К 2040 году объемы пластикового мусора в океанах и морях могут утроиться
Таковы выводы нового доклада Программы ООН по окружающей среде (ЮНЕП). Его авторы отмечают, что на сегодняшний день на пластик приходится 85 процентов морского мусора. Эксперты предупреждают, что к 2040 году его объемы в океане почти утроятся: ежегодно они будут увеличиваться на 23–37 миллионов метрических тонн. Это примерно около 50 кг пластика на метр береговой линии по всему миру.
Угроза биоразнообразию
Как следствие, все морские виды – от планктона и моллюсков до птиц, черепах и млекопитающих окажутся в еще большей чем сегодня опасности. Им грозит серьезный риск отравления, поведенческого расстройства, голода и удушья. Кораллы, мангровые леса и заросли водорослей уже задыхаются от пластикового мусора, лишающего их кислорода и света.
Последствия для здоровья людей
При этом в опасности не только флора и фауна, но и люди, которые также не защищены от пластикового загрязнения водных источников. Эти загрязнения, по мнению экспертов, могут стать причиной гормональных изменений, нарушения развития, репродуктивных аномалий и рака.
Пластик попадает в организм человека вместе с морепродуктами, напитками и даже с поваренной солью; он проникает через кожу и вдыхается с воздухом.
Экономический ущерб
К тому же загрязнение морской среды и пластиковый мусор оказывают значительное влияние на мировую экономику. Мировые экономические потери из-за пластикового загрязнения морской среды с точки зрения его воздействия на туризм, рыбный промысел и аквакультуру вместе с затратами на очистку в 2018 году оценивались по меньшей мере в 6-19 миллиардов долларов США. К 2040 году бизнес может столкнуться с ежегодными финансовыми потерями в размере 100 миллиардов долларов США. Высокий уровень пластиковых отходов также может привести к увеличению незаконной утилизации отходов внутри страны и за рубежом.
Изменение климата
Новый доклад ЮНЕП «От загрязнения к решению: всемирная оценка проблемы морского и пластикового мусора» опубликован за 10 дней до начала 26-ой конференции по изменению климата. Его авторы подчеркивают, что пластмассы вносят «лепту» в глобальное потепление, поскольку уровни выбросов парниковых газов, связанные с пластиком, в 2015 году составили 1,7 гигатонн эквивалента CO2 (ГтCO2-экв.). По прогнозам, к 2050 году они увеличатся примерно до 6,5 ГтCO2-экв.
Сокращение масштабов использования пластмассы – верный путь к очищению океанов
«Представленные выводы являются самым убедительным на сегодняшний день научным аргументом в пользу безотлагательности действий и коллективных мер защиты и восстановления наших океанов от истоков рек до морей», – сказала Исполнительный директор ЮНЕП Ингер Андерсен, представляя доклад. Она призвала к решительным мерам.
Авторы доклада скептически оценивают шансы на переработку отходов с целью выхода из связанного с загрязнением пластиком кризиса. Они предостерегают от выбора опасных альтернатив, например биопластика или биоразлагаемого пластика, которые в настоящее время представляют собой аналогичную обычному пластику химическую угрозу.
Фото ПРООН в Монголии
Эта жительница Монголии нашла применение пластиковым отходам в хозяйстве.
Вместо этого эксперты призывают немедленно сокращать использование пластмассы и пересмотреть весь производственно-сбытовой цикл продукции из этого материла. Они предлагают вкладывать больше инвестиций в развитие эффективных систем мониторинга для определения источников, масштабов и судьбы пластика, а также добиваться повышения осведомленности потребителей.
Фото ЮНЕП
Участники кампании «Защитник чистого моря» собирают в океане микропластик.
В 2017 году Программа ООН по окружающей среде начала кампанию за чистые моря с целью стимулировать всемирное движение против пластикового загрязнения за счет сокращения использования ненужных, нежелательных и проблемных пластмасс, включая одноразовую пластиковую продукцию и постепенный отказ от намеренно добавленных микропластиков. С тех пор 63 страны взяли на себя соответствующие обязательства.
От рождения до запрета: история пластикового пакета
Впервые опубликованная в апреле 2018 года, данная статья обновлена свежими фактами, цифрами и ссылками.
Бывшие в новинку в 70-х годах ХХ века, пластиковые пакеты для покупок теперь стали вездесущим предметом, который можно встретить в каждом уголке мира.
Производимые со скоростью до одного триллиона пакетов в год пакеты можно найти как в самых темных глубинах мирового океана и на горных вершинах Эвереста, так и на ледяной шапке полюса. Получив широкое распространение, пластиковые пакеты усугубили некоторые и без того серьезные экологические проблемы. Так откуда они появились и как мы дошли до такой жизни?
1933 год – полиэтилен, самый используемый пластик, был случайно создан на химическом заводе в Нортвиче (Англия). Хотя полиэтилен производили небольшими партиях и раньше, это был первый промышленный синтез практичного материала. Впервые его потенциал был обнаружен во время секретного использования полиэтилена британскими военными во время Второй мировой войны.
Фото: Wikipedia.1965 год
1979 год – пластиковые пакеты захватывают 80 процентов рынка сумок в Европе и распространяются в Соединенных Штатах Америки и других странах мира. Компании по изготовлению пластика агрессивно внедряют свою продукцию, вытесняя бумажную упаковку и многоразовые сумки.
Фото: Creative Commons1982 год – две самые крупные сети супермаркетов в Соединенных Штатах Америки – Safeway и Kroger – переходят на пластиковые пакеты. Несмотря на то, что одноразовые пластиковые пакеты еще не полностью адаптированы покупателями, они дешевле, чем альтернатива, поэтому большинство магазинов последовали примеру Safeway и Kroger. К концу десятилетия пластиковые пакеты почти полностью вытеснили бумажные пакеты по всему миру.
Фото: Visualhunt1997 год – моряк и исследователь Чарльз Мур обнаружил громадное тихоокеанское мусорное пятно, одно из крупнейших среди нескольких мировых океанских скоплений огромного количества пластиковых отходов. Представляя угрозу морской жизни, эта огромная куча мусора и пластикового загрязнения свидетельствует о долгосрочном и вредном воздействии одноразовой пластиковой продукции.
Фото: Creative Commons2002 год – Бангладеш стал первой в мире страной, которая ввела запрет на тонкие пластиковые пакеты после того, как было обнаружено, что они играли ключевую роль в засорении дренажных систем во время катастрофического наводнения. Его примеру последовали другие страны.
Фото: Reuters2011 год – каждую минуту в мире используется один миллион пластиковых пакетов.
Фото: Reuters2018 год – согласно данным Программы ООН по окружающей среде (ЮНЕП), на июль 2018 года 127 из 192 исследованных стран ввели те или иные ограничения в национальное законодательство для решения проблемы пластиковых пакетов.
Карта: ЮНЕП2018 год – начало кампании против пластикового загрязнения #BeatPlasticPollution, которая выбирается темой Всемирного дня окружающей среды и проводится в Индии. Бизнес и правительства по всему миру продолжают брать на себя новые обязательства против пластикового загрязнения.
#Нетпластиковомузагрязнению – тема Всемирного дня окружающей среды в 2018 году.
2019 год – будучи лидером в борьбе с морским мусором и пластиковым загрязнением, Европейский Союз (ЕС) принимает решение запретить производство и использование одноразового пластика.
Фото: Европейская Комиссия2020 год – признавая наличие огромной проблемы отходов, Китай укрепляет в стране контроль за пластиковым загрязнением, вступив в эпоху отказа от одноразового пластика.
Фото: CGTN2022 год – главный этап борьбы с волной пластикового загрязнения, когда Соединенные Штаты Америки согласились поддержать всемирный договор о борьбе с пластиковым загрязнением в мировом океане, создавая условия для международного сотрудничества и действий.
Фото: UNIC, Найроби
Пластик | Состав, история, использование, типы и факты
пластиковые бутылки из-под безалкогольных напитков
Посмотреть все материалы
- Похожие темы:
- микропластик биопластик полиметилметакрилат композитный материал полимеризация
Просмотреть весь связанный контент →
Резюме
Прочтите краткий обзор этой темы
пластмасса , полимерный материал, который можно формовать или формовать, обычно под воздействием тепла и давления. Это свойство пластичности, часто встречающееся в сочетании с другими особыми свойствами, такими как низкая плотность, низкая электропроводность, прозрачность и ударная вязкость, позволяет изготавливать из пластмасс самые разнообразные продукты. К ним относятся прочные и легкие бутылки для напитков из полиэтилентерефталата (ПЭТ), гибкие садовые шланги из поливинилхлорида (ПВХ), изолирующие пищевые контейнеры из вспененного полистирола и небьющиеся окна из полиметилметакрилата.
В этой статье представлен краткий обзор основных свойств пластмасс, за которым следует более подробное описание их переработки в полезные продукты и последующей переработки. Для более полного понимания материалов, из которых изготавливаются пластмассы, см. Химия промышленных полимеров.
Многие химические названия полимеров, используемых в качестве пластмасс, стали знакомы потребителям, хотя некоторые из них более известны по своим аббревиатурам или торговым наименованиям. Таким образом, полиэтилентерефталат и поливинилхлорид обычно называют ПЭТФ и ПВХ, а вспененный полистирол и полиметилметакрилат известны под своими товарными знаками: пенополистирол и оргстекло (или плексиглас).
Промышленные производители пластмассовых изделий обычно рассматривают пластмассы либо как «товарные» смолы, либо как «специальные» смолы. (Термин смола восходит к ранним годам индустрии пластмасс; первоначально он относился к встречающимся в природе аморфным твердым веществам, таким как шеллак и канифоль.) Товарные смолы — это пластмассы, которые производятся в больших объемах и по низкой цене для наиболее распространенных предметов одноразового использования. и товары длительного пользования. Они представлены в основном полиэтиленом, полипропиленом, поливинилхлоридом, полистиролом. Специальные смолы — это пластмассы, свойства которых адаптированы к конкретным применениям и которые производятся в небольших объемах и по более высокой цене. В эту группу входят так называемые инженерные пластмассы или инженерные смолы, представляющие собой пластмассы, которые могут конкурировать с литыми под давлением металлами в сантехнике, скобяных изделиях и автомобилях. Важными инженерными пластмассами, менее знакомыми потребителям, чем товарные пластмассы, перечисленные выше, являются полиацеталь, полиамид (особенно те, которые известны под торговой маркой нейлон), политетрафторэтилен (торговая марка тефлон), поликарбонат, полифениленсульфид, эпоксидная смола и полиэфиркетон.
Пластмассы также можно разделить на две отдельные категории на основе их химического состава. Одна категория — пластмассы, состоящие из полимеров, содержащих только алифатические (линейные) атомы углерода в основных цепях. Все перечисленные выше товарные пластики попадают в эту категорию. Примером может служить структура полипропилена; здесь к каждому второму атому углерода присоединена боковая метильная группа (CH 3 ):
Другая категория пластмасс состоит из гетероцепных полимеров. Эти соединения содержат такие атомы, как кислород, азот или сера в своих основных цепях, в дополнение к углероду. Большинство перечисленных выше инженерных пластиков состоят из гетероцепных полимеров. Примером может служить поликарбонат, молекулы которого содержат два ароматических (бензольных) кольца:
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас
Различие между полимерами с углеродной цепью и полимерами с гетероцепью отражено в таблице, в которой показаны избранные свойства и области применения наиболее важных пластиков с углеродной цепью и гетероцепью, а также даны прямые ссылки на статьи, описывающие эти материалы. более подробно. Важно отметить, что для каждого типа полимера, указанного в таблице, может быть множество подтипов, поскольку любой из десятка промышленных производителей любого полимера может предложить 20 или 30 различных вариаций для использования в конкретных приложениях. По этой причине свойства, указанные в таблице, следует принимать как приблизительные.
Свойства и применение коммерчески важных пластмасс | |||||
---|---|---|---|---|---|
*Все значения приведены для образцов, армированных стекловолокном (кроме полиуретана). | |||||
Углеродная цепь | |||||
полиэтилен высокой плотности (HDPE) | 0,95–0,97 | высокий | –120 | 137 | — |
полиэтилен низкой плотности (LDPE) | 0,92–0,93 | умеренный | −120 | 110 | — |
полипропилен (ПП) | 0,90–0,91 | высокий | −20 | 176 | — |
полистирол (ПС) | 1,0–1,1 | ноль | 100 | — | — |
акрилонитрил-бутадиен-стирол (АБС) | 1,0–1,1 | ноль | 90–120 | — | — |
поливинилхлорид непластифицированный (ПВХ) | 1,3–1,6 | ноль | 85 | — | — |
полиметилметакрилат (ПММА) | 1,2 | ноль | 115 | — | — |
политетрафторэтилен (ПТФЭ) | 2. 1–2.2 | умеренно-высокий | 126 | 327 | — |
гетероцепь | |||||
полиэтилентерефталат (ПЭТ) | 1,3–1,4 | умеренный | 69 | 265 | — |
поликарбонат (ПК) | 1,2 | низкий | 145 | 230 | — |
полиацеталь | 1,4 | умеренный | –50 | 180 | — |
полиэфиркетон (PEEK) | 1,3 | ноль | 185 | — | — |
полифениленсульфид (PPS) | 1,35 | умеренный | 88 | 288 | — |
диацетат целлюлозы | 1,3 | низкий | 120 | 230 | — |
поликапролактам (нейлон 6) | 1,1–1,2 | умеренный | 50 | 210–220 | — |
гетероцепь | |||||
полиэстер (ненасыщенный) | 1,3–2,3 | ноль | — | — | 200 |
эпоксидные смолы | 1,1–1,4 | ноль | — | — | 110–250 |
фенолформальдегид | 1,7–2,0 | ноль | — | — | 175–300 |
мочевина и меламиноформальдегид | 1,5–2,0 | ноль | — | — | 190–200 |
полиуретан | 1,05 | низкий | — | — | 90–100 |
Углеродная цепь | |||||
полиэтилен высокой плотности (HDPE) | 20–30 | 10–1000 | 1–1,5 | молочные бутылки, изоляция проводов и кабелей, игрушки | |
полиэтилен низкой плотности (LDPE) | 8–30 | 100–650 | 0,25–0,35 | упаковочная пленка, продуктовые пакеты, сельскохозяйственная мульча | |
полипропилен (ПП) | 30–40 | 100–600 | 1,2–1,7 | бутылки, контейнеры для еды, игрушки | |
полистирол (ПС) | 35–50 | 1–2 | 2,6–3,4 | столовые приборы, пенопластовые пищевые контейнеры | |
акрилонитрил-бутадиен-стирол (АБС) | 15–55 | 30–100 | 0,9–3,0 | корпуса приборов, каски, фитинги | |
поливинилхлорид непластифицированный (ПВХ) | 40–50 | 2–80 | 2,1–3,4 | трубы, трубопровод, сайдинг, оконные рамы | |
полиметилметакрилат (ПММА) | 50–75 | 2–10 | 2,2–3,2 | ударопрочные окна, световые люки, козырьки | |
политетрафторэтилен (ПТФЭ) | 20–35 | 200–400 | 0,5 | самосмазывающиеся подшипники, посуда с антипригарным покрытием | |
гетероцепь | |||||
полиэтилентерефталат (ПЭТ) | 50–75 | 50–300 | 2,4–3,1 | прозрачные бутылки, магнитофон | |
поликарбонат (ПК) | 65–75 | 110–120 | 2,3–2,4 | компакт-диски, защитные очки, спортивные товары | |
полиацеталь | 70 | 25–75 | 2,6–3,4 | подшипники, шестерни, душевые лейки, молнии | |
полиэфиркетон (PEEK) | 70–105 | 30–150 | 3,9 | машины, автомобильные и аэрокосмические детали | |
полифениленсульфид (PPS) | 50–90 | 1–10 | 3,8–4,5 | детали машин, приборы, электрооборудование | |
диацетат целлюлозы | 15–65 | 6–70 | 1,5 | фотопленка | |
поликапролактам (нейлон 6) | 40–170 | 30–300 | 1,0–2,8 | подшипники, шкивы, шестерни | |
гетероцепь | |||||
полиэстер (ненасыщенный) | 20–70 | <3 | 7–14 | корпуса лодок, автомобильные панели | |
эпоксидные смолы | 35–140 | <4 | 14–30 | ламинированные печатные платы, напольные покрытия, детали самолетов | |
фенолформальдегид | 50–125 | <1 | 8–23 | электрические разъемы, ручки приборов | |
мочевина и меламиноформальдегид | 35–75 | <1 | 7,5 | столешницы, посуда | |
полиуретан | 70 | 3–6 | 4 | гибкие и жесткие пеноматериалы для обивки, изоляции | |
Для целей настоящей статьи пластмассы в первую очередь определяются не на основе их химического состава, а на основе их технических свойств. Более конкретно, они определяются как термопластичные смолы или термореактивные смолы.
Пластик | Состав, история, использование, типы и факты
пластиковые бутылки из-под безалкогольных напитков
Посмотреть все материалы
- Похожие темы:
- микропластик биопластик полиметилметакрилат композитный материал полимеризация
Просмотреть весь связанный контент →
Резюме
Прочтите краткий обзор этой темы
пластмасса , полимерный материал, который можно формовать или формовать, обычно под воздействием тепла и давления. Это свойство пластичности, часто встречающееся в сочетании с другими особыми свойствами, такими как низкая плотность, низкая электропроводность, прозрачность и ударная вязкость, позволяет изготавливать из пластмасс самые разнообразные продукты. К ним относятся прочные и легкие бутылки для напитков из полиэтилентерефталата (ПЭТ), гибкие садовые шланги из поливинилхлорида (ПВХ), изолирующие пищевые контейнеры из вспененного полистирола и небьющиеся окна из полиметилметакрилата.
В этой статье представлен краткий обзор основных свойств пластмасс, за которым следует более подробное описание их переработки в полезные продукты и последующей переработки. Для более полного понимания материалов, из которых изготавливаются пластмассы, см. Химия промышленных полимеров.
Многие химические названия полимеров, используемых в качестве пластмасс, стали знакомы потребителям, хотя некоторые из них более известны по своим аббревиатурам или торговым наименованиям. Таким образом, полиэтилентерефталат и поливинилхлорид обычно называют ПЭТФ и ПВХ, а вспененный полистирол и полиметилметакрилат известны под своими товарными знаками: пенополистирол и оргстекло (или плексиглас).
Промышленные производители пластмассовых изделий обычно рассматривают пластмассы либо как «товарные» смолы, либо как «специальные» смолы. (Термин смола восходит к ранним годам индустрии пластмасс; первоначально он относился к встречающимся в природе аморфным твердым веществам, таким как шеллак и канифоль. ) Товарные смолы — это пластмассы, которые производятся в больших объемах и по низкой цене для наиболее распространенных предметов одноразового использования. и товары длительного пользования. Они представлены в основном полиэтиленом, полипропиленом, поливинилхлоридом, полистиролом. Специальные смолы — это пластмассы, свойства которых адаптированы к конкретным применениям и которые производятся в небольших объемах и по более высокой цене. В эту группу входят так называемые инженерные пластмассы или инженерные смолы, представляющие собой пластмассы, которые могут конкурировать с литыми под давлением металлами в сантехнике, скобяных изделиях и автомобилях. Важными инженерными пластмассами, менее знакомыми потребителям, чем товарные пластмассы, перечисленные выше, являются полиацеталь, полиамид (особенно те, которые известны под торговой маркой нейлон), политетрафторэтилен (торговая марка тефлон), поликарбонат, полифениленсульфид, эпоксидная смола и полиэфиркетон. Еще одним представителем специальных смол являются термопластичные эластомеры, полимеры, которые обладают эластичными свойствами резины, но при этом могут подвергаться многократному формованию при нагревании. Термопластичные эластомеры описаны в статье эластомер.
Пластмассы также можно разделить на две отдельные категории на основе их химического состава. Одна категория — пластмассы, состоящие из полимеров, содержащих только алифатические (линейные) атомы углерода в основных цепях. Все перечисленные выше товарные пластики попадают в эту категорию. Примером может служить структура полипропилена; здесь к каждому второму атому углерода присоединена боковая метильная группа (CH 3 ):
Другая категория пластмасс состоит из гетероцепных полимеров. Эти соединения содержат такие атомы, как кислород, азот или сера в своих основных цепях, в дополнение к углероду. Большинство перечисленных выше инженерных пластиков состоят из гетероцепных полимеров. Примером может служить поликарбонат, молекулы которого содержат два ароматических (бензольных) кольца:
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас
Различие между полимерами с углеродной цепью и полимерами с гетероцепью отражено в таблице, в которой показаны избранные свойства и области применения наиболее важных пластиков с углеродной цепью и гетероцепью, а также даны прямые ссылки на статьи, описывающие эти материалы. более подробно. Важно отметить, что для каждого типа полимера, указанного в таблице, может быть множество подтипов, поскольку любой из десятка промышленных производителей любого полимера может предложить 20 или 30 различных вариаций для использования в конкретных приложениях. По этой причине свойства, указанные в таблице, следует принимать как приблизительные.
Свойства и применение коммерчески важных пластмасс | |||||
---|---|---|---|---|---|
*Все значения приведены для образцов, армированных стекловолокном (кроме полиуретана). | |||||
Углеродная цепь | |||||
полиэтилен высокой плотности (HDPE) | 0,95–0,97 | высокий | –120 | 137 | — |
полиэтилен низкой плотности (LDPE) | 0,92–0,93 | умеренный | −120 | 110 | — |
полипропилен (ПП) | 0,90–0,91 | высокий | −20 | 176 | — |
полистирол (ПС) | 1,0–1,1 | ноль | 100 | — | — |
акрилонитрил-бутадиен-стирол (АБС) | 1,0–1,1 | ноль | 90–120 | — | — |
поливинилхлорид непластифицированный (ПВХ) | 1,3–1,6 | ноль | 85 | — | — |
полиметилметакрилат (ПММА) | 1,2 | ноль | 115 | — | — |
политетрафторэтилен (ПТФЭ) | 2. 1–2.2 | умеренно-высокий | 126 | 327 | — |
гетероцепь | |||||
полиэтилентерефталат (ПЭТ) | 1,3–1,4 | умеренный | 69 | 265 | — |
поликарбонат (ПК) | 1,2 | низкий | 145 | 230 | — |
полиацеталь | 1,4 | умеренный | –50 | 180 | — |
полиэфиркетон (PEEK) | 1,3 | ноль | 185 | — | — |
полифениленсульфид (PPS) | 1,35 | умеренный | 88 | 288 | — |
диацетат целлюлозы | 1,3 | низкий | 120 | 230 | — |
поликапролактам (нейлон 6) | 1,1–1,2 | умеренный | 50 | 210–220 | — |
гетероцепь | |||||
полиэстер (ненасыщенный) | 1,3–2,3 | ноль | — | — | 200 |
эпоксидные смолы | 1,1–1,4 | ноль | — | — | 110–250 |
фенолформальдегид | 1,7–2,0 | ноль | — | — | 175–300 |
мочевина и меламиноформальдегид | 1,5–2,0 | ноль | — | — | 190–200 |
полиуретан | 1,05 | низкий | — | — | 90–100 |
Углеродная цепь | |||||
полиэтилен высокой плотности (HDPE) | 20–30 | 10–1000 | 1–1,5 | молочные бутылки, изоляция проводов и кабелей, игрушки | |
полиэтилен низкой плотности (LDPE) | 8–30 | 100–650 | 0,25–0,35 | упаковочная пленка, продуктовые пакеты, сельскохозяйственная мульча | |
полипропилен (ПП) | 30–40 | 100–600 | 1,2–1,7 | бутылки, контейнеры для еды, игрушки | |
полистирол (ПС) | 35–50 | 1–2 | 2,6–3,4 | столовые приборы, пенопластовые пищевые контейнеры | |
акрилонитрил-бутадиен-стирол (АБС) | 15–55 | 30–100 | 0,9–3,0 | корпуса приборов, каски, фитинги | |
поливинилхлорид непластифицированный (ПВХ) | 40–50 | 2–80 | 2,1–3,4 | трубы, трубопровод, сайдинг, оконные рамы | |
полиметилметакрилат (ПММА) | 50–75 | 2–10 | 2,2–3,2 | ударопрочные окна, световые люки, козырьки | |
политетрафторэтилен (ПТФЭ) | 20–35 | 200–400 | 0,5 | самосмазывающиеся подшипники, посуда с антипригарным покрытием | |
гетероцепь | |||||
полиэтилентерефталат (ПЭТ) | 50–75 | 50–300 | 2,4–3,1 | прозрачные бутылки, магнитофон | |
поликарбонат (ПК) | 65–75 | 110–120 | 2,3–2,4 | компакт-диски, защитные очки, спортивные товары | |
полиацеталь | 70 | 25–75 | 2,6–3,4 | подшипники, шестерни, душевые лейки, молнии | |
полиэфиркетон (PEEK) | 70–105 | 30–150 | 3,9 | машины, автомобильные и аэрокосмические детали | |
полифениленсульфид (PPS) | 50–90 | 1–10 | 3,8–4,5 | детали машин, приборы, электрооборудование | |
диацетат целлюлозы | 15–65 | 6–70 | 1,5 | фотопленка | |
поликапролактам (нейлон 6) | 40–170 | 30–300 | 1,0–2,8 | подшипники, шкивы, шестерни | |
гетероцепь | |||||
полиэстер (ненасыщенный) | 20–70 | <3 | 7–14 | корпуса лодок, автомобильные панели | |
эпоксидные смолы | 35–140 | <4 | 14–30 | ламинированные печатные платы, напольные покрытия, детали самолетов | |
фенолформальдегид | 50–125 | <1 | 8–23 | электрические разъемы, ручки приборов | |
мочевина и меламиноформальдегид | 35–75 | <1 | 7,5 | столешницы, посуда | |
полиуретан | 70 | 3–6 | 4 | гибкие и жесткие пеноматериалы для обивки, изоляции | |
Для целей настоящей статьи пластмассы в первую очередь определяются не на основе их химического состава, а на основе их технических свойств.