2Сен

Электромотор принцип работы: Устройство, принцип работы и подключения электродвигателей переменного тока | Полезные статьи

Содержание

История создания электродвигателя

Электромеханика является относительно молодой, по историческим меркам, отраслью науки и техники.

1800, Вольта

Итальянский физик, химик и физиолог, Алессандро Вольта, первый в мире создал химический источник тока.

1820, Эрстед

Датский ученый, физик, Ханс Кристиан Эрстед, обнаружил на опыте отклоняющее действие тока на магнитную стрелку.

1821, Фарадей

Первый электродвигатель Фарадея, 1821 г.

Британский физик-экспериментатор и химик, Майкл Фарадей, опубликовал трактат "О некоторых новых электромагнитных движениях и о теории магнетизма", где описал, как заставить намагниченную стрелку непрерывно вращаться вокруг одного из магнитных полюсов. Эта конструкция впервые реализовала непрерывное преобразование электрической энергии в механическую. Принято считать ее первым электродвигателем в истории.

1822, Ампер

Французский физик, Андре Мари Ампер, открыл магнитный эффект соленоида (катушки с током), откуда следовала идея эквивалентности соленоида постоянному магниту. Среди прочего Ампер предложил использовать железный сердечник, помещенный внутрь соленоида, для усиления магнитного поля. В 1820 году им был открыт закон Ампера.

1822, Барлоу

Английский физик и математик, Питер Барлоу, изобрел колесо Барлоу, по сути, униполярный электродвигатель.

1825, Араго

Французский физик и астроном, Доминик Франсуа Жан Араго, опубликовал опыт показывающий, что вращающийся медный диск заставляет вращаться магнитную стрелку, подвешенную над ним.

1825, Стёрджен

Британский физик, электротехник и изобретатель, Уильям Стёрджен, в 1825 изготовил первый электромагнит, который представлял из себя согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки.

Вращающееся устройство Йедлика, 1827/28 гг.

1827, Йедлик

Венгерский физик и электротехник, Аньош Иштван Йедлик, изобрел первую в мире динамо-машину (генератор постоянного тока), однако практически не объявлял о своем изобретении до конца 1850-х годов.

1831, Фарадей

Английский физик, Майкл Фарадей, открыл электромагнитную индукцию, то есть явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Формулировка закона электромагнитной индукции.

1831, Генри

Американский физик, Джозеф Генри, независимо от Фарадея обнаружил взаимоиндукцию, но Фарадей раньше опубликовал свои результаты.

1832, Пикси

Генератор постоянного тока Пикси

Француз, Ипполит Пикси, сконструировал первый генератор переменного тока. Устройство состояло из двух катушек индуктивности с железным сердечником напротив которых располагался вращающийся магнит подковообразной формы, который приводился в движение вращением рычага. Позже для получения постоянного пульсирующего тока к этому устройству был добавлен коммутатор.

Электродвигатель Стёрджена
Strurgejn's Annals of Electricity, 1836/37, vol. 1

1833, Стёрджен

Британский физик, Уильям Стёрджен, публично продемонстрировал электродвигатель на постоянном токе в Марте 1833 года в Аделаидской галерее практической науки в Лондоне. Данное изобретение считается первым электродвигателем, который можно было использовать.

1833, Ленц

В начале в электромеханике разграничивали магнито-электрические машины (электрические генераторы) и электро-магнитные машины (электрические двигатели). Российский физик (немецкого происхождения), Эмилий Христианович Ленц, опубликовал статью о законе взаимности магнито-электрических явлений, то есть о взаимозаменяемости электрического двигателя и генератора.

Май 1834, Якоби

Первый вращающийся электродвигатель. Якоби, 1834

Немецкий и русский физик, академик Императорской Санкт-Петербургской Академии Наук, Борис Семенович (Мориц Герман фон) Якоби, изобрел первый в мире электродвигатель с непосредственным вращением рабочего вала. Мощность двигателя составляла около 15 Вт, частота вращения ротора 80-120 оборотов в минуту. До этого изобретения существовали только устройства с возвратно-поступательным или качательным движением якоря.

1836 - 1837, Дэвенпорт

Проводя эксперименты с магнитами, американский кузнец и изобретатель, Томас Дэвенпорт, создает свой первый электромотор в июле 1834 года. В декабре этого же года он впервые продемонстрировал свое изобретение. В 1837 году Дэвенпорт получил первый патент (патент США №132) на электрическую машину.

1839, Якоби

Используя электродвигатель питающийся от 69 гальванических элементов Грове и развивающий 1 лошадиную силу, в 1839 г. Якоби построил лодку способную двигаться с 14 пассажирами по Неве против течения. Это было первое практическое применение электродвигателя.

1837 - 1842, Дэвидсон

Шотландский изобретатель, Роберт Дэвидсон, занимался разработкой электродвигателя с 1837 года. Он сделал несколько приводов для токарного станка и моделей транспортного средства. Дэвидсон изобрел первый электрический локомотив.

1856, Сименс

Немецкий инженер, изобретатель, ученый, промышленник, основатель фирмы Siemens, Вернер фон Сименс изобрел электрический генератор с двойным T-образным якорем. Он первый разместил обмотки в пазах.

1861-1864, Максвелл

Британский физик, математик и механик, Джеймс Клерк Максвелл, обобщил знания об электромагнетизме в четырех фундаментальных уравнениях. Вместе с выражением для силы Лоренца уравнения Максвелла образуют полную систему уравнений классической электродинамики.

1871-1873, Грамм

Бельгийский изобретатель, Зеноб Теофил Грамм, устранил недостаток электрических машин с двух-Т-образным якорем Сименса, который заключался в сильных пульсациях вырабатываемого тока и быстром перегреве. Грамм предложил конструкцию генератора с самовозбуждением, который имел кольцевой якорь.

1885, Феррарис

Итальянский физик и инженер, Галилео Феррарис, изобрел первый двухфазный асинхронный электродвигатель. Однако Феррарис думал, что такой двигатель не сможет иметь КПД выше 50%, поэтому он потерял интерес и не продолжал улучшать асинхронный электродвигатель. Считается, что Феррарис первым объяснил явление вращающегося магнитного поля.

1887, Тесла

Американец сербского происхождения, изобретатель, Никола Тесла, работая независимо от Феррариса, изобрел и запатентовал двухфазный асинхронный электродвигатель с явно выраженными полюсами статора (сосредоточенными обмотками). Тесла ошибачно считал что двухфазная система токов оптимальна с экономической точки зрения среди всех многофазных систем.

1889-1891, Доливо-Добровольский

Русский электротехник польского происхождения, Михаил Осипович Доливо-Добровольский, прочитав доклад Феррариса о вращающемся магнитном поле изобрел ротор в виде "беличьей клетки". Дальнейшая работа в этом направлении привела к разработке трехфазной системы переменных токов и трехфазного асинхронного электродвигателя, получившего широкое применение в промышленности и практически не изменившегося до нашего времени.

Широкое внедрение электромеханических устройств в России начинается после Октябрьской революции 1917 г., когда электрификация всей страны стала основой технической политики нового государства. Можно сказать, что XX век стал веком становления и широкого распространения электромеханики.

Выбор между двухфазной и трехфазной системой

Доливо-Добровольский справедливо считал, что увеличение числа фаз в двигателе улучшает распределение намагничивающей силы по окружности статора. Переход к трехфазной системы от двухфазной уже дает большой выигрыш в этом отношении. Дальнейшее увеличение числа фаз нецелесообразно, так как приводит к значительному увеличению расходов металла на провода.

Для Теслы же казалось очевидным, что чем меньше число фаз, тем меньше требуется проводов, и следовательно тем дешевле устройство электропередачи. При этом двухфазная система передачи требовала применения четырех проводов, что представлялось не желательным в сравнении с двух проводными системами постоянного или однофазного переменного токов. Поэтому Тесла предлагал применять трех проводную линию для двухфазной системы, делая один провод общим. Но это не сильно уменьшало количество затрачиваемого на систему металла, так как общий провод должен был быть большего сечения.

Таким образом трехфазная система токов предложенная Доливо-Добровольским была оптимальной для передачи энергии. Она практически сразу нашла широкое применение в промышленности и до наших дней является основной системой передачи электрической энергии во всем мире.

Электродвигатель постоянного тока: принцип работы и действия, устройство, характеристики

Содержание

  1. Краткая история создания
  2. Принцип действия электродвигателя постоянного тока
  3. Устройство электродвигателя постоянного тока
  4. Особенности и характеристики электродвигателя постоянного тока

Сейчас невозможно представить нашу жизнь без электродвигателей. Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне. Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.

Краткая история создания

Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.

Принцип действия электродвигателя постоянного тока

На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию. Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю. Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.

Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.

Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).

Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников. Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно. Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).

Устройство электродвигателя постоянного тока

Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.

Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.

В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.

Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.

Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.

Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.

Особенности и характеристики электродвигателя постоянного тока

Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:

  • Экологичность. При работе не выделяются вредные вещества и отходы.
  • Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
  • Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
  • Простота управления.
  • Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
  • Легкость запуска.
  • Небольшие размеры.
  • Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.

Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:

  • Их себестоимость, следовательно, и цена достаточно высока.
  • Для подключения к сети необходим выпрямитель тока.
  • Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
  • При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.

Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.


Устройство и принцип работы электродвигателя переменного тока

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться. В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.  На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щеток или их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора. Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.

Режимы работы электродвигателя в следующей статье.

Как работает электромотор, строение электромагнитного двигателя автомобиля

Электродвигатель является одним из наиболее распространённых устройств, которое способно превращать даже небольшое количество поглощаемой энергии в сложную механическую работу. Это довольно экономичный, безопасный и практически безвредный для окружающей среды мотор, именно поэтому с каждым годом число авто, основанных на электротяге, только возрастает. В статье подробно рассмотрен основной принцип работы и устройство двигателя, способного работать на электрической энергии.

Как устроен электродвигатель

Сегодня известна не одна модификация электромотора, но несмотря на это, вне зависимости от его сложности и дополнительных узлов, каждый такой агрегат состоит из двух основных частей: статора и ротора. Статор представляет собой неподвижную несущую часть, на которой установлены магнитопроводы, а в некоторых случаях и индуктор — технический блок, преобразующий переменный ток в постоянный. Основой статора любого автомобиля является литой или сварной корпус из металла (станина) и сердечник. В сердечнике предусмотрены специальные пазы, в которых установлена статорная обмотка (из медной проволоки). Её роль играют тонкие, параллельно расположенные и изолированные жилы из меди (или медных сплавов).

Под ротором принято подразумевать главный движущий элемент мотора. Наиболее часто он приобретает вид стального вала, по бокам которого закреплены подшипники. Поверх вала располагается медная обмотка, закрытая пластинами-магнитопроводами. Ротор плотно устанавливается во внутреннюю часть статора, при этом между верхней поверхностью ротора и внутренней частью статора устанавливается минимальный зазор, который не препятствует вращению вала во время работы.

Питание такого узла производится при помощи литий-ионного аккумулятора, его основой являются отдельные модули, подключённые в единое целое при помощи последовательной схемы. Это позволяет создать напряжение необходимой мощности и с устойчивыми параметрами. Зачастую на выходе такой батареи формируется около 300 В постоянного тока, но в некоторых моделях автомобилей при чётко устроенном взаимодействии всех узлов показатель может доходить и до 700 В.

Рекомендуем для прочтения:

Принцип работы электродвигателя

Электромотор можно назвать одним из наиболее простых и эффективных способов конвертирования электрической энергии в механическую. Данное действие реализуется благодаря так называемой магнитной индукции. Под ней подразумевают особое физическое явление, во время которого происходит возникновение электродвижущей силы в замкнутой среде при изменении потока магнитной силы.

В обычных двигателях внутреннего сгорания коленвал приводится в движение при помощи давления газов, как производных сгорания топлива. Электрический двигатель вращает ось благодаря взаимодействию магнитных полей на статоре и роторе. При подаче электроэнергии на медной обмотке этих элементов возникают взаимоотталкивающиеся поля, которые позволяют автоматически двигать ротор относительно неподвижного статора.

Если устроить контролируемый режим подачи питания через проводник, можно добиться стабильного и сбалансированного вращения движущихся частей, а далее — и машины. Такое строение даёт возможность практически отказаться от сложной коробки передач и упростить управление автомобилем. Кроме того, эта конструкция значительно проще, нежели цилиндровый двигатель, поэтому в нормальном режиме эксплуатации её ресурс будет значительно больше.

Видео: Как работает электродвигатель

Виды электродвигателей

Современная промышленность подарила изобилие всевозможных разновидностей и типов электродвигателей. Наиболее часто их классифицируют в зависимости от поглощаемого тока, поэтому выделяют устройства, работающие на постоянном и переменном токе. Существует и смешанный вид силового агрегата, способный работать как на постоянном, так и переменном напряжении.

Важно! Двигатели от разных производителей авто имеют уникальную массу, технические решения, мощность, размеры и прочие параметры, поэтому с каждым годом по ходу развития электротехники классификация дополняется.

В свою очередь, моторы, работающие на переменном напряжении, делятся на две основные группы: синхронные и асинхронные. Первые имеют одинаковую частоту магнитного поля как статора, так и ротора. Вторые отличаются различными частотами, при этом скорость взаимодействия магнитного поля статора значительно больше, нежели у ротора.

Можно также различать электромагнитные двигатели в зависимости от фаз поглощения тока. Так, выделяют одно-, двух- и даже трёхфазные автомоторы, самым редким из них принято считать трёхфазный. Сегодня известно всего несколько реальных воплощений такого агрегата в современном автомобилестроении, это такие автомобили, как Mitsubishi i-MiEV и Chevrolet Volt.

И, наконец, автомобильный электромотор разделяют на бесколлекторный и коллекторный (в зависимости от наличия щёточно-коллекторного узла). Первый тип работает на переменном токе, второй — на постоянном. Коллектор в этом случае играет роль принудительного «выпрямителя» интенсивности напряжения. При этом основная масса автомобилей на современном рынке передвигается именно на коллекторных моторах.

Автомобильный электродвигатель — это реальная, выгодная и более экологичная альтернатива классическим топливным моторам. Конструкция этих агрегатов надёжна, а также позволяет стабильно работать вне зависимости от типа нагрузки. Несмотря на то что большинство современных электромагнитных моторов по мощности уступают бензиновым и дизельным, этот разрыв с каждым годом только сокращается.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Электрический двигатель - принцип работы электромотора классификация и технические характеристики

Электрические двигатели предназначены для преобразования электрической энергии в механическую. Первые их прототипы были созданы в 19 веке, а сегодня эти устройства максимально интегрированы в жизнь современного человечества. Примеры их использования можно встретить в любой сфере жизнедеятельности: от общественного транспорта до домашней кофемолки.

Содержание:

Электрический двигатель: вид в разрезе

Принцип преобразования энергии

Принцип работы электродвигателя любого типа заключается в использовании электромагнитной индукции, возникающей внутри устройства после подключения в сеть. Для того чтобы понять, как эта индукция создается и приводит элементы двигателя в движение, следует обратиться к школьному курсу физики, объясняющему поведение проводников в электромагнитном поле.

Итак, если мы погрузим проводник в виде обмотки, по которому движутся электрические заряды, в магнитное поле, он начнет вращаться вокруг своей оси. Это связано с тем, что заряды находятся под влиянием механической силы, изменяющей их положение на перпендикулярной магнитным силовым линиям плоскости. Можно сказать, что эта же сила действует на весь проводник.

Схема, представленная ниже, показывает токопроводящую рамку, находящуюся под напряжением, и два магнитных полюса, придающие ей вращательное движение.

Картинка кликабельна.

Именно эта закономерность взаимодействия магнитного поля и токопроводящего контура с созданием электродвижущей силы лежит в основе функционирования электродвигателей всех типов. Для создания аналогичных условий в конструкцию устройства включают:

  • Ротор (обмотка) – подвижная часть машины, закрепленная на сердечнике и подшипниках вращения. Она исполняет роль токопроводящего вращательного контура.
  • Статор – неподвижный элемент, создающий магнитное поле, воздействующее на электрические заряды ротора.
  • Корпус статора. Оснащен посадочными гнездами с обоймами для подшипников ротора. Ротор размещается внутри статора.

Для представления конструкции электродвигателя можно создать принципиальную схему на основе предыдущей иллюстрации:

После включения данного устройства в сеть, по обмоткам ротора начинает идти ток, который под воздействием магнитного поля, возникающего на статоре, придает ротору вращение, передаваемое на крутящийся вал. Скорость вращения, мощность и другие рабочие показатели зависят от конструкции конкретного двигателя и параметров электрической сети.

Классификация электрических двигателей

Все электродвигатели между собой классифицируют в первую очередь по типу тока, протекающему через них. В свою очередь, каждая из этих групп тоже делить на несколько видов, в зависимости от технологических особенностей.
Двигатели постоянного тока

На маломощных двигателях постоянного тока магнитное поле создается постоянным магнитом, устанавливаемым в корпусе устройства, а обмотка якоря закрепляется на вращающемся валу. Принципиальная схема ДПТ выглядит следующим образом:

Обмотка, расположенная на сердечнике, изготавливается из ферромагнитных материалов и состоит из двух частей, последовательно соединенных между собой. Своими концами они подсоединяются к коллекторным пластинам, к которым прижимаются графитовые щетки. На одну из них подается положительный потенциал от источника постоянного тока, а на другую – отрицательный.

После подачи питания на двигатель происходит следующее:

  1. Ток от нижней «плюсовой» щетки подается на ту коллекторную пластину, к контактной платформе которой она подключена.
  2. Прохождение тока по обмотке на коллекторную пластину (обозначено пунктирной красной стрелкой), подключенную к верхней «отрицательной» щетке создает электромагнитное поле.
  3. Согласно правилу буравчика, в правой верхней части якоря возникает магнитное поле южного, а в левой нижней — северного магнитного полюса.
  4. Магнитные поля с одинаковым потенциалом отталкиваются друг от друга и приводят ротор во вращательное движение, обозначенное на схеме красной стрелкой.
  5. Устройство коллекторных пластин приводит к смене направления протекания тока по обмотке во время инерционного вращения, и рабочий цикл повторяется вновь.

Самый простой электрический двигатель

При очевидной простоте конструкции существенным недостатком таких двигателей является низкий КПД, обусловленный большими потерями энергии. Сегодня ДПТ с постоянными магнитами используются в простых бытовых приборах и детских игрушках.

Устройство двигателей постоянного тока большой мощности, используемых в производственных целях, не предусматривает использование постоянных магнитов (они занимали бы слишком много места). В этих машинах используется следующая конструкция:

  • обмотка состоит из большего количества секций, представляющих собой металлический стержень;
  • каждая обмотка отдельно подключается к положительному и отрицательному полюсу;
  • количество контактных площадок на коллекторном устройстве соответствует количеству обмоток.

Таким образом, снижение потерь электроэнергии обеспечивается плавным подключением каждой обмотки к щеткам и источнику питания. На следующей картинке представлена конструкция якоря такого двигателя:

Устройство электрических двигателей постоянного тока позволяет легко обратить направление вращения ротора с помощью простой смены полярности на источнике питания.

Функциональные особенности электродвигателей определяются наличием некоторых «хитростей», к которым относится сдвиг токосъемных щеток и несколько схем подключения.

Сдвиг узла токосъемных щеток относительно вращения вала происходит после запуска двигателя и изменения подаваемой нагрузки. Это позволяет компенсировать «реакцию якоря» — эффект, снижающий эффективность машины за счет торможения вала.

Есть три способа подключения ДПТ:

  1. Схема с параллельным возбуждением предусматривает параллельное подключение независимой обмотки, как правило, регулируемой реостатом. Так обеспечивается максимальная стабильность скорости вращения и её плавная регулировка. Именно благодаря этому двигатели с параллельным возбуждением находят широкое применение в грузоподъемном оборудовании, на электрическом транспорте и станках.
  2. Схема с последовательным возбуждением тоже предусматривает использование дополнительной обмотки, но подключается она последовательно с основной. Это позволяет при необходимости резко увеличить крутящий момент двигателя, к примеру, на старте движения железнодорожного состава.
  3. Смешанная схема использует преимущества обоих способов подключения, описанных выше.

Биполярный электрический двигатель

Двигатели переменного тока

Главным отличием этих двигателей от описанных ранее моделей заключается в токе, протекающем по их обмотке. Он описывает по синусоидальному закону и постоянно меняет свое направление. Соответственно и питание этих двигателей осуществляется от генераторов со знакопеременной величиной.

Одним из главных конструктивных отличий является устройство статора, представляющего собой магнитопровод со специальными пазами для расположения витков обмотки.

Двигатели переменного тока классифицируют по принципу работы на синхронные и асинхронные. Коротко говоря, это означает, что в первых частота вращения ротора совпадает с частотой вращения магнитного поля в статоре, а во вторых – нет.

Настоятельно рекомендуем прочитать нашу статью об устройстве электродвигателей переменного тока.

Синхронные двигатели

В основе работы синхронных электродвигателей переменного тока тоже лежит принцип взаимодействия полей, возникающих внутри устройства, однако в их конструкции постоянные магниты закрепляются на роторе, а по статору проводится обмотка. Принцип их действия демонстрирует следующая схема:

Проводники обмотки, по которой проходит ток, показанные на рисунке в виде рамки. Вращение ротора происходит следующим образом:

  1. На определенный момент времени ротор с закрепленным на нем постоянным магнитом находится в свободном вращении.
  2. На обмотке в момент прохождения через нее положительной полуволны формируется магнитное поле с диаметрально противоположными полюсами Sст и Nст. Оно показано на левой части приведенной схемы.
  3. Одноименные полюса постоянного магнита и магнитного поля статора отталкиваются друг от друга и приводят двигатель в положение, показанное на правой части схемы.

В реальных условиях для создания постоянного плавного вращения двигателя используется не одна катушка обмотки, а несколько. Они поочередно пропускают через себя ток, благодаря чему создается вращающееся магнитное поле.

Асинхронные двигатели

А асинхронном двигателе переменного тока вращающееся магнитное поле создается тремя (для сети 380 В) обмотками статора. Их подключение к источнику питания осуществляется через клеммную коробку, а охлаждение — вмонтированным в двигатель вентилятором.

Ротор, собранный из нескольких замкнутых между собой металлических стержней, жестко соединен с валом, составляя с ним одно целое. Именно из-за соединения стержней межу собой этот тип ротора называется короткозамкнутым. Благодаря отсутствию токопроводящих щеток в данной конструкции значительно упрощается техническое обслуживание двигателя, увеличивается срок службы и надежность. Главной причиной выхода из строя двигателей этого типа является износ подшипников вала.

Принцип работы асинхронного двигателя основывается на законе электромагнитной индукции – если частота вращения электромагнитного поля обмоток статора превышает частоту вращения ротора, в нем наводится электродвижущая сила. Это важно, поскольку при одинаковой частоте ЭДС не возникает и, соответственно, не возникает вращения. В действительности нагрузка на вал и сопротивление от трения подшипников всегда замедляет ротор и создает достаточные для работы условия.

Главным недостатком двигателей данного типа является невозможность получения постоянной частоты вращения вала. Дело в том, что рабочие характеристики устройства изменяются в зависимости от различных факторов. К примеру, без нагрузки на вал циркулярная пила вращается с максимальной скоростью. Когда мы подводим к пильному полотну доску и начинаем её резать, частота вращения диска заметно снижается. Соответственно, снижается и скорость вращения ротора относительно электромагнитного поля, что приводит к наведению еще большей ЭДС. Это увеличивает потребляемый ток и рабочая мощность мотора увеличивается до максимальной.

Принцип работы электрического мотора

Важно подбирать двигатель подходящей мощности – слишком низкая приведет к повреждению короткозамкнутого ротора из-за превышения расчетного максимума ЭДС, а слишком высокая приводит к необоснованным энергозатратам.

Асинхронные двигатели переменного тока рассчитаны на работу от трехфазной электрической сети, однако могут быть подключены и в однофазную сеть. Так, например, они используются в стиральных машинах и станках для домашних мастерских. Однофазный двигатель имеет примерно на 30% более низкую мощность, по сравнению с трехфазным – от 5 до 10 кВт.

Ввиду простоты исполнения и надежности асинхронные двигатели переменного тока наиболее распространены не только в производственном оборудовании, но и в бытовой технике.

Универсальные коллекторные двигатели

Во многих бытовых электроприборах необходимо наличие высокой скорости вращения двигателя и крутящего момента при малых пусковых токах и плавной регулировке. Всем этим требования удовлетворяют коллекторные двигатели, называемые универсальными. По своему устройству они очень похожи на двигатели постоянного тока с последовательным возбуждением.

Главным отличием от ДПТ является магнитная система, комплектуемая несколькими изолированными друг от друга листами электротехнической стали, к полюсам которых подсоединены по две секции обмотки. Такая конструкция снижает нагрев элементов токами Фуко и перемагничивание.

Высокая синхронность магнитных полей в универсальных коллекторных двигателях сохраняет высокую скорость вращения даже под большой нагрузкой на вал. Поэтому их используют в маломощном быстроходном оборудовании и домашней технике. При подключении в цепь регулируемого трансформатора появляется возможность плавной настройки частоты вращения.

Главный недостаток таких электромоторов заключается в низком моторесурсе, обусловленном быстрым стиранием графитовых щеток.

Бесколлекторный двигатель постоянного тока: принцип работы, варианты конструкций

Содержание:

Бесколлкторные двигатели постоянного тока (бдпт) являются разновидностью синхронных двигателей с постоянными магнитами, которые питаются от цепи постоянного тока через инвертор, управляемый контроллером с обратной связью. Контроллер подаёт на фазы двигателя напряжения и токи, необходимые для создания требуемого момента и работы с нужной скоростью. Такой контроллер заменяет щёточно-коллекторный узел, используемый в коллекторных двигателях постоянного тока. Бесколлекторные двигатели могут работать как с напряжениями на обмотках в форме чистой синусоиды, так и кусочно-ступенчатой формы (например, при блочной коммутации).

Появились бесколлекторные двигатели постоянного тока как попытка избавить коллекторные двигатели постоянного тока с постоянными магнитами от их слабого места – щёточно-коллекторного узла. Этот узел, представляющий собой вращающийся электрический контакт, является слабым местом у коллекторных двигателей с точки зрения надёжности и в ряде случаев ограничивает их параметры.

Принцип работы и устройство бесколлекторного двигателя

Как и остальные двигатели, бесколлекторный двигатель состоит из двух основных частей – ротора (подвижная часть) и статора (неподвижная часть).  На статоре располагается трёхфазная обмотка. Ротор несёт на себе постоянный магнит, который может иметь одну или несколько пар полюсов. Когда к обмотке статора приложена трёхфазная система напряжений, то обмотка создаёт вращающееся магнитное поле. Оно взаимодействует с постоянным магнитом на роторе и приводит его в движение. По мере того как ротор поворачивается, вектор его магнитного поля проворачивается по направлению к магнитному полю статора. Управляющая электроника отслеживает направление, которое имеет магнитное поле ротора и изменяет напряжения, приложенные к  обмотке статора, таким образом чтобы магнитное поле, создаваемое обмотками статора, повернулось, опережая магнитное поле ротора. Для определения направления магнитного поля ротора используется датчик положения ротора, поскольку магнит, создающий это поле жёстко закреплён на роторе. Напряжения на обмотках бесколлекторного двигателя можно формировать различными способами: простое переключение обмоток через каждые 60° поворота ротора или формирование напряжений синусоидальной формы при помощи широтно-импульсной модуляции.

Варианты конструкции двигателя

 

Обмотка двигателя может иметь различную конструкцию. Обмотка классической конструкции наматывается на стальной сердечник. Другой вариант конструкции обмотки – это обмотка без стального сердечника. Проводники этой обмотки равномерно распределяются вдоль окружности статора. Характеристики обмотки получаются различными, что отражается и на характеристиках двигателя. Кроме того, обмотки могут быть выполнены на различное число фаз и с различным количеством пар полюсов.

Бесколлекторные двигатели также могут иметь конструкции, различающиеся по взаимному расположению ротора и статора. Наиболее распространена конструкция, когда ротор охватывается статором снаружи – двигатели с внутренним ротором. Но также возможна, и встречается на практике конструкция в которой ротор расположен снаружи статора – двигатели с внешним ротором. Третий вариант – статор расположен параллельно ротору и оба располагаются перпендикулярно оси вращения двигателя. Такие двигатели называют двигателями аксиальной конструкции.

Датчик положения, который измеряет угловое положение ротора двигателя — это важная часть приводной системы, построенной на бесколлекторном двигателе. Этот датчик может быть самым разным как по типу, так и по принципу действия. Традиционно используемый для этой цели тип датчиков – датчики Холла с логическим выходом, устанавливаемые на каждую фазу двигателя. Выходные сигналы этих датчиков позволяют определить положение ротора с точностью до 60° — достаточной реализации самых простых способов управления обмотками. Для реализации способов управления двигателем, предполагающих формирование на обмотках двигателя системы синусоидальных напряжений при помощи ШИМ необходим более точный датчик, например, энкодер. Инкрементные энкодеры, очень широко используемые в современном электроприводе, могут обеспечить достаточно информации о положении ротора только при использовании их вместе с датчиками Холла. Если бесколлекторный двигатель оснащён абсолютным датчиком положения – абсолютным энкодером или резольвером (СКВТ), то датчики Холла становятся не нужны, так как любой из этих датчиков обеспечивает полную информацию о положении ротора.

Можно управлять бесколлекторным двигателем, и не используя датчика положения ротора – бездатчиковая коммутация. В этом случае информация о положении ротора восстанавливается на основании показаний других датчиков, например, датчиков фазных токов двигателя или датчиков напряжения. Такой способ управления часто влечёт за собой ряд недостатков (ограниченный диапазон скоростей, высокая чувствительность к параметрам двигателя, специальная процедура старта), что ограничивает его распространение.

Преимущества и недостатки

Высокая надёжность вследствие отсутствия коллектора. Это основное отличие бесколлекторных двигателей от коллекторных. Щёточно-коллекторный узел, является подвижным электрическим контактом и сам по себе имеет невысокую надёжность и устойчивость к влиянию различных воздействий со стороны окружающей среды.

Отсутствие необходимости обслуживания коллекторного узла. Является особенно актуальным для двигателей среднего и крупного габарита. Для микроэлектродвигателей, проведение ремонта экономически оправдано далеко не во всех случаях, поэтому для них этот пункт не является актуальным.

Сложная схема управления. Прямое следствие переноса функции переключения токов обмотки во внешний коммутатор. Если в простейшем случае для управления коллекторным двигателем необходимо иметь только источник питания, то для бесколлекторного двигателя такой подход не работает – контроллер нужен даже для решения самых простых задач управления движением. Однако, когда речь идёт о решении для сложных случаев (например, задачи позиционирования), то контроллер становится необходим для всех типов двигателей.

Высокая скорость вращения. В коллекторных двигателях скорость перемещения щётки по коллектору ограничена, хотя и различна для различных конструкций этих двух деталей и различных используемых материалов. Предельная скорость перемещения щёток по коллектору сильно ограничивает скорость вращения коллекторных двигателей. Бесколлекторные двигатели не имеют такого ограничения, что позволяет выполнять их для работы на скоростях до нескольких сотен тысяч оборотов в минуту – цифра недостижимая для коллекторных двигателей.

Большая удельная мощность. Возможность  достичь большой удельной мощности является следствием высокой скорости вращения, доступной для бесколлекторного двигателя.

Хороший отвод тепла от обмотки. Обмотка бесколлекторных двигателей неподвижно закреплена на статоре и есть возможность обеспечить хороший тепловой контакт её с корпусом, который передаёт тепло, выделяемое в двигателе, в окружающую среду. У коллекторного двигателя обмотка установлена на роторе, и её тепловой контакт с корпусом гораздо хуже, чем у бесколлекторного двигателя.

Больше проводов для подключения. Когда двигатель расположен близко от контроллера, то это конечно не повод для огорчения. Однако если условия окружающей среды, в которых работает двигатель очень сложны, то вынесение управляющей электроники на значительное расстояние (десятки и сотни метров) от двигателя является подчас единственным доступным вариантом для разработчиков системы. В таких условиях каждая дополнительная цепь для подключения двигателя, будет требовать дополнительных жил в кабеле, увеличивая его размеры и массу.

Уменьшение электромагнитных помех, исходящих от двигателя. Щёточно-коллекторный контакт создаёт при работе достаточно сильные помехи. Частота этих помех зависит от частоты вращения двигателя, что осложняет борьбу с ними. У бесколлекторного двигателя единственным источником помех является ШИМ силовых ключей, частота которого обычно постоянна.

Присутствие сложных электронных компонентов. Электронные компоненты (датчики Холла, например) более остальных составных частей двигателя уязвимы для действия жёстких условий со стороны внешней среды, будь то высокая температура, низкая температура или ионизирующие излучения. Коллекторные двигатели не содержат электроники и у них подобная уязвимость отсутствует.

Где применяются бесколлекторные двигатели

К настоящему времени бесколлекторные двигатели получили широкое распространение, как благодаря своей высокой надёжности, высокой удельной мощности и возможности работать на высокой скорости, так и из-за быстрого развития полупроводниковой техники, сделавшей доступными мощные и компактные контроллеры для управления этими двигателями.

Бесколлекторные двигатели широко применяются в тех системах где их характеристики дают им преимущество перед двигателями других типов. Например, там, где требуется скорость вращения несколько десятков тысяч оборотов в минуту. Если от изделия требуется большой срок службы, а ремонт невозможен или ограничен из-за особенностей эксплуатации изделия, то и тогда бесколлекторный двигатель будет хорошим выбором.

Читать дальше:

Асинхронные электродвигатели: схема, принцип работы и устройство

Асинхронный электродвигатель – это электрический агрегат с вращающимся ротором. Скорость вращения ротора отличается от скорости, с которой вращается магнитное поле статора. Это – одна из важных особенностей работы агрегата, так как если скорости выровняются, то магнитное поле не будет наводить в роторе ток и действие силы на роторную часть прекратится. Именно поэтому двигатель называется асинхронным (у синхронного показатели скоростного вращения совпадают). 

В данной статье мы сфокусируемся на том, что представляет собой схема работы такого двигателя и – самое главное, насколько она эффективна при его эксплуатации.

Устройство и принцип действия

Ток в обмотках статора создает вращающееся магнитное поле. Это поле наводит в роторе ток, который начинает взаимодействовать с магнитным полем таким образом, что ротор начинает вращаться в ту же сторону, что и магнитное поле.

Относительная разность скоростей вращения ротора и частоты переменного магнитного поля называется скольжением. В установившемся режиме скольжение невелико: 1-8% в зависимости от мощности.

Асинхронный двигатель

Подробнее о принципах работы асинхронного электродвигателя – в частности, на примере агрегата трехфазного тока, вы можете прочесть здесь, на сайте, в одном из наших материалов. Далее же мы разберем, какие бывают разновидности асинхронных электрических машин.

Виды асинхронных двигателей

Можно выделить 3 базовых типа асинхронных электродвигателей:

  • 1-фазный – с короткозамкнутым ротором
  • 3-х фазный – с короткозамкнутым ротором
  • 3-х фазный – с фазным ротором

Схема устройства асинхронного двигателя с короткозамкнутым ротором

То есть, двигатели классифицируются по количеству фаз (1 и 3) и по типу ротора – с короткозамкнутым и с фазным. При этом число фаз с установленным типом ротора никак не взаимосвязано.

Ещё одна разновидность – асинхронный двигатель с массивным ротором. Ротор сделан целиком из ферромагнитного материала и фактически представляет собой стальной цилиндр, играющий роль как магнитопровода, так и проводника (вместо обмотки). Такой вид двигателя очень прочный и обладает высоким пусковым моментом, однако в роторе могут возникать большие потери энергии, а сам он может сильно нагреваться.

Какой ротор лучше, фазный или короткозамкнутый?

Преимущества короткозамкнутого:

  • Более-менее постоянная скорость вне зависимости от разных нагрузок
  • Допустимость кратковременных механических перегрузок
  • Простая конструкция, легкость пуска и автоматизации
  • Более высокие cos φ (коэффициент мощности) и КПД, чем у электродвигателей с фазным ротором

Недостатки:

  • Трудности в регулировании скорости вращения
  • Большой пусковой ток
  • Низкий мощностной коэффициент при недогрузках

Преимущества фазного:

  • Высокий начальный вращающий момент
  • Допустимость кратковременных механических перегрузок
  • Более-менее постоянная скорость при разных перегрузках
  • Меньший пусковой ток, чем у двигателей с короткозамкнутым ротором
  • Возможность использования автоматических пусковых устройств

Недостатки:

  • Большие габариты
  • Коэффициент мощности и КПД ниже, чем у электродвигателей с короткозамкнутым ротором

Какой двигатель лучше выбрать?

Асинхронный или коллекторный? Синхронный или асинхронный? Сказать однозначно, что определенный тип двигателя лучше, точно нельзя. В пользу асинхронных моделей говорят их следующие преимущества.

  • Относительно небольшая стоимость
  • Низкие эксплуатационные затраты
  • Отсутствие необходимости в преобразователях при включении в сеть (только для нагрузок, не нуждающихся в регулировании скорости)
  • Отсутствие потребности в дополнительном источнике питания – в отличие от синхронных аналогов

Тем не менее, у асинхроников есть недостатки. А именно:

  • Малый пусковой момент
  • Высокий пусковой ток
  • Отсутствие возможности регулировки скорости при подключении к сети
  • Ограничение максимальной скорости частотой сети
  • Высокая зависимость электромагнитного момента от напряжения питающей сети
  • Низкий мощностной коэффициент – в отличие от синхронных агрегатов

Тем не менее, все перечисленные недостатки можно устранить, если питать асинхронный двигатель от статического частотного преобразователя. Кроме того, если соблюдать правила эксплуатации и не перегружать агрегаты, то они исправно прослужат длительный срок.

Но даже несмотря на то, что синхронные машины обладают довольно конкурентными преимуществами, большинство двигателей сегодня – именно асинхронные. Промышленность, сельское хозяйство, ЖКХ и многие другие отрасли используют именно их за счет высокого КПД. Но коэффициент полезного действия может значительно снижаться за счет таких параметров, как:

  • Высокий пусковой ток
  • Слабый пусковой момент
  • Рассинхрон между механическим моментом на валу привода и механической нагрузкой (это провоцирует высокий рост силы тока и избыточные нагрузки при запуске, а также снижение КПД при пониженной нагрузке)
  • Невозможность точной регулировки скорости работы прибора

Другими факторами, от которых зависит КПД асинхронного электродвигателя, являются:

  • степень загрузки двигателя по отношению к номинальной
  • конструкция и модель
  • степень износа
  • отклонение напряжения в сети от номинального.

Как избежать снижения КПД?

  • Обеспечение стабильного уровня загрузки – не ниже 75%
  • Увеличение мощностного коэффициента
  • Регулировать напряжение и частоту подаваемого тока

Для этого используются:

  • Частотные преобразователи – они плавно изменяют скорость вращения двигателя путем изменения частоты питающего напряжения
  • Устройства плавного пуска – они ограничивают скорость нарастания пускового тока и его предельное значение, как одни из факторов, из-за которых падает КПД

Итак, асинхронный двигатель имеет довольно широкую область использования и применяется во многих хозяйственных и производственных сферах деятельности. У нас, в компании РУСЭЛТ, представлен широкий выбор электродвигателей данного типа, приобрести который вы можете по ценам, которые ощутимо выгоднее, чем у конкурентов.


Работа электродвигателя | Electrical4U

Электродвигатель - это устройство, преобразующее электрическую энергию в механическую. В основном существует три типа электродвигателей.

  1. Двигатель постоянного тока.
  2. Асинхронный двигатель
  3. .
  4. Синхронный двигатель.

Все эти двигатели работают по более или менее одинаковому принципу. Работа электродвигателя в основном зависит от взаимодействия магнитного поля с током.
Теперь мы обсудим основной принцип работы электродвигателя один за другим для лучшего понимания предмета.

Работа двигателя постоянного тока

Принцип работы двигателя постоянного тока в основном зависит от правила левой руки Флеминга. В базовом двигателе постоянного тока между магнитными полюсами размещен якорь. Если обмотка якоря питается от внешнего источника постоянного тока, ток начинает течь по проводникам якоря. Поскольку проводники проводят ток внутри магнитного поля, они испытывают силу, которая стремится вращать якорь. Предположим, что проводники якоря под N полюсами полевого магнита проводят ток вниз (крестики), а проводники под S полюсами проводят ток вверх (точки).Применяя правило левой руки Флеминга, можно определить направление силы F, испытываемой проводником под N полюсами, и силу, испытываемую проводниками под S-полюсами. Обнаружено, что в любой момент силы, действующие на проводники, имеют такое направление, что они стремятся вращать якорь.
Опять же, из-за этого вращения проводники под N-полюсами попадают под S-полюс, а проводники под S-полюсами - под N-полюс. В то время как проводники идут от N-полюса к S-полюсу и S-полюса к N-полюсу, направление тока через них меняется на противоположное с помощью коммутатора.

Из-за этого реверсирования тока все проводники проходят под N-полюсами, переносят ток в нисходящем направлении, а все проводники, проходящие под S-полюсами, переносят ток в восходящем направлении, как показано на рисунке. Следовательно, каждый проводник находится под N-полюсом, испытывающим силу в одном и том же направлении, и то же самое верно для проводников, проходящих под S-полюсами. Это явление помогает развивать постоянный и однонаправленный крутящий момент.

Работа асинхронного двигателя

Работа электродвигателя в случае асинхронного двигателя немного отличается от двигателя постоянного тока.В однофазном асинхронном двигателе, когда на обмотку статора подается однофазное питание, создается пульсирующее магнитное поле, а в трехфазном асинхронном двигателе, когда трехфазное питание подается на трехфазную обмотку статора, создается вращающееся магнитное поле. . Ротор асинхронного двигателя может быть намотанным или с короткозамкнутым ротором. Каким бы ни был тип ротора, проводники на нем закорочены на концах, образуя замкнутый контур. Из-за вращающегося магнитного поля поток проходит через воздушный зазор между ротором и статором, проходит мимо поверхности ротора и, таким образом, разрезает проводник ротора.

Следовательно, согласно закону электромагнитной индукции Фарадея, в проводниках замкнутого ротора будет циркулировать индуцированный ток. Величина наведенного тока пропорциональна скорости изменения магнитной связи во времени. Опять же, эта скорость изменения магнитной связи пропорциональна относительной скорости между ротором и вращающимся магнитным полем. В соответствии с законом Ленца ротор будет пытаться уменьшить все причины возникновения в нем тока. Следовательно, ротор вращается и пытается достичь скорости вращающегося магнитного поля, чтобы уменьшить относительную скорость между ротором и вращающимся магнитным полем.

Принцип работы трехфазного асинхронного двигателя - Видео

Работа двигателя Schronous

В синхронном двигателе, когда на неподвижную трехфазную обмотку статора подается сбалансированное трехфазное питание, создается вращающееся магнитное поле, которое вращается с синхронной скоростью. Теперь, если внутри этого вращающегося магнитного поля поместить электромагнит, он будет магнитно заблокирован с вращающимся магнитным полем, и первый будет вращаться с вращающимся магнитным полем с той же скоростью, что и с синхронной скоростью.

Каков принцип электродвигателя?

- Реклама -

Все мы слышали об электродвигателях, но всегда возникал вопрос: «Каков принцип электродвигателя»? Электродвигатель - это устройство, преобразующее электрическую энергию в механическую. В основном существует три типа электродвигателей.

  1. Двигатель постоянного тока.
  2. Асинхронный двигатель.
  3. Синхронный двигатель.

Все эти двигатели работают по более или менее одинаковому принципу.Работа электродвигателя в основном зависит от взаимодействия магнитного поля с током.

Принцип действия электродвигателя: движение электродвигателя за счет электромагнетизма

Основная идея электродвигателя действительно проста: вы помещаете в него электричество на одном конце, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять какой-либо машиной. Как это работает на практике? Как именно преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, мы должны вернуться почти на 200 лет назад.

Предположим, вы берете кусок обычного провода, делаете из него большую петлю и прокладываете его между полюсами мощного постоянного подковообразного магнита. Теперь, если вы подключите два конца провода к батарее, провод ненадолго подпрыгнет. Удивительно, когда видишь это впервые. Это похоже на волшебство! Но есть совершенно научное объяснение.

Когда электрический ток начинает течь по проводу, он создает вокруг него магнитное поле. Если вы поместите провод рядом с постоянным магнитом, это временное магнитное поле будет взаимодействовать с полем постоянного магнита.Вы знаете, что два расположенных рядом магнита либо притягиваются, либо отталкиваются. Точно так же временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнита, и это то, что заставляет провод подпрыгивать.

Принцип действия электродвигателя: правило левой руки Флеминга

Вы можете определить направление, в котором будет прыгать провод, используя удобную мнемонику (вспомогательное средство для запоминания), называемую правилом левой руки Флеминга (иногда называемым правилом моторики).

Вытяните большой, указательный и второй пальцы левой руки так, чтобы все три были под прямым углом.Если вы укажете пальцем C ond в направлении тока C (который течет от положительного к отрицательному полюсу батареи), а первый палец F - в направлении поля F (который течет от северного полюса магнита к южному), ваш thu M b покажет направление, в котором движется провод M .

Это…

  • F Первый палец = F ield
  • Se C на пальце = C Текущая
  • Чт M b = M otion

Принцип работы электродвигателя: Принцип работы электродвигателя

Теоретически предположим, что мы сгибаем наш провод в квадратную U-образную петлю, так что фактически через магнитное поле проходят два параллельных провода.Один из них отводит электрический ток от нас по проводу, а другой возвращает ток обратно. Поскольку ток течет в проводах в противоположных направлениях, правило левой руки Флеминга говорит нам, что два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включаем электричество, один из проводов будет двигаться вверх, а другой - вниз.

Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась непрерывно - и мы были бы на пути к созданию электродвигателя.Но этого не может произойти с нашей нынешней настройкой: провода быстро запутаются. Более того, если бы катушка могла вращаться достаточно далеко, произошло бы кое-что еще.

Когда катушка достигает вертикального положения, она переворачивается, поэтому электрический ток течет через нее в противоположном направлении. Теперь силы на каждой стороне катушки меняются местами. Вместо того, чтобы постоянно вращаться в одном и том же направлении, он движется назад в том направлении, откуда только что пришел! Представьте себе электропоезд с таким двигателем: он продолжает двигаться вперед и назад на месте, фактически никуда не уезжая.

На практике есть два способа решить эту проблему. Один из них - использовать электрический ток, который периодически меняет направление, известный как переменный ток (AC). В небольших двигателях с батарейным питанием, которые мы используем дома, лучшее решение - добавить на концы катушки компонент, называемый коммутатором.

Не беспокойтесь о бессмысленном техническом названии: это немного старомодное слово «коммутация» немного похоже на слово «коммутируют». Это просто означает движение вперед и назад так же, как поездка на работу означает движение туда и обратно.В своей простейшей форме коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины, и его задача - реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Один конец катушки прикреплен к каждой половине коммутатора.

Электрический ток от аккумуляторной батареи подключается к электрическим клеммам двигателя. Они подают электроэнергию в коммутатор через пару незакрепленных соединителей, называемых щетками, сделанных либо из кусочков графита (мягкий углерод, похожий на «грифель» карандаша), либо из тонких кусков упругого металла, который (как следует из названия) «задевает» коммутатор.Когда коммутатор установлен, при прохождении электричества по цепи катушка будет постоянно вращаться в одном и том же направлении.

Такой простой экспериментальный двигатель, как этот, не способен развивать большую мощность. Мы можем увеличить вращающую силу (или крутящий момент), которую может создать двигатель, тремя способами: либо у нас может быть более мощный постоянный магнит, либо мы можем увеличить электрический ток, текущий через провод, либо мы можем сделать катушку так, чтобы она много «витков» (петель) очень тонкой проволоки вместо одного «витка» толстой проволоки.

На практике двигатель также имеет постоянный магнит, изогнутый в форме круга, так что он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большую силу может создать двигатель.

Хотя мы описали несколько различных частей, вы можете представить двигатель как имеющий всего два основных компонента:

  • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому его называют статором двигателя.
  • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью, и это называется ротором. Ротор также включает в себя коммутатор.

Вы можете посмотреть здесь, чтобы получить более наглядное представление о принципе работы электродвигателей.

Подробнее о Linquip

Простое руководство по эффективности двигателя: что это такое и что делать

Принцип работы электродвигателя: работа двигателей постоянного тока

Принцип работы двигателя постоянного тока в основном зависит от правила левой руки Флеминга.В базовом двигателе постоянного тока между магнитными полюсами размещен якорь. Если обмотка якоря питается от внешнего источника постоянного тока, ток начинает течь по проводникам якоря. Поскольку проводники проводят ток внутри магнитного поля, они испытывают силу, которая стремится вращать якорь.

Предположим, что проводники якоря под N полюсами полевого магнита проводят ток вниз (крестики), а проводники под S полюсами проводят ток вверх (точки).Применяя правило левой руки Флеминга, можно определить направление силы F, испытываемой проводником под N полюсами, и силу, испытываемую проводниками под S-полюсами. Обнаружено, что в любой момент силы, действующие на проводники, имеют такое направление, что они стремятся вращать якорь.

Опять же, из-за этого вращения проводники под N-полюсами попадают под S-полюс, а проводники под S-полюсами - под N-полюс. В то время как проводники идут от N-полюса к S-полюсу и S-полюса к N-полюсу, направление тока через них меняется на противоположное с помощью коммутатора.

Из-за этого реверсирования тока все проводники проходят под N-полюсами, переносят ток в нисходящем направлении, а все проводники, проходящие под S-полюсами, переносят ток в восходящем направлении, как показано на рисунке. Следовательно, каждый проводник находится под N-полюсом, испытывающим силу в одном и том же направлении, и то же самое верно для проводников, проходящих под S-полюсами. Это явление помогает развивать постоянный и однонаправленный крутящий момент.

Принцип работы электродвигателя: работа асинхронных двигателей

Работа электродвигателя в случае асинхронного электродвигателя немного отличается от электродвигателя постоянного тока.В однофазном асинхронном двигателе, когда на обмотку статора подается однофазное питание, создается пульсирующее магнитное поле, а в трехфазном асинхронном двигателе, когда трехфазное питание подается на трехфазную обмотку статора, возникает вращающееся магнитное поле. производится.

Ротор асинхронного двигателя может быть с обмоткой или с короткозамкнутым ротором. Каким бы ни был тип ротора, проводники на нем закорочены на концах, образуя замкнутый контур. Из-за вращающегося магнитного поля поток проходит через воздушный зазор между ротором и статором, проходит мимо поверхности ротора и, таким образом, разрезает проводник ротора.

Следовательно, согласно закону электромагнитной индукции Фарадея, в проводниках замкнутого ротора будет циркулировать индуцированный ток. Величина наведенного тока пропорциональна скорости изменения магнитной связи во времени. Опять же, эта скорость изменения магнитной связи пропорциональна относительной скорости между ротором и вращающимся магнитным полем. Согласно закону Ленца, ротор будет пытаться уменьшить все причины возникновения в нем тока. Следовательно, ротор вращается и пытается достичь скорости вращающегося магнитного поля, чтобы уменьшить относительную скорость между ротором и вращающимся магнитным полем.

Принцип работы электродвигателя: работа синхронных двигателей

В синхронном двигателе, когда на неподвижную трехфазную обмотку статора подается сбалансированное трехфазное питание, создается вращающееся магнитное поле, которое вращается с синхронной скоростью. Теперь, если внутри этого вращающегося магнитного поля поместить электромагнит, он будет магнитно заблокирован с вращающимся магнитным полем, и первый будет вращаться с вращающимся магнитным полем с той же скоростью, что и с синхронной скоростью.

- Объявление -

Как работают электродвигатели?

Щелкните выключателем и мгновенно получите власть - как бы любили наши предки электродвигатели! Вы можете найти их во всем, начиная с электропоезда с дистанционным управлением автомобили - и вы можете быть удивлены, насколько они распространены. Сколько электрических моторы сейчас есть в комнате с тобой? Наверное, два в вашем компьютере для начала, один круто ездить, а еще один питает охлаждающий вентилятор.Если вы сидите в спальне, вы найдете моторы в фенах и многих игрушки; в ванной - вытяжки и электробритвы; На кухне моторы есть практически во всех приборах, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей. Электродвигатели зарекомендовали себя среди лучших изобретения всех времен. Давайте разберемся и узнаем, как они работай!

Фото: Даже маленькие электродвигатели на удивление тяжелые.Это потому, что они набиты туго намотанной медью и тяжелыми магнитами. Это мотор от старой электрической газонокосилки. Вещь медного цвета в сторону В передней части оси с прорезями находится коммутатор, удерживающий двигатель вращение в том же направлении (как описано ниже).

Как электромагнетизм заставляет двигатель двигаться?

Основная идея электродвигателя действительно проста: вы помещаете в него электричество с одного конца, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая то.Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, у нас есть вернуться во времени почти на 200 лет.

Предположим, вы берете кусок обычного провода, превращаете его в большую петлю, и положите его между полюсами мощной постоянной подковы магнит. Теперь, если вы подключите два конца провода к батарее, провод будет прыгать кратко. Удивительно, когда видишь это впервые. Это прямо как по волшебству! Но есть совершенно научный объяснение.Когда электрический ток начинает течь по проводу, он создает магнитное поле вокруг него. Если разместить провод рядом с постоянным магнит, это временное магнитное поле взаимодействует с постоянным поле магнита. Вы знаете, что два магнита расположены рядом друг с другом. либо притягивать, либо отталкивать. Таким же образом временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и это то, что заставляет проволоку подпрыгивать.

Правило левой руки Флеминга

Вы можете определить направление, в котором будет прыгать провод, используя удобная мнемоника (вспомогательная память), называемая правилом левой руки Флеминга (иногда называется Motor Rule).

Вытяните большой, указательный и второй пальцы левой руки. рука так, чтобы все три были под прямым углом. Если вы укажете вторым пальцем в направлении Течения (который течет от положительного к положительному отрицательная клемма АКБ), а Первая палец в направление поля (которое течет с севера на южный полюс магнит), ваш thuMb будет показать направление, в котором провод Движется.

Это ...

  • Первый палец = Поле
  • SeCond палец = Текущий
  • ЧтМб = Движение

Несколько слов о текущем

Если вас смущает то, что я говорю, что ток течет с положительного на отрицательный, это просто историческая конвенция.Такие люди, как Бенджамин Франклин, помогавший разобраться тайна электричества еще в 18 веке, считали, что это поток положительных зарядов, так что она перетекала с положительного на отрицательный. Мы называем эту идею условным током. и до сих пор используют его в таких вещах, как правило левой руки Флеминга. Теперь у нас есть лучшие идеи о том, как электричество работает, мы склонны говорить о токе как о потоке электронов от отрицательного к положительному в направлении , противоположном направлению по отношению к обычному току.Когда вы пытаетесь вычислить вращение двигателя или генератора, обязательно помните, что ток означает обычный ток , а не поток электронов.

Как работает электродвигатель - теоретически

Фото: Электрик ремонтирует электродвигатель. на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото, но на самом деле это медь, хороший проводник, который намного дешевле. Фото Джейсона Якобовица любезно предоставлено ВМС США.

Связь между электричеством, магнетизмом и движением изначально была открыт в 1820 году французским физиком Андре-Мари Ампер (1775–1867), и это фундаментальная наука, лежащая в основе электродвигателя. Но если мы хотим превратить это удивительное научное открытие в более практическое Немного технологий для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, которые сделали это, были англичане Майкл Фарадей (1791–1867). и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878).Вот как они пришли к своему гениальному изобретению.

Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, так что эффективно два параллельных провода, проходящие через магнитное поле. Один из них отводит электрический ток от нас по проводам, а другой один возвращает ток обратно. Поскольку ток течет в в противоположных направлениях проводов, Правило левой руки Флеминга говорит нам о том, что два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включите электричество, один из проводов двинется вверх и другой будет двигаться вниз.

Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась непрерывно - и мы будем на пути к созданию электрического мотор. Но этого не может произойти с нашей нынешней настройкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко хватит, что-нибудь еще случится. Как только катушка достигла вертикали положение, он перевернется, и электрический ток будет течь через него в противоположном направлении. Теперь силы на каждого сторона катушки перевернется.Вместо непрерывного вращения в в том же направлении, он двинется назад в том же направлении, в котором только что пришел! Представьте себе электропоезд с таким двигателем: он будет держать перетасовки назад и вперед на месте, даже не идя где угодно.

Как работает электродвигатель - на практике

Есть два способа решить эту проблему. Один из них - использовать своего рода электрический ток, который периодически меняет направление, что известно как переменный ток (AC). В виде небольших батарейных двигатели, которые мы используем дома, лучшее решение - добавить компонент назвал коммутатором концы катушки.(Не беспокойтесь о бессмысленных технических имя: это немного старомодное слово «коммутация» немного похоже на слово «добираться до работы». Это просто означает изменение взад и вперед в одном и том же путь, который ездит на работу, означает путешествовать туда и обратно.) В простейшей форме Коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его задача - реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Один конец катушки прикреплен к каждая половина коммутатора. Электрический ток от аккумулятора подключается к электрическим клеммам двигателя.Они подают электроэнергию в коммутатор через пару незакрепленных разъемы, называемые щетками, сделали либо из кусочков графита (мягкий уголь, похожий на карандаш "свинец") или тонкие отрезки упругого металла, который (как название подсказывает) "задеть" коммутатор. С коммутатор на месте, когда электричество течет по цепи, катушка будет постоянно вращаться в одном и том же направлении.

Художественное произведение: упрощенная схема деталей в электрическом мотор. Анимация: как это работает на практике.Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается. наполовину. Это означает, что сила на каждой стороне катушки всегда толкая в том же направлении, что позволяет катушке вращаться по часовой стрелке.

Такой простой экспериментальный двигатель, как этот, не может большая мощность. Мы можем увеличить усилие поворота (или крутящий момент) что двигатель может творить тремя способами: либо у нас может быть больше мощный постоянный магнит, или мы можем увеличить электрический ток протекает через провод, или мы можем сделать катушку так, чтобы в ней было много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки.На практике двигатель также имеет постоянный магнит, изогнутый в круглой формы, так что он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большее усилие, которое может создать двигатель.

Хотя мы описали несколько различных частей, вы можете представить двигатель как имеющий всего два основных компонента:

  • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому его называют статором двигателя.
  • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью - и это называется ротором. Ротор также включает в себя коммутатор.

Универсальные двигатели

Такие двигатели постоянного тока

отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемые автомобили или электробритвы), но вы не найдете их во многих бытовых приборах. Мелкие бытовые приборы (например, кофемолки или электрические блендеры), как правило, используют так называемые универсальные двигатели , которые могут питаться как от переменного, так и от постоянного тока.В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает энергию от источника постоянного или переменного тока, который вы питаете:

  • При питании от постоянного тока электромагнит работает как обычный постоянный магнит и создает магнитное поле, которое всегда направлено в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном и том же направлении.
  • Однако, когда вы подаете переменный ток, ток, протекающий через электромагнит, и ток, протекающий через катушку , как , меняют направление, точно синхронно, поэтому сила на катушке всегда в одном и том же направлении, а двигатель всегда вращается по часовой стрелке. или против часовой стрелки.А как насчет коммутатора? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.

Анимация: Как работает универсальный двигатель: Электроснабжение питает как магнитное поле, так и вращающуюся катушку. При питании от постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании от сети переменного тока и магнитное поле, и ток катушки меняют направление каждый раз, когда ток питания меняется на противоположное.Это означает, что сила, действующая на катушку, всегда направлена ​​в одну сторону.

Фото: Типичный универсальный двигатель: основные части двигателя среднего размера из кофемолки, которая может работать как от постоянного, так и от переменного тока. Серый электромагнит по краю - это статор (статическая часть), и он питается от катушек оранжевого цвета. Обратите внимание на прорези в коллекторе и прижимающиеся к нему угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких устройствах, как электрические железнодорожные поезда, во много раз больше и мощнее этого, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения в домашних условиях. который приводит в действие универсальные двигатели.

Электродвигатели прочие

В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит. Большие двигатели переменного тока (используемые в таких вещах, как заводские машины) работают немного иначе: они пропускают переменный ток через противоположные пары магнитов, чтобы создать вращающееся магнитное поле, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться.Подробнее об этом вы можете прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его так, чтобы статор фактически превратился в длинную непрерывную дорожку, ротор может катиться по нему по прямой. Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).

Еще одна интересная конструкция - бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, при этом несколько железных катушек статичны в центре и постоянный магнит вращается вокруг них, а коммутатор и щетки заменяются электронной схемой.Вы можете прочитать больше в нашей основной статье о мотор-редукторах. Шаговые двигатели, которые вращаются на точно контролируемые углы, представляют собой разновидность бесщеточных двигателей постоянного тока.

Как работает двигатель постоянного тока?

Теоретически одна и та же машина постоянного тока может использоваться в качестве двигателя или генератора. Следовательно, конструкция двигателя постоянного тока такая же, как и у генератора постоянного тока.

Принцип работы двигателя постоянного тока

Электродвигатель - это электрическая машина, преобразующая электрическую энергию в механическую.Основной принцип работы двигателя постоянного тока : « всякий раз, когда токопроводящий проводник помещается в магнитное поле, он испытывает механическую силу». Направление этой силы определяется правилом левой руки Флеминга, а ее величина определяется как F = BIL. Где B = плотность магнитного потока, I = ток и L = длина проводника в магнитном поле.

Правило левой руки Флеминга : Если мы вытянем первый, второй и большой пальцы левой руки перпендикулярно друг другу, а направление магнитного поля будет представлено первым пальцем, направление тока будет представлено как второй палец, затем большой палец представляет направление силы, действующей на проводник с током.

Анимация: Работа двигателя постоянного тока
(кредит: Lookang)

Анимация, приведенная выше, помогает понять принцип работы двигателя постоянного тока . Когда обмотки якоря подключены к источнику постоянного тока, в обмотке возникает электрический ток. Магнитное поле может создаваться обмоткой возбуждения (электромагнетизм) или постоянными магнитами. В этом случае проводники якоря с током испытывают действие магнитного поля в соответствии с принципом, изложенным выше.

Коммутатор

выполнен сегментированным для достижения однонаправленного крутящего момента. В противном случае направление силы менялось бы каждый раз, когда направление движения проводника менялось на противоположное в магнитном поле. Так работает двигатель постоянного тока !

Задняя ЭДС

Согласно фундаментальным законам природы, преобразование энергии невозможно, пока не появится что-то, что препятствует преобразованию. В случае генераторов это противодействие обеспечивается магнитным сопротивлением, а в случае двигателей постоянного тока - противоэдс .

Когда якорь двигателя вращается, проводники также разрезают линии магнитного потока и, следовательно, согласно закону электромагнитной индукции Фарадея, в проводниках якоря индуцируется ЭДС. Направление этой наведенной ЭДС таково, что она противодействует току якоря (I a ). На схеме ниже показано направление обратной ЭДС и тока якоря. Величина обратной ЭДС может быть задана уравнением ЭДС генератора постоянного тока.

Значение обратной ЭДС:

Величина обратной ЭДС прямо пропорциональна скорости двигателя. Представьте, что нагрузка на двигатель постоянного тока внезапно уменьшилась. В этом случае требуемый крутящий момент будет мал по сравнению с текущим крутящим моментом. Скорость двигателя начнет увеличиваться из-за превышения крутящего момента. Следовательно, величина обратной ЭДС пропорциональна скорости. С увеличением обратной ЭДС ток якоря начнет уменьшаться. Поскольку крутящий момент пропорционален току якоря, он также будет уменьшаться, пока не станет достаточным для нагрузки.Таким образом, скорость мотора будет регулироваться.

С другой стороны, если двигатель постоянного тока внезапно нагружается, эта нагрузка вызовет снижение скорости. Из-за уменьшения скорости обратная ЭДС также уменьшится, что приведет к увеличению тока якоря. Повышенный ток якоря увеличит крутящий момент, чтобы удовлетворить требованиям нагрузки. Следовательно, наличие обратной ЭДС делает двигатель постоянного тока «саморегулирующимся» .

Типы двигателей постоянного тока

Двигатели постоянного тока обычно классифицируются в зависимости от конфигурации возбуждения:
  • С отдельным возбуждением (обмотка возбуждения питается от внешнего источника)
  • Самовозбуждение -
    • Серия
    • с обмоткой (обмотка возбуждения включена последовательно с якорем)
    • Шунтирующая обмотка (обмотка возбуждения включена параллельно якорю)
    • Сложная рана -

См. Схему классификации машин постоянного тока здесь.

Строительство, работа, типы и применение

Преобразование энергии из электрической в ​​механическую было объяснено Майклом Фарадеем, британским ученым в 1821 году. Преобразование энергии может быть выполнено путем размещения проводника с током в магнитном поле. Таким образом, проводник начинает вращаться из-за крутящего момента, создаваемого магнитным полем и электрическим током. Британский ученый Уильям Стерджен сконструировал машину постоянного тока в 1832 году на основе своего закона.Однако это было дорого и не подходило ни для каких приложений. Итак, наконец, первый электродвигатель был изобретен в 1886 году Фрэнком Джулианом Спрагом.


Что такое электродвигатель?

Электродвигатель можно определить как; это один из видов машин, используемых для преобразования энергии из электрической в ​​механическую. Большинство двигателей работают за счет связи между электрическим током и магнитным полем обмотки двигателя для создания силы в форме вращения вала.Эти двигатели могут запускаться от источника постоянного или переменного тока. Генератор механически аналогичен электродвигателю, однако работает в противоположном направлении, преобразуя механическую энергию в электрическую. Схема электродвигателя представлена ​​ниже.

Классификация электродвигателей может быть сделана на основе таких соображений, как тип источника питания, конструкция, тип выходного движения и применение. Они бывают переменного тока, постоянного тока, бесщеточные, щеточные, фазовые, например, однофазные, двух- или трехфазные и т. Д.Двигатели с типичными характеристиками и размерами могут обеспечивать подходящую механическую мощность для использования в промышленности. Эти двигатели применимы в насосах, промышленных вентиляторах, станках, воздуходувках, электроинструментах, дисковых накопителях.

электродвигатель

Конструкция электродвигателя

Конструкция электродвигателя может быть выполнена с использованием ротора, подшипников, статора, воздушного зазора, обмоток, коллектора и т. Д.

конструкция электродвигателя

Ротор

Ротор в электродвигателе является подвижной частью, и его основная функция заключается во вращении вала для выработки механической энергии.Обычно ротор включает в себя проводники, которые проложены для проведения токов и сообщаются с магнитным полем в статоре.

Подшипники

Подшипники в двигателе в основном служат опорой для ротора для активации его оси. Вал двигателя расширяется с помощью подшипников под нагрузку двигателя. Поскольку силы нагрузки используются за пределами подшипника, эта нагрузка называется консольной.

Статор

Статор двигателя - неактивная часть электромагнитной цепи.Он включает в себя постоянные магниты или обмотки. Статор может быть изготовлен из различных тонких металлических листов, которые известны как ламинаты. В основном они используются для уменьшения потерь энергии.

Воздушный зазор

Воздушный зазор - это пространство между статором и ротором. Эффект воздушного зазора в основном зависит от зазора. Это основной источник низкого коэффициента мощности двигателя. Когда воздушный зазор между статором и ротором увеличивается, ток намагничивания также увеличивается.По этой причине воздушный зазор должен быть меньше.

Обмотки

Обмотки в двигателях представляют собой провода, проложенные внутри катушек, обычно покрытые вокруг гибкого железного магнитного сердечника, чтобы образовывать магнитные полюса при подаче тока. Для обмоток двигателя медь является наиболее часто используемым материалом. Медь является наиболее распространенным материалом для обмоток, также используется алюминий, хотя он должен быть твердым, чтобы надежно выдерживать аналогичную электрическую нагрузку.

Коммутатор

Коммутатор представляет собой полукольцо в двигателе, изготовленное из меди. Основная функция этого - связать щетки с катушкой. Кольца коммутатора используются для обеспечения того, чтобы направление тока внутри катушки менялось на противоположное каждый полупериод, поэтому одна поверхность катушки часто толкается вверх, а другая поверхность катушки толкается вниз.

Работа электродвигателя

В основном, большинство электродвигателей работают по принципу электромагнитной индукции, однако существуют различные типы двигателей, в которых используются другие электромеханические методы, а именно пьезоэлектрический эффект и электростатическая сила.

Основной принцип работы электромагнитных двигателей может зависеть от механической энергии, которая воздействует на проводник, используя поток электрического тока, и он помещается в магнитное поле. Направление механической силы перпендикулярно магнитному полю, проводнику и магнитному полю.

Типы электродвигателей

В настоящее время наиболее часто используемые электродвигатели включают электродвигатели переменного тока и электродвигатели постоянного тока

Двигатель переменного тока

Двигатели переменного тока

подразделяются на три типа: асинхронные, синхронные и линейные двигатели

  • Асинхронные двигатели подразделяются на два типа: однофазные и трехфазные двигатели
  • .
  • Синхронные двигатели подразделяются на два типа: гистерезисные и реактивные двигатели
  • .

Двигатель постоянного тока

Двигатели постоянного тока

подразделяются на два типа: двигатели с самовозбуждением и двигатели с независимым возбуждением.

  • Двигатели с самовозбуждением подразделяются на три типа, а именно: серийные, составные и параллельные двигатели
  • Составные двигатели подразделяются на два типа, а именно: двигатели с коротким шунтом и электродвигатели с длинным шунтом

Применение электродвигателя

Применения электродвигателя включают следующее.

  • Применения электродвигателя в основном включают нагнетатели, вентиляторы, станки, насосы, турбины, электроинструменты, генераторы переменного тока, компрессоры, прокатные станы, корабли, грузчики, бумажные фабрики.
  • Электродвигатель является важным устройством в различных приложениях, таких как HVAC- отопление, вентиляционное и охлаждающее оборудование, бытовая техника и автомобили.

Преимущества электродвигателя

Электродвигатели

имеют несколько преимуществ по сравнению с обычными двигателями, которые включают следующее.

  • Первичная стоимость этих двигателей невысока по сравнению с двигателями, работающими на ископаемом топливе, но их номинальная мощность в лошадиных силах одинакова.
  • Эти двигатели содержат движущиеся части, поэтому срок службы этих двигателей больше.
  • При надлежащем обслуживании мощность этих двигателей составляет до 30 000 часов. Таким образом, каждый двигатель не требует особого обслуживания
  • Эти двигатели чрезвычайно эффективны и обеспечивают автоматическое управление функциями автоматического пуска и останова.
  • Эти двигатели не используют топливо, потому что не требуют обслуживания моторным маслом или аккумулятором.

Недостатки электродвигателя

К недостаткам данных моторов можно отнести следующее.

  • Большие электродвигатели нелегко перемещать, поэтому необходимо учитывать точное напряжение и ток питания
  • В некоторых случаях дорогостоящее расширение линии является обязательным для изолированных областей, где нет доступа к электроэнергии.
  • Обычно эти двигатели работают более эффективно.

Таким образом, все дело в электродвигателе, и его основная функция заключается в преобразовании энергии из электрической в ​​механическую.Эти двигатели очень тихие и удобные, в них используется переменный ток или постоянный ток. Эти двигатели доступны везде, где механическое движение может происходить с использованием переменного или постоянного тока. Вот вам вопрос, как сделать электродвигатель?

Электродвигатели

- MagLab

Подробная инструкция для учителей по проведению практического занятия по электродвигателям.

Охваченные концепции

Время

Это занятие занимает от 45 минут до часа.

Фон

Электродвигатель состоит из двух частей: статора и ротора. В двигателе статор - это часть, которая остается неподвижной, а ротор - это часть, которая движется. Основным принципом для всех работающих двигателей является магнитное притяжение и отталкивание. Поскольку магнит больше не движется после притяжения, двигателю нужен какой-то способ манипулировать магнитными полями, чтобы магниты непрерывно притягивались и отталкивались. Один из способов сделать это - иметь текущее изменение направления.Поскольку электричество переменного тока чередуется, оно естественным образом меняет магнитные поля на противоположные с каждым изменением.

Зачем это нужно делать в классе

  • Поощрять следующие навыки процесса научного исследования: прогнозирование, наблюдение, выработка гипотезы и формирование выводов
  • Чтобы помочь студентам понять взаимосвязь между электричеством и магнетизмом
  • Разрешить учащимся управлять переменными и записывать изменения

Стандарты

Научные стандарты нового поколения для этого вида деятельности:

Элементарный: 3-PS2-3, 3-PS2-4, 4-PS3-4, 3-5-ETS1-3
Средний: MS-PS2-3, MS-PS2-5
Высокий: HS-PS2-5, HS-PS3-5

Материалы

  • D аккумулятор
  • # 20 Медный магнитный провод
  • 2 Скрепки
  • Резинка
  • Кольцо или дисковый магнит
  • Наждачная бумага

Процедура

  1. Оберните магнитный провод вокруг батареи D.С каждого конца оставьте по 3-5 см хвостик. Аккуратно уберите завитки с батареи и намотайте хвосты на противоположные стороны катушки. Полученная форма должна выглядеть как круг с двумя линиями, идущими с противоположных концов.
  2. Используйте мелкую наждачную бумагу, чтобы удалить изоляцию с одного из хвостовиков и только с верхней половины противоположного хвоста.
  3. Хвостики распрямите так, чтобы они были точно напротив друг друга. Проще всего это сделать, если катушка лежит на столе ровно.Это будет ваша арматура для вашего мотора.
  4. Разверните две скрепки и согните их в опоры для хвостов якоря. Они будут подвешивать катушку над блоком батареи / магнита.
  5. Используйте резиновую ленту, чтобы удерживать по одной канцелярской скрепке на батарее (+ и -).
  6. Поместите магнит на стороне батареи посередине между двумя опорами для скрепок. Магнит должен притягиваться к батарее.
  7. Установите арматуру в опоры для скрепок.Убедитесь, что ему разрешено свободно вращаться.

Ваша установка должна выглядеть так:

Что происходит

Когда оголенные части якоря соприкасаются, якорь касается опор, течет ток, и он становится электромагнитом. Якорь отреагирует на магнитное поле постоянного магнита и переместится. По мере движения изолированная часть якоря будет контактировать с опорами, и ток прекратится, в результате чего магнитное поле якоря исчезнет, ​​что снова приведет к перемещению якоря.Когда он возвращается в исходное положение, весь процесс начинается снова и повторяется, вызывая непрерывное движение и создавая электродвигатель.


За дополнительной информацией обращайтесь к преподавателю MagLab Карлосу Вилле.

Запишите принцип работы электромотора класса 12 по физике CBSE

Подсказка: Электродвигатель можно определить как электрическое устройство, преобразующее электрическую энергию в механическую. Большинство электродвигателей работают на основе взаимодействия между магнитным полем электродвигателя и электрическим током в проволочной обмотке, что является основным принципом для создания силы в виде крутящего момента, приложенного к валу электродвигателя.

Полный пошаговый ответ:
Электродвигатель работает по принципу магнитного воздействия тока. Его принцип заключается в том, что когда прямоугольная катушка помещается в магнитное поле и через нее пропускается ток, катушка вращается в результате сил, действующих на катушку.
Следующие части являются частями электродвигателя:
Источник питания постоянного тока: это компонент, в котором генерируется рабочий источник энергии.
Коммутатор: направление электрического источника, обеспечиваемого источником питания, поддерживается этой частью электродвигателя.
Якорь ротора: он непрерывно вращается при работающем двигателе. Он также предназначен для помощи в перемещении и подаче электроэнергии на другие части двигателя и транспортного средства.
Ось: Ось электрического транспортного средства содержит часть основного источника энергии, который обеспечивает возможность управления транспортным средством посредством рулевого управления и использования редуктора.