6Мар

Как работает электронная педаль газа: Как на самом деле работает электронная педаль газа

как работает, + и –, неисправности

На чтение 7 мин Просмотров 9.5к. Опубликовано Обновлено

Вплоть до конца 1980-х годов у большинства автомобилей было довольно простое управление дроссельной заслонкой. Вы нажали на педаль акселератора, дроссельная заслонка открылась, воздух поступил в двигатель, где он смешался с бензином и сгорел.

Педаль газа с тросиком

Сгорающий газ приводил в движение колеса автомобиля. Если вы хотели ехать быстрее, всё, что вам нужно было сделать, это нажать педаль сильнее — дроссельная заслонка открывалась шире, давая автомобилю больше мощности.

Но электронное управление дроссельной заслонкой, которое называют электронная педаль газа, использует электрические, а не механические сигналы управления.

Электронная педаль газа

Давайте разберёмся, для чего это сделали. Из каких элементов состоит электронный дроссель (ЭД), как он работает, какие у него есть преимущества, какие бывают признаки неисправности.

Содержание

Из чего состоит электронное управление дросселем?

Когда вы нажимаете педаль газа, вместо открытия дроссельной заслонки задействуется модуль педали акселератора, который преобразует силу, с которой вы нажимаете на педаль, в электрический сигнал.

Затем этот сигнал отправляется в электронный блок управления (ЭБУ), который учитывает его, а также внешние сигналы, чтобы открыть дроссельную заслонку для оптимальной эффективности и производительности.

Это сложная система, но она дает много преимуществ с точки зрения износа двигателя, производительности, эффективности и экологии. Однако, как и любая сложная система, она несовершенна, и у водителей много вопросов по ней.

Типичная электронная система управления дроссельной заслонкой обычно состоит из трёх основных частей:

  1. модуль педали акселератора;
  2. привод (электрический моторчик) заслонки;
  3. блок управления двигателем.

При использовании электронной педали акселератора пропадает необходимость в регуляторе холостого хода (РХХ). Теперь обороты ХХ устанавливаются поворотом заслонки тем же моторчиком.

Блок управления двигателем выбирает правильное программное обеспечение на основе информации от датчиков положения педали акселератора, оборотов двигателя, датчика скорости и переключателей круиз-контроля.

Датчик положения педали акселератора

Как работает электронное управление дроссельной заслонкой

По сравнению с тросиковым дросселем в Е-газ добавили две детали:

  1. моторчик вращения заслонки;
  2. второй (контрольный) датчик положения дроссельной заслонки (ДПДЗ №2).

ДПДЗ №2 работает в «противофазе» с первым — его сигнал увеличивается или уменьшается на ту же величину, что сигнал с основного ДПДЗ №1.

Электронные дроссельные заслонки могут отличаться процентом открытия в обесточенном состоянии и типом ДПДЗ.

  • Полностью закрытые в обесточенном состоянии — одна пружина на полное закрытие.
  • Приоткрытые на 5-7% — две пружины, точка равновесия в зоне приоткрытия. Это позволяет двигателю работать на малых оборотах в случае
    полного выхода из строя электроники дросселя. Такие заслонки являются более современными, чем полностью закрытые, с которыми, в случае поломки, двигатель не будет работать совсем.
  • С контактными ДПДЗ — внутри ползунковые переменные резисторы.
  • С бесконтактными ДПДЗ — внутри нет трущихся подвижных контактов, сигнал на выходе формируется электроникой.

Принцип работы Е-газа:

  1. Водитель нажимает на педаль акселератора. Степень нажатия через датчики переводится в электрический сигнал и по проводам передаётся в ЭБУ.
  2. ЭБУ управляет закрытием/открытием заслонки ШИМ-питанием через моторчик. Меняется как скважность ШИМа, так и полярность.
  3. По сигналам с ДПДЗ анализируется положение заслонки и меняется управляющий сигнал при необходимости.
  4. Контролируются ошибки в работе дроссельной заслонки.

Преимущества электронного управления дроссельной заслонкой

Электронные системы управления дроссельной заслонкой могут показаться немного бессмысленными. В конце концов, если механическая система работает, зачем её усложнять?

Надежность

Механические дроссельные системы, поскольку они состоят из множества движущихся частей, подвержены значительному износу. В течение срока службы автомобиля различные компоненты могут изнашиваться.

Электронная система управления дроссельной заслонкой имеет сравнительно немного движущихся частей — она ​​посылает сигналы с помощью электрического импульса, а не движущихся частей. Это снижает износ и объём технического обслуживания.

Безопасность

Е-газ добавляет ряд преимуществ безопасности по сравнению с механическими системами. При механическом управлении степень открытия или закрытия дроссельной заслонки зависит только от действий водителя.

Благодаря ЭД блок управления не только считывает данные, поступающие от ноги водителя, нажимающей на педаль газа, но также проверяет сигналы, поступающие от пробуксовывающих колес, системы рулевого управления и тормозов, помогая исправить ошибку водителя и удержать машину под контролем.

Другими словами, E-GAS может учесть несколько факторов, которые влияют на скорость и управление автомобиля, а не только ногу на педали.

Электронное управление дроссельной заслонкой позволяет интегрировать передовые функций безопасности водителя, такие как адаптивный круиз-контроль, системы блокировки тормозов и электронный контроль устойчивости, делая автомобиль более безопасным в сложных погодных условиях (дождь, снег, гололед и др.).

Кроме того, электронный дроссель реагирует быстрее, чем водитель в ситуации, когда шины не обладают достаточным сцеплением с дорогой, обеспечивая вам безопасность и удерживая машину на дороге.

Экологичность и экономичность

Управление дроссельной заслонкой через ЭБУ позволяет снизить вредные выбросы в атмосферу и повысить экономичность автомобиля. Это достигается благодаря тому, что блок управления учитывает не только нажатие на педаль, но и данные от многих датчиков: скорости, кислорода, температуры и др.

Симптомы неисправности электронного дросселя

Как и любая другая деталь автомобиля, система управления дроссельной заслонкой также может подвергаться повреждениям и износу. Есть признаки и симптомы, на которые следует обращать внимание, чтобы защитить автомобиль от дальнейших повреждений.

  1. У машины могут быть рывки и провалы при ускорении, она может дергаться при разгоне. Возможны пропуски зажигания. Если вы заметили какие-либо из этих симптомов или резкое переключение передач, то возможно есть проблема с электронным дросселем.
  2. Неисправности электронного управления дроссельной заслонкой могут вызывать проблемы при переключении передач. Это может быть ощущение залипания или медленное переключение между передачами. Возможна проблема с выходом из определенной передачи, как будто она застряла.
  3. Ещё одним признаком неисправности ЭД являются проблемы с отображением силовых характеристик. Это означает, что автомобиль будет отображать неправильные данные или данные, которые невозможны в текущей ситуации.
  4. Двигатель может глохнуть без какой-либо видимой причины. Это может быть признаком серьезной проблемы и даже привести к повреждению двигателя, поэтому эту проблему необходимо устранить как можно скорее.
  5. Дополнительным признаком, который может указывать на необходимость проверки Е-газ, является то, что у вас появляются быстрые и непреднамеренные скачки скорости во время вождения. Это большая проблема безопасности, поскольку это может произойти, когда вы позади другой машины или на повороте.
  6. На приборной панели может гореть лампочка Check Engine. Это является признаком какой-то неисправности, обнаруженной ЭБУ. Узнать ошибку и причину неисправности можно с помощью диагностического сканера или адаптера ELM327 с программой Torque.
  7. И последний симптом неисправности электронного управления дроссельной заслонкой — это резкое увеличение расхода топлива. Если вы понимаете, что не можете проехать так же много километров на таком же объёме топлива как раньше, это явный признак того, что нужно сделать диагностику автомобиля.

Аварийный (отказоустойчивый) режим ЭД

Как и большинство сложных систем, электронные системы управления дроссельной заслонкой имеют ряд аварийных режимов (Failsafe Mode). Они предназначены для того, чтобы поддерживать работу системы или обеспечивать безопасное завершение работы, если что-то пойдет не так.

Вообще говоря, при первых признаках проблемы большинство электронных средств управления дроссельной заслонкой закрывают дроссельную заслонку и возвращаются в режим холостого хода.

Так, например, если блок управления двигателем обнаруживает проблему с датчиком, система переходит на холостой ход, предотвращая открытие дроссельной заслонки.

Также в ЭД встроено несколько резервов. Например, датчиков положения используется по две штуки. Если датчик неисправен или два датчика в одном положении передают разные показания, система закрывает дроссельную заслонку, оставляя двигатель на холостом ходу.

Всё это не означает, что в электронных системах управления дроссельной заслонкой нет проблем. Скорее, они были разработаны с рядом аварийных режимов, которые при правильной работе должны предотвратить неожиданное ускорение автомобиля.

В последнее время автопроизводители добавляют еще один аварийный режим: отключение тормозами. Такие ЭД уже доступны на некоторых немецких автомобилях. Они позволяют водителю вмешиваться и блокировать систему дроссельной заслонки. Если Е-газ каким-то образом неисправен и дроссельная заслонка открывается сама по себе, то нажатие на тормоз закроет её.

Электронная педаль газа, работа электронной педали газа, неисправности электронной педали газа, ремонт электронной педали газа.

Большинство современных производителей автомобилей, привычные тросовые механизмы заменяют электрическими. В этой ситуации возникает много вопросов, связанных с принципом ее действия, преимуществами перед тросовыми тормозами, возникающими неисправностями и способами их устранения. Данные вопросы более чем актуальны.

Содержание

  • Принцип работы электронной педали газа
  • Неисправности электронной педали газа
  • Ремонт электронной педали газа

Принцип работы электронной педали газа

Технологии современности все больше упрощают жизнь человека, освобождая больше времени.

Конечно, в этом ничего плохого нет, но роль человека постепенно снижается, что ведет к делегированию полномочий и важных решений электронике.

И педаль имеющая подобное происхождение, подтверждает вышесказанное. Это является минусом для тех, кто разбирается в своем авто.

Для не интересующихся строением и функционированием механизмов, подобные системы действительно полезны.

Электроника работает по следующему принципу.

В результате нажатия на педаль газа, информация об угле наклона по средствам электрических сигналов передается в блок осуществления операций.

Электронный блок управления определяет необходимый угол открытия заслонки дросселя.

Открытие приводом также осуществляется по заданным показателям, под тем же углом.

При необходимости изменения угла, блок управления осуществляет этот процесс самостоятельно.

В данном случае регулировка процесса водителем полностью, невозможна.

Неисправности электронной педали газа

В основном все проблемы связаны с электрическими цепями.

Опорная деталь педали оснащена парой датчиков.

Их задача осуществлять передачу сигналов изменения положения акселератора.

На панели имеется индикатор, который будет сигнализировать о неисправности системы.

При порче одного датчика обороты двигателя возрастают с низкой скоростью. Если ломаются оба устройства, то активируется аварийный режим, двигатель функционирует в холостую.

В результате поломки требуется замена педали, так как датчики не подлежат восстановлению.

Утрата целостности проводки ведет к сбою в работе дросселя.

Если в негодность придет электрический двигатель, то информация на мониторе отразит ошибку, свидетельствующая об аварии.

Данные проблемы решаются просто. Ускоритель электронной педали газа, при его поломке, заменяется новым.

Ремонт электронной педали газа

Часто, самостоятельный ремонт подразумевает замену всей системы.

Но предварительно рекомендуется определить основания, результатом которых стала поломка.

Для проверки педали, предварительно изучается техническая документация. Чтобы ее извлечь, необходимо отключить датчики и колодку, ослабить крепежные гайки и удалить их.

Мультиметр необходим для определения показателей.

Он фиксируется на разных выводах.

В процессе контролируется его активность, т. е. определяется сопротивление. В норме наблюдается медленное понижение.

В ситуации со скачками, следует вывод: деталь вышла из строя.

Если нанесен ущерб проводке, то ремонт вполне осуществим.

Установив дефекты провода, связанные с его разрывом или утратой целостности изоляции, проводятся следующие меры.

Снимается жгут.

Для этого скоба освобождается по средствам отпаивания проводов.

После чего проходит процесс вытягивания кабеля.

Провода заменяются на новые, место разъема под педалью распаивается. После восстанавливается заслонка и автомобиль готов к эксплуатации.

Электронный корректор применяется при не совпадении времени по задействованию предали газа и действию двигателя.

Проще говоря, действие происходит позже положенного срока.

Так называемая шпора, позволяет максимально уменьшить промежуток открытия и нажатия заслонки.

Данный датчик проводит обработку сигналов, с последующим их преобразованием.

Если опыт самостоятельных работ не позволяет проводить ремонт самостоятельно, то всегда можно воспользоваться услугами станций техобслуживания.

Электронное управление дроссельной заслонкой

Много лет назад я наблюдал, как мой коллега въезжает на стоянку на своем классическом кабриолете Chevy. Казалось, он машет кому-то рукой или, может быть, отгоняет муху. На самом деле я не был уверен, и я не думал об этом достаточно, чтобы спросить, но позже днем ​​я узнал, что он делал.

Оказывается порвался трос акселератора. Чтобы заставить его работать, он подсоединил кусок веревки к карбюратору, затем пропустил его через одну из решеток капота и верхнюю часть ветрового стекла, чтобы управлять дроссельной заслонкой. «Эй, это сработало», — был его ответ на дружеские насмешки.

Дело в том, что это сработало, и каким бы элементарным оно ни было, именно этот тип простой механической связи между вашей ногой и вашим двигателем (хотя и немного лучше, чем веревка) позволил нам заставить машину двигаться. с тех пор, когда они были не более чем безлошадной повозкой. Для соединения дроссельной заслонки внутри автомобиля с карбюратором или корпусом дроссельной заслонки с впрыском топлива на двигателе использовалась либо механическая связь, либо кабель.

Первое появление в конце 19В 80-х годах ETB (электронный корпус дроссельной заслонки) теперь является устройством, которое регулирует поток воздуха в двигатель на большинстве современных транспортных средств. Что такое ЭТБ? Как и во многих современных электронных устройствах, название может показаться пугающим, но они довольно просты, если разобраться.

Хронология такова: Карбюраторы были простыми механическими устройствами. Все, что ты делал, это контролировал подачу воздуха в двигатель. Карбюратор сделал все остальное. Затем, наряду с впрыском топлива, появился корпус дроссельной заслонки. Компьютер, топливные форсунки и датчики двигателя работали вместе, чтобы контролировать количество топлива, подаваемого в двигатель. Все, что вы делали, это контролировали поток воздуха через корпус дроссельной заслонки в двигатель.

Что может быть быстрее, эффективнее и надежнее, чем механическое соединение? Электричество, конечно, — делает ETB единственным логичным шагом в управлении силовым агрегатом.

Как они работают? ETB — это корпус дроссельной заслонки, который выглядит и функционирует так же, как и всегда, за исключением небольшого электродвигателя вместо механической связи. Электродвигатель в ответ на команды, полученные либо от ECM (модуль управления двигателем), либо от PCM (модуль управления трансмиссией), открывает и закрывает дроссельную заслонку внутри корпуса дроссельной заслонки. Единственное, что связано с ETB, это провода.

Разные производители используют разные системы, но основа работы ETB одинакова, независимо от того, над чем работают ваши клиенты. Педаль акселератора в автомобиле содержит датчики, которые передают информацию о положении педали в ECM, PCM или, в некоторых случаях, в специальный модуль ETB.

Системная логика ETB принимает во внимание информацию от педали акселератора, а также от ряда различных систем и датчиков, таких как круиз-контроль автомобиля, датчик скорости и датчик массового расхода воздуха, а затем определяет, насколько открыть дроссельную заслонку внутри корпуса дроссельной заслонки.

И, наконец, в корпусе дроссельной заслонки есть дополнительные датчики, которые передают информацию обратно в ECM, чтобы он знал, что запрошенное положение дроссельной заслонки достигнуто.

Большинство автомобилей последних моделей имеют в среднем от 60 до 100 датчиков на борту. Однако из-за стремительного развития технологий количество датчиков, по прогнозам, в ближайшие несколько лет достигнет 200 на автомобиль.

Двигатель внутреннего сгорания (ДВС) все чаще контролируется «умными датчиками», которые передают данные на несколько бортовых компьютеров.

Кислородные датчики жизненно важны для двигателя с ДВС из-за их роли в управлении системой впрыска топлива и выбросами. Датчик O2 работает в тандеме с электронным блоком управления и другими компонентами, позволяя форсунке импульсно подавать нужное количество топлива в цилиндр во время сгорания. Основная функция состоит в том, чтобы поддерживать эффективное сгорание и не быть слишком обедненным или слишком богатым. Если датчик обнаруживает несгоревшее топливо, он передает сигнал напряжения на ЭБУ, приказывая ему уменьшить ширину импульса, подаваемого на форсунки (топливо), в зависимости от потребности правой ноги водителя и других условий.

Датчики массового расхода воздуха (MAF) измеряют объем и плотность воздуха, поступающего в двигатель в любой момент времени. ЭБУ использует эту информацию вместе с входными данными от других датчиков для расчета правильного количества топлива для подачи в двигатель. Данные с этого датчика помогают рассчитать стратегии опережения зажигания и переключения передач.

Аналогично датчику MAF, датчик абсолютного давления во впускном коллекторе (MAP) измеряет давление во впускном коллекторе и передает информацию в ECU. Эта информация используется для расчета плотности воздуха и определения массового расхода воздуха двигателя.

Двигатели последних моделей с электронным впрыском топлива, компьютеризированным управлением подачей топлива и зажиганием имеют множество датчиков, чтобы следить за всем, что происходит под капотом. Большинство датчиков выдают цифровой сигнал напряжения, соответствующий функции, которую они контролируют.

Все данные датчиков передаются обратно в модуль управления силовым агрегатом (PCM), чтобы он мог принимать важные решения, необходимые для поддержания работы двигателя с оптимальной эффективностью. Среди всех датчиков обычно пять самых критичных:

• Датчик положения дроссельной заслонки (TPS) — этот датчик устанавливается на вал корпуса дроссельной заслонки для контроля относительного открытия дроссельной заслонки. PCM использует эту информацию вместе с датчиками MAP и/или MAF для оценки нагрузки на двигатель для обогащения топлива и регулировки времени. Изношенный датчик TPS может вызвать плоскую точку или колебания при ускорении. На автомобилях с электронным управлением дроссельной заслонкой обычно есть два датчика TPS, а также пара датчиков положения на педали акселератора. Датчики положения на педали акселератора сообщают PCM, насколько сильно открывается дроссельная заслонка, чтобы дать двигателю, когда водитель нажимает на педаль газа. Датчики TPS на дроссельной заслонке сообщают PCM, насколько дроссельная заслонка открывается или закрывается по команде PCM. Проблемы здесь могут помешать открытию дроссельной заслонки или даже вызвать непреднамеренное ускорение.

Датчики положения коленчатого вала (CKP) являются одним из основных электронных устройств, используемых для контроля положения и скорости коленчатого вала с целью передачи информации в PCM для управления впрыском топлива и опережением зажигания, а также другими параметрами двигателя.

Датчик положения дроссельной заслонки (TPS) расположен на шпинделе/валу дроссельной заслонки, поэтому он может напрямую контролировать положение дроссельной заслонки. Некоторые датчики также используются в качестве дополнительного датчика положения дроссельной заслонки (CTPS), чтобы указать, что дроссельная заслонка полностью закрыта. Эти датчики также могут быть частью электронного управления дроссельной заслонкой (ETC) или систем «управления по проводам».

Преимущества электронной системы управления дроссельной заслонкой включают общую надежность, поскольку в ней гораздо меньше механических компонентов, которые со временем могут изнашиваться или требовать регулировки. Транспортные средства разгоняются более плавно с ETB, и они обеспечивают точность, необходимую для передовых систем в современных автомобилях, таких как контроль тяги, управление запуском и адаптивный круиз-контроль.

Есть ли у ETB отрицательные стороны? Не оттуда, где я сижу. Большинство новых технологий, особенно в автомобильном мире, имеют плохую репутацию, пока люди не освоятся с ними. Конечно, может быть проще диагностировать обрыв троса дроссельной заслонки, чем проблему с электроникой или проводкой, но это сегодняшний мир и современные технологии. Это лучше, чем когда-либо, и те, кто изучает это, в конечном счете те, кто любит это.

Электронное управление дроссельной заслонкой (Drive By Wire)

Введение

Трос дроссельной заслонки в современных автомобилях почти стал ненужным. Система привода по проводам ни в коем случае не является новой концепцией, поскольку она была представлена ​​BMW на их 7-й серии еще в 1988 году. Система, используемая BMW, называется EML (немецкий термин для электронного управления дроссельной заслонкой). Теперь система нашла применение и в других транспортных средствах с более скромными маршрутами, и ее можно найти на базовых моделях. Исторически всегда существовала механическая связь между педалью акселератора и дроссельной заслонкой, будь то трос или тяги и рычаги. Теперь их заменили сложные электронные модули управления, датчики и приводы. Эта система также называется «Fly-by-Wire».

Есть несколько причин, по которым электронное управление дроссельной заслонкой предпочтительнее обычного троса дроссельной заслонки:

  • Бортовые электронные системы автомобиля способны контролировать все операции двигателя, за исключением количества поступающего воздуха.
  • Использование привода дроссельной заслонки гарантирует, что двигатель получает только правильную степень открытия дроссельной заслонки для любой конкретной ситуации
  • Оптимизация подачи воздуха также гарантирует, что вредные выбросы выхлопных газов будут сведены к абсолютному минимуму, а управляемость останется неизменной независимо от обстоятельств. Соединение электронного привода дроссельной заслонки с системами адаптивного круиз-контроля, контроля тяги, контроля скорости холостого хода и контроля устойчивости автомобиля также позволяет добиться более точного контроля.

Использование такой системы имеет преимущества по сравнению с традиционной версией с кабелем: минимум настроек и обслуживания.

  • Повышение точности данных повышает управляемость автомобиля, что, в свою очередь, обеспечивает лучшую реакцию и экономичность.
  • Варианты системы

    Первые версии электронного привода дроссельной заслонки или EML были основаны на возможности стать дополнительной системой производственной линии. В нем использовался собственный электронный модуль управления (ECM), без необходимости дополнительного износа (и программирования) оригинального ECM автомобиля. Это было достигнуто за счет ввода минимальных данных в ECM автомобиля через последовательную связь от отдельного блока управления электронного привода дроссельной заслонки, как показано справа: потенциометры педали газа и сигнальные выходы на электронный блок дроссельной заслонки, как показано справа:

    Педаль дроссельной заслонки в сборе

    К педали дроссельной заслонки прикреплены два потенциометра, обеспечивающие точность, необходимую для движения педали. На фотографии справа показан узел педали газа с потенциометрами, прикрепленными сбоку. Сопротивление, «ощущаемое» при нажатии педали, разработано таким образом, чтобы дать такое же ощущение, как при обычном дросселе. Педаль газа в данном случае имеет 6 электрических разъемов.

    Кривая сигнала PicoScope Automotive, показанная в приведенном ниже примере кривой, показывает движение дроссельной заслонки от холостого хода к WOT (полностью открытая дроссельная заслонка) и обратно еще раз к холостому ходу. В этом примере синяя кривая показывает обычное увеличение напряжения при нажатии педали, а красная кривая работает при более низком напряжении. Комбинированные сигналы позволяют ECM рассчитать среднее выходное напряжение на основе двух сигналов. Это позволяет рассчитать положение педали с большей точностью, чем при учете только одного выходного напряжения.

    Блок дроссельной заслонки с электронным управлением

    Отсутствие какой-либо механической связи между педалью газа и корпусом дроссельной заслонки требует использования двигателя с электроприводом. Количество электрических соединений может различаться в разных системах, в то время как в показанном здесь примере имеется 6 электрических соединений. Они предназначены для приведения в действие исполнительного двигателя и датчика положения дроссельной заслонки.

    Привод, часто называемый «серводвигателем», работает от постоянного тока. Напряжение, получаемое серводвигателем, имеет форму прямоугольной волны, напряжение и частота которой остаются неизменными. Серводвигатель реагирует на изменение «рабочего цикла». Рабочий цикл представляет собой процентное значение между временем «включено» и «выключено». Это изменение можно проследить на осциллографе.

    Форма сигнала на приведенном выше рисунке показывает рабочий цикл серводвигателя (красный цвет), а синяя кривая представляет положение датчика положения дроссельной заслонки (TPS). По мере увеличения нагрузки рабочий цикл изменяется и дополнительно индексирует серводвигатель. Это можно увидеть ниже:

    Датчик положения дроссельной заслонки

    Неотъемлемой частью серводвигателя (в данном конкретном случае) является TPS (датчик положения дроссельной заслонки).