Установки катодной защиты трубопроводов от коррозии — Корпорация ПСС
Для защиты подземных трубопроводов от коррозии по трассе их залегания сооружаются станции катодной защиты (СКЗ). В состав СКЗ входят источник постоянного тока (защитная установка), анодное заземление, контрольно-измерительный пункт, соединительные провода и кабели.
В зависимости от условий защитные установки могут питаться от сети переменного тока 0,4; 6 или 10кВ или от автономных источников (рис. 2.5).
Рис.2.5. Типичное конструктивное исполнениестанции катодной защиты. 1 – вдольтрассовая воздушная линия 10 кВ, |
При защите многониточных трубопроводов, проложенных в одном коридоре, на СКЗ может быть смонтировано несколько установок и сооружено несколько анодных заземлений.
В целях экономии защиту нескольких ниток трубопровода можно осуществлять и от одной установки. Однако, учитывая то, что при перерывах в работе системы защиты, из-за разности естественных потенциалов соединенных глухой перемычкой труб, образуются мощные гальванопары, приводящие к интенсивной коррозии, соединение труб с установкой должно осуществляться через специальные блоки совместной защиты. Эти блоки не только разъединяют трубы между собой, но и позволяют устанавливать оптимальный потенциал на каждой трубе.
В качестве источников постоянного тока для катодной защиты на СКЗ в основном используются преобразователи, которые питаются от сети 220 В промышленной частоты. Регулировка выходного напряжения преобразователя осуществляется вручную, путем переключения отводов обмотки трансформатора, или автоматически, с помощью управляемых вентилей (тиристоров.). Выпрямление переменного тока осуществляется мостовыми схемами или схемами со средней точкой вторичной обмотки трансформа-тора.
Эти схемы имеют, к.п.д. от 60 до 75% и остаточную пульсацию выпрямленного тока до 48% при частоте 100 Гц.Преобразователи с ручным регулированием выходного напряжения используются в системах ЭХЗ, в которых сопротивление в цепи тока и требуемый защитный ток остаются неизменными продолжительное время.
Если установки катодной защиты работают в условиях, изменяющихся во времени, которые могут обусловливаться воздействием блуждающих токов, изменением удельного сопротивления грунта или другими факторами, то целесообразно предусматривать преобразователи с автоматическим регулированием выходного напряжения.
Автоматическое регулирование может осуществляться по потенциалу защищаемого сооружения (преобразователи потенциостаты) или по току защиты (преобразователи гальваностаты).
Катодная защита трубопроводов от коррозии: принцип действия
Трубопроводные магистрали – это на сегодняшний день наиболее распространенное средство для осуществления транспортировки носителей энергии. Очевидный их недостаток – подверженность образованию ржавчины. Для этого выполняется катодная защита магистральных трубопроводов от коррозии. В чем же ее принцип действия?
- Причины коррозии
- Подверженность коррозии магистральных трубопроводных сетей
- Электрохимическая коррозия от грунта
- Коррозия под влиянием блуждающих токов
- Коррозионное растрескивание под влиянием напряжения
- Коррозия под влиянием микроорганизмов
- Что такое электрохимическая защита
- Как классифицируется электрохимическая защита
- Об особенностях электрохимической защиты
- Катодная защита
- Защита от коррозии обустройством дренажа
Причины коррозии
Сети трубопроводов систем жизнеобеспечения распространены по всей территории России. С их помощью эффективно транспортируется газ, вода, нефтепродукты и нефть. Не так давно был проложен трубопроводов для транспортировки аммиака. Большинство видов трубопроводов выполнены из металла, а главный их враг – это коррозия, видов которой имеется много.
Причины образования ржавчины на металлических поверхностях основаны на свойствах окружающей среды, как наружной, так и внутренней коррозии трубопроводов. Опасность образования коррозии для внутренних поверхностей основана на:
- Взаимодействии с водой.
- Наличии в воде щелочей, солей или кислот.
Такие обстоятельства могут сложиться на магистральных водопроводах, системах горячего водоснабжения (ГВС), пара и отопления. Не менее важным фактором является способ прокладки трубопровода: наземный или подземный. Первый проще обслуживать и устранять причины образования ржавчины, по сравнению со вторым.
При способе прокладывания «труба в другую трубу» риск возникновения коррозии находится на невысоком уровне. При непосредственном выполнении монтажа трубопровода на открытом воздухе возможно образование ржавчины от взаимодействия с атмосферой, что тоже приводит к изменению конструкции.
Трубопроводы, расположенные под землей, в том числе пара и горячей воды наиболее уязвимы к коррозии. Возникает вопрос о подверженности к коррозии труб, расположенных на дне водоисточников, но лишь небольшая часть магистралей расположена в этих местах.
Согласно предназначению трубопроводы с риском возникновения коррозии подразделяются на:
- магистральные;
- промысловые;
- для систем отопления и жизнеобеспечения населения;
- для сточной воды от промышленных предприятий.
Подверженность коррозии магистральных трубопроводных сетей
Коррозия трубопроводов данного типа наиболее хорошо изучена, и их защита от воздействия внешних факторов определена стандартными требованиями. В нормативных документах рассматриваются способы защиты, а не причины, исходя из которых происходит образование ржавчины.
Не менее важно учитывать, что при этом рассматривается только наружная коррозия, которой подвержен внешний участок трубопровода, так как внутри магистрали проходят инертные газы. Не столь опасно в этом случае контактирование металла с атмосферой.
Для защищенности от коррозии по ГОСТ рассматриваются для нескольких участок трубопровода: повышенной и высокой опасности, а также коррозионно-опасных.
Воздействие негативных факторов из атмосферы для участков повышенной опасности или виды коррозии:
- От источников постоянного тока возникновение блуждающих токов.
- Воздействие микроорганизмов.
- Созданное напряжение провоцирует растрескивание металла.
- Хранение отходов.
- Соленые почвы.
- Температура транспортируемого вещества выше 300 °С.
- Углекислотная коррозия нефтепровода.
Монтер по защите подземных трубопроводов от коррозии должен знать конструкцию трубопровода и требования СНиП.
Электрохимическая коррозия от грунта
Вследствие разности напряжений, образовавшихся на отдельных участках трубопроводов, возникает поток электронов. Процесс образования ржавчины происходит по электрохимическому принципу. На основании этого эффекта часть металла в анодных зонах растрескивается и перетекает в основание почвы. После взаимодействия с электролитом образовывается коррозия.
Одним из значимых критериев для обеспечения защиты от негативных проявлений является длина магистрали. На пути попадаются почвы с разным составом и характеристикой. Все это способствует возникновению разности напряжений между частями проложенных трубопроводов. Магистрали обладают хорошей проводимостью, поэтому происходит образование гальванопар с достаточно большой протяженностью.
Увеличение скорости коррозии трубопровода провоцирует высокая плотность потока электронов. Не меньшее значение играет и глубина расположения магистралей, так как на ней сохраняется существенный процент влажности, и температуры, которая ниже отметки «0» не отпускается. На поверхности труб также остается прокатная окалина после обработки, а это влияет на появление ржавчины.
Путем проведения исследовательских работ установлена прямая зависимость между глубиной и площадью образованной ржавчины на металле. Это основано на том, что металл с большей площадью поверхности наиболее уязвим к внешним негативным проявлениям. К частным случаям можно отнести проявление на стальных сооружениях значительно меньших количеств разрушений под действием электрохимического процесса.
Агрессивность грунтов к металлу, прежде всего, определяется их собственной структурной составляющей, влажностью, сопротивлением, насыщенностью щелочами, воздушной проницаемостью и иными факторами. Монтер по защите подземных трубопроводов от коррозии должен быть ознакомлен с проектом на строительство магистрали.
Коррозия под влиянием блуждающих токов
Ржавчина может возникать от переменного и постоянного потока электронов:
- Образование ржавчины под воздействием тока постоянных величин. Блуждающими токами называются токи, находящиеся в почве и в конструктивных элементах, расположенных под землей. Их происхождение антропогенное. Они возникают в результате эксплуатации технических устройств постоянного тока, распространяющегося от зданий или сооружений. Ими могут быть сварочные инверторы, систем защиты от катодов и иные устройства. Ток стремится пройти по пути наименьшего показателя сопротивления, в результате, при имеющихся в наличии трубопроводах в земле, току будет гораздо легче пройти через металл. Анодом является участок трубопровода, из которого блуждающий ток выходит на поверхность почвы. Часть трубопровода, в который попадает ток, играет роль катода. На описанных анодных поверхностях токи имеют повышенную плотность, поэтому именно в этих местах образовываются значительные коррозионные места. Скорость коррозии не ограничивается и может быть до 20 мм в год.
- Образование ржавчины под воздействием переменного тока. При расположении около магистралей линий электропередач с напряжением сети свыше 110 кВ, а также параллельном расположении трубопроводов под влиянием переменных токов образовывается коррозия, в том числе коррозия под изоляцией трубопроводов.
Коррозионное растрескивание под влиянием напряжения
Если на металлическую поверхность одновременно воздействуют внешние негативные факторы и высокое напряжение от ЛЭП, создающее растягивающие усилия, то происходит образование ржавчины. Согласно проведенным исследованиям получила свое место водородно-коррозионная новая теория.
Трещины небольшого размера образовываются при насыщении трубы водородом, которое после обеспечивает увеличение давления изнутри до показателей, выше положенного эквивалента связи атомов и кристаллов.
Под влиянием диффузии протонов производится наводораживание поверхностного слоя под влияние гидролиза при повышенных уровнях катодной защищенности и одновременного воздействия неорганических соединений.
После того как трещина раскроется, происходит ускорение процесса ржавление металла, которое обеспечивается грунтовым электролитом. В итоге под влиянием механических воздействий металл подвергается медленному разрушению.
Коррозия под влиянием микроорганизмов
Микробиологической коррозией называется процесс образования ржавчины на трубопроводе под влиянием живых микроорганизмов. Это могут быть водоросли, грибки, бактерии, в их числе простейшие организмы. Установлено, что размножение бактерий наиболее существенно влияет на этот процесс. Для поддержания жизнедеятельности микроорганизмов необходимо создание условий, а именно нужен азот, влажность, воды и соли. Также условия такие, как:
- Температурно-влажностные показатели.
- Давление.
- Наличие освещенности.
- Кислород.
При выделении кислотной среды организмы также могут вызвать коррозию. Под их влиянием на поверхности проявляются каверны, имеющие черный цвет и неприятный запах сероводорода. Бактерии, содержащие сульфаты присутствуют практические во всех почвах, но скорость коррозии увеличивается при увеличении их количества.
Что такое электрохимическая защита
Электрохимическая защита трубопроводов от коррозии — это комплекс мер, направленных на недопущение развития коррозии под воздействием электрического поля. Для преобразования постоянного тока применяются специализированные выпрямители.
Защита от коррозии производится созданием электромагнитного поля, в результате чего приобретается отрицательный потенциал или участок исполняет роль катода. То есть отрезок стальных трубопроводов, огражденный от образования ржавчины, приобретает отрицательный заряд, а заземление — положительный.
Катодная защита трубопроводов от коррозии сопровождает электролитической защищенностью с достаточной проводимостью среды. Такую функцию выполняет грунт, при прокладывании металлических подземных магистралей. Контактирование электродов осуществляется через токопроводящие элементы.
Индикатор для определения показателей коррозии – это высоковольтный вольтметр или датчик коррозии. С помощью этого прибора контролируется показатель между электролитом и грунтом, конкретно для этого случая.
Как классифицируется электрохимическая защита
Коррозия и защита магистральных трубопроводов и резервуаров от нее контролируются двумя способами:
- К металлической поверхности подводиться источник от тока. Этот участок приобретает отрицательный заряд, то есть исполняет роль катода. Аноды – это инертные электроды, которые никакого отношения к конструктивному исполнению не имеют. Этот способ считается наиболее распространенным, и электрохимическая коррозия не возникает. Такая методика направлена на недопущение следующих разновидностей коррозий: питтинговой, по причине присутствия блуждающих токов, кристаллического типа нержавеющей стали, а также растрескиванию элементов из латуни.
- Гальванический способ. Защита магистральных трубопроводов или протекторная защита осуществляется металлическими пластинами с большими показателями отрицательных зарядов, изготовленными из алюминия, цинка, магния либо их сплавов. Аноды – это два элемента, так называемые ингибиторы, при этом медленное разрушение протектора способствует поддержанию в изделии катодного тока. Протекторная защита используется крайне редко. ЭХЗ выполняется на изоляционное покрытие трубопроводов.
Об особенностях электрохимической защиты
Основной причиной разрушения трубопроводов является следствие коррозии металлических поверхностей. После образования ржавчины образовывают трещины, разрывы, каверны, которые постепенно увеличиваются в размерах и способствуют разрыву трубопровода. Это явление чаще происходит у магистралей, проложенных под землей, или соприкасающихся с грунтовыми водами.
В принципе действия катодной защиты заложено создание разности напряжений и действия двумя вышеописанными методами. После проведенных измерительных операций непосредственно на местности расположения трубопровода выяснено, что нужный потенциал, способствующий замедлению процесса разрушения должен составлять 0,85В, а у подземных элементов это значение равно 0,55В.
Для замедления скорости коррозии следует снизить катодное напряжение на 0,3В. При таком раскладе, скорость коррозии не будет более 10 мкм/год, а это существенно продлить срок службы технических устройств.
Одна из значимых проблем — это наличие блуждающих токов в грунте. Такие токи возникают от заземлений зданий, сооружений, рельсовых путей и иных устройств. Тем более невозможно провести точную оценку, в каком месте они могут проявиться.
Для создания разрушающего воздействия достаточно заряда стальных трубопроводов положительным потенциалом по отношению к электролитическому окружению, к ним относятся магистрали, проложенные в грунте.
Для того чтобы обеспечить контур током необходимо подвести внешнее напряжение, параметры которого будут достаточными для пробивания сопротивления грунтового основания.
Как правило, подобные источники – это линии электропередач с показателями мощностей от 6 до 10 кВт. Если электрический ток невозможно подвести, то можно использовать дизельные или газовые генераторы. Монтер по защите подземных трубопроводов от коррозии перед выполнением работ должен быть ознакомлен с проектными решениями.
Катодная защита
Чтобы снизился процент возникновения ржавчины на поверхности труб, используются станции электродной защиты:
- Анодная, выполненная в виде заземляющих проводников.
- Преобразователи постоянных потоков электронов.
- Оборудование пункта управления процессом и контроля за этим процессом.
- Кабельные и проводные соединения.
Станции катодных защит достаточно результативны, при непосредственном соединении с линией электропередачи или генератору, они обеспечивают ингибирующее действие токов. При этом обеспечивается защита одновременно нескольких участков трубопровода. Регулировка параметров производиться вручную или автоматически. В первом случае используются обмотки трансформаторов, а во втором – тиристоры.
Наиболее распространенной на территории России является высокотехнологичная установка – Миневра -3000. Ее мощности предостаточно для осуществления защиты 30000 м магистралей.
Достоинства технического устройства:
- высокие характеристики мощности;
- обновление режима работы после перегрузок через четверть минуты;
- с помощью цифрового регулирования осуществляется контроль за рабочими параметрами;
- герметичность высокоответственных соединений;
- подключение устройства к дистанционному контролю за процессом.
Также применяются АСКГ-ТМ, хотя они их мощность невелика, их оснащение телеметрическим комплексом или дистанционным управлением позволяет им быть не менее популярными.
Схема изоляционной магистрали водопровода или газопровода должна быть на месте проведения работ.
Видео: катодная защита от коррозии – какой бывает и как выполняется?
Защита от коррозии обустройством дренажа
Монтер по защите подземных трубопроводов от коррозии должен быть ознакомлен с устройством дренажа. Такая защита от образования ржавчины трубопроводов от блуждающих токов производится устройством дренажа, необходимым для отвода этих токов в другой участок земли. Всего существует несколько вариантов дренажей.
Разновидности исполнения:
- Выполненный под землей.
- Прямой.
- С полярностями.
- Усиленный.
При осуществлении земляного дренажа производят установку электродов к анодные зоны. Для обеспечения прямой дренажной линии выполняется электрическая перемычка, соединяющая трубопровод с отрицательным полюсом от источников токов, к примеру, заземлению от жилого дома.
Поляризованный дренаж имеет одностороннюю проводимость, то есть при появлении положительного заряда на заземляющем контуре он автоматически отключается. Усиленный дренаж функционирует от преобразователя тока, дополнительно подключенному в электрическую схему, а это улучшает отвод блуждающих токов от магистрали.
Прибавка на коррозию трубопроводов проводится расчетным путем, согласно РД.
Кроме всего, применяется ингибиторная защита, то есть на трубах используется специальный состав для защиты от агрессивных сред. Стояночная коррозия возникает при простое котельного оборудования продолжительное время, чтобы этого не происходило, необходимо техническое обслуживание оборудования.
Монтер по защите подземных трубопроводов от коррозии должен обладать знаниями и навыками, обучен Правилам и периодически проходить медосмотр, и сдавать экзамены в присутствии инспектора Ростехнадзора.
Republished by Blog Post Promoter
Что такое катодная защита? Каковы плюсы и минусы?
Катодная защита является основным оружием против коррозии, но имеет некоторые дорогостоящие недостатки при попытке защитить более крупные стальные активы. , среда, способная проводить ток (например, вода, бетон или почва), и металлическая дорожка между хостом и местом назначения.
Электрохимическая коррозия металлов представляет собой процесс, при котором ионы на поверхности металла переносятся на другое вещество (деполяризатор или менее активное вещество или металл). Такими деполяризаторами являются кислород, кислоты или катионы более пассивных металлов.
Для чего используется катодная защита?
Катодная защита часто используется для уменьшения коррозионного повреждения активных металлических поверхностей. Он используется во всем мире для защиты трубопроводов, водоочистных сооружений, надводных и подводных резервуаров для хранения, корпусов кораблей и лодок, морских производственных платформ, арматурных стержней в бетонных конструкциях и причалах и т. д.
Катодная система часто используется для защиты стали от коррозии. Коррозия возникает, когда два разнородных металла погружают в электролитическое вещество, такое как вода, почва или бетон. Этот тип металлического проводящего пути между двумя разнородными металлами обеспечивает путь, по которому свободные электроны перемещаются от более активного металла (анода) к менее активному металлу (катоду). Если свободные электроны от анода не достигают активных участков на катоде до прихода кислорода, ионы на активных участках могут затем рекомбинировать с образованием гидроксида двухвалентного железа, то есть ржавчины.
Трубопровод с катодной защитой
Как работает катодная защита?
По сути, катодная защита соединяет основной металл, подверженный риску (сталь), с жертвенным металлом, который подвергается коррозии вместо основного металла. Метод обеспечения катодной защиты стали сохраняет металл, обеспечивая высокоактивный металл, который может действовать как анод и обеспечивать свободные электроны. Вводя эти свободные электроны, активный металл жертвует своими ионами и предотвращает коррозию менее активной стали.
Типы катодной защиты.
Существует два основных типа катодной защиты:
- Гальваническая
- Импульсная токовая катодная защита.
Гальваническая
Гальваническая защита заключается в нанесении на сталь защитного цинкового покрытия для предотвращения коррозии. Цинк корродирует вместо герметизированной стали. Эти системы имеют ограниченный срок службы. Жертвенный анод, защищающий основной металл, со временем будет продолжать разрушаться. До тех пор, пока жертвенный анод не перестанет обеспечивать защиту.
Катодная защита от импульсного тока
Системы катодной защиты от импульсного тока состоят из анодов, подключенных к источнику питания, который обеспечивает непрерывный источник электрического тока. В методе защиты с расходуемым анодом используется металл, более активный, чем основной металл, для «жертвования» ионами. Эти «жертвенные аноды» (обычные сплавы, такие как магний, алюминий или цинк) обладают более сильным электрохимическим потенциалом. Этот метод часто может обеспечить гораздо более длительную защиту, чем расходуемый анод. Анод питается от неограниченного источника питания.
Недостатки катодной защиты.
Катодная защита уже много лет используется для защиты конструкций, подвергающихся длительному воздействию агрессивных сред. Но сама установка катодной защиты может быть дорогостоящей. Конкретные детали того, как строятся структуры, также могут добавить сложности. Итак, стоимость катодной защиты. В дополнение к этой стоимости, система также требует регулярного обслуживания, включая периодический визуальный осмотр. В случае катодной защиты подаваемого тока также существуют текущие затраты на электроэнергию. Жертвенные аноды, в частности, имеющиеся в ограниченном количестве в настоящее время, подвержены быстрой коррозии. Это означает, что они имеют ограниченный срок службы.
Эта защита плохо работает на больших металлических поверхностях, не имеющих барьерного покрытия. Ключевым примером является дно больших сварных резервуаров. Причина в том, что даже для хорошо спроектированной катодной системы почти невозможно поддерживать надлежащее напряжение на длинном металлическом пролете, который не изолирован. Это происходит из-за естественного падения напряжения при протекании тока, а ток обязательно будет протекать, когда поверхность соприкасается с землей и не изолирована. Хотя катодная защита может прекрасно работать на трубопроводах с эпоксидным барьерным покрытием, она имеет серьезные ограничения для непокрытых поверхностей. Эксперты считают катодную защиту вторичной по отношению к барьерному покрытию.
Тестовые панели с покрытием EonCoat Weldable Coating в процессе сварки. Без повреждения покрытия.
Лучшее решение.
Лучшим решением, чем катодная защита, является EonCoat. После того, как вы покроете актив, уход за ним практически не потребуется, и теперь вы можете использовать наше свариваемое покрытие EonCoat. Днища резервуаров теперь имеют еще один вариант защиты от коррозии. Катодная защита работает, но имеет свои ограничения. Эти ограничения преодолеваются с помощью EonCoat.
Что такое катодная защита? — Linc Energy Systems
Катодная защита (CP) используется для контроля коррозии металлических материалов в различных областях применения. Типичными областями применения этой науки являются топливные баки, сваи пирсов, корабли, морские нефтяные платформы и кожухи, металлические арматурные стержни для бетонных конструкций и трубопроводы.
Запросить предложение
Катодная защита
Чтобы упростить катодную защиту, предположим, что у вас есть металлический трубопровод, и вам необходимо защитить его от коррозии. Мы дополняем трубопроводы CP после защиты антикоррозионной системой (покрытием или пленкой), такой как Trenton Wax Tape, в качестве основной формы защиты от коррозии. В противном случае катодная защита, необходимая для борьбы с коррозией для непокрытого трубопровода, является избыточной.
Первый шаг в катодной защите — взять металл, который вы пытаетесь защитить (трубопровод), и превратить его в катод. Трубка обычно анодная; содержит положительно заряженные частицы. При подаче электрического тока линия становится пассивной или катодной. Наука показывает, что коррозия будет предотвращена или значительно замедлена, если поток будет достигать катода (трубопровода) быстрее, чем кислород.
Трубопроводы обычно используют катодную защиту импульсным током (ICCP), в которой используются выпрямитель и аноды, закопанные в землю. Выпрямитель (источник питания постоянного тока) подает электроны в систему, останавливая коррозию трубопровода. Поскольку аноды не отдают много электронов, они также не сильно ржавеют.
Иногда более экономично использовать систему с гальваническим анодом. Аноды (магниевые, цинковые или алюминиевые) являются источником электронов и подвергаются коррозии на стальном трубопроводе.
Продукты для поддержки систем CP
Подземная испытательная станция CP
Rhino HideOut — это подземная (CP) испытательная станция катодной защиты, которая обеспечивает превосходную видимость, надежна, легкодоступна и устанавливается заподлицо с землей, устраняя помехи газонокосилке.
Изоляция фланцев и изоляция соединений
Изоляция фланцев и изоляция соединений — это два способа предотвращения возникновения электрохимических реакций между двумя разными металлами путем разрыва металлического пути или предотвращения выхода тока в системе катодной защиты (CP) за пределы защищаемой области. по системе КП.
Термоэлектрический генератор (ТЭГ) для катодной защиты
Термоэлектрические генераторы (ТЭГ) обеспечивают экономичный, надежный и непрерывный электрический ток в труднодоступных местах СР. Если вас интересует ТЭГ для системы КП, компания Global Power Technologies специализируется на них.
Антикоррозийные системы
Восковая лента Trenton представляет собой антикоррозионную ленту, поддерживающую катодную защиту нефте- и газопроводов.
катодная защита, контроль коррозии, защита от коррозии
Susan BenderSusan Bender начала продажи в газовой промышленности в 1980 году.