устройство, принцип работы, типы. Где находится и как работает шестеренный, регулируемый роторный маслонасос
Поговорим о сердце любого двигателя внутреннего сгорания – маслонасосе. Именно масляный насос нагнетает давление в системе смазки, позволяя смазывать трущиеся пары, отводить тепло и продукты износа. Рассмотрим принцип работы и устройство шестеренных и роторных насосов регулируемого, а также нерегулируемого типа.
Принципиальные различия в устройстве
На подавляющем большинстве автомобилей установлен нерегулируемый масляный насос. От избытка давления систему смазки предохраняет редукционный клапан, который сбрасывает излишки масла. Современные автомобили все чаще агрегатируются регулируемым масляным насосом. Принудительное изменение производительности масляной помпы позволяет уменьшить механические потери, снизив тем самым расход топлива и количество вредных выбросов. По внутреннему устройству маслонасосы разделяются на шестеренные и роторные.
Принцип работы шестеренного маслонасоса
Ведомая шестерня закреплена на оси, а ведущая приводится во вращение приводным валом.
Вращающиеся шестерни забирают масло через всасывающий канал, куда оно поступает по маслоприемнику из картера. Далее, масло под давлением поступает в нагнетательную полость, откуда уже распределяется по каналам масляной системы. Именно так работает простейший шестеренный насос.
Производительность маслонасоса напрямую зависит от скорости вращения коленчатого вала. Но повышение давления в системе сверх нормы приведет к выдавливанию сальников и увеличению механических потерь. Поэтому избыток масла стравливается редукционным клапаном, который открывается при превышении расчетного давления. Подробно устройство и принцип работы клапана, позволяющего сбрасывать масло обратно во впускную полость, вы можете изучить из статьи «Редукционный клапан масляного насоса».
1- заборные шестерни; 2- клапан; 3-запорная пружина.
Виды
По способу зацепления шестерен помпы для перекачивания жидкостей делятся на агрегаты с внутренним и внешним зацеплением.
Устройство агрегатов с шестерней в шестерни позволяет приводить маслонасос в действие непосредственно от коленчатого вала.
Принцип работы способствует уменьшению габаритных размеров корпуса без потери производительности. Поэтому именно нерегулируемые маслонасосы с внутренним зацеплением чаще всего устанавливаются на современные автомобили.
Роторный тип
Устройство объединяет в корпусе внутренний (ведущий) и внешний (ведомый) роторы. Моторное масло забирается лопастями ведущего ротора и, проходя через нагнетательную полость, подается к каналам масляной системы двигателя. Выше показано устройство нерегулируемой масляной помпы, поэтому ее принцип работы предполагает наличие редукционного клапана.
Регулируемый насос
Регулируемый масляный насос роторного типа оснащается подвижным статором и регулировочной пружиной. Вращаясь внутри внешнего ротора, внутренний ротор захватывает из всасывающей полости масло, перенаправляя его под давлением в нагнетательную область.
Объем перекаченного масла зависит от скорости вращения внутреннего ротора и от объема полости между внутренним и внешним ротором, который соединен с подвижным статором. Изменяя объем, мы можем регулировать производительность масляного насоса.
Регулировка производительности
Принцип работы регулировки объема заключается в смещении подвижного статора. В режиме низкого давления пружина регулятора, преодолевая сопротивления масла в нагнетательной полости, задвигает статор (промежуточный корпус) в крайнее положение. Объем полости между наружным и ведомым ротором уменьшается, что приводит к снижению количества перекачиваемого масла.
При повышении оборотов коленчатого вала и возрастании давления в нагнетательной полости масло преодолевает сопротивление регулировочной пружины. Смещение промежуточного корпуса ведет к увеличению зазора между наружным и внутренним роторами. Увеличивается количество перекачиваемого масла и давление в системе.
Особенности работы регулируемого масляного насоса в определенных режимах позволяют на 30% снизить механические потери в сравнении с нерегулируемыми агрегатами.
Поскольку насос перекачивает ровно такой объем, который на данном режиме работы необходим для смазывания деталей двигателя, замедляются темпы старения масла.
Шиберные агрегаты
В автомобиле шиберные помпы используются не только для нагнетания смазочных материалов в двигателе, но и в качестве насоса гидроусилителя руля. С точки зрения принципа работы и устройства, интерес вызывают двухрежимные масляные насосы, все чаще устанавливающиеся на двигатели производства VAG-Group (к примеру, Audi, Volkswagen). Устройство рассмотрим на примере маслонасоса с мотора V6 TDI объемом 4.2 л.
Масло нагнетается лопатками, которые при вращении ротора под воздействием центробежной силы прижимаются к рабочей зоне статора. В этом плане принцип работы ничем не отличается от обычного лопастного маслонасоса. Но конструкторы оснастили помпу эксцентриковым поворотным регулирующим кольцом. Также устройство предполагает наличие соленоида, который по команде блока управления двигателем (Engine Control Unite) открывает доступ маслу к регулировочной полости.
Процесс смены режимов
- Режим сниженной производительности. ЭБУ замыкает клапан управления давлением на массу, открывая доступ маслу к каналу второй управляющей поверхности. По другому масляному каналу давление масла постоянно воздействует на управляющую поверхность №1. Действующее на обе поверхности давление масла преувеличивает усилие пружины. Регулирующее кольцо поворачивается против часовой стрелки, уменьшая тем самым объем рабочей камеры маслонасоса.
- Режим высокой производительности. ЭБУ отключает питание электромагнитного клапана. Масляный канал управляющей поверхности 2 перекрывается, а давление масла действует только на зону 1. Поскольку создаваемого усилия недостаточно для преодоления сопротивления пружины, регулирующее кольцо поворачивается по часовой стрелке и отклоняется от центра. Таким образом, увеличивается объем рабочей камеры и количество перекачиваемого моторного масла.
Соответственно, давление в системе также возрастает.
Регулировка производительности осуществляется ЭБУ, который считывает информацию о режиме работе двигателя с ДМРВ (либо ДАД+ДТВ), ДПКВ, ДПДЗ, датчика положения педали акселератора, ДТОЖ, датчика температуры масла. Разумеется, полноценная работа системы невозможна без датчика давления масла, устройство, принцип работы и способы проверки которого мы уже рассматривали. Смена режимов работы происходит при повышении оборотов коленчатого вала выше 2500 об./мин либо при возрастании нагрузки на двигатель (динамичный разгон, буксировка груза).
Вне зависимости от конструкции и принципа работы, выход маслонасоса из строя приведет к серьезным поломкам и необходимости капитального ремонта двигателя. Поэтому полезно знать признаки неисправности и понимать технологию проверки масляного насоса.
типы и принцип работы в автомобиле
Автор Andrey На чтение 14 мин Просмотров 987 Обновлено
Содержание
- Понятие и назначение масляного насоса
- Где находится масляный насос в автомобиле
- Виды и устройство насосов
- Принцип работы шестеренного маслонасоса
- Шестеренчатый насос с внешним зацеплением
- Шестеренчатый насос внутреннего зацепления
- Устройство роторного типа
- Преимущества регулируемого масляного насоса перед нерегулируемым типом
- Как работает регулируемый роторный насос
- Как проверить масляный насос
- Неисправности и их признаки
- Особенности ремонта и замены
- Общие указания по монтажу
- Полезные советы
Как устроен масляный насос на Ладе Самаре (ВАЗ 2114 – 2115)
Понятие и назначение масляного насоса
Масляный насос автомобиля это устройство, создающее в системе давление на смазку, благодаря чему она поступает к подвижным элементам двигателя внутреннего сгорания.
Давление необходимо, чтобы подавать смазочный материал (масло) к тем элементам двигателя, которые нуждаются в принудительной смазке, например распредвал расположенный в головке блока цилиндров, то есть гораздо выше масляного бака и без давления создаваемого масленым насосом смазка к нему не попадет
Насос масло автомобиля приводится в действие благодаря коленчатому валу или через приводной вал от распредвала.
По характеру управления их делят на два вида: регулируемые и нерегулируемые
- Регулируемый – благодаря возможности регулирования производительности создает стабильное давление в системе
- Нерегулируемый – постоянное давление смазки поддерживается за счет наличия и действия специального, редукционного клапана
В зависимости от конструкции они также делятся на:
1. Роторного типа – давление создается благодаря лопастям ротора
2. Шестеренного типа – масло получает давление благодаря работе шестеренок.
Они в свою очередь подразделяются на:
- шестеренные с наружным зацеплением – когда две шестерни находятся рядом,
- шестеренные с внутренним зацеплением, когда одна шестерня расположена внутри другой.
Разница в расположении шестерёнок не влияет на производительность, но влияет на размеры устройства.
Благодаря тому что шестерни находятся друг в друге, требуется гораздо меньше мета для их размещения, а следовательно и шестеренный с внутренним зацеплением получается меньшим по габаритным размерам.
Автомобильные зеркала для водителя – надёжные помощники. Если они имеют недостаточно хорошую оптику, или вообще отсутствуют, управление авто становится очень опасным.
Где находится масляный насос в автомобиле
Чаще всего насос располагается в передней части мотора, сразу за шкивами привода вспомогательных агрегатов, но иногда и ниже, под коленвалом, в верхней части картера. В первом случае он приводится непосредственно от коленчатого вала, а во втором – цепью от его звёздочки или шестерёнчатой передачей.
К насосу крепится маслозаборник, отверстие которого с фильтром грубой очистки находится ниже уровня масла в картере, обычно даже в специально сделанном углублении.
Виды и устройство насосов
Основной принцип работы всех масляных насосов двигателей схож: всасывание моторного масла из поддона картера (масляного бака) и нагнетание в магистрали системы смазки. Конструктивно это могут быть шестеренчатые, роторные и пластинчатые насосы с возможностью принудительной регулировки уровня давления или без таковой.
Отличается и способ приведения их в действие.
Принцип работы шестеренного маслонасоса
Этот тип механизмов относится к нерегулируемым. Привод такого масляного насоса осуществляется от коленчатого вала двигателя. На практике это означает, что уровень давления напрямую зависит от оборотов мотора. Чтобы при этом давление масла в нагнетательной магистрали системы смазки было постоянным и не превышало критических значений, такие масляные насосы всегда дополняются редукционным клапаном.
Конструктивно шестеренчатый насос состоит из следующих элементов:
- Ведущая шестерня, соединенная с коленвалом.
- Ведомая шестерня, приводимая в движение ведущей шестерней.
- Герметичный корпус с нагнетательным и всасывающим каналами.
- Редукционный клапан масляного насоса – он представляет собой плунжер с пружиной, который при повышении давления отжимается, открывая канал сброса масла.
- Уплотнители (сальники).
Шестеренчатые насосы могут быть:
- С внешним зацеплением – шестерни располагаются рядом и имеют внешние зубья.
Недостатком данного типа является сложность достижения высокого уровня сжатия, поскольку это провоцирует рост удельных давлений в зоне зацепления зубьев. И хотя благодаря применению специального разгрузочного паза проблему можно решить, насосы с подобным пазом неэффективны для широкого спектра частот вращения и на малых оборотах производительность будет очень мала. - С внутренним зацеплением – ведущая шестерня имеет внешние зубья и расположена внутри ведомой, зубья которой направлены внутрь. Шестерни не имеют общей оси и образуют полукруглый зазор (полость). Такой маслонасос имеет более компактные размеры.
Принцип работы шестеренчатого насоса очень прост: смазка поступает внутрь через всасывающий канал, где сжимается шестернями и выталкивается под давлением в нагнетательный канал. Маслонасосы с внутренним зацеплением также могут оснащаться разделительным серпом (серповидной перегородкой). Он устанавливается между зубьями роторов в зоне из максимального удаления друг от друга.
Масляные насосы автомобильных двигателей всегда приводятся в движение от мотора. Передача при этом может осуществляться посредством зубчатого зацепления, приводных цепей или ремней.
Шестеренчатый насос с внешним зацеплением
Насос с внешним зацеплением состоит из двух шестерен, установленных в корпусе. Взаимодействуют они между собой благодаря зацеплению зубьев, расположенных на внешней стороне. Одна из шестерен является ведущей и приводиться в движение она может от коленчатого или распределительного валов. Вторая шестерня является ведомой и вращается она за счет зацепления.
В корпусе имеются два канала – подающий и отводящий. Подающий соединен с маслозаборником второй конец которого опущен в поддон с маслом. Отводящий же канал соединен с магистралями, которые подают смазочный материал к трущимся поверхностям. Работает такой насос по простому принципу: масло из подающего канала поступает в зону зацепления шестерен, захватывается зубьями и нагнетается в отводящий канал.
Таким образом обеспечивается давление в системе.
Шестеренчатый насос внутреннего зацепления
Шестеренчатый насос с внутренним зацеплением имеет несколько иную конструкцию. В корпус насоса помещено тоже две шестерни, но одна находится внутри второй. Внутренняя шестерня является ведущей и зубья у нее расположены с внешней стороны. Ведомая же шестерня – внешняя и зубчатый сектор у нее сделан с внутренней стороны. Причем оси этих шестерен не совпадают, поэтому с одной стороны между ними образуется полость в виде серпа, в которую помещен серповидный разделительный сектор. Причем начало этой полости располагается возле подающего канала, а конец – у выпускного.
Работает этот насос так: при вращении масло из подающего канала благодаря образующемуся зазору в начале образования полости между шестернями попадает между зубьями ведомого элемента. Поскольку она получает вращение от ведущей шестеренки, масло перемещается в сторону выпускного канала внутри полости, а разделительный сектор отсекает лишнюю смазку и предотвращает перетекание его между зубьями.
За разделительным сектором объем полости уменьшается, поскольку она заканчивается и появляется зона начала зацепления шестерен. В этой зоне масло сжимается зубьями, но в этот момент масло проходит место расположения выпускного канала в которое оно уже под давлением выходит.
Устройство роторного типа
- всасывающая полость
- масло
- внешний ротор
- нагнетательная полость
- приводной вал
- внутренний ротор
Конструкция масляного насоса роторного типа представляет собой ведущий (внутренний) и ведомый (внешний) роторы, помещённые в корпусе.В нерегулируемом роторном насосе масло, всасываемое насосом, нагнетается в систему, переносясь через лопасти роторов. При превышении давления так же автоматически срабатывает редукционный клапан.
В отличие от нерегулируемого, в регулируемом насосе роторного типа присутствует подвижный статор, снабжённый регулировочной пружиной для обеспечения постоянного давления, независимо от частоты вращения коленчатого вала.
Этот подвижный статор контролирует постоянство давления, изменяя объём полости между внутренним и внешним роторами, поворачивая статор в нужном направлении.
Преимущества регулируемого масляного насоса перед нерегулируемым типом
- Снижение величины отбираемой мощности от двигателя (до 30%).
- Дольше происходит износ масла вследствие уменьшения частоты оборотов, а следовательно и числа оборотов.
- Масло вспенивается не так сильно как у нерегулируемого вида.
Как работает регулируемый роторный насос
Конструктивно, такой масляный насос состоит из двух сторон — стороны нагнетания и стороны всасывания, также сюда входят такие элементы:
- приводной вал;
- регулировочная пружина;
- подвижный статор;
- внешний ротор;
- внутренний ротор;
- нагнетательная полость;
- всасывающая полость.
Когда частота и скорость вращения коленвала увеличивается, то появляется необходимость в большем количестве масла, при том, что давление в масляной системе падает.
Поэтому в конструкции предусмотрена регулировочная пружина. Она срабатывает сразу же при уменьшении давления в системе – двигает статор, который после этого соприкасается с ведомым ротором. После этого уменьшается объём всасывающей полости и становится меньше производительность насоса.
Как проверить масляный насос
Проверке без демонтажа подлежит единственный параметр – давление масла в системе. Для оперативного контроля на некоторых машинах имеется стрелочный индикатор и указывается минимально допустимая величина давления на холостых оборотах при разогретом масле. На этот же порог настраивается датчик контрольной лампы, это аварийный индикатор, поэтому имеет красный цвет.
Давление можно измерить внешним манометром, штуцер которого ввинчивается вместо датчика. Если его показания не соответствуют норме, то двигатель придётся разбирать в любом случае, виною тому общий износ или неполадки в насосе. На некоторых автомобилях может срезаться привод, но сейчас это крайняя редкость.
Снятый насос разбирается, и его состояние оценивается подетально. Чаще всего наблюдается износ зубьев роторов и шестерён, люфт осей, разбитые отверстия в корпусе, неисправности редукционного клапана, даже его простое засорение. Если отмечен износ, то насос в сборе заменяется на новый.
Неисправности и их признаки
У масляных насосов достаточно большой ресурс: благодаря работе с моторным маслом они мало изнашиваются, а благодаря простой конструкции почти не имеют слабых мест. Чтобы масляный насос жил долго и счастливо, ему нужно нормальное моторное масло и хороший масляный фильтр. Твердые частички (а они обязательно будут появляться в двигателе, даже новом, во время работы) изнашивают рабочие поверхности насоса. Большинства поломок насоса можно было бы избежать, просто проходя регулярное ТО.
Возможные неисправности масляных насосов:
- Износ рабочих частей насоса – шестеренок, пластинок шибер или ротора, а также внутренней поверхности рабочей камеры. При появлении выработки эффективность работы насоса снижается, начинаются проблемы с закачкой масла в каналы системы;
- Поломка редукционного клапана.
У него очень простая конструкция, по сути это пружина определенной жесткости, удерживающая клапан на месте. Но даже такая элементарщина может сломаться, и тогда начинаются проблемы с регулировкой давления в системе; - Засор фильтра насоса. На любой насос ставится фильтр-сетка грубой очистки перед маслозаборником. Конечно, основную задачу по очистке моторного масла берет на себя основной масляный фильтр, но и пренебрегать защитой насоса тоже не следует. Периодически фильтр-сетка забивается и не пропускает масло;
- Плохо закреплен фильтр на масляном насосе. В этом случае внутрь насоса будут попадать твердые частички и царапать поверхность металлических деталей;
- Изношена прокладка масляного насоса. Любые уплотнители рано или поздно начинают течь, поэтому производители продают ремкомплекты.
Неполадки с масляным насосом имеют характерные признаки:
- Повышается или понижается давление в системе смазки, о чём предупреждает индикатор на панели приборов;
- Тревожным признаком будет слишком быстрый расход масла, свидетельствующий о возможной его утечке.
Особенности ремонта и замены
Ремонт масляного насоса может заключаться в замене рабочей пары (что не всегда целесообразно), замене редукционного клапана и РТИ, постановке втулок в изношенные посадочные отверстия. В ряде случаев возможно восстановление шестерен путем наплавки с последующей слесарной обработкой. Поддаются ремонту и нарушенные резьбовые соединения – их растачивают либо снабжают резьбовыми втулками.
Однако куда чаще масляный насос заменяется в сборе. Это связано с относительно невысокой стоимостью детали, а также большой трудоемкостью работ по восстановлению изношенных элементов. В таком случае процесс сводится к демонтажу изношенного маслонасоса и установке нового с герметичным подключением к прочим элементам системы смазки. Разумеется, при этом проводится замена моторного масла и фильтров, не будет лишней и последующая промывка системы.
От технического состояния элементов системы смазки во многом зависит характер работы, надежность и ресурс двигателя.
Поэтому важно тщательно следить за их работой и не забывать проверять исправность деталей в ходе проведения ТО автомобиля.
Общие указания по монтажу
Для обеспечения правильной работы и долговечности насоса во время установки нового насоса необходимо всегда соблюдать предписания по монтажу производителя двигателя.
Все же всегда необходимо следовать так же следующим общим указаниям:
- Выпустите залитое масло. Его необходимо проверить на возможное загрязнение. Прежде всего, металлические загрязняющие частицы часто являются причиной закупоривания и механического износа отдельных компонентов двигателя.
- При установке насоса обязательно следите за чистотой. Труба всасывания масла, как правило, оснащена только одним фильтром грубой очистки. Металлические и загрязняющие частицы могут после ремонта беспрепятственно попасть вовнутрь нового насоса и в короткое время стать причиной повторного износа. Поэтому необходимо почистить по возможности все элементы конструкции, каналы и трубу всасывания масла, которые связаны с маслом.

- При установке нового масляного насоса всегда необходимо менять так же масляный фильтр. Если система давления масла сильно загрязнена, ее так же необходимо подвергнуть дополнительной чистке.
- Перед установкой нового масляного насоса его необходимо сравнить с геометрией старого насоса.
- Привод насоса (зубчатые зацепления, цепные колеса, приводные цепи и ремни) необходимо проверить на возможные повреждения.
Перед установкой насоса необходимо смазать предписанным маслом все движущиеся части насоса (зубчатые колеса, валы). При установке необходимо обратить внимание на правильное положение насоса. При возникновении монтажных проблем (неправильное прилегание, косое положение) не привинчивайте его с силой по отношению к креплениям на корпусе. Это может послужить причиной повреждения насоса, функциональных неполадок и негерметичностей.
При монтаже масляного насоса и трубы всасывания масла необходимо всегда использовать новые уплотнения и уплотнительные кольца.
Избегайте общего использования жидких средств уплотнения. Их разрешается использовать и встраивать только там, где это предписано изготовителем двигателя. Крепежные винты насоса должны при установке затягиваться с учетом моментов затяжек, предписанных изготовителем двигателя, и соответствующей последовательности затягивания винтов.
Если предусмотрены предохранительные шайбы против произвольного отвинчивания, то их необходимо использовать согласно предписанию изготовителя двигателя. Перед запуском двигателя мы рекомендуем заполнить систему масла при помощи специального напорного резервуара для подачи под давлением (метод вдавливания). При этом сторона нагнетания системы масла оказывается полностью заполненной маслом, и в ней нет воздуха.
Как правило, систему заполняют до тех пор, пока масло не попадет в места смазки двигателя, расположенные в самых высоких и в самых отдаленных от масляного насоса местах. При этом масло должно выступить на клапанных коромыслах или из опорных мест распределительного вала.
Таким образом, исключаются повреждения, которые могут возникнуть при запуске двигателя с недостаточным давлением масла. После «создания давления» в масляной системе двигатель заполняется до предписанного уровня масла.
При пуске двигателя после смены масляного насоса двигателю необходимо несколько секунд, чтобы создать давление масла. Если давление масла не создается, тогда необходимо прервать процесс пуска, немедленно заглушите двигатель и устраните причину. В этом случае откажитесь от идеи работы двигателя на высоких оборотах с целью ускорения образования давления масла в системе. Пользуйтесь только теми маслами, которые предписывает и рекомендует производитель двигателя.
Полезные советы
Вполне очевидно, что даже такое надежное решение, как масляный насос, имеет ограниченный срок служб. Само собой, чтобы увеличить ресурс, необходимо учитывать рассмотренные выше причины поломок маслонасоса. Понимание причин позволяет избежать подобных неприятностей. Первое, всегда нужно менять масло и масляный фильтр регулярно, а также следить за уровнем моторного масла и его состоянием.
Если видно, что масло сильно почернело, изменилась его вязкость, а также возникают проблемы с давлением масла на разных режимах работы ДВС, следует проверить смазку, а также работоспособность маслонасоса двигателя. При необходимости осмотра и замены масляного насоса следует в обязательном порядке также заменить моторное масло и фильтр масла, а также тщательно почистить картер двигателя, проверить состояние редукционного клапана и маслозаборника. Еще рекомендуется выполнить полную промывку системы смазки перед заливкой свежего масла.
Как устроен масляный насос на Ладе Самаре (ВАЗ 2114 – 2115)
Какие детали входят в конструкцию:
- ведомая шестерня;
- ведущая шестерня;
- корпус насоса;
- редукционный клапан;
- пробка;
- пружина редукционного клапана;
- передний сальник коленчатого вала;
- уплотнительное кольцо;
- резиновое уплотнительное кольцо;
- крышка насоса;
- маслоприемник.
Пластинчато-роторные насосы с масляным уплотнением
Пластинчато-роторные насосы с масляным уплотнением (или пластинчато-роторные насосы) являются основными насосами в большинстве вакуумных систем, используемых в термической промышленности.
Их также называют «форвакуумными» насосами, когда они используются в сочетании с бустерным насосом или как с бустерным, так и с вторичным («высоковакуумным») насосом, как правило, диффузионного типа. Пластинчато-роторный насос также можно использовать отдельно, когда не требуется высокий вакуум и приемлема более медленная откачка.
Доступны двухступенчатые конструкции, в которых используются два последовательно соединенных ротора внутри насоса. Одноступенчатые конструкции могут обеспечить вакуум 3 x 10 -2 Торр (4 x 10 -2 мбар), в то время как двухступенчатые конструкции могут достигать 3 x 10 -3 Торр (4 x 10 -3 мбар).
Рисунок 1 | Поперечный разрез пластинчато-роторного насоса 3 (Рисунок предоставлен Найджелом С. Харрисом, магистром наук, к. физ. наук, автором «Modern Vacuum Practice», 3-е исправленное издание, Kurt J. Lesker Company, 2007 г.) Несмотря на широкое распространение пластинчато-роторных насосов, конструкторам и пользователям промышленного вакуумного оборудования важно хорошо понимать принцип работы этих насосов.
В этой серии статей будут рассмотрены принципы работы насосов, конструкции насосов, масла для насосов, конструкции одноступенчатых и двухступенчатых насосов, загрязнение и газовый балласт (ручной и автоматический), общие аксессуары, области применения, поиск и устранение неисправностей и техническое обслуживание насосов.
Принципы работы
Из различных технологий вакуумных насосов пластинчато-роторные насосы считаются мокрыми объемными насосами. Их часто называют «мокрыми» насосами, потому что перекачиваемый газ подвергается воздействию масла, используемого в качестве смазки для обеспечения уплотнения.
По этой причине масло тщательно отбирается и специально разработано для конкретного применения. Положительное смещение указывает на то, что насос работает, механически улавливая объем газа и перемещая его через насос, создавая низкое давление на стороне всасывания.
Конструкция насоса
Пластинчато-роторные насосы (рис.
1) сконструированы таким образом, что статор насоса погружен в масло и содержит ротор, установленный эксцентрично. Ротор содержит две лопасти, которые скользят в диаметрально противоположных пазах. Лопасти могут быть подпружинены, но в противном случае полагайтесь на центробежную силу, чтобы толкать наружу стенку статора. При вращении ротора концы лопастей постоянно соприкасаются со стенкой статора.
Весь узел (рис. 2) обрабатывается и собирается с жесткими допусками, так что зазор между верхней частью ротора и стенкой статора (часто называемый «уплотнением Доу») составляет приблизительно 0,025 мм (1,0 мил) . Это уплотнение заполнено маслом, обеспечивая уплотнение между входной и выходной сторонами. Масло циркулирует из масляного резервуара внутрь насоса и выбрасывается через выпускной клапан вместе с перекачиваемым газом.
Максимальное давление, достигаемое насосом, ограничивается обратными утечками через уплотнение Duo и выделением смазочного масла.
Давление на выходе может достигать 1000 мбар (750 торр), а на входе — всего 0,01 мбар (0,0075 торр), что означает перепад давления на маслонаполненном уплотнении примерно 100 000:1 (1000:0,01). При большем перепаде давления возникает обратная утечка через уплотнение, что представляет собой один из факторов, ограничивающих предельный вакуум, достигаемый пластинчато-роторными насосами.
Типичный пластинчато-роторный насос состоит из четырех стадий (рис. 3)
- Индукционный. При первом повороте ротора на 180° газ подается в насосную камеру. Объем, занимаемый газом, увеличивается за счет серповидного пространства, создаваемого смещенным ротором. Давление газа уменьшается пропорционально увеличению его объема (закон Бойля). Это втягивает газ в насос и создает необходимый вакуум.
- Изоляция. Самая верхняя лопасть проходит через впускное отверстие, изолируя его от перекачиваемого газа.
- Сжатие. Дальнейшее вращение сжимает и нагревает газ перед самой нижней лопаткой, уменьшая его объем за счет уменьшения пространства между ротором и статором.

- Выхлоп. По мере того, как самая нижняя лопасть продолжает вращаться, давление перед ней увеличивается в достаточной степени, чтобы открыть выпускной клапан, выпуская газ под давлением, немного превышающим атмосферное.
Одним из важнейших компонентов пластинчато-роторного насоса является выпускной клапан (рис. 4), питание которого подается через несколько портов. В одной распространенной конструкции клапана используется эластомер (искусственный каучук) или фторэластомер с металлической опорной пластиной. Металлическая опорная пластина ограничивает движение эластомерной части клапана. Некоторые клапаны выполнены полностью из металла без эластомера, но такая конструкция подвержена эффекту, известному как «обратное всасывание», если насос останавливается под вакуумом. Поскольку в клапане не используется эластомер, масло может просачиваться через него и «всасываться» обратно через насос в вакуумную камеру или печь.
Поскольку клапан открывается и закрывается при каждом обороте, он является источником шума и подвержен износу независимо от того, используется эластомер или нет. Например, при скорости вращения насоса 1750 об/мин клапан будет открываться и закрываться 2,5 миллиона раз каждые 24 часа с частотой 29Гц. Клапан работает механически и принудительно открывается давлением, создаваемым насосом, затем закрывается атмосферным давлением.
Роторный Масла для насосов
Ротационные насосы смазываются маслом, которое не только обеспечивает уплотнение между сторонами высокого и низкого давления насоса, но также смазывает подшипники насоса и другие вращающиеся компоненты Некоторые конструкции насосов, особенно старые, используют циркуляцию смазочное масло полагалось на систему вакуумной подачи, при этом вакуум, создаваемый самим насосом, также использовался для подачи смазочного масла через подшипники ротора.
В других насосах используются подпружиненные манжетные уплотнения вала вокруг вала ротора.Это уплотнение динамического типа. , что также требует смазки.
Несмотря на то, что вакуумное распределение масла по-прежнему используется, в более современных насосах используется отдельный масляный насос для циркуляции масла через каналы, выточенные в статоре, к подшипникам ротора и уплотнениям (рис. 5). Когда вакуумный насос работает, его вращение также приводит во вращение масляный насос, который установлен на том же валу и создает положительное давление подачи масла на 0,4 бар (300 торр) выше атмосферного давления. Это давление поднимает подпружиненный эластомерный диск, который позволяет маслу течь в желоб, питая внутреннюю часть насоса и подшипники ротора, а также лопасти вакуумного насоса. Когда вакуумный насос останавливается, давления масляного насоса больше нет, чтобы открыть эластомерный диск, и поэтому он закрывается, предотвращая всасывание масла через насос в вакуумную камеру.
Независимо от того, используется масляный насос или нет, излишки масла удаляются из насосного механизма через выпускной клапан.
В вакуумные насосы, в которых используется отдельный масляный насос, также может быть встроен впускной запорный клапан с гидравлическим приводом (рис. 6). В этой конструкции часть циркулирующего масла направляется на поршень, который соединен с впускным клапаном, расположенным там, где газ поступает в насос из вакуумной камеры. Поршень использует гидравлическое давление, создаваемое масляным насосом, чтобы открыть впускной клапан, позволяя газу поступать в насос из камеры. Клапан подпружинен и использует эластомерное уплотнение для остановки потока газа в течение 0,5 секунд после остановки насоса. Это обеспечивает дополнительную защиту от обратного всасывания в вакуумную камеру.
Рисунок 6 | Впускной запорный клапан с гидравлическим приводом (предоставлено компанией Edwards Vacuum)Типы масла
Масло, используемое в пластинчато-роторных насосах, тщательно отбирается.
Помимо обеспечения смазки подшипников ротора, он должен:
- Обеспечивать уплотнение между лопастями и ротором.
- Создайте уплотнение Duo между концами лопастей и статором.
- Обеспечивают охлаждение статора за счет передачи тепла внешнему кожуху.
- Предложите защиту металлических частей от коррозии от перекачиваемого газа.
Кроме того, необходимо учитывать вязкость. Масла с более низкой вязкостью используются для более низких рабочих температур и небольших насосов, а масла со средней вязкостью используются для средних и больших насосов. Масла, разработанные специально для роторных насосов, представляют собой дистиллированные минеральные масла, в которых атомы водорода присоединены к любым свободным молекулам в цепи. Этот процесс, называемый гидроочисткой, позволяет получить прочный, стабильный состав с низким давлением паров. В тех случаях, когда вакуумный насос может подвергаться воздействию реактивных или коррозионно-активных газов, содержащихся в перекачиваемом газе, используется специально разработанное масло, которое было дополнительно обработано для удаления примесей. Там, где присутствует высокая концентрация кислорода или других химически активных газов, рекомендуются высокоинертные искусственные смазочные материалы. Эта перфторполиэфирная (ПФПЭ) жидкость обладает хорошей термостойкостью, но ее нельзя подвергать воздействию температур выше 280°C (535ºF), при которых она выделяет токсичные пары.
Жидкости PFPE доступны под торговыми названиями (например, Fomblin (Solvay Solexis) и Dupont’s Krytox). Если использовать неподходящее масло в химически агрессивной среде, оно разложится и оставит смолоподобный осадок, который заблокирует внутренние проходы и вызовет перегрев насоса и выход из строя из-за недостаточной смазки.
Из-за того, что роторный насос является «мокрым» насосом, часть масла выбрасывается из насоса в виде тумана вместе с перекачиваемым газом. По этой причине для улавливания вытесняемого масла используется фильтр масляного тумана (рис. 7). После выхода из насоса перекачиваемый газ проходит через фильтр тумана, который содержит фильтрующий элемент, который превращает масляный туман в капли и собирает его. Захваченное масло можно слить вручную или через другие приспособления вернуть в насос по замкнутому контуру. Он может возвращаться либо под действием силы тяжести в маслобак, либо за счет всасывания через газовый балласт (будет обсуждаться позже). Фильтрующий элемент является расходным материалом и подлежит периодической замене.
В статье выше мы подробно рассмотрели принципы работы пластинчато-роторных насосов с масляным уплотнением, включая базовую конструкцию насоса и насосное масло. В следующем разделе мы продолжим это обсуждение, уделив особое внимание эксплуатационным особенностям и внутреннему устройству этих насосов.
Одноступенчатые насосы по сравнению с двухступенчатыми
Одним из ограничивающих факторов пластинчато-роторного насоса является уплотнение Duo Seal, которое представляет собой заполненное маслом бесконтактное уплотнение в небольшом зазоре 0,025 мм (0,001 дюйма) между ротором и статор в верхней части насоса. В одноступенчатом пластинчато-роторном насосе перепад давления на уплотнении может достигать 100 000:1 (1000 мбар против 0,01 мбар). Выше этого двойное уплотнение начнет пропускать масло со стороны высокого давления на сторону низкого давления (рис. 8). Это создает обратный поток, то есть движение перекачки масла обратно в камеру вакуумной печи.
Для создания более высокого вакуума с помощью пластинчато-роторного насоса используется двухступенчатая конструкция насоса. В двухступенчатом насосе используются последовательно два пластинчато-роторных насоса (рис. 9). Выход высоковакуумной ступени соединен трубопроводом со входом низковакуумной ступени. Поскольку давление на входе низковакуумной ступени значительно ниже атмосферного, эта конструкция приводит к более низкому давлению на выходе из высоковакуумной ступени, в отличие от одноступенчатой конструкции, которая испытывает атмосферное давление на выходе. Это уменьшает перепад давления между уплотнением Duo Seal и лопастями в ступени высокого вакуума, позволяя ему работать при более высоком давлении на входе. Двухступенчатый пластинчато-роторный насос может достигать давления на входе 3 x 10 -3 торр (4 x 10 -3 мбар). Между высоковакуумной и низковакуумной ступенью нет выпускного клапана, но он есть на выходе из низковакуумной ступени.
Некоторые двухступенчатые пластинчато-роторные насосы могут работать как в режиме высокой производительности, так и в режиме высокого вакуума. Режим выбирается поворотом ручки, расположенной на панели управления помпы. Селектор режима регулирует поток масла под давлением на ступень высокого вакуума насоса, что изменяет характеристики насоса. В высокопроизводительном режиме давление масла (и, следовательно, расход) увеличивается, а в высоковакуумном режиме расход масла уменьшается. Эта функция решает проблему недостаточного перепада давления на низковакуумной ступени при более высоких давлениях, тем самым обеспечивая достаточную подачу масла в высоковакуумную ступень (которая находится позже в контуре смазки). При работе в более высоком вакууме эта проблема не возникает. Разницы давлений достаточно, чтобы обеспечить адекватную смазку на высоковакуумной ступени.
Режим высокой пропускной способности используется для обеспечения более быстрой депрессии при давлении на входе, превышающем примерно 38 торр (50 мбар). Типичный цикл может начинаться в режиме высокой пропускной способности для максимально быстрого вакуумирования вакуумной камеры, а затем переключаться в режим высокого вакуума при 38 торр (50 мбар) для достижения предельного вакуума. Режим высокой производительности также используется для откачки конденсирующихся (грязных) паров и при необходимости для обеззараживания насосного масла. Режим высокого вакуума можно использовать только тогда, когда откачиваемые газы чистые.
Сочетание выбора режима и газобалластного режима (см. ниже) позволяет оптимизировать производительность насоса. Широкий диапазон насосных характеристик (т. е. соотношение давления и расхода) достигается за счет выбора этих двух режимов в сочетании с газовым балластом (высоким, низким или без него) (таблица 1). Переключатель режимов можно активировать, когда помпа включена или выключена, а некоторые более крупные помпы переключаются между режимами автоматически.![]()
Пластинчато-роторные насосы часто оснащаются запорным клапаном на входе (также известным как антивсасывающий или вакуумный предохранительный клапан). Как следует из названия, это устройство закрывается при остановке откачки, предотвращая всасывание газа (или воздуха) обратно в вакуумную камеру через насос. Когда откачка останавливается и клапан закрывается, воздух поступает в выпускное отверстие насоса, выравнивая давление внутри насоса с давлением за пределами выпускного отверстия насоса. Это предотвращает попадание масла в корпусе в камеры статора. Когда насос снова включается, клапан открывается не сразу, а с задержкой до тех пор, пока давление в насосе не достигнет приблизительного давления в вакуумной камере, тем самым также предотвращается обратное всасывание, когда насос достигает давления. Этот запорный клапан (см. Роторно-лопастные насосы с масляным уплотнением, часть 1) приводится в действие гидравлически.
В двухступенчатых пластинчато-роторных насосах запорный клапан расположен на высоковакуумной ступени.
Газовый балласт
Влага и испаряющиеся загрязняющие вещества (обычно из-за грязных работ, попадающих в вакуумную камеру) попадают в масло насоса и мешают его эффективной работе. В результате становится трудно достичь предельного вакуума, и для этого требуется все больше и больше времени, поскольку масло теряет способность обеспечивать уплотнение между лопастями и статором, а также в двойном уплотнении, что приводит к снижению эффективности перекачки. Кроме того, свойства масла изменяются, вызывая недостаточное смазывание и создавая возможность внутренней коррозии. Чтобы избежать этих проблем, используется простая, но очень эффективная операция газового балласта (также известная как газовый балласт).
Газовый балласт – это нагнетание неконденсируемого газа (например, азота или воздуха) в пластинчато-роторный насос на стадии сжатия, что приводит к уменьшению конденсации.
Балластный газ впрыскивается через односторонний («газобалластный») клапан, расположенный в верхней части насоса (рис. 10). Одним из способов использования газобалласта является то, что преднамеренное открытие газобалластного клапана снижает эффективность работы насоса, что, в свою очередь, приводит к нагреву масла в насосе и удалению влаги и других летучих паров из масла туда, куда они могут попасть. быть отправлены вверх по вентиляционной трубе.
Теория, лежащая в основе этого, заключается в том, что впрыскиваемый газ разбавляет пар в перекачиваемом газе, так что парциальное давление пара никогда не достигает насыщения во время сжатия. Впрыск начинается в начале цикла сжатия. После его запуска ротор насоса продолжает вращаться, увеличивая давление, создаваемое в насосе, что приводит к закрытию одностороннего балластного клапана, но не до тех пор, пока не произойдет достаточное разбавление. По мере того как ротор продолжает вращаться, нагнетательный клапан насоса принудительно открывается и выбрасывает смесь перекачиваемого газа, балластного газа и пара.
В дополнение к разбавлению конденсируемого паров, газовый балласт повышает температуру технологического газа на 10–20°C (18–36°F), что еще больше препятствует образованию конденсата. Кроме того, газовый балласт, используемый во время нормальной работы для предотвращения конденсации паров, также используется для обеззараживания насосного масла, которое уже было загрязнено конденсированным паром. Для сильно загрязненных насосов это может занять несколько часов.
Рекомендуется балластировать вакуумный насос не реже одного раза в день, обычно при запуске оборудования и перед запуском первой загрузки. Делать это нужно не менее 30 минут. В некоторых критических случаях или там, где выполняются грязные работы и ожидается значительное выделение газов, рекомендуется балластировать насос после каждого цикла в течение 20–30 минут между запусками.
Это помогает обеззараживать масло после каждого рабочего цикла.
Выбор воздуха или азота в качестве балластного газа зависит от характеристик технологического газа, откачиваемого из вакуумной камеры. В качестве инертного газа азот используется, когда влага, кислород или водород, содержащиеся в воздухе, реагируют с технологическими газами. В большинстве других случаев предпочтительным балластным газом является воздух.
Основным недостатком газового балласта является то, что при использовании он снижает предельный вакуум насоса (рис. 11). Это также увеличивает скорость подачи масла из насоса. Объем газа, создаваемого балластировкой, выбирается на большинстве насосов с доступной функцией низкого и высокого расхода. Негативное влияние балласта на предельный вакуум и потери масла меньше в режиме низкого потока, чем в режиме высокого потока.
Рисунок 11| Влияние газового балласта на скорость откачки 3 (Рисунок предоставлен Найджелом С. Харрисом M. Sc, C. Phys.
, автор «Modern Vacuum Practice», 3-е исправленное издание, Kurt J. Lesker Company, 2007)Холодные ловушки
В дополнение к газовому балласту другим подходом к откачке газов, содержащих конденсированные пары или влагу, является их удаление перед подачей в насос. Это осуществляется через холодную ловушку (она же входной конденсатор), расположенную на входе насоса.
Конденсатор (рис. 12) работает путем охлаждения перекачиваемого газа ниже температуры конденсации паров (влага и др.), переносимых газом. Пары превращаются в жидкость и собираются на внутренних поверхностях теплообменника внутри конденсатора, предотвращая их попадание в насос. Образовавшийся конденсат собирают и удаляют. Входные конденсаторы могут охлаждаться водой с использованием кожухотрубного теплообменника или охлаждаться хладагентом или криогенными веществами, такими как жидкий азот.
Конденсатор также помогает свести к минимуму обратный поток паров масла из насоса в вакуумную камеру.
Даже с конденсатором на входе роторный насос может накапливать в масле конденсированные загрязнители. Поэтому часто используются как входной конденсатор, так и газовый балласт, чтобы обеспечить максимальную способность обработки паров при минимальном снижении производительности насоса.
Форвакуумные ловушки
В любой вакуумной системе с давлением ниже 0,75 торр (10-1 мбар) существует вероятность обратного потока, т. е. миграции паров масла против потока откачиваемого газа и обратно в камеру вакуумной печи (рис. 13). Обратный поток (см. Роторно-лопастные насосы с масляным уплотнением, часть 1) является результатом испарения масла под низким давлением. Это вызывает загрязнение, так как масло откладывается в виде пленки на внутренних поверхностях печи и может мешать выполняемому процессу.
Рисунок 13 | Обратная миграция паров масла из пластинчато-роторного насоса 3 (Рисунок любезно предоставлен Найджелом С.
Харрисом, магистром наук, к. физ., автором «Modern Vacuum Practice», 3-е исправленное издание, Kurt J. Lesker Company, 2007 г.)Одним из способов предотвращения обратного течения является использование форвакуумной ловушки (рис. 14), представляющей собой молекулярное сито, установленное на входе в насос. Он заполнен активированным оксидом алюминия (также называемым сорбентом), который улавливает и собирает пары масла. Наполнитель из оксида алюминия является заменяемым и должен заменяться с тем же интервалом, что и масло в насосе, обычно каждые 6 месяцев, хотя это зависит от частоты использования. Ловушка на переднем плане остановит 99% паров масла.
Рисунок 14 | Форвакуумная ловушка (любезно предоставлена Edwards Vacuum) Глинозем также удаляет влагу из форвакуумной линии и собирает ее в виде жидкой воды. Со временем это замедлит откачку, так как глинозем забивается водой. По этой причине, когда в перекачиваемом газе присутствует влага, рекомендуется использовать входной конденсатор с форвакуумной ловушкой.
При использовании форвакуумной ловушки необходимо обойти ловушку (рис. 15) во время предварительной откачки, т.е. в период начальной откачки с высоким расходом при более высоких давлениях. Только после завершения черновой обработки и достижения более высокого вакуума возникает проблема с обратным потоком. В это время газ направляется через форвакуумную ловушку. Такое перепускное устройство предотвращает быстрое и ненужное засорение глинозема во время большого потока газа и паров, перекачиваемых во время черновой обработки.
Рисунок 15 | Перепускное устройство форвакуумной ловушки (любезно предоставлено Edwards Vacuum)Хотя форвакуумные ловушки распространены, первая защита от обратного потока заключается в использовании насосного масла с низким давлением паров, которое менее склонно к испарению и, следовательно, с меньшей вероятностью обратного потока.
В дополнение к форвакуумной ловушке на входной стороне насоса используются другие аксессуары для улавливания влаги, паров и твердых загрязняющих веществ.
Среди них осушительная ловушка, цеолитовая ловушка, каталитическая ловушка, уловитель и пылеуловитель. Выбор ловушек зависит от конкретного применения и состава перекачиваемого газа.
Резюме
О пластинчато-роторных насосах с масляным уплотнением можно и, возможно, следует сказать больше, но ключ в том, чтобы признать их важность для общей производительности вашей вакуумной печи. Знайте, как они работают и как правильно их использовать. Меняйте масло в насосе каждый месяц (300 часов) и выполняйте другие шаги, необходимые для ухода за ним, и вы будете вознаграждены годами бесперебойной работы насоса.
Ссылки
- Херринг, Дэниел Х., Вакуумная термообработка, Том I, BNP Media, 2012.
- Г-н Дэвид Собигрей, Edwards Vacuum, технический вклад и частная переписка.
- Рисунки предоставлены Найджелом С. Харрисом, магистром наук, к. физ., автором «Modern Vacuum Practice», 3-е исправленное издание, Kurt J.
Lesker Company. 2007 г., ISBN 09555150116 (доступно на VLPC и Amazon)
Как работает пластинчато-роторный насос
Принцип работы роторных насосов с масляным уплотнением
Поршневой вакуумный насос, как правило, представляет собой вакуумный насос, в котором перекачиваемый газ всасывается с помощью поршней, роторов, лопастей и клапанов или подобных устройств, возможно, сжимается, а затем выпускается. Процесс откачки осуществляется за счет вращательного движения поршня внутри насоса. Следует различать масляные и сухие поршневые насосы. Используя уплотнительное масло, можно достичь в одноступенчатом режиме высоких степеней сжатия, примерно до 10 5 . Без масла «внутренняя неплотность» значительно больше и достижимая степень сжатия соответственно меньше, около 10. конструкции, а также одноступенчатые трохоидные насосы, которые сегодня представляют лишь исторический интерес. Все такие насосы оснащены газобалластным устройством, которое впервые было подробно описано Геде в 1935.
В установленных технических пределах газобалластное устройство позволяет откачивать пары (в частности, водяной пар) без конденсации паров в насосе.
Таблица 2.1 Классификация вакуумных насосов
Пластинчато-роторные насосы (TRIVAC B, TRIVAC E, SOGEVAC)
Пластинчато-роторные насосы (см. рис. 2.6) состоят из цилиндрического корпуса (насосного кольца) (1), в котором подвесной и щелевой ротор (2) вращается в направлении стрелки. Ротор имеет лопасти (16), которые выталкиваются наружу обычно под действием центробежной силы, а также под действием пружин, так что лопасти скользят внутри корпуса. Газ, поступающий через впускное отверстие (4), проталкивается лопастями и, наконец, выбрасывается из насоса через выпускной клапан с масляным уплотнением (12).
Рис. 2.6 Поперечное сечение одноступенчатого пластинчато-роторного насоса (TRIVAC B)
- Впускное отверстие
- Грязеуловитель
- Противовсасывающий клапан
- Впускной канал
- Лопасть
- Насосная камера
- Ротор
- Отверстие, соединение для балласта инертного газа
- Выхлопной канал
- Выпускной клапан
- Пружина
- Демистер
- Отверстие; штуцер для масляного фильтра
Серия TRIVAC B (рис.
2.6) имеет только две лопасти, смещенные на 180°. Лопасти выталкиваются наружу под действием центробежных сил без использования пружин. При низких температурах окружающей среды может потребоваться использование более жидкого масла. Насосы оснащены шестеренчатым масляным насосом для смазки под давлением. TRIVAC серии B оснащен особенно надежным клапаном против обратного всасывания; горизонтальное или вертикальное расположение впускных и выпускных отверстий. Смотровое стекло уровня масла и привод газового балласта находятся на одной стороне маслобака (удобная конструкция). В сочетании с системой TRIVAC BCS он может быть оснащен очень широким набором принадлежностей, разработанных в основном для полупроводниковых приложений. Масляный резервуар пластинчато-роторного насоса, а также других поршневых насосов с масляным уплотнением служит для смазки и уплотнения, а также для заполнения мертвых зон и щелей. Он отводит теплоту сжатия газа, т. е. для охлаждения. Масло обеспечивает уплотнение между ротором и насосным кольцом.
Эти детали «почти» соприкасаются по прямой линии (линии кожуха цилиндра). Чтобы увеличить площадь маслоуплотняемой поверхности, в насосное кольцо встроен так называемый уплотнительный канал (см. рис. 2.4). Это обеспечивает лучшее уплотнение и позволяет повысить степень сжатия или снизить предельное давление.
Посмотрите видео ниже, чтобы увидеть анимацию работы пластинчато-роторного насоса TRIVAC B
Leybold TRIVAC B — принципы работы
Диапазоны давления пластинчато-роторных насосов
Leybold производит пластинчато-роторные насосы различных серий, которые специально адаптированы для различных областей применения, таких как высокое давление на входе, низкое предельное давление или применения в полупроводниковой промышленности. Краткое изложение наиболее важных характеристик этих диапазонов приведено в Таблице 2.
2. Пластинчато-роторные насосы TRIVAC производятся как двухступенчатые (TRIVAC D) насосы (см. рис. 2.7). С помощью двухступенчатых насосов с масляным уплотнением можно достичь более низких рабочих и предельных давлений по сравнению с соответствующими одноступенчатыми насосами. Причина этого в том, что в случае одноступенчатых насосов масло неизбежно контактирует с атмосферой снаружи, откуда поглощается газ, который частично уходит в сторону вакуума, тем самым ограничивая достижимое предельное давление. В двухступенчатых поршневых насосах с масляным уплотнением производства Leybold уже дегазированное масло подается на ступень со стороны вакуума (ступень 1 на рис. 2.7): предельное давление лежит почти в области высокого вакуума, самые низкие рабочие давления лежат в диапазоне между средним вакуумом и высоким вакуумом. Примечание: работа так называемой ступени высокого вакуума (ступень 1) с очень небольшим количеством масла или вообще без масла, несмотря на очень низкое предельное давление, на практике приведет к значительным трудностям и значительно ухудшит работу насоса.
Рис. 2.4 Расположение уплотнительного канала в пластинчато-роторных насосах, также известных как «двойное уплотнение». Постоянный минимальный зазор a для всего проходного сечения b
Рис. 2.7 Поперечное сечение двухступенчатого пластинчато-роторного насоса, схема
I Ступень высокого вакуума
II Вторая ступень форвакуума
клапан
Таблица 2.2 Модельный ряд роторных вакуумных насосов
Роторно-плунжерные насосы (насосы E)
На Рис. 2.9 представлен вид в разрезе роторно-плунжерного насоса моноблочного типа. Здесь поршень (2), который приводится в движение эксцентриком (3), поворачивающимся в направлении стрелки, движется вдоль стенки камеры. Перекачиваемый газ поступает в насос через впускной патрубок (11), проходит через всасывающий канал золотникового клапана (12) в нагнетательную камеру (14). Золотниковый клапан образует единое целое с поршнем и скользит туда и обратно между вращающейся направляющей клапана в корпусе (шарнирная планка 13).
Всасываемый насосом газ в конечном итоге попадает в камеру сжатия (4). При вращении поршень сжимает это количество газа до тех пор, пока он не будет выброшен через масляный клапан (5). Как и в случае пластинчато-роторных насосов, масляный резервуар используется для смазки, уплотнения, заполнения мертвых зон и охлаждения. Поскольку насосная камера разделена поршнем на два пространства, каждый оборот совершает рабочий цикл (см. рис. 2.10). Роторно-плунжерные насосы изготавливаются одноступенчатыми и двухступенчатыми. Во многих вакуумных процессах сочетание насоса Рутса с одноступенчатым роторно-плунжерным насосом может дать больше преимуществ, чем использование только двухступенчатого роторно-плунжерного насоса. Если такая комбинация или двухступенчатый насос не подходят, рекомендуется использовать насос Рутса в сочетании с двухступенчатым насосом. Это не относится к комбинациям, включающим пластинчато-роторные насосы и насосы Рутса.
Рис. 2.9 Сечение одноступенчатого роторно-плунжерного насоса
- Корпус
- Цилиндрический поршень
- Эксцентрик
- Камера сжатия
- Клапан давления с масляным уплотнением
- Смотровое стекло уровня масла
- Газобалластный канал
- Выпускной бак
- Газобалластный клапан
- Грязеуловитель
- Впускное отверстие
- Задвижка
- Петля
- Насосная камера (воздух поступает)
Рис.
2.10 Рабочий цикл роторно-плунжерного насоса
- Верхняя мертвая точка
- Щель во всасывающем канале золотника свободна – начало периода всасывания
- Нижняя мертвая точка – щель во всасывающем канале достаточно свободна, и нагнетаемый газ (стрелка) свободно поступает в нагнетательную камеру (показана заштрихованной)
- Прорезь во всасывающем канале снова закрывается поворотным шарнирным стержнем – конец периода всасывания
- Верхняя мертвая точка — максимальное расстояние между вращающимся поршнем и статором
- Незадолго до начала периода сжатия передняя поверхность вращающегося плунжера освобождает газобалластное отверстие – начало входа газобалласта
- Отверстие для газового балласта свободно
- Конец входа газобалласта
- Конец периода откачки
Мощность двигателей пластинчато-роторных и плунжерных насосов
Двигатели, поставляемые с пластинчато-роторными и плунжерными насосами, обеспечивают достаточную мощность при температуре окружающей среды 53,6 °F (12 °C) и при использовании наших специальных масел для покрытия максимальная потребляемая мощность (около 400 мбар).
В пределах фактического рабочего диапазона насоса система привода прогретого насоса должна обеспечивать только около одной трети установленной мощности двигателя (см. рис. 2.11).
Рис. 2.11 Мощность двигателя роторно-плунжерного насоса (скорость откачки 60 м3/ч) в зависимости от входного давления и рабочей температуры. Кривые для газобалластных насосов других типоразмеров аналогичны.
- Рабочая темп. кривая 1 – 89 °F (32 °C)
- Рабочая темп. кривая 2 — 104°F (40°C)
- Рабочая темп. кривая 3 — 140°F (60°C)
- Рабочая темп. кривая 4 — 194 °F (90 °C)
- Теоретическая кривая адиабатического сжатия
- Теоретическая кривая изотермы сжатия
Блог и Вики Типы насосов Генерация вакуума Основы вакуума
Загрузите нашу электронную книгу «Основы вакуумной технологии», чтобы узнать об основах и процессах вакуумного насоса.
Каталожные номера
- Вакуумные символы
- Глоссарий единиц
- Ссылки и источники
Вакуумные символы Глоссарий единиц Ссылки и источники
Вакуумные символы
Глоссарий символов, обычно используемых на схемах вакуумных технологий в качестве визуального представления типов насосов и деталей насосных систем
ПОДРОБНЕЕ
Глоссарий единиц
Обзор единиц измерения, используемых в вакуумной технике, и их обозначения, а также современные эквиваленты исторических единиц
9000 2 ПОДРОБНЕЕ
Ссылки и источники
Ссылки, источники и дополнительная литература, связанная с фундаментальными знаниями вакуумной техники
ПОДРОБНЕЕ
Загрузка.

Соответственно, давление в системе также возрастает.
Недостатком данного типа является сложность достижения высокого уровня сжатия, поскольку это провоцирует рост удельных давлений в зоне зацепления зубьев. И хотя благодаря применению специального разгрузочного паза проблему можно решить, насосы с подобным пазом неэффективны для широкого спектра частот вращения и на малых оборотах производительность будет очень мала.
У него очень простая конструкция, по сути это пружина определенной жесткости, удерживающая клапан на месте. Но даже такая элементарщина может сломаться, и тогда начинаются проблемы с регулировкой давления в системе;


Lesker Company. 2007 г., ISBN 09555150116 (доступно на VLPC и Amazon)