28Май

Катодная защита от коррозии автомобиля: Как избежать коррозии на автомобиле

Содержание

Защита автомобиля от коррозии навсегда

Автомобиль, проехавший по дороге, посыпанной реагентом, становится жертвой коррозии. И чем больше автомобиль будет забрызган грязью с дорожного полотна, тем активнее будет коррозия кузова. Реагент, находящийся на поверхности кузова, даже в сухом гараже притягивает к себе молекулы воды из воздуха, как любая соль. И чем выше влажность воздуха, тем активнее пагубное воздействие реагента. Соль делает своё коварное дело в любых условиях, разница лишь в скорости коррозии металла. Хорошо, если металл окрашен, а если имеется хотя бы небольшая царапина, то ржавчина сразу туда проникает. И не везде помогут антикоррозийные покрытия, или мастики. Ведь мелкую царапину изначально трудно заметить, а когда она превратится в сквозную коррозию, будет уже поздно. Да и необходимо постоянно следить за кузовом, чтобы своевременно закрасить краской, или замазать антикорозийкой появившийся скол краски от удара камня.
Думаю Вы замечали, отечественные автомобили ржавеют очень быстро, европейские немного медленнее, а японские автомобили – наиболее стойкие к коррозии.

Для уменьшения коррозии, ещё на этапе производства автомобиля применяют различные способы защиты кузова. Например, японцы, живущие на островах, в условиях влажного морского климата применяют специальную обработку кузова автомобиля высокими частотами. Один из способов защиты от коррозии – оцинковка поверхности металла. Замечено, что после ремонта автомобиля, сварные швы наиболее подвержены коррозии. Ускорение коррозии происходит из-за высокотемпературного «ослабления» металла.
Наиболее простым и действенным способом защиты кузова автомобиля от коррозии является – катодная защита. Это вид активной – электрохимической защиты.
Изучая эту тему в Интернете, я столкнулся с тем, что она описывается не совсем «специалистами». Статьи либо пишутся автолюбителями, мало соображающими в электронике, либо электронщиками, мало понимающими в электрохимических процессах и плохо представляющими принцип катодной защиты на автомобилях. Поэтому, в основном у них получается экспериментальный, не оптимальный и малоэффективный вариант устройств защиты.
В этой статье, мы рассмотрим принцип и способы реализации катодной защиты от коррозии и разработаем оптимальный её вариант.
Принцип действия катодной защиты состоит в следующем:
В качестве катода (минуса) используется корпус автомобиля, а в качестве анода (плюса) – металлические сооружения, различные пластины и другие окружающие поверхности, проводящие ток, в том числе и влажное дорожное покрытие. Из-за разности потенциалов между защищаемой поверхностью металла и поверхностью «анода» по цепи, образующейся через влажный воздух, проходит слабый ток. На аноде происходит реакция окисления — освобождение электронов. Анод, постепенно окисляясь, разрушается, а разрушение катода наоборот прекращается.
В некоторых статьях Интернета по теме катодной защиты приводится разность потенциалов между катодом и анодом: Для железа и его сплавов полная защита от коррозии достигается при потенциале 0,1…0,2 В. Дальнейший сдвиг потенциала в сторону увеличения мало влияет на степень защиты. Плотность защитного тока должна быть в пределах 10…30 мА/м2.
На самом деле эти цифры кем-то «надуманы» для тех, кто не знает, что такое электрический ток. Но мы то с Вами знаем. Анод и катод можно расположить на расстоянии одного сантиметра друг от друга, а можно и на расстоянии нескольких сантиметров и даже метров. По законам электрохимии, для эффективности, чем дальше электроды находятся друг от друга, тем больше должна быть разница потенциалов. Поэтому говорить о конкретном значении в 0,1…0,2 вольта – неправильно. Кроме того, воздух, который используется в качестве электролита, проводит электрический ток только с большой разницей потенциалов – порядка киловольт, а маленькое напряжение ему «как слону дробина». Поэтому, по закону Ома, о наличии защитного тока, как и о его плотности в пределах 10…30 мА/м2 говорить также нелепо. Этого тока просто не будет!
Другое дело, если мы будем рассуждать не об электрическом токе, а о разности зарядов (или потенциалов). Тогда можно будет говорить о концентрационной поляризации по кислороду, при котором молекулы воды, попадая на поверхность металла, ориентируются на поверхностях электродов так, что на аноде происходит освобождение электронов — реакция окисления, а на катоде наоборот, окисление прекращается. Так как электрический ток отсутствует, то освобождение электронов происходит очень медленно. Этот процесс безопасен и не заметен для глаз. Учитывая эффект поляризации молекул воды, наблюдается дополнительное смещение потенциала кузова автомобиля в отрицательную сторону, что позволяет периодически выключать устройство защиты от коррозии (при ремонте автомобиля, зарядке аккумулятора и т.п.). Особо необходимо отметить важный момент, чем больше площадь анода (анодов), тем эффективнее защита.
В качестве защищаемого катода, как было описано ранее, используется корпус автомобиля. Нам необходимо выбрать, что мы будем использовать в качестве анода.
Ещё раз повторюсь, для работы схемы защиты нам не требуется ток, протекающий между электродами. Если он будет, то это будет «побочный» ток, который может возникнуть в результате намокания анодов, колёс автомобиля и т.д. Это ток разряжающий аккумулятор и не более того. Поэтому автомобильную бортовую сеть + 12 вольт достаточно подключить к аноду (нескольким анодам) через добавочный резистор.
Основное назначение резистора – ограничение тока разряда аккумуляторной батареи в случае замыкания анода на катод, которое может произойти по причинам «неудачной установки», повреждения анода, его химического разложения в результате окисления и т.д.
Варианты анодов, применяемых на автомобиле, находящемся на стоянке (гараже): металлическое сооружение, находящееся в непосредственной близости от автомобиля, например металлический гараж, в котором хранится автомобиль; контур заземления, используемый при отсутствии металлического гаража, в том числе на открытой стоянке. Другие варианты анодов, применяемых на движущемся, или находящемся на стоянке (гараже) автомобиле: металлизированный резиновый заземляющий «хвост»; защитные электроды (протекторы) на кузове автомобиля.
Рассмотрим все перечисленные варианты
1. Использование металлического гаража в качестве анода является наиболее простым способом защиты главным образом внешних металлических поверхностей облицовки автомобиля. Если пол в гараже также железный, или содержит открытые участки металлической арматуры, то тогда защищается и поверхность днища автомобиля.
Летом, как правило, в металлическом гараже – парниковый эффект, который при катодной защите не разрушает, а наоборот сохраняет и очищает кузов автомобиля от коррозии. Для создания такой защиты достаточно корпус гаража подключить к плюсу аккумуляторной батареи, установленной в автомобиле через обыкновенный добавочный резистор и монтажный провод. В качестве плюса, можно использовать прикуриватель, при условии, что в нём есть напряжение в режиме стоянки при отключенном замке зажигания (не у всех автомобилей при отключенном зажигании работает прикуриватель).
2. Использование контура заземления в качестве анода подобно использованию металлического гаража. Разница состоит лишь в том, что главным образом от коррозии защищается днище автомобиля. Для создания лучшего контура заземления, по периметру автомобиля необходимо забить в грунт четыре металлических кола (стержня) длиной не менее одного метра. Колы, электрически соединяются друг с другом с помощью проволоки. Контур подключается к автомобилю точно так же, как и корпус гаража – через добавочный резистор.

3. Металлизированный резиновый заземляющий «хвост» — простой и эффективный способ защиты движущегося автомобиля. В условиях влажного воздуха – дождя, мокрого дорожного покрытия, создается разность потенциалов между кузовом автомобиля и дорожным покрытием. Влажный воздух и мокрое дорожное полотно усиливает коррозию кузова автомобиля, но в данном случае наблюдается обратное — чем больше влажность, тем эффективнее антикоррозийная работа заземляющего хвоста. Хвост устанавливается сзади автомобиля так, чтобы в сырую погоду, при движении автомобиля, на хвост летели брызги воды от заднего колеса. Это улучшает эффективность антикоррозийной защиты.
Вторая функция заземляющего хвоста – он выполняет функцию антистатического приспособления. Я думаю, вы замечали, на бензовозах всегда волочится и гремит металлическая цепь, предназначенная для исключения накопления статического заряда на корпусе автомобиля и как следствие – исключения возникновения электрической искры, опасной для перевозимого груза. В некоторых статьях Интернета пишут, что цепь, волочащаяся за бензовозом – это антикоррозийное приспособление. К таким наблюдениям можно отнестись только с улыбкой.
Хвост должен быть изолирован от корпуса автомобиля по постоянному току и наоборот «закорочен» на корпус по переменному току. Достигается это RC-цепочкой, представляющей собой элементарный частотный фильтр.
4. Использование в качестве анодов защитных электродов — протекторов, практически отдельная тема. Элементарные металлические пластинки — «защитные протекторы» прикрепляются в наиболее уязвимых для коррозии местах — под крыльями, на днище кузова, на порогах. Они отвлекают на себя ржавчину за счёт того же эффекта, что и все предыдущие варианты анодов. Достоинство такого способа – постоянное наличие анода, стоит машина или едет. Такая локальная защита, говорят, дает хорошие результаты. Правда, анодов надо установить штук 15-20. Это трудоемко, но думаю «овчинка выделки стоит».
В качестве защитных электродов (анодов) могут использоваться как разрушающиеся материалы (нержавеющая сталь, алюминий), требующие замены через 4…5 лет, так и неразрушающиеся. В качестве неразрушающихся электродов можно применять карбоксил, магнетит, графит или платину. Защитные электроды выполняются в виде прямоугольных либо круглых пластин площадью 4…10 см2.
При установке и монтаже электродов следует помнить, что:
— один защитный электрод защищает площадь с радиусом около 0,25…0,35 м;
— защитные электроды устанавливаются только на места, защищенные лакокрасочным покрытием;
— для крепления электродов рекомендуется использовать только эпоксидный клей или шпатлевку на его основе, предварительно зачистив глянец (эпоксидный клей на глянец не прилипает), но думаю, что это не догма;
— наружную сторону защитных электродов (где нет пайки) нельзя покрывать мастикой, краской, клеем или другим электроизоляционным покрытием.
Пластины-протекторы — это положительные пластины конденсатора, которые должны быть изолированы от отрицательной пластины — кузова автомобиля. Но расстояние между пластинами должно быть небольшим, чтобы ёмкость этого конденсатора была достаточной — на большом расстоянии между пластинами электрическое поле будет стремиться к нулю. Лакокрасочное покрытие автомобиля и эпоксидный клей, находящиеся в промежутке между кузовом и пластинами — это диэлектрическая прокладка конденсатора.
Установка электродов в этих точках наиболее эффективна:
1 — коробчатые усилители брызговиков; 2 — места крепления фар и подфарников; 3 — нижняя часть передней панели; 4 — полости за щитками-усилителями передних крыльев; 5 — внутренние поверхности дверей и порогов; 6, 7 — передняя нижняя часть заднего крыла и арка колеса по стыку с крылом; 8 — фартук задней панели.
Провода к протекторным пластинам подключаются через проколы в резиновых заглушках, закрывающих отверстия в днище автомобиля, которые предусмотрены его конструкцией.
Другой вариант использования меньшего количества электродов, но с большей площадью самих пластин:
Выглядит вполне логично, зачем устанавливать много электродов малой площади, если можно установить мало электродов, но большего размера. Главное, установить их в местах наиболее подверженных коррозии, или вблизи этих мест. Кроме того, в связи с тем, что в качестве «электролита» выступает влажный воздух, пластины должны располагаться обращёнными не внутрь (внутри короба, куда не проникает влага), а наружу – навстречу агрессивной среде, например брызгам от колеса.
Кузов автомобиля током бить не может, так как токи антикоррозийной защиты очень слабые. Даже если вы положите голую пластину под обнажённое «седалище», вы почувствуете только твёрдый металл этой пластины, не более. В антикоррозийной защите используется слабый постоянный ток, который создает слабое электрическое поле, а по альтернативной теории электрического тока — магнитное поле, только в промежутках между кузовом и местом установки протекторов. Поэтому электромагнитное поле обыкновенного сотового телефона более, чем в 100 раз сильнее, поля создаваемого катодной защитой.
Думаю, что элементарных теоретических понятий достаточно, поэтому перейдём к разработке устройства антикоррозийной защиты.
Учитывая особенности и специфику использования различных вариантов анодов, конечно лучшим вариантом является одновременное использование всех перечисленных ранее способов.
Схема устройства простейшая. Самое сложное – изготовление «заземляющего хвоста» и установка «протекторных пластин».
Изучая вопрос протекторной защиты в Интернете, я не встретил ни одной схемы, которая оптимально выполняет задачу защиты от ржавчины. Вернёмся к тому, что в некоторых статьях пишут, что полная защита от коррозии достигается при потенциале 0,1…0,2 В. Дальнейший сдвиг потенциала в сторону увеличения мало влияет на степень защиты. Мы не будем оспаривать этого предлагаемого значения. Защитного тока фактически не существует, он возникает только в случае «появления» проводника, образующегося за счёт проводимости воды, попадающей на пластины протекторов, или на покрышки колёс. Исходя из этого, можно сделать вывод: Если мы будем стремиться к значению 0,1…0,2 вольта, тогда придется ставить делитель напряжения, а это — лишний – паразитный разряд аккумулятора впустую. Если увеличение потенциала, не ухудшает степень защиты, тогда проще подать на аноды все 12 вольт, которые будут сами по себе «падать» в зависимости от влажности пластин. Достигается это обыкновенным добавочным резистором. Необходимо рассчитать его на такой ток, при котором в случае замыкания протекторных пластин на корпус автомобиля, происходит «безопасный» разряд аккумуляторной батареи. Абсолютно все, встречающиеся в Интернете схемы катодной защиты либо имеют фиксировано малую разницу потенциалов между анодом и катодом (до 1,8 вольта), либо имеют большую разницу потенциалов (до 8…11 вольт), но авторы этих схем описывают их, как «выдающие» 0,1…0,2 вольта. Разница этих схем – в максимальном токе, определяемом добавочным резистором. Непонятно, они или сами не умеют рассчитать простейший делитель напряжения, или пытаются обмануть Вас?
Из руководства по эксплуатации автомобиля, автомобилисты знают, что устойчивый пуск двигателя с помощью стартера возможен, если емкость аккумулятора составляет не менее 60% номинальной. Если использовать одно из устройств, публикуемых авторами разных статей с током потребления 5 мА, то время, в течение которого аккумулятор можно не подзаряжать составит 40 дней. С учетом саморазряда аккумулятора это время будет еще меньше. При постоянном использовании автомобиля это не опасно, но если Вы собрались в отпуск, или длительную командировку, то такое устройство следует отключить от аккумулятора автомобиля.
Приведу популярную схему катодной защиты, даже с рисунками протекторов:
На рисунке, вывод «Вых.» подсоединяется на пластины-протекторы. Против таких протекторов я ничего не имею, поскольку их геометрия мало влияет на степень защиты (можете вырезать хоть звездочку), а влияет лишь площадь пластин.
Определим, какое же напряжение подается на пластины, и какой ток потребляет устройство?
На кристалле светодиода HL1 типа АЛ307БМ падение постоянного прямого напряжения равно 2 В (из справочника).
Остальные 10 В падают на резисторах.
Общее сопротивление R1+R2+R3 будет равно 4855 Ом (R1+R2 в параллель и R3 последовательно).
Ток делителя будет равен Iдел = U / Rобщ. = 10/4855 = 2,1 mA.
Отсюда: Напряжение на выходе Uвых = Iдел * R3 + UHL1 = 2,26 * 4300 + 1 = 10,8 B.
Где же заявляемые 0,1…0,2 вольта? Мало того, в этой схеме, проходящий через светодиод ток 2,1 mA его толком и не зажжёт, у светодиода номинальный ток 10 mA.
Кроме того, на лицо «паразитный» ток разряда аккумуляторной батареи – через делитель. Вывод: схема придумана малограмотным экспериментатором.
Подобная схема с «паразитным» разрядом аккумуляторной батареи приводится в схеме с заземляющим хвостом:

В соответствии с описанием этой схемы, на кузов автомобиля, относительно земли, подаётся отрицательный потенциал, напряжением около 1,9 вольт. При наличии в воздухе даже небольшой влажности поверхность колёс (за счёт наличия солей) становится электропроводящей и электрическая цепь замыкается.
В схеме существует важный недочёт — цепь уже и так замкнута по пути: «+» аккумуляторной батареи, резистор R1, стабистор V1, «-» аккумуляторной батареи.
Паразитный ток разряда аккумуляторной батареи, протекающий через стабистор приблизительно составляет: I = UR1 / R1 = 10,1 / 240 = 42 mA, это довольно много. Защитный ток, использующий влажность воздуха такой схемы будет на порядок меньше «паразитного». Получается, что эта схема ещё хуже предыдущей.
Встречались и другие статьи, в которых по плотности тока на протекторах вычислялись значения резисторов делителей напряжения – что является заблуждением.
________________________________________
Закончим критику, и приступим к делу. Как я и писал ранее, нет смысла стремиться к уменьшению разности напряжений между анодом и катодом. Все предлагаемые схемы катодной защиты, построенные на делителях напряжения способны принести не только пользу, но и вред. Особенно активно вы будете лить слёзы в случае осыпания пластин аккумуляторной батареи, когда произойдёт случайное замыкание протектора на корпус, а Вы этого не заметите. Если напряжение катодной защиты будет больше, то хуже от этого не будет, а даже наоборот – лучше. В то же время, ток ограниченный добавочным резистором делает такое напряжение безопасным.
Предлагаю оптимальное устройство катодной защиты, использующее все варианты анодов, которое фактически не разряжает аккумулятор, что особенно важно при длительном хранении автомобиля. Время использования может составлять до бесконечности, пока сам аккумулятор не умрёт своей смертью, даже если регулярно четвероногий друг будет мочиться на протекторы.
За шаблон, на котором мы изобразим схему, мы возьмём предыдущее схематичное изображение автомобиля, доработав его простой, но «толковой» схемой защиты.
Устройство позволяет поддерживать значение потенциала влажных участков поверхности кузова на уровне, необходимом для полной остановки и прекращения коррозийных процессов за счет разрушения защитных электродов, в качестве которых выступают стенки металлического гаража, защитные протекторы. Кроме того, во время осадков в качестве защитного анода используется и мокрая поверхность дорожного полотна.

В схеме имеется три цепи защиты:
Первая цепь катодной защиты – цепь «стационарной» защиты с использованием контура заземления, или корпуса металлического гаража (ракушки). Является самым эффективным способом защиты автомобиля от коррозии в условиях «парника» металлического гаража. Применяется с дополнительным проводом, подключаемым одним концом в гнездо Гн1, другим соединяется с соответствующим анодом. Гнездо Гн1 можно расположить в любом удобном для Вас месте автомобиля. Удобнее всего – в салоне, у водительского места. В состав первой «стационарной» цепи защиты входят светодиод VD1, резистор R1, гнездо Гн1 и многожильный монтажный изолированный провод. Если у Вас нет условий для использования этого вида защиты, не переживайте, значит у Вас и нет металлического гаража, а так же есть остальные цепи защиты.
Вторая цепь катодной защиты – цепь «мобильной» защиты с использованием заземляющего «хвоста». Это наиболее эффективная защита от коррозии во время дождя, тумана, мокрого дорожного полотна. Электрод-хвост располагается сзади автомобиля, на одной линии с колесом, для того, чтобы брызги воды от колеса попадали на хвост. В состав второй «мобильной» цепи защиты входят светодиод VD2, резистор R2, изолятор (на рисунке — коричневый), заземляющий электрод — хвост Э1. Дополнительно в состав второй цепи входят элементы R3 и С1, которые совместно с Э1 выполняют функцию защиты кузова автомобиля от статического напряжения. Обратите внимание, что хвост прицепляется не непосредственно к металлическому кузову автомобиля, а через изоляционный материал. В качестве хвоста используйте тонкую металлизированную резиновую ленту. Как вариант, можно использовать тонкостенный резиновый шланг с продетым в него тонким металлическим тросиком, выглядывающим на конце.
Третья цепь катодной защиты – цепь «постоянной» защиты от коррозии с использованием протекторных пластин. Эта защита от коррозии действует постоянно, как на стоянке, так и в движении, как во время дождя, так и в сухую погоду. Её эффективность зависит от количества, размеров и мест расположения пластин-электродов. Чем суммарная площадь электродов больше, тем лучше. Но учтите, что электроды должны быть распределены по кузову автомобиля в наиболее уязвимых для коррозии местах. О самих протекторах было написано выше. Наиболее приемлемый не дорогой материал для протекторов – нержавеющая сталь. В состав третьей «постоянной» цепи защиты входят светодиод VD3, резистор R4 и протекторы (на рисунке — синие). Пластины крепят на клей, но думаю, что конструкция на болтах будет работать не хуже и при умелом соединении, безусловно, будет надёжнее.
Номиналы резисторов R1, R2, R4 схемы защиты выбраны такими, чтобы в случае замыкания протекторов, хвоста, или гаражной конструкции на кузов автомобиля максимальный ток был ограничен номинальным значением тока светодиодов – 10mA. Другими словами, в условиях сухого воздуха (сухого кузова автомобиля) светодиоды не должны гореть. Если в сырую погоду, светодиоды загораются, то это свидетельствует о работе катодной защиты. Чем больше влажности, тем ярче будут гореть светодиоды. Если один из светодиодов горит максимально ярко на «сухом» автомобиле, то это означает, что имеет место неисправность – замыкание элементов защиты от коррозии на корпус автомобиля. Тогда необходимо, не позднее чем в течение недели после загорания светодиода определить место замыкания и устранить его. Основное назначение светодиодов – контроль исправности цепей катодной защиты. В условиях минимального воздействия влаги они не должны ярко светиться. Слабое свечение допускается.
Проверку исправности цепей защиты на обрыв проводят приблизительно 1 раз в месяц путем замыкания на корпус автомобиля: первую цепь проверяют замыканием провода, который должен крепиться к стенке металлического гаража; вторую – замыканием заземляющего хвоста; третью – замыканием одного из протекторов. При замыкании, соответствующий светодиод должен загореться. Для удобства, можно использовать дополнительный монтажный провод. Неплохо, при проверке исправности схемы катодной защиты ещё и осмотреть защитные протекторы.
Само нехитрое устройство можно разместить в любом удобном для Вас месте. Нет необходимости размещать его на панели приборов, перед глазами водителя. Там оно будет только отвлекать. Устройство защиты, размещённое в моторном отсеке, не позволит своевременно отреагировать на замыкание анодов на корпус автомобиля, потому как многие не заглядывают под капот своего коня от одной, до другой смены масла в двигателе. Поэтому, по моему мнению, оптимальное место расположения устройства – под приборной панелью, в нише, на 10-20 сантиметров выше педалей управления. Перед выходом из машины, водитель обычно опускает глаза для изъятия ключа из замка зажигания, поэтому светодиоды устройства защиты окажутся в поле его зрения. А красный горящий светодиод обязательно привлечёт внимание.
Необходимо, чтобы устройство оставалось подключенным к аккумулятору даже при отключенном общем электрооборудовании автомобиля (выключенном зажигании). В простейшем случае устройство можно расположить на небольшой изоляционной пластине (гетинакс, текстолит, пластмасса). Лучший вариант, если устройство поместить в какую-либо изолированную коробочку, или залить эпоксидной смолой.

Катодная защита автомобиля от коррозии

Проблема коррозии существует во всех автомобилях. И ее причина заключается в том, что производители применяют для изготовления корпусов автомобилей сталь, которая, будем говорить откровенно, не всегда бывает самого лучшего качества в плане устойчивости к процессам коррозии. И производителей в этом смысле вполне можно понять.

Если они будут использовать металл с легирующими добавками, которые будут противостоять коррозии, тогда пропадает главное свойство металла, которое так важно производителям: металл перестанет качественно соединяться при помощи сварочной технологии. Поэтому и применяются обычные листы из конструкционной стали.

Кроме этого, если делать автомобиль из более дорогой легированной стали, цена автомобиля, учитывая и другую технологию сборки кузовов, будет существенно увеличена. А этот фактор сразу скажется на продажах таких автомобилей. Поэтому проще попытаться защитить корпус автомобиля при помощи различных покрытий, включая лакокрасочное, а также покрытие цинком при помощи гальваники.

Но лакокрасочное покрытие полностью не снижает риск начала коррозии. В результате различных ударов или деформаций в лакокрасочном покрытии создаются трещины, и оно откалывается. Кроме того, под слоем покрытия могут оставаться маленькие пузырьки воздуха, где в результате конденсации появляется влага. Вот и все – процесс коррозии запустился. Но есть вариант, когда коррозионные процессы можно замедлить – это катодная защита автомобиля от коррозии. Принцип такой защиты известен достаточно давно и в двух словах заключается в следующем: отрицательный заряд должен быть подключен к участку, который нужно защищать от коррозии.

На корпусе автомобиля крепятся специальные электроды, которые и будут являться катодами. При расчете количества электродов нужно пользоваться простой пропорцией: один электрод способен защитить площадь кузова, представляющий круг диаметром в 0,7-0,8 метра. Электроды могут быть сделаны из самых разных материалов (разрушаемых или нет). У разрушаемых электродов есть определенный срок службы, который зависит от материала, из которого сделан электрод.

Система из защитных электродов подключается к специальному блоку, который дает напряжение 0,1-0,2 вольт. Блок электроники устанавливается внутри салона и подключается к аккумулятору. Блок не только преобразует напряжение и силу тока, но и еще снабжен индикаций, которая подаст сигнал в случае возникновения короткого замыкания.

Сами электроды представляют собой пластинки из металла площадью 5-10 квадратных сантиметров. Пластинки нужно монтировать в самые проблемные места. Катодная защита автомобиля от коррозии должна устанавливаться с обязательным соблюдением следующих правил:

• защитные электроды нужно устанавливать только в те места, где есть лакокрасочное покрытие;

• для того, чтобы установить электроды применяется шпаклевка на основе эпоксидной смолы или так называемая «холодная сварка», которая тоже имеет в своем составе эпоксидную смолу;

• гладкую сторону электродов (там, где отсутствует пайка) нельзя покрывать любым покрытием, которое не проводит электрический ток;

• даже при выключенном зажигании система должна быть подключена к аккумулятору, чтобы процесс защиты был непрерывным.

«Сучасна Автомайстерня» № 10 ( 81 ) 2013

Протекторы защиты автомобилей от коррозии ПМ-Анодъ® — Корпорация ПСС

Протектор ПМ-Анодъ® предназначен для защиты от коррозии металлических деталей кузова автомобиля. Выполнен из сплавов МП-1 и МП-2.

Каждый автовладелец заинтересован в максимально эффективном использовании своей собственности, предпологая возможность выгодной продажи транспорта в отличном состоянии. И каково бывает его удивление, когда через 2-3 года эксплуатации автомобиля он обнаруживает ржавчину на его кузове.

Ничего удивительного. В российских погодных условиях, когда практически более полугода на дорогах влага, а из них пять месяцев — влага, смешанная песочно-соляной смесью, редкий автомобиль не поддастся разлагающему влиянию коррозии. И даже ставя автомобиль ежедневно в гараж, владелец не может быть полностью уверен в надежной защите от ржавчины. Ведь постоянно повышенная влажность является обычным спутником такого рода помещений и накапливается в скрытых полостях машины — порогах, внутренних балках, стойках, внутренних поверхностях дверей. А это намного губительнее воздействия уличных луж.

Магниевый протектор Анодъ® предназначен для защиты от коррозии металлических деталей кузова автомобиля. Его высочайшая эффективность основана на простой электрохимической реакции, изучаемой в 7 классе, — восстановление одного металла за счет другого. Вспомним немного учебник.

При взаимодействии железа с водой, особенно насыщенной солями и примесями (чем не наша «каша» на дорогах?), происходит его окисление и превращение в гидроокись железа, то есть в то, что мы привыкли называть ржавчиной. Но если мы возьмем два металла с разной химической активностью (железо и магний), поместим их в электролит (дорожная слякоть), то под окислительный удар попадет более активный металл (магний-анод).

А менее активный (железо-катод) не только не пострадает, но и начнет восстанавливаться! Именно поэтому это химическое явление получило название «жертвенного анода». Так и магниевый протектор «Анодъ», жертвуя собой и постепенно растворяя свое тело, не только предотвращает появление ржавчины, но восстанавливает уже поврежденные коррозией поверхности железного кузова автомобиля. Благодаря протектору Анодъ®, влага по отношению к коррозии играет двоякую роль — «Я тебя породила, я тебя и убью». Данная технология с успехом применяется в нефтегазовой отрасли уже более сорока лет.

Магниевый протектор Анодъ® очень прост. Нужно всего лишь установить несколько небольших протекторов в места, наиболее уязвимые для ржавчины (пороги, подкрылки, рамы). Причем каждый протектор надежно защищает поверхность в радиусе полуметра вокруг себя. Протекторы устанавливаются по выбору автолюбителя в наиболее подверженные коррозии части автомобиля и (или) возле мест ее проявления.

Срок службы магниевого протектора (а он истекает, когда тело протектора полностью растворится) может составлять от 3 до 10 лет. И определяется он, большей частью, условиями, в которых протектор используется. Столь долгий срок обусловлен тем, что «Анодъ®» начинает окисляться, то есть работать, только тогда, когда возникает угроза железным деталям автомобиля — при появлении контакта с водой. Лишь только вода попадет на поверхность, «охраняемую» протектором, как включается окислительно-восстановительный механизм. Более того, «Анодъ» будет работать до тех пор, пока поверхность полностью не просохнет. Ржавчины больше не будет!

Магниевый протектор Анодъ® предотвратит возникновение коррозии, остановит ее распространение, восстановит поврежденные поверхности и станет залогом долголетия вашего автомобиля. Он абсолютно безопасен в использовании, прост в установке и защищен патентом Российской Федерации на изобретение № 2299273 (Протекторное устройство для защиты от коррозии).

Устройство катодной защиты от коррозии кузова автомобиля

01.12.2014

На сегодня практически невозможным является полностью без коррозии купить в нашей столице старый автомобиль. Величина коррозии на автомобиле в первую очередь зависит от условий хранения и правильной эксплуатации. Кроме того, реагенты, локальная покраска авто в районе метро полежаевская которые используются для очистки дорог от снега, сильно влияют и ускоряют коррозию кузова автомобиля.

По сравнению с автомобилями импортного производства наши автомобили быстро подвергаются коррозии. А все потому, что иностранные производители используют специальную защиту автомобиля от коррозии еще на начальных этапах его производства.

С помощью обработки высокими частотами защищают свои автомобили от коррозии японские производители. А именно, с помощью оцинковки металла.

Несколько способов защиты от коррозии:

— Защита автомобиля с помощью гаража изготовленного из металла. Металлическими должны быть все стенки и пол гаража. Чтобы обеспечить защиту автомобиля нужно к плюсу аккумуляторной батареи подключить корпус гаража. Прикуриватель может выступать в качестве такого плюса.

— Защита с помощью заземления контура. В таком случае от коррозии убережется только днище автомобиля.

— Для защиты автомобиля в движении можно использовать хвост с резины, покрытой металлом. Эффективность такого хвоста самая большая именно при влажной дождливой погоде. Его нужно просто прицепить сзади к автомобилю. Кроме защиты от коррозии хвост также осуществляет антистатические приспособления.

— Использование протекторов, как защиты от коррозии. Простые пластинки с металла нужно прикрепить в местах, локальная покраска бампера стоимость где больше всего кузов автомобиля страдает от коррозии. Принцип их действия заключается в том, что они принимают на себя первый удар коррозии, защищая при этом кузов.


Анодная защита кузова от корозии » Полезные самоделки

О катодной защите кузова ранее писалось в здесь>>> но в этот раз немного дополним эту статью.

Ржавчина — враг номер один почти любого металла. «Рыжая чума», с завидным упорством и постоянством превращающая сотни тонн сверкающей высокосортной, легированной стали в груды коричневого порошка. Болезнь, для которой не существует преград… Но существуют лекарства и от нее: гальванические покрытия, лаки и краски, битумы и мастики — все они в принципе должны защитить металл. Но на деле все не так просто.

Очень остро проблема защиты от коррозии стоит, к примеру, перед автомобилистами. Общеизвестно, что если не принимать определенных мер, то кузов автомобиля в течение четырех-пяти лет может превратиться буквально в ржавое решето. Зачастую не помогают ни лакокрасочные покрытия, ни мастики, поскольку кузов имеет немало закрытых полостей, пазух, карманов, коробов, в которых дорожная грязь и сырость, замешанные на поваренной соли, создают великолепные условия для электрохимической коррозии. А при современной толщине автомобильного стального листа это приводит к весьма быстрому его выходу из строя.

Но от коррозии можно не только защищаться броней из лака или хрома, ее можно и обмануть, подсунув в виде приманки такой лакомый кусочек, как металл с более высоким электродным потенциалом.
Электродный потенциал? А какое он, собственно, имеет отношение к коррозии металлов? Оказывается, самое непосредственное.

Если опустить в сосуд с электролитом два электрически связанных между собой металлических электрода, то один из них начнет растворяться, другой же останется в неприкосновенности. Так вот, оказывается, растворяется металл, электродный потенциал которого выше. Это свойство гальванической пары и дало возможность использовать эффект сохранения катода для предохранения от электрохимической коррозии кузова автомобиля.

Судостроители давно уже используют этот принцип предохранения внутренней части трюма от коррозии — они размещают внутри корпуса специальные металлические аноды (из металла с более высоким электродным потенциалом, чем у металла корпуса). Этот способ недавно взяли на вооружение и автомобилисты.

Для анодной защиты применяют оребренные (для увеличения поверхности) куски цинка С помощью вделанных в них постоянных магнитов они прикрепляются в наиболее труднодоступных и загрязняемых местах кузова. Электрическая связь осуществляется многожильным проводом: с помощью винтов цинковый анод подсоединяется к кузову.

На его ребрах собирается дорожная грязь, влага, поваренная соль и комплект «цинк — сталь» начинает работать так, как работает всем известный гальванический элемент. При работе такой «батареи» происходит растворение цинкового анода, катод в данном случае не расходуется.


Рис. 1. Комплект для анодной защиты кузова автомобиля:
1 — оребренный цинковый электрод, 2 — соединительный провод.

Процесс коррозии напоминает работу гальванического элемента, поскольку сталь представляет собой, в основном, сплав железа и углерода, то есть веществ с различными электродными потенциалами. При попадании на поверхность такого сплава электролита между молекулами железа и углерода начинает идти электрохимическая реакция, сопровождающаяся растворением анода (железа) и переходом его в гидраты, а затем и в окислы.

Рис. 2. Установка электрода в колесной нише.

Присутствие же электрически связанного с основным металлом цинкового электрода в корне меняет картину. По отношению, как к железу, так и к углероду цинк представляет собой металл с более высоким электродным потенциалом, то есть выступает в роли анода. Поэтому при наличии электропроводной среды, которая практически всегда присутствует на поверхностях автомобильного кузова, электрохимическая реакция идет с растворением анода (цинка), при сохранении катода, то есть металла кузова.


Рис. 3. Установка электродов в этих точках наиболее эффективна:

1 — коробчатые усилители брызговиков, 2 — места крепления корпусов фар и подфарников, 3 — нижняя часть передней панели, 4 — полости за щитками-усилителями передних крыльев, 5 — внутренние поверхности дверей, 6, 7 — передняя нижняя часть заднего крыла и арка колеса по стыку с крылом, 8 — фартук задней панели.

Как показали эксперименты, цинкового электрода величиной со спичечную коробку хватает на 3-5 лет.

Обманите «рыжую чуму». Подсуньте ей приманку — кусочек металла с электродным потенциалом выше, чем у стали. Коррозия охотно вцепится в него, забыв про кузов вашего автомобиля как минимум на три год.

Электрохимическая защита автомобиля

Под воздействием агрессивных процессов со стороны внешней среды элементы автомобиля (кузов, днище), морских судов, цистерн для хранения химикатов, трубопроводы и иные технические устройства разрушаются от коррозии. В деле борьбы с нею применяются как традиционные, так и инновационные средства защиты, такие, как, например, антикор РАСТ СТОП.

Электрохимическая защита является одной из наиболее эффективных традиционных методик антикоррозийного противодействия. С ее помощью эффективно, без больших финансовых затрат, предохраняют от интенсивного разрушения из-за электрохимических процессов коррозии разнообразные металлоконструкции (мостов, телевышек), подземные трубопроводы, кузова, днище автомобилей и пр.

В результате использования электрохимической защиты организуется переключение разрушающих процессов с металла металлоконструкции на металл подсоединяемого анода. Бывшие анодными участки поверхности металлоконструкции становятся катодными.

Для практического решения задачи к защищаемому металлическому изделию подсоединяют создающий катодную поляризацию источник постоянного тока (от отрицательного полюса) или протектор, металл со значительным отрицательным потенциалом. Потенциал металла вообще-то может быть смещен в положительную или отрицательную сторону, это определяет вид электрохимической защиты:

  • катодная;
  • анодная.

Катодная защита является наиболее востребованной. Поляризация от источника электротока применяется для защиты алюминиевых, медных, оловянных, оцинкованных изделий и конструкций, изготовленных из сплавов алюминия, меди, свинца, титана, а также сталей легированных, высокохромистых и углеродистых.

Внешним источником систем катодной защиты являются специальные станции, в их конструкции наличествуют:

  • выпрямитель,
  • токоподвод,
  • анодный заземлитель,
  • электрод сравнения,
  • анодный кабель.

Электрохимическая защита своим достоинством имеет то, что не требует больших затрат труда и финансовых средств, гарантируя сохранность металлоконструкции на многие годы. Не требуется вынимать из земли трубопроводы, ставить в ремонтный док суда. Однако такой вид защиты от коррозии требует постоянного внимания специалистов. При применении протекторов их нужно по мере истощения своевременно менять, следить за тем, чтобы не произошло перезащиты со всеми вытекающими из этого негативными последствиями.

— «-» : ,

КаПроЗа-Лайт:

— Уменьшает скорость коррозии на 300-500%.
— Увеличивает ресурс кузова автомобиля в несколько раз.

Устройство электрохимической защиты автомобиля от коррозии «КаПроЗа-Лайт» предназначено для предохранения от дальнейшего распространения коррозии на деталях кузова автомобиля массой до 2 тонн. Действие устройства распространяется на большую часть поверхности кузова, в том числе недоступные и труднодоступные места, такие как днище автомобиля, внутренние части передних и задних крыльев, пороги, пол в салоне, внутренняя поверхность крышки багажника и капота, задние стенки багажного отделения, потолок салона, внутренние поверхности дверей, а также защищает от коррозии поврежденные в результате аварии части кузова.

В основу работы устройства «КаПроЗа-Лайт» положен принцип катодной поляризации металла кузова и создании гальванической пары между кузовом автомобиля и дополнительным электродом. Путем создания небольшого отрицательного потенциала (0,1-0,2 В) на кузове автомобиля процесс окисления металла практически прекращается. При катодной поляризации железу устройством сообщается такой отрицательный потенциал, при котором его окисление становится термодинамически маловероятным. Кроме того, за счет разрушения цинковых протекторов происходит замещение ионов железа ионами цинка (оцинковка). 

Компплект «КаПроЗа-Лайт» состоит:

1) Из электронного блока формирования защитного потенциала, двух проводов (желтый и красный) с бензомаслостойкой изоляцией и гибкого спуска (трос в оплетке ПВХ) на анод, в качестве которого выступает земля;

2)  Коррозийных протекторов  (двух пластин массой 500 гр. каждая), закрепляемых по углам прямоугольника на днище автомобиля болтовым соединением. При этом место контакта днища должно быть зачищено до металлического блеска. Гальваническая пара материалов днища и пластин создаёт ток, разрушающий пластины и защищающий кузов от коррозии. Один раз в два года необходимо очищать место контакта пластин и днища от грязи и выправлять напильником (или наждачной бумагой) образовавшиеся неровности на поверхности каждой пластины.
Подробная информация

Характеристики

Страна производитель Беларусь
Источник питания (электронный блок) 12 В, DC, бортовая сеть автомобиля
Потребляемый ток (электронный блок) 5 мА
Потребляемая мощность (электронный блок) 0,006 Вт
Плотность защитного тока (электронный блок) 50 мкА/ м²
Металл протектора цинк (Zn)
Масса протектора 500 гр.
Токоотдача протектора 820 А∙ч/кг
Стационарный потенциал Uн -0,76 В
Плотность защитного тока (протектора) 25 мА/м²
Защищаемая площадь поверхности 7 м² (один протектор)
Срок службы (протектора) 10 лет (ориентировочно)
Количество протекторов в комплекте 2 шт.
Снижение скорости коррозии 490,3 % (4,9 раза)

Катодная защита автомобиля от коррозии

Проблема коррозии существует во всех автомобилях. И ее причина заключается в том, что производители применяют для изготовления корпусов автомобилей сталь, которая, будем говорить откровенно, не всегда бывает самого лучшего качества в плане устойчивости к процессу коррозии. И производителей в этом смысле вполне можно понять.

.Поэтому и применяются обычные листы из конструкционной стали.

Кроме этого, особая сборка автомобиля из более дорогой легированной стали. А этот фактор сразу скажется на продажах таких автомобилей. Поэтому проще защитить корпус автомобиля при помощи различных покрытий, включая лакокрасочное, а также покрытие цинком при помощи гальваники.

Но лакокрасочное покрытие полностью не снижает риск начала коррозии. В результате различных ударов или деформаций в лакокрасочном покрытии трещины, и оно откалывается. Кроме того, под слоем покрытия могут оставаться маленькие пузырьки воздуха, где в результате конденсации появляется влага. Вот и все — процесс коррозии запустился. Но есть вариант, когда коррозионные процессы можно замедлить — это катодная защита автомобиля отии. Принцип такой защиты известен уже давно и в следующем: отрицательный заряд должен быть подключен к участку, который должен защищать от коррозии.

На корпусе автомобиля крепятся специальные электроды, которые и будут являться катодами. При расчете количества электродов нужно использовать пропорцию: один электрод может защитить площадь кузова, представляющий круг диаметром в 0,7-0,8 метра. Электроды могут быть сделаны из самых разных материалов (разрушаемых или нет). У разрушаемых электродов есть определенный срок службы, который зависит от материала, из которого сделан электрод.

Система из защитных электродов подключается к специальному блоку, который дает напряжение 0,1-0,2 вольт. Блок электроники устанавливается внутри салона и подключается к аккумулятору. Блок не только преобразует напряжение и силу тока, но и еще снабжен индикаций, который подаст сигнал в случае возникновения короткого замыкания.

Сами электроды предоставить собой пластинки из металла площадью 5-10 квадратных сантиметров. Пластинки нужно монтировать в самые проблемные места. Катодная защита автомобиля от коррозии должна устанавливаться обязательным соблюдением следующих правил:

• защитные электроды нужно установить только в те места, где есть лакокрасочное покрытие;

• для того, чтобы установить электроды применяемой шпаклевкой на эпоксидной смолы или так называемая «холодная сварка», которая тоже имеет в своем составе эпоксидную смолу;

• гладкую сторону электродов (там, где отсутствует пайка) нельзя покрывать любым покрытием, которое не проводит электрический ток;

• даже при выключенном зажигании система должна быть подключена к аккумулятору.

«Сучасна Автомайстерня» № 10 (81) 2013

Защита автомобиля от коррозии навсегда

Автомобиль, проехавшим по дороге, посыпанной реагентом, становится жертвой коррозии. И чем больше автомобиль будет забрызган грязью с дорожного полотна, тем активнее будет коррозия кузова. Реагент, находящийся на поверхности кузова, даже в сухом гараже притягивает к себе молекулы воды из воздуха, как любая соль. И чем выше влажность воздуха, тем активнее пагубное воздействие реагента.Соль делает своё коварное дело в любых условиях, разница лишь в скорости коррозии металла. Хорошо, если металл окрашен, а если имеется хотя бы небольшая царапина, то ржавчина сразу туда проникает. И не везде помогут антикоррозийные покрытия, или мастики. Ведь мелкую царапину изначально трудно заметить, а когда она превратится в сквозную коррозию, будет уже поздно. Да и необходимо постоянно следить за кузовом, чтобы своевременно закрасить краской, или замазать антикорозийкой появившийся скол краски от удара камня.
Думаю Вы замечали, отечественные автомобили ржавеют очень быстро, европейские немного медленнее, а японские автомобили — наиболее стойкие к коррозии. Для уменьшения коррозии, ещё на этапе производства автомобиля применяют различные способы защиты кузова. Например, японцы, живущие на островах, в условиях влажного морского климата применяют специальную обработку кузова автомобиля высокими частотами. Один из способов защиты от коррозии — оцинковка поверхности металла. Замечено, что после ремонта автомобиля, сварные швы наиболее подвержены коррозии.Ускорение коррозии происходит из-за высокотемпературного «ослабления» металла.
Самый простой способ защиты кузова автомобиля от коррозии — катодная защита. Это вид активной — электрохимической защиты.
Изучая эту тему в Интернете, я столкнулся с тем, что она описывается не совсем «специалистами». Статьи либо пишутся автолюбителями, либо мало понимающими в электронике электронщиками, мало понимающими в электрохимических процессах и плохо представляющими принципы катодной защиты на автомобилях.Поэтому в основном у них получается экспериментальный, не способ защиты и малоэффективный вариант устройств. В этой статье мы рассмотрим принцип и способы реализации катодной защиты от коррозии и разработаем ее вариант.
Принцип катодной защиты в следующем:
В качестве катода (минуса) используется корпус автомобиля, а в качестве анода (плюса) — металлические сооружения, различные пластины и другие окружающие поверхности, провод ток, в том числе и влажное дорожное покрытие.Из-за разности потенциалов между защищаемой поверхностью и поверхностью «анода» по цепи, образующейся через влажный воздух, проходит слабый ток. На аноде происходит реакция реакции — освобождение электронов. Анод, постепенно разрушается, разрушается, а разрушение катода наоборот прекращается.
В некоторых статьях Интернета по теме катодной защиты разность потенциалов между катодом и анодом: Для железа и его сплавов полная защита от коррозии достигается при потенциале 0,1… 0,2 В.Дальнейший сдвиг защиты в сторону увеличения мало влияет на степень защиты. Плотность защитного тока должна быть в пределах 10… 30 мА / м2.
На самом деле эти цифры кем-то «надуманы» для тех, кто не знает, что такое электрический ток. Но мы то с Вами знаем. Анод и катод можно расположить на расстоянии одного сантиметра друг от друга, а можно и на расстоянии нескольких сантиметров и даже метров. По законам электрохимии, для эффективности, чем дальше электроды находятся друг от друга, тем больше должна быть разница потенциалов.Поэтому говорить о конкретном значении в 0,1… 0,2 вольта — неправильно. Кроме того, используется в качестве электролита, электрический ток только с большой разницей потенциалов — порядка киловольт, а маленькое напряжение ему «как слону дробина». Поэтому по закону Ома, о наличии защитного тока, как и его плотности в пределах 10… 30 мА / м2, можно говорить также нелепо. Этого тока просто не будет!
Другое дело, если мы будем рассуждать не об электрическом токе, а о разности зарядов (или потенциалов).Тогда можно будет говорить о концентрации металла, поляризации по кислороду, при котором молекулы воды на поверхности, уменьшаются на поверхности электродов так, что на аноде происходит освобождение электронов — реакция окисления, а на катоде наоборот, происходит прекращение. Так как электрический ток отсутствует, то освобождение электронов происходит очень медленно. Этот процесс безопасен и не заметен для глаз. Имеется эффект поляризации молекулы воды, дополнительное смещение кузова в отрицательную сторону, что позволяет периодически выключать устройство от коррозии (при ремонте автомобиля, зарядке аккумулятора и т.п.). Особо необходимо важный важный момент, чем больше площадь анода (анодов), тем эффективнее защита.
В качестве защищаемой катода, как было описано ранее, используется корпус автомобиля. Нам необходимо выбрать, что мы будем использовать в качестве анода.
Ещё раз повторюсь, для работы схемы защиты нам не требуется ток, протекающий между электродами. Если он будет, то это будет «побочный» ток, который может случиться в результате намокания анодов, колёс автомобиля и т.д. Это ток разряжающий аккумулятор и не более того.Поэтому автомобильную бортовую сеть + 12 вольт достаточно подключить к аноду (нескольким анодам) через добавочный резистор. Основное назначение резистора — ограничение тока разряда аккумуляторной батареи в случае замыкания анода на катод, которое может произойти по причинам «неудачной установки», повреждения анода, его химического разложения в результате окисления и т.д.
Варианты анодов, применяемых на автомобиле, находящемся на стоянке (гараже): металлическое сооружение, находящееся в непосредственном приближении от автомобиля, например металлический гараж, в котором хранится автомобиль; контур заземления, использование при отсутствии металлического гаража, в том числе на открытой стоянке.Другие варианты анодов, применяемых на движущемся, или находящемся на стоянке (гараже) автомобиль: металлизированный резиновый заземляющий «хвост»; защитные электроды (протекторы) на кузове автомобиля.
Используем все перечисленные варианты
1. Использование металлического гаража в качестве основного средства защиты автомобиля. Если пол в гараже также железный, или содержит открытые участки металлической арматуры, то защищается и поверхность днища автомобиля. Летом, как правило, в металлическом гараже — парниковый эффект, который при катодной защите не разрушает, а наоборот сохраняет и очищает кузов автомобиля от коррозии. Для создания такой защиты достаточно корпус гаража подключить к плюсу аккумуляторной батареи, установленной в автомобиле через обыкновенный добавочный резистор и монтажный провод. В качестве плюса, можно использовать прикуриватель, при условии, что в нём есть напряжение в режиме стоянки при отключенном замке зажигания (не у всех автомобилей при отключенном зажигании работает прикуриватель).
2. Использование контура заземления в качестве анода использования металлического гаража. Разница состоит в том, что главным образом от коррозии защищается днище автомобиля. Для создания лучшего заземления, по периметру автомобиля необходимо забить в грунт четыре металлических кола (стержня) длиной не менее одного метра. Колы, электрически соединяются друг с другом с помощью проволоки. Контур подключается к автомобилю точно так же, как и корпус гаража — через добавочный резистор.
3. Металлизированный резиновый заземляющий «хвост» — простой и эффективный способ защиты движущегося автомобиля. В условиях влажного воздуха — дождя, мокрого дорожного покрытия, создается разность потенциалов между кузовом автомобиля и дорожным покрытием. Влажный воздух и мокрое дорожное полотно усиливает коррозию кузова автомобиля, но в данном случае наблюдается обратное — чем больше влажность, тем эффективнее антикоррозийная работа заземляющего хвоста. Хвост устанавливается сзади автомобиля так, чтобы в сырую погоду, при движении автомобиля, на хвост летели брызги воды от заднего колеса.Это улучшает эффективность антикоррозийной защиты.
Вторая функция заземляющего хвоста — он выполняет функцию антистатического приспособления. Я думаю, вы замечали, на бензовозах всегда волочится и гремитческая цепь, предназначенная для исключения накопления статического заряда в корпусе автомобиля и как следствие — исключение электрической искры, опасной для перевозимого груза. В некоторых статьях Интернета пишут, что цепь, волочащаяся за бензовозом — это антикоррозийное приспособление. К таким наблюдениям можно отнестись только с улыбкой.
Хвост должен быть изолирован от корпуса автомобиля по постоянному току и наоборот «закорочен» на корпус по переменному току. Достигается это RC-цепочка, представляющая собой элементарный частотный фильтр.
4. Использование в анодов защитных электродов — протекторов, практически отдельная тема. Элементарные металлические пластинки — «защитные протекторы» прикрепляются в наиболее уязвимых для коррозии местах — под крыльями, на днище кузова, на порогах.Они отвлекают на себя ржавчину за счёт того же эффекта, что и все предыдущие варианты анодов. Достоинство такого способа — постоянное наличие анода, стоит машина или едет. Такая локальная защита, говорят, дает хорошие результаты. Правда, анодов надо установить штук 15-20. Это трудоемко, но думаю «овчинка выделки стоит».
В качестве защитных электродов (анодов) инсталлируемые материалы (нержавеющая сталь, алюминий), требующие замены через 4… 5 лет, так и неразрушающиеся.В качестве неразрушающихся электродов можно применять карбоксил, магнетит, графит или платину. Защитные электроды выполняются в виде прямоугольных либо круглых пластин площадью 4… 10 см2.
— один защитный электрод площадь с радиусом около 0,25… 0,35 м;
— защитные электроды устанавливаются только на места, защищенные лакокрасочным покрытием;
— для крепления электродов рекомендуется использовать только эпоксидный клей или шпатлевку на его основе первоначального зачистив глянец (эпоксидный клей на глянец не прилипает), но думаю, что это не догма;
— наружную сторону защитных электродов (где нет пайки) нельзя покрывать мастикой, краской, клеем или другим электроизоляционным покрытием.
Пластины-протекторы — это положительные пластины конденсатора, которые должны быть изолированы от отрицательной пластины — кузова автомобиля. На большом расстоянии между пластинами должно быть небольшое электрическое поле стремиться к нулю. Лакокрасочное покрытие автомобиля и эпоксидный клей, находящиеся в промежутке между кузовом и пластинами — это диэлектрическая прокладка конденсатора.
Установка электродов в этих точках наиболее эффективна:
1 — коробчатые усилители брызговиков; 2 — места крепления фар и подфарников; 3 — нижняя часть передней панели; 4 — полости за щитками-усилителями передних крыльев; 5 — внутренние поверхности дверей и порогов; 6, 7 — передняя нижняя часть заднего крыла и арка колеса по стыку с крылом; 8 — фартук задней панели.
Провода к протекторным пластинам подключаются через проколы в резиновых заглушках, закрывающие отверстия в днище автомобиля, которые предоставляются его конструкцией.
Другой вариант использования меньшего количества электродов, но с большей площадью пластин:
Выглядит вполне логично, если установить много электродов малой площади, если можно установить мало электродов, но большего размера. Главное, установить их в наиболее подверженных коррозии, или вблизи этих мест.Кроме того, в качестве «электролита» выступает влажный воздух, пластины должны быть обращёнными не внутрь (внутри короба, куда не проникает влага), а наружу — навстречу агрессивной среде, например брызгам от колеса.
Кузов автомобиля током бить не может, так как токи антикоррозийной защиты очень слабые. Даже если вы положите голую пластину под обнажённое «седалище», вы почувствуете только твёрдый металл этой пластины, не более. В антикоррозийной защите используется постоянный ток, слабое электрическое поле, которое используется для альтернативной теории электрического тока — магнитное поле, только в промежутках между кузовом и местом установки протекторов.Поэтому электромагнитное поле обыкновенного сотового телефона более, чем в 100 раз сильнее, поля происходящего катодной защитой.
Думаю, что элементарных теоретических понятий достаточно, поэтому перейдём к разработке устройства антикоррозийной защиты.
Использование различных вариантов анодов, конечно лучшее использование всех перечисленных ранее способов.
Схема устройства простейшая. Самое сложное — изготовление «заземляющего хвоста» и установка «протекторных пластин».
Изучая вопрос протекторной защиты в Интернете, я не встретил ни одной схемы, которая оптимально выполняет задачу от ржавчины. Вернёмся к тому, что в некоторых статьях пишут, что полная защита от коррозии достигается при потенциале 0,1… 0,2 В. Дальнейший сдвиг защиты в сторону увеличения мало влияет на степень защиты. Мы не будем оспаривать этого предлагаемого значения. Защитного тока фактически не существует, он возникает в случае возникновения «появления», образующегося за счёт проводимости воды, попадающей на пластины протекторов, или на покрышки колёс.Исходя из этого, можно сделать вывод: Если мы будем стремиться к значению 0,1… 0,2 вольта, тогда придется ставить делитель напряжения, а это — лишний — паразитный разряд аккумулятора впустую. Если увеличение увеличения не снижает степень защиты, тогда проще подать на аноды все 12 вольт, которые будут сами по себе «падать» в зависимости от воздействия пластин. Достигается это обыкновенным добавочным резистором. Необходимо рассчитать его на такой ток, при котором в случае замыкания протекторных пластин на корпус автомобиля, происходит «безопасный» разряд аккумуляторной батареи. Абсолютно все, получающиеся в Интернете схемы катодной защиты либо имеют фиксированную малую разницу потенциалов между анодом и катодом (до 1,8 вольта), либо имеют большую разницу потенциалов (до 8… 11 вольт), но авторы этих схем описывают их, как «выдающие »0,1… 0,2 вольта. Разница этих схем — в максимальном токе, установленном добавочным резистором. Непонятно, они или сами не умеют рассчитать простейший делитель напряжения, или пытаются обмануть Вас?
Из руководства по эксплуатации автомобиля, автомобилисты знают, что устойчивый пуск двигателя с помощью стартера возможен, если емкость аккумулятора составляет не менее 60% номинальной.Если использовать одно из устройств, публикуемых авторами разных статей с током потребления 5 мА, то время, в течение которого аккумулятор можно не подзаряжать составит 40 дней. С учетом саморазряда аккумулятора это время будет еще меньше. При постоянном использовании автомобиля это не опасно, но если вы собрались в отпуске, или длительную командировку, то такое устройство следует отключить от аккумулятора автомобиля.
Приведуу схему катодной защиты, даже с рисунками протекторов:
На рисунке, вывод «Вых.»Подсоединяется на пластины-протекторы. Против таких протекторов я ничего не имею, поскольку их геометрия мало влияет на степень (может вырезать хоть звездочку), а влияет лишь площадь пластин.
Определим, какое же напряжение питания на пластины, и какой ток потребляет устройство?
На кристалле светодиода HL1 типа АЛ307БМ падение постоянного прямого напряжения равно 2 В (из справочника).
Остальные 10 В падают на резисторах.
Общее сопротивление R1 + R2 + R3 будет равно 4855 Ом (R1 + R2 в параллель и R3 рядом).
Ток делителя будет равенство Iдел = U / Rобщ. = 10/4855 = 2,1 мА.
Отсюда: Напряжение на выходе Uвых = Iдел * R3 + UHL1 = 2,26 * 4300 + 1 = 10,8 Б.
Где же заявленные 0,1… 0,2 вольта? Мало того, в этой схеме, проходящий через светодиод ток 2,1 мА его толком и не зажжёт, у светодиода номинальный ток 10 мА.
Кроме того, на лицо «паразитный» ток разряда аккумуляторной батареи — через делитель. Вывод: схема придумана малограмотным экспериментатором.
Подобная схема с «паразитным» разрядом аккумуляторной батареи в схеме с заземляющим хвостом:

В соответствии с описанием этой, на кузов автомобиля, относительно, подаётся отрицательный потенциал схемы, напряжением около 1,9 вольт.При наличии в воздухе даже небольшой внешний колёс (за счёт наличия солей) становится электропроводящей и электрическая цепь замыкается.
В схеме существует важный недочёт — цепь уже и так замкнута по пути: «+» аккумуляторной батареи, резистор R1, стабистор V1, «-» аккумуляторной батареи.
Паразитный ток разряда аккумуляторной батареи, протекающий через стабистор составляет: I = UR1 / R1 = 10,1 / 240 = 42 мА, это довольно много. Защитный ток, использующий влажность воздуха такая схема будет на порядок меньше «паразитного».Получается, что эта схема ещё хуже предыдущей.
Встречались и другие статьи, в которых по плотности тока на протекторах вычислялись значения резисторов напряжения — что является заблуждением.
________________________________________
Закончим критику, и приступим к делу. Как я и писал ранее, нет смысла стремиться к уменьшению разности напряжений между анодом и катодом. Все предлагаемые схемы катодной защиты, построенные на делителях напряжения принести не только пользуется, но и вредные.Особенно активно вы будете лить слёзы в случае осыпания пластин аккумуляторной батареи, когда произойдёт случайное замыкание протектора на корпус, а Вы не заметите. Если напряжение катодной защиты будет больше, то хуже от этого не будет, а даже наоборот — лучше. В то же время, ток ограниченный добавочным резистором делает такое напряжение безопасным.
Предлагаю оптимальное устройство катодной защиты, использующее все варианты анодов, которые фактически не разряжает аккумулятор, что особенно важно при длительном хранении автомобиля.Время использования может составлять до бесконечности, пока сам аккумулятор не умрёт своей смертью, даже если регулярно четвероногий друг будет мочиться на протекторы.
За шаблон, на котором мы изобразим схему, мы возьмём предыдущее схематичное изображение автомобиля, доработав его простой, но «толковой» схемой защиты.
Устройство позволяет поддерживать положение влажных поверхностей поверхности кузова на уровне, необходимом для полной остановки и прекращения процессов разрушения защитных электродов, в качестве выступают стенки металлического гаража, защитные протекторы.Кроме того, во время осадков в качестве защитного анода используется и мокрая поверхность дорожного полотна.

В схеме имеется три цепи защиты:
Первая цепь катодной защиты — цепь «стационарной» с использованием контура заземления или корпуса металлического гаража (ракушки). Является самым эффективным способом защиты автомобиля от коррозии в условиях «парника» металлического гаража. Применяется с дополнительным проводом, подключаемым одним концом в гнездо Гн1, другим соединяется с соответствующим анодом.Гнездо Гн1 можно расположить в любом удобном для Вас месте автомобиля. Удобнее всего — в салоне, у водительского места. В состав первой стационарной цепи защиты входят светодиод VD1, резистор R1, гнездо Гн1 и многожильный монтажный изолированный провод. Если у Вас нет условий для использования этого вида защиты, не переживайте, значит у Вас и нет металлического гаража, а так же есть другие цепи защиты.
Вторая цепь катодной защиты — цепь «мобильной» защиты с использованием заземляющего «хвоста».Это наиболее эффективная защита от коррозии во время дождя, тумана, мокрого дорожного полотна. Электрод-хвостовая линия сзади автомобиля, на одной линии с колесом, для того, чтобы брызги воды от колеса попадали на хвост. В состав второй «мобильной» цепи защиты входят светодиод VD2, резистор R2, изолятор (на рисунке — коричневый), заземляющий электрод — хвост Э1. Дополнительно в состав второй входят элементы R3 и С1, совместно с которыми работают функции цепи защиты кузова от статического напряжения.Обратите внимание, что хвост прицепляется не непосредственно к металлическому кузову автомобиля, а через изоляционный материал. В качестве хвоста використовуйте тонкую металлизированную резиновую ленту. Как вариант, можно использовать тонкостенный резиновый шланг с продетым в него тонким металлическим тросиком, выглядывающим на конце.
Третья цепь катодной защиты — постоянная защита от коррозии с использованием протекторных пластин. Эта защита от коррозии действует постоянно, как на стоянке, так и в время дождя, так и в сухую погоду.Её эффективность зависит от количества, размеров и мест расположения пластин-электродов. Чем суммарная площадь электродов больше, тем лучше. Но учтите, что электроды должны быть распределены по кузову автомобиля в наиболее уязвимых для коррозии местах. О других протекторах было написано выше. Наиболее приемлемый не дорогой материал для протекторов — нержавеющая сталь. В состав третьей «постоянной» цепи защиты входят светодиод VD3, резистор R4 и протекторы (на рисунке — синие). Пластины крепят на клей, но думаю, конструкция на болтах будет работать не хуже и при умелом соединении, безусловно, будет надёжнее.
Номиналы резисторов R1, R2, R4 схемы защиты выбраны такими, чтобы в случае замыкания протекторов, хвоста, или гаражной конструкции на кузов автомобиля максимальный ток был ограничен номинальным значением тока светодиодов — 10 мА. Другими словами, в условиях сухого воздуха (сухого кузова автомобиля) светодиоды не должны гореть. Если в сырую погоду, светодиоды загораются, то это свидетельствует о работе катодной защиты. Чем больше влаж, тем ярче будут гореть светодиоды. Если один из светодиодов максимально ярко на «сухом» автомобиле, то это означает, что имеет место неисправность — замыкание элементов защиты от коррозии на корпус автомобиля.Тогда необходимо, не позднее чем в течение недели после загорания светодиода место замыкания и устранить его. Основное назначение светодиодов — контроль исправности цепей катодной защиты. В минимального воздействия влаги они не должны ярко светиться. Слабое свечение разрешений.
Проверку исправности цепей защиты на обрыв проводят 1 раз в месяц путем замыкания на корпусе автомобиля: первую цепь проверяют замыканием провода, который должен крепиться к стенке металлического гаража; вторую — замыкание заземляющего хвоста; третью — замыкание одного из протекторов. При замыкании, соответствующий светодиод должен загореться. Для удобства, можно использовать дополнительный монтажный провод. Неплохо, при проверке исправности схемы катодной защиты ещё и осмотреть защитные протекторы.
Само нехитрое устройство можно link в любом удобном для Вас месте. Нет необходимости разместить его на панели приборов перед глазами водителя. Там оно будет только отвлекать. Устройство защиты, размещенное в моторном отсеке, не позволяет быстро отреагировать на замыкание анодов на корпусе автомобиля, потому что многие не заглядывают под капот своего коня от одной, до другой смены масла в двигателе.Поэтому, по моей мнению, оптимальное место расположения устройства — под приборной панелью, в нише, на 10-20 сантиметров выше педалей управления. Перед выходом из машины, водитель обычно опускает глаза для изъятия ключа из замка зажигания, поэтому светодиоды устройства автоматической защиты в поле его зрения. А красный горящий светодиод обязательно привлечь внимание.
Необходимо, чтобы устройство оставалось подключенным к аккумулятору даже при отключенном общем электрооборудовании автомобиля (выключенном зажигании). В простейшем случае устройство можно расположить на небольшой изоляционной пластине (гетинакс, текстолит, пластмасса). Лучший вариант, если поместить устройство в какую-либо изолированную коробочку, или залить эпоксидной смолой.

Защищаем кузов своего автомобиля от коррозии. Описание методик и практические советы.

Рано или поздно каждый автовладелец сталкивается с необходимостью защиты своего автомобиля от коррозии.Последствия ДТП, сколы на краске от камней, царапины, нанесенные случайно или умышленно, конденсат в полостях труднодоступных деталей — все создает это очаги коррозии.

Невозможно исключить такой немаловажный факт, как заводской или то, что браком в общем случае, почему брак не считается: использование недостаточно стойких к этому процессу материалов для деталей, очевидно подвергшихся агрессивному внешнему воздействию. Представляется вполне обоснованным, чтобы защита автомобиля от коррозии начиналась с изучения проекта будущей модели, благо, риски уже давно, статистика накоплена, свойства тех или материалов известны… Единственная причина, по которой это не делается, лежит на поверхности: производителю невыгодно, чтобы потребитель ездил на машине долго. Производителю выгодно чтобы потребитель регулярно покупал новую машину за все большие деньги.

Понятно, что потребительский преследует совершенно другие цели, и поэтому защита кузова автомобиля от коррозии ложится на его плечи. Почему в первую очередь кузова — тоже вполне очевидно: в отличие от других деталей, изготовленных из не подверженных коррозии сплавов (как, например, алюминиевый «колокол» АКПП), кузов делается, во-первых, из стали, а во-второй, сталь эта достаточно тонкая, то есть последствия коррозии для деталей корпуса значительно серьезнее, чем, например, для толстой трубы карданного вала.

Однако было бы несправедливо совсем отказывать производителям в желании сделать качественную вещь. В конце концов, прежде чем машина попадет к потребителю, на ее долю неизбежно выпадет количество внешних воздействий, которые должны перенести без утраты ценности. Многие автопроизводители, заботясь о своей репутации, принимают меры по антикоррозийной защите кузова.

Какие же методы и средства борьбы с таким «разрушением» кузова?

Содержание статьи

Используется все методы, основанные на двухстороннем средстве: создание барьера, непроницаемое для агрессивных сред, и покрытие, которое будет взаимодействовать с агрессивной средой вместо основного металла.

К первому типу покрытия лакокрасочные покрытия, ламинирование и прочие способы, создающие на поверхности прочную защитную пленку. Отдельно надо отметить за грунтования : сама по себе грунтовка, как правило, защищает металл, но создает лучшие условия для сцепления с ним защитного покрытия. Правда, есть метод фосфатирования, которого состоит в нанесении специальной грунтовки, образующей на поверхности фосфатную пленку. Эта пленка несет двоякую функцию: улучшает сцепление краски с деталью.

Ко второму типу классов, которые можно объединить под общим названием «электрохимические», и самый частый из них, применяемый на заводах-производителях — оцинковка кузова . Деталь корпуса погружают в расплавленный цинк, который покрывает ее поверхность сплошным слоем толщиной 1-2 мкм. Цинк, как более электроотрицательный металл, чем железо, «принимает на себя» основной удар стихии. Однако в силу наличия в таком покрытии микропор, доступный для влаги, срок службы его редко превышает 1 год, так что для машин почтенного возраста произведена на заводе оцинковка, вопреки устоявшемуся мнению, не является панацеей.Впрочем, сейчас существует технология катафорезного нанесения, позволяющая увеличить толщину цинкового покрытия до 6-9 мкм, а срок его службы — до 10-12 лет.

Неким слабым кустарным подобием этого типа является так называемая катодная защита . В роли катода здесь выступает стальной корпус автомобиля, а в роли так называемого «жертвенного анода» — пластина из металла-протектора, более активного, чем сталь. Это может быть хром, магний, алюминий, но самый распространенный — опять же цинк.Пластину из металла-протектора крепят на кузов и попадании влаги он «перехватывает» ее, защищая собой основной металл. Недостаток метода в том, что для крепления защитной пластины надо сверлить лишнее отверстие, а также в том, что очень сложно подобрать цинковую пластину, закрывающую все подверженные коррозии детали.

Второй способ организации катодной защиты в использовании внешнего источника постоянного тока (станции катодной защиты), и все способы, называемые в просторечии «электрическими» и «электронными» базируются именно на этом принципе.Недостаток способа в возможном возникновении эффекта перезащиты, в ходе которого выделяется водород, изменяется состав природного слоя и другие процессы, ускоряющие коррозию защищенного объекта или внешних объектов, контактирующих с ним. В целом способ неплохо подходит для защиты труднодоступных мест — в том числе по низу корпуса.

Как же выбрать наиболее подходящий способ защиты?

Начать надо с определяемой области.

Барьерные методы

Для наружных поверхностей — двери, крылья, крыша, капот — подходят нанесение лакокрасочных покрытий (ЛКП) поверх заводской краски.Сейчас помимо лакировки поверхности применяются и другие способы защиты, например, ламинирование . Процедура до крайности похожа на одноименное действие, подвергаемое процедуре, например, водительские удостоверения. Суть его в нанесении на поверхность прозрачного полимерного покрытия в виде пленки. И если в лакировании пленка образуется прямо на поверхности в процессе нанесения лака, то при ламинировании используются готовые пленки. Такая пленка незаметна на поверхности, хорошо противостоит истиранию, воздействию агрессивных веществ, и даже пригодна для маскировки мелких дефектов окраски.Кроме того, она имеет отличное сцепление с основанием, и не имеет своих свойств ни при пониженных, ни при повышенных температурах. Недостатки такого покрытия тоже есть: оно не наносится на загрязненные поверхности, не прекращает уже начавшийся процесс коррозии и обходится достаточно недешево. Впрочем, если подходить к вопросу сохранения товарного вида автомобиля с целью его перепродажи в обозримом будущем, то ламинирование — идеальный вариант для наружных, видимых поверхностей.Здесь надо отметить, что пленки, применяющие эффект матовой поверхности, позволяющие несколько изменить цвет исходной краски и прочие изыски, направлены на повышение эстетической привлекательности.

Для порогов, подножек и прочих деталей с повышенным контактным износом часто применяются пластиковые накладки . Они используют специальные средства защиты для сверлить отверстия в деталях.Минус пластиковых накладок в том, что они не рассчитаны на постоянные снятие / установку для наличия очагов коррозии под накладкой. Это взгляду туда проникнуть затруднительно, а вода, как известно, дырочку всегда найдет…

Впрочем, есть очень ответственная область, где накладки, безусловно, оправданы. Применяются они исключительно в комплекте с мастиками или иными способами — уж очень место подверженное самым разным внешним воздействиям. Речь идет о колесных арках, куда летят камешки из-под колес, абразивная грязь, зимой — снежная каша с агрессивным противогололедным реагентом.Электрические повреждения корпуса являются частичными повреждениями корпуса.

Для труднодоступных полостей (например, поверхности внутри двери) подходят жидкие затекающие препараты , которые прекрасно дополняют заводскую оцинковку, надолго избавляют от головной боли по поводу коррозии этих деталей из-за образования в полости конденсата. Средства эти могут называться по-разному, но у них есть общие свойства: они обладают эффектом антикоррозионнымом и имеют консистенцию при нанесении гораздо более жидкую, чем привычные мастики.

Электрохимические методы

Все это, как можно заметить, были барьерные методы защиты. А что же по поводу электрохимических? А в общем, ничего особо неожиданного: вполне очевидно, что прекрасно сочетаются со всем вышеизложенным. Какой из них выбрать, зависит только от ваших предпочтений, планируемой суммы и энергичности того или иного продавца. Отдельно надо отметить, что уже появившуюся ржавчину не устраняют никакие способы защиты — сначала необходимо механически зачистить деталь от нестойкого покрытия, рыхлой ржавчины, в идеале — до чистого металла.И только после этого применять катодную защиту или барьерные методы.

Обрабатываем днище вашего авто


Внешность, скрытые полости, поверхности, подверженные контактному истиранию… Осталось поговорить о защите днища. Оно находится ближе всего к дороге. контакта с водой.

Под дном также проходит выхлопная труба, имеющая особенность то нагреваться, то остывать, генерируя конденсат, что увеличивает риск ржавчины. Что в автомобилех с несущим кузовом, включая перечисленные днище, является важным элементом конструкции, имеющим к той же сложной геометрии, его защита становится делом невероят ли не более важным, чем сохранение пригодного к продаже экстерьера.

применительно к защите автомобилей от коррозии, известную истину по поводу двух исконных бед России можно указать несколько иначе: сейчас у автомобилистов самая главная беда — это когда первая российская беда ремонтирует вторую.

Речь идет о столь милых наших сердцу дорожных неровностях — естественных людях, а местами и искусственных созданных нетвердыми руками неквалифицированного, и имеющего вместо положенных по стандарту параметров те, которые получились. В итоге нередко при проезде по таким «лежачим полицейским» их цепляют днищем даже джипы с просветом 20-21 см. То есть участки, подверженные и такому воздействию…

Наиболее оправданным в данном случае использование мастик.В самом деле, поверхность с одной стороны открытая, а с другой — не на виду. Поэтому эстетическое совершенство покрытия здесь роли не играет, важнее именно его защитные свойства. И тут идеально подходят мастики — составы на основе каучуковых или битумных смол. Они имеют великолепное сцепление с основанием, покрывают его толстым слоем, очень стойким к агрессивным средам, и в силу своей упругости после застывания, отлично отражают удары вылетающих из-под колес камешков.

Наносится мастика также на подготовленную поверхность, очищенную от грязи, пыли, масла и ржавчины.Зачищенная поверхность обрабатывается жидким антикоррозионным средством для повышения срока службы защищаемых деталей и затем просушивается.

Есть у мастик и недостатки — потому что их основа достаточно густая, они плохо растекаются, поэтому очень слабо пригодны для защиты труднодоступных полостей. Помимо смолы в состав мастики входят обычно волокнистый наполнитель, повышающая прочность покрытия, графит и масла, препятствующие смачиванию деталей водой и, соответственно, повышающие коррозионную стойкость всего комплекса покрытия.

Вот вкратце и весь обзор способов антикоррозийной защиты автомобиля. За кадром остался процесс подбора способа нанесения покрытия и использования материалов, покрытия и работ по его нанесению и гарантии на него. Однако зная, «как» и «зачем», выбрать «что именно» уже значительно проще.

Катодная защита кузова автомобиля

Автомобили ВАЗ классических моделей до сих пор вызывают интерес автолюбителей.Тюнинг ВАЗ-2104, ВАЗ-2101, ВАЗ-2106 до сих пор интересен их почитателям, хотя время этих машин прошло. Главная проблема любителей этих машин то, что они больше не выпускаются и надо сберечь те, которые есть.


Известно, что коррозия усиливается, если есть повышенная влажность, соль и контакт различных металлов. Раствор соли и два разных металла образуют гальванический элемент. Очень часто, замкнутый накоротко. Электрический ток усиливает разрушительное действие. Причем в паре пострадает тот металл, который химически более активен.В паре меди и железа, это будет железо.


Возможные способы защиты стальных конструкций несколько. Металл изолируют от атмосферы с помощью лакокрасочного покрытия. В конструкцию более активный металл, чем сталь: в виде цинкового покрытия или отдельного анода.


Но есть дугой способ: к стальной конструкции, которую нужно защитить подводят отрицательный потенциал от источника тока. В результате притягивания кислорода положительные и отрицательные — оказываются на катоде.Последний можно сделать из любого материала, например, дешевой углеродистой стали.


Есть немало конструкций катодной защиты, промышленного производства и самодельных. К сожалению, их авторы не всегда понимают, что требуется получить.

Взгляните на схему, на первом рисунке. Я видел ее на нескольких сайтах, именно в таком виде. Её недостатки:
1. Резисторы R1 и R2 подключены параллельно. Нет смысла ставить два резистора, можно один, на 450 Ом.
2.Схема делителя напряжения изображена не совсем удачно. На мой взгляд, ее стоит показать как на рисунке 2.
3. Светодиод не может работать вообще. Его назначение — указать факт замыкания катода на кузов. Но попробуйте на этой схеме соединить накоротко выход и минус. Что получится? Получится, что тока через светодиод не будет вовсе. А при нормальной работе схемы ток недостаточен для его зажигания.
4. На рисунке 2 я изложил эту же схему более понятно. Я определил напряжение на выходе при заданных значениях сопротивлений.Получается, что делитель напряжения здесь вообще не особенно нужен.


Посмотрите рисунок 3. Проще придумать невозможно и не нужно. При замыкании накоротко ток составит 0,027А. Это может произойти, если нарушена изоляция между кузовом и катодом или если днище мокрое после лужи. Что приведет к разрядке аккумулятора через 2062 часа = 86 дней. При этом всё напряжение будет падать на резистере. Если катод катод и кузов сухие и чистые напряжение между ними 12 вольт, но тока нет. Что мы боимся ограничивая напряжение? Водородного охрупчивания металла? Но для мягкой штамповочной стали 08кп это не критично.Ей никогда не стать хрупкой.

Как можно реализовать анодную защиту на практике? Сигнальный светодиод нужен вам на приборной панели. Например, в заглушке. Там же логично расположить резистор. Питание можно взять от замка зажигания или блока предохранителей. Питание нужно подключить независимо от зажигания, но пожалуй, оно будет отключаться при снятии клемы. Протянуть провод наружу мимо рукоятки коробки передач. Далее надо протянуть провод ко всем катодам.Но так, чтобы исключить возможность обрыва провода и надежно закрепить.

Анод представляет собой пластинку из стали (черной, нержавеющей, оцинкованной — любой) приклеенной на кузов эпоксидной смолой, шпатлёвкой на ее основе или клеем холодная сварка. Я намерен на катоды распилить детали неисправного домкрата.

Вот занимательное видео о защите от коррозии

Устройство электрохимической защиты кузова автомобиля от коррозии «Акор»

Для чего нужно устройство

Устройство электрохимической защиты «Акор» позволяет забыть о дорогой антикоррозионной обработке кузова.Операция установки устройства займет всего 30 минут, благодаря Вы навсегда забудете о ржавчине. На новых автомобилях предотвращается процесс образования коррозии, а на подержанных автомобилях останавливается распространение уже образовавшейся. Эффективность устройства подтверждена независимыми исследованиями и многолетним опытом эксплуатации.

Предыстория

Катодная защита была впервые описана сэром Гемфри Дэви в серии докладов представленных Лондонскому королевскому обществу по развитию знаний о природе в 1824 году.После продолжительных тестов впервые катодную защиту применили в 1824 году на судне HMS Samarang. Анодные протекторы из железа были установлены на медную обшивку корпуса судна ниже ватерлинии, значительно снизив скорость корродирования меди. Медь, корродируя, высвобождает ионы меди, которые обладают антиобрастающим эффектом. В связи с чрезмерным обрастанием корпуса и снижением эффективности корабля Королевский военно-морской флот Великобритании принял решение отказаться от протекторной защиты, чтобы получить преимущества от антифоулингового эффекта корродирования меди.

Принцип действия

Процесс коррозии напоминает работу гальванического элемента, поскольку сталь представляет собой, в основном, сплав железа и углерода, то есть вещества с различными электродными элементами. При попадании на поверхность такого сплава электролита (вода, грязь с дороги с загрязнением солей) начинает идти электрохимическая реакция, сопровождающаяся растворением анода (железа) и переходом его в гидраты, а и в окислы.

Принцип действия устройства «Акор» основан на создании гальванической пары между кузовом автомобиля и дополнительными электродами.

Сдвиг безопасного металлического объекта осуществлен с помощью внешнего стабилизированного источника постоянного тока.

Существует способ катодной защиты без внешнего источника тока, при помощи протекторного анода, изготовленного из металла более электроотрицательного, относительно кузова автомобиля. При этом поверхность кузова становится эквипотенциальной и на всех её участках протекает только катодный процесс.Обусловливающий коррозию анодный процесс перенесен на вспомогательные электроды. Недостатком способа катодной защиты без внешнего тока является меньшая эффективность, меньший радиус действия, необходимо зачищать кузов автомобиля.

Подробнее:

Электрохимическая катодная защита металлов от коррозии, основанная на зависимости скорости коррозии от электродного металла. К собственно химической защите относят катодную защиту, при использовании потенциала металла специально сдвигают из области активного коррозии.

Сдвиг металла осуществляют с помощью внешнего источника постоянного тока (станции катодной защиты) или соединением с другим металлом, более электроотрицательным по своему электродному потенциалу (так называемый протекторный анод). При этом поверхность защищаемого образца (детали конструкции) становится эквипотенциальной и на всех ее участках, протекают только катодные процессы, а анодные, вызывающие коррозию, переносятся на вспомогательные электроды.

Катодную защиту широко применяют для защиты от морской коррозии.Гражданские суда защищают с помощью А1-, Mg- или Zn-протекторных анодов, которые размещают вдоль корпуса и вблизи винтов и рулей. Станции катодной защиты используют в тех случаях, когда требуется отключение защиты для устранения электрич. поля корабля, при этом потенциале обычно контролируют по хлорсеребряным электродам. Существуют автоматические станции катодной защиты, расположенные на судне либо на берегу (при стоянке или ремонте). Аноды обычно изготовлены из платинированного титана, линейной или круглой формы, с околоанодными непроводящими экранами для улучшения плотности и плотности тока вдоль корпуса судна.

Особенно важно использование катодной защиты для стационарных нефтегазопромысловых сооружений, трубопроводов и хранилищ к ним на континентальном шельфе. Подобные сооружения не могут быть введены в сухой док для восстановления защитного покрытия, поэтому электрохимическая защита является основным методом предотвращения коррозии. Морская нефтепромысловая вышка, как правило, снабжена своей подводной частью протекторными анодами (на одну вышку приходится до 10 т и более протекторных сплавов).

Разрабатываются способы катодной защиты кузовов транспортной техники (автомобилей). Протекторные аноды используют для защиты отд. декоративных элементов кузова, при этом электронном устройстве постоянный или импульсный ток. Для увеличения зоны действия защиты необходимо размещать аноды в наиб. коррозионноопасных точках или использовать электропроводящую окраску. Устройство формирования токи для управления катодных электродов (входит в комплект)

Установка и характеристики

Индикация замыкания электрода на корпус Есть
Радиус действия электрода, М 0,4
Срок службы электрода, лет 5

Электроды устанавливаются при помощи эпоксидного клея на места, где коррозия наиболее вероятна.

При установке следует помнить, что:

  • ✔ защитные электроды устанавливаются только на места, защищенные лакокрасочным покрытием. Не должно быть контакта с массой;
  • ✔ для приклеивания электродов можно использовать только эпоксидный клей или шпатлевку на его основе;
  • ✔ наружную сторону защитных электродов нельзя покрывать мастикой, краской, клеем или другим электроизоляционным покрытием.

Электронный блок устанавливается вблизи аккумулятора, красный провод присоединяется к клемме аккумулятора «+».То есть, электронный блок остается включенным даже при отключенном общем электрооборудовании автомобиля. Синий провод подключается к одному или двум электродам. В целом, устройство потребляет не больше чем часы автомобиля и гарантирует длительную эффективную работу даже при сильно разряженном аккумуляторе.

Рекомендуем устанавливать электроды на следующих местах:

  • 1 — передняя нижняя часть заднего крыла и арка колеса по стыку с крылом;
  • 2 — места крепления фар и подфарников;
  • 3 — полости за щитками-усилителями передних крыльев;
  • 4 — внутренние поверхности дверей и порогов
  • 5 — днище.

Скачать инструкцию (pdf, 500Kb)

Протекторы защиты автомобилей от коррозии ПМ-Анодъ® — Корпорация ПСС

Протектор ПМ-Анодъ® для защиты от коррозии металлических деталей кузова автомобиля. Выполнен из сплавов МП-1 и МП-2.

Каждый автовладелец заинтересован в максимально эффективном использовании своей собственности, предпологая возможность выгодной продажи транспорта в отличном состоянии.И каково бывает его удивление, когда через 2-3 года эксплуатации автомобиля он обнаруживает ржавчину на его кузове.

Ничего удивительного. В российских погодных условиях, когда практически более полугода на дорогах влага, а из них пять месяцев — влага, смешанная песочно-соляной смесью, редкий автомобиль не поддастся разлагающему влиянию коррозии. И даже ставя автомобиль ежедневно в гараж, владелец не может быть полностью уверен в надежной защите от ржавчины. Ведь постоянно повышенная влажность является обычным спутником такого рода помещений и накапливается в скрытых полостях машины — порогах, внутренних балках, стойках, внутренних поверхностях дверей.А это намного губительнее воздействия уличных луж.

Магниевый протектор Анодъ® для защиты от коррозии металлических деталей кузова автомобиля. Его высочайшая эффективность основана на простой электрохимической реакции, изучаемой в 7 классе, — восстановление одного металла за счет другого. Вспомним немного учебник.

При взаимодействии железа с водой, особенно насыщенной солями и примесями (чем не наша «каша» на дорогах?), Происходит его окисление и превращение в гидроокись железа, то есть в то, что мы привыкли называть ржавчиной.Но если мы возьмем два металла с разной химической активностью (железо и магний), поместим их в электролит (дорожная слякоть), то под окислительный удар попадет более активный металл (магний-анод).

А менее активный (железо-катод) не только не пострадает, но и начинает восстанавливаться! Именно поэтому это химическое явление получило название «жертвенного анода». Так и магниевый протектор «Анодъ», жертвуя собой и постепенно растворяя свое тело, не только предотвращает появление ржавчины, но восстанавливает уже поврежденные коррозией поверхности железного кузова автомобиля.Благодаря протектору Анодъ®, влага по отношению к коррозии играет двоякую роль — «Я тебя породила, я тебя и убью». Данная технология с успехом применяется в нефтегазовой отрасли уже более сорока лет.

Магниевый протектор Анодъ® очень прост. Нужно всего лишь установить несколько небольших протекторов в наиболее уязвимые для ржавчины (пороги, подкрылки, рамы). Причем каждый протектор надежно защищает поверхность в радиусе полуметра вокруг себя. Протекторы устанавливаются по выбору автолюбителя в наиболее подверженных коррозии частях автомобиля и (или) мест ее проявления.

Срок службы магниевого протектора (а он истекает, когда тело протектора полностью исходит) может составлять от 3 до 10 лет. Используется та, которая используется большей частью. Столь долгий срок обусловлен тем, что «Анодъ®» начинает окисляться, то есть работать, только тогда, когда возникает угроза железными деталями автомобиля — при появлении контакта с водой. Лишь только вода попадет на поверхность, «охраняемую» протектором, как включается окислительно-восстановительный механизм.Более того, «Анодъ» будет работать до тех пор, пока поверхность полностью не просохнет. Ржавчины больше не будет!

Магниевый протектор Анодъ® предотвратил возникновение коррозии, остановит ее распространение, восстановит поврежденные поверхности и станет залогом долголетия вашего автомобиля. Он абсолютно безопасен в использовании, прост в установке и защищен патентом Российской Федерации по изобретению № 2299273 (Протекторное устройство для защиты от коррозии).

— «-«:,

КаПроЗа-Лайт:

— Уменьшает скорость коррозии на 300-500%.
— Увеличивает ресурс кузова автомобиля в несколько раз.

Устройство электрохимической защиты автомобиля от коррозии «КаПроЗа-Лайт» предназначено для предохранения от дальнейшего распространения коррозии на деталях кузова автомобиля массой до 2 тонн. Действие устройства распространяется на большую часть поверхности кузова, в том числе недоступные и труднодоступные места, такие как днище автомобиля, внутренние части передних и задних крыльев, пороги, пол в салоне, внутренняя поверхность крышки багажника и капота, задние стенки багажного отделения, потолок салона, внутренние поверхности дверей, а также защищенные от коррозии поврежденные в результате аварии части кузова.

В основу работы устройства «КаПроЗа-Лайт» положен принцип катодной поляризации металла кузова и создание гальванической пары между кузовом автомобиля и дополнительным электродом. Путем создания небольшого отрицательного потенциала (0,1-0,2 В) на кузове автомобиля процесс окисления металла практически прекращается. При катодной поляризации железу сообщается такой отрицательный потенциал, при его окисление становится термодинаминым. Кроме того, за счет разрушения цинкования происходит электронное управление.

Компплект «КаПроЗа-Лайт» включает:

1) Из электронного блока формирует защитного, двух проводов (желтый и красный) с бензомаслостойкой изоляцией и гибкого спуска (трос в оплетке ПВХ) на анод, в качестве которого выступает земля;

2) Коррозийных протекторов (двух пластин массой 500 гр. Каждой), закрепляемых по углам прямоугольника на днище автомобиля болтовым соединением. При этом месте контакта днища должно быть зачищено до металлического блеска.Гальваническая пара материалов днища и пластин создаёт ток, разрушающий пластины и защищающий кузов от коррозии. Один раз в два года необходимо очистить место контакта пластин и днища от грязи и выправлять напильником (или наждачной бумагой) образовавшиеся неровности на поверхности каждой пластины.
Подробная информация

Характеристики

Страна производитель Беларусь
Источник питания (электронный блок) 12 В, ДЦ, бортовая сеть автомобиля
Потребляемый ток (электронный блок) 5 мА
Потребляемая мощность (электронный блок) 0,006 Вт
Плотность защитного тока (электронный блок) 50 мкА / м²
Металл протектора цинк (Zn)
Масса протектора 500 гр.
Токоотдача протектора 820 А ∙ ч / кг
Стационарный потенциал Uн -0,76 В
Плотность защитного тока (протектора) 25 мА / м²
Защищаемая площадь поверхности 7 м² (один протектор)
Срок службы (протектора) 10 лет (ориентировочно)
Количество протекторов в комплекте 2 шт.