Какая плотность зимнего дизельного топлива
Плотность зимнего дизельного топлива – это один из важнейших критериев, который сказывается на работоспособности всего автомобиля. Большинство автовладельцев не стремятся узнавать плотность горючего, т.к. самостоятельно ее вычислить бывает непросто, а оценить важность без должного опыта сложно.
Наибольшее влияние на плотность оказывает температура окружающей среды, причем даже зимнее горючее вполне может начать загустевать и даже твердеть. К тому же не стоит забывать давление, но его влияние предельно скромное, из-за чего в расчетах чаще всего оно не используется.
Как определить плотность дизтоплива
Если рассмотреть таблицу плотности зимнего дизельного топлива, то можно подготовиться к любым неожиданностям:
Отечественное ДТ, кг/м3 | Евро-4, кг/м3 | Евро-5, кг/м3 | |
20 С | 840 | 830 | 820 |
0 С | 855 | 845 | 835 |
-10 С | 862,530 | 855,5 | 842,5 |
Можно обратить внимание, что плотность ДТ изменяется строго линейно, т. к. снижение или повышение температуры на 1 градус корректирует показатели на 0,75 кг/м3. Это стабильная единица, использование которой расширяет возможности и гарантирует возможность выявления абсолютно точных данных. К тому же в большинстве случаев этот способ позволяет выявить некачественную продукцию.
Экономия превыше всего
Большинство людей рассматривают именно экономию на ремонтных работах, т.к. она наиболее ощутима при использовании неправильного топлива. На практике с понижением температуры и одновременно повышением плотности можно отследить существенное увеличение расхода. Солярка при снижении температуры приобретает худшие показатели текучести, из-за чего она менее эффективно распыляется в цилиндрах ДВС.
Многие автомобилисты ошибочно полагают, что антигель позволяет из летнего ДТ сделать дешевое зимнее, хотя на практике оно таковым не становится, а лишь парафины в составе становятся более устойчивыми к перепаду температур. Таким образом, всегда важно своевременно переходить на зимнее горючее с летнего, а в случае экстремальных обстоятельств желательно закупать арктическую солярку. Присадки нужны лишь в тех случаях, когда на дороге возникла непростая ситуация, и нужно доехать домой или до ближайшей заправки.
Заказывайте высококачественное зимнее дизельное топливо в нашей компании, и вы будете полностью уверены не только в его плотности, но и в соответствии нормам всех остальных показателей.
ГОСТ дизельное топливо | Государственные стандарты качества на топливо
В первую очередь, имеет значение цетановое число. По этому показателю определяется скорость, с которой сжатое топливо самовоспламеняется в цилиндре. Оптимальное цетановое число позволяет солярке быстро воспламеняться, а современные инжекторы двигателя контролируют процесс сгорания и поступления в цилиндр.
- ГОСТ 32511-2013 (EN 590:2009)
- ГОСТ Р 52368-2005.
На характеристики также влияет сезонный вид топлива, поскольку из-за
разницы температур требования к зимнему и летнему виду солярки отличаются.
Выбирая топливо у нас, вы можете не волноваться о его качестве, но иметь
представление об основных параметрах все-таки стоит.
Дизельное топливо с малым цетановым числом сгорает медленно, накапливается в цилиндре, а затем высвобождается, что вместо плавного процесса дает толчок давления, бьющий по поршню. Двигатели, работающие на топливе со слишком малым или чрезмерно высоким цетановым числом, дымят, поскольку солярка не успевает сгореть полностью, что существенно отражается на экономии. Оптимальные показатели, установленные действующими ГОСТами – от 40 до 51.
Содержание серных соединений
Мы реализуем только высококачественное дизельное топливо, соответствующее ГОСТам по всем параметрам. Это касается и содержания серы. Количество серных соединений зависит от качества нефти и степени очистки конечного продукта. Эти вещества в результате разных химических реакций приводят к образованию серной кислоты и ее оседанию в цилиндрах, что неизбежно ведет к преждевременному износу запчастей.
Серные соединения вместе с выхлопными газами поступают и в атмосферу,
что наносит вред экологии. Добросовестные производители заинтересованы в
снижении содержания серы. Чтобы дизельное топливо соответствовало нормам,
оно проходит дополнительные уровни очистки. Таким образом, дизельное
топливо, которое изготавливается по ГОСТу, оказывается экономным даже в
долгосрочной проекции. Оно не только обладает высоким КПД, но и щадящее
относится к двигателю и окружающей среде.
Плотность дизельного топлива
Плотность дизтоплива не показатель к для замерзания, характеризует помутнение, фильтруемость,замерзание. Чем выше уровень плотности топлива, тем большее оно выделяет энергии.Кроме того это не постоянная величина, которая зависит от колебаний температуры воздуха.
Скачать паспорт качества.
Плотность дизельного топлива — основные показатели
Любой материал, будь это жидкость, газ или твердое тело, имеет такую характеристику, как плотность. Дизельное топливо не исключение. Более того от этого его показателя в некоторой степени зависят и другие физико-химические свойства данного нефтяного продукта.
Согласно современному ГОСТ РФ 52368-2005 плотность дизельного топлива при положительной температуре в 15° должна составлять 820-845 кг/м.куб. По ГОСТу от 82 года плотность измеряется при 20°, при этом она не должна была превышать 860 кг/м.куб. Данная разбежка имеет место быть в силу того, что дизельное топливо само по себе не имеет постоянного химического состава и производится для разных погодных и технологических условий.
Обычного же автолюбителя плотность дизельного топлива должна волновать потому, что дизельное топливо с меньшей плотностью при более низких температурах начинает замерзать. Соответственно, летнее топливо имеет большую плотность и замерзает быстрее зимнего в силу того, что содержащиеся в нем парафины рано начинают загустевать, превращая топливо из жидкой субстанции в твердую, а твердые субстанции, как известно, по топливопроводу перемещаться не могут. Автомобиль перестает работать.
Как измерить плотность дизельного топлива?
Произвести замер плотности топлива в домашних условиях, не представляет чрезмерных сложностей.
Полученные в итоге измерения при такой температуре, ответят вам на вопрос какой вид топлива перед вами: летний, зимний либо Арктика, плотностью 860, 840, 830 кг/м.куб соответственно.
Ну а если говорить начистоту, то вряд ли в обычной жизни вам такие измерения понадобятся, ведь даже если залитое на АЗС зимнее топливо замерзло в его рабочем диапазоне, ваши домашние измерения вряд ли примет во внимание орган, куда вы обратитесь за защитой прав потребителя. Для отстаивания своих интересов потребуется заключение специализированной экспертизы, поэтому может лучше не мудрить и довериться информации, которую предоставляют заправки?!
В качестве же послесловия, хотелось бы порекомендовать вам заправляется лишь на проверенных АЗС, особенно при морозной погоде за окном, чтобы вопрос о плотности дизельного топлива в ваших головах даже не возникал.
Видео.
Рекомендую прочитать:
Плотность дизельного топлива зимой и летом
Одним из показателей дизельного топлива является его плотность. Причем плотность в данном случае – явление изменчивое, так как зависит она напрямую от температурных показателей. По сему, согласно ГОСТу, различают несколько видов плотности дизельного топлива: летний вариант и зимний. Соответственно, в зимнем варианте плотность будет ниже, что позволяет солярке не принимать гелеобразную форму при низких температурах. Однако кроме соотношения плотности и температуры, есть еще одно, куда более важное.
Чем плотность дизеля выше – тем лучше
От коэффициента плотности дизельного топлива зависит мощность двигателя, расход топлива. В летнем дизельном топливе, плотность которого выше зимнего, имеется больше веществ, которые прямым образом влияют на энергоотдачу. В итоге, летнее зимнее топливо имеет больший % КПД, нежели зимнее, мотор становится динамичнее, а расход меньше. Поэтому именно из-за низкой плотности зимнего дизельного топлива повышается расход горючего в холодное время года.
Казалось бы, раз уж плотность летнего дизельного топлива выше, а вместе с этим, энергоотдача больше, то почему бы не использовать летнее топливо круглый год? Проблема в том, что в составе топлива имеются вещества – парафины, которые под воздействием низких температур начинают кристаллизоваться. Как результат, двигатель становится запустить невозможно.
Температура, плотность, вязкость
Многим интересно, влияет ли плотность дизельного топлива в зависимости от температуры на показатель вязкости? К сожалению, это так. Понятия температуры, плотности и вязкости крепко связаны между собой. Именно поэтому, чем ниже плотность топлива, тем оно более жидкое, а значит, не настолько подвержено кристаллизации, если сравнивать с вариантом летней солярки.
Если залить дизтопливо высокой плотности зимой?
Неоднократно уже находились умельцы, которые заливали в бак летнее топливо высокой плотности в зимнюю пору года. Не трудно догадаться какими были последствия этого решения. Летнее топливо просто застывает в топливных магистралях, образуя пробки. В таком случае придется приложить титанические усилии для того, чтобы восстановить работоспособность автомобиля. Поэтому лучше раз и навсегда запомнить – что использовать зимой летнюю солярку – это табу.
Советуем вам заправляться только на проверенных АЗС, где плотность дизельного зимнего топлива соответствует стандартам. Только тогда ваш автомобиль будет легко заводиться в любые морозы.
Автор: Денис Кирсанов — Специалист по Автовыкупу с 10 летним опытом!
Плотность дизельного топлива: кг м3, кг л, определение измерение плотности, зависимость от температуры
Дизельное топливо получают в результате перегонки нефти. Фракционный состав такого горючего включает целый ряд элементов, в том числе сернистые вещества, которые определяют основные технические характеристики:
- цетановое число;
- температура помутнения и застывания;
- коксуемость;
- вязкость;
- плотность дизельного топлива кг/м3;
- смазывающие способности;
- содержание серы, влаги, твердых частиц.
Из всех параметров чаще всего указывают только температуру помутнения и массовую долю серы. Хотя большое значение имеет и такой параметр, как плотность, который определяет энергоемкость горючего. Более плотное топливо обеспечивает эффективность и экономичность дизеля.
Плотность дизельного топлива кг л изменяется в зависимости от температуры окружающей среды. В холодную погоду это значение увеличивается, а в жаркое время понижается. Чтобы учесть такие колебания плотности дизельного топлива, выпускают горючее для эксплуатации в летний и зимний период.
Зачем нужен переход на сезонное топливо?
В составе дизтоплива есть тяжелые парафины, поэтому при понижении температуры происходит их помутнение, выпадение осадка с дальнейшей полной кристаллизацией. Это значит, что горючее, которое не предназначено для эксплуатации в холодную погоду загустеет и забьет фильтры, трубопроводы, форсунки и все остальные части топливной автоматики. Зависимость плотности топлива от температуры делает запуск дизеля в таких условиях просто невозможным.
Избежать неприятностей с осадком и кристаллизацией горючего можно, если своевременно заправить дизтопливо по сезону. Это может быть:
- Горючее для работы в теплое время года. Плотность летнего дизельного топлива составляет 860 кг/м3. Это горючее предназначено для заправки только при температуре выше 0 °С.
- Зимнее топливо. Рассчитано на работу при температуре до -30 °С. Плотность такого топлива не ниже 840 кг/м3. Заправлять горючее нужно при переходе на зимнюю эксплуатацию.
- Арктическое топливо. Этот вид горючего заправляют в регионах с суровыми зимами, поскольку оно рассчитано на эксплуатацию при температурах до -50 °С.
Согласно европейским нормам дизельное топливо разделено на две группы:
- Теплый климат — горючее сортов A-F.
Заправлять такое топливо можно при температурах до +5 и -20 °С.
- Холодный климат — дизтопливо 0-4 класса. Предназначено для заправки в самую холодную погоду при -20 — -44 °С.
Своевременно определить изменение плотности дизельного топлива от температуры можно по началу его помутнения. После этого лучше сразу перейти на зимнее горючее и не ждать пока появится осадок или начнется кристаллизация.
Топливо для эксплуатации в холодное время получают добавлением специальных присадок в летнее горючее. Достаточно 100 мл такого антигеля, чтобы решить проблему с кристаллизацией тяжелых парафинов. При этом все характеристики топлива никак не изменяются и остаются на прежнем уровне.
Как определить плотность топлива?
Изменение плотности дизельного горючего происходит при повышении или понижении температуры окружающего воздуха. Поэтому в течении даже одного дня это значение колеблется в определенных пределах, которые учитывают с помощью специального коэффициента — примерно 0,0007 г/см³ на каждый °С.
Для измерения плотности топлива можно воспользоваться информацией, которую предоставляет поставщик, а также взять необходимые данные из таблиц или стандартов. В лабораторных условиях эти значения определяют с помощью специального приспособления — ареометра. Чтобы сделать расчет плотности топлива, достаточно знать марку горючего.
Звоните по номеру +7 (812) 426-10-10. С нами удобно, доставка 24/7
параметр, который имеет весомое значение
Задача любого топлива – произведение энергии, выделяемой при его сгорании, но не только. Дизельное топливо (ДТ) предназначается также для смазки узлов топливной системы (ТС), насоса, форсунок и их охлаждения, регулирование выхлопных параметров.
ДТ чаще всего заправляли грузовую, тяжёлую технику, которая используется в сельском хозяйстве, строительстве. Но в последнее время и многие обладатели легковых автомобилей переходят на ДТ в силу его экономичности: этот вид топлива потребляется бережливо, не уменьшая мощности двигателя.
Изменяемой величиной ДТ является его плотность. Она зависит от температуры воздуха и самого топлива. Жидкость с низкой температурой обладает высокой плотностью. Это утяжеляет фракционный состав топлива, ухудшает процессы испарения, распыления. А в камере сгорания ТС остаются отложения, затрудняющие продвижение топлива в системе. Клапаны страдают от нагара, из-за не сгорающего полностью топлива увеличивается дымность. Если качество дизтоплива оказывается низким, то автомобиль будет хуже заводиться, работать с перебоями, не в полную мощь.
Дизельное топливо зимнее и летнее – плотность ДТ имеет значение
Плотность ДТ (ПТД) – масса, помещающаяся в кубическом метре, и измеряемая в килограммах. Чем выше ПТД, тем больше при сгорании в цилиндрах выделяется энергии, тем выше КПД двигателя и его экономичность. От ПДТ зависит возможность использования ДТ в холода. При стабильности работы транспортного средства и его расхода (это бывает летом) о показателе ПДТ можно не задумываться.
Зимой, с использованием зимнего топлива, имеющего меньшую плотность, расход увеличивается. Попытки использовать зимой летнее ДТ приведёт к его кристаллизации, парафинизации, застыванию, кашеобразному месиву, забивающему ТС автомобиля. При уменьшении её пропускной способности мотор функционирует на неполную мощность, либо глохнет. От образовавшихся плотных пробок избавиться весьма проблематично. Из-за огромного давления возможно выведение из строя топливного насоса, разрыв топливного фильтра, что приведёт к тому, что скопившаяся в фильтре грязь может попасть в ТС. Последствия этого могут оказаться самыми страшными. Присадки не помогут: они эффективны лишь для жидкого топлива без каких бы то ни было помутнений. А после загустевания двигатель оживить смогут лишь в автосервисной мастерской.
Плотность дизельного топлива в цифрах
Для наглядности сравним плотность разных типов дизтоплива:
- У летнего она составляет 860 кг/куб. м;
- У зимнего – 840 кг/куб. м;
- У арктического – 830 кг/куб.
м.
Однако на глаз определить качество и плотность ДТ невозможно. Есть методика определения класса топлива в домашних условиях. Нужно налить ДТ в трёхлитровую банку и поставить её в месте, температура в котором не превышает 20 градусов. Утром надо снять показания ареометром. Но так можно определить лишь то, летнее это или зимнее топливо, а как узнать его плотность?
Прямо на АЗС при температуре -10 градусов надо капнуть пару капель солярки на металл и посмотреть, как будет изменяться жидкость и его структура. Летнее ДТ станет мутным и начнёт густеть, при ещё более низкой температуре застынет полностью – для этого ДТ даже капать никуда не надо, достаточно взглянуть на пистолет на заправочной колонке. А вот если топливо будет стекать — это будет настоящее зимнее топливо. Им можно заправлять топливный бак до отказа. Низкая плотность не позволит застыть топливу при низких температурах. Летнее же ДТ может замёрзнуть при нулевой температуре.
В свою очередь, от плотности ДТ зависит вязкость: чем меньше плотность, тем оно текучей. И текучесть сохраняется при самых низких температурах. Зимнее дизтопливо хорошего качества начинает замерзать при температуре ниже -45 градусов. Вот почему позаботиться о зимнем топливе нужно ещё до наступления холодов, поскольку парафин в составе ДТ может закристаллизовываться, загустевает и начинает застывать прямо в ТС. При нулевой температуре.
Присадки и добавки – помощь, но не панацея!
Чтобы предотвратить застывание ДТ применяют различные добавки, но они не спасают от кристаллизации, а лишь уменьшают размеры кристалликов. Они становятся такими маленькими, что могут проходить через фильтры, не засоряя их – таким образом, при снижении температуры можно сохранить работоспособность летнего ДТ. Чтобы предотвратить оседание кристаллов в ДТ используются присадки, но чтобы их постоянно не покупать и не заливать в бак перед заправками, можно использовать метод подогрева топлива. Устройство подогрева топлива крепится прямо на топливную систему и греет ДТ после долгой стоянки.
В общем-то, очевидно, что плотность ДТ не так уж и важна в летнее время, зато зимой это главный фактор работоспособности топливной системы и двигателя. Некоторые автовладельцы пытаются, используя различные присадки, снизить температуру замерзания летнего топлива, но всё-таки, летнее топливо – есть летнее, а зимнее – это зимнее, и никакими присадками из летнего сделать зимнее не получится.
Что касается АЗС, то в основном владельцы автомобилей с любым видом топлива со временем определяют для себя одну АЗС, где заправляются в течение длительного срока и всегда без проблем. И, как правило, в таких случаях никакие проверки ДТ на плотность не нужны. Самое главное для автовладельца чтобы топливо было качественным, а машина ехала – и все это может обеспечить ООО «РТД». Звоните нам, и убедитесь в этом лично.
Рассчитать стоимость топлива в 3 шага
Маршрут | Параметры топлива | Контактные данные | Расчет |
Контактные данные
Спасибо за обращениеНаш специалист свяжется с Вами в ближайшее время
Доставка дизельного топлива без проблем!
Дизельные топлива плотность — Справочник химика 21
Дизельное топливо плотность, рЛ 5 [c.
Для определения температуры вспышки дизельных топлив могут быть использованы такие косвенные показатели, как, например, плотность (pf) и вязкость (v5o, мм / ). Для дизельного топлива с содержанием серы до 0,5% (масс.) уравнения регрессии имеют вид [50] [c.50]
Дизельное топливо плотность, г/см цетановое число температура застывания, °С содержание серы, ррш 0,842/0,820 54/58 -18/-30 100/10 - [c.800]
Продукция легкий и тяжелый алкилаты, пропан, я-бутан, изобутан (при избыточном содержании в исходном сырье). Характеристика легкого алкилата (к. к. — 185 X), используемого как высокооктановый компонент бензинов плотность 690— 720 кг/м- , 50% (об.) выкипает при температуре не выше 105 °С, давление насыщенных паров при 38 °С не более 350 мм рт. ст., октановое число без ТЭС 91—95 (м. м.), йодное число менее 1,0, содержание фактических смол менее 2,0. Тяжелый алкилат, выкипающий в интервале 185—310 °С, с плотностью 790—810 кг/м применяется в качестве растворителя для различных целей, компонента дизельного топлива.

Нафтеновые углеводороды являются наиболее высококачественной составной частью моторных топлив и смазочных масел. Моноциклические нафтеновые углеводороды придают автобензинам, реактивным и дизельным топливам высокие эксплуатационные свойства, являются более качественным сырьем в процессах каталитического риформинга. В составе смазочных масел нафтены обеспечивают малое изменение вязкости от температуры (т.е. высокий индекс ма — сел). При одинаковом числе углеродных атомов нафтены по сравнению с алканами характеризуются большей плотностью и, что особенно важно, меньшей температурой застывания. [c.65]
Пределы температур выкипания дизельного топлива могут колебаться в широких пределах. Верхний предел для легких фракций фиксируется температурой вспышки и плотностью, в то время как для высококипящих фракций из сернистого сырья — кислотной стойкостью материалов. [c.83]
Вместе с тем, как правило, эти топлива характеризуются некоторыми отличиями физико-химических свойств, в частности, повышенной по сравнению с дизельными топливами плотностью (ГОСТ 305-82). Это приводит к некоторому увеличению длины струй Ь при распыливании сложных эфиров в КС [c.164]
Как уже отмечалось, отверждение густых обработанных известью буровых растворов в кольцевом пространстве между обсадными и насосно-компрессорными трубами, было причиной капитального ремонта скважин. Поэтому в начале 50-х годов в ряде глубоких скважин на северном побережье Мексиканского залива обработанный известью раствор, находившийся в кольцевом пространстве между обсадными и насосно-компрессорными трубами, был заменен раствором органофильной глины и барита в дизельном топливе. Плотность этого раствора была такой же, как и бурового раствора, применявшегося при проводке скважины в ряде случаев она превышала 2,15 г/см . Через несколько лет, когда в некоторых из этих скважин производили капитальный ремонт, после освобождения пакера колонны насосно-компрессорных труб поднимали без каких-либо затруднений. [c.81]
После дизельного топлива плотностью в, = 0,833 г/см I = 17°) в 18 час. 12 мин. начали качать керосин 6, = = 0,817 г/с. t = 15 ). Примерно через 34 часа, в 4 часа 45 мин., произошла смена нефтепродуктов. После керосина плотностью бензин плотностью d = 0,728 г/сл1 нри t = 10°. Автоматический плотномер во всех [c.267]
Условия процесса 100 объемных частей дизельного топлива (плотность при 20° 0,898, фонолы 14% объемн., температура застывания 1°) смешивают с 25 объемными частями легкого бензина (плотность при 20° 0,680) и экстрагируют 50 объемными частями 80%-ного метанольного раствора (плотность нри 20° 0,848). Выходы и характеристики продуктов (после отгонки метанола и легкого бензина) приведены в табл. 64. [c.234]
Плотность дизельного топлива для марок Л и 3 при температуре 20 °С — не более 860 и 840 кг/м соответственно. [c.17]
Растительные масла при нормальных условиях могут находиться в твердом состоянии, но чаще они представляют собой маслянистые жидкости с повышенными по сравнению с дизельным топливом плотностью (обычно р = 900—1 ООО кг/м ) [c. 185]
Сечение под 21-й тарелкой количество паров, кг/ч количество жидкости, кг/ч рабочая скорость паров, м/с удельная нагрузка по жидкости на единицу длины, м /(м-ч) плотность паров, кг/м плотность жидкости, кг/м рабочий коэффициент скорости флегмовое число Характеристика погоноразделения, °С наложение между широкой фракцией и дизельным топливом наложение между дизельным топливом и мазутом К. п. д. тарелки [c.69]
О качестве и выходах керосинов судят на основании исследования композиции из 10-градусных фракций, выкипающих от 120 до 300— 320″ С. За вычетом некоторых первых и последних из 10-градусных фракций получают керосины, отвечающие по качеству нормам ГОСТ. Дл г полученных композиций определяют плотность, высоту некоптящего пламенн, содержание серы и др. Подобно этому определяют г.ыход и качество фракции дизельного топлива. Фракционный состав дистиллятов по ГОСТ 2177—66 пересчитывают на фактический их [c.150]
Пример 2. 6. Определить теплосодержание 1 кг дизельного топлива при температуре 98° С, имеющего плотность = 0,874. [c.21]
Адсорбционная способность шарикового алюмосиликатного катализатора в результате обработки сырых.шариков дизельным топливом увеличивается почти в 1,5 раза при этом индекс каталитической активности практически не изменяется, насыпная плотность понижается с 0,73 до 0,64 г/см , а удельный объем пор, удельная поверхность и средний радиус пор увеличиваются также почти в 1,5 раза. [c.126]
Растворимость водорода также зависит от природы жидкой фазы и ее количества. С уменьшением плотности растворителя, ндпример в ряду дизельное топливо — керосин — бензин, растворимость водорода возрастает. Чем больше образуется при сепарации жидкой фазы, тем больше расходуется водорода на растворение. [c.21]
Промышленный ПАВ ОП-10, имеющий достаточно однородный состав с содержанием основного вещества около 99 и влаги 0,5 %, представляет собой пастообразное вещество от светло-желтого до коричневого цвета плотностью df =1,06—1,08, которое легко растворяется в дистиллированной и пластовой водах, этаноле и бензоле, ограниченно растворяется (менее 10%) в четыреххлористом углероде и практически нерастворим в уайт-спирите и дизельном топливе. [c.73]
С повышением температуры в реакторе увеличиваются плотность и показатель преломления бензиновой фракции, а также коксуемость и содержание сернокислотных смол во фракции дизельного топлива. Это является следствием увеличения общего количества ароматических. Содержание непредельных углеводородов в этих фракциях различно. Во фракции дизельного топлива содержание непредельных возрастает с повышением температуры в реакторе. В бензиновой фракции оно [c.120]
Увеличение глубины гидроочистки дизельного топлива (содержание 5 = 0.05% масс.) вызывает сокращение продолжительности начальной стадии окисления до 30-40 мин и переход в режим окисления с максимальной скоростью, при котором интенсивность смолообразования резко возрастает. Время достижения максимального значения оптической плотности (А = 1.2) составляет 70-90 мин. [c.149]
Уменьшение содержания серы в дизельном топливе значительно сокращает время достижения высоких значений оптической плотности (от 90-120 мин при содержании S = 0.1% до 35-70 мин при содержании S = 0.02%). [c.158]
Образцы разработанной присадки были испытаны в составе товарного дизельного топлива, содержащего нестабильные продукты вторичных процессов, лабораторным методом. Окисление топлива молекулярным кислородом проводили на газометрической установке при 120°С в присутствии медного кольца (5си = 166 см /л) в течение 7 ч с одновременной регистрацией концентрации поглощенного кислорода (Л[02], моль/л) и оптической плотности топлива (А), характеризующей смолообразование в системе [63, 64, 102 . Установлено, что при введении присадки в топливо (0.04% масс.) в конце опыта уменьшаются значения А[02] от 0.22 моль/л (в отсут- [c.184]
Опыты по нанесению катализатора на активированные угли, испытанию активности катализаторов и окислительной демеркаптанизации дизельного топлива проводили на установке непрерывного действия (рис.2.4). В качестве реактора используют стеклянную насадочную колонку (1) диаметром 20 мм и высотой 200 мм, снабжённую обратным холодильником и контактным термометром (2). Обогрев реактора осуществляют с помощью нихромовой спирали, регулирование температуры — контактным термометром и электронным реле (5) с точностью 0,5″С. В качестве носителей используют древесный уголь и активированные угли марок КАД-Д, АГ-3, АГ-5, СКТ, АР-3 в качестве катализатора — натриевые соли сульфофталоцианинов кобальта и полифталоцианина кобальта. Активированный уголь загружают в реактор одним слоем высотой 100 мм на пористую перегородку (10). Нанесение фталоцианина кобальта на активированные угли проводят путём циркуляции его 0,5 %-ного водного раствора через носитель при комнатной температуре. Подачу раствора катализатора и очищаемых углеводородов в реактор осуществляют перистальтическим дозировочным насосом (6), скорость подачи кислорода и воздуха в реактор измеряют ротаметром (8) и регулируют игольчатым вентилем. Через определённые промежутки времени в растворе определяют содержание фталоцианина кобальта на приборе ФЭК-56 по оптической плотности. [c.35]
При уменьшении содержания серы в дизельном топливе изменяется характер кинетики поглощения кислорода и роста оптической плотности. Для топлива с пониженным содержанием серы характерно наличие начального периода окисления, при котором рост оптической плотности незначителен. Введение в окисляющуюся систему (ДТ-11 + О2 + Си, 120°С) ионола (0.01% масс.) приводит к практически полному прекращению поглощения кислорода и роста оптической плотности топлива в течение 120 мин (рис. 5.23, 5.24). По завершении индукционного периода топливо окисляется с постоянной скоростью, характерной для нестабилизированного образца. В то время как в топливах с повышенным содержанием серы (ДЛ-0.2) антиоксиданты фенольного типа не способны вызвать индукционный период окисления, а лишь обеспечивают [c.207]
Количе- стоо карбамида, к исходному дизельному топливу Выход, % к исходному дизельному топливу Плотность Показатель преломлс-20 НИЯ Температура застывания, °С [c.86]
В этом уравнении большинство величин может быть определено-по приведенным выше зависимостям, справочным данным и известным законам теплопередачи. По результатам лабораторных экспериментов с керосином и дизельным топливом определены средние значения приведенного коэффициента теплоотдачи [ацр = = 33,6 Вт/(м2-°С)] и характерной толщины теплового слоя нефтепродукта (бн=0,053 м) для времени прогрева 2,5 ч. Для п1аро-воздушной смеси в резервуарах с керосином и дизельным топливом плотность и теплоемкость смеси можно принимать по воздуху при начальной температуре процесса. [c.125]
Следующий случай полного разрушения резервуара РВС-5000, построенного рулонным способом из стали СтЗс, произошел при температуре минус 40°С 28 января 1969 г на площадке Сокур-4 Новосибирской области. Резервуар № 11 был введен в эксплуатацию в декабре 1966 п По результатам нивелирования в 1968 г, максимальная разность, отметок диаметрально противоположных точек составила 100 мм, а смежных точек 50 мм. Резервуар был заполнен 4,01.69 г. летним дизельным топливом плотностью 0,833 г/см на высоту 10,4 м. [c.10]
Сушественно отличаются от дизельных тогшив по своим физико-химиче-ским свойствам и спиртовые топлива, в частности, метиловый спирт (метанол СН3ОН), а также изомер этилового спирта — диметиловый эфир (ДМЭ СН3ОСН3). Отличительными особенностями этих топлив являются низкомолекулярный углеводородный состав, пониженные по сравнению с дизельным топливом плотность и вязкость, а также наличие в их составе значительного количества кислорода около 50 % по массе — в молекуле метанола и около 30 % — в молекуле ДМЭ. Эти особенности физико-химических свойств и предопределяют отличия показателей токсичности ОГ дизелей, работающих на рассматриваемых альтернативных топливах. [c.65]
Крекинг тяжелого сырья на адсорбенте-катализаторе АД дает более высокий выход автомобильного бензина, чем на широконо-ристом адсорбенте-катализаторе СД. Полученный бензин характеризуется более высокими иодными числами. Меньшая насыпная плотность адсорбентов-катализаторов АД и СД по сравнению с алюмосиликатным катализатором позволяет при однох п той же объемной скорости п при прочих равных условиях значительно сокращать энергетические затраты за счет снижения расхода воздуха при транспортировании их в пневмосистемах установок каталитического крекинга. При этом бензин, получаемый в процессе крекинга на адсорбенте-катализаторе АД, по своим качествам равноценен бензину, получаемому на алюмосиликатном катализаторе. Применение широкопористого адсорбента-катализатора СД обеспечивает получе-нпе дизельного топлива с высокими цетановыми числами путем крекинга тяжелого сырья. [c.129]
Нефть Баракаевского месторождения легкая (относительная плотность 0,8081), парафинистая (3% парафина), малосернистая (0,12% серы), малосмолистая. Выход фракций до 200 °С—49,7, до 350 °С —81,2%. Фракции до 120,°С содержат мало ароматических углеводородов (1—2%) и до 68% нафтеновых. В более высококипящих фракциях количество ароматических углеводородов достигает 39% в дистилляте 400—420 С, а содержапие нафтеновых уменьшается и во фракциях 200—250 и 250—300 °С составляет соответственно 25 и 18%. Фракция 28—200 °С баракаевской нефти имеет низкое октановое число (48,3 без ТЭС). Из нефти могут быть получены летние дизельные топлива или компоненты специального топлива. Остатки нефти характеризуются высокой температурой застывания (31—38°С), низкой коксуемосью (3,58% для остатка выше 420 °С) остаток выше 420 °С может быть использован в качестве топочного назута 100. [c.341]
У моторного топлива по сравнению с дизельным больше плотность и вязкость, поэтому такой способ очистки не всегда эффективен. При отстаивании моторного топлива необходимо его подогревать до температуры, обеспечивающей снижение вязкости до 1,5—2 ВУ (но не менее чем на 15 °С ниже температуры вспышки топлива). Продолжительность отстаивания должна быть не менее 8 ч, так как только в этом случае частицы загрязнений и вода могут выпасть в осадок. Наличие в моторном топливе асфальтосмолистых и воды — основная причина образования стойкой водотопливной эмульсии. При образовании такой эмульсии, которую можно обнаружить при спуске отстоя, рекомендуется направлять ее в отдельную шламовую цистерну. При длительном отстое моторного топлива с большой плотностью возможно послойное распределение воды в топливе, в результате чего не удастся удалить сколько-нибудь значительную массу воды из топлива. [c.121]
Окисление образца дизельного топлива ДТ-3 с содержанием 8 = 0.10% масс. (АО НУНПЗ, 02.1997) в сходных условиях происходит с ускорением, продолжительность начальной стадии окисления не превышает 30 мин. Оптическая плотность топлива (А390) линейно изменяется во времени (рис. 4.20). [c.147]
Окисление образца дизельного топлива ДТ-7 (содержание 5 = 0.05% масс., АО УНПЗ, 01.1997) происходит с ускорением. При достижении концентрации поглощенного кислорода Д[02] 2-10 моль/л (1п,ах = 30-40 мин) процесс переходит в режим окисления с максимальной скоростью. Вид кинетических кривых поглощения О2 и изменения оптической плотности топлива (А370) сходен (рис. 4.23). [c.149]
Окисление образца дизельного топлива ДТ-9 (содержание 5 = 0.05% масс., АО УНПЗ, 04.1997) характеризуется начальным периодом окисления = 40-45 мин), после поглощения 0.02 моль/л О2 процесс приобретает максимальную скорость, при этом наблюдается интенсивный рост оптической плотности топлива (А370). Нагревание топлива в присутствии металлической меди в атмосфере инертного газа (Не) не вызывает заметного увеличения А370 (рис. 4.24). [c.149]
Окисление образца дизельного топлива ДТ-4 (содержание 5 = 0.05% масс., АО НУНПЗ) на участке начального периода окисления (tп a, = 40 мин) сопровождается незначительным изменением оптической плотности топлива. При достижении концентрации О2, равной 2-10 моль/л, наблюдается смена режима окисления и роста оптической плотности А330 (рис. 4.25). [c.149]
Для предотвращения окислительных процессов и смолообразования, приводящих к ухудшению качества дизельного топлива ДЛ-0.2 предложена полифункциональная присадка, содержащая стабилизатор — третичный амин, нейтрализующий кислотные продукты окисления, которые являются катализаторами уплотнения (Агидол-3) дисперсант, уменьшающий размеры частиц и увеличивающий их число (ионол), и деактиватор металлической меди (2-метил-2-этилиндолин). При этом стабилизатор и дисперсант одновременно выступают в качестве антиоксидантов, а деактиватор является синергическим агентом, усиливающим действие антиоксидантов. Образцы разработанной присадки были испытаны в составе товарного дизельного топлива, содержащего нестабильные продукты вторичных процессов, лабораторным методом [5]. Окисление топлива молекулярным кислородом проводили на газометрической установке при 120°С в присутствии медного кольца (5сц = 166 см /л) в течение 7 ч с одновременной регистрацией концентрации поглощенного кислорода (А[02], моль/л) и оптической плотности топлива (А), характеризующей смолообразование в системе (рис. 5.21). [c.204]
При введении в дизельное топливо (ДТ-11) с пониженным содержанием серы (5 = 0.02%) композиционной присадки (ионол Агидол-3 2-метил-2-этилиндолин = 1 1 1) в концентрации 0.01 и 0.02% масс, вызываются индукционные периоды окисления, равные 42 и 120 мин соответственно (рис. 5.25). При дальнейшем увеличении ее содержания (до 0.03% масс.) индукционный период длится более 5 ч. Следует отметить, что на протяжении индукционных периодов оптическая плотность топлива практически не возрастает, сохраняя минимальное значение (рис. 5.25). [c.209]Свойства топлива и выбросы
Свойства топлива и выбросы Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.
Abstract : Существует четкая корреляция между некоторыми свойствами топлива и регулируемыми выбросами дизельного топлива. Однако сделать общие выводы сложно из-за таких факторов, как взаимная корреляция различных свойств топлива, различных технологий двигателей или циклов испытаний двигателей.В двигателях большой мощности увеличение цетанового числа снижает выбросы HC, CO и NOx, а уменьшение плотности топлива снижает NOx и PM, но увеличивает HC и CO. Двигатели малой мощности показывают другую чувствительность к топливу, чем двигатели большой мощности. Сера увеличивает содержание твердых частиц в двигателях обоих классов. Также известно, что сера мешает нескольким стратегиям контроля выбросов дизельного топлива.
Введение
Исторически свойства топлива постоянно менялись по разным причинам, включая цены на сырую нефть, качество сырой нефти, технологии нефтепереработки, относительный спрос на дизельное и бензиновое топливо и изменение технологий двигателей.В последние годы экологические соображения и законодательство о выбросах стали играть все более важную роль в рецептуре и свойствах топлива. Чтобы найти наиболее эффективный подход к дизельным двигателям с низким уровнем выбросов, необходимо понимать механизмы взаимодействия между качеством топлива, технологиями двигателей и выбросами. Для изучения влияния свойств топлива на выбросы был проведен ряд исследований. Наиболее комплексные программы включают Европейскую программу по выбросам, топливу и технологиям двигателей (EPEFE) [229] и Американскую программу исследований по улучшению качества воздуха в автомобильной промышленности / масле (AQIRP) [230] .Многие другие исследования были проведены нефтяной и моторной промышленностями, научно-исследовательскими институтами и университетами. Библиография публикаций, выбранных для моделирования эффектов выбросов топлива в двигателях большой мощности, опубликована US EPA [571] .
Несмотря на обилие экспериментальных данных, влияние некоторых свойств топлива на выбросы до сих пор не ясно. Ниже приводится список соображений, которые затрудняют интерпретацию результатов и сравнение данных из разных исследований:
- Взаимосвязь свойств топлива,
- Двигательные технологии,
- Циклы испытаний на выбросы,
- Технологии доочистки.
Взаимосвязь свойств топлива. Свойства дизельного топлива, влияющие на выбросы, обычно взаимосвязаны. Примером этого является плотность, содержание ароматических углеводородов и цетановое число. Потоки смешивания дизельного топлива с высоким содержанием ароматических углеводородов имеют высокую плотность и низкое цетановое число.
Чтобы изучить влияние определенного свойства топлива на выбросы дизельного топлива, необходимо позаботиться о том, чтобы отделить изменение конкретного свойства топлива от изменений других свойств испытуемого топлива.Некоторые исследования не привели к адекватному разделению свойств топлива. Если несколько свойств топлива изменяются одновременно, невозможно отнести какие-либо изменения выбросов к изменению одного свойства.
Двигательные технологии. Технология дизельных двигателей развивалась в разных направлениях по всему миру. В 1990-х годах, в то время, когда проводилось большинство вышеупомянутых исследований, тяжелые двигатели в США имели большой рабочий объем и уже имели высокую степень электронного управления.В Европе по-прежнему доминировало механическое управление двигателем. Двигатели были более мощными и имели меньший рабочий объем. В Японии на рынке преобладали атмосферные двигатели большого объема. Все эти различные технологии двигателей имеют тенденцию демонстрировать несколько разную чувствительность выбросов к качеству топлива. Также почти очевидно, что реакция на выбросы будущих технологий двигателей будет отличаться от тех, которые производятся в настоящее время.
Наибольшая разница во влиянии качества топлива на выбросы была обнаружена между тяжелыми и легкими двигателями [231] .Очевидно, что результаты исследований двигателей большой мощности нельзя экстраполировать на двигатели малой мощности или наоборот, и эти два класса двигателей следует обсуждать отдельно.
Циклы испытаний на выбросы. Двигатели для разных географических рынков сертифицированы по выбросам с использованием разных циклов испытаний двигателей. Большинство исследований влияния качества топлива на выбросы сосредоточено либо на двигателях, изготовленных в США, испытанных в переходном цикле FTP в США, либо на двигателях ЕС, испытанных в цикле ECE R-49.В исследовании EPEFE была сделана попытка сравнить эти два цикла испытаний [228] . Принимая во внимание масштабы эффектов, обнаруженных в исследовании, и распространение эффектов на весь парк автомобилей ЕС, который был протестирован, влияние качества топлива на выбросы из наборов данных США и ЕС в целом схоже. Несмотря на разные циклы испытаний и разные скорости образования загрязнителей, общая экстраполяция топливных эффектов из одного набора данных в другой представляется возможной.
Технологии доочистки. Соответствие будущим стандартам выбросов может потребовать более широкого использования технологий доочистки выхлопных газов, таких как катализаторы окисления дизельного топлива, катализаторы обедненных NOx, фильтры твердых частиц дизельного топлива или другие методы. Влияние качества топлива на эти технологии обычно неизвестно. Единственным исключением является сера в топливе, которая была тщательно протестирована на предмет ее влияния на характеристики дизельных катализаторов.
Если используется эффективное устройство последующей обработки, оно станет основным фактором, влияющим на выбросы из выхлопной трубы.С точки зрения выбросов свойства топлива имели бы второстепенное значение. Таким образом, основной проблемой топлива будет его совместимость с конкретными технологиями доочистки.
###
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Математические модели для расчета плотности смесей нефтяного дизельного топлива и биодизеля
Дэвид Л. Грин, «Выбор моторного топлива: эконометрический анализ», Transportation Research, Part A: General, 23 , №3. С. 243–253 (1989).
Артикул Google Scholar
Э. Стиакакис и П. Фулирас, «Влияние экологических практик на эффективность компаний: на примере секторов, производящих ИКТ», Оперативное исследование: Международный журнал , 9 , № 3 2009. Т. 311–328.
Google Scholar
К. Г. Цанакцидис, С. Г. Кристидис и Г. Т.Цилантонис, «Исследование влияния переработанного биодизеля на физико-химические свойства смесей с дизельным топливом с целью увеличения их противообрастающего действия», International Journal of Environmental Science and Developmen t, 1 , № 2, 205–207 (2010 г.) ).
Артикул Google Scholar
Дж. Дж. Ван Герпен, Б. Шанкс, Р. Прушко, Д. Клементс и Г. Кнот, «Технология производства биодизеля , » Отчет субподрядчика, подготовленный для U.S. Департамент энергетики, Управление энергоэффективности и возобновляемых источников энергии, Среднезападный научно-исследовательский институт, Национальная лаборатория возобновляемых источников энергии NREL / SR-510-36244, Баттель (июль 2004 г.).
Герхард Ноте, «Анализ биодизеля: обзор стандартов и других методов», JAOCS , 83 , № 10, 823–833 (2006).
Артикул CAS Google Scholar
Г. М. Люнг и Г. Э. П. Бокс, «Об оценке несоответствия в моделях временных рядов», Биометрика , 65 , 297–303 (1978).
Артикул Google Scholar
Роберт Энгл, «Авторегрессионная условная гетероскедастичность с оценками дисперсии инфляции в Соединенном Королевстве», Econometrica , 50 , 987–1007 (1982).
Артикул Google Scholar
T. Papaevangelou, Fuels-Lubricants , Eugenides Foundation, Athens (1995), p.173.
Сравнение дизельного топлива и бензина в легковых автомобилях
Сравнение дизельного топлива и бензина в легковых автомобиляхИсаак Рамос
19 ноября 2012 г.
Представлено как курсовая работа для Ph340, Стэнфордский университет, осень 2012 г.
Введение
Несмотря на то, что в последние годы личный продажи автомобилей с дизельным двигателем растут быстрее, чем когда-либо В Соединенных Штатах.[1] Сторонники дизельного топлива часто спешат признают созревающий рынок, ссылаясь на превосходство в эффективности дизельный двигатель как главный мотиватор. Ясно одно: недавно в Европе до половины личных продаж автомобилей приходится на двигатели работают на дизельном топливе, тогда как в Соединенных Штатах это число все еще в диапазоне менее двух процентов. [2]
Предположение, что ископаемое топливо будет преобладающим средством использования энергии в личном транспорте в обозримом будущем, важно понимать преимущества и недостатки бензин и дизельное топливо как средства обеспечения энергией для этого цель.Естественную основу для сравнения составляют традиционные аспекты: выработка энергии, выбросы и ценообразование. Цель данной статьи разработать эти показатели для сравнения типов топлива и оставить читатель должен решить, что является «топливом будущего».
Типы топлива (двигателя)
Для создания единой основы для сравнения двух типов топлива в контексте их соответствующего двигателя, это в статье дизельное топливо и бензин используются для обозначения типов двигателей в автомобилях. (Цикл Отто) для личного транспорта, если явно не указано иное иначе.Также предполагается, что анализ двух типов топлива здесь при отсутствии экстремальных погодных условий, таких как жаркая или холодная погода, высота над уровнем моря и т. д.
Есть два существенных отличия, которые нужно понять связанные с работой бензиновых и дизельных двигателей; топливо процесс зажигания и степень сжатия. Дизельные двигатели были изобретен немецким инженером Рудольфом Дизелем, который теоретизировал эксплуатацию тепла, выделяемого при сжатии топливовоздушной смеси, согласно закон идеального газа PV = nRT.[3] Бензиновые двигатели, с другой стороны, используют свечи зажигания для воспламенения топливовоздушной смеси. Свечи зажигания позволяют снизить температуры в камере сгорания, что приводит к более низкому давление и / или объем в соответствии с теми же принципами идеального газа.
Более высокие температуры в дизельном двигателе приводят к сжатие воздуха больше, чем у бензинового двигателя. Бензиновый двигатель сжимается в соотношении 6-12: 1, тогда как дизельное топливо сжимается в соотношении 14-25: 1.Большее сжатие воздуха означает большее сжатие кислород, который является основным реагентом дизельного топлива или бензина. На основе на этих первых принципах дизельные двигатели обеспечивают эффективность, которая вполне превосходит бензин с учетом современных технологий.
Что касается энергии, еще один важный показатель, который необходимо сохранить. Имеется в виду удельная энергия дизельного топлива и бензина. Дизельное топливо тяжелее и масленее бензина, и для его создания требуется меньше очистки, его химический состав — C 14 H 3 0.Бензин на с другой стороны — C 9 H 2 0. [4] При сжигании эти химические вещества соединения соответствуют плотности энергии приблизительно 155 миллионов Джоулей на галлон для дизельного топлива и 132 миллиона Джоулей на галлон для дизельного топлива. бензин. Таким образом, по плотности энергии дизельное топливо однозначно химически впереди.
Эффективность, выбросы и цены
Тепловой КПД как газовых, так и дизельных двигателей легко вычисляется по закону идеального газа как η = 1 — (V 1 / V 2 ) γ — 1 .Для двигателей в Вопрос, теплоемкость топливовоздушной смеси γ составляет примерно 1,28. Поэтому в бензиновые двигатели, η = 1 — (1/8) 0,28 = 0,44, что при с учетом тепловых потерь, потерь на трение и газовой динамики снижается в лучшем случае примерно до η ≈ 0,25. В дизельных двигателях η = 1 — (1/15) 0,28 = 0,53, что сводится к лучшему из η ≈ 0,36 после настройки.
Из-за менее рафинированного дизельного топлива, выбросы были проблемой с тех пор, как двигатели стали широко доступны в 1970-е гг.В настоящее время в Соединенных Штатах есть как бензин, так и дизельные двигатели по тем же нормам по выбросам NOx, углерода монооксид (CO), углеводороды (HC) и твердые частицы (PM). Дизель двигатели обычно выделяют меньше CO и HC, но значительно больше NOx и PM по сравнению с их бензиновыми аналогами, что требует большего дорогостоящие и технически сложные меры по ограничению выбросов. в Стандарты Европейского Союза, NOx и PM намного ниже, что позволяет внедрение дизельной технологии по цене, сопоставимой с их бензином аналоги.
В последнее время цены на дизельное топливо и дизельное топливо связаны с технологии привели к проблемам принятия потребителями. Правительство США, включая государственный уровень, налоги на дизельное топливо до 25% выше, чем бензин. [2] Кроме того, недавнее постановление Агентства по охране окружающей среды о выбросах ТЧ серы привело к в соответствии с требованиями к продаже дизельного топлива со сверхнизким содержанием серы (ULSD) по всей стране. Это привело к увеличению более чем на 10 центов за галлонов по сравнению с ранее утвержденным дизельным топливом с низким содержанием серы начало 2000-х гг.Вместе эти факторы привели к появлению дизельного топлива. становится примерно на 10% дороже бензина, несмотря на более низкую уточнение. Наконец, дизельные двигатели по своей сути дороже, чем их бензиновые аналоги из-за стоимости материалов и окупаемости стоимость исследований и разработок от производителей.
Заключение
Оборудован актуальной и точной базой для сравнение бензина и дизеля, можно приступить к выработке мнения относительно того, какое топливо является оптимальным в будущем.С одной стороны, бензин имеет более низкую плотность энергии и работает с более низким тепловым КПД на основе степени сжатия в цикле Отто. На С другой стороны, дизельное топливо дороже с точки зрения правительства. налоги / нормы выбросов и стоимость материалов для двигателей, но меньше дорого с точки зрения переработки и стоимости сырой нефти.
Будущие возможности бензина и дизельного топлива как средств для питания потребительских автомобилей включают повышение термодинамической КПД обоих двигателей.Головка дизельного двигателя перспективное сокращение из-за улучшенного оборудования, такого как переменное значение газораспределение, непосредственный впрыск топлива и турбокомпрессоры в бензиновых двигателях. [5] Тем не менее, дизельное топливо можно постепенно увеличивать. такие явления, как независимое управление сгоранием цилиндров и улучшенное после системы очистки, которые также должны снизить экологические затраты и налоги.
© Исаак Рамос. Автор дает разрешение на копировать, распространять и демонстрировать эту работу в неизменном виде, с указание на автора, только в некоммерческих целях.Все остальные права, в том числе коммерческие, принадлежат автору.
Список литературы
[1] S. C. Davis, et al. , «Автомобиль 2011 г. Отчет о рынке технологий, Национальная лаборатория Окриджа, ORNL / TM-2012/016, Февраль 2012.
[2] P. Christidis et al. , «Тенденции в области транспортных средств и Топливные технологии, Европейская обсерватория науки и технологий, 20746 евро EN, Март 2003 г.
[3] Д. Вудъярд, Судовые дизельные двигатели Pounder и газовые турбины, 9-е изд. (Баттерворт-Хайнеманн, 2009 г.), гл. 1.
[4] М. Кирхгоф, «Хотите ли вы с этим биодизель?», ChemMatters Magazine, 23 , № 2 (апрель 2005 г.), стр. 7.
[5] Р. Рой, «Находятся Газовые двигатели теперь более эффективны, чем дизельные? »,« Популярная механика », 22. 10 ноября.
Измерения и преобразования жидкого топлива
Измерения и преобразование жидкого топлива
Бензин
1 галлон = 125 000 британских тепловых единиц — HHV *
1 галлон = 131.9 мегаджоулей — HHV *
1 галлон = 115 400 Btu — LHV *
1 галлон = 121,7 мегаджоулей — LHV *
1 галлон = 0,002791 метрическая тонна
1 баррель = 5250 000 Btu — HHV *
1 баррель = 5 539 мегаджоулей HHV * 1 баррель = 4 846 800 БТЕ — LHV *
1 баррель = 5,113 мегаджоулей — LHV *
1 баррель = 0,1172 метрических тонны
1 литр = 33 025 Btu — HHV *
1 литр = 30 489 Btu — LHV *
1 литр = 34,8 мегаджоулей — HHV *
1 литр = 32,2 мегаджоулей — LHV *
1 метрическая тонна = 8.5 баррелей
1 метрическая тонна = 1,351 килолитра
1 килолитр = 0,740 метрической тонны
Дизельное топливо
1 галлон = 138,700 БТЕ — HHV *
1 галлон = 146,3 мегаджоулей — HHV *
1 галлон = 128,700 британских тепловых единиц — LHV *
1 галлон = 135,8 мегаджоулей — LHV3 *
1 галлон =
метрических тонн 1 баррель = 5 825 400 БТЕ — HHV *
1 баррель = 6 146 мегаджоулей — HHV *
1 баррель = 5 405 400 британских тепловых единиц — LHV *
1 баррель = 5 703 мегаджоулей LHV *
1 баррель =.1341 метрическая тонна
1 метрическая тонна = 7,5 баррелей
1 килолитр = 0,839 метрических тонн
1 метрическая тонна = 1,192 килолитра
1 литр = 36 645 БТЕ — HHV *
1 литр = 38,7 мегаджоулей — HHV *
1 литр = 34 003 Btu — LHV *
1 литр = 35,9 мегаджоулей — LHV *
Этанол
1 галлон = 84600 британских тепловых единиц — HHV *
1 галлон = 89,3 мегаджоулей — HHV *
1 галлон = 75 670 британских тепловых единиц — LHV *
1 галлон = 79,8 мегаджоулей — LHV *
1 галлон = 3,553 баррель HHV *
1 галлон 1 баррель = 3,749 мегаджоулей — HHV *
1 баррель = 3,178,140 Btu — LHV *
1 баррель = 3,353 мегаджоулей — LHV *
1 литр = 22,351 Btu — HHV *
1 литр = 23.6 мегаджоулей — HHV *
1 литр = 19,992 Btu — LHV *
1 литр = 21,1 мегаджоулей — LHV *
Средняя плотность этанола = 0,79 грамма на миллилитр
Средняя плотность этанола = 0,79 метрической тонны на кубический метр
Биодизель
1 галлон = 126 206 британских тепловых единиц — HHV *
1 галлон = 133,1 мегаджоулей — HHV *
1 галлон = 117 093 британских тепловых единицы — LHV *
1 галлон = 123,5 мегаджоулей — LHV * 9 300 652 баррель HV = *
1 баррель = 5 592 мегаджоулей — HHV *
1 баррель = 4 917 906 Btu — LHV *
1 баррель = 5 188 мегаджоулей — LHV *
1 литр = 33 344 Btu — HHV *
1 литр = 35.2 мегаджоулей — HHV *
1 литр = 30 936 Btu — LHV *
1 литр = 32,6 мегаджоулей — LHV *
1 метрическая тонна биодизеля = 37,8 гигаджоулей
Средняя плотность биодизеля = 0,88 грамма на миллилитр
Средняя плотность биодизеля = 0,88 метрических тонн на кубический метр
Остаточное топливо
1 галлон = 149 700 британских тепловых единиц — HHV *
1 галлон = 157,9 мегаджоулей — HHV *
1 галлон = 138 400 британских тепловых единиц — LHV *
1 галлон = 146,0 мегаджоулей — HHV *
1 галлон = 146,0 мегаджоулей — HVV *
,400 Btu
1 баррель = 6 633 мегаджоулей — HHV *
1 баррель = 5 812 800 Btu — LHV *
1 баррель = 6 133 мегаджоулей — LHV *
1 литр = 39 551 Btu — HHV *
1 литр = 41.7 мегаджоулей — HHV *
1 литр = 36 565 Btu — LHV *
1 литр = 38,6 мегаджоулей — LHV *
Сжиженный нефтяной газ (сжиженный нефтяной газ — пропан)
1 галлон = 91 300 БТЕ — HHV *
1 галлон = 96,3 мегаджоулей — HHV *
1 галлон = 83,500 Btu — LHV *
1 галлон = 88,1 мегаджоулей —
1 галлон = 88,1 мегаджоулей баррель = 3 834 600 БТЕ — HHV *
1 баррель = 4046 мегаджоулей — HHV *
1 баррель = 3 507 000 британских тепловых единиц — LHV *
1 баррель = 3700 мегаджоулей — LHV *
1 литр = 24 121 британских тепловых единиц — HHV *
1 литр = 25.4 мегаджоулей — HHV *
1 литр = 22061 Btu — LHV *
1 литр = 23,3 мегаджоулей — LHV *
1 баррель = 0,086 метрической тонны
1 метрическая тонна = 11,6 баррелей
1 килолитр = 0,542 метрической тонны
1 метрическая тонна = 1,844 килолитра
Метанол
1 галлон = 64 600 БТЕ — HHV *
1 галлон = 68,2 мегаджоулей — HHV *
1 галлон = 56,560 Btu –LHV *
1 галлон = 59,7 мегаджоулей — LHV *
,2 HVt = 2 баррель HHV 1 баррель = 2 862 мегаджоулей — HHV *
1 баррель = 2375 520 Btu — LHV *
1 баррель = 2 506 мегаджоулей — LHV *
1 литр = 17067 Btu — HHV *
1 литр = 18.0 мегаджоулей — HHV *
1 литр = 14 943 Btu — LHV *
1 литр = 15,8 мегаджоулей — LHV *
Бутан
1 галлон = 103000 британских тепловых единиц — HHV *
1 галлон = 108,7 мегаджоулей — HHV *
1 галлон = 93000 британских тепловых единиц — LHV *
1 галлон = 98,1 мегаджоулей — LHV *
1 баррель = 4,326 HVU 1 баррель = 4564 мегаджоулей — HHV *
1 баррель = 3 906 000 Btu — LHV *
1 баррель = 4,121 мегаджоулей — LHV *
1 литр = 27 213 Btu — HHV *
1 литр = 28.7 мегаджоулей — HHV *
1 литр = 24 571 Btu — LHV *
1 литр = 25,9 мегаджоулей — LHV *
Замеры и переработка баррелей нефти или сопутствующих продуктов (баррелей)
Сырая нефть (на основе среднемировой плотности)
1 баррель = 42 галлона
1 бочка = 55 галлонов
1 метрическая бочка = 52,8 галлона
1 галлон = 0,0182 бочка
1 галлон = 0,0189 метрическая бочка
1 галлон = 138 100 БТЕ — HHV *
1 галлон = 145,7 мегаджоулей — HHV *
1 галлон = 131 800 БТЕ — LHV *
1 галлон = 139.0 мегаджоулей — LHV *
1 галлон = 0,003247 метрических тонн
1 галлон = 0,0038 килолитра
1 галлон = 0,0238 баррелей
1 баррель = 5 800 200 британских тепловых единиц — HHV *
1 баррель = 6,119 мегаджоулей — HHV *
1 баррель = 6,119 мегаджоулей — HHV *
5 = 500035 БТЕ — LHV *
1 баррель = 5840 мегаджоулей — LHV *
1 баррель = 0,13637 метрических тонн
1 баррель = 0,159 килолитра
1 литр = 36 486 BTU — HHV *
1 литр = 38,5 мегаджоулей — HHV *
1 литр = 34 822 БТЕ — LHV *
1 литр = 36,7 мегаджоулей — LHV *
1 килолитр =.8581 метрическая тонна
1 килолитр = 6,2898 баррелей
1 килолитр = 264,17 галлона
1 килолитр = 1 кубический метр
1 метрическая тонна = 1,165 килолитра
1 метрическая тонна = 7,33 баррелей
1 метрическая тонна = 307,86 галлона
1 баррель сырой нефти = 44,60 галлона нефтепродуктов
галлонов | процентов | |
Бензин автомобильный готовый | 19.40 | 44 |
Мазут дистиллятный | 10,50 | 24 |
Реактивное топливо типа Kero | 4,12 | 9 |
Кокс нефтяной | 2,23 | 5 |
Тихий газ | 1.81 | 4 |
Мазут остаточный | 1,68 | 4 |
Сжиженный газ нефтепереработки | 1,51 | 3 |
Асфальт и дорожное масло | 1,34 | 3 |
Другое | 2.01 | 4 |
Нефтяные эквиваленты
Баррель (метрическая тонна) нефтяного эквивалента — это единица энергии, основанная на приблизительной энергии, высвобождаемой при сжигании одного барреля (метрической тонны) сырой нефти.
1 баррель нефтяного эквивалента (bboe) = 0,1364 метрической тонны нефтяного эквивалента
1 баррель нефтяного эквивалента = приблизительно 1,364 миллиона килокалорий
1 баррель нефтяного эквивалента = приблизительно 5,73 гигаджоулей
1 баррель нефтяного эквивалента = приблизительно.20 метрических тонн каменного угля
1 баррель нефтяного эквивалента = примерно 0,41 метрической тонны бурого угля
1 баррель нефтяного эквивалента = примерно 1,64 метаватт-часов
1 миллион баррелей нефтяного эквивалента = 0,16 миллиарда кубических метров природного газа
1 миллион баррелей нефти эквивалент = 5,61 миллиарда кубических футов природного газа
1 миллион баррелей нефтяного эквивалента = 0,12 миллиона метрических тонн сжиженного природного газа
1 миллион баррелей нефтяного эквивалента = 5,8 триллиона БТЕ
1 миллион баррелей нефтяного эквивалента =.14 миллионов метрических тонн нефтяного эквивалента
1 метрическая тонна нефтяного эквивалента (тнэ) = 7,33 баррелей нефтяного эквивалента
1 метрическая тонна нефтяного эквивалента = примерно 10 миллионов килокалорий
1 метрическая тонна нефтяного эквивалента = примерно 42 гигаджоулей
1 метрическая тонна нефтяного эквивалента = примерно 1,5 метрические тонны каменного угля
1 метрическая тонна нефтяного эквивалента = примерно 3 метрических тонны бурого угля
1 метрическая тонна нефтяного эквивалента = примерно 12 мегаватт-часов
1 миллион метрических тонн нефтяного эквивалента = 1.111 миллиардов кубометров природного газа
1 миллион метрических тонн нефтяного эквивалента = 39,2 миллиарда кубических футов природного газа
1 миллион метрических тонн нефтяного эквивалента = 0,805 миллиона тонн сжиженного природного газа
1 миллион метрических тонн нефтяного эквивалента = 7,33 миллиона баррелей нефтяного эквивалента
Нефтепродукты
1 метрическая тонна автомобильного бензина = 8,53 баррелей
1 метрическая тонна сжиженного нефтяного газа (сжиженный нефтяной газ) (пропан) = 11,6 баррелей
1 метрическая тонна природного газа = 10 баррелей
1 метрическая тонна NGL (природный газ) жидкости) = 10.4 бочки
Жидкое топливо
1 кубический метр = 6,289 баррелей
1 баррель = 159 литров
1 баррель = 42 галлона США
1 галлон США = 231 кубических дюймов
1 галлон США = 0,1337 кубических футов
1 галлон США = 3,785 литра
1 галлон США = 0,8321 британского галлона
1 галлон США = 0,0238 баррелей
1 галлон США = 0,003785 кубических метров
1 литр = 61,02 кубических дюйма
1 литр = 0,03531 кубических футов
1 литр = 0,2642 галлона США
1 литр =.22 британских галлона
1 литр = 0,00629 баррелей
1 литр = 0,001 кубических метров
Расход
1 баррель в час = 137,8 кубических футов в день
1 баррель в час = 49 187 кубических футов в год
1 баррель в час = 1008 галлонов США в день
1 баррель в час = 367 920 галлонов США в год
1 баррель в час = 839,3 британских галлона в день
1 баррель в час = 306 345 британских галлонов в год
1 баррель в час = 3 815 литров в день
1 баррель в час = 1,392 475 литров в год
1 галлон в час =.5712 баррелей в день
1 галлон в час = 207,92 баррелей в год
1 литр в час = 0,1510 баррелей в день
1 литр в час = 55,10 баррелей в год
Измерения расхода топлива и преобразования
1 миля на галлон = 0,264 мили на литр
1 миля на галлон = 0,425 километра на литр
1 миля на галлон = 235 литров на 100 километров
1 миля на галлон = 100 галлонов на 100 миль
1 миля на литр = 3,79 мили на галлон
1 миля на литр = 1.609 километров на литр
1 миля на литр = 62,15 литра на 100 километров
1 километр на литр = 2,35 мили на галлон
1 километр на литр = 0,6215 мили на литр
1 километр на литр = 100 литров на 100 километров
1 километр за литр = 42,5 галлона на 100 миль
* Энергосодержание выражается либо как высокая (брутто) теплотворная способность (HHV), либо как нижняя (чистая) теплотворная способность (LHV). LHV в большинстве случаев ближе всего к фактическому выходу энергии. HHV (включая конденсацию продуктов сгорания) больше на 5% (в случае угля) и 10% (для природного газа), в основном в зависимости от содержания водорода в топливе.Для большинства видов сырья биомассы эта разница составляет 6-7%. Целесообразность использования LHV или HHV при сравнении видов топлива, вычислении теплового КПД и т. Д. Действительно зависит от области применения. Для стационарного горения, когда выхлопные газы охлаждаются перед сбросом (например, электростанции), более подходит HHV. Если не предпринимается попыток извлечь полезную работу из горячих выхлопных газов (например, автомобилей), более подходит LHV. На практике многие европейские публикации сообщают о LHV, в то время как в североамериканских публикациях используется HHV
(Источник: Bioenergy Feedstock Network — https: // bioenergy.ornl.gov/)
Список литературы
Сеть информации о сырье для биоэнергетики: http://bioenergy.ornl.gov/
Ежедневник по энергии биомассы, Министерство энергетики США
Коэффициенты преобразования BP
ConvertIt
Управление энергетической информации
Управление энергетической информации — страница Energy Kids: http://tonto. eia.doe.gov/kids/energy.cfm?page=about_energy_conversion_calculator-basics
Конвертер расхода топлива — Конвертер единиц
Википедия
Дон Хофстранд, бывший специалист по расширению добавленной стоимости в сельском хозяйстве, agdm @ iastate.edu
Шаг к возобновляемому дизельному топливу | MIT News
Инженерыиз Массачусетского технологического института генетически перепрограммировали штамм дрожжей, чтобы он намного эффективнее превращал сахар в жиры, что может сделать возможным возобновляемое производство высокоэнергетического топлива, такого как дизельное топливо.
Исследователи во главе с Грегори Стефанопулосом, профессором химической инженерии и биотехнологии Массачусетского технологического института Уилларда Генри Доу, изменили метаболические пути дрожжей, которые естественным образом производят большое количество липидов, сделав их примерно на 30 процентов эффективнее.
«Мы изменили метаболизм этих микробов, чтобы они были способны производить масла с очень высоким выходом», — говорит Стефанопулос, старший автор исследования, опубликованного в выпуске Nature Biotechnology от 16 января.
Эта модернизация может сделать производство возобновляемого высокоэнергетического топлива экономически целесообразным, и команда Массачусетского технологического института сейчас работает над дополнительными улучшениями, которые помогут приблизиться к этой цели.
«Мы достигли примерно 75 процентов потенциала дрожжей, и еще 25 процентов будут предметом последующей работы», — говорит Стефанопулос.
Ведущий автор статьи — бывший постдок Массачусетского технологического института Канцзянь Цяо. Другие авторы — бывшие аспиранты Массачусетского технологического института Томас Василенко и Кан Чжоу, а также бывший постдок Массачусетского технологического института Пэн Сюй.
Высокоэнергетическое топливо
Возобновляемые виды топлива, такие как этанол из кукурузы, полезны в качестве присадок к бензину для работающих автомобилей, но для больших транспортных средств, таких как самолеты, грузовики и корабли, необходимы более мощные виды топлива, такие как дизельное топливо.
«Дизельное топливо является предпочтительным топливом из-за его высокой плотности энергии и высокой эффективности двигателей, работающих на дизельном топливе», — говорит Стефанопулос.«Проблема с дизельным топливом заключается в том, что до сих пор оно полностью производится из ископаемого топлива».
Попытки разработать двигатели, работающие на биодизельном топливе, изготовленном из отработанных кулинарных масел, увенчались успехом, но кулинарный жир является относительно дефицитным и дорогим источником топлива. Крахмалы, такие как сахарный тростник и кукуруза, дешевле и их больше, но эти углеводы необходимо сначала преобразовать в липиды, которые затем можно превратить в топливо с высокой плотностью, такое как дизельное топливо.
Чтобы добиться этого, Стефанопулос и его коллеги начали работать с дрожжами, известными как Yarrowia lipolytica , которые естественным образом производят большие количества липидов.Они сосредоточились на полном использовании электронов, образующихся при расщеплении глюкозы. Для этого они трансформировали Yarrowia с помощью синтетических путей, которые превращают избыток НАДН, продукта распада глюкозы, в НАДФН, который можно использовать для синтеза липидов. В итоге они протестировали более десятка модифицированных синтетических путей.
«Оказалось, что комбинация двух из этих путей дала нам лучшие результаты, о которых мы сообщаем в статье», — говорит Стефанопулос. «Фактический механизм, почему некоторые из этих путей работают намного лучше, чем другие, не совсем понятен.”
При использовании этого улучшенного пути дрожжевым клеткам требуется только две трети количества глюкозы, необходимой немодифицированным дрожжевым клеткам для производства того же количества масла.
Лучшая эффективность
Хотя этот новый процесс преобразования глюкозы в липиды может быть экономически целесообразным при нынешних ценах на кукурузный крахмал, исследователи надеются сделать процесс еще более эффективным, говорит Стефанопулос.
«Еще есть возможности для дальнейших улучшений, и если мы будем двигаться дальше в этом направлении, то процесс станет еще более эффективным, и для производства галлона масла потребуется еще меньше глюкозы», — говорит он.
Исследователи также изучают возможность использования более дешевых источников растительного материала, таких как трава и сельскохозяйственные отходы, что потребовало бы преобразования целлюлозы, из которой состоит этот растительный материал, в глюкозу.
Исследование финансировалось Министерством энергетики США.
.