6Фев

Гальваническая защита от коррозии: Электрохимическая защита

Содержание

технология, виды и средства защиты труб и трубопроводов от коррозии


Содержание

  • Электрохимическая защита
  • Катодная защита
  • Протекторная защита
  • Анодная защита
  • Электродренажная защита

Трубопроводные магистрали сегодня являются наиболее распространенным средством для осуществления доставки носителей энергии. К сожалению, у них есть существенный недостаток – они подвержены образованию ржавчины. Чтобы избежать появления коррозии на магистральных трубопроводах, выполняют катодную защиту. В чем же заключается ее принцип действия?

В наши дни существует много способов защиты водопроводов от коррозии. Суть их проста: металл, из которого изготовлены трубы, вступает в реакцию с определенными растворами и веществами. Результатом процесса становится образование небольшой защитной пенки.

Специалистами выделяются следующие методы защиты трубопроводов от коррозии:

Электрохимическая защита

Достаточно результативный способ защиты металлоконструкций от электрохимической коррозии. Иногда воссоздать лакокрасочную оболочку или защитное оберточное покрытие просто невозможно. Вот в таких случаях и уместно применение электрохимической защиты. 

Восстановление покрытия трубопровода, расположенного под землей, или днища морского судна – процесс достаточно трудоемкий и дорогой, а в некоторых случаях и невозможный. Благодаря электрохимической защите изделие будет надежно защищено от коррозии: покрытия подземных трубопроводов, днищ судов, всевозможных резервуаров не будут разрушаться.


  • Используется метод в ситуациях, когда потенциал свободной коррозии пребывает в области усиленного распада основного металла или перепассивации. То есть, когда металлоконструкция интенсивно разрушается.
  • При электрохимической защите к изделию из металла подключают постоянный электрический ток. Благодаря ему на поверхности металлической конструкции образуется катодная поляризация электродов микрогальванических пар и анодные области становятся катодными.
    А вследствие негативного влияния коррозии разрушается не металл, а анод.
  • Электрохимическая защита может быть анодной или катодной: это будет зависеть от того, в какую сторону сдвинется потенциал металла (в положительную или в отрицательную).

Катодная защита

Метод, достаточно часто используемый для защиты металлоконструкций от коррозии. Применяется в тех случаях, когда металл не имеет склонности к пассивации. Суть метода проста: к изделию подается внешний электроток от отрицательного полюса, который обеспечивает поляризацию катодных участков коррозионных составляющих и поднимает значение потенциала до анодных. После прикрепления положительного полюса источника тока к аноду коррозия защищаемого изделия становится почти нулевой.


Анод требует периодической замены, так как со временем происходит его разрушение. 

  • Способы катодной защиты: поляризация от внешнего источника электротока, торможение развития катодного процесса, связь с металлом, имеющим более электроотрицательный потенциал свободной коррозии в определенной среде (протекторная защита).
  • С помощью поляризации от внешнего источника электротока защищают конструкции, находящиеся в почве и в воде, цинк, олово, алюминий и его сплавы, титан, медь и ее сплавы, свинец, высокохромистые, углеродистые, низколегированные и высоколегированные стали.
  • Роль внешнего источника электротока выполняют станции катодной защиты. Их главные составляющие — выпрямитель, токоподвод к защищаемому объекту, анодные заземлители, электрод сравнения и анодный кабель.
  • Катодная защита может быть использована в качестве самостоятельного или дополнительного способа коррозионной защиты.

Основной показатель результативности метода – защитный потенциал. Защитным называют тот потенциал, при котором быстрота коррозионного процесса металлического изделия становится минимальной. 

Однако катодная защита обладает определенными недостатками. Один из них – опасность перезащиты. Такой эффект может наблюдаться в случае большого смещения потенциала защищаемого изделия в отрицательную сторону. Вследствие этого разрушаются защитные оболочки, начинается водородное охрупчивание металла, коррозионное растрескивание. 

Протекторная защита

Вид катодной защиты, в процессе которого к защищаемому объекту подсоединяют металл с более высоким электроотрицательным потенциалом. При этом разрушается не металлоконструкция, а протектор. Через определенный промежуток времени протектор корродирует и его потребуется заменить на новый. 


  • Эффект от протекторной защиты будет заметен только в том случае, если переходное сопротивление между протектором и окружающей средой незначительно. 
  • У каждого протектора есть свой радиус защитного действия – предельно возможное расстояние, на которое можно удалить протектор без утраты защитного эффекта. Протекторную защиту применяют, когда ток к объекту подвести трудно, дорого или просто невозможно.
  • С помощью протекторов защищают объекты, находящиеся в нейтральных средах (море, реке, воздухе, почве и т.
    д.).
  • Материалом для изготовления протекторов служит магний, цинк, железо, алюминий. Металлы в чистом виде не смогут стать эффективной защитой для конструкций, поэтому, изготавливая протекторы, их дополнительно легируют. 

Для изготовления железных протекторов используют углеродистые стали или чистое железо.

Анодная защита

Используется для титановых конструкций, объектов из низколегированных нержавеющих, углеродистых сталей, железистых высоколегированных сплавов, разнородных пассивирующихся металлов. Метод применяют в хорошо электропроводной коррозионной среде. 


При анодной защите происходит сдвиг потенциала защищаемого металла в более положительную сторону. Смещение будет длиться до тех пор, пока не достигнется инертное устойчивое состояние системы. К преимуществам анодной электрохимической защиты можно отнести не только существенное торможение скорости коррозии, но и то, что продукты коррозии не оказываются в производимом продукте и среде.

 

  • Существует несколько способов реализации анодной защиты: можно сдвинуть потенциал в положительную сторону с помощью источника внешнего электротока или ввести в коррозионную среду окислители, которые способны повысить эффективность катодного процесса на металлической поверхности.    
  • Анодная защита с применением окислителей по защитному механизму имеет много общего с анодной поляризацией. 
  • При использовании пассивирующих ингибиторов с окисляющими характеристиками (бихроматов, нитратов и т.д.), защищаемая металлическая поверхность под воздействием возникшего тока становится пассивной. Однако эти вещества способны сильно загрязнять технологическую среду. 
  • Если ввести в сплав добавки, реакция восстановления деполяризаторов, которая происходит на катоде, пройдет не с таким большим перенапряжением, как на защищаемом металле. 
  • При прохождении электротока через защищаемую конструкцию потенциал сдвигается в положительную сторону.  
  • В состав установки для анодной электрохимической защиты входит источник внешнего электротока, электрод сравнения, катод и защищаемая конструкция. 

Для эффективности метода в той или иной среде используют легкопассивируемые металлы и сплавы. Кроме этого требуется высокое качество выполнения соединительных элементов и постоянное нахождение электрода сравнения и катода в растворе. 

Подход к проектированию схемы расположения катодов должен быть индивидуальным для каждого случая. 

Электрохимическую анодную защиту нержавеющих сталей используют для хранилищ серной кислоты, аммиачных растворов, минеральных удобрений, различных сборников, цистерн, мерников. 

Анодную защиту используют, чтобы предотвратить коррозию ванн химического никелирования и теплообменных установок в изготовлении искусственного волокна и серной кислоты. 

Электродренажная защита

Это способ защиты трубопроводов от разрушения с помощью блуждающих токов. Метод предусматривает их дренаж (отвод) с защищаемой конструкции на источник блуждающих токов или специальное заземление. 


  • Дренаж бывает прямым, поляризованным и усиленным. Прямой электрический дренаж — это дренажное устройство, имеющее двустороннюю проводимость. При величине тока, превышающей допустимую величину, выйдет из строя плавкий предохранитель. Электрический ток пойдет по обмотке реле, оно включится, после чего произойдет включение звука или света. 
  • Прямой электрический дренаж используют для тех трубопроводов, чей потенциал всегда выше потенциала рельсовой сети, служащей для отвода блуждающих токов. Иначе отвод станет каналом для натекания блуждающих токов на трубопровод. 
  • Поляризованный электрический дренаж является дренажным устройством, имеющим одностороннюю проходимость. Отличие поляризованного дренажа от прямого заключается в присутствии у первого элемента односторонней проводимости ВЭ. В случае поляризованного дренажа ток течет только в одном направлении — от трубопровода к рельсу. Это не позволяет блуждающим токам натекать на трубопровод по дренажному проводу. 
  • Усиленный дренаж используется тогда, когда требуется не только отвести блуждающие токи с трубопровода, но и создать на нем определенную величину защитного потенциала. Усиленный дренаж – это обычная катодная станция. Ее отрицательный полюс подсоединяют к защищаемой конструкции, а положительный — к рельсам электрифицированного транспорта, а не к анодному заземлению. 
  • Как только трубопровод введут в эксплуатацию, регулируют работу системы его защиты от коррозии. Если возникает необходимость, осуществляют подключение станций катодной и дренажной защиты и протекторных установок.

Использование какой-либо из технологий защиты промысловых, стальных и прочих видов трубопроводов от коррозии – обязательная составляющая их эксплуатации. Все методы антикоррозийной защиты требуется реализовывать в строгом соответствии с ГОСТом.

Протекторная защита от коррозии | Мир инженера

Приветствую Вас, дорогие и уважаемые читатели сайта “world-engineer.ru”. Из этой статьи Вы узнаете, что такое электрохимзащита (ЭХЗ) и как электрохимическая защита от коррозии устроена, также узнаете, как устроена протекторная защита от коррозии трубопроводов о которой мы поговорим подробно.

Электрохимзащита (ЭХЗ расшифровка) разделяется на 4 вида:

1) Протекторная защита;

2) Катодная защита;

3) Электродренажная защита;

4) Анодная защита.

Схемы ЭХЗ трубопроводов

а) протекторная защита трубопроводов

б) катодная защита трубопроводов

в) электродренажная защита трубопроводов

1 – трубопровод;

2 – протектор;

3 – анодный заземлитель;

4 – выпрямитель переменного тока;

5 – рельсы электротранспорта.

Протекторная защита от коррозии – электрохимзащита трубопроводов с помощью тока гальванической пары. Принцип действия протекторной защиты заключается в защите стального защищаемого сооружения (это является катодом) при помощи электрохимического потенциала протекторных материалов (сплавы на основе магния, алюминия и цинка – аноды, некие “жертвенные” электроды), чей потенциал более электроотрицателен. Благодаря разности потенциалов в гальванической паре возникает ток, стекающий с анода (более электроотрицательного электрода) и натекающий из электролита на катод. Создание натекающего тока — цель электрохимической защиты от коррозии.

При разрушении анода-протектора его ионы уходят безвозвратно в землю, а освободившиеся электроны перетекают, как избыточные, на катод-трубопровод, заряжая его отрицательно. Т.е. под действием э.д.с. гальванопары “труба-протектор” в контуре “протектор — земля — трубопровод” возникает защитный ток, натекающий, как и положено при ЭХЗ, из земли на трубопровод. Вот такой принцип работы ЭХЗ.

Приведу пример расчета протекторной защиты трубопроводов одного из проектов тепловой сети.

Электрохимическая защита трубопроводов от коррозии

  1. Общие сведения
  2. Характеристики защищаемых подземных сооружений
  3. Расчет протекторной защиты трубопроводов
  4. Монтажные указания
  5. Монтаж протекторных установок
  6. Указания к пуско-наладочным работам
  7. Эксплуатация протекторных установок
  8. Мероприятия по охране труба
  9. Пожарная безопасность
  10. Мероприятия по обеспечению безопасности населения

1. Общие сведения

Рабочая документация по защите от электрохимической коррозии футляров тепловой сети под железнодорожным полотном на 10км 6ПК+50м станции Среднерогатская, разработан на комплекс работ по строительству объекта: «Реконструкция тепловой сети от ТК с восточной стороны дома №36 корп.4 по Пулковскому шоссе, до ТК на границе территории по адресу: Пулковское шоссе, д.30, литер В (2-й этап строительства)», выполнена в соответствии с требованиями следующих нормативных документов:

— ГОСТ 9.602-2016  «Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии (ИУС 3-2017)»;

— «Инструкция по защите городских подземных трубопроводов от коррозии», РД 153-39.4-091-01, 2002г.

Рабочая документация соответствует строительным нормам и правилам, и другим нормативным документам, согласованным с Госгортехнадзором России.

Проектом предусматривается:

1) Прокладка 2-х стальных футляров 720х10 мм ГОСТ 10704-91 ст. 3сп в ВУС изоляции по ГОСТ 9.602-89 тип 7 протяженностью 77,5 м методом ГНБ под железнодорожным полотном ОАО «РЖД».

2) Подземная прокладка в футлярах стальных трубопроводов тепловых сетей Т1, Т2 426х8/560 мм в заводской изоляции пенополиуретаном с защитным слоем из полиэтилена.

3) Обустройство 2-х тепловых камер вне полосы отвода железной дороги из сборного железобетона по Сер. 3.903 КЛ13 вып.1-3: ТК22, ТК23 с установкой запорной арматуры 2Ду400 мм для отключения участка теплосети и спускников 2Ду125 мм для опорожнения сети.

4) Обустройство 2-х неподвижных опор и сильфоных компенсационных узлов для компенсации температурного расширения.

Для электрохимзащиты (ЭХЗ) прокладываемых стальных футляров, проектом предусмотрено устройство узлов протекторной защиты от коррозии трубопроводов включая протектор магниевый ПМ-20У с установкой контрольно-измерительных пунктов.

2. Характеристики защищаемых подземных сооружений

№ п/п

Подземные

сооружения

Изоляция,

способ

прокладки

Диаметр,

мм

Длина,

м

1

Футляр

Подземный

720

77,5

2

Футляр

Подземный

720

77,5

3. Расчет протекторной защиты трубопроводов

Для защиты от электрохимической коррозии футляров настоящим проектом предусмотрена установка магниевых протекторов типа ПМ-20У, помещенных в мешки с активатором. Активатор предназначен для обеспечения равномерности растворения протектора и уменьшения сопротивления растеканию.

Размеры протектора — протектор магниевый ПМ-20У, мм

Тип

анода

L

Н

а

r

Dl

Масса,

кг, min

ПМ-20У

610±7

155±4

175±4

75±3

5±1

20

Размеры магниевых протекторов упакованных, мм

Тип

анода

LА,

min

Б

d

DПР

Масса,

кг, min

ПМ-20У

710

50±3

206±4

270±5

60

1. Расчет протекторной защиты футляров.

Исходные данные: Длина футляра – LФ = 155 м; (2шт. по 77,5 м)

Диаметр футляра – dФ = 720 мм;

Глубина установки футляра — tФ = 4 м;

Футляр размещен в грунтах с средней коррозионной агрессивностью, в расчетах среднее удельное сопротивление грунта принимаем 31 Ом*м.

Расстояние протектора от трубопровода выбирают обычно равным 3…5 м, глубину заложения — на уровне трубопровода.

Определяем площадь поверхности футляра:

SФ = π*dФ*LФ = 3,14 * 0,72 * 155 = 350 м2;

Определяем ток необходимый для защиты футляра от коррозии:

IЗ = (ΔU/RИЗ,MIN)*SФ = (0,5/100)*350 = 1,752 А;

Определяем сопротивление футляра:

RФ = (ρ/2*π*LФ)*[ln (LФ2/dФ*tФ) + 0,5 ln (1 + (4*tФ2/ LФ2))] =

= (31 / 6,28*155) * [ln (24025/0,72*4) + 0,5 ln (1 + (4*16 / 24025))] = 0,288 Ом;

Определяем сопротивление протектора ПМ-20У:

RПР = (ρ/2*π*LА)*[ln (2LА2/DПР) + 0,5 ln ((4*tПР + LА) /(4*tПР — LА))] =

= (31 / 6,28*0,71) * [ln (1,42/0,27) + 0,5 ln ((4*3 + 0,71)/(4*3 — 0,71))] = 9,598 Ом;

где: LА — длина протектора, 0,71 м;

DПР — диаметр протектора 0,27 м;

tПР — глубина установки протектора, 2,5 м.

Определяем токоотдачу протектора ПМ-20У:

IПР = ΔU / (RПР + RФ1) = 0,9 / (9,598 + 0,288) = 0,091 А;

где: ΔU = UOD — UСТ = 1,6 — 0,7 = 0,9В — разность стационарных потенциалов между трубопроводом и магниевым протектором ПМ-20У;

Находим требуемое количество ПМ-20У протекторов:

N = IЗ / IПР = 1,752 / 0,091 = 20 шт.

В интернете есть программа расчета протекторной защиты — АРМ-ЭХЗ-6П, АРМ-ЭХЗ-7П, а также ElectriCS ECP электрохимзащита. Так что советую к использованию.

И самое важное. Необходимость установки протекторной защиты определяется отраслевыми регламентами и документами, по которым Вы работаете. Если согласно Вашей нормативной документации необходима защита, то делайте её. Для расчёта необходимо просто корректно ввести все исходные данные во все поля. Но для корректного расчёта необходим некий опыт и понимание того, что вы делаете, в вашем случае, необходимо знать электрифицированная данная ж/д или нет, есть ли блуждающие токи (а они скорее всего есть) и сами грунтовые условия (удельное сопротивление грунта). Возможно в Ваших условиях применение протекторов не возможно, и не целесообразно и нужна более серьёзная защита. Это всё зависит от необходимости и ответственности защищаемого сооружения.

4. Монтажные указания

Проектом предусмотрены узлы протекторной ЭХЗ трубопроводов подземных футляров, состоящих из протекторов магниевых ПМ-20У расположенных в скважинах, с выводами в контрольно-измерительный пункт в соответствии с планом расположения.

Контактное присоединение к футлярам выполнить без установки ковера.

При оборудовании контрольно-измерительного пункта неполяризующимся медносульфатным электродом сравнения длительного действия (ЭНЕС-1) с датчиком потенциала, устанавливают в КИП так, чтобы дно корпуса и датчик находились на уровне нижней образующей трубопровода и на расстоянии 100 мм от его боковой поверхности. При этом плоскость датчика должна быть перпендикулярна к оси трубопровода, а на боковой поверхности трубопровода не должно быть дефектов в изоляции.

Медносульфатные электроды сравнения после установки (так же, как контрольно-измерительные пункты, электроперемычки, контактные устройства, индикаторы коррозии и др.) необходимо засыпать вручную.

Монтажные указания по электрической схеме ЭХЗ трубопроводов

Узел ЭЗ-1:

  1. Установить проектируемый блок совместной защиты (БДРМ-10-2-22) на проектируемую стойку контрольно-измерительного пункта выносного типа;
  2. Установить протекторы типа ПМ-20У по чертежу ЭЗК—34.00 серия 5.905-32.07:

— в узле ЭЗ-1 в количестве 8 шт. вертикально в 4 — х скважинах глубиной 4,0 м;

  1. Для регулирования защитного тока и контроля защитного потенциала произвести подключение протекторов к стальным футлярам через контрольно-измерительный пункт с блоком совместной защиты (БДРМ-10-2-22) с установкой стального и медносульфатного электродов сравнения по чертежу ЭХ3.132 (альбом ДОАО “Газпроектинжиниринг”). Медносульфатный электрод сравнения длительного действия (ЭНЕС-ЗМ) устанавливается на специальную подушку из хорошо увлажненной глины, на уровне нижней образующей трубопровода. Рядом с ним установить стальной электрод сравнения из круга d=8 мм, L=1 м. Присоединение к трубопроводу выполнить по чертежу ЭЗК26.00 (серия 5.905-32.07 в.2).
  2. Электродренажные и контрольные кабели проложить в траншее на глубине 0,7 м от существующих отметок поверхности земли.

Узел ЭЗ-2:

  1. Установить проектируемый блок совместной защиты (БДРМ-10-2-22) на проектируемую стойку контрольно-измерительного пункта выносного типа;
  2. Установить ПМ-20У протекторы по чертежу ЭЗК—34.00 серия 5.905-32.07:

— в узле ЭЗ-2 в количестве 12 шт. вертикально в 6 -х скважинах глубиной 4,0 м;

  1. Для регулирования защитного тока и контроля защитного потенциала произвести подключение протекторов к стальным футлярам через контрольно-измерительный пункт с блоком совместной защиты (БДРМ-10-2-22) с установкой стального и медносульфатного электродов сравнения по чертежу ЭХ3.132 (альбом ДОАО “Газпроектинжиниринг”). Медносульфатный электрод сравнения длительного действия (ЭНЕС-ЗМ) устанавливается на специальную подушку из хорошо увлажненной глины, на уровне нижней образующей трубопровода. Рядом с ним установить стальной электрод сравнения из круга d=8 мм, L=1 м. Присоединение к трубопроводу выполнить по чертежу ЭЗК26.00 (серия 5.905-32.07 в.2).
  2. Электродренажные и контрольные кабели проложить в траншее на глубине 0,7 м от существующих отметок поверхности земли.

После выполнения СМР протекторной защиты необходимо произвести измерения электрических параметров с представителем специализированной организации:

— потенциал защищаемого сооружения до присоединения протекторов;

— разность потенциалов между защищаемыми сооружениями и протекторами до присоединения проводников;

— потенциал сооружения после подключения протекторной защиты;

— сила тока в цепи протектор — защищаемое сооружение;

Произвести ПНР протекторных установок.

5. Монтаж протекторных установок

При применении протекторов, не укомплектованных активатором, на монтажно-заготовительном участке следует предварительно зачистить поверхность протекторов, произвести спайку изолированных проводов с контактными сердечниками протекторов, место спайки тщательно изолируется и заливается слоем битума толщиной не менее 4 мм.

Монтаж протекторов ПМ-20У, упакованных в порошкообразном активаторе на заводе-изготовителе, выполняется в такой последовательности:

— с протекторов снимаются наружные мешки; протектор захватывается при помощи стальной 5-миллиметровой проволоки, загнутой на одном конце в виде крючка, за петлю хлопчатобумажного мешка и опускается в скважину или шурф;

— после равномерной засыпки протектора внутри скважины или шурфа мягким грунтом и послойной утрамбовки его монтажную проволоку вынимают;

— после удаления проволоки и закрепления протектора скважину досыпают грунтом и утрамбовывают с предосторожностями, необходимыми для сохранения протектора, соединительного провода и мест контакта провода с сердечником.

В сухих грунтах, при глубоком залегании грунтовых вод, после установки протектора и присыпки его грунтом в скважину заливают 2-3 ведра воды, после чего скважину полностью засыпают грунтом с послойной утрамбовкой. Допускается перед опусканием в скважину упакованного протектора окунуть его в бачок с водой для увлажнения после снятия внешнего бумажного мешка.

Перед приваркой контактных пластин, скоб или стержней к защищаемым сооружениям необходимо осмотреть состояние изоляции сооружений и в случае неудовлетворительного ее состояния известить об этом владельцев сооружений.

Контактные скобы и пластины присоединяют к действующим подземным сооружениям с помощью газо-, электро-, или термической сварки предприятиями, эксплуатирующими подземные сооружения.

6. Указания к пуско-наладочным работам

Проверка работы и промежуточная приемка протекторов осуществляется в течение 3-х суток после их монтажа, при этом производится измерение их электрических параметров.

Удовлетворительной считается работа протекторной установки, когда сдвиг потенциала на подземном сооружении при ее работе будет более чем на 0,2В в катодную сторону, а сила тока равна или близка расчетной.

Измерению подлежат следующие параметры установки:

— потенциал защищаемого сооружения до присоединения установки;

— потенциалы протекторов относительно земли до присоединения к защищаемым сооружениям;

— разность потенциалов между защищаемым сооружением и протекторами до присоединения проводников;

— потенциал сооружения после подключения протекторной защиты;

— сила тока в цепи «протектор — защищаемое сооружение».

Если при измерениях установлена неудовлетворительная работа протекторной установки, то необходимо определить причину неисправности и устранить ее. Основные показатели неудовлетворительной работы протекторов и ее причины, следующие:

— отсутствие электрического тока в цепи протектор-сооружение – обрыв проводников или нарушение контактных соединений;

— сила тока в цепи протектор — сооружение более чем на 50% меньше расчетной;

— плохое состояние контактов или неправильно смонтирован активатор.

7. Эксплуатация протекторных установок

При эксплуатации протекторных установок производят периодический технический осмотр, проверку эффективности.

Технический осмотр установок производят 2 раза в год. Контрольные измерения потенциалов на защищаемом сооружении производят 2 раза в год.

При проверке параметров установки протекторной (гальванической) защиты измеряют:

1) силу тока в цепи гальванический анод (ГА) — защищаемое сооружение;

2) разность потенциалов между ГА и сооружением;

3) потенциал сооружения в точке присоединения ГА при подключенном ГА.

Эффективность действия протекторной защиты определяют путем сравнения сдвига потенциала на защищаемом сооружении при контрольных замерах по отношению к пуско-наладочным значениям.

При ремонте и восстановлении протекторных установок должны производиться ревизия и осмотр всех скрытых контактных соединений.

Потенциалы протекторов, отключенных от сооружений, значения которых (по абсолютной величине) не ниже 1,2 В, характеризуют протекторы, как исправные.

8. Мероприятия по охране труда

При выполнении работ необходимо проводить мероприятия по организации безопасной работы с применением механизмов, транспортных средств и средств малой механизации.

До начала производства работ должна быть выполнена подготовка производства, включая проведение общих организационно-технических мероприятий, выполняемых в соответствии с действующей нормативно-технической документацией РФ и договором подряда.

До начала производства работ необходимо проверить все помещения на загазованность воздуха в них с помощью газоанализаторов взрывозащищенного исполнения. Места отборов проб воздуха определяются местной инструкцией. газоопасные работы должны выполняться под руководством и контролем руководителя работ. В процессе ее проведения все распоряжения выдаются только этим лицом.

При проведении газоопасных работ должны соблюдаться следующие правила:

— использование электрифицированных инструментов, дающих искрение, запрещается;

— инструмент должен быть из цветного металла, исключающего возможность искрообразования. Допускается использовать инструмент из черного металла, при этом его рабочая часть смазывается смазкой;

— в качестве переносного источника света должны использоваться светильники взрывозащищенного исполнения. Использование открытого огня в газоопасных местах запрещается;

— обувь персонала должна быть без стальных подковок и гвоздей.

Перед началом производства работ на всех дорогах, проездах должны быть поставлены предупредительные знаки и надписи, видимые в любое время суток, сделаны ограждения, указаны направления объездов и обходов. До начала производства работ необходимо установить ограждающие знаки, указывающие места расположения подземных коммуникаций. На ограждениях навешиваются надписи, запрещающие вход в огражденную зону («Осторожно. Опасная зона!»). Проходы и проезды в пределах опасной зоны должны иметь защитные навесы, боковые ограждения и надписи, запрещающие проход посторонним лицам.

При работах на высоте более 1,5 м и целесообразности устройства ограждений с целью предупреждения падения работающих необходимо пользоваться предохранительными поясами, без которых персонал не допускается на рабочее место и к ходовой лестнице.

В особо опасных местах необходимо пользоваться предохранительными поясами, имеющими по две цепи с карабинами для поочередного закрепления.

Запрещается работать, находиться на рабочем месте и пользоваться ходовой лестницей без защитных касок.

Подъемно-транспортные механизмы для приготовления материалов, склады и другие объекты, необходимые для работ, не должны находиться в опасной зоне.

Отклонения от проектной документации в процессе строительства, расширения, реконструкции, технического перевооружения, консервации и ликвидации опасного производственного объекта не допускаются.

При производстве всех видов строительно-монтажных работ необходимо соблюдать требования:

— СНиП 12-03-2001 «Безопасность труда в строительстве. Часть 1. Общие требования»;

— СНиП 12-04-2002 «Безопасность труда в строительстве. Часть 2. Строительное производство»;

— СанПиН 2.2.3.1384-03 «Гигиенические требования к организации строительного производства и строительных работ»;

— «Правила безопасности при работе с инструментом и приспособлениями»;

— ПОТ Р М-016-2001 «Межотраслевые правила по охране труда (Правила безопасности) при эксплуатации электроустановок».

9. Пожарная безопасность

При производстве работ должны соблюдаться «Правила пожарной безопасности в РФ».

Курение допускается только в специально отведенных местах. Места для курения должны иметь надпись -«Место для курения».

Первичные средства пожаротушения должны содержаться в исправном состоянии.

В местах производства работ на видных местах должны быть вывешены предупредительные плакаты о запрещении курения, применения открытого огня. На территории мазутного хозяйства курить, разводить огонь, пользоваться факелами, спичками, зажигалками, фонарями не во взрывобезопасном исполнении запрещается.

Все лесоматериалы, используемые для производства работ (леса, защитные козырьки, подмости и т.п.) должны быть обработаны специальным огнезащитным составом.

Ремонтная площадка должна быть обеспечена средствами пожаротушения -огнетушителями, кошма, ящиками с песком и лопатами.

Огневые работы (сварка, резка металла, варка битума) должны проводиться исключительно по наряду-допуску на огневые работы.

Строительно-монтажной организации оповестить руководство пожарной части, ответственной за данный район, о проведении работ и используемых горючих материалах.

10. Мероприятия по обеспечению безопасности населения

В целях создания безопасных условий для населения на период производства работ, а также оповещения граждан и предупреждения случаев травматизма и гибели людей, Заказчику разработать следующие мероприятия:

— установить в местах возможного скопления людей предупредительные знаки и плакаты о производстве работ;

— обеспечить видимое в любое время суток ограждение мест производства работ и опасных зон;

— при проведении работ выставить наблюдающих от подрядной организации для недопущения прохода граждан к опасной зоне;

Эвакуация населения на период производства работ не требуется.

Поделиться ссылкой:

5 способов избежать гальванической коррозии

Гальваническая коррозия (также называемая биметаллической коррозией или коррозией разнородных металлов) представляет собой разрушительный электрохимический процесс, происходящий при контакте двух разнородных металлов друг с другом в присутствии электролита. Этот вид коррозии характеризуется ускоренной коррозией одного металла, в то время как другой остается практически незатронутым. Другими словами, один металл становится анодом и преимущественно подвергается коррозии, таким образом жертвуя собой, защищая другой металл, катод.

Реклама

Гальваническая коррозия относительно агрессивна и ежегодно причиняет ущерб на миллионы долларов. Контрмеры по предотвращению его образования должны быть приняты во внимание на концептуальной или ранней стадии процесса проектирования. (Более подробно обсуждается в разделе «Соображения по борьбе с коррозией в процессе проектирования оборудования».) Причины гальванической коррозии широко варьируются и могут состоять из нескольких различных типов химических реакций. Поэтому важно иметь четкое представление об основных механизмах и факторах, влияющих на развитие этого типа коррозии.

Причины гальванической коррозии

Основной движущей силой гальванической коррозии является свойство, известное как разность потенциалов. Когда металл погружается в электролит, он принимает электродный потенциал. Значение электродного потенциала для различных металлов представлено в таблице, известной как гальванический ряд. Таким образом, разность потенциалов между двумя металлами представляет собой разность потенциалов их соответствующих электродов, как определено в гальваническом ряду.

Реклама

Когда два металла соприкасаются друг с другом в присутствии электролита, существующая между ними разность потенциалов вызывает перенос электронов от анода (более электроотрицательный металл) к катоду (более электроположительный металл). ). Этот перенос электронов приводит к ряду реакций окисления и восстановления, которые затем вызывают гальваническую коррозию анода. (Дополнительное обсуждение доступно в статье «Почему два разнородных металла вызывают коррозию?»)

Рис. 1. Видео, показывающее коррозию разнородных металлов в водопроводных трубах .

Способы предотвращения гальванической коррозии

Меры, направленные на предотвращение гальванической коррозии, обычно основаны на устранении основных элементов, вызывающих ее образование. В основном это включает в себя блокировку электрического пути в металлических или электролитических частях системы, удаление кислорода из электролита и введение ингибиторов коррозии.

Реклама

1. Изоляция

Одним из наиболее эффективных способов разрыва электрического пути в электрохимической ячейке является размещение непроводящего материала между точками контакта соединяемых металлов. Гальваническая коррозия возникает из-за того, что электронам позволяют течь от анода к катоду, создавая гальванический ток в системе. Изоляционный материал блокирует поток электронов, тем самым предотвращая протекание реакций окисления и восстановления.

На практике изоляция обычно достигается за счет использования втулок, шайб, прокладок и покрытий на полимерной или эластомерной основе. Например, в нефтяной и газовой промышленности непроводящие прокладки из эпоксидной смолы, армированной стекловолокном (GRE), обычно размещают между фланцами соединительных труб, чтобы нарушить электропроводность между соседними трубопроводами. (Использование прокладок обсуждается в статье «Как новые методы добычи и транспортировки нефти и газа влияют на коррозию трубопроводов».)

Рис. 2. Изолирующая прокладка, помещаемая между фланцами соединительных труб в качестве электрического изолятора.

2. Электролитная изоляция

Одним из основных элементов, необходимых для возникновения гальванической коррозии, является электролит, который содержит ионы, облегчающие реакции окисления и восстановления в гальваническом элементе. Следовательно, меры, включающие изоляцию контактирующих металлов и электролита, могут оказаться эффективными для предотвращения гальванической коррозии. Это достигается за счет использования водоотталкивающих составов, выполняющих роль барьеров между металлической подложкой и раствором электролита. Краски, покрытия, масла и смазки используются во многих отраслях промышленности с большим успехом.

Гальванической коррозии также можно избежать, сводя к минимуму разность потенциалов между металлами. Как упоминалось ранее, электроны перетекают от анода к катоду из-за разности потенциалов, которая действует как движущая сила. Чем выше разность потенциалов, тем больше индуцированный гальванический ток и тем выше скорость коррозии.

Противоположное верно для металлов с низкой разностью потенциалов между ними. Цель состоит в том, чтобы выбрать контактирующие металлы с близкими электродными потенциалами, т. е. металлы, близкие друг к другу в гальваническом ряду, чтобы уменьшить возможность гальванической коррозии. (Вы можете найти схему гальванического ряда в статье Введение в гальванический ряд: гальваническая совместимость и коррозия. )

4. Ингибиторы коррозии

Ингибиторы коррозии представляют собой соединения (обычно жидкие), которые добавляют в электролит для подавления химических реакций, вызывающих гальваническую коррозию. Ингибиторы действуют несколькими способами, большинство из которых связано со сложными химическими процессами. Однако наиболее эффективны против гальванической коррозии ингибиторы, удаляющие растворенный кислород из раствора электролита. Удаление кислорода уменьшает возможность восстановления, происходящего на аноде. Поскольку катодные реакции зависят от анодных реакций, гальванический процесс останавливается.

5. Минимизация отношения площадей

Несколько исследований показали, что на скорость и тяжесть гальванической коррозии влияет отношение площади катода к площади анода. Чем больше площадь катода по отношению к аноду (т. е. чем выше отношение катода к аноду), тем выше скорость восстановления на аноде и, таким образом, тем сильнее гальваническая коррозия. Напротив, чем меньше площадь катода и анода, тем менее пагубным является последующее ухудшение.

На этапах предварительного проектирования целесообразно обеспечить максимальную площадь анодного металла по отношению к катоду. Например, стальной крепеж в алюминиевой пластине даст лучшие результаты, чем алюминиевый крепеж в стальной пластине.

Заключение

Предотвращение гальванической коррозии обычно включает применение контрмер на самом раннем этапе проектирования проекта. Понимание механизмов, участвующих в этой электрохимической реакции, является ключом к выбору подходящих и наиболее эффективных профилактических мер в данной ситуации. Также важно отметить, что несколько методов защиты могут быть реализованы одновременно для усиления защиты и более высокого уровня эффективности.

Реклама

Связанные термины
  • Гальваническая коррозия
  • Гальваническая пара
  • Гальванический ток
  • Гальваническая серия
  • Ингибитор коррозии
  • Электрическая изоляция
  • Потенциал электрода
  • Электролит
  • Потенциал электрохимической коррозии
  • Водонепроницаемый барьер

Поделиться этой статьей

Методы защиты от гальванической коррозии — Cor Pro

Используя различные методы защиты от коррозии, Cor-Pro Systems является ведущим поставщиком методов защиты от гальванической коррозии в Хьюстоне.

Коррозия – это естественный процесс, который происходит независимо от того, нравится нам это или нет. Это неизбежное явление заставляет компании ежегодно тратить сотни миллионов долларов.

В общей сложности США ежегодно тратят колоссальный 1 триллион долларов только на борьбу с коррозией и проблемами, связанными с коррозией. Это серьезная угроза для бизнеса; тем более для тех, чьи операции зависят от сложных механизмов и критического оборудования.

Защита от гальванической коррозии является неотъемлемой частью любого стратегического плана по борьбе с коррозией компаний, деятельность которых связана с использованием критического оборудования и установок.

Инженеры, проектировщики и производители оборудования очень хорошо осведомлены о проблемах, возникающих при гальванической коррозии, но это остается сложной проблемой, требующей решения.

Cor-Pro Systems предлагает передовые методы защиты от гальванической коррозии, которые включают индивидуальные решения в зависимости от конкретных потребностей бизнеса.

Что такое гальваническая коррозия?

Гальваническая коррозия представляет собой электрохимическое явление, при котором разнородные металлы вступают в контакт друг с другом.

Один металл корродирует с большей скоростью (анод), а другой с меньшей скоростью (катод), если его поместить в электропроводящую среду.

Например, благородные металлы, такие как нержавеющая сталь, могут вызывать гальваническую коррозию менее благородных металлов.

Индивидуальные методы предотвращения коррозии Cor-Pro Systems будут зависеть от причин коррозии и могут помочь компаниям определить это на ранней стадии, чтобы задержать коррозию и продлить срок службы критически важного оборудования.

Методы защиты от гальванической коррозии
  • Изоляция разнородных металлов
  • Выбирайте металлы как можно более близкие по гальванической серии
  • Введение расходуемого металла, такого как магний или цинк, в конструкцию или сборку
  • При проектировании компонентов рассмотрите возможность использования сменных деталей для замены проржавевших деталей вместо замены всей установки
  • Убедитесь, что более активный металл не имеет меньшей площади, чем менее активный металл
  • Нанесите соответствующие покрытия. Знание материалов и металлов, а также их совместимости может помочь в борьбе с гальванической коррозией

Методы защиты от гальванической коррозии, если они применяются правильно, могут помочь смягчить разрушительное воздействие коррозии, сэкономив компаниям миллионы долларов на ремонте и замене.

Скорость: часть приверженности Cor-Pro «золотому стандарту Cor-Pro»

Защита от коррозии является необходимым требованием для всего основного оборудования, и Cor-Pro стремится предоставлять только лучшие методы защиты от коррозии в Хьюстоне и поблизости Районы побережья Мексиканского залива.

Все продукты и услуги компании отмечены самым высоким стандартом защиты от коррозии — «Cor-Pro Gold Standard».

Чтобы все клиенты Cor-Pro получали быстрое и качественное обслуживание, каждая выполненная работа соответствует «Знаку качества Velocity» — превосходная защита от коррозии всего за несколько часов, а не дней.

О компании Cor-Pro Systems

Компания Cor-Pro Systems предоставляет первоклассные услуги по нанесению покрытий предприятиям в районе Большого Хьюстона и на побережье Мексиканского залива.