25Янв

Гидравлическая коробка передач: Гидромеханические коробки передач — гидротрансформатор, планетарная коробка передач

Гидромеханические коробки передач — гидротрансформатор, планетарная коробка передач

Основным неудобством при использовании механических ступенчатых коробок передач является то, что водителю для переключения передач постоянно приходится нажимать на педаль сцепления и перемещать рычаг переключения передач. Это требует от него затрат значительных физических сил, особенно в условиях городского движения или при управлении автомобилем, работающим с частыми остановками. Для устранения таких неудобств и облегчения работы водителя на легковых, грузовых автомобилях и автобусах все более широкое применение получают гидромеханические коробки передач. Они выполняют одновременно функции сцепления и коробки передач с автоматическим или полуавтоматическим переключением передач. При гидромеханической коробке передач управление движением автомобиля осуществляется педалью подачи топлива и при необходимости тормозной педалью.

Гидромеханическая коробка передач состоит из гидротрансформатора

и механической коробки передач. При этом механическая коробка передач может быть двух-, трех- или многовальной, а также планетарной.

Гидромеханические коробки с вальными механическими коробками передач применяются главным образом на грузовых автомобилях и автобусах. Для переключения передач в таких коробках используются многодисковые муфты (фрикционы), работающие в масле, а иногда – для включения низшей передачи и заднего хода – зубчатая муфта. Переключение передач фрикционами происходит без снижения скорости вращения коленчатого вала двигателя, т.е. бесступенчато – без разрыва передаваемых мощности и крутящего момента.

Гидромеханические коробки с планетарными механическими коробками передач получили наибольшее распространение и применяются на легковых, грузовых автомобилях и в автобусах.

Их преимущества: компактность конструкции, меньшие металлоемкость и шумность, больший срок службы.

К недостаткам относятся сложность конструкции, высокая стоимость, пониженный КПД.

Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.

Гидротрансформатор

Гидротрансформатор (рисунок 1) представляет собой гидравлический механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатками – насосного (ведущего), турбинного (ведомого) и реактора. Насосное колесо 3 закреплено на маховике 1 двигателя и образует корпус гидротрансформатора, внутри которого размещены турбинное колесо 2, соединенное с первичным валом 5 коробки передач, и реактор 4, установленный на роликовой муфте 6 свободного хода. Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.

Рисунок 1 – Гидротрансформатор

а – общий вид; б – схема; 1 – маховик; 2 – турбинное колесо; 3 – насосное колесо; 4 – реактор; 5 – вал; 6 – муфта

При работающем двигателе насосное колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение. Из турбинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и существенное увеличение крутящего момента. Таким образом, масло циркулирует по замкнутому кругу, обеспечивая передачу крутящего момента в гидротрансформаторе.

Характерной особенностью гидротрансформатора является увеличение крутящего момента при его передаче от двигателя к первичному валу коробки передач. Наибольшее увеличение крутящего момента на турбинном колесе гидротрансформатора получается при трогании автомобиля с места. В этом случае реактор неподвижен, так как заторможен муфтой свободного хода. По мере разгона автомобиля увеличиваются скорости вращения насосного и турбинного колес. При этом муфта свободного хода расклинивается, и реактор начинает вращаться с увеличивающейся скоростью, оказывая все меньшее влияние на передаваемый крутящий момент. После достижения реактором максимальной скорости вращения гидротрансформатор перестает изменять крутящий момент и переходит на режим работы гидромуфты. Таким образом происходит плавный разгон автомобиля и бесступенчатое изменение крутящего момента.

Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и ведущими колесами автомобиля. Это обеспечивается следующим образом: с уменьшением скорости вращения ведущих колес автомобиля при увеличении сопротивления движению возрастает динамический напор жидкости от насоса на турбину, что приводит к росту крутящего момента на турбине и, следовательно, на ведущих колесах автомобиля.

Планетарная коробка передач

Планетарная коробка передач включает в себя планетарные механизмы. В простейшем планетарном механизме (рисунок 2) солнечная шестерня 6, закрепленная на ведущем валу 1, находится в зацеплении с шестернями-сателлитами 3, свободно установленными на своих осях. Оси сателлитов закреплены на водиле 4, жестко соединенном с ведомым валом 5, а сами сателлиты находятся в зацеплении с коронной шестерней 2, имеющей внутренние зубья.

Рисунок 2 – Планетарный механизм

1 – ведущий вал; 2 – коронная шестерня; 3 – сателлиты; 4 – водило; 5 – ведомый вал; 6 – солнечная шестерня; 7 – тормоз

Передача крутящего момента с ведущего вала 1 на ведомый вал 5 возможна только при заторможенной коронной шестерне 2 при помощи ленточного тормоза 7. В этом случае при вращении шестерни 6 сателлиты 3, перекатываясь по зубьям неподвижной шестерни 2, начнут вращаться вокруг своих осей и одновременно через водило 4 будут вращать ведомый вал 5. При растормаживании шестерни 2 сателлиты 3, свободно перекатываясь по шестерне 6, будут вращать шестерню 2, а вал 5 будет оставаться неподвижным.

На рисунке 3 приведена схема гидромеханической коробки передач, которая состоит из гидротрансформатора, трехвальной двухступенчатой механической коробки передач и системы управления.

Наличие двухступенчатой механической коробки передач увеличивает диапазон регулирования крутящего момента.

Рисунок 3 – Схема гидромеханической коробки передач

1, 6, 7, 9, 10, 11, 13 – шестерни; 2, 3, 17 – фрикционы; 4 – муфта; 5, 12, 19 – ведомый, промежуточный и ведущий валы; 8 – регулятор; 14, 15 – насосы; 16 – коленчатый вал; 18 – гидротрансформатор

Гидромеханическая коробка передач включает ведущий 19, ведомый 5 и промежуточный 12 валы с шестернями, многодисковые фрикционные сцепления 2, 3, 17 (фрикционы) и зубчатую муфту 4 с приводом. К системе управления относятся передний 15 и задний 14 гидронасосы и центробежный регулятор 8, который воздействует на фрикционы 2, 3, 17, обеспечивающие переключение передач.

В нейтральном положении

все фрикционы выключены, и при работающем двигателе крутящий момент на вторичный вал 5 не передается. На I (понижающей) передаче системой управления автоматически включается фрикцион 2. При этом ведущая шестерня 1, свободно установленная на ведущем валу 19 коробки передач, блокируется валом, а зубчатая муфта 4 устанавливается вручную в положение переднего хода с помощью дистанционной системы управления. Крутящий момент на I передаче от гидротрансформатора передается через фрикцион 2, шестерни 1, 13, 11, 10 и зубчатую муфту 4 на ведомый вал 5 коробки передач.

При разгоне на I передаче, когда гидротрансформатор автоматически осуществляет заданный диапазон регулирования крутящего момента, скорость возрастает до оптимального значения для переключения на II передачу. В этом случае центробежный регулятор 8 дает сигнал на включение фрикциона 3 и отключение фрикциона 2.

Автоматическая система управления обеспечивает включение II (прямой) передачи, при этом крутящий момент от первичного вала 19 коробки передач передается через фрикцион 3 непосредственно на вторичный вал, и скорость автомобиля возрастает до значения, определяемого диапазоном регулирования гидротрансформатором.

Гидромеханическая коробка передач на автомобилях

На рисунке 4 представлена двухступенчатая гидромеханическая коробка передач легкового автомобиля. Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3 и двумя ленточными тормозными механизмами 2 и 4 и гидравлической системы управления с кнопочным переключением передач. Кнопки соответственно означают: нейтральное положение, задний ход, I передача и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.

Рисунок 4 – Гидромеханическая коробка передач легкового автомобиля

1 – гидротрансформатор; 2, 4 – тормозные механизмы; 3 – фрикцион; 5, 6 – планетарные механизмы

В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4 выключены. Трогание автомобиля с места происходит при включенной I передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6 останавливается.

Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на II передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.

Для движение автомобиля задним ходом включается только тормозной механизм 4.

Другие статьи по коробкам передач

  • Коробка передач — назначение и типы
  • Двухвальные коробки передач ВАЗ и АЗЛК
  • Трехвальные коробки — применение и схема работы
  • Трехвальная коробка передач ВАЗ — конструкция
  • Коробка передач грузовых ГАЗ
  • Коробка передач легковых ГАЗ
  • Коробка передач грузовых автомобилей ЗИЛ
  • Коробка передач грузовых МАЗ
  • Многовальные коробки передач

Виды автоматических коробок передач автомобиля, гидравлическая и другие

В удобстве управления автомобилями, оснащенными автоматическими коробками передач, сомневаться не приходится.

В условиях городского движения, с его постоянными пробками, светофорами и пешеходными переходами, использование АКПП абсолютно гармонично и дает уверенность даже молодым водителям.

Сегодня мы поговорим о том, какие разновидности автоматических трансмиссий существуют, а также дадим оценку каждому из них.

Гидравлическая автоматика

Гидравлические АКПП — это классический вариант подобных коробок. Их особенность в отсутствии связи между колесами и мотором.

Крутящие усилия в такой системе передаются через специальную гидравлическую жидкость с помощью использования двух турбин.

Эволюция коробок гидравлического типа привела к тому, что оперативное управление ими полностью отдано специальной электронике.

Это способствовало появлению различных режимов работы коробки автомат, таких как спортивный, экономичный, зимний и т.п.

Помимо этого, водители получили возможность ручного выбора нужной передачи.

По сравнению с механикой, гидравлические трансмиссии более «прожорливые» и менее динамичные.

Вместе с этим отметим, что современные гидрокоробки научились адаптироваться под стиль езды водителя, чем практически полностью нивелировали свою «задумчивость».

Роботизированные трансмиссии

Роботизированные трансмиссии — это гибридный вариант механической трансмиссии и автомата.

По своему устройству роботизированные коробки имеют неимоверное сходство с механикой, однако работа и управление переключениями осуществляется полностью автоматически.

Такой тип коробок позволил решить проблемы, связанные с излишними топливными затратами «автоматов».

Потери динамики тоже сократились, но в процессе эксплуатации выяснилась одна неприятная закономерность: чем молниеноснее разгон, тем отчетливее чувствуются переходы с одной ступени на другую.

Это явление можно было сравнить с подергиванием некачественно работающих автоматических коробок.

Автопроизводители не могли мириться с существующей проблемой.

Доработки не заставили себя долго ждать. Немецкий концерн «Volkswagen» изготовил роботизированную трансмиссию, получившую два сцепления.

Она была названа «DSG». Водители наверняка слышали эту аббревиатуру. Коробка получила пару дисков сцепления, управляющих разными передачами. Один «заведовал» четными ступенями, второй – нечетными.

Переключение скоростей благодаря этому стало практически незаметным.

К сожалению, если первые серии «роботов» можно было назвать дешевыми, то в отношении «DSG» это определение никак не подходит.

Основной «минус» современных роботизированных коробок – высокая цена.

Читайте также:

Вариатор

Вариаторный тип трансмиссии является бесступенчатым. Эти коробки имеют возможность осуществлять плавное изменение крутящего момента.

По сути, вариатор является бесступенчатым «автоматом», у которого отсутствует постоянное значение передаточного числа.

Даже новая гидротрансформаторная коробка работает таким образом, что её циклы можно отследить по величине оборотов и рабочему звуку.

Вариаторные трансмиссии функционируют чрезвычайно размеренно, сохраняя баланс скорости и вовремя «подхватывая» момент смены передачи.

Чтобы несколько снизить монотонность, вариаторы получили виртуальные ступени, которые стали проводить имитацию переключения.

Данный факт позволил водителям ощущать максимальную схожесть с работой обыкновенных гидравлических АКПП.

Визуальное сходство работы никак не повлияла на то, что вариаторы гораздо ограниченнее потребляют горючее и имеют значительно больший КПД работы силового агрегата.

Читайте также:

Отрицательными качествами вариаторов являются серьезная ограниченность рабочего ресурса, редко превышающая отметку двухсот тысяч километров, а также дороговизна обслуживания.

Перспективы развития

Оценивая перспективы развития различных типов трансмиссий, можно однозначно заявить, что будущее за «роботами».

Да, роботизированные коробки достаточно сложно устроены и пока весьма дорогие для внедрения.

Все предпосылки будущей массовости они имеют, а значит, эти недостатки вскоре будут доработаны.

Вариаторы тоже не будем спешить списывать со счетов. Они очень популярны в Америке и Азии, а эти рынки весьма крупные.

Единственным типом коробок, которые явно «отходят», являются гидротрансформаторные АКПП.

Читайте также:

В условиях ограниченности ресурсов излишняя «прожорливость» делает их нерентабельными.

Если учесть, что и технически гидрокоробки явно проигрывают своим конкурентам, то предполагать можно только их постепенный сход с рынка.

Автогиганты будут серьезно сокращать количество таких трансмиссий, полностью отказываясь от их использования.

И не исключено, что перечень видов автоматических коробок передач будет только расширяться.

Общие сведения о гидростатических трансмиссиях | Power & Motion

Загрузите эту статью в формате . PDF

Гидростатическая трансмиссия (HST) существует всегда, когда гидравлический насос подключен к одному или нескольким гидравлическим двигателям и предназначен для них. Универсальность достигается за счет того, что один или оба насоса и двигателя (двигателей) имеют переменный рабочий объем. Результатом является бесступенчатая трансмиссия (CVT).

Во многих случаях HST предпочтительнее трансмиссии с переключением передач из-за бесступенчатого изменения передаточного отношения HST. Многие такие вариаторы меняются вручную, а другие меняются автоматически. В популярной автоматической конфигурации используется регулируемый вручную рабочий объем насоса с двигателем с компенсацией давления. Эта конфигурация приводит к так называемой передаче с «постоянной выходной мощностью». Эти трансмиссии создают гиперболическую характеристику скорости и крутящего момента, и они используются в основном для предотвращения рывков первичного двигателя. Есть и другие, но здесь цель состоит в том, чтобы сконцентрироваться на реализации моделей.

Создание модели

На рис. 1 показан первый этап соединения моделей насоса типа 2 и двигателя при настройке гидростатической трансмиссии. Входной крутящий момент для привода и питания насоса исходит от некоего неуказанного источника слева на рис. 1. Точно так же выходной вал двигателя подает мощность на некую неопределенную вращательную нагрузку справа.


Рис. 1. Базовая конфигурация гидростатической трансмиссии с моделями насоса и двигателя типа 2 начинается с соединения соответствующих портов насоса с их аналогами двигателя. Однако схема еще не применима из-за потенциальной кавитации и неконтролируемого давления в корпусе.

Номенклатура портов A и B двух машин соответствует стандарту , а не стандарту ни в стандартах ISO, ни в стандартах США. Скорее, он был скопирован из стандартизированной практики, используемой с клапанами. На самом деле, я иногда буду называть их рабочими портами насоса и двигателя, как это обычно бывает с направляющими клапанами.

Порт A насоса соединяется с портом A двигателя, порты CD насоса и двигателя соединяются вместе, как и B порты насоса и мотора. Таким образом, выход насоса питает двигатель, а отработанная жидкость из порта B двигателя поступает на вход (порт B ) насоса. Между тем, внутренняя утечка, которая проникает в корпус насоса и двигателя, объединяется, чтобы также подавать на вход насоса через внутренние каналы утечки.

Реальные условия

В идеальном мире такая конфигурация может оказаться практичной. Но это не так, как минимум по двум причинам. Во-первых, внутренняя утечка, которая впадает в соответствующие гильзы, может уйти только «назад» через внутренние пути утечки, соединяющие гильзы и рабочие порты низкого давления. При отсутствии средств для сброса давления в корпусе давление в корпусе будет составлять около 50% или более от давления рабочего порта в данный момент. Это могут быть сотни или тысячи фунтов на квадратный дюйм. Это требует высокопрочного корпуса и уплотнений вала высокого давления как в насосе, так и в двигателе. Технология уплотнения вала высокого давления может выдерживать такое давление — конечно, за определенную плату. Однако создание внешней оболочки насосов и двигателей переменной производительности, способной выдерживать такое высокое давление, может быть непомерно дорогим.

Во-вторых, неизбежная потеря жидкости и изменения температуры повлияют на давление в трансмиссии в состоянии покоя. Эти давления неконтролируемы, и вероятность того, что они станут чрезмерно высокими в закрытой и герметичной системе, мала. Однако они наверняка станут чрезмерно низкими, что приведет к кавитации и сопутствующей ей поломке обеих машин. Это необходимо предотвратить путем добавления элементов контура, которые обеспечат необходимый контроль давления.

Улучшение реального мира


Рис. 2. На моделях насоса и двигателя типа 2 показаны не только взаимосвязи между насосом и двигателем, но и внутренние пути утечки. Легко добавить внешние контуры наддува и кондиционирования жидкости.

На рис. 2 также показана гидростатическая трансмиссия с использованием аналитических моделей типа 2 для насоса и двигателя, но с улучшениями, делающими машину практичной. Отдельные конфигурации можно увидеть вместе с соответствующими внутренними путями утечки. Утечки происходят от порта к порту, а также от порта к сливу картера. Насос наддува (часто называемый просто нагнетательным насосом) соединяется с обоими рабочими портами общих соединений насос-двигатель через отдельные обратные клапаны.

Давление наддува обычно низкое, поскольку гидравлические контуры работают, номинально между 150 и 300 фунтами на квадратный дюйм. Таким образом, давление составляет всего около 1/10 или 1/20 от максимального рабочего давления трансмиссии. Насос наддува и обратные клапаны предназначены для предотвращения слишком низкого падения рабочей стороны со стороны более низкого давления. Если давление упадет ниже атмосферного, разрушительное воздействие кавитации поставит под угрозу надежность насоса и двигателя.

Реальное применение

По мере того, как трансмиссия выполняет свою работу, рабочее давление быстро меняется между высокими и низкими значениями. Учтите, что трансмиссия используется для силовой установки вездехода, когда он движется вверх и вниз по холмам и препятствиям. При подъеме на холм давление в порту A будет высоким, но при пересечении вершины холма автомобиль начинает движение вниз по склону, а насос и двигатель меняются ролями.

Энергия спускаемого транспортного средства нагнетается в двигатель, заставляя его работать как насос, но направление его вращения не меняется. Чтобы поглотить энергию, давление переключается быстро и Давление порта B становится высоким, в то время как давление порта A падает до уровня наддува.

Эта реверсия давления приводит к тому, что насос переключается в двигательный режим, поэтому он пытается увеличить скорость первичного двигателя. Результатом является торможение автомобиля. Если тормозное действие недостаточно, а первичным двигателем является дизельный двигатель, оснащенный механизмом переключения фаз газораспределения для запуска топливных форсунок перед верхней мертвой точкой, эффект силового торможения замедлит снижающееся транспортное средство. Если первичным двигателем является электродвигатель, торможение может быть достигнуто за счет превышения скорости, что приводит к возврату энергии в аккумулятор. В других конфигурациях энергия торможения может храниться гидравлически в аккумуляторах, которые в конечном итоге разряжаются в трансмиссионном двигателе для обеспечения движения.

Загрузите эту статью в формате .PDF

Подготовка жидкости

Вернувшись к рисунку 2, рассмотрим теплообменник и фильтр. Только жидкость, выходящая из портов CD , охлаждается и фильтруется. В зависимости от объемного КПД насоса и двигателя, общий дренажный поток картера будет составлять от 5% до 20% потока через силовой порт трансмиссии. Является ли это разумной стратегией кондиционирования жидкости?

Сначала рассмотрим проблему охлаждения. Весь поток негерметичности дренажа картера был «выдавлен» через небольшие внутренние зазоры под очень высоким давлением, поэтому он подвергся значительному нагреву. Поток, прошедший через вытесняющие элементы, также подвергается снижению давления, но его энергия преобразуется в крутящий момент и выбрасывается из вала. Этот поток существенно не нагревается, поэтому требует небольшого охлаждения.

Утечка из порта в порт — это другое дело. Он идет прямо из порта высокого давления в порт низкого давления и рециркулирует без какого-либо охлаждения. Несмотря на то, что эта жидкость не охлаждается, метод является жизнеспособным, если размер теплообменника рассчитан на охлаждение как дренажа картера , так и потока между портами. Это связано с тем, что контур наддува пополняет сторону низкого давления трансмиссии слегка переохлажденной жидкостью, которая соединяется с потоком основного силового порта.

С другой стороны, вопрос фильтрации только кейсного стока не имеет однозначного ответа. Если есть какие-то абсолюты, то они таковы: во-первых, очищайте свою жидкость, а во-вторых, держите ее в чистоте. После защиты от катастрофических отказов ничто так не повысит надежность компонентов.

Некоторые защитники рекомендуют устанавливать полнопоточные фильтры высокого давления в силовые порты с обеих сторон трансмиссии. Это обеспечивает замечательную степень защиты. Однако недоброжелатели указывают на высокую начальную стоимость и постоянное обслуживание. Они также будут утверждать, что если жидкость была должным образом очищена и проникновение загрязняющих веществ находится под контролем, то любое увеличение загрязнения должно быть вызвано внутренними причинами, скажем, из-за износа компонентов.

Включая динамику

Динамические эффекты легко добавляются к аналитическим моделям типа 2, схематично показанным на рис. 3. При изучении динамики машин нас интересуют изменения скоростей, крутящих моментов, давлений и т. п., а точнее факторы, которые воздействуют на предотвратить мгновенные изменения в них. В гидравлической схеме инерция первичного двигателя, насоса, выходного двигателя и инерция нагрузки препятствуют изменению скорости.


Рис. 3. Динамические эффекты можно легко добавить к аналитическим моделям типа 2 в виде емкостей для учета сжимаемости жидкости и инерции первичного двигателя насоса и выходного двигателя, а также неуказанной нагрузки в двух контурах механического крутящего момента.

Эти эффекты показаны на рис. 3 в виде завитушек в механических разделах. Сжимаемость жидкости и расширение линии предотвращают мгновенное изменение давления. Эти эффекты обозначены электрическими конденсаторами (обозначены C с соответствующим индексом) на схеме. Правило добавления динамических эффектов очень простое: добавить инерцию в каждый контур суммирования крутящего момента (входной контур вала насоса и выходной контур вала двигателя) и добавить отдельную емкость в каждом узле гидравлического контура. Узел – это точка, в которой имеется значение давления, отличное от всех остальных. Четыре из них показаны на рисунке 3 и обозначены четырьмя манометрами.

Мы напишем шесть динамических уравнений для изучения переходных процессов в HST: два суммируют крутящие моменты в контурах насоса и вала двигателя, а четыре суммируют потоки в каждом из четырех узлов гидравлического контура. Мы вычисляли около 30 или 35 различных переменных в решениях уравнений. Это дало бы огромное представление о работе трансмиссии при любых динамических изменениях, таких как нагрузки, смещения, скорость первичного двигателя или любая их комбинация.

Более подробное обсуждение динамики выходит за рамки этой статьи. Но, в конце концов, аналитические модели типа 2 помогают разобраться и понять многие тонкости и нюансы гидростатической трансмиссии.

Справочник для проектировщиков электрогидравлических систем
Недавно опубликованное четвертое издание Справочник конструктора по электрогидравлическим сервоприводам и пропорциональным системам содержит даже больше полезной информации, чем его предыдущее, очень успешное третье издание, ставшее де-факто Библией. для электрогидравлической техники.

Теперь вы можете узнать еще больше об электрогидравлических системах и их конструкции, в том числе:
• как рассчитать и контролировать потери давления в трубопроводах, монтажных плитах и ​​коллекторах,
• как анализировать и контролировать различные механические нагрузки, включая конвейеры, ленты и треугольные нагрузки,
• динамические свойства клапана и как включить их в система,
• электроника, особенно преобразователи и формирование сигналов, и
• электрические системы мобильного оборудования, включая батареи и системы зарядки.

Нет предела тому, как электрогидравлика произведет революцию в нашей отрасли, поэтому закажите свою копию, чтобы обеспечить себе карьеру в этой динамичной технологии. И если вашей целью является сертификация по электрогидравлике, четвертое издание Справочник дизайнера необходим для вашей подготовки. Не рискуйте остаться позади в мире, где единственной константой являются быстрые изменения.

Для заказа посетите наш книжный магазин. Распечатайте форму заказа в формате PDF, заполните ее и отправьте нам по почте, факсу или электронной почте.

Загрузите эту статью в формате .PDF

 

Что такое гидростатическая передача

Передача энергии с помощью взаимосвязанных устройств из одной точки в другую называется передачей энергии. Механическая, электрическая, гидродинамическая, гидромеханическая и гидростатическая трансмиссия — это некоторые категории трансмиссии. Эта статья включала тему гидростатическая трансмиссия . Но некоторые подробности, касающиеся других методов передачи энергии, также перечислены ниже.

Механическая трансмиссия: В системе трансмиссии этого типа используются валы, шестерни, гидротрансформаторы, цепи и ремни для преобразования механической энергии в кинетическую. Передача мощности от двигателя к колесам автомобиля является приложением.

Электрическая трансмиссия: В электрической трансмиссии электрический генератор используется для преобразования механической энергии в электрическую, а с помощью электродвигателя эта энергия преобразуется обратно в механическую энергию. Электропередача происходит в трансформаторах.

Гидродинамическая трансмиссия: В гидродинамической трансмиссии гидродинамический насос и гидродинамический двигатель соединены вместе. Генерация энергии является результатом изменения скорости жидкости при ее прохождении через канал. Автомобиль с автоматической коробкой передач — одно из применений гидродинамической трансмиссии.

Гидромеханическая трансмиссия: В гидромеханической трансмиссии используется схема разделения мощности для повышения эффективности коробок передач и обеспечения гибкости. Этот метод передачи преобразует входную энергию как в механическую, так и в гидростатическую энергию и подходит для тяжелых условий эксплуатации.

Теперь мы можем перейти к гидростатической трансмиссии. Что такое гидростатическая трансмиссия? Проще говоря, это гидравлическая система, в которой гидравлический насос или аккумулятор приводит в движение двигатель, используя жидкость, проходящую через гибкие шланги. В гидростатической трансмиссии шестерни не требуются для преобразования механической энергии вращения от одного источника к другому. Потому что, когда рабочий объем насоса и двигателя фиксирован, то сама гидростатическая трансмиссия будет действовать как редуктор. Гидростатическая трансмиссия подходит для приложений, требующих переменной выходной скорости или крутящего момента. Некоторые из этих применений включают оборудование для обслуживания полей для гольфа, комбайны, тракторы, траншеекопатели, сельскохозяйственную и крупную строительную технику. Преимущества гидростатической трансмиссии:

  • При постоянной скорости на входе гидростатическая трансмиссия может обеспечивать переменную скорость на выходе и наоборот.
  • В течение минимального периода времени возможно обратное направление вращения выхода.
  • Регулировка скорости, мощности и крутящего момента возможна с помощью гидростатической трансмиссии.
  • Плавное и контролируемое ускорение.
  • Быстрый отклик.
  • Точная скорость при переменной нагрузке.
  • Гидростатическая трансмиссия может заглохнуть без повреждения или перегрева.
  • Простота управления.
  • Обеспечьте динамическое торможение.
  • Гидростатическая трансмиссия может передавать мощность от одного первичного двигателя в разные места.
  • Компактный размер.

Компонентами, необходимыми для системы гидростатической трансмиссии, являются картер трансмиссии (для удержания компонентов на месте и для перекачки жидкости), нагнетательный насос (для создания начального давления масла в картере и для заполнения контура маслом), входной вал (для передачи мощности от двигателя и для вращения нагнетательного насоса), аксиально-поршневой насос (вращает входной вал и подает масло в двигатель), шланги/каналы (для соединения насоса с двигателем), предохранительные клапаны (обеспечивают альтернативный путь для масла, когда давление увеличивается), двигатель (приводит в движение выходной вал), качающаяся шайба (меняет рабочий объем поршневого насоса) и обратный клапан (используется в замкнутом контуре).

Также прочтите:  Типы гидравлических насосов — обзор


Как работает гидростатическая трансмиссия?

Мы знаем, что для каждой гидравлической системы требуется гидравлическая жидкость, которая хранится в резервуаре. В системе гидростатической трансмиссии, когда двигатель работает, он будет вращать приводной вал и связанный с ним первичный вал. В системе с замкнутым контуром движение этого входного вала приводит в действие как нагнетательный, так и поршневой насосы. В результате нагнетательный насос будет всасывать масло из резервуара в картер коробки передач. Возвратно-поступательное движение поршня из-за изменения угла наклонной шайбы заставит масло проходить через шланги к двигателю.

Читайте также:  Как работает антиблокировочная система тормозов?


Классификация гидростатической трансмиссии

Гидростатическая трансмиссия может быть классифицирована в соответствии с пространственным расположением, передаточным отношением и конструкцией цепи. Каждая из этих классификаций упоминается ниже.

Линейный, U-образный, S-образный и разъемный — это 4 различных конфигурации гидравлического насоса и двигателя в зависимости от пространственного расположения. Конфигурация In-line будет содержать регулируемый насос и двигатель постоянного рабочего объема, подключенные непосредственно к линии. U-образная конфигурация аналогична линейной, за исключением того, что двигатель подключается ниже насоса, а входной вал и вал двигателя вращаются в одном направлении. Подобно U-образной конфигурации, для S-образной конфигурации двигатель находится ниже насоса/первичного двигателя. Но двигатель находится за насосом. В раздельной конфигурации двигатель и насос разделены шлангами высокого давления. Эта конфигурация имеет отдельные шланги для подачи и оттока жидкости.


4 классификации гидростатической трансмиссии на основе передаточного отношения: насос с постоянным рабочим объемом и двигатель с постоянным рабочим объемом, насос с переменным рабочим объемом и двигатель с постоянным рабочим объемом, насос с постоянным рабочим объемом и двигатель с переменным рабочим объемом, насос с переменным рабочим объемом и мотор с переменным рабочим объемом.


Пространственная гибкость является единственным преимуществом насоса постоянной производительности с подключением к двигателю постоянной производительности. Эта комбинация будет иметь постоянное передаточное отношение. Таким образом, чтобы получить переменную выходную скорость, необходимо изменить скорость первичного двигателя. В насосе с переменным рабочим объемом и двигателе с постоянным рабочим объемом скорость двигателя можно изменить, изменив подачу насоса. Соединение насоса постоянной производительности и двигателя переменной производительности обычно называют системой постоянной мощности. Потому что эти соединения будут обеспечивать постоянную мощность и переменный крутящий момент с переменной выходной скоростью. Насос с регулируемым рабочим объемом и двигатель с регулируемым рабочим объемом представляют собой наиболее гибкую конфигурацию, обеспечивающую переменную выходную скорость.


Замкнутая и разомкнутая трансмиссия — это две классификации гидростатической трансмиссии, основанные на конструкции цепи.