва­е­мо­го метал­ла про­во­ло­ка долж­на высту­пать из нако­неч­ни­ка на опре­де­лён­ную дли­ну.

p, blockquote 41,0,0,0,0 –>

Этот сег­мент про­во­ло­ки про­во­дит сва­роч­ный ток. Таким обра­зом, уве­ли­че­ние дли­ны это­го сег­мен­та уве­ли­чи­ва­ет элек­три­че­ское сопро­тив­ле­ние и тем­пе­ра­ту­ру это­го отрез­ка про­во­ло­ки. Чем боль­ше высту­па­ет про­во­ло­ка, тем мень­ше будет элек­три­че­ская дуга. При длин­ном выхо­де про­во­ло­ки из нако­неч­ни­ка полу­ча­ет­ся узкий шов, низ­кое про­ник­но­ве­ние и повы­шен­ная тол­щи­на шва.

p, blockquote 42,0,0,0,0 –>

При умень­ше­нии дли­ны выхо­да отрез­ка сва­роч­ной про­во­ло­ки даёт про­ти­во­по­лож­ный эффект. Уве­ли­чи­ва­ет­ся про­ник­но­ве­ние сва­роч­ной дуги, полу­ча­ет­ся более широ­кий и тон­кий шов.

p, blockquote 43,0,0,0,0 –>

Типич­ная дли­на выхо­да сва­роч­ной про­во­ло­ки варьи­ру­ет­ся от 6 до 13 мм.

p, blockquote 44,0,0,0,0 –>

При исполь­зо­ва­нии порош­ко­вой про­во­ло­ки без газа дли­на выхо­да сва­роч­ной про­во­ло­ки долж­на быть боль­ше, чем с газом (30 – 45 мм).

p, blockquote 45,0,0,1,0 –>

Cварка самозащитной проволокой без газа

Порош­ко­вая само­за­щит­ная про­во­ло­ка, кото­рую так­же назы­ва­ют флю­со­вой име­ет сер­деч­ник, содер­жа­щий в себе все необ­хо­ди­мые при­сад­ки для защи­ты шва и сва­роч­ной дуги в про­цес­се свар­ки без газа.

p, blockquote 46,0,0,0,0 –>

Такая про­во­ло­ка содер­жит ком­по­нен­ты, обра­зу­ю­щие газ во вре­мя свар­ки, анти­окис­ли­те­ли, очи­сти­те­ли, а так­же при­сад­ки, улуч­ша­ю­щие элек­три­че­скую дугу. Таким обра­зом, при воз­ник­но­ве­нии дуги обра­зу­ет­ся газ, кото­рый защи­ща­ет рас­плав­лен­ный металл, а так­же спе­ци­аль­ные ком­по­нен­ты обра­зу­ют подо­бие шла­ка поверх метал­ла во вре­мя осты­ва­ния, кото­рый защи­ща­ет его во вре­мя затвер­де­ва­ния.

p, blockquote 47,0,0,0,0 –>

p, blockquote 48,0,0,0,0 –>

Такую про­во­ло­ку удоб­но исполь­зо­вать, когда сва­роч­ный аппа­рат нужен не часто. Пре­иму­ще­ством явля­ет­ся луч­шая мобиль­ность обо­ру­до­ва­ния (не тре­бу­ет­ся бал­лон с газом) и воз­мож­ность исполь­зо­ва­ния на ули­це (даже в вет­ре­ную пого­ду, вви­ду отсут­ствия при­то­ка защит­но­го газа).

p, blockquote 49,0,0,0,0 –>

При свар­ке само­за­щит­ной про­во­ло­кой обра­зу­ет­ся мно­го дыма и испа­ре­ний и слож­но визу­аль­но кон­тро­ли­ро­вать про­цесс свар­ки. Сва­роч­ный флюс, кото­рый оста­ёт­ся поверх гото­во­го шва, не про­во­дит элек­три­че­ства, поэто­му после охла­жде­ния, что­бы сва­ри­вать поверх гото­во­го шва, его необ­хо­ди­мо сна­ча­ла зачи­стить.

p, blockquote 50,0,0,0,0 –>

При помо­щи порош­ко­вой про­во­ло­ки мож­но сва­ри­вать более тол­стый металл, чем при помо­щи про­во­ло­ки, исполь­зу­е­мой с газом.

p, blockquote 51,0,0,0,0 –>

Свар­ка при помо­щи это­го типа про­во­ло­ки «про­ща­ет» недо­ста­точ­но хоро­шо под­го­тов­лен­ную поверх­ность.

p, blockquote 52,0,0,0,0 –>

Полярность при сварке без газа

Поляр­ность – это направ­ле­ние пото­ка элек­три­че­ства в цепи сва­роч­но­го аппа­ра­та.

p, blockquote 53,0,0,0,0 –>

При пря­мой поляр­но­сти элек­трод (про­во­ло­ка) – это минус, а сва­ри­ва­е­мый металл (зазем­ле­ние) – это плюс. При обрат­ной поляр­но­сти элек­трод – плюс, а сва­ри­ва­е­мый металл – минус.

p, blockquote 54,0,0,0,0 –>

Для свар­ки при помо­щи порош­ко­вой про­во­ло­ки исполь­зу­ет­ся пря­мая поляр­ность (про­во­ло­ка – минус, зазем­ле­ние — плюс).

p, blockquote 55,0,0,0,0 –>

При свар­ке с газом – элек­трод (+), мас­са (-).

p, blockquote 56,0,0,0,0 –>

Поляр­ность, с кото­рой будет нор­маль­но рабо­тать порош­ко­вая про­во­ло­ка, зави­сит от её соста­ва. Быва­ют и такие, кото­рые будут нор­маль­но сва­ри­вать с любой поляр­но­стью.

p, blockquote 57,0,0,0,0 –>

В боль­шин­стве слу­ча­ев, при свар­ке без газа сва­роч­ный аппа­рат дол­жен быть настро­ен с пози­тив­ным зазем­ле­ни­ем и нега­тив­ным элек­тро­дом. Это даст боль­ше мощ­но­сти для плав­ле­ния порош­ко­вой про­во­ло­ки.

p, blockquote 58,0,0,0,0 –>

Звук правильной сварки полуавтоматом

При обу­че­нии свар­ки MIG / MAG , важ­но слу­шать зву­ки, изда­ва­е­мые при свар­ке и, конеч­но же, кон­тро­ли­ро­вать про­цесс свар­ки визу­аль­но (через затем­нён­ную мас­ку). При пра­виль­ной свар­ке полу­ав­то­ма­том изда­ёт­ся звук, напо­ми­на­ю­щий жар­ку мяса на ско­во­ро­де. Этот «шипя­ще-жуж­жа­щий» звук гово­рит о хоро­шем балан­се меж­ду ско­ро­стью пода­чи про­во­ло­ки, пода­че газа и настрой­ка­ми напря­же­ния. Застыв­шие брыз­ги на насад­ке или нако­неч­ни­ке сва­роч­ной горел­ки ухуд­ша­ют поток защит­но­го газа, пло­хой кон­такт зажи­ма мас­сы, пло­хо очи­щен­ная область свар­ки, всё это может ухуд­шать фор­ми­ро­ва­ние сва­роч­ной дуги, и будет отра­жать­ся на зву­ке свар­ки. Так­же може­те про­чи­тать ста­тью “как настро­ить сва­роч­ный полу­ав­то­мат” для боль­ше­го пони­ма­ния пра­виль­ной настрой­ки аппа­ра­та перед свар­кой.

#1 Nail02

Всем привет ! Наконец то купил себе сварочный полуавтомат, сварог MIG 200Y

озадачен одним моментом, нет режима под порошковую проволку. Как переделвать ? Проволку купил попробовать не могу. Подскажите как это сделать, акуратно. Может ссылки по переделкам есть у кого нибудь ? Знаю что надо менять полярность, но как это сделать, с минимальным изменением конструкции.

#2 tig

Лично, сам прошел через это. лет незнамо сколько назад.

Снимаеш кожух подопытного аппарата, находиш выпрямитель, силовые провода
(они толстые-идут на рукав и массу) меняеш местами.

Все, имееш нетрадицуальную(не путать с сексуальной) полярность. Впрочем это почти одно и тоже.

#3 Nail02

Может быть надо вывести эти концы кабелями с разьемами, и менять не разбирая апарат ?

Интересно как это реализованно в заводском исполнении ?

Видел на одном просто торчит кусок кабеля с разьемом, а как же второй меняется ?

#4 svarnoi69

простейшая *промышленная* реализация

#5 Nail02

Вот спасибо ! Тоесть откручивешь гайки меняешь местами и все ? Надо самому так же соорудить. Текстолитовые пркладки использовать для изоляции от корпуса или есть что нибудь готовое ?

#6 svarnoi69

на моем п/а какой-то пластик.текстолит лучше.

#7 Nail02

Сегодня все подключил и пробовал варить профиль. Был выявлен неприятный сюрприз. Значение тока и вольтажа не показываетя на индикаторах при холостом ходе. Когда варишь, эти значения на дисплеях появляються. Позвонил в магазин сказал, они согласились что так быть не должно, попросили позвонить в понедельник, когда будет работать сервисный центр.

Настроил сварку с помощью регуляторов прямо в процессе сварки. Варит неплохо. Но есть одно замечание, когда старттуешь то первый сантиметр дуга какаято слабая с треском, потом идет уже нрмальный напор и хороший шов. Неужели он так должен не уверенно стартовать ? Честно говоря в начале срёт, а потом варит. Вот такие вот наблюдения.

Обратная и прямая полярность при сварке инвертором

Электродуговой способ сварки, в отличие от традиционной газовой, отличается некоторыми особенностями. Одной из самых главных является температура нагрева дуги, которая может достигать 5000С, что значительно превышает температуру плавления какого-либо из существующих металлов. Отчасти этим объясняется большое разнообразие технологий и способов этого вида сварки, позволяющих решить при ее помощи самые различные задачи.

Виды сварки

Сварочные аппараты имеют блок выпрямительных диодов. Что создает постоянный ток, это обязательное условие для сварочных полуавтоматических аппаратов, для которых материалом является проволока. Если для аппарата требуются электроды, то это обозначает возможность использования во время работы всех их моделей. А полярность во время сварки – это залог ее качества.

Используя полуавтомат, надо соблюдать полярность подсоединения. Сварка под газовой защитой омедненной проволокой происходит с помощью полярности прямого тока. Фактически это значит:

  • на деталь идет плюс;
  • на держак идет минус.

Сила тока подается на деталь от проволоки, и она нагревается, в отличие от сварочной проволоки, сильнее. В итоге повышается площадь свариваемого участка. Ему необходим значительный нагрев для образования варочной ванны. Проволока, имеющая меньшее сечение, быстрей плавится и попадает на необходимый участок уже жидкой каплей. Током, который проходит от разных полярностей, увлекается расплавленный материал, получается подходящая ванна для сварки.

Используя полуавтомат без защитной газовой среды, нужно использовать специальную порошковую или флюсовую проволоку. В этом случае изменяется полярность соединения держака и «массы». На «массе» находится минус, а на держаке находится плюс. Температура плавления флюсовой проволоки имеет примерно такое же значение, как и температура плавления металла. Чтобы достичь качественного шва, необходимо, чтобы сгорел флюс. Затем ожидают два таких процесса:

  • Появление газообразного облака;
  • В среде этого облака и происходит сварка.

Сила тока переходит от минуса к плюсу, и падение жидкой капли металла становится более низким. Именно это обуславливает меньший нагрев металла для сварки. Так как его охлаждение не происходит под защитной газа. Поэтому образование ванны для сварки практически не отличается от сварки в газовой среде. Работа переменным током имеет определенные преимущества. Она не расходится с дугой относительно изначальной оси. А на качество соединения воздействует именно отклонение дуги.

Делая сварку генератором с переменным током, легко заметить: его полярность изменяется циклически. Циклы имеют частоту 50 Герц. Она, повысившись до плюсового напряжения, может снизиться до нуля или упасть до отрицательного уровня. Напряжение меняется с плюса на минус и, наоборот.

Сварка нержавейки и цветных металлов

Во время сварки цветных металлов, в том числе и алюминий, используют специальный вольфрамовый электрод. Причем используют во время инверторной сварки прямую полярность, на электроде находится минус. Этот вид подключения позволяет иметь необходимую температуру в участке нагрева. Это немаловажно для алюминия, потому как сперва нужно преодолеть оксидную пленку, у которой температура плавления значительно больше, в отличие от самого металла.

Полярность при сварке напрямую способствует образованию:

  • более качественного шва;
  • более лучшего проплавления металла, в том числе и из нержавеющей стали;
  • более концентрированной узкой электрической дуги.

У процесса также существует и немаловажная экономическая часть. Используя дорогой вольфрамовый электрод меньшего диаметра, попутно добиваются уменьшения газовых затрат. Если же подключить вольфрамовый электрод при сварке в другой полярности, а именно, на держателе – с плюсом, то шов будет не таким глубоким. У данного способа есть свои преимущества. Работая с тонкими пластинами, можно не переживать, что вы прожжете насквозь изделие из нержавейки и цветного металла.

Значительным недостатком является эффект электромагнитного дутья. Образующаяся дуга выходит блуждающей, а шов – не сильно привлекательным и герметичным. Используя переменный ток, необходимо использовать электроды для переменки. Опытные сварщики обычно выбирают постоянный ток. Благодаря ему сварка создает однонаправленный проход электронов. Полярность влияет на качество сварочных работ, в том числе материала из нержавеющей стали.

Сварка прямой полярности

Сварка прямой полярности инвертором получается, если с деталью подключается «плюс» источника тока. Когда подсоединяют электрод, то в этом случае получается обратная полярность. Используя сварочный инвертор, можно самостоятельно установить на нем полярность. Полярность определяет направление передвижения потока электронов. То есть, определяется подсоединением проводов к положительной и отрицательной клеммам. При работе со сваркой обратная полярность обозначает:
  • на электроде – плюс;
  • на «земле» – минус.

Ток переходит от отрицательного контакта к положительному. Именно поэтому электроны переходят на электрод от металла. В результате сильно нагревается окончание электрода. Для классической сварки эффективно используют плюс – на электроде, а минус – на клемме. При прямой полярности сварки предполагается минус – на электроде, плюс – на «земле». Ток перемещается от электрода к изделию. Электрод – холодный, а изделие – горячее. Эта особенность широко используется в особых электродах, которые предназначены для быстрой сварки листов нержавеющей стали.

Важность полярности при сварочных работах

Естественно, что инверторная сварка на переменном токе не зависит, какой установлен зажим трансформатора для соединения изделия и электрода. Но вот постоянным током по сложившейся традиции сваривают несколькими способами. Электрод, подсоединенный к отрицательному полюсу, с прямой полярностью является катодом.

В анод, подсоединенное к положительному полюсу, преобразуется изделие. Обратная полярность обозначает, что электрод после подсоединения к положительному полюсу становится анодом. Катод в этом положении – это изделие, подсоединенное к отрицательному полюсу.

Материал изготовления электрода задает параметр дуги между неплавящимися электродами из вольфрама и плавящимися металлическими электродами. Сварочная дуга имеет ряд физических и технологических свойств. От этого практически полностью будет зависеть результат работы дуги. К физическим свойствам относятся:

  • кинетические;
  • электромагнитные и температурные;
  • электрические и световые.

Основные технологические свойства имеют три вида:

  • мощность дуги;
  • пространственную стойкость;
  • саморегулирование.

Для поддержания горения дуги требуется создать обратные электрически заряженные части в пространстве между находящимися электродами. Данные частицы – это электроны, а также положительные и отрицательные ионы. Их преобразование называется ионизацией. Газ, имеющий электроны и ионы, называется ионизированным.

Промежуток дуги ионизируется во время зажигания дуги, и все время поддерживается при ее горении. В промежутке дуги, как правило, выделяют следующие области:

  • область разряда дуги;
  • анодную;
  • катодную.

В области анодов происходит значительное снижение напряжения, вызванное скоплением около электродов заряженных частиц. На поверхности анода и катода начинается появление электродных пятен, которые представляют некий фундамент дугового столба. Через них и прокладывается маршрут тока к сварке.

У сварки есть общий размер дуги, он состоит из суммарных длин 3-х областей. Общее напряжение дуги – это сумма снижений напряжения в каждой части дуги. Зависимость напряжения от размера дуги – это сумма снижения напряжения в прикатодном и прианодном участках. Удельное снижение в дуге напряжения имеет один миллиметр от столба дуги. А основной характеристикой дуги является тепловая мощность нагревательного источника.

Ее эффективность рассчитывается с учетом количества теплоты, вводимой в металл за единицу времен. Тепловая мощность – это часть общей дуговой тепловой мощности, из которой определенная доля тепла уходит непроизводительно:

  • на теплоотвод в изделии;
  • излучение;
  • на прогрев разбрызгивающихся капель.

Технология сварочных работ дугой

Преимущество сварочных работ дугой явны. Сварка отличается по признакам:
  • по среде, где находится дуговой разряд;
  • по типу тока;
  • по типу электродов.

Для ремонта кузовов автомобилей широко используется дуговая сварка полуавтоматом в защитной среде газа. Для частного пользования наиболее доступной является дуговая ручная сварка. Она делается плавящимися электродами на переменном или постоянном токах. Это хороший шанс сварить в не заводской обстановке большую часть видов металлов.

Размер между поверхностью основного изделия и дном кратера является глубиной провара или проплавления. Глубина зависит:

  • величины сварочного тока;
  • от скорости передвижения дуги.

Если размер дуги сварки не больше, чем размер стержня электрода, то эта дуга называется нормальной или короткой. Она гарантирует великолепное качество шва. Дугу, которая имеет большую длину, считают длинной. Очень большое наращивание размера дуги приводит к ухудшению качества сварки. Влияние магнитного поля создает отклонение дуги от заданного направления. Это называется электромагнитным дутьем.

Электрод во время процесса передвигается вдоль и поперек сварочного шва в направлении оси, дабы сохранить заданный размер дуги. Ускоренное перемещение электрода приводит к образованию узкого, неровного и неплотного шва. При медленном передвижении есть опасность пережога материала.

Сварочные швы по форме бывают:

  • тавровыми;
  • нахлесточными;
  • стыковыми;
  • угловыми.

По длине швы разделяются на сплошные и прерывистые. По пространственному расположению имеют такие разновидности:

  • вертикальные;
  • потолочные;
  • нижние;
  • горизонтальные.

Источники питания: трансформатор для сварки, выпрямитель, генератор – при внешнем показателе имеют связь величины нагрузочного тока с напряжением на зажимах выхода. Вольтамперный показатель дуги – это соотношение между напряжением в статическом режиме и током дуги. Внешние показатели сварочных генераторов считаются падающими.

На размеры и форму шва также влияют вид электротока и его полярность. То есть, постоянный ток обратной полярности обеспечивает гораздо большую глубину плавления, чем постоянный ток с прямой полярностью, это объясняется разными количествами тепла, появляющимися на аноде с катодом. От повышения скорости процесса сварки глубина и ширина шва провара снижаются.

Оцените статью: Поделитесь с друзьями!

Сварка — способы работы с металлами и понятие полярности

Неразъёмное соединение посредством сварки устанавливается на уровне межатомных связей, которые возникают между металлическими деталями.

Это достигается тремя способами:

  • сжатием металлических деталей под чрезвычайно большим давлением;
  • нагреванием соединяемых деталей и одновременным сжатием умеренным давлением;
  • расплавлением металлической детали в соединяемой части без сжатия.

Последний способ сварки на сегодняшний день самый распространённый. Подразделяется на ручную дуговую, газовую, полуавтоматическую и другие.

Успешное использование обратной полярности при сварке достигнуто создателями полуавтоматов. При ней, как известно, в отличие от прямой полярности, ток идёт от аппарата на соединяемое изделие. Минусовая клемма подсоединяется к заготовке, а плюсовая – к самому электроду. Особенной чертой такой сварки является то, что обрабатываемые металлические предметы нагреваются слабо, но зато на электроде температура большая.

Разница и преимущество постоянного тока в сравнении с переменным в способности держаться на одном неизменном уровне всё время сварки.

Данный вид соединения особенно подходит при работе с тонким материалом, а также нержавейкой или легированной стальной деталью. Все они выделяются крайней чувствительностью к перегреву, поэтому на практике часто прожигаются.

При сварке на постоянном токе обратной полярности используются электроды, которые не имеют специального покрытия. А сварочная проволока подразделяется на универсальную, прямую и обратную.

Постоянный ток больше подходит для сварки деталей из нержавеющей стали. Также ему нет достойной замены при аргонодуговой сварке.

Механизированный метод сварки порошковой проволокой является разновидностью соединения металлических изделий под флюсом шов также покрывается защитной коркой из шлака. Это похоже на сварку стандартными электродами – аналогичная оболочка порошковой проволоки также берёт под защиту расплав и параллельно легирует расплавленный металл. Добиться подобного результата нельзя как при флюсовой сварке, так и при использовании защитных газов.

В отдельных порошковых проволоках долю компонентов, образующих газовое облачко, заменяют ферросплавами с намерением повысить легирующие возможности. Такой проволоке требуется добавочная защита газовая или флюсовая.

Рассматриваемой сваркой можно заменить ручную дуговую, если нет возможности применить иной механизированный способ. Она проста по выполнению. Не нужно спецприспособлений, чтобы удерживать флюс. Варить можно в любом положении в пространстве и независимо от погоды.

При начальной настройке режима работы, в первую очередь, надлежит установить рекомендованную скорость подачи порошковой проволоки – от этого зависит заданная сила сварочного тока, а потом задаётся дуговое напряжение.

Сварочный процесс заканчивается завариванием кратера путём уменьшения скорости и обрыва дуги. Стыковые швы наносятся при перпендикулярном положении электрода к свариваемой поверхности.

Порошковая сварка высокопроизводительный способ, однако, мало применяется при изготовлении различных металлических конструкций в производственной сфере. Причина в несовершенствах. Так, необходимо обеспечивать жёсткость в интервалах напряжения, токовой силе и подаче электродной проволоки. Иногда требуется добавочная защита. Наконец, во время сварочных работ выделяются вредные для здоровья вещества.

Соединение двух деталей сваркой плавлением происходит в результате кристаллизации расплавленных кромок. Добиться этого можно, только если нагреть место контакта до образования сварочной ванны. Для этого в зону обработки должно поступить намного больше теплоты, чем металл успевает терять её из-за своей большой теплопроводности. Значит, источником энергии для плавления должна стать большая мощность, притом сконцентрированная на малой площади.

Из всех доступных источников, которые применяются в сварочных работах, самую большую плотность вырабатываемой энергии даёт электронный луч. Однако он используется редко, к примеру, для сварки активных в химическом отношении металлов и тугоплавких. Дело в том, что применение этого луча возможно только на специальной аппаратуре высокого напряжения. Кроме того, требуется защита персонала от опасного излучения.

По этим и иным причинам лидерство в качестве источника сварной энергии получила электрическая дуга. Под её воздействием на свариваемой зоне быстро появляется сварочная ванна, которая передвигается вслед за перемещаемым электродом, соединяя кромки деталей швом. Чтобы сварной шов был качественным, во время сварки ванна с расплавом защищается от воздействия воздушной атмосферы шлаком, флюсом и газом.

Безгазовая (MIG) сварка — Какая полярность правильная?

Не можете вспомнить, к каким клеммам подключаются фонарик и зажим заземления? Провод не работает должным образом? Плохое проникновение?

Не волнуйтесь — даже самые опытные сварщики могут ошибиться! Если ваша сварочная проволока для безгазовой сварки работает неправильно или плохо проникает, есть большая вероятность, что полярность неправильная.

При подаче безгазовой сварочной проволоки — подключите заземление к плюсу, а горелку к минусу, иначе известному как «отрицательный электрод постоянного тока» или «прямая полярность».

(Это противоположно стандартной сварке MIG с газом, когда горелка / проволока имеет положительный полюс и отрицательный полюс заземления).

Земля на плюс (+)

Подключите заземляющий провод к положительной (+) клемме на передней панели сварочного аппарата.

Горелка на минус (-)

Полярные соединения для горелки обычно находятся либо внутри сварочного аппарата (рядом с системой подачи проволоки, как показано ниже), либо на передней части сварочного аппарата.
Обычно это короткий провод, который можно подключить как к положительной, так и к отрицательной клемме. Подключите его к отрицательной (-) клемме.

Ищете бесперебойный и беспроблемный безгазовый провод…?

Не ищите ничего, кроме Weldclass Platinum GL-11, признанного тысячами сварщиков лучшей безгазовой проволокой Австралии!

Этот блог предназначен для помощи в следующих вопросах: Какая полярность правильная для сварки MIG без газа? // Куда я должен подключить заземляющий провод при использовании безгазового провода MIG?

Несмотря на то, что были приняты все меры, Weldclass не несет ответственности за любые неточности, ошибки или упущения в этой информации или ссылках и приложениях.Любые комментарии, предложения и рекомендации носят только общий характер и не могут применяться к конкретным приложениям. Пользователь и / или оператор несут исключительную ответственность за выбор соответствующего продукта для их предполагаемого назначения и за обеспечение того, чтобы выбранный продукт мог правильно и безопасно работать в предполагаемом приложении. E. & O.E.

Сварка сердечником под флюсом: процесс и советы

При дуговой сварке с сердечником

(FCAW) используется трубчатая проволока, заполненная флюсом.

Между сплошным проволочным электродом и заготовкой возникает дуга.

Флюс, содержащийся в сердечнике трубчатого электрода, плавится во время сварки и защищает сварочную ванну от атмосферы. Постоянный ток с положительным электродом (DCEP) обычно используется, как и в процессе FCAW.

Есть два основных варианта процесса; самозащитная FCAW (без защитного газа) и газовая FCAW (с защитным газом). Различие между ними связано с разными флюсующими добавками в расходных материалах, которые обеспечивают различные преимущества для пользователя.Обычно самозащитный FCAW используется на открытом воздухе, когда ветер уносит защитный газ.

Флюсы в самоэкранированной FCAW предназначены не только для раскисления сварочной ванны, но и для защиты сварочной ванны и металлических капель от атмосферы.

Флюс в газозащитной FCAW обеспечивает раскисление сварочной ванны и в меньшей степени, чем в самозащитной FCAW, обеспечивает вторичную защиту от атмосферы. Флюс предназначен для поддержки сварочной ванны при сварных швах в неправильном положении.Этот вариант процесса используется для увеличения производительности сварных швов вне положения и для более глубокого проплавления.

Видео: основы самозащиты порошковой проволокой

Процесс сварки сердечником под флюсом

Сварка сердечником под флюсом или сварка трубчатым электродом произошла от процесса сварки MIG для улучшения действия дуги, переноса металла, свойств металла сварного шва и внешнего вида сварного шва. Это процесс дуговой сварки, в котором тепло для сварки обеспечивается дугой между непрерывно подаваемой трубчатой ​​электродной проволокой и заготовкой.

Экранирование достигается за счет флюса, содержащегося внутри трубчатой ​​электродной проволоки, или за счет флюса и защитного газа, подаваемого извне. Схема процесса показана на рисунке 10-55 ниже.

Порошковая сварочная проволока или электрод представляет собой полую трубку, заполненную смесью раскислителей, флюсов, металлических порошков и ферросплавов. Закрывающий шов в виде тонкой линии — единственное видимое различие между порошковой проволокой и сплошной холоднотянутой проволокой.

Сварку порошковым электродом

можно выполнять двумя способами:

  1. Углекислый газ может использоваться с флюсом для обеспечения дополнительной защиты.
  2. Только флюсовый сердечник может обеспечить весь защитный газ и шлаковые материалы.

Экран из углекислого газа создает глубоко проникающую дугу и обычно обеспечивает лучшую сварку, чем это возможно без внешней газовой защиты. Хотя дуговая сварка порошковой проволокой может выполняться полуавтоматически, машинным способом или автоматически, этот процесс обычно выполняется полуавтоматически.

При полуавтоматической сварке механизм подачи проволоки подает электродную проволоку, а источник питания поддерживает длину дуги.Сварщик манипулирует сварочным пистолетом и регулирует параметры сварки.

Дуговая сварка порошковой проволокой также используется при машинной сварке, где, помимо подачи проволоки и поддержания длины дуги, оборудование также обеспечивает перемещение соединения.

Сварщик постоянно контролирует сварку и корректирует параметры сварки. Автоматическая сварка используется в высокопроизводительных приложениях.

Схема процесса порошковой сварки

Советы по сварке

  • Не используйте гладкие приводные ролики для проволоки, используйте приводные ролики с накаткой
  • Измените полярность на отрицательный электрод (уточните у производителя, MIG обычно электрод положительный)
  • Используйте соответствующую вентиляцию
  • Вылет проволоки от 1/2 ″ до 3/4 ″
  • Перетаскивание пистолета (сварка с обратной стороны)
  • Для плоского сварного шва, приваривайте под углом 90 градусов и назад на 10 градусов.Тройник под углом 45 градусов. Соединение внахлест под углом от 60 до 70 градусов одним прямым сварным швом.
  • Для горизонтального угла наклона пистолета вверх примерно на 10 градусов, уменьшите параметры сварки на аппарате примерно на 10–15%.
  • Для вертикального шва (можно использовать верхний или нижний шов, вертикальный нижний лучше подходит для более тонких металлов, используется вертикальный верх на 1/4 дюйма и выше, также уменьшите параметры на 10-15% на машине.
  • Для потолочных работ старайтесь поддерживать высокую скорость перемещения, а также уменьшите параметры сварки на 10–15% (по сравнению с плоским или горизонтальным швом).
  • Приваривайте из стороны в сторону, чтобы избежать подрезов
  • Тщательно счищать шлак после каждого прохода

FCAW в сравнении с GMAW и SMAW

Процесс сердечника флюса FCAW сочетает в себе лучшие характеристики SMAW и GMAW.

В нем используется флюс для защиты сварочной ванны, хотя можно использовать дополнительный защитный газ. Сплошной проволочный электрод обеспечивает высокую производительность наплавки.

FCAW против GMAW

Дуговая сварка порошковой проволокой во многом аналогична дуговой сварке металлическим электродом в газе (GMAW или MIG).Порошковая проволока, используемая для этого процесса, придает ему различные характеристики. Дуговая сварка порошковой проволокой широко используется для сварки черных металлов и особенно хороша для применений, в которых требуются высокие скорости наплавки. При высоких сварочных токах дуга получается плавной и управляемой по сравнению с использованием электродов для дуговой сварки металлическим газом большого диаметра с диоксидом углерода.

Сварщик хорошо видит дугу и сварочную ванну. На поверхности сварного шва остается шлаковый налет, который необходимо удалить.Поскольку присадочный металл перемещается по дуге, образуются брызги и дым.

Флюс для расходных материалов FCAW может быть спроектирован для поддержки больших сварочных ванн в нерабочем положении и обеспечения более высокого проплавления по сравнению с использованием сплошной проволоки MIG (GMAW). Сварные швы большего размера могут быть выполнены за один проход с помощью электродов большего диаметра, тогда как GMAW и SMAW потребуют нескольких проходов для сварных швов эквивалентных размеров. Это повышает производительность и снижает деформацию сварного изделия.

FCAW против SMAW

Как и в случае SMAW, шлак необходимо удалять между проходами многопроходных сварных швов.Это может снизить производительность применения и привести к возможным нарушениям сплошности включения шлака. В случае FCAW с газовой защитой пористость может возникнуть в результате недостаточного газового покрытия.

Большое количество дыма образуется в процессе FCAW из-за высоких токов, напряжений и магнитного потока, присущих процессу. Увеличение затрат может возникнуть из-за необходимости в вентиляционном оборудовании для обеспечения надлежащего здоровья и безопасности.

FCAW сложнее и дороже, чем SMAW, потому что для него требуется механизм подачи проволоки и сварочная горелка.Сложность оборудования также делает процесс менее портативным, чем SMAW.

Оборудование для порошковой сварки

Универсальный сварочный аппарат / генератор Miller Trailblazer 302 с приводом от двигателя, газ, 1-фазный, 30–225 переменного тока, 10–325 постоянного тока Тип: (KOHLER). Поддерживает сварку Stick (SMAW), MIG (GMAW, Flux Cored (FCAW), DC TIG (DC GTAW), AC TIG (AC GTAW), воздушно-угольную дуговую резку и строжку)

Оборудование, используемое для сварки сердечником флюса: аналогично тому, что используется для газовой дуговой сварки.

В состав основного оборудования для дуговой сварки входят:

  • Источник питания
  • Органы управления
  • Механизм подачи проволоки
  • Сварочный пистолет
  • Кабели сварочные

Основное различие между электродами с газовой защитой и самозащитными электродами состоит в том, что для проводов с газовой защитой также требуется система защиты от газа.

Это также может повлиять на тип используемого сварочного пистолета. В этом процессе часто используются экстракторы дыма.

Для машин и автоматической сварки к базовому оборудованию добавлены несколько элементов, например, толкатели для швов и устройства перемещения.

Схема полуавтомата для дуговой сварки порошковым напылением

Источник питания

Источник питания или сварочный аппарат подает электроэнергию соответствующего напряжения и силы тока для поддержания сварочной дуги. Большинство источников питания работают от входной мощности 230 или 460 вольт, но также доступны машины, которые работают от входной мощности 200 или 575 вольт.Источники питания могут работать как от однофазного, так и от трехфазного входа с частотой от 50 до 60 герц.

Большинство источников питания, используемых для дуговой сварки порошковой проволокой, имеют рабочий цикл 100 процентов, что означает, что они могут использоваться для непрерывной сварки. Некоторые машины, используемые для этого процесса, имеют рабочий цикл 60 процентов, что означает, что они могут использоваться для сварки 6 из каждых 10 минут.

Источники питания, обычно рекомендуемые для дуговой сварки порошковой проволокой, относятся к источникам постоянного тока с постоянным напряжением.Используются как вращающиеся (генераторные), так и статические (одно- или трехфазные трансформаторы-выпрямители). Те же источники питания, что и при дуговой сварке металлическим электродом в газе, используются при дуговой сварке порошковой проволокой.

При дуговой сварке порошковой проволокой обычно используются более высокие сварочные токи, чем при дуговой сварке металлическим газом, для которой иногда требуется более мощный источник питания. Важно использовать источник питания, способный обеспечить максимальный уровень тока, необходимый для приложения.

Процесс постоянного тока

При дуговой сварке порошковой проволокой используется постоянный ток.Постоянный ток может быть как обратной, так и прямой полярности. Порошковые электродные проволоки предназначены для работы как с DCEP, так и с DCEN. Провода, предназначенные для использования с внешней системой газовой защиты, обычно предназначены для использования с DCEP. Некоторые самозащитные порошковые стяжки используются с DCEP, а другие разработаны для использования с DCEN.

Положительный ток электрода обеспечивает лучшее проникновение в сварное соединение. Отрицательный ток электрода обеспечивает меньшее проникновение и используется для сварки более тонких металлов или металлов с плохой подгонкой.Сварной шов, созданный DCEN, шире и мельче, чем сварной шов, произведенный DCEP.

Генераторные сварочные аппараты, используемые для процесса сердечника из флюса, могут приводиться в действие электрическим ротором для использования в мастерских или от двигателя внутреннего сгорания для полевых применений. Сварочные аппараты с бензиновым или дизельным двигателем имеют двигатели с жидкостным или воздушным охлаждением.

Генераторы с моторным приводом вырабатывают очень стабильную дугу, но они более шумные, более дорогие, потребляют больше энергии и требуют большего обслуживания, чем трансформаторно-выпрямительные машины.

Двигатель подачи проволоки

Электродвигатель механизма подачи проволоки обеспечивает питание для подачи электрода через кабель и горелку к работе. Доступно несколько различных систем подачи проволоки. Выбор системы зависит от приложения. Большинство систем подачи проволоки, используемых для дуговой сварки порошковой проволокой, являются системами с постоянной скоростью, которые используются с источниками питания постоянного напряжения. В механизме подачи проволоки с регулируемой скоростью используется цепь измерения напряжения для поддержания требуемой длины дуги за счет изменения скорости подачи проволоки.

Изменения длины дуги увеличивают или уменьшают скорость подачи проволоки. Механизм подачи проволоки состоит из электрического ротора, соединенного с редуктором, содержащим приводные ролики. Коробка передач и двигатель механизма подачи проволоки, показанные на рис. 10-57, имеют ролики подачи формы в коробке передач.

Узел подачи проволоки FCAW

Сварочные пистолеты с воздушным и водяным охлаждением

Для дуговой сварки порошковой проволокой используются пистолеты с воздушным и водяным охлаждением. Пушки с флюсовым сердечником с воздушным охлаждением охлаждаются в основном окружающим воздухом, но при использовании защитного газа обеспечивается дополнительный охлаждающий эффект.Пистолет с водяным охлаждением имеет каналы, позволяющие воде циркулировать вокруг контактной трубки и сопла.

Пистолеты с водяным охлаждением сердечника для флюса позволяют более эффективно охлаждать пушки. Пистолеты с водяным охлаждением рекомендуются для использования при сварочном токе более 600 ампер и предпочтительны для многих применений, использующих ток 500 ампер. Сварочные пистолеты рассчитаны на максимальный ток для непрерывной работы.

Пистолеты с воздушным охлаждением предпочтительны для большинства применений с током менее 500 ампер, хотя можно также использовать пистолеты с водяным охлаждением.Пистолеты с воздушным охлаждением легче и проще в обращении.

Защитные газы

Оборудование для подачи защитного газа, используемое для порошковой проволоки с защитным газом, состоит из шланга подачи газа, газового регулятора, регулирующих клапанов и шланга подачи к сварочному пистолету. (как указано выше, сердечник из флюса может использоваться без защитного газа в зависимости от области применения)

Защитные газы поставляются в жидкой форме, когда они находятся в резервуарах для хранения с испарителями, или в газовой форме в баллонах высокого давления.Исключением является углекислый газ. Когда его помещают в баллоны высокого давления, он существует как в жидкой, так и в газовой форме.

Основное назначение защитного газа — защита дуги и сварочной ванны от загрязняющих воздействий атмосферы. Азот и кислород атмосферы, если они вступают в контакт с расплавленным металлом сварного шва, вызывают пористость и хрупкость.

При дуговой сварке порошковой проволокой экранирование достигается за счет разложения сердечника электрода или комбинации этого и окружения дуги защитным газом, подаваемым из внешнего источника.Защитный газ вытесняет воздух в зоне дуги. Сварка производится под защитным газом. Для дуговой сварки порошковой проволокой могут использоваться как инертные, так и активные газы.

Активные газы, такие как диоксид углерода, смесь аргона с кислородом и смеси аргон с диоксидом углерода, используются почти во всех областях применения. Углекислый газ является наиболее распространенным. Выбор подходящего защитного газа для конкретного применения зависит от типа свариваемого металла, характеристик дуги и переноса металла, доступности, стоимости газа, требований к механическим свойствам, а также глубины проплавления и формы сварного шва.Ниже приводится краткое описание различных защитных газов.

Двуокись углерода

Двуокись углерода производится из топливных газов, выделяемых при сжигании природного газа, мазута или кокса. Его также получают как побочный продукт при кальцинировании в печах для обжига извести, при производстве аммиака и ферментации спирта, который имеет почти 100-процентную чистоту.

Углекислый газ доступен пользователю в баллонах или контейнерах для массовых грузов. Цилиндр встречается чаще.В системе наливных баллонов углекислый газ обычно отводится в виде жидкости и нагревается до газообразного состояния перед подачей на сварочную горелку. Основная система обычно используется только при поставке большого количества сварочных станций.

В цилиндре диоксид углерода находится как в жидкой, так и в парообразной форме, причем жидкий диоксид углерода занимает примерно две трети пространства в цилиндре. По весу это примерно 90 процентов содержимого цилиндра. Над жидкостью он существует в виде парообразного газа.По мере того, как диоксид углерода забирается из цилиндра, он заменяется диоксидом углерода, который испаряется из жидкости в цилиндре, и поэтому общее давление будет отображаться манометром.

Когда давление в цилиндре упадет до 200 фунтов на кв. Дюйм (1379 кПа), цилиндр следует заменить новым. В цилиндре всегда должно оставаться положительное давление, чтобы предотвратить попадание влаги и других загрязнений в цилиндр. Нормальная скорость выброса баллона с CO2 составляет от 10 до 50 куб. Футов в час (4.От 7 до 24 литров в минуту). Однако максимальная скорость нагнетания 25 куб. Футов в час (рекомендуется 12 литров в минуту при сварке с использованием одного цилиндра.

Когда давление пара падает от давления в баллоне до давления нагнетания через регулятор CO2, он поглощает большое количество тепла. Если установлен слишком высокий расход, это поглощение тепла может привести к замерзанию регулятора и расходомера, что приведет к прерыванию подачи защитного газа. Когда требуется расход выше 25 куб. Футов в час (12 литров в минуту), обычной практикой является соединение двух баллонов с CO2 параллельно или установка нагревателя между баллоном и газовым регулятором, регулятором давления и расходомером.

Чрезмерный расход также может привести к откачке жидкости из цилиндра. Двуокись углерода — наиболее широко используемый защитный газ для дуговой сварки порошковой проволокой. Большинство активных газов нельзя использовать для защиты, но диоксид углерода дает несколько преимуществ при сварке стали. Это глубокое проникновение и невысокая стоимость. Углекислый газ способствует глобулярному переносу. Защитный газ двуокиси углерода распадается на такие компоненты, как окись углерода и кислород. Поскольку диоксид углерода является окисляющим газом, в сердечник электродной проволоки добавляются раскисляющие элементы для удаления кислорода.Оксиды, образованные раскисляющими элементами, всплывают на поверхность сварного шва и становятся частью шлакового покрытия. Некоторая часть углекислого газа распадается на углерод и кислород. Если содержание углерода в сварочной ванне ниже примерно 0,05 процента, защита от углекислого газа будет иметь тенденцию к увеличению содержания углерода в металле сварного шва. Углерод, который может снизить коррозионную стойкость некоторых нержавеющих сталей, представляет собой проблему для критически важных систем коррозии. Дополнительный углерод может также снизить ударную вязкость и пластичность некоторых низколегированных сталей.Если содержание углерода в металле сварного шва превышает примерно 0,10 процента, защита от двуокиси углерода будет иметь тенденцию к снижению содержания углерода. Эта потеря углерода может быть связана с образованием монооксида углерода, который может быть захвачен сварным швом в качестве раскисляющих элементов пористости в сердечнике флюса, уменьшая эффект образования монооксида углерода. Смеси аргон-диоксид углерода.

Аргон и диоксид углерода

иногда смешивают для использования при дуговой сварке порошковой проволокой. Высокий процент газообразного аргона в смеси способствует более высокой эффективности осаждения из-за образования меньшего количества брызг.Наиболее часто используемая газовая смесь при дуговой сварке порошковой проволокой представляет собой смесь 75 процентов аргона и 25 процентов двуокиси углерода. Газовая смесь создает мелкодисперсный шаровой перенос металла, который приближается к брызгам. Он также снижает степень окисления по сравнению с чистым диоксидом углерода. Сварной шов, нанесенный на экран из диоксида углерода и аргона, обычно имеет более высокий предел прочности и предел текучести. Смеси аргона и углекислого газа часто используются для сварки в нерабочем положении, что позволяет добиться лучших характеристик дуги. Эти смеси часто используются для обработки низколегированных сталей и нержавеющих сталей.Электроды, предназначенные для использования с CO2, могут вызвать чрезмерное накопление марганца, кремния и других раскисляющих элементов, если они используются со смесями защитного газа, содержащими высокий процент аргона. Это повлияет на механические свойства сварного шва.

Смеси аргоно-кислородные

Для некоторых применений используются смеси аргона с кислородом, содержащие 1-2 процента кислорода. Смеси аргона и кислорода имеют тенденцию способствовать переносу распыления, что снижает количество образующихся брызг.Основное применение этих смесей — сварка нержавеющей стали, где диоксид углерода может вызвать проблемы с коррозией.

Электроды

Поперечное сечение флюсовой проволоки — рисунок 10-58

Электроды, используемые для дуговой сварки порошковой проволокой, обеспечивают присадочный металл сварочной ванне и защиту дуги.

Для нормальных типов электродов требуется экранирование. Защитный газ предназначен для защиты дуги и сварочной ванны от атмосферы.

Химический состав электродной проволоки и сердечника флюса в сочетании с защитным газом будет определять состав металла сварного шва и механические свойства сварного шва.

Электроды для дуговой сварки порошковой проволокой состоят из металлического экрана, окружающего сердцевину из флюсовых и / или легирующих смесей, как показано на рисунке 10-58.

Сердечники из углеродистой стали и низколегированных электродов содержат преимущественно флюс.

Некоторые сердечники электродов из низколегированной стали содержат большое количество легирующих соединений с низким содержанием флюса.Большинство электродов из низколегированной стали требуют газовой защиты.

Оболочка составляет приблизительно от 75 до 90 процентов веса электрода. Самозащитные электроды содержат больше флюсов, чем электроды с газовой защитой.

Составы, содержащиеся в электроде, выполняют в основном те же функции, что и покрытие покрытого электрода, используемого при дуговой сварке защищенным металлом.

Эти функции:

  1. Для образования шлакового покрытия, плавающего на поверхности металла шва и защищающего его во время затвердевания.
  2. Для предоставления раскислителей и поглотителей, которые помогают очищать и производить твердый металл шва.
  3. Для создания стабилизаторов дуги, обеспечивающих плавную сварочную дугу и сводящих к минимуму разбрызгивание.
  4. Для добавления в металл сварного шва легирующих элементов, которые увеличивают прочность и улучшают другие свойства металла шва.
  5. Для подачи защитного газа. Провода с защитным газом требуют внешней подачи защитного газа в дополнение к газу, производимому сердечником электрода.

Система классификации трубчатых проволочных электродов

Система классификации, используемая для трубчатых проволочных электродов, используемых при сварке сердечником из флюса, была разработана Американским сварочным обществом. Углеродистые и низколегированные стали классифицируются по следующим позициям:

  1. Механические свойства наплавленного металла.
  2. Положение при сварке.
  3. Химический состав наплавленного металла.
  4. Род сварочного тока.
  5. Используется ли защитный газ CO2.

Примером классификации электрода из углеродистой стали является E70T-4, где:

  1. Буква «E» обозначает электрод.
  2. Вторая цифра или «7» указывает минимальную прочность на разрыв в единицах 10 000 фунтов на квадратный дюйм (69 МПа).
  3. Третья цифра или «0» указывает положение сварки. «0» указывает на плоское и горизонтальное положение, а «1» указывает на все положения. 4 . Буква «T» обозначает классификацию трубчатой ​​или порошковой проволоки. 5 .Суффикс «4» обозначает производительность и удобство использования, как показано в таблице 10-13. При использовании классификации «G» не указываются конкретные требования к характеристикам и удобству использования. Эта классификация предназначена для электродов, не подпадающих под другую классификацию. Требования к химическому составу наплавленного металла сварного шва для электродов из углеродистой стали приведены в таблице 10-14. Одноходовые электроды не имеют требований к химическому составу, поскольку проверка химического состава неразбавленного металла шва не дает истинных результатов обычного химического состава однопроходного сварного шва. .

Электроды из углеродистой флюсовой стали

Требования к механическим свойствам порошковых электродов из углеродистой стали — Таблица 10-12 Рабочие характеристики и эксплуатационные характеристики порошковых электродов из углеродистой стали — Таблица 10-13 Требования к химическому составу порошковых электродов из углеродистой стали — Таблица 10-14

Классификация электродов из низколегированной стали Используемый при сварке сердечником флюсом аналогичен классификации электродов из углеродистой стали. Примером классификации низколегированной стали является E81T1-NI2, где:

  1. Буква «E» обозначает электрод.
  2. Вторая цифра или «8» указывает минимальную прочность на растяжение в единицах 10 000 фунтов на квадратный дюйм (69 МПа). В данном случае это 80 000 фунтов на квадратный дюйм (552 МПа). Требования к механическим свойствам электродов из низколегированной стали приведены в таблице 10-15. Требования к ударной вязкости приведены в таблице 10-16.
  3. Третья цифра или «1» указывает возможности сварочного положения электрода. «1» обозначает все положения, а «0» — только плоское и горизонтальное положение.
  4. «T» обозначает трубчатый или порошковый электрод, используемый при дуговой сварке порошковой проволокой.
  5. Пятая цифра или «1» описывает удобство использования и рабочие характеристики электрода. Эти цифры такие же, как и в классификации электродов из углеродистой стали, но только EXXT1-X, EXXT4-X, EXXT5-X и EXXT8-X используются для классификации электродов с порошковой сердцевиной из низколегированной стали.
  6. 6 . Суффикс «Ni2» указывает химический состав наплавленного металла шва, как показано в таблице 10-17 ниже.
Требования к механическим свойствам электродов с порошковой сердцевиной из низколегированных сплавов — Таблица 10-15 Требования к ударам для электродов с порошковой сердцевиной из низколегированных сплавов — Таблица 10-16 Требования к химическому составу электродов с порошковой сердцевиной из низколегированных сплавов — Таблица 10-17 (процент химического состава (a)

а.Единичные значения являются максимальными, если не указано иное
b. Только для самозащитных электродов
c. Чтобы соответствовать требованиям сплава группы G, наплавленный металл должен иметь минимум, как указано в таблице, только для одного из элементов
d. Классификация E80TI-W также содержит 0,30 — 0,75 процента меди

.

Электроды из нержавеющей стали

Система классификации электродов из нержавеющей стали, используемых при сварке сердечником под флюсом, основана на химическом составе металла шва и типе защиты, применяемой во время сварки.Примером классификации электродов из нержавеющей стали является E308T-1, где:

  1. Буква «E» обозначает электрод.
  2. Цифры между буквами «E» и «T» обозначают химический состав сварного шва, как показано в таблице 10-18 ниже.
  3. «Т» обозначает трубчатую или порошковую электродную проволоку.
  4. Суффикс «1» указывает тип используемого экранирования, как показано в таблице 10-19 ниже.
Требования к химическому составу металла сварного шва для электродов из нержавеющей стали — Таблица 10-18 Экранирование — Таблица 10-19 Сварочные кабели

Сварочные кабели и соединители используются для подключения источника питания к сварочному пистолету и к устройству.Эти кабели обычно изготавливаются из меди. Кабель состоит из сотен проводов, заключенных в изолированный кожух из натурального или синтетического каучука. Кабель, соединяющий источник питания со сварочной горелкой, называется выводом электрода.

При полуавтоматической сварке этот кабель часто является частью кабельной сборки, которая также включает шланг защитного газа и канал, по которому проходит электродная проволока. При машинной или автоматической сварке вывод электрода обычно отдельный.Кабель, соединяющий изделие с источником питания, называется рабочим проводом. Рабочие провода обычно подключаются к работе зажимами, зажимами или болтом.

Размер используемых сварочных кабелей зависит от выходной мощности аппарата для сварки сердечником флюса, рабочего цикла аппарата и расстояния между сварочным аппаратом и изделием. Размеры кабелей варьируются от наименьшего AWG № 8 до AWG № 4/0 с номинальной силой тока 75 ампер и выше.

В Таблице 10-20 показаны рекомендуемые сечения кабелей для использования с различными сварочными токами и длинами кабелей.Слишком маленький кабель может сильно нагреться во время сварки.

Рекомендуемые сечения кабелей для различных сварочных токов — Таблица 10-20

Плюсы и минусы FCAW

Преимущества: меньшая стоимость и более высокая наплавка

Резюме:

  • Высокая производительность наплавки
  • Более глубокое проникновение, чем SMAW
  • Высокое качество
  • Меньше предварительной очистки, чем у GMAW
  • Покрытие из шлака помогает при больших сварных швах в смещенном положении Самозащищенный FCAW устойчив к сквознякам

Основными преимуществами сварки сердечником из флюса являются меньшая стоимость и более высокая скорость наплавки, чем при сварке методом SMAW или GMAW сплошной проволокой.

Стоимость порошковых электродов ниже, поскольку легирующие добавки находятся во флюсе, а не в стальной присадочной проволоке, как в случае твердотельных электродов.

Порошковая сварка идеальна там, где важен внешний вид валика и не требуется механическая обработка сварного шва. Сварку порошковой проволокой без защиты от углекислого газа можно использовать для большинства конструкций из низкоуглеродистой стали.

Полученные сварные швы имеют более высокую прочность, но меньшую пластичность, чем те, для которых используется защита от углекислого газа.Меньшая пористость и большее проплавление сварного шва с защитой от углекислого газа. Процесс порошковой наплавки имеет повышенную устойчивость к окалине и грязи.

При сварке сердечником флюсом меньше брызг, чем при сварке MIG сплошной проволокой. Он имеет высокую скорость наплавки, и часто используются более высокие скорости движения. Используя электродную проволоку небольшого диаметра, можно выполнять сварку во всех положениях. Некоторые порошковые проволоки не требуют подачи защитного газа извне, что упрощает оборудование.

Электродная проволока подается непрерывно, поэтому на замену электродов уходит очень мало времени. Наносится более высокий процент присадочного металла по сравнению с дуговой сваркой защитным металлом. Наконец, достигается лучшее проплавление, чем при дуговой сварке защищенным металлом.

Недостатки: чувствительность к условиям сварки

Сводка недостатков сварки сердечником под флюсом:

  • Шлак необходимо удалить
  • Больше дыма и дыма, чем у GMAW и SAW
  • Брызги
  • Проволока FCAW дороже
  • Оборудование дороже и сложнее, чем для SMAW

Большинство порошковых электродов из низколегированной или мягкой стали более чувствительны к изменениям условий сварки, чем электроды для сварки SMAW.

Эту чувствительность, называемую допуском по напряжению, можно уменьшить, если использовать защитный газ или увеличить шлакообразующие компоненты материала сердечника.

Для поддержания постоянного напряжения дуги необходимы источник питания с постоянным потенциалом и устройство подачи электродов с постоянной скоростью.

FCAW Устранение неисправностей

При поиске и устранении неисправностей сварных швов с флюсовой сердцевиной обязательно ознакомьтесь с инструкциями производителя (которые находятся внутри панели оборудования) на предмет следующего (подробно описанного ниже):

  • Скорость подачи проволоки
  • Скорость передвижения
  • Расстояние между контактным наконечником и рабочим местом
  • Полярность фидера
  • Рабочий угол и угол перемещения
  • Слишком низкая подача проволоки и ток (более высокие скорости = более высокий ток, более низкие скорости, более низкий ток: если скорость слишком низкая, вы не получите полного покрытия, узкий проход и много брызг.
Видео об устранении неполадок FCAW

Сварка FCAW создается при низкой скорости проволоки

Низкая скорость проволоки для сварки FCAW привела к тому, что шлак плохо удаляется, и возникает большое количество брызг. Если скорость проволоки слишком высока, проволока будет загибаться. Чтобы исправить это, увеличьте напряжение или уменьшите скорость провода.

Сварной шов FCAW создан при высокой скорости проволоки

Слишком низкая скорость перемещения : в результате получается выпуклый широкий сварной шов. Шлак не покрывает должным образом.

Сварка FCAW с низкой скоростью перемещения

Скорость перемещения выше рекомендованной : в результате получается узкий выпуклый сварной шов.Сравните со слишком высокой скоростью движения потока вверху и со скоростью вытесняющей лужи внизу.

Сварка FCAW с высокой скоростью перемещения

Расстояние между наконечником и рабочей поверхностью : Проверьте правильность расстояния для вашей проволоки. Слишком короткое расстояние приводит к недостаточному покрытию из-за неправильного предварительного нагрева флюса внутри проволоки. Шлак не покрывает весь сварной шов, из-за чего шлак выглядит темным в центре сварного шва.

Если расстояние слишком велико, сварной шов будет немного закорочен. Проволока выглядит так, как будто она охотится за сварным швом, что делает подачу непостоянной, вызывая рябь в сварном шве.

Расстояние от наконечника до рабочего места слишком большое (вверху) и слишком короткое (внизу). Проверьте указания производителя для правильного расстояния (обычно от 1/2 ″ до 5/8 ″)

Полярность : каждый провод имеет рекомендованную полярность. Иногда используется отрицательный постоянный ток, когда необходим положительный постоянный ток. Вызывает разбрызгивание и небольшой сварной шов.

Брызги из-за неправильной полярности. Убедитесь, что вы используете правильную полярность при сварке сердечника флюсом. Не используйте положительный постоянный ток, если требуется отрицательный постоянный ток. Проверьте схему настройки машины.Проверьте, как питатель подключен к сварочному оборудованию. Убедитесь, что он подключен к правильным полюсам. Обзорная диаграмма внутри панели оборудования

Углы электродов : Для сердечника из флюса помните, что вы перетаскиваете шлак. Убедитесь, что вы перетаскиваете электрод, чтобы шлак мог образоваться за сварным швом. Он легче расплавленной лужи и всплывет наверх. Если нажать на нее, в сварном шве могут появиться включения шлака.

Проверка рабочего угла и угла хода : При сварке на плоской поверхности угол может составлять 90 градусов.Для соединения внахлест или Т-образного соединения вы должны быть под углом 45 градусов к стыку и от 5 до 10 градусов для сопротивления.

Как правильно установить параметры полярности сварки MIG [Обновление 2020]

Вы когда-нибудь задумывались, как правильно установить параметры полярности сварки MIG ? Одна из самых важных вещей, о которых следует помнить при сварке, — это то, что каждая маленькая настройка имеет большое значение. С одной стороны, это может быть отличным способом раскрыть свой творческий потенциал. Чем больше настроек, тем больше у вас контроля, что, в свою очередь, позволяет вам делать гораздо больше, когда дело доходит до настройки каждой мелкой детали сварки по своему усмотрению.С другой стороны, однако, нельзя отрицать, что большее количество настроек может быть ошеломляющим, особенно когда речь идет о чем-то вроде полярности.

Итак, как можно максимизировать настройки полярности сварки таким образом, чтобы сделать их максимально творческими и эффективными?

Почему это важно

Во-первых, стоит спросить, почему все это вообще имеет значение. В конце концов, у вас уже есть много других вещей, которые нужно отслеживать, когда дело доходит до сварки.Вас простят за то, что вы размахиваете руками, говорите, что это слишком много, и просто говорите, что вы будете использовать «любую настройку полярности», которая у вас есть.

Но это приведет к плохому результату замешивания, взбивания и других материалов. Неправильная полярность может привести к образованию длинных пластин неприглядного металла, который не плавится должным образом, и будет меньше походить на гладкий чистый сварной шов, а больше на каплю металлического шлака.

Это даже не препятствует образованию маленьких точек остатков металла в различных точках по всему месту сварки. Все это может происходить из-за использования неправильного типа флюсового сердечника в сочетании с неправильным типом полярности.

Дело в том, что вам нужно убедиться, что вы используете правильную настройку полярности.

Ссылки по теме: Проблема с брызгами сварных швов — и как ее остановить

Как избежать этой проблемы

Если вы хотите, чтобы сварные швы не выглядели как грязные брызги, первое, что вам нужно сделать, это сделать убедитесь, что вы используете правильный тип полярности, поэтому возникает вопрос — что такое полярность в первую очередь? Любой, кто работает с электричеством, знает, что полярность относится к положительным и отрицательным полюсам на обоих концах рассматриваемого объекта.Положительный и отрицательный концы образуют цепь.

Полярность имеет большое значение при сварке, потому что она напрямую влияет на качество и прочность сварного шва — мы уже видели выше, как что-то может пойти не так, если полярность нарушится.

Прямая и обратная полярность

При сварке необходимо выбирать между прямой и обратной сваркой, которые являются общими терминами для обозначения отрицательного и положительного электродов соответственно. Различная полярность по-разному влияет на характер и качество сварного шва.

Положительная полярность электрода обычно приводит к более глубокому проплавлению, что облегчает сварку более глубокой и прочной. Напротив, полярность отрицательного электрода плавит вещи быстрее, что значительно упрощает быстрое и своевременное избавление от излишков металла.

Как вы могли догадаться, они могут иметь огромное влияние на характер и качество вашей сварки. Допустим, вы свариваете что-то, что требует большого проплавления из-за толщины металла.Ознакомившись с приведенными выше пунктами, вы поймете, что положительная полярность, вероятно, лучший выход. Напротив, если вам нужно быстро рассеять металл, чтобы предотвратить его накопление и возникновение быстрого неконтролируемого разбрызгивания, как описано ранее, вы, вероятно, захотите использовать отрицательную полярность.

Таким образом, нет правильного или неправильного ответа на вопрос, какая полярность вам подходит. Скорее, речь идет о различных подходах к сварке и их решениях.

AC против постоянного тока

Это не единственные элементы, где вы можете «пересечь провода», когда дело касается сварки и полярности. Существует также вопрос об переменном и постоянном токе или переменном и постоянном токе. Первый изменяет поток электрического тока, передавая его из точки A в точку B, в то время как второй создает поток только в одном направлении. В результате сварочные аппараты постоянного тока имеют постоянную полярность. В противоположность этому, машины переменного тока имеют изменяющуюся полярность, при этом поток меняется со скоростью 120 раз в секунду (при условии, что ток составляет 60 Гц).

Когда использовать, что опять же сводится к ситуации, в которой вы оказались в области сварки. Когда вы работаете с экранированными металлическими дугами, постоянный ток часто используется по разным причинам, не в последнюю очередь из-за того, что его постоянные токи создают более стабильные дуги. Кроме того, он страдает от меньшего количества брызг и большего количества отключений. Тем не менее, новички иногда выбирают кондиционер из-за его низкой стоимости.

Ссылки по теме: Что означает DCEN в сварке?

Дополнительная информация о полярности

Вам не только нужно выбирать между различными полярностями и переменным и постоянным током, но также необходимо учитывать провод с магнитным сердечником.Это важная часть процесса, который должен оставаться стабильным, если вы снова не окажетесь в Splatter City.

Чтобы избежать таких проблем, как разбрызгивание, убедитесь, что вы меняете настройки полярности сварочного аппарата MIG всякий раз, когда придет время перейти с твердой проволоки на проволоку с флюсовым сердечником.

Тем не менее, есть еще одно различие между сплошной и безгазовой сварочной проволокой MIG. Первый тип обычно используется при использовании защитного газа. Этот защитный газ можно смешивать в различных соотношениях (например, 25% CO2 и 25% аргона) при использовании сплошной проволоки.

Все это означает, что чрезвычайно важно учитывать характер полярности сварки в контексте всего остального — металла, который вы свариваете, используемого защитного газа и ваших намерений в отношении проекта.

Ссылки по теме: Как использовать сварочный аппарат MIG без газа | Хороша ли безгазовая сварка MIG?

Как вы понимаете, полярность сварки имеет множество различных аспектов, любое количество которых может пересекать ваши провода и оставить вас с разбрызгиванием или еще хуже.К счастью, если вы будете следовать приведенному выше базовому руководству и убедитесь, что у вас правильные настройки полярности, вы сможете сваривать чисто и с большей уверенностью, что позволит вам производить превосходный продукт.

Ссылки по теме: Какие типы газовой сварки обычно используются? | Они популярны?

Полярность: когда нужно поменять местами? Часть 2

Использование правильной полярности определяет разницу между качественным сварным швом и пористым и слабым швом, сварным швом с надлежащим проваром или практически отсутствующим сварным швом.Помимо путаницы в терминах, часто бывает сложно понять, когда и какую полярность использовать.

В то время как сварка стержнем (SMAW) , подавляющее большинство сварочных стержней требует положительной полярности. Фактически, почти все сварочные стержни работают в основном с положительной (обратной) полярностью. За некоторыми исключениями, при работе с тонким листом всегда следует работать с обратной полярностью. Поскольку термин «обратный» может сбивать с толку, просто всегда думайте «позитивный факел», и все будет в порядке. Сварка МИГ всегда имеет положительную полярность. Некоторые люди путают MIG со сваркой сердечника флюсом. Они не совпадают, хотя используемое оборудование может быть почти таким же или идентичным. Сердечник флюса использует проволоку, которая содержит порошковый флюс в центре проволоки. Он имеет свои преимущества в ветреную погоду и позволяет брать его с собой куда угодно. Хотя это не обязательно лучше или хуже, чем процесс MIG, он использует прямую полярность, прямо противоположную MIG. Однако некоторые производители проводов могут рекомендовать положительную полярность, поэтому обязательно проверьте этикетку.Следует отметить, что провода MIG и Flux Core не имеют «дополнительной» полярности с одним и тем же проводом. Если он положительный, он будет успешно работать только при положительном результате. Провод с двойным экраном использует лучшее из MIG и Flux Core за счет использования проволоки с флюсом и защитного газа. Конечно, всегда соблюдайте полярность, рекомендованную производителем провода, но, как правило, для двойного или внешнего экранированного провода используется обратная полярность.

TIG является исключением и представляет собой процесс, при котором сварка всегда выполняется с горелкой на отрицательной клемме (даже при сварке в режиме переменного тока есть причины, по которым горелка остается подключенной к отрицательной клемме).Несколько лет назад положительный электрод постоянного тока использовался для сварки алюминия , но проплавление было очень плохим, и для сварки при относительно низком токе требовался вольфрам огромного диаметра из-за максимального нагрева вольфрамового наконечника вместо основного металла. Поскольку сварка алюминия очень легко выполняется с помощью аппаратов TIG переменного тока с высокочастотным наложением или сварочных аппаратов инверторного типа, таких как Everlast PowerTIG серии , используется только горелка с отрицательной полярностью постоянного тока .

Независимо от полярности, вам может потребоваться какое-то запоминающее устройство, которое поможет вам запомнить условия полярности.Даже если вам нужно написать записку на сварочном аппарате, чтобы запомнить, какую сторону «горелки» вы будете использовать, это поможет вам сделать все правильно и свести разочарование к минимуму.

Знакомство с порошковой проволокой

Порошковая проволока

доступна в самозащитном и газозащитном исполнении для сварки основных материалов, включая низкоуглеродистую сталь, низколегированную сталь, нержавеющую сталь и никелевые сплавы. Этот рисунок подробно описывает их работу.

Ни один присадочный металл не подходит для любой работы. Механические и химические свойства основного материала, требуемое положение сварки, доступное оборудование и набор навыков сварщика, среди прочего, — все это факторы, влияющие на выбор наилучшего.

Когда вы стремитесь повысить производительность за счет более высоких скоростей наплавки, порошковая проволока часто является жизнеспособным вариантом. Эта проволока известна своими высокими эксплуатационными характеристиками и качеством сварки в различных отраслях промышленности, от общего производства и производства до строительства, морского строительства и судостроения.

Порошковая проволока

обладает уникальными сварочными характеристиками, а также требованиями, преимуществами и ограничениями. Их знание поможет вам определить, правильный ли это выбор.

Использование, типы и характеристики

Порошковая проволока

бывает самозащитной и газозащитной, некоторые из которых предназначены для сварки во всех положениях (например, Американское сварочное общество [AWS] E71T-1C) или для плоских и горизонтальных применений (E70T- 1С). Оба типа имеют газовую защиту и образуют шлак, который помогает защитить жидкий металл шва во время охлаждения, но этот шлак необходимо удалять после сварки и между проходами.

Эти проволоки доступны для различных основных материалов, включая низкоуглеродистую сталь, низколегированную сталь, нержавеющую сталь и никелевые сплавы. Для сварки стали они доступны с пределом прочности на разрыв 70 KSI для низкоуглеродистой стали, а также от 80 до 120 KSI и выше для сварки высокопрочной низколегированной стали.

Самозащитная порошковая проволока (FCAW-S) вырабатывает собственный защитный газ при возникновении дуги, что устраняет необходимость во внешнем газовом баллоне и делает их пригодными для использования в переносных и удаленных устройствах.Эти проволоки, как правило, создают несколько более высокий уровень дыма и брызг, чем порошковые проволоки с защитным газом, но многие классификации предлагают хорошую ударную вязкость даже при более низких температурах.

Самозащитная порошковая проволока часто используется вместо электродов для дуговой сварки защищенным металлом (SMAW) в качестве средства повышения производительности, поскольку они имеют непрерывную подачу и не требуют повторных простоев для переналадки. Обычно они доступны в диаметрах от 0,035 до 7/64 дюйма.

Порошковая проволока с защитным газом (FCAW-G) требует внешнего защитного газа, состоящего либо из 100% CO2, либо из смеси аргона и CO2.Они, как правило, более привлекательны для оператора, а это означает, что ими легче управлять и использовать для получения эстетичного сварного шва. Обычно они используются в магазине. При использовании снаружи проволоки FCAW-G может потребоваться барьер, либо палатка, либо какое-либо другое средство для защиты сварочной ванны, чтобы защитный газ не уносился.

Обычно доступные диаметры от 0,035 до 7/64 дюйма, эти проволоки можно использовать вместо сплошных проволок для повышения производительности за счет более высоких скоростей наплавки; Операторы сварки могут добавить больше сварочного металла к стыку за меньшее время, особенно при работе в нестандартном положении.

Проволока FCAW-G

фунт за фунт обычно дешевле, чем разновидности FCAW-S, которые содержат дополнительные материалы сердечника и легирующие элементы, но не требуют дополнительных затрат на защитный газ. Провода FCAW-S также имеют более низкий КПД, около 65 процентов по сравнению с FCAW-G, эффективность которого составляет от 75 до 85 процентов. Этот КПД также ниже, чем у сплошной проволоки, потому что часть проволоки теряется в шлакообразующих агентах, которые выбрасываются во время процесса сварки.Эти факторы следует учитывать при выборе процесса сварки.

Чтобы добиться наилучших результатов от порошковой проволоки, необходимо не только правильно выбрать ее для работы, но и получить необходимое оборудование и обучить ее работе с ними. Для достижения наилучших результатов важно знать правильные параметры и методы сварки.

Оба типа проводов классифицируются по обозначениям удобства использования, определенным AWS — цифрам от 1 до 14 или буквам G или GS, которые указывают полярность провода и рабочие характеристики.

Защитные газы

Провода

FCAW-G имеют разные требования к защитному газу, и каждый тип обеспечивает определенные характеристики. Провода с обозначением «C» в их классификации AWS — например, E70T-1C H8 — работают только с CO2. Для устройств с обозначением «M», таких как E71T-1M, требуется смесь защитного газа, состоящая из CO2 и аргона, обычно с балансом 75/25 процентов.

Некоторые провода считаются двухгазовыми и имеют обозначения «C / M», что позволяет использовать их с обоими типами газов.

Следует соблюдать осторожность при замене защитного газа. Хотя проволока может работать с любым защитным газом, изменение газа считается существенным изменением, которое может потребовать новых процедур сварки и испытаний перед использованием.

Провода, работающие со 100-процентным CO2, обеспечивают большее проникновение сварного шва, но также имеют тенденцию к образованию большего количества брызг, тогда как проволока для смешанных газов имеет меньше брызг и дыма, а также более гладкий внешний вид валика. Опять же, стоит взвесить стоимость при выборе между двумя типами классификации и защитными газами.CO2 дешевле, но, вероятно, создаст сварной шов, который потребует больше времени и труда для удаления брызг. Напротив, смешанные газы более дороги, но сварные швы после завершения требуют меньше очистки.

Требования к оборудованию

Чтобы добиться наилучших результатов от порошковой проволоки, необходимо не только правильно выбрать проволоку для работы, но и получить необходимое оборудование и обучить ее сварке. И FCAW-S, и FCAW-G работают со стандартным источником питания постоянного напряжения (CV), настроенным для прямой полярности (отрицательный электрод постоянного тока или DCEN) или обратной полярности (положительный электрод постоянного тока или DCEP), в зависимости от формулировка проволоки.

Распространенной ошибкой при настройке оборудования для работы FCAW-S является выбор неправильной полярности источника сварочного тока. Хотя многие процессы сварки проволокой работают с использованием DCEP, большинство проволок FCAW-S предназначены для работы с DCEN. Всегда консультируйтесь с рекомендациями производителя присадочного металла по эксплуатации.

Провода

FCAW-S часто соединяются с механизмом подачи проволоки с датчиком напряжения. Сварщик может установить напряжение на источнике питания, но затем контролировать скорость подачи проволоки (и, следовательно, силу тока) на подающем устройстве.Эта функция полезна на крупных сайтах вакансий; меньшее количество поездок к источнику питания позволяет увеличить время сварки. В том случае, если сварщик изменяет расстояние от контактного наконечника до рабочей поверхности (CTWD), устройства подачи проволоки с датчиком напряжения также могут помочь в регулировании последующих колебаний напряжения.

Для обоих типов проволоки требуются приводные ролики с V-образной насечкой в ​​механизме подачи проволоки для обеспечения плавной подачи проволоки и стабильного качества сварки. Порошковая проволока мягче, чем сплошная проволока, и ее можно легко деформировать или раздавить при использовании неправильных приводных роликов.

Правильная техника

В процессе сварки сварщики должны использовать технику сопротивления. Хороший угол лобового сопротивления для плоского, горизонтального и верхнего положений составляет от 15 до 45 градусов. Для сварки вертикально вверх хорошо подойдет угол наклона пистолета от 5 до 15 градусов. Благодаря стабильной и достаточно высокой скорости движения сварочная ванна не опережает дугу, что может привести к включению шлака.

Для приложений, в которых компании стремятся повысить производительность за счет более высоких скоростей наплавки, порошковая проволока часто является жизнеспособным вариантом.Эти провода доступны в самозащитном и газозащитном исполнении для использования в полевых условиях и в магазине.

Сварщики, использующие порошковую проволоку, должны использовать правильный вылет или удлинение электрода; самоэкранированные провода особенно чувствительны к этой переменной. В зависимости от диаметра и типа проволоки вылет, рекомендованный производителем, может превышать 2 дюйма; проверьте требования для каждого провода.

Неправильный вылет может вызвать такие проблемы, как выгорание, отслеживание червяка, неполное покрытие шлака и затруднение удаления шлака.Вылет также имеет решающее значение, поскольку он обеспечивает уровень резистивного нагрева проволоки, который помогает увеличить скорость наплавки. Увеличение сопротивления позволяет меньшему току проходить через дугу, позволяя использовать более высокие скорости подачи проволоки и, таким образом, увеличивая скорость наплавки.

Требования к хранилищу

Как и любой присадочный металл, важно хранить проволоку FCAW-G и FCAW-S в чистом и сухом месте. Повреждение из-за влаги или других загрязнений может привести к плохому качеству сварки и, вероятно, к аннулированию гарантии на изделие.

Рекомендуется поддерживать такую ​​же температуру в складском помещении, что и в зоне сварки. Перемещение проволоки из холодного помещения в более теплую сварочную ячейку может вызвать конденсацию на ней. Эта конденсация может вызвать ржавчину проволоки и потенциально вызвать пористость и проблемы с подачей проволоки. Если поддержание одинаковой температуры в обоих пространствах невозможно, дайте проволоке адаптироваться к температуре сварочной ячейки в течение 24 часов перед сваркой.

Также важно хранить провода в их оригинальных вакуумных или герметичных упаковках до тех пор, пока они не будут готовы к использованию.Если проволока уже используется, удалите катушку из механизма подачи проволоки, поместите ее в пластиковый пакет и храните должным образом. Не забудьте удалить все провода внутри пистолета, если это оборудование не будет использоваться в течение длительного периода времени. Порошковая проволока, особенно во влажном климате, может заржаветь внутри горелки, что потребует снятия и замены всей гильзы сварочной горелки.

Последние соображения

Обучение играет ключевую роль при использовании любого типа присадочного металла.Сварщикам, впервые использующим порошковую проволоку, может потребоваться дополнительное обучение и / или сертификация для их конкретного применения, например, для перехода с электрода SMAW на проволоку FCAW-S для применения в строительстве.

Другой пример — преобразование провода FCAW-G в FCAW-S. Хотя обе проволоки известны как порошковые, они относятся к разным классификациям AWS, и это изменение потенциально может потребовать дополнительных испытаний и аттестации.

Всегда соблюдайте необходимые рабочие процедуры и рабочие параметры для данной области применения и порошковой проволоки.Сочетание правильной техники и эксплуатации может привести к повышению качества и производительности сварки, а также к сокращению дорогостоящих простоев.

Tom’s Welding Pages

Tom’s Welding Pages

MIG (сварка с подачей проволоки)

В наши дни все бегут и покупают сварочные аппараты с механизмом подачи проволоки. Вы даже можете купить сварочные аппараты и принадлежности для подачи проволоки в домашних магазинах. (Lowes и Home Depot). На самом деле в моем местном магазине Lowes запас расходных материалов лучше, чем в моем местном сварочном магазине. (Мне действительно нужно пойти в местный сварочный магазин, чтобы заправить газовые баллоны).

Если у вас есть какие-либо книги по сварке, вы обнаружите, что сварка MIG на самом деле называется GMAW (газовая дуговая сварка металла). Но все называют это МИГ.

Миллер, Линкольн, Хобарт или …
Я в основном свариваю MIG 110 вольт Lincoln (модель SP-135T) и это отлично подходит для того, что я делаю. Я также использовал большой аппарат Miller 240 вольт, и он отлично справился с сваркой 1/4 дюйма. стальной лист, но это то, что я делаю редко. Линкольн и Миллер — лучшие собаки в сварочном оборудовании, и хотя люди любят отстаивать одно или другое, либо отличная машина.Говорят, что из Хобарта тоже получилась хорошая машина. Вы можете купить действительно недорогие устройства подачи проволоки от Harbour Freight, но я бы не стал этого делать.
Подробнее о том, какую машину купить.
Защитный газ
MIG означает «металлический инертный газ», а настоящая сварка MIG предполагает использование защитного баллона. газ (смесь аргон / CO2 или чистый CO2). Использование чистого CO2 — хороший вариант, если вы не выполняете критически важную сварку, так как это сэкономит вам деньги, когда вы пойдете за газовыми баллонами заправлен. Я не пошел по этому пути, потому что у меня есть баллон и регулятор для аргона. смесь, и местный сварочный цех сказал мне, что мне нужно купить другую бутылку для чистых СО2 (уходит все мои сбережения).Из-за того количества сварочных работ, которое я выполняю, покупка смеси составляет доступный.
Проволока с сердечником из флюса
Продается множество недорогих сварочных аппаратов с подачей проволоки, в которых используется проволока с флюсовым сердечником. Это позволяет единица для продажи по более низкой цене «начального уровня», поскольку вы не покупаете газ регулятор и клапан и так далее. Сварщики большинства известных мировых производителей могут быть переведены на использование газа. У Flux Core есть большое преимущество: низкая стоимость, отсутствие необходимости покупать бутылку и пополнять ее. Он также может сваривать более тяжелые металлы. Обратной стороной является то, что сварные швы не так хороши. как с газом.Если вам нужно сварить тяжелый ржавый металл, это может быть хорошим вариантом.

Обратите внимание, что при сварке сердечником под флюсом используется другая полярность, чем при сварке в среде защитного газа. Это важно, не переключение полярности даст плохие результаты. Моему маленькому сварочному аппарату Lincoln SP-135T требуется 3 смены, чтобы переключиться с газовой защиты приварка к сердечнику из флюса:

  • Вставьте катушку с флюсовой проволокой.
  • Замените газовое сопло на сопло с флюсовым сердечником (это просто конус твердого черный пластик). Это вроде как необязательно, но зачем разбрызгивать сердечник флюса по всему телу? твое газовое сопло.
  • Сменить полярность сварки.

Многие люди отказываются от сердечника из флюса из-за неправильной полярности.

Сварка MIG (с газом) выполняется с так называемой обратной полярностью, который электрод (горелка) положительный, рабочий (зажим) отрицательный.

Сварка сердечником флюсом (безгазовая) выполняется с прямой полярностью, который электрод (факел) отрицательный, рабочий (зажим) положительный.

Мне еще предстоит найти действительно удовлетворительное объяснение того, почему это так важно.Возможно, лучшее объяснение, которое я слышал, это то, что электроны текут из отрицательный к положительному и вызывает накопление тепла на положительной стороне.

Провод
У меня есть рулон провода, проданный PraxAir, с маркировкой E71TGS. По-видимому, GS — это французский язык для «Flux Core», но его нет на катушке с четкой маркировкой. Lincoln очень хорошо указывает на этикетке, предназначен ли провод для использования. с газом или нет. Флюсовый сердечник Lincoln — NR-211-MP. Для сварки в среде защитного газа с помощью моего небольшого аппарата на 110 В у меня есть выбор между 0.025 и 0,030 дюйма (моя машина не будет обрабатывать сплошную проволоку 0,035, больший Машина на 240 вольт будет использовать это вещество). Более тонкая проволока лучше подходит для более тонких материалов.

Итак, какую машину мне купить?

Громкие имена — Миллер, Линкольн и Хобарт. Вы можете найти самые разные мнения о том, что лучше, но это похоже на Chevy против Ford.

Некоторые люди скажут вам, что у вас должна быть машина на 220 вольт, но это неверно для работа, которую хочет выполнять большинство людей.

Хотя я, вероятно, собираюсь купить устройство на 110 вольт, такое как Miller 140, я признаю достоинства наличие блока 220 вольт (например, Miller 180 или Hobar Handler 187), но удобство 110 (для этого нужна выделенная цепь на 20 ампер) для меня важнее.Это значит, что я могу брось его в грузовик и отправляйся на помощь приятелю, у которого для этого нет специальной трассы. Так и будет также делаю все, что я хочу с ним делать в данный момент. Доведенный до предела, 110 вольт Сварщик умеет сваривать 1/4 или даже 5/16 металла. Флюсовую проволоку вместо газовой рекомендуется увеличивать тепло и проникновение. Вам нужно будет действовать медленно. Блок на 220 вольт без проблем справится с этой большой работой и с легкостью.

Дешевые сварщики в таких местах, как Harbour-Freight, могут работать с проволокой, но не MIG.Они предназначены только для проволоки с флюсовым сердечником, что подходит для многих работ.
Caveat emptor.

Вот отличный совет из сообщения Брайана Мартина на сайте www.hotrodders.com.

MIG используется ВСЕМИ ОДНИМИ автопроизводителями при сварке листового металла. Он используется в КАЖДОЙ ОДНОЙ сварке, установленной известными национальными организациями, такими как ICAR и ASE. Это стандарт автомобильной промышленности. Это не только «стандарт», это ЕДИНСТВЕННЫЙ сварщик.TIG даже не упоминается, газовая горелка даже не упоминается для сварки листового металла.

На каком «дешевом сварочном аппарате», Миллер 130, 135 или 140 — это сварочный аппарат FINE 110 В, который обойдется вам примерно в 800 баксов. с бензобаком и все. На мой взгляд, это настолько дешево, насколько я собираюсь получить. Все, что дешевле (новое), просто не стоит тратить деньги. Что касается газового баллона: Я предлагаю купить самый большой, для которого у вас есть место. НЕ ДЕШЕВАЙТЕ и покупайте маленькую бутылку, думая, что вы не используете ее много бла-бла-бла.Маленькая бутылка ОСТАНОВИТ ваш прогресс и просто тратит время. Я купил маленькие бутылочки для фонарика, ДУРА, теперь мне нужно купить большие. На моем MIG стоит 100 CF или что-то в этом роде. Это продлится буквально год и больше. Вот о чем я говорю, детка, работать вместо того, чтобы наполнять бутылки.

Я никогда не использовал именно этот сварочный аппарат, 140. Но, читая описание, я предполагаю, что это просто версия на 140 ампер. 130 и 135 сварщиков, которые у нас работают. У нас их около 8 штук.Это в магазине, и их использует куча парней. Если вы когда-нибудь видели, как выглядят «инструменты для магазина» в обычном кузовном цеху, вы поймите, что эти сварщики — крутые педерасты, которые выдержат в этой среде. Они работают день за днем, неделя за неделей, год за годом, без единого стона. Мы время от времени меняем пистолет или переключаем пистолет, ТАК, ПЕРИОД. Наполняем баки и вставляем в них проволоку вместе с контактным наконечником и пользуемся ими день за днем, они КРУПНЫЕ маленькие сварщики.

Даже с ними свариваем легкие рамы. Они, безусловно, достаточно велики для КАЖДОЙ КОМПОНЕНТ на цельном автомобиле или на ЛЮБОМ кузове легкового или грузового автомобиля.

Если вы собираетесь сваривать листовой металл 99% времени, этот сварщик для вас. За этот 1%, если вам нужен сварочный аппарат на 200 А и 220 В, возьмите его в аренду или одолжите. Нет необходимости покупать 220В. Если вы планируете приварить раму или что-нибудь для вашего стержня, купите 220 В, и вы будете рады, что это сделали. Планируйте потратить примерно на триста или четыреста баксов больше.

Существует часто слышимая (но ошибочная) история о том, что Миллер владеет Хобартом. Это неправда. И Миллер, и Хобарт принадлежат материнской компании ITW. (Illinois Tool Works), но это разные заводы в разных местах. Думать о Хобарте как о линейке продуктов нижнего ценового диапазона Миллеров неверно, хотя они и нацелены на несколько разные рынки. Миллеры нацелены на коммерческий рынок и, как правило, быть немного более «высококлассным», чем Hobarts, но оба они прекрасные машины.


Есть комментарии? Вопросов? Напишите мне!
Страницы Tom’s Welding / tom @ mmto.org
Порошковая проволока

и сплошная проволока

В чем разница между порошковой электродной проволокой и сплошной электродной проволокой? Один тип электрода лучше другого для сварки? В чем преимущества и недостатки каждого типа проволоки?

Электроды с порошковой проволокой

Порошковые электроды бывают двух типов: газозащитные и самозащитные. Как следует из названия, для порошковой проволоки с защитным газом требуется внешний защитный газ.Самозащищенная разновидность — нет.

Флюсовое покрытие на порошковой проволоке в среде защитного газа затвердевает быстрее, чем расплавленный сварочный материал. Следовательно, создается своего рода полка, которая удерживает ванну расплава при сварке над головой или вертикально вверх. Флюсовая проволока в газовой среде хорошо подходит для сварки металлов большой толщины. Они также хорошо подходят для сварки в нерабочем положении. С помощью проволоки этого типа легко удалить шлак.

Самозащитные порошковые проволоки не требуют внешнего защитного газа.С этим типом электрода сварочная ванна защищена, поскольку при сжигании флюса от проволоки образуется газ. Поскольку самозащитный провод создает собственный защитный экран и не требует внешнего бензобака, его легче переносить.

Преимущества порошковых электродов

Использование электродов с порошковой проволокой дает несколько преимуществ. Эти преимущества включают, но не ограничиваются:

  • Они обеспечивают высокую производительность наплавки.
  • Хорошо работают на открытом воздухе и в ветреную погоду.
  • При использовании правильных присадочных материалов эти электроды могут сделать процесс FCAW «универсальным».
  • Обычно порошковая проволока обеспечивает чистые и прочные сварные швы.

Недостатки электродов с порошковой проволокой

Есть проблемы с любым методом сварки. Независимо от процесса и типа используемого электрода существует вероятность неполного сплавления основных металлов.Также могут возникнуть включения шлака или трещины в сварных швах.

Дополнительные проблемы, которые могут возникнуть при использовании порошковой электродной проволоки, включают:

  • Оплавление контактного наконечника может произойти, если электрод соприкоснется с основным металлом и сплавит их вместе.
  • Если газы не выходят из зоны сварки до затвердевания металла, в сварном шве могут образоваться дыры и стать пористым.

Сплошные проволочные электроды

Сплошные проволочные электроды используются при сварке металлов в инертном газе.Для таких электродов требуется защитный газ, который подается из баллона с сжатым газом. Защитный газ защищает сварочную ванну от атмосферных загрязнений.

Сплошные проволочные электроды часто изготавливаются из низкоуглеродистой стали, покрытой медью для предотвращения окисления и улучшения электропроводности. Меднение также помогает продлить срок службы сварочного контактного наконечника.

Сплошная проволока — лучший выбор при работе с тонкими материалами, такими как листовой металл.Они должны давать хорошие, чистые сварные швы.

Сплошные проволочные электроды плохо работают на ветру. Воздействие ветра на защитный газ может нарушить целостность сварного шва.

Какой провод лучше всего?

Сравнивая порошковую проволоку с проволокой сплошного сечения, было бы разумно отметить, что лучший выбор зависит от сварочной работы и местоположения. Оба типа проволоки при правильном выполнении позволяют производить качественные сварные швы с хорошим внешним видом сварного шва.

Для толстых металлов и наружных работ лучше всего подходят порошковые электроды. Для более тонких металлов и работ, выполняемых без ветра, достаточно хорошо подойдут электроды из сплошной проволоки.

Сплошные проволочные электроды, используемые при сварке MIG, не так портативны, как порошковая проволока. Это связано с необходимостью использования защитного газа в MIGW.

Как сплошные проволочные электроды, так и электроды с порошковой проволокой относительно просты в использовании. Однако электроды с порошковой проволокой более дорогие.

Ссылки:
www.millerwelds.com (Miller Electric Manufacturing Co.)

http://en.wikipedia.org/wiki/Flux-cored_arc_welding

Дополнительные статьи:

Узнать больше о Submerged ARC Flux

Что такое сварка порошковой проволокой?

.