23Июл

Как восстановить жесткость пружины: Как восстановить пружину

Содержание

Восстанавливаем пружины своими руками » АвтоНоватор

Комфорт и мягкость хода автомобилю помимо амортизаторов придают пружины, которые, несмотря на лаконичность конструкции, порой выходят из строя.

Способы восстановления пружин

Чаще всего усталость пружин обнаруживается совершенно случайно, например, когда машину нагружают больше обычного, и она в буквальном смысле начинает цеплять дорогу днищем.

Решений подобной проблемы имеется несколько. Естественно, наиболее простым является установка новых пружин, они-то и прослужат дольше и проблем меньше доставят, однако этот метод не самый дешевый, поэтому все чаще автовладельцы пытаются реанимировать старые пружины.

Существует несколько способ восстановления пружин: электромеханический и термомеханический, о которых мы вам и расскажем сегодня.

Восстановление пружин

Теперь о процедуре восстановления пружин подробнее. Если вы решили вернуть пружине былую упругость электрохимическим методом, то вам понадобится токарный станок. В начале работы в его патрон нужно установить оправку, позже на ней хомутиком закрепляем пружину. Оправку с деформирующим роликом помещаем в резцедержатель станка. Затем на направляющую станину крепим стойки с раздвижным роликом и плотно соединяем их с суппортами токарного станка. После этого немного поджимаем оправку, на которую заранее следует установить пружину.

Реставрация термохимическим способом требует больше времени, умений и навыков. Итак, в самом начале необходимо поставить пружину в тиски и сжать ее до такой степени плотно, чтобы витки соприкоснулись между собой. После нужно подать через нее электрический ток, 200-400 А будет достаточно, работы в подобном режиме хватит и 20-20 секунд. Если вы не уверены, что силы тока достаточно для нагревания пружины, то в этом можно убедиться визуально – металл должен покраснеть.

И вот, наша пружина нагрелась до нужной температуры, теперь следует прекратить подавать ток и начать медленно разжимать тиски. Как только она удлинилась до предела необходимо зафиксировать ее торцевые окончания, после чего постараться растянуть ее еще немного. Запомните: на описываемую процедуру вам должно потребоваться не менее минуты. После проведенной операции пружину следует закалить, поместив ее в ванну с маслом, для этой цели рекомендуем применять масло из серии АС-8.

Вот такими нехитрыми методами можно постараться вернуть к жизни уставшие пружины, подарив автомобилю былую мягкость и упругость. Однако пружины не только даруют комфорт, как это было сказано выше, но и играют важную роль в формировании дорожного просвета. Так, если вам необходимо сделать свой автомобиль более проходимым, вы можете установить проставки между пружинами, добавив тем самым клиренсу несколько сантиметров. Если же вы предпочитаете пузотерки (извините за выражение, но низкие автомобили именно таковыми и слывут), то достичь поставленной цели можно с помощью нехитрых манипуляций с этими же самыми пружинами. Однако в любом случае, чтобы вы не делали с пружинами, какие бы задачи перед собой и своим железным конем не ставили, помните: любое вмешательство в конструкцию автомобиля влечет за собой негативные последствия.

Таким образом, приняв решение изменить клиренс, поменять пружины или сделать что-нибудь другое в этом ключе, знайте: после подобных процедур во избежание возникновения неприятностей во время поездок вам придется чаще заезжать на СТО для диагностики подвески, хотя, вы можете осуществить ее своими силами. В любом случае, прежде чем, принимать такие ответственные решения несколько раз подумайте, стоит ли игра свеч!

  • Автор: Андрей

и преподавал в Массачусетском технологическом институте и Корнелле. Он является автором книг для чайников, в том числе Physics For Dummies и Physics Essentials For Dummies. Доктор Хольцнер получил докторскую степень в Корнелле.

Эту статью можно найти в рубрике:

  • Физика,

Эта статья является частью сборника(ов):

  • На весенний семестр Студент,

Движение массы на пружине

В предыдущей части этого урока движение массы, прикрепленной к пружине, было описано как пример колебательной системы. Масса при пружинном движении обсуждалась более подробно, поскольку мы стремились понять математические свойства объектов, находящихся в периодическом движении. Теперь мы исследуем движение массы на пружине еще более подробно, сосредоточившись на том, как различные величины изменяются с течением времени. Такие величины будут включать в себя силы, положение, скорость и энергию — как кинетическую, так и потенциальную энергию.

 

Закон Гука

Мы начнем наше обсуждение с исследования сил, действующих пружиной на подвешенный груз. Рассмотрим систему, показанную справа, с пружиной, прикрепленной к опоре. Пружина висит в расслабленном, нерастянутом положении. Если бы вы взялись за нижнюю часть пружины и потянули вниз, пружина растянулась бы. Если бы вы потянули с небольшим усилием, пружина немного растянулась бы. И если бы вы тянули с гораздо большей силой, пружина растянулась бы в гораздо большей степени. Какова именно количественная связь между силой тяги и степенью растяжения?

Чтобы определить это количественное соотношение между величиной силы и величиной растяжения, к пружине можно прикрепить предметы известной массы.

Для каждого добавленного объекта можно измерить величину растяжения. Сила, приложенная в каждом случае, будет весом объекта. Можно провести регрессионный анализ данных силы-растяжения, чтобы определить количественную взаимосвязь между силой и степенью растяжения. В приведенной ниже таблице данных показаны некоторые репрезентативные данные для такого эксперимента.

Масса (кг)

Усилие на пружине (Н)

Величина растяжения (м)

0,000

0,000

0,0000

0,050

0,490

0,0021

0,100

0,980

0,0040

0,150

1,470

0,0063

0,200

1,960

0,0081

0,250

2. 450

0,0099

0,300

2,940

0,0123

0,400

3,920

0,0160

0,500

4.900

0,0199

 

Построив график данных силы-растяжения и выполнив линейный регрессионный анализ, можно определить количественное соотношение или уравнение. Сюжет показан ниже.

Анализ линейной регрессии дает следующую статистику:

уклон = 0,00406 м/с
y-перехват = 3,43 x 10

-5 ( на почти близко к 0,000)
константа регрессии = 0,999

Уравнение для этой линии:

Растяжение = 0,00406• Сила + 3,43×10 -5

Тот факт, что константа регрессии очень близка к 1,000, указывает на то, что существует сильное соответствие между уравнением и точками данных. Это сильное соответствие придает достоверность результатам эксперимента.

Эта взаимосвязь между силой, приложенной к пружине, и величиной растяжения была впервые обнаружена в 1678 году английским ученым Робертом Гуком. Как выразился Гук: Ut tensio, sic vis . В переводе с латыни это означает «Как протяженность, так и сила». Другими словами, величина растяжения пружины пропорциональна величине силы, с которой она тянет. Если бы мы завершили это исследование около 350 лет назад (и если бы мы знали немного латыни), мы были бы знамениты! Сегодня эта количественная связь между силой и растяжением называется законом Гука и часто упоминается в учебниках как 9.0007

F пружина = -k•x

где Fspring — сила, действующая на пружину, x — степень растяжения пружины относительно ее расслабленного положения, а k — константа пропорциональности, часто называемая пружиной. постоянный. Постоянная пружины — это положительная константа, значение которой зависит от исследуемой пружины. Жесткая пружина будет иметь высокую жесткость пружины. Это означает, что потребуется относительно большое количество силы, чтобы вызвать небольшое смещение. Единицами жесткости пружины являются ньютон/метр (Н/м). Знак минус в приведенном выше уравнении указывает на то, что направление растяжения пружины противоположно направлению силы, действующей на пружину. Например, когда пружина была растянута ниже своего расслабленного положения, x равно 9.0009 вниз . Пружина реагирует на это растяжение приложением силы вверх . X и F находятся в противоположных направлениях. Последнее замечание относительно этого уравнения заключается в том, что оно работает для пружины, растянутой по вертикали, и для пружины, растянутой по горизонтали (такой, которая будет обсуждаться ниже).

 

Анализ силы массы на пружине

Ранее в этом уроке мы узнали, что на вибрирующий объект действует восстанавливающая сила. Возвращающая сила заставляет вибрирующий объект замедляться по мере удаления от положения равновесия и ускоряться по мере приближения к положению равновесия. Именно эта возвращающая сила отвечает за вибрацию. Так какова возвращающая сила массы на пружине?

Мы начнем обсуждение этого вопроса с рассмотрения системы на диаграмме ниже.

На схеме показаны воздушная трасса и планер. Планер крепится пружиной к вертикальной опоре. Трение между планером и воздушной гусеницей незначительно. Таким образом, на планер действуют три доминирующие силы. Эти три силы показаны на диаграмме свободного тела справа. Сила гравитации (Fgrav) довольно предсказуема — как по величине, так и по направлению. Сила тяжести всегда действует вниз; его величина может быть найдена как произведение массы на ускорение свободного падения (m•90,8 Н/кг). Опорная сила (Fsupport) уравновешивает силу тяжести. Он питается воздухом от воздушной дорожки, в результате чего планер левитирует над поверхностью гусеницы. Конечная сила – это сила пружины (Fspring). Как обсуждалось выше, сила пружины изменяется по величине и направлению. Его величину можно найти с помощью закона Гука. Его направление всегда противоположно направлению растяжения и к положению равновесия. Как планер на воздушной гусенице делает туда и обратно сила пружины (Fspring) действует как восстанавливающая сила. Он действует на планер влево, когда он расположен справа от положения равновесия; и он действует на планер вправо, когда он расположен слева от положения равновесия.

Предположим, планер оттянут вправо от положения равновесия и вышел из состояния покоя. На приведенной ниже диаграмме показано направление силы пружины в пяти различных положениях на протяжении пути параплана. Когда планер перемещается из положения А (точка освобождения) в положение В, а затем в положение С, сила пружины действует влево на движущийся влево планер. Когда планер приближается к положению C, степень растяжения пружины уменьшается, а сила пружины уменьшается в соответствии с законом Гука. Несмотря на это уменьшение силы пружины, все еще существует ускорение, вызванное восстанавливающей силой, для всего размаха от положения А до положения С. В положении С планер достиг максимальной скорости. Как только планер проходит влево от положения C, сила пружины действует вправо. Во время этой фазы цикла планера пружина сжимается. Чем дальше от положения С перемещается планер, тем больше степень сжатия и больше сила пружины. Эта сила пружины действует как восстанавливающая сила, замедляя планер при его перемещении из положения C в положение D и в положение E. К тому времени, когда планер достигает положения E, он замедляется до положения мгновенного покоя, прежде чем изменить свое направление и возвращаясь к положению равновесия. Во время движения планера из положения E в положение C степень сжатия пружины уменьшается, и сила пружины уменьшается. На протяжении всего расстояния от положения Е до положения С сохраняется ускорение. В положении С планер достиг максимальной скорости. Теперь планер начинает двигаться вправо от точки С. При этом сила пружины действует влево на планер, движущийся вправо. Эта восстанавливающая сила заставляет планер замедляться на всем пути от положения C до положения D и положения E.

Синусоидальный характер движения массы на пружине

Ранее на этом уроке обсуждались изменения положения массы на пружине во времени. В то время было показано, что положение груза на пружине зависит от синуса времени. Обсуждение относилось к массе, которая колебалась вверх и вниз, будучи подвешенной к пружине. Обсуждение было бы в равной степени применимо и к нашему планеру, движущемуся по воздушной трассе. Если бы детектор движения был размещен в правом конце воздушной дорожки для сбора данных для графика зависимости положения от времени, график выглядел бы так, как показано ниже. Положение А — это крайнее правое положение на воздушной дорожке, когда планер находится ближе всего к детектору.

Позиции, отмеченные на приведенной выше диаграмме, — это те же позиции, которые использовались при обсуждении восстанавливающей силы выше. Вы могли вспомнить из этого обсуждения, что положения А и Е были положениями, в которых масса имела нулевую скорость. Положение С было положением равновесия и было положением максимальной скорости. Если бы тот же детектор движения, который собирал данные о положении и времени, использовался для сбора данных о скорости и времени, то данные на графике выглядели бы так, как показано на графике ниже.

Обратите внимание, что график зависимости скорости от времени для массы на пружине также имеет синусоидальную форму. Единственная разница между графиками положение-время и скорость-время состоит в том, что один смещен на одну четверть колебательного цикла от другого. Также обратите внимание на графики, что абсолютное значение скорости наибольшее в положении C (соответствующем положению равновесия). Скорость любого движущегося объекта, независимо от того, вибрирует он или нет, — это скорость с направлением. Величина скорости есть скорость. Направление часто выражается как положительный или отрицательный знак. В некоторых случаях скорость имеет отрицательное направление (планер движется влево) и ее скорость откладывается под осью времени. В остальных случаях скорость имеет положительное направление (планер движется вправо) и ее скорость отложена над осью времени. Вы также заметите, что скорость равна нулю всякий раз, когда положение находится в экстремальном положении. Это происходит в положениях А и Е, когда планер начинает менять направление. Так же, как и в случае маятникового движения, скорость наибольшая, когда смещение массы относительно ее положения равновесия наименьшее. И скорость наименьшая, когда смещение массы относительно ее положения равновесия наибольшее.

 

Энергетический анализ массы на пружине

На предыдущей странице обсуждался энергетический анализ вибрации маятника. Здесь мы проведем аналогичный анализ для движения массы на пружине. В нашем обсуждении мы будем ссылаться на движение планера без трения по воздушной дорожке, которое было введено выше. Планер потянет вправо от положения равновесия и выйдет из состояния покоя (положение А). Как уже упоминалось, планер затем ускоряется к положению C (положение равновесия). Как только планер проходит положение равновесия, он начинает замедляться, поскольку сила пружины тянет его назад против движения. К тому времени, когда он достигает положения E, планер замедляется до мгновенной паузы, прежде чем изменить направление и снова разогнаться до положения C. Еще раз, после того, как планер пройдет точку C, он начинает замедляться по мере приближения к позиции A. в положении А цикл начинается сначала… и снова… и снова.

Кинетическая энергия, которой обладает объект, — это энергия, которой он обладает благодаря своему движению. Это величина, которая зависит как от массы, так и от скорости. Уравнение, связывающее кинетическую энергию (KE) с массой (m) и скоростью (v), имеет вид

KE = ½•m•v 2

Чем быстрее движется объект, тем большей кинетической энергией он обладает. Мы можем объединить эту концепцию с приведенным выше обсуждением того, как скорость изменяется в ходе движения. Это смешение концепций привело бы нас к выводу, что кинетическая энергия массы на пружине увеличивается по мере ее приближения к положению равновесия; и уменьшается по мере удаления от положения равновесия.

Эта информация представлена ​​в таблице ниже:

Этап цикла

Изменение скорости

Изменение кинетической энергии

от А до В до С

Увеличение

Увеличение

C-D-E

По убыванию

По убыванию

E-D-C

Увеличение

Увеличение

С до В до А

По убыванию

По убыванию

Кинетическая энергия — это только одна из форм механической энергии. Другая форма – потенциальная энергия. Потенциальная энергия — это накопленная энергия положения, которым обладает объект. Потенциальная энергия может быть гравитационной потенциальной энергией, и в этом случае положение относится к высоте над землей. Или потенциальная энергия может быть упругой потенциальной энергией, и в этом случае положение относится к положению массы на пружине относительно положения равновесия. Для нашего планера с вибрирующей воздушной гусеницей нет изменения высоты. Поэтому гравитационная потенциальная энергия не меняется. Эта форма потенциальной энергии не представляет большого интереса для нашего анализа изменений энергии. Однако происходит изменение положения массы относительно ее положения равновесия. Каждый раз, когда пружина сжимается или растягивается относительно ее расслабленного положения, происходит увеличение упругой потенциальной энергии. Количество упругой потенциальной энергии зависит от степени растяжения или сжатия пружины. Уравнение, связывающее величину потенциальной энергии упругости (PEspring) с величиной сжатия или растяжения (x), имеет вид 9. 0007

PE пружина = ½ • k•x 2

где k — жесткость пружины (в Н/м), а x — расстояние, на которое пружина растягивается или сжимается относительно расслабленного, нерастянутого положения.

Когда планер с воздушной гусеницей находится в положении равновесия (положение C), он движется с наибольшей скоростью (как обсуждалось выше). В этой позиции значение x равно 0 метру. Таким образом, количество упругой потенциальной энергии (PEspring) равно 0 Дж. Это положение, при котором потенциальная энергия минимальна. Когда планер находится в положении А, пружина растягивается на максимальное расстояние и потенциальная энергия упругости максимальна. Аналогичное утверждение можно сделать и для положения E. В положении E пружина сжата больше всего, и упругая потенциальная энергия в этом месте также максимальна. Поскольку пружина растягивается столько же, сколько и сжимается, упругая потенциальная энергия в положении А ( растянутое положение ) такое же, как и в положении E ( сжатое положение ). В этих двух положениях — А и Е — скорость равна 0 м/с, а кинетическая энергия равна 0 Дж. Таким образом, как и в случае вибрирующего маятника, колеблющаяся масса на пружине имеет наибольшую потенциальную энергию, когда она имеет наименьшую кинетическая энергия. И он также имеет наименьшую потенциальную энергию (положение C), когда он имеет наибольшую кинетическую энергию. Эти принципы показаны на анимации ниже.

При проведении анализа энергопотребления обычно используется гистограмма энергопотребления. Гистограмма энергии использует гистограмму для представления относительного количества и формы энергии, которой обладает движущийся объект. Это полезный концептуальный инструмент для демонстрации того, какая форма энергии присутствует и как она меняется с течением времени. На приведенной ниже диаграмме представлена ​​гистограмма энергии для планера с воздушной гусеницей и пружинной системы.

Гистограмма показывает, что по мере того, как масса на пружине перемещается от A к B и C, кинетическая энергия увеличивается, а потенциальная энергия упругости уменьшается. Однако общее количество этих двух форм механической энергии остается постоянным. Механическая энергия переходит из потенциальной формы в кинетическую; а общая сумма сохранено . Аналогичное явление сохранения энергии происходит, когда масса перемещается от C к D и E. Когда пружина сжимается, а масса замедляется, ее кинетическая энергия преобразуется в упругую потенциальную энергию. При этом преобразовании общее количество механической энергии сохраняется. Этот самый принцип сохранения энергии был объяснен в предыдущей главе — главе «Энергия» — учебника по физике.


Период мессы на пружине

Очевидно, не все пружины одинаковы. И не все пружинно-массовые системы одинаковы. Одной измеряемой величиной, которую можно использовать для отличия одной системы массы пружины от другой, является период. Как обсуждалось ранее в этом уроке, период — это время, за которое вибрирующий объект совершает один полный цикл вибрации. Переменными, влияющими на период системы пружина-масса, являются масса и постоянная пружины. Уравнение, связывающее эти переменные, напоминает уравнение для периода маятника. Уравнение

T = 2•Π•(m/k) .5

где T — период, m — масса объекта, прикрепленного к пружине, а k — жесткость пружины. Уравнение можно интерпретировать так, что более массивные объекты будут вибрировать с более длительным периодом. Их большая инерция означает, что для завершения цикла требуется больше времени. А пружины с большей жесткостью (более жесткие пружины) имеют меньший период; массам, прикрепленным к этим пружинам, требуется меньше времени для завершения цикла. Их более высокая жесткость пружины означает, что они оказывают более сильное восстанавливающее усилие на прикрепленную массу. Эта большая сила сокращает время, необходимое для завершения одного цикла вибрации.

 

Ожидание урока 2

Как мы видели в этом уроке, вибрирующие объекты качаются на месте . Они колеблются взад и вперед вокруг фиксированного положения. Простой маятник и груз на пружине — классические примеры такого колебательного движения. Хотя это и не очевидно при простом наблюдении, использование детекторов движения показывает, что колебания этих объектов имеют синусоидальный характер. Существует тонкое волнообразное поведение, связанное с тем, как положение и скорость изменяются во времени. На следующем уроке мы будем исследовать волны. Как мы скоро узнаем, если масса пружины равна покачивания во времени , тогда волна представляет собой совокупность шевелений, разбросанных по пространству . Когда мы начнем изучение волн в Уроке 2, понятия частоты, длины волны и амплитуды останутся важными.

 

Мы хотели бы предложить … Зачем просто читать об этом и когда вы могли бы взаимодействовать с ним? Взаимодействие — это именно то, что вы делаете, когда используете один из интерактивов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашей мессы в Spring Interactive. Вы можете найти его в разделе Physics Interactives на нашем сайте. Интерактивная масса на пружине предоставляет учащимся простую среду для изучения влияния массы, жесткости пружины и продолжительности движения на период и амплитуду вертикально вибрирующей массы.


Посетите: месса на весенней интерактивной


Проверьте свои знания

1. Требуется усилие 16 Н, чтобы растянуть пружину на расстояние 40 см от исходного положения. Какая сила (в ньютонах) нужна, чтобы растянуть ту же пружину…

а. … в два раза больше?
б. … в три раза больше?
в. …половина дистанции?

2. Постоянно обеспокоенный привычкой белок на заднем дворе нападать на его кормушки для птиц, мистер Г. решает использовать немного физики для лучшей жизни. Его текущий план включает в себя оснащение кормушки для птиц пружинной системой, которая растягивается и колеблется, когда масса белки приземляется на кормушку.