9Ноя

Эл мотор: типы, устройство, принцип работы, параметры, производители

Содержание

Самый мощный электромотор для лодки

Какой лодочный электромотор считать самым мощным? Тот, который потребляет большую мощность от аккумуляторной батареи? Или может быть тот, который легко толкает вперед даже тяжелую лодку, потребляет маленький ток и долго работает от аккумуляторов?

Содержание статьи

Бензиновый и электрический моторы для лодки

Лодочные электромоторы могут развивать ту же тягу, что и двигатели внутреннего сгорания обладая при этом значительно меньшей мощностью на валу. Это происходит благодаря различной форме кривых крутящего момента электрического и бензинового двигателей. У двигателя внутреннего сгорания график крутящего момента имеет выраженный пик, из-за которого максимальный момент доступен только в ограниченном диапазоне оборотов вала. Зависимость крутящего момента от оборотов у электродвигателя гораздо более плоская и его достаточно при любой частоте вращения

Максимальный крутящий момент и мощность – это важные характеристики двигателя. Момент определяет способность быстро ускоряться и тянуть груз, а мощность (приведенная к весу) максимальную скорость. Крутящий момент зависит от числа оборотов вала. У разных типов двигателей эта зависимость имеет свой вид. У электродвигателя скорость преобразования энергии от аккумуляторной батареи не связана с частотой вращения вала. В двигателях внутреннего сгорания с ростом числа оборотов давление и температура возрастают и достигают оптимального сочетания при определенной частоте вращения на которую и приходится пик крутящего момента.

Пологая характеристика момента позволяет устанавливать на лодочные электромоторы более эффективные гребные винты. КПД гребного винта у некоторых электромоторов для небольших лодок в три раза выше, чем у подвесных бензиновых двигателей того же класса.

Какая бывает мощность

Производители лодочных моторов используют разные виды мощности. Встречаются мощность на валу, потребляемая мощность и даже тяга. Поэтому прежде чем сравнивать лодочные электромоторы различных марок нужно привести имеющиеся данные к «общему знаменателю»

Единый критерий для сравнения важен. Мощности, измеренные в разных местах, существенно отличаются друг от друга. Мотор, развивающий на валу 4 л. с., на винте выдает всего 1 л.с.

Потребляемая мощность, на валу и на винте

Гребной винт преобразует энергию двигателя в силу, которая преодолевая сопротивления воды и воздуха двигает лодку вперед с выбранной скоростью. Часть энергии при этом теряется и мощность, идущая на движение судна, всегда меньше той, что потребляет двигатель. Rt — сопротивление воды; Pe — эффективная (буксировочная) мощность; Pt — мощность на винте; Pв — мощность на валу; Pb — мощность двигателя. T — тяга; V — скорость

Потребляемая мощность – часто используется как характеристика электродвигателя для лодки (мощность = ток х напряжение). Измеряется в Ваттах или лошадиных силах. Производители бензиновых или дизельных лодочных моторов этот вид мощности не используют. Однако для двигателя внутреннего сгорания потребляемую мощность также можно посчитать, если умножить теплотворную способность топлива на его расход.

Мощность на валу – используют производители подвесных бензиновых лодочных моторов. Этот вид мощности считается также как у автомобиля (мощность = крутящий момент х угловая скорость). Единица измерения – лошадиные силы или ватты. Мощность на валу учитывает потери в редукторе, но не учитывает потери на винте, которые составляют от 20 до 70%.

Мощность на винте – более ста лет служит общепринятой характеристикой двигателя в судостроении. Учитывает все потери мощности и определяет энергию, передаваемую лодке двигателем.

Тяга лодочного электромотора

Во время вращения винта на поверхностях лопастей возникает подъемная сила. Составляющая этой силы направленная по оси движения лодки называется упором или тягой. Она характеризует ту часть подъемной силы, которая толкает судно вперед.

Полезная мощность, производимая лодочным винтом, равна его тяге, умноженной на текущую скорость лодки. В характеристиках электромоторов производители всегда указывают максимальное значение тяги. Сделать по ней вывод о мощности электромотора на винте без установки датчиков и проведения измерений нельзя.

Тягу определяют в ходе испытаний, во время которых лодку соединяют с пирсом динамометром и заставляют двигаться вперед. Проверку проводят на спокойной воде, в безветренную погоду, на достаточной глубине и расстоянии от берега. Для носовых лодочных электромоторов значение тяги чаще всего указывают в фунтах силы (lbs).

Потери мощности в лодочном электромоторе

Ротор, щеточный узел и щетки лодочного электромотора. Щетки и кольца служат источником потерь и снижают надежность электромотора. В мощных лодочных электромоторах двигатели постоянного тока не используют

Общая эффективность силовой установке на лодке с двигателем внутреннего сгорания около 15%. Для судна с электромотором такой показатель – непозволительная роскошь. Считается, что лодочный электродвигатель работает эффективно, если с учетом потерь на винте его КПД около 50 %. При этом КПД электромотора должен быть не менее 80%, а винта не мене 63%.

Потери мощности пропорциональны сопротивлению проводника и квадрату протекающего через него тока. Если ток возрастает вдвое, потери возрастают в четыре раза. Если ток растет в десять раз, потери увеличиваются в сто. Уменьшить ток и потери можно, если повысить напряжение в цепи.

Общепринятое на сегодня напряжение мощных лодочных электромоторов 48 вольт, но для небольших лодок подходят и 24-вольтовые модели. При силе тока 50 А максимальная мощность электромотора в 12-вольтовой системе составит 600 Ватт, а в 24 Вольтовой – 1200 Ватт

Второй способ снизить потери в цепи постоянного тока – это увеличить сечение кабеля. Правильно подобранный кабель повышает эффективность и безопасность электрической системы, устраняет локальный перегрев и снижает потери энергии.

Винт

Высокий КПД имеет винт с большим диаметром, шагом и низкой скоростью вращения. Однако с таким винтом может работать только мотор, развивающий высокий крутящий момент.

Редуктор служит источником дополнительного шума и потерь. В профессиональных электромоторах их стараются не использовать

Большинство гребных винтов для подвесных моторов небольших лодок созданы на основе испытаний проведенных еще в 1940–1960-х годах прошлого века. Общие принципы проектирования, появившиеся тогда, систематизированы в виде таблиц и графиков и используются изготовителями до сих пор.

При разработке современных винтов используют другой подход. Сначала на компьютере создают трехмерную модель, а затем шаг и кривизну профиля винта оптимизируют для каждого сечения с учетом изменяющихся вдоль диаметра условий обтекания потоком воды.  Винты этого типа называют винтами с переменным шагом. Их потери меньше, а КПД выше.

Виды электромоторов

Подвесные

Подвесной лодочный электромотор для профессионального использования Aquamot

Подвесные электромоторы устанавливают на транце или реже на носу лодки. В стандартном исполнении электромотор соединяется с системой рулевого управления, в моделях с румпелем лодкой управляют поворачивая двигатель. Мощность румпельных электромоторов варьируется от 1 до 4 кВт, а у моделей с рулевым управлением достигает 15 кВт.

Как правило мощные подвесные электромоторы рассчитаны на напряжение 24-48 Вольт. 24 вольтовый электрический двигатель мощностью 2,2 кВт развивает на винте тягу 124 lbs и сопоставим по этому показателю с подвесным бензиновым мотором мощностью 6,5 л.с. Двигатель мощностью 15 кВт эквивалентен бензиновому мотору 35 л.с

В подвесных лодочных электромоторах используют асинхронные двигатели переменного тока или синхронные двигатели на постоянных магнитах. Оба типа двигателей бесщеточные, не имеют изнашивающихся частей и не требуют обслуживания.

Pod электромоторы

POD электромоторы подходят как для однокорпусных лодок и катеров, так и для катамаранов

Фиксированные POD электромоторы бывают мощностью от 1 до 25 кВт. Они подходят как для небольших лодок, сдающихся в прокат, так и для судов весом несколько тонн

Электромотор состоит из блока управления и гондолы внутри которой установлен асинхронный или BLDC электродвигатель. Гондола аэродинамической формы крепится к днищу судна фланцами из нержавеющей стали между килем и рулем. Чтобы избежать вибрации на руле, вызванной турбулентностью за винтом, и снизить сопротивление потоку воды гондолу стараются располагать ближе к килю.

Фиксированный (слева) и поворотный Pod электромоторы. Внутри корпуса, находящегося под водой, находится только двигатель. Электроника и органы управления расположены на борту судна

Производится две модификации POD электромоторов — фиксированная и поворотная. Поворотная модель соединяется с системой рулевого управления или румпелем и обеспечивает более высокую маневренность судна

Электрические лодочные моторы типа Pod выпускаются мощностью от 1 до 25 кВт.

Бортовые лодочные электромоторы

Бортовой лодочный электромотор Aquamot. Электромоторы этого типа выпускаются мощностью от 2,5 до 30 кВТ

В бортовой силовой установке электродвигатель устанавливают внутри судна и соединяют с винтом валопроводом. Бортовым моторам требуется принудительное охлаждение. В зависимости мощности электродвигателя оно может быть воздушным или водяным.

Установка бортового электромотора на лодку сложнее чем подвесного или POD. Дополнительно потребуется вал, муфта, сальник, втулка Гудрича (дейдвудный подшипник), дейдвудная труба. Валы электромотора и винта необходимо центрировать – они должны иметь общую ось. При неправильной установке возможны протечки через сальник

Электромоторы для профессионального использования

Если лодка или катер используется для перевозки туристов, организации экскурсий или водных прогулок, то электрическая установка может оказаться выгоднее двигателя внутреннего сгорания. Экономия достигается из-за более низкой стоимости энергии и практически нулевых затрат на техническое обслуживание.

Установка подвесного лодочного электромотора для профессионального использования Aquamot на небольшой катамаран

Сравнение показывает, что при коммерческой эксплуатации судна переход с бензинового на электрический двигатель окупается за 1-2 года. Однако для этого профессиональный лодочный электромотор должен отвечать определенным требованиям:

  • Иметь высокий КПД – это позволит эксплуатировать его с аккумуляторной батареей меньшей емкости, снизит первоначальные затраты, время зарядки и стоимость потребляемой электроэнергии
  • Быть простым и надежным — электромотор должен выдерживать ежедневную интенсивную нагрузку и иметь минимум лишних функций. Дополнительные возможности, такие как встроенный компьютер c GPS, повышают цену и могут стать источником неисправностей в будущем.
  • Стоимость ремонта и технического обслуживания в течении периода эксплуатации должна быть минимальной Катамаран с установленным лодочным электромотором отправляется к месту эксплуатации

Надежность

Корпуса профессиональных лодочных электромоторов отливают из алюминия, а затем дополнительно наносят многослойное антикоррозионное покрытие. Вал делают из нержавеющей стали, а винт из бронзы. Для защиты от коррозии устанавливают жертвенный анод

В мощных электромоторах для лодок используют асинхронные двигатели переменного тока или BLDC PM электродвигатели, которые также называют вентильными.  Питание вентильных двигателей осуществляется от импульсных источников энергии. При этом импульсы напряжения подаются на обмотки статора в заданные моменты времени – при определенном положении ротора относительно статора. Положение ротора определяют датчики, которые, как и импульсный источник питания, в моторах небольшой мощности находятся на печатной плате, расположенной внутри подводной части электромотора.

Зеленая плата в центре электромотора — электронный коммутатор, который заменяет щетки и кольца. Слева та же плата в увеличенном виде. В окружении воды электронные компоненты иногда работают не стабильно и отказ всего одного элемента на плате влечет за собой выход из строя всего электромотора. Заменять приходится плату целиком — это увеличивает стоимость ремонта, время простоя электромотора и срок его окупаемости при профессиональном использовании

Внутри корпуса трехфазного асинхронного двигателя дополнительных электронных компонентов нет. На долговечность двигателя влияют только подшипники и обмотки, однако качество этих элементов в настоящее время таково, что асинхронные двигатели служат до 50 000 часов без осмотра и ремонта.   Асинхронные двигатели просты, надежны и эффективны. КПД мощного электродвигателя 85-92%, что на 30% выше, чем у двигателя постоянного тока, и на 40-50% больше, чем у двигателя внутреннего сгорания.

Система безопасности электромотора для коммерческих лодок имеет как механические, например, заданный предел прочности киля, так и электронные средства защиты. Электромотор отключается при перегрузке по току, при пониженном и повышенном напряжении аккумуляторов

Экономичность

Два подвесных электромотора мощностью по 11 кВт каждый на небольшом пароме для перевозки пассажиров

Высокий КПД достигается только при последовательном и тщательном улучшении всех элементов электромотора. Потерь мощности стараются избежать во всех узлах. Воздушный зазор в двигателе, конструкция ротора, изоляция обмоток оптимизируют на компьютере так, чтобы электродвигатель подходил для использования на лодках.

Корпуса двигателей и винты проектируют по тем же правилам, что и в коммерческом судостроении. Сначала рассчитывают обтекание подводных частей по трехмерной модели, а затем результаты проверяют на натурных гидродинамических испытаниях.

Редуктор, который устанавливают на некоторых моделях лодочных электромоторов не используют. Вместо этого вал электродвигателя напрямую соединяют с винтом, и конструируют двигатель таким образом, чтобы его обороты совпадали с оптимальными для винта

В результате во время движения электромотор не теряет мощность, не создает дополнительное сопротивление и способен долго работать на одной зарядке аккумулятора

Задайте вопрос,

и получите консультацию по лодочным электромоторам, аккумуляторам или зарядным устройствам для катера или яхты

9 типичных неисправностей электродвигателя и способы их устранения

В этом обзоре мы рассмотрим типичные неисправности трехфазных асинхронных электродвигателей и способы их предупреждения и устранения.

Электрические неисправности электродвигателя

Электрические неисправности двигателя всегда связаны с обмоткой.

  1. Межвитковое замыкание может возникнуть при ухудшении изоляции в пределах одной обмотки. Возможные причины: перегрев обмотки, некачественная изоляция, износ изоляции вследствие вибрации. Определить межвитковое замыкание бывает сложно. Основной метод диагностики – сравнение сопротивления и рабочего тока всех трех обмоток. Первые симптомы межвиткового замыкания – повышенный нагрев двигателя и падение момента на валу. При этом по одной из фаз ток больше, чем по двум другим.
  2. Замыкание между обмотками происходит из-за смещения обмоток, механической вибрации и ударов. При отсутствии должной электрической защиты может возникнуть короткое замыкание и пожар.
  3. Замыкание обмотки на корпус. При данной неисправности электродвигатель может продолжать работать, если неправильно выполнены заземление и защита от короткого замыкания. Однако в работе он будет смертельно опасен, так как его потенциал будет находиться под фазным напряжением.
  4. Обрыв обмотки. Эта неисправность равносильна пропаданию фазы. Если обрыв происходит в работе, то двигатель резко теряет мощность и начинает перегреваться. При правильно выполненной защите двигатель отключится, поскольку ток по другим фазам будет повышен.

Для устранения большинства из этих поломок требуется перемотка двигателя.

Механические неисправности электродвигателя

Механические неисправности электродвигателя связаны с его конструкцией.

  1. Износ и трение в подшипниках. Проявляется в повышении механической вибрации и шума при работе. В этом случае требуется замена подшипников, иначе неисправность приведет к перегреву и падению производительности двигателя.
  2. Проворачивание ротора на валу. Ротор может вращаться в магнитном поле статора, а вал будет неподвижен. Требуется механическая фиксация ротора на валу.
  3. Зацепление ротора за статор. Эта проблема связана с механической поломкой подшипников, их посадочных мест или корпуса двигателя. Кроме того, подобная неисправность приводит к повреждению обмотки статора. Практически не подлежит ремонту.
  4. Повреждение корпуса двигателя. Может происходить из-за ударов, повышенных нагрузок, неправильного крепления или низкого качества двигателя. Ремонт является трудоемким из-за трудностей соосной установки переднего и заднего подшипников.
  5. Проворачивание или повреждение крыльчатки обдува. Несмотря на то, что двигатель продолжит работать, он будет перегреваться, что существенно сократит срок его службы. Крыльчатку необходимо закрепить (для этого используется шпонка или стопорное кольцо) или заменить.

Аварийные ситуации при работе электродвигателя

Существуют неисправности, не связанные непосредственно с двигателем, но влияющие на его работу, характеристики и срок службы. Большинство этих неисправностей вызваны механической перегрузкой, увеличением тока, и, как следствие, перегревом обмоток и корпуса.

  1. Увеличение нагрузки на валу вследствие заклинивания привода либо приводимых механизмов.
  2. Перекос напряжения питания, который может быть вызван проблемами питающей сети либо внутренними проблемами привода.
  3. Пропадание фазы, которое может произойти на любом участке питания двигателя – от питающей трансформаторной подстанции до обмотки двигателя.
  4. Проблема с обдувом (охлаждением). Может возникнуть из-за повреждения крыльчатки двигателя при собственном охлаждении, из-за останова вентилятора внешнего принудительного охлаждения или вследствие значительного повышения температуры окружающей среды.

Способы защиты электродвигателя

Для защиты электродвигателя от внутренних и внешних неисправностей, а также для минимизации дальнейших трудозатрат по его ремонту применяют различные устройства.

1. Мотор-автоматы и тепловые реле

Мотор-автоматы (автоматы защиты двигателя) и тепловые реле используют для обнаружения превышения тока по одной или всем фазам двигателя. В случае превышения через некоторое время происходит отключение привода.

В отличие от мотор-автомата, у теплового реле нет силовой коммутации. Оно имеет только управляющий контакт, который размыкает питание силовой цепи. Мотор-автомат является самостоятельным коммутационным устройством, способным выключать двигатель.

Минус теплового реле заключается в отсутствии защиты от короткого замыкания. Мотор-автомат имеет защиту от перегрузки и электромагнитную защиту от короткого замыкания, которая мгновенно срабатывает и выключает двигатель при превышении тока уставки в 10-20 раз.

Данные устройства используются наиболее широко и при правильной установке и настройке способны с большой долей вероятности защитить электродвигатель и оборудование от поломки и других негативных последствий.

2. Электронные реле защиты двигателей

Данный вид защиты обеспечивает большой выбор различных защит. Основным элементом таких реле является микропроцессор, который анализирует мгновенные значения напряжения и тока и принимает решения на основе заданных настроек. Это может быть выдача сигнала на индикацию либо на отключение двигателя.

3. Термисторы и термореле

Когда по какой-то причине не сработала тепловая защита по перегрузке, последний рубеж обороны — термозащита. Внутрь обмотки устанавливается термочувствительный элемент (как правило, термистор или позистор), который меняет свое сопротивление в зависимости от температуры. При пересечении порога срабатывает соответствующая защита, и двигатель отключается.

Возможно применение более простых дискретных термореле (термоконтактов), которые размыкают контрольную или тепловую цепь, что приводит к аварийной остановке электродвигателя.

4. Преобразователи частоты

Обычно преобразователи частоты располагают несколькими видами защиты – по превышению момента и тока, по превышению напряжения, обрыву фазы и проч. Кроме того, возможно ограничение момента и тока. В этом случае на двигатель будет подаваться напряжение с меньшим уровнем и частотой, если будет обнаружена перегрузка. При этом будет выдано соответствующее сообщение оператору, а двигатель может продолжать работать.

Также производители частотных преобразователей рекомендуют устанавливать защитный автомат на входе ПЧ, тепловое реле на выходе и термисторную защиту.

Другие полезные материалы:
Выбор электродвигателя для компрессора
Как определить параметры двигателя без шильдика?
Выбор мотор-редуктора для буровой установки

ООО ЭЛ-ДВИГАТЕЛЬ, Екатеринбург (ИНН 6686089018), реквизиты, выписка из ЕГРЮЛ, адрес, почта, сайт, телефон, финансовые показатели

Обновить браузер

Обновить браузер

Возможности

Интеграция

О системе

Статистика

Контакты

CfDJ8No4r7_PxytLmCxRl2AprPp6YqwPJiD-InhZAnDFLUaO6FF6IC9Yykdw0m_InRDMv9GePFrP_-emmqDxrlL_r1yHkRVA4WARh2ANgHUntDCb4Vl1V-GgquDalUm4VMZb-e8bWCB3gv2nn9YEX3Ji2RA

Описание поисковой системы

энциклопедия поиска

ИНН

ОГРН

Санкционные списки

Поиск компаний

Руководитель организации

Судебные дела

Проверка аффилированности

Исполнительные производства

Реквизиты организации

Сведения о бенефициарах

Расчетный счет организации

Оценка кредитных рисков

Проверка блокировки расчетного счета

Численность сотрудников

Уставной капитал организации

Проверка на банкротство

Дата регистрации

Проверка контрагента по ИНН

КПП

ОКПО

Тендеры и госзакупки

Юридический адрес

Анализ финансового состояния

Учредители организации

Бухгалтерская отчетность

ОКТМО

ОКВЭД

Сравнение компаний

Проверка лицензии

Выписка из ЕГРЮЛ

Анализ конкурентов

Сайт организации

ОКОПФ

Сведения о регистрации

ОКФС

Филиалы и представительства

ОКОГУ

ОКАТО

Реестр недобросовестных поставщиков

Рейтинг компании

Проверь себя и контрагента

Должная осмотрительность

Банковские лицензии

Скоринг контрагентов

Лицензии на алкоголь

Мониторинг СМИ

Признаки хозяйственной деятельности

Репутационные риски

Комплаенс

Компания ООО ЭЛ-ДВИГАТЕЛЬ, адрес: Свердловская обл. , г. Екатеринбург, ул. Фронтовых Бригад, д. 15 офис 26 зарегистрирована 21.12.2016. Организации присвоены ИНН 6686089018, ОГРН 1169658145172, КПП 668601001. Основным видом деятельности является торговля оптовая производственным электротехническим оборудованием, машинами, аппаратурой и материалами, всего зарегистрировано 15 видов деятельности по ОКВЭД. Связи с другими компаниями отсутствуют.
Количество совладельцев (по данным ЕГРЮЛ): 1, генеральный директор — Гулько Кирилл Сергеевич. Размер уставного капитала 10 000₽.
Компания ООО ЭЛ-ДВИГАТЕЛЬ не принимала участие в тендерах. В отношении компании было возбуждено 3 исполнительных производства. ООО ЭЛ-ДВИГАТЕЛЬ участвовало в 2 арбитражных делах: в 2 в качестве ответчика.
Реквизиты ООО ЭЛ-ДВИГАТЕЛЬ, юридический адрес, официальный сайт и выписка ЕГРЮЛ, а также 1 существенное событие доступны в системе СПАРК (демо-доступ бесплатно).

Полная проверка контрагентов в СПАРКе

  • Неоплаченные долги
  • Арбитражные дела
  • Связи
  • Реорганизации и банкротства
  • Прочие факторы риска

Полная информация о компании ООО ЭЛ-ДВИГАТЕЛЬ

299₽

  • Регистрационные данные компании
  • Руководитель и основные владельцы
  • Контактная информация
  • Факторы риска
  • Признаки хозяйственной деятельности
  • Ключевые финансовые показатели в динамике
  • Проверка по реестрам ФНС

Купить Пример

999₽

Включен мониторинг изменений на год

  • Регистрационные данные компании
  • История изменения руководителей, наименования, адреса
  • Полный список адресов, телефонов, сайтов
  • Данные о совладельцах из различных источников
  • Связанные компании
  • Сведения о деятельности
  • Финансовая отчетность за несколько лет
  • Оценка финансового состояния

Купить Пример

Бесплатно

  • Отчет с полной информацией — СПАРК-ПРОФИЛЬ
  • Добавление контактных данных: телефон, сайт, почта
  • Добавление описания деятельности компании
  • Загрузка логотипа
  • Загрузка документов

Редактировать данные

СПАРК-Риски для 1С

Оценка надежности и мониторинг контрагентов

Узнать подробности

Заявка на демо-доступ

Заявки с указанием корпоративных email рассматриваются быстрее.

Вход в систему будет возможен только с IP-адреса, с которого подали заявку.

Компания

Телефон

Вышлем код подтверждения

Эл. почта

Вышлем ссылку для входа

Нажимая кнопку, вы соглашаетесь с правилами использования и обработкой персональных данных

Электромоторы. Часть 2 — статьи на сайте «Лодки-Питер»

Применение электромоторов

          Вопрос – «для чего нужны подвесные лодочные электромоторы» очень не простой. Действительно, зачем нужны эти двигатели, если есть подвесные моторы с ДВС, которые по многим характеристикам превосходят электромоторы. Но чтобы детально разобраться в этом, нужно для начала принять за аксиому следующую информацию – они РАЗНЫЕ. Разные как  самолёт и вертолёт, как автомобиль и мотоцикл, или если мы хотим  придерживаться нашей водномоторной тематики – как катер и надувная лодка. Задача у всех лодочных двигателей одна – приводить судно в движение. Но вот подход к решению этой задачи у лодочных электромоторов и лодочных моторов с ДВС разный.

          Если углубляться в историю вопроса (а мы в «Лодки-Питер» это очень любим), то окажется, что первым подвесным лодочным мотором был как раз не бензиновый — а электрический двигатель! Действительно, первый подвесной лодочный электромотор был создан в 1880 году и продемонстрирован широкой международной публике на Всемирной выставке в Париже французом Густовом Труве в 1881 году, а небезызвестный нам Оле Эвинруд изобрёл свой первый подвесной лодочный мотор с ДВС только в 1907 году. Но, если на границе XIX – XX веков это было связано с развитием и гонкой технологий, то сегодня, в нашем XXI веке технологии позволяют успешно создавать разные типы двигателей. И, как мы увидим позднее – электрические подвесные моторы ничуть не уступают своим собратьям с ДВС, а в некоторых случаях их даже превосходят.

          Основные преимущества электромоторов:
 — Бесшумность работы
— Удобство эксплуатации
— Компактные размеры
— Малый вес двигателя
— Возможность устанавливать один и тот же двигатель на суда с разной высотой транца
— Надёжность
— Возможность ходить по сильно заросшим водоёмам
— Возможность крепления на борта или нос судна
— Для большинства лодок с электромотором не нужно получать удостоверение на право управления маломерным судном и регистрировать их в ГИМС

                 Это – основные преимущества лодочных электромоторов, каждое из которых стоит рассмотреть отдельно.

 Действительно – при работе электродвигатель практически не издаёт шума. Единственные звуки, которые слышит водитель и пассажиры в лодке с установленным электромотором – это то, как о нос и борта лодки плещутся волны. В остальном – как по волшебству лодка скользит по воде тихо и бесшумно. Так же полезным отличием подвесных электромоторов от большинства ПЛМ с ДВС (исключение – моторы специальной конструкции и мотовёсла) является их способность проходить по сильно заросшим водоёмам. Достигается это полезное качество специальной обтекаемой формой редуктора и способностью винта разрезать, а не наматывать на себя водную растительность. Ещё одно полезное свойство, которое приобретает лодка с установленным на ней электромотором – манёвренность. Так, на современных электромоторах имеется возможность одним движением руки не только моментально сбросить скорость, но и включить задний ход, что бывает очень полезно при прохождении сложных участков на некоторых водоёмах.

         Эти свойства электрических моторов по достоинству оценили любители троллинга и охотники. И если для рыбаков важно обеспечить ровное движение лодки с небольшой скоростью, то для охотников нужно  иметь возможность тихо подойти к месту охоты, причём зачастую по сильно заросшему водоёму.

          Основным преимуществом лодочных моторов с ДВС по сравнению с электрическими обычно указывают большую скорость движения судна. Действительно, если провести эксперимент и на одну и ту же лодку установить небольшой бензиновый двигатель мощностью 2 — 3.5 л.с. а потом электромотор, то окажется, что скорость движения под двигателем с ДВС окажется больше, чем с электромотором. Но это как раз является проявлением разницы, заложенной в саму концепцию развития этих двигателей. Так, если основным показателем современного подвесного лодочного мотора с ДВС является измеряемая в лошадиных силах или киловаттах мощность, то для электрических двигателей всё немного сложнее.  Основным показателем является тяговое усилие, измеряемое в килограммах или, что встречается чаще – в английских фунтах. Дополнительный показатель – это указываемый в килограммах вес судна, который способен привести в движение подвесной электромотор. Таким образом, главной задачей электромотора является обеспечить не высокую скорость, а ровное и постоянное движение судна.

        Отдельно стоит рассмотреть вопрос о способах установки подвесных лодочных электромоторов. В отличие от классических ПЛМ с ДВС установка  электромоторов предусмотрена не только на корму, но и на борт или нос судна. Причём для судов с жёстким корпусом и РИБ-ов, где в качестве маршевого двигателя используется мощные бензиновые моторы, позволяющие быстро добраться до нужного места, установка электромоторов на нос судна является боле предпочтительной. Принцип, который здесь используется, можно высказать простыми словами – «тащить легче, чем толкать». Плюс такая установка электродвигателя делает судно ещё более манёвренным. Так же интересной особенностью современных подвесных электрических лодочных моторов является возможность их установки на суда с длиной транца как S, так и L. Это достигается тем, что блок управления мотором и редуктор с электродвигателем находятся на разных частях достаточно длинной металлической штанги, глубину погружения которой можно регулировать. Как убедительно доказали тесты «Лодки-Питер» эту особенность электродвигателей можно с успехом использовать в том случае, если имеется необходимость установить двигатель на надувную лодку небольшого размера.

 Причём установка электромоторов возможна даже на гребные модели надувных лодок и всё, что для этого требуется – это обратится в сервисный центр «Лодки-Питер», где навесной транец могут установить на любую надувную лодку. Так же существует отдельный тип электромоторов, которые устанавливаются на антикавитационную пластину маршевого двигателя, но эти модели не получили массового распространения из за технической сложности их установки и неудобного управления.

         По типу управления современные подвесные лодочные электромоторы можно разделить на три основные группы:

— Электромоторы с румпельным управлением:

Это самые распространённые двигатели, управление которыми осуществляется с помощью румпеля. Румпель имеет несколько положений  скоростей для движения вперёд, нейтральное положение, при котором электродвигатель выключен, и несколько положений скоростей для движения назад. Больше никаких дополнительных рычагов и переключателей на этих двигателях нет. Длину румпеля можно легко изменить в зависимости от предпочтений владельца или ситуации.

— Электродвигатели с дистанционным управлением:

Управление электродвигателем осуществляется по радиоканалу с помощью брелка, который можно закрепить на запястье или в любом другом удобном месте.

— Управление с помощью педали:

 Не смотря на кажущуюся необычность такого решения, тем не менее, оно зарекомендовало себя исключительно с положительной стороны именно для поклонников рыбалки на спиннинг, так как оставляет свободными руки рыболова, и позволяет маневрировать судном, не отвлекаясь от ловли трофея.

                 Надёжность современных подвесных электромоторов обуславливается тем, что в них находится минимум механических деталей. По сути – они имеют необслуживаемый редуктор с электродвигателем внизу и блок управления наверху. Как говорит статистика обращений владельцев электромоторов в сервисный центр «Лодки-Питер», основной неисправностью является выход из строя электронной платы, которая управляет оборотами двигателя. Как правило, она перегорает вследствие полного погружения двигателя в воду и внутрь блока управления попадает влага. Ремонт этой неисправности занимает 15 минут и заключается в замене перегоревшей платы на новую. Так же иногда обращаются за заменой пластикового гребного винта, лопасти которого сильно повреждены о камни или иные подводные препятствия. Но винт на любых лодочных моторах – это расходный материал, а его замену на электродвигателе можно легко произвести самостоятельно.   

          Продолжение нашего исследования, посвященного подвесным  электромоторам, читайте в следующих публикациях. Тема: особенности использования и комплектация современных подвесных электромоторов.

  

Павел Прудников «Лодки-Питер»

 

  

Вернуться к списку

Почему двигатель внутреннего сгорания лучше электродвигателя / Автомобили и другие средства передвижения и аксессуары / iXBT Live

Во многих развитых странах планируют в ближайшем будущем отказаться от автомобилей с двигателем внутреннего сгорания. Например, в странах ЕС в 2035 году в силу вступит закон, запрещающий продажу новых автомобилей на горючем. В Англии аналогичных закон будет будет принят в 2040 году. ДВС постепенно уходит в прошлое, однако не из-за того, что он устарел, или нашлась достойная альтернатива, а из-за законов, ограничивающих продажи.

Главный конкурент автомобилю с двигателем внутреннего сгорания — электромобиль. Но есть ли на данный момент, то, в чем он лучше?

Большинство электрокаров на одном заряде может проехать около 400 км. Дорогие авто этого класса могут проехать и 1000 км, как например Tesla Roadster, но не стоит забывать, что цена такого автомобиля начинается от 50 000$.

Запас хода у автомобилей с бензиновым двигателем зачастую около 800 км. Например Lada Vesta, объем топливного бака которой равен 55 литрам, может проехать без дозаправки примерно 797 км.

С дизельными двигателями дела обстоят еще лучше. У многих представителей этого класса запас хода превышает 1100 км. Например, Peugeot 408 на полном баке, объем которого составляет 60 л, может преодолеть дистанцию в 1224 км.

Инфраструктура городов долгое время создавалась под двигатели внутреннего сгорания, и хоть изменения происходят достаточно быстро, зарядные станции значительно меньше распространены, чем заправки. И это понятно, ведь доля электромобилей в мире около 1%.

Стоит отметить, что изменения инфраструктуры зачастую происходят при поддержке государства, к примеру, Китай выделяет субсидии на производство электрокаров, и за счет бюджета устанавливает зарядные станции. Но если нет поддержи от государства, то все не так гладко. В странах, где отсутствуют субсидии и льготы, такие как отсутствие ввозной пошлины, продажи этого вида транспорта провалились.

Исследование американского журнала Consumer Reports 2020 года показало, что водители электрокаров ежегодно тратят на 60% меньше денег на зарядку относительно затрат на топливо, у водителей автомобилей с бензиновым двигателем.

Можно предположить что, если весь мир перейдет на электромобили, то цена на электричество подскочит, и эта разница уже станет не насколько большой. Однако это лишь догадка, а то, что на данный момент зарядить авто значительно дешевле, чем заправить — факт.

Но не стоит забывать, что залить полный бак топлива займет не больше 5 минут, а вот полная зарядка электрокара может занять и больше часа. Конечно, появляются системы, которые позволят заряжать автомобиль значительно быстрее. И, например, Hyundai Ioniq 5, поддерживающий новый тип зарядки, может получить 80% заряда батареи всего за 18-20 минут. Однако такая «заправка» все еще в 3-4 раза дольше, чем у автомобилей с ДВС. 

Все мы знаем, что ДВС загрязняют окружающую среду. Однако электромобили тоже не являются полностью экологичными.  

Больше 1/3 всего электричества человечество получает при помощи сжигания угля, а это очень «грязный» источник энергии. И миру придется решить, что делать с миллионами вышедших из эксплуатации автомобильных аккумуляторов. На данный момент перерабатывается всего около 5% литий-ионных аккумуляторов.

Разбор батареи на части не простая задача

В среднем электромобили экологичнее, чем автомобили с ДВС. Однако есть большое количество регионов, где электричество в большей степени вырабатывается сжиганием угля, в них электрокары наносят даже больший ущерб природе, чем конкурент.

Власти Сингапура посчитали, что Tesla Model S для преодоления 1 км требует 444 Вт·ч энергии. В этой стране при выработке 1 Вт·ч энергии выбросы CO₂ составляют 0,5 г. Используя эти данные, несложно подсчитать, что Model S опосредованно выпускает в природу 222 г CO₂/км. Даже у спорткаров использующих бензин этот показатель зачастую меньше. Например Porsche 911 Speedster с двигателем на 510 л.с. выбрасывает в воздух 197 г CO₂/км.

На данный момент двигатель внутреннего сгорания во многом превосходит электродвигатель, но вероятно, что уже скоро он потеряет свое лидерство. ДВС уже достиг пика своего развития, а даже если и нет, никто не будет пытаться улучшать его дальше, ведь большое количество стран в ближайшем будущем запретят продажу этого типа двигателей на своей территории.

А электромобили имеют куда больший потенциал, и быстро развиваются. Например, первые модели Tesla Roadster, выпущенные в 2006 году, имели запас хода всего 372 км, а на зарядку такого авто требовалось больше 2-х часов. У современных моделей эти показатели в несколько раз лучше, и «потолок» все еще не достигнут. Проблема с инфраструктурой тоже решается, а растущий процент электромобилей на дорогах ускоряет этот процесс. 

Экологический вопрос с каждым годом становиться все острее. Уже сейчас электрокары в среднем меньше загрязняют окружающую среду, а с ростом процента «зелёной» энергетики, отрыв будет увеличиваться. 

Большой потенциал электромобилей дает понять, что в какой-то момент они станут лучше, чем автомобили с ДВС, но когда это случится неизвестно.

Chrysler выпустит прощальную серию 300C: 492-сильный мотор V8 и 4,3 секунды почти до «сотни»

  • Главная
  • Новости
  • Chrysler выпустит прощальную серию 300C: 492-сильный мотор V8 и 4,3 секунды почти до «сотни»

Автор: Елена Астапенко Фото: Stellantis

Тираж финальной партии седана американской марки будет распродан в США (2000 экземпляров) и Канаде (200 единиц).

 

Бренд Chrysler сейчас входит в состав автогиганта Stellantis, который был образован в начале прошлого года за счёт слияния французской группы PSA и итало-американского концерна FCA (теперь «старые» названия не используются). На сегодняшний день у марки Chrysler весьма скромная линейка, которая включает в себя несколько модификаций минивэна Pacifica и полноразмерного седана 300. Причём «четырёхдверка» скоро покинет модельный ряд.

Продажи Chrysler 300 в Штатах ощутимо сократились в течение «ковидного» 2020 года: тогда дилеры реализовали 16 653 экземпляра, что на 43% меньше, чем годом ранее. По итогам следующего года результаты остались практически на том же уровне, клиенты купили 16 662 седана (+0,1%). А в текущем году у модели ощутимый минус: за первое полугодие модель разошлась тиражом в 7582 шт., что на 31,5% меньше, чем в январе-июне 2021-го.

На фото: Chrysler 300C (прощальная версия)

Завершить историю Chrysler 300 производитель решил с помощью «громкого финального аккорда»: прощальной серии 300С 2023 модельного года. С конвейера сойдёт 2000 машин, предназначенных для продажи в США, ещё 200 экземпляров рассчитаны на канадский рынок.

У спецверсии будет несколько особенностей во внешности: такой 300С снабдили чёрной решёткой радиатора с красно-бело-синим шильдиком модели в верхнем левом углу. Ещё у модели есть чёрного цвета рамки вокруг головной оптики и задних фонарей. Автомобили прощальной серии выполнят в трёх вариантах цвета кузова: чёрном, красном и белом. Автомобиль получил 20-дюймовые кованые колёсные диски, а также красные четырёхпоршневые тормозные суппорты Brembo. Звук работы двигателя можно регулировать.

Есть отличия и в интерьере Chrysler 300С: так, кресла отделаны чёрной кожей с серебристой прострочкой. На передних сиденьях с подогревом и вентиляцией виден фирменный знак с названием модели. В оформлении использованы элементы из углеродного волокна. У рулевого колеса тоже есть функция подогрева, кроме того, модель оснастили стереосистемой с 19 динамиками.

Прощальная серия Chrysler 300С оснащается 492-сильным мотором HEMI V8 объёмом 6,4 литра, его максимальный крутящий момент составляет 644 Нм. Отметим, у обычного «трёхсотого» 368-сильный HEMI V8 объёмом 5,7 литра (534 Нм). Двигатель работает в комплекте с восьмиступенчатой автоматической коробкой передач. На разгон с места почти до «сотни» (до 97 км/ч) автомобилю нужно 4,3 секунды. Максимальная скорость равна 257 км/ч. Сейчас дилеры марки собирают заказы, стартовая цена спецверсии составляет 55 тыс. долларов.

Напомним, в дальнейшем у большого седана появится преемник, вероятно, у него будет полностью электрическая «начинка». Однако его ещё придётся подождать: ранее стало известно, что новая серийная модель марки появится ближе к 2025 году. Вероятно, в роли новинки выступит серийный автомобиль, созданный на основе концепта электрического кроссовера Chrysler Airflow (был представлен в январе текущего года).

седан США новинки Chrysler Chrysler 300C

 

Новые статьи

Статьи / Интересно Премия «Автомобиль года» как зеркало состояния автомобильного рынка Буквально только что, на прошлой неделе, были объявлены итоги очередного конкурса «Автомобиль года». Казалось бы, какой «автомобиль года», если весь автомобильный рынок поражен тяжелейшим кр… 568 0 1 19.09.2022

Статьи / Интересно 5 причин покупать и не покупать BMW 1 series I E81/E82/E87/E88 Задний привод, отточенная управляемость, прекрасная эргономика, море драйва и удовольствие за рулем… Кажется, что BMW 1 series предлагает все это в компактной упаковке и, что важно, за вполн… 2045 7 1 18.09.2022

Статьи / Интересно Долгожданное прощание: почему погибла Lada Xray, но об этом никто не пожалел На прошлой неделе мы официально попрощались с Lada Xray: президент АВТОВАЗа Максим Соколов заявил, что модель никогда не вернется на конвейер. Это угадывалось еще весной, когда вслед за ост… 4156 11 22 16.09.2022

Популярные тест-драйвы

Тест-драйвы / Тест-драйв Полный привод, самый мощный мотор и силы в запасе: первый тест Chery Tiggo 8 PRO MAX Появление в российской линейке Chery модели Tiggo 8 PRO MAX можно назвать знаковым для бренда. Почему? Да хотя бы потому, что это первый с 2014 года полноприводный кроссовер Chery, приехавши… 18161 13 44 29.04.2022

Тест-драйвы / Тест-драйв Haval Dargo против Mitsubishi Outlander: собака лает, чужестранец идет В дилерском центре Haval на юге Москвы жизнь кипит: покупатели разглядывают машины, общаются с менеджерами и подписывают какие-то бумаги. Пока я ждал выдачи тестового Dargo, такой же кроссов… 10242 5 64 13.09.2022

Тест-драйвы / Тест-драйв Мотор от Mercedes, эмблема от Renault, сборка от Dacia: тест-драйв европейского Logan 1,0 Казалось бы, что нового можно рассказать про Renault Logan второго поколения, известный каждому российскому таксисту, что называется, вдоль и поперёк? Однако конкретно в этом автомобиле есть… 9949 10 41 13.08.2022

Электродвигатели | www.surpluscenter.com

Электродвигатели | www.surpluscenter.com

Этот сайт лучше всего просматривать с включенным Javascript. Некоторые функции не будут работать без Javascript. Для наилучшего взаимодействия с пользователем включите Javascript.

категория

  • Электродвигатели

Однофазные двигатели переменного тока (8)

  • Основание для двигателей переменного тока
  • Двигатели переменного тока с торцевым креплением
  • Сельскохозяйственные двигатели
  • Двигатели воздушного компрессора
  • Промывочные двигатели
  • Двигатели вентиляторов и кондиционеров
  • Двигатели для бассейнов и струйных насосов
  • Двигатели переменного тока специального назначения

См. все однофазные двигатели переменного тока

двигатели постоянного тока (5)

  • Основание для двигателей постоянного тока
  • Двигатели постоянного тока с торцевым креплением
  • Двигатели вентиляторов постоянного тока
  • Двигатели постоянного тока специального назначения
  • Контроллеры скорости двигателя

См. все двигатели постоянного тока

Мотор-редукторы постоянного тока (2)

  • Мотор-редукторы постоянного тока
  • Двигатели стеклоочистителя постоянного тока

См. все мотор-редукторы постоянного тока

Трехфазные двигатели переменного тока (5)

  • Основание для трехфазных двигателей
  • 3-фазные двигатели с торцевым креплением
  • 3-фазные насосы и двигатели для промывки
  • Преобразователи фазы
  • Преобразователи частоты

См. все трехфазные двигатели переменного тока

Линейные приводы (3)

  • Линейные приводы постоянного тока
  • Принадлежности линейного привода
  • Линейные приводы переменного тока

См. все Линейные приводы

Мотор-редукторы переменного тока (2)

  • Мотор-редукторы переменного тока
  • Линейные приводы переменного тока

См. все мотор-редукторы переменного тока

Крепления для электродвигателей (2)

  • Основания для направляющих электродвигателей
  • Адаптеры электродвигателя к насосу

См. все крепления электродвигателей

© Copyright 2022 Surplus Center, Все права защищены

Этот 17-летний парень разработал двигатель, который потенциально может изменить индустрию электромобилей | Инновация

Роберт Сансоне со своим новым синхронным реактивным двигателем. Общество науки

Роберт Сансон — прирожденный инженер. От аниматронных рук до скоростных беговых ботинок и картинга, который может развивать скорость более 70 миль в час, изобретатель из Форт-Пирса, Флорида, считает, что в свободное время он выполнил не менее 60 инженерных проектов. А ему всего 17 лет.

Пару лет назад Sansone наткнулся на видео о преимуществах и недостатках электромобилей. В видео объясняется, что для большинства двигателей электромобилей требуются магниты, изготовленные из редкоземельных элементов, извлечение которых может быть дорогостоящим как с финансовой, так и с экологической точки зрения. Необходимые редкоземельные материалы могут стоить сотни долларов за килограмм. Для сравнения, медь стоит 7,83 доллара за килограмм.

«У меня есть естественный интерес к электродвигателям, — говорит Сансоне, который использовал их в различных проектах по робототехнике. «С этой проблемой устойчивости я хотел решить ее и попытаться разработать другой двигатель».

Старшеклассник слышал о типе электродвигателя — синхронном реактивном двигателе, — в котором не используются эти редкоземельные материалы. Этот тип двигателя в настоящее время используется для насосов и вентиляторов, но сам по себе он недостаточно мощный, чтобы его можно было использовать в электромобиле. Итак, Сансоне начал мозговой штурм, чтобы улучшить его производительность.

В течение года компания Sansone создала прототип нового синхронного реактивного двигателя, который обладал большей силой вращения (или крутящим моментом) и эффективностью, чем существующие. Прототип был изготовлен из напечатанного на 3D-принтере пластика, медных проводов и стального ротора и протестирован с использованием различных измерителей для измерения мощности и лазерного тахометра для определения скорости вращения двигателя. Его работа принесла ему первый приз и выигрыш в размере 75 000 долларов на Международной научно-технической ярмарке Regeneron (ISEF) в этом году, крупнейшем международном конкурсе STEM для старших классов.

В менее экологичных двигателях с постоянными магнитами используются такие материалы, как неодим, самарий и диспрозий, которые пользуются большим спросом, поскольку используются во многих различных продуктах, включая наушники и наушники-вкладыши, объясняет Хит Хофманн, профессор электротехники и компьютерной инженерии в Университет Мичигана. Хофманн много работал над электромобилями, в том числе консультировал Tesla по разработке алгоритмов управления их силовым приводом.

«Кажется, что число приложений, использующих магниты, становится все больше и больше, — говорит он. «Многие материалы добываются в Китае, поэтому цена часто может зависеть от нашего торгового статуса с Китаем». Хофманн добавляет, что Tesla недавно начала использовать постоянные магниты в своих двигателях.

Электродвигатели используют вращающиеся электромагнитные поля для вращения ротора. Катушки проволоки в неподвижной внешней части двигателя, называемой статором, создают эти электромагнитные поля. В двигателях с постоянными магнитами магниты, прикрепленные к краю вращающегося ротора, создают магнитное поле, которое притягивается к противоположным полюсам вращающегося поля. Это притяжение раскручивает ротор.

Синхронные реактивные двигатели не используют магниты. Вместо этого стальной ротор с прорезанными в нем воздушными зазорами выравнивается с вращающимся магнитным полем. Нежелание, или магнетизм материала, является ключом к этому процессу. Когда ротор вращается вместе с вращающимся магнитным полем, создается крутящий момент. Больший крутящий момент создается, когда коэффициент заметности или разница в магнетизме между материалами (в данном случае стальным и немагнитным воздушным зазором) больше.

Вместо использования воздушных промежутков Сансоне подумал, что может включить в двигатель другое магнитное поле. Это увеличило бы этот коэффициент заметности и, в свою очередь, произвело бы больший крутящий момент. В его конструкции есть и другие компоненты, но он не может раскрыть больше деталей, так как надеется запатентовать технологию в будущем.

Новый двигатель Sansone превзошел традиционный синхронный реактивный двигатель аналогичной конструкции в тестах на крутящий момент и эффективность. Роберт Сансоне

«После того, как у меня появилась эта первоначальная идея, мне пришлось сделать несколько прототипов, чтобы проверить, будет ли эта конструкция действительно работать», — говорит Сансоне. «У меня нет тонны ресурсов для создания очень продвинутых двигателей, поэтому мне пришлось сделать уменьшенную версию — масштабную модель — с помощью 3D-принтера».

Потребовалось несколько прототипов, прежде чем он смог протестировать свой дизайн.

«На самом деле у меня не было наставника, который мог бы мне помочь, поэтому каждый раз, когда двигатель выходил из строя, мне приходилось проводить массу исследований и пытаться устранять неполадки, — говорит он. «Но в итоге на 15-м моторе я смог получить работающий прототип».

Сансон проверил свой двигатель на крутящий момент и КПД, а затем для сравнения перенастроил его для работы в качестве более традиционного синхронного реактивного двигателя. Он обнаружил, что его новая конструкция обеспечивает на 39 процентов больший крутящий момент и на 31 процент большую эффективность при 300 оборотах в минуту (об/мин). При 750 об/мин эффективность увеличилась на 37 процентов. Он не мог испытать свой прототип при более высоких оборотах в минуту, потому что пластиковые детали перегревались — урок, который он усвоил на собственном горьком опыте, когда один из прототипов расплавился на его столе, — рассказывает он 9.0195 Top of the Class , подкаст, созданный Crimson Education.

Для сравнения, двигатель Tesla Model S может развивать скорость до 18 000 об/мин, объяснил главный конструктор двигателей компании Константинос Ласкарис в интервью 2016 года Кристиану Руоффу для журнала об электромобилях Charged.

Сансоне подтвердил свои результаты во втором эксперименте, в котором он «выделил теоретический принцип, согласно которому новый дизайн создает магнитную заметность», согласно презентации своего проекта. По сути, этот эксперимент исключил все другие переменные и подтвердил, что улучшения крутящего момента и эффективности коррелируют с большим коэффициентом значимости его конструкции.

«Он определенно правильно смотрит на вещи, — говорит Хофманн о Сансоне. «Есть потенциал, что это может стать следующей большой вещью». Однако он добавляет, что многие профессора работают над исследованиями всю свою жизнь, и «довольно редко они в конечном итоге захватывают мир».

Хофманн говорит, что материалы для синхронных реактивных двигателей дешевы, но машины сложны и, как известно, трудны в производстве. Таким образом, высокие производственные затраты являются препятствием для их широкого использования и основным ограничивающим фактором для изобретения Sansone.

Сансоне соглашается, но говорит, что «с новыми технологиями, такими как аддитивное производство [например, 3-D печать], построить его в будущем будет проще».

В настоящее время Сансоне работает над расчетами и трехмерным моделированием 16-й версии своего мотора, который он планирует построить из более прочных материалов, чтобы протестировать его на более высоких оборотах в минуту. Если его двигатель продолжит работать с высокой скоростью и эффективностью, он говорит, что продолжит процесс патентования.

Вся экспериментальная установка Sansone. Роберт Сансоне

В старших классах Центральной средней школы Форт-Пирса Сансоне мечтает поступить в Массачусетский технологический институт. Его выигрыш от ISEF пойдет на оплату обучения в колледже.

Сансон говорит, что изначально не планировал участвовать в конкурсе. Но когда он узнал, что один из его занятий позволил ему завершить годовой исследовательский проект и написать статью по выбранной им теме, он решил воспользоваться возможностью и продолжить работу над своим двигателем.

«Я подумал, что если я смогу вложить в это столько энергии, то смогу сделать его научным проектом и конкурировать с ним», — объясняет он. После хороших результатов на районных и государственных соревнованиях он перешел в ISEF.

Сансоне ждет следующего этапа испытаний, прежде чем обращаться к какой-либо автомобильной компании, но он надеется, что однажды его двигатель станет предпочтительным для электромобилей.

«Редкоземельные материалы в существующих электродвигателях являются основным фактором, подрывающим устойчивость электромобилей», — говорит он. «Увидеть день, когда электромобили станут полностью устойчивыми благодаря помощи моей новой конструкции двигателя, было бы мечтой».

Рекомендуемые видео

Как выбрать электродвигатель

Как выбрать электродвигатель

Магазин электродвигателей

Проще говоря, электродвигатель преобразует электрическую энергию в механическую. Это достигается по принципу электромагнитной индукции. Электромагнитная индукция — это принцип, согласно которому проводник с током, помещенный в магнитное поле, будет иметь силу, действующую на проводник, пропорциональную протекающему току и напряженности магнитного поля. Основные принципы электромагнитной индукции были открыты в начале 1800-х годов Эрстедом, Гауссом и Фарадеем. Однако именно Тесла смог вывести моторную технологию на новый уровень в конце 1800-х годов, а также модернизировал производство двигателей. Tesla смогла успешно набрать 900 патентов в электрическое поле, имеющее отношение к двигателям.

К рабочим частям базового электродвигателя относятся:

  • Вентилятор
  • Обмотки
  • Коллектор
  • Полевые столбы
  • Вал
  • Катушки

Примечание. Обратите внимание, что чем больше используется катушек возбуждения, тем плавнее будет работать двигатель.

Двигатели переменного тока

Существуют различные типы двигателей переменного тока, в том числе однофазные и многофазные. Многофазные двигатели имеют группы фазных обмоток, которые расположены в соответствии с последовательностью фаз линии электропитания. Это создает вращающееся поле вокруг поверхности ротора. Однофазные электродвигатели не создают вращающееся поле в состоянии покоя, поэтому для создания эффекта многофазного вращающегося поля добавляется пусковая обмотка. Как только двигатель запустится, обмотка будет исключена из цепи, и электродвигатель продолжит работать на вращающемся поле, которое теперь существует благодаря движение ротора, взаимодействующего с однофазным магнитным полем статора.

Двигатели постоянного тока

Двигатели постоянного тока идеально подходят для преобразования постоянного тока или электричества в механическую энергию. Преимущества электродвигателя постоянного тока: изменение скорости и крутящего момента. Скорость двигателя постоянного тока можно контролировать, изменяя величину тока, подаваемого на двигатель. А мощность вращения или крутящий момент двигателя постоянного тока можно контролировать, изменяя количество энергии, поступающей от источника питания.

Двигатели вентиляторов

Существует множество разновидностей двигателей вентиляторов. Двигатели вентиляторов — это электродвигатели, которые позволяют вентиляторам работать регулярно в течение длительного периода времени. Необходимый тип двигателя вентилятора зависит от его применения.

  • Однофазный двигатель вентилятора . Однофазные двигатели являются наиболее распространенными электрическими двигателями вентиляторов, поскольку они подключаются к большинству вентиляторов меньшего размера и работают от существующих источников питания (переменного тока). Каждый цикл падает и достигает максимума по мере увеличения электрической мощности, что делает его электродвигателем, который потребляет меньше электроэнергии. Этот процесс является недорогим и оказывает небольшое давление на механические функции электродвигателя.
  • Однофазный электродвигатель — Двухфазные двигатели используются для больших коммерческих вентиляторов или вентиляторов в более крупных устройствах, потребляющих среднее количество электроэнергии. Эти двигатели имеют пусковую и рабочую обмотки, обе из которых возбуждаются при включении двигателя. Двухфазные электродвигатели имеют встроенные функции безопасности, которые позволяют им автоматически отключаться во избежание перегорания.

Серводвигатели

Серводвигатель позволяет точно контролировать положение. Обратная связь и угол двигателя контролируются через блок управления в этом типе двигателя. Применение серводвигателей включает станки для лазерной резки, робототехнику, станки с ЧПУ или автоматизированное производство.

Как выбрать электродвигатель

На этой схеме электродвигателя показан типичный четырехполюсный двигатель постоянного тока

в собранном и разобранном виде. На схеме электродвигателя также изображено

обмотки, коллектор, полюса возбуждения и вал двигателя постоянного тока.

Когда вы пытаетесь выбрать идеальный двигатель, всегда следует учитывать следующее:

  1. Перекрестная ссылка на номер детали или модели производителя на самом двигателе. Эта информация обычно указана на заводской табличке. двигатель.
  2. Если эта информация недоступна, попытайтесь сопоставить электрические характеристики и физические размеры неисправный мотор.

Следующие вопросы должны служить ориентиром в процессе выбора электродвигателя:

  • Каковы электрические характеристики? — (обычно указан на заводской табличке двигателя)
    • л.с., вольт, ампер, об/мин, сервис-фактор/SF (если применимо)
  • Какие скорости мне нужны?
    • Вращение (по часовой стрелке, против часовой стрелки или реверсивное)
    • Фаза (1 или 3), в случае бытового или промышленного применения
  • Каковы физические размеры?
    • Размер корпуса (если имеется) -или-
    • Длина и диаметр электродвигателя и
    • Длина и диаметр вала
    • Количество валов (1 или 2)
  • Как установить этот двигатель?
    • Какой способ монтажа электродвигателя? (жесткое основание, бандаж, сквозные болты, основание люльки и т. д.)
    • Вертикально или горизонтально?
  • Какой тип корпуса мне нужен?
    • Является ли электродвигатель открытым каплезащитным (ODP), полностью закрытым с воздушным охлаждением (TEAO), полностью закрытым с вентиляторным охлаждением (TEFC)?
    • Требуется ли специальная защита (т. е. взрывоопасная зона)?
  • Какие дополнительные характеристики необходимы?
    • Шариковый подшипник или подшипник скольжения?
    • Тип двигателя (заштрихованный полюс, постоянный разделительный конденсатор (PSC), пусковой конденсатор и т. д.)
    • Моторное приложение (к чему оно крепится?)

(назад к электродвигателям)

Электродвигатель, который работает в любом классическом автомобиле

Почему бы и нет? Конечно, у электромобилей нет выбросов выхлопных газов, но производство, эксплуатация и утилизация этих транспортных средств создают выбросы парниковых газов и другие экологические проблемы. Вождение электромобиля выдвигает эти проблемы вверх по течению, на завод, где производится автомобиль, и дальше, а также на электростанцию, где вырабатывается электричество. Необходимо учитывать весь жизненный цикл автомобиля, от колыбели до могилы. Когда вы делаете это, обещание электромобилей не сияет так ярко. Здесь мы покажем вам более подробно, почему это так.

Жизненный цикл, к которому мы относим , состоит из двух частей: Цикл транспортного средства начинается с добычи сырья, его переработки, превращения в компоненты и их сборки. Спустя годы она заканчивается спасением того, что можно спасти, и избавлением от того, что осталось. Затем идет топливный цикл — деятельность, связанная с производством и использованием топлива или электроэнергии для питания транспортного средства в течение всего срока его службы.

Для электромобилей большая часть нагрузки на окружающую среду приходится на производство аккумуляторов, наиболее энерго- и ресурсоемкого компонента автомобиля. Каждый этап производства имеет значение — добыча, переработка и производство сырья, изготовление компонентов и, наконец, сборка их в элементы и аккумуляторные блоки.

Место, где все это происходит, тоже имеет значение, потому что завод по производству аккумуляторов потребляет много электроэнергии, а источник этого электричества варьируется от региона к региону. Производство аккумуляторов для электромобилей с использованием угольной электроэнергии приводит к выбросам парниковых газов более чем в три раза по сравнению с производством аккумуляторов с использованием электроэнергии из возобновляемых источников. И о 70 процентов литий-ионных аккумуляторов производятся в Китае, который в 2020 году получил 64 процента электроэнергии из угля.

Производство литиевых аккумуляторов для электромобилей, подобных показанным здесь, является энергоемким, равно как и добыча и переработка сырья. AFP/Getty Images

Большинство производителей автомобилей заявляют, что планируют использовать возобновляемые источники энергии в будущем, но на данный момент большая часть производства аккумуляторов зависит от электрических сетей, в основном работающих на ископаемом топливе. Наше исследование 2020 года, опубликованное в Nature Climate Change , показало, что при производстве типичного электромобиля, продаваемого в США в 2018 году, выбрасывалось от 7 до 12 тонн углекислого газа по сравнению с примерно 5-6 тоннами для автомобилей, работающих на бензине.

Вы также должны учитывать электричество, которое заряжает транспортное средство. В 2019 году 63 процента мировой электроэнергии было произведено из источников ископаемого топлива, точная природа которых существенно различается в зависимости от региона. В Китае, использующем в основном угольную электроэнергию, в 2021 году было 6 миллионов электромобилей, что составляет самый большой общий парк электромобилей в мире.

Но использование угля варьируется даже в пределах Китая. Юго-западная провинция Юньнань получает около 70 процентов своей электроэнергии от гидроэлектростанций, что немного больше, чем процент в штате Вашингтон, в то время как Шаньдун, прибрежная провинция на востоке, получает около 9 процентов своей электроэнергии. 0 процентов электроэнергии из угля, как и в Западной Вирджинии.

В Норвегии самое большое количество электромобилей на душу населения, что составляет более 86 процентов продаж автомобилей в этой стране в 2021 году. И почти вся электроэнергия производится на гидро- и солнечной энергии. Таким образом, электромобиль, эксплуатируемый в Шаньдуне, создает гораздо большую нагрузку на окружающую среду, чем такой же электромобиль в Юньнани или Норвегии.

Соединенные Штаты находятся где-то посередине, получая около 60% электроэнергии производится за счет ископаемого топлива, прежде всего природного газа, который дает меньше углерода, чем уголь. В нашей модели при использовании электроэнергии с 2019 г.Сеть США для зарядки типичного электромобиля 2018 года будет производить от 80 до 120 граммов углекислого газа на километр пути по сравнению с примерно 240-320 г/км для бензинового автомобиля. Преимущество электромобиля объясняется его большей эффективностью преобразования химической энергии в движение — 77 процентов по сравнению с 12–30 процентами у бензинового автомобиля — наряду с возможностью вырабатывать электроэнергию с использованием низкоуглеродных источников. Вот почему работающие электромобили обычно выделяют меньше углерода, чем работающие бензиновые автомобили аналогичного размера, даже в угольных сетях, таких как Шаньдун или Западная Вирджиния.

Электромобиль, эксплуатируемый в Шаньдуне или Западной Вирджинии, выбрасывает около 6 процентов больше парниковых газов за свой срок службы, чем обычный бензиновый автомобиль того же размера. Электромобиль, эксплуатируемый в Юньнани, выбрасывает примерно на 60% меньше выбросов.

Но когда вы учитываете выбросы парниковых газов, связанные с производством автомобилей, расчёты меняются. Например, электромобиль, эксплуатируемый в Шаньдуне или Западной Вирджинии, выбрасывает около 6 процентов больше парниковых газов за свой срок службы, чем обычный бензиновый автомобиль того же размера. Электромобиль, эксплуатируемый в Юньнани, выбрасывает примерно на 60% меньше выбросов.

Могут ли электромобили быть достаточно хорошими — и смогут ли производители выпустить их достаточно быстро — для достижения целей, поставленных в 2021 году 26-й Конференцией Организации Объединенных Наций по изменению климата (COP26)? 197 подписавших договор стран договорились удерживать повышение средней глобальной температуры не более чем на 2 °C по сравнению с доиндустриальным уровнем и предпринимать усилия по ограничению повышения до 1,5 °C.

Наш анализ показывает, что для того, чтобы привести Соединенные Штаты в соответствие даже с более скромной целью в 2 градуса, потребуется наэлектризовать около 90 процентов парка легковых автомобилей США к 2050 году — около 350 миллионов автомобилей.

Чтобы прийти к этому числу, мы сначала должны были принять решение о подходящем углеродном балансе для флота США. Повышение средней глобальной температуры в значительной степени пропорционально совокупным глобальным выбросам двуокиси углерода и других парниковых газов. Ученые-климатологи используют этот факт, чтобы установить ограничение на общее количество углекислого газа, которое может быть выброшено до того, как мир превысит цель в 2 градуса; эта сумма составляет глобальный углеродный бюджет.

Затем мы использовали результаты модели глобальной экономики, чтобы выделить часть этого глобального бюджета специально для парка легковых автомобилей США в период с 2015 по 2050 год. Эта часть составила около 45 миллиардов тонн углекислого газа, что примерно эквивалентно к одному году глобальных выбросов парниковых газов.

6 миллионов

Количество электромобилей на дорогах Китая в 2021 году

Это щедрое пособие, но оно разумно, поскольку декарбонизировать транспорт труднее, чем многие другие отрасли. Тем не менее, работа в рамках этого бюджета потребует 30-процентного сокращения прогнозируемых совокупных выбросов с 2015 по 2050 год и 70-процентного сокращения ежегодных выбросов в 2050 году по сравнению с обычными выбросами, ожидаемыми в мире без электромобилей.

Далее мы обратились к нашей модели парка легковых автомобилей США. Наша модель имитирует для каждого года с 2015 по 2050 год, сколько новых автомобилей произведено и продано, сколько утилизировано и связанные с этим выбросы парниковых газов. Мы также отслеживаем, сколько транспортных средств находится в пути, когда они были произведены и как далеко они могут проехать. Мы использовали эту информацию для оценки ежегодных выбросов парниковых газов в результате топливного цикла, которые частично зависят от среднего размера транспортного средства и частично от того, насколько эффективность транспортного средства повышается с течением времени.

Наконец, мы сравнили углеродный баланс с нашей моделью общих совокупных выбросов (т. е. выбросов как за время транспортного средства, так и за топливный цикл). Затем мы систематически увеличивали долю электромобилей в продажах новых автомобилей до тех пор, пока совокупные выбросы автопарка не попадали в рамки бюджета. В результате к 2050 году электромобили должны были составлять подавляющее большинство транспортных средств на дорогах, а это означает, что они должны составлять подавляющее большинство продаж автомобилей десятилетием или более ранее.

Это потребует резкого увеличения продаж электромобилей: в 2021 году в Соединенных Штатах чуть более 1 миллиона автомобилей — менее 1 процента дорожных транспортных средств — были полностью электрическими. И только 3 процента проданных новых автомобилей были полностью электрическими. Учитывая долгий срок службы автомобиля, около 12 лет в Соединенных Штатах, нам потребуется резко увеличить продажи электромобилей, начиная с сегодняшнего дня, чтобы достичь цели в 2 градуса. В нашей модели более 10 процентов всех новых автомобилей, проданных к 2020 году, должны быть электрическими, а к 2030 году их число превысит половину, а к 2035 году — практически все. Исследования, проведенные в других странах, таких как Китай и Сингапур, пришли к аналогичным результатам. .

Наш анализ показывает, что для того, чтобы привести Соединенные Штаты в соответствие даже с более скромной целью в 2 градуса, потребуется электрифицировать около 90 процентов парка легковых автомобилей США к 2050 году — около 350 миллионов автомобилей.

Хорошая новость заключается в том, что 2035 год — это год, предложенный на COP26 для того, чтобы все новые автомобили и фургоны на ведущих рынках были транспортными средствами с нулевым уровнем выбросов, и многие производители и правительства взяли на себя обязательство. Плохая новость заключается в том, что некоторые крупные автомобильные рынки, такие как Китай и Соединенные Штаты, еще не сделали этого обещания, а Соединенные Штаты уже не достигли 10-процентной доли продаж на 2020 год, рекомендованной нашим исследованием. Конечно, достижение более амбициозной климатической цели 1,5 ° C потребует еще более масштабного развертывания электромобилей и, следовательно, более ранних сроков достижения этих целей.

Это трудная задача , и дорогостоящая задача — произвести и продать так много электромобилей так быстро. Даже если бы это было возможно, также необходимо было бы значительно увеличить зарядную инфраструктуру и цепочки поставок материалов. И это гораздо большее количество зарядок транспортных средств окажет сильное давление на наши электрические сети.

Зарядка имеет значение, потому что одним из часто упоминаемых препятствий для внедрения электромобилей является беспокойство по поводу дальности. Электромобили с меньшим радиусом действия, такие как Nissan Leaf, имеют Заявленный запас хода составляет всего 240 км, хотя доступна и модель с пробегом 360 км. Электромобили с большим запасом хода, такие как Tesla Model 3 Long Range, имеют заявленный производителем запас хода в 600 км. Меньшая дальность пробега большинства электромобилей не является проблемой для ежедневных поездок на работу, но беспокойство по поводу запаса хода реально для более длительных поездок, особенно в холодную погоду, что может существенно сократить дальность пробега из-за потребности в энергии для обогрева салона и снижения емкости аккумулятора.

Большинство владельцев электромобилей заряжают свои автомобили дома или на работе, а это означает, что зарядные устройства должны быть доступны в гаражах, подъездных дорожках, уличных парковках, парковках многоквартирных домов и коммерческих парковках. Пары часов дома достаточно, чтобы подзарядиться от обычных ежедневных поездок на работу, а для более длительных поездок требуется ночная зарядка. Напротив, общественные зарядные станции, использующие быструю зарядку, могут увеличить запас хода на несколько сотен километров за 15–30 минут. Это впечатляющий подвиг, но он все равно занимает больше времени, чем заправка бензобака.

Еще одним препятствием для внедрения электромобилей является цена, которая в значительной степени зависит от стоимости аккумуляторов, что делает покупную цену на 25-70 процентов выше, чем у эквивалентного обычного автомобиля. Правительства предложили субсидии или налоговые льготы, чтобы сделать электромобили более привлекательными, и эта политика только что была усилена Законом США о снижении инфляции. Но такие меры, которые достаточно легко реализовать на заре новой технологии, станут непомерно дорогими по мере роста продаж электромобилей.

Хотя стоимость аккумуляторов для электромобилей резко снизилась за последнее десятилетие, Международное энергетическое агентство прогнозирует внезапный разворот этой тенденции в 2022 году из-за роста цен на критически важные металлы и резкого роста спроса на электромобили. Хотя прогнозы будущих цен различаются, широко цитируемые долгосрочные прогнозы BloombergNEF предполагают, что к 2026 году стоимость новых электромобилей достигнет ценового паритета с обычными автомобилями даже без государственных субсидий. Тем временем шок покупателей электромобилей можно смягчить, зная, что затраты на топливо и техническое обслуживание для электромобилей намного ниже, а общая стоимость владения примерно одинакова.

1700 тераватт-часов в год

Дополнительная электроэнергия, необходимая для электрификации 90 процентов легковых автомобилей в США

Но то, что выиграют водители, могут потерять правительства. Международное энергетическое агентство По оценкам, к 2030 году внедрение электромобилей может сократить глобальные поступления от налогов на ископаемое топливо примерно на 55 миллиардов долларов США. Эти налоговые поступления необходимы для содержания дорог. Чтобы компенсировать свои потери, правительствам потребуется какой-то другой источник дохода, например, сборы за регистрацию транспортных средств.

Рост числа электромобилей также создает различные другие проблемы, не последней из которых являются более высокие требования, предъявляемые к цепочкам поставок материалов для аккумуляторов электромобилей и электрических сетей. Для аккумуляторов требуется сырье, такое как литий, медь, никель, кобальт, марганец и графит. Некоторые из этих материалов сконцентрированы в нескольких странах.

Например, в Демократической Республике Конго (ДРК) сосредоточено около 50 процентов мировых запасов кобальта. Всего на две страны — Чили и Австралию — приходится более двух третей мировых запасов лития, а ЮАР, Бразилия, Украина и Австралия владеют почти всеми запасами марганца. Такая концентрация проблематична, поскольку может привести к нестабильности рынков и перебоям в поставках.

Добыча кобальта для аккумуляторов в Демократической Республике Конго связана с проблемами качества воды, вооруженными конфликтами, детским трудом, респираторными заболеваниями и врожденными дефектами. Себастьян Мейер/Corbis/Getty Images

Пандемия COVID показала, что сбои в цепочке поставок могут сделать с другими продуктами, зависящими от дефицитных материалов, особенно с полупроводниками, нехватка которых вынудила несколько производителей автомобилей прекратить производство автомобилей. Неясно, смогут ли поставщики удовлетворить будущий спрос на некоторые критически важные сырьевые материалы для электрических батарей. Рыночные силы могут привести к инновациям, которые увеличат поставки этих материалов или снизят потребность в них. Но пока последствия для будущего вовсе не очевидны.

Дефицит этих материалов отражает не только различную обеспеченность разных стран, но и социальные и экологические последствия добычи и производства. Наличие кобальтовых рудников в ДРК, например, привело к ухудшению качества воды и расширению вооруженных конфликтов, детского труда, респираторных заболеваний и врожденных дефектов. Таким образом, международная нормативно-правовая база должна не только защищать цепочки поставок от сбоев, но и защищать права человека и окружающую среду.

Некоторые проблемы с обеспечением сырьем могут быть смягчены за счет нового химического состава аккумуляторов — несколько производителей объявили о планах перехода на литий-железо-фосфатные аккумуляторы, которые не содержат кобальта, — или программ утилизации аккумуляторов. Но ни один из вариантов полностью не устраняет проблемы цепочки поставок или социально-экологические проблемы.

Остается электрическая сеть. По нашим оценкам, электрификация 90 процентов парка легковых автомобилей США к 2050 году повысит спрос на электроэнергию на 1700 тераватт-часов в год — 41 процент производства электроэнергии в США в 2021 году. Этот дополнительный новый спрос значительно изменит форму кривая потребления за дневной и недельный периоды, а это означает, что сеть и ее подача должны быть соответствующим образом перестроены.

А поскольку весь смысл электромобилей заключается в замене ископаемого топлива, сети потребуется больше возобновляемых источников энергии, которые обычно вырабатывают энергию с перерывами. Чтобы сгладить подачу и обеспечить надежность, энергосистеме потребуется добавить емкость для хранения энергии, возможно, в виде технологии «автомобиль-сеть», которые используют установленную базу аккумуляторов для электромобилей. Изменение цены на электроэнергию в течение дня также может помочь сгладить кривую спроса.

В общем, электромобили представляют как вызов и возможность. С проблемой может быть трудно справиться, если электромобили будут развернуты слишком быстро, но быстрое развертывание — это именно то, что необходимо для достижения климатических целей. Эти препятствия можно преодолеть, но игнорировать их нельзя: в конце концов климатический кризис потребует от нас электрификации автомобильного транспорта. Но этот шаг сам по себе не может решить наши экологические проблемы. Нам нужно следовать другим стратегиям.

Мы должны стараться, насколько это возможно, например, избегать автомобильных поездок, сокращая частоту и продолжительность автомобильных поездок за счет улучшения городского планирования. Продвижение районов смешанного использования — районов, в которых работа и место жительства находятся в непосредственной близости, — позволит больше ездить на велосипеде и ходить пешком.

В период с 2007 по 2011 год город Севилья построил разветвленная велосипедная сеть, увеличивающая количество ежедневных поездок на велосипеде с 13 000 до более чем 70 000, или 6 процентов всех поездок. В Копенгагене на велосипед приходится 16 процентов всех поездок. Города по всему миру экспериментируют с широким спектром других инициатив поддержки, таких как суперкварталы Барселоны, регионы меньше, чем район, которые предназначены для пеших и велосипедных прогулок. В Стокгольме и Лондоне были введены сборы за пробки, чтобы ограничить автомобильное движение. Париж пошел еще дальше, с предстоящим запретом на частное транспортное средство. Согласно последнему выпуску Шестого оценочного доклада Межправительственной группы экспертов по изменению климата, в совокупности изменения в городской форме могут снизить потребление энергии транспортом на 25 процентов.

Мы также должны перейти от использования автомобилей, в которых часто находится только один человек, к менее энергоемким способам передвижения, таким как общественный транспорт. Количество пассажиров в автобусах и поездах можно увеличить за счет улучшения связи, частоты и надежности. Региональные железные дороги могут заменить большую часть междугородних перевозок. При высокой загруженности автобусы и поезда обычно могут удерживать выбросы на уровне ниже 50 граммов углекислого газа на человека на километр, даже если они работают на ископаемом топливе. В электрифицированных режимах эти выбросы могут снизиться в пять раз.

В период с 2009 по 2019 год инвестиции Сингапура в массовый скоростной транспорт помогли сократить долю личного автотранспорта с 45 до 36 процентов. С 1990 по 2015 год Париж сократил количество поездок на автомобиле на 45 процентов за счет устойчивых инвестиций как в общественный транспорт, так и в активную транспортную инфраструктуру.

Реализация этих дополнительных стратегий может значительно облегчить переход на электромобили. Мы не должны забывать, что для преодоления климатического кризиса требуется нечто большее, чем просто технологические исправления. Это также требует индивидуальных и коллективных действий. Электромобили окажут огромную помощь, но не стоит ожидать, что они справятся со своей задачей в одиночку.

Что такое электродвигатель?

Электродвигатели представляют собой устройства, преобразующие электрическую энергию в механическую, обычно в форме вращательного движения. Проще говоря, это устройства, которые используют электроэнергию для выработки движущей силы.

Электродвигатели не только обеспечивают простое и эффективное средство создания высокой выходной мощности привода, но и их легко уменьшить, что позволяет встраивать их в другие машины и оборудование. В результате они находят широкое применение как в промышленности, так и в повседневной жизни.

Принцип действия

Вы помните, как вас учили в школе правилу левой руки Флеминга? Электродвигатели являются применением этого правила, при этом сила, создаваемая электрическим током, протекающим через катушку в присутствии магнитного поля, заставляет вал двигателя вращаться.
На приведенной ниже диаграмме правило левой руки Флеминга говорит нам о том, что направленная вверх сила генерируется, когда ток течет перпендикулярно магнитному полю от магнита * .

  • *

    Магнитное поле: область, в которой присутствует магнитная сила (направленная от северного (N) к южному (S) полюсу магнита).

Как достигается вращение в электродвигателе

В случае щеточного электродвигателя постоянного тока *1 , например, эту силу можно использовать для поддержания непрерывного вращения путем изменения направления тока на каждом полуобороте катушки (что достигается с помощью щеток и коммутатора *2 )

  • *1

    Двигатель постоянного тока: Двигатель, работающий от постоянного тока (DC)

  • *2

    Щетки и коллектор: При совместном использовании они меняют направление тока каждый раз, когда вал двигателя делает пол-оборота.

История электродвигателей

Британский ученый Майкл Фарадей пользуется особым влиянием среди многих ученых 19 века, сыгравших определенную роль в изобретении и разработке электродвигателей. В 1821 году Фарадей провел успешный эксперимент, в котором вращение проволоки осуществлялось с помощью магнита вместе с магнитным полем, создаваемым электрическим током. В 1831 году он изобрел закон магнитной индукции, заложив основу для значительного прогресса в области электродвигателей и генераторов.

Со временем было изобретено множество других типов электродвигателей, а также конструкции, которые можно считать архетипическими двигателями постоянного тока.

Впоследствии, в 1872 году, практический электродвигатель был не столько изобретен, сколько обнаружен, когда один из генераторов, выставленных на Всемирной выставке в Вене, начал вращаться сам по себе после того, как был случайно подключен к другому генератору. Это привело людей к пониманию того, что то, как работают генераторы, можно использовать и в двигателях. Последовавший за этим быстрый рост практического использования генераторов был таким, что они стали основой многих отраслей промышленности в 20 веке.

Двигатели и генераторы

В то время как электродвигатели преобразуют электрическую энергию во вращение и другие формы механической энергии, генераторы выполняют обратную функцию преобразования механической энергии в электрическую.
Несмотря на эти противоположные функции, двигатели и генераторы очень похожи по конструкции и принципу действия. Фактически, простой эксперимент, в котором два модельных двигателя соединяются вместе, — это все, что нужно, чтобы продемонстрировать, что электрический двигатель может также работать как генератор.
Естественно, учитывая различные способы их использования, два типа машин всегда разрабатывались отдельно.

Типы электродвигателей

Электродвигатели бывают самых разных форм в зависимости от типа используемого тока, конструкции их катушек (обмоток) и того, как они генерируют магнитное поле. Соответственно, их можно классифицировать по различным признакам.
Ниже описаны три типа электродвигателей, обычно используемых как в быту, так и в промышленности.

Двигатели постоянного тока

Это двигатели, приводимые в действие источником постоянного тока. Они подразделяются на щеточные и бесщеточные (BLDC) двигатели в зависимости от того, используют ли они щетки *1 .
В то время как коллекторным двигателям постоянного тока для работы требуется только подключение к источнику питания постоянного тока, бесщеточным двигателям постоянного тока требуется датчик для определения ориентации магнитных полюсов ротора *2 и схема привода для подачи соответствующего тока.

  • *1

    Щетка: Деталь, используемая вместе с коллектором.

  • *2

    Ротор: вращающаяся часть двигателя. Вал двигателя является частью ротора.

Двигатели переменного тока

Это двигатели, приводимые в действие источником переменного тока. Они сгруппированы в зависимости от того, является ли источник питания однофазным *1 или трехфазным *2 .
Однофазные двигатели далее сгруппированы в конденсаторные двигатели, в которых используется конденсатор *3 для создания крутящего момента, и двигатели с расщепленными полюсами, которые имеют дополнительную катушку (обмотку), называемую экранирующей катушкой *4 .

  • *1

    Однофазный: обычный источник питания переменного тока, обычно используемый в домах.

  • *2

    Трехфазный: тип источника питания переменного тока, используемый в основном в промышленности.

  • *3

    Конденсатор: электронный компонент, хранящий электрическую энергию.

  • *4

    Затеняющая катушка: катушка с замкнутой цепью, намотанная вокруг части сердечника статора.

Шаговые двигатели

Это двигатели, которые вращаются на фиксированный шаг (угол) каждый раз, когда вводится импульс *1 .
Шаговые двигатели можно сгруппировать по структуре их ротора. Двигатели с постоянными магнитами (PM) *2 имеют магнит в роторе *3 , двигатели с переменным сопротивлением (VR) *4 имеют железный сердечник, а гибридные двигатели имеют и то, и другое.

  • *1

    Импульс: Короткий всплеск электричества, производимый включением и выключением источника питания.

  • *2

    Ротор: вращающаяся часть двигателя. Вал двигателя является частью ротора.

  • *3

    Двигатель с постоянными магнитами: двигатель с постоянным магнитом

    .
  • *4

    Двигатель

    VR: двигатель с переменным сопротивлением, в котором сердечники расположены подобно зубьям шестерни, при этом такое расположение определяет угол шага.

Обзор типов электродвигателей

В таблице ниже перечислены основные характеристики трех различных типов двигателей.

В дополнение к перечисленным выше существует множество других типов электродвигателей.

Тип Характеристики
Линейный двигатель Двигатель, который скользит в линейном направлении
Ультразвуковой двигатель Двигатель, приводимый в движение ультразвуковыми колебаниями
Двигатель без сердечника Коллекторный двигатель постоянного тока с ротором без железного сердечника или бесщеточный двигатель со статором без железного сердечника
Универсальный двигатель Двигатель с фазным ротором и фазным статором, работающий как на переменном, так и на постоянном токе
Двигатель с гистерезисом Двигатель переменного тока, в роторе которого используется материал, обладающий гистерезисом и вращающийся за счет гистерезисного крутящего момента
Электродвигатель SR Шаговый двигатель VR, который также имеет функцию определения положения ротора, что позволяет избежать потери синхронизации

Применение двигателей

Хотя электродвигатели используются по-разному, ниже перечислены общие области применения бесщеточных двигателей постоянного тока и шаговых двигателей, поставляемых ASPINA.

Области применения бесщеточных двигателей постоянного тока

Благодаря небольшим размерам, высокой мощности, низкому уровню шума и вибрации, а также длительному сроку службы бесщеточные двигатели постоянного тока находят широкое применение в таких приложениях, как системы вентиляции (очистители воздуха и другие виды кондиционер), бытовая техника, холодильники, водонагреватели, торговые автоматы, копировальные аппараты, принтеры, проекторы, оргтехника, контрольно-измерительные приборы, транспортные средства и медицинские приборы.

  • Кондиционеры
  • Финансовые терминалы (банкоматы), разменные автоматы, автоматы по обмену валюты, автоматы по продаже билетов
  • Бытовая техника
  • Чистые помещения
  • Водонагреватели и горелки
  • Оптические изделия
  • Торговые автоматы
  • Принтеры
  • Морозильные и холодильные витрины
  • Копировальные аппараты
  • Медицинское оборудование
  • Офисное оборудование
  • Системы лабораторного анализа

Области применения шаговых двигателей

Превосходная точность остановки, высокий крутящий момент на средних и низких скоростях и превосходная чувствительность шаговых двигателей означают, что они могут использоваться в самых разных приводных устройствах, требующих точного управления.

  • Производственное оборудование
  • Приводы оптических дисков (приводы Blu-ray, DVD и т. д.)
  • Медицинское оборудование
  • Лазерные принтеры
  • Лабораторные аналитические приборы
  • Цифровые камеры
  • Банкоматы
  • Жалюзи кондиционера
  • Торговые автоматы
  • Развлекательные автоматы
  • Автоматы по продаже билетов
  • Копировальные аппараты
  • Роботы

Решение проблем с электродвигателями

ASPINA поставляет не только автономные шаговые двигатели, но и системные продукты, включающие системы привода и управления, а также механические конструкции. Они подкреплены всесторонней поддержкой, которая простирается от прототипирования до коммерческого производства и послепродажного обслуживания.
ASPINA может предложить решения, адаптированные к функциям и характеристикам, требуемым в различных отраслях промышленности, областях применения и потребительских продуктах, а также для ваших конкретных производственных схем.

ASPINA поддерживает не только клиентов, которые уже знают свои требования или спецификации, но и тех, кто сталкивается с проблемами на ранних стадиях разработки.
Вы боретесь со следующими проблемами?

Выбор двигателя

  • У вас еще нет подробных спецификаций или проектных чертежей, но вам нужна консультация по двигателям?
  • У вас нет штатного специалиста по двигателям, и вы не можете определить, какой тип двигателя лучше всего подойдет для вашего нового продукта?

Разработка двигателей и связанных с ними компонентов

  • Хотите сосредоточить свои ресурсы на основных технологиях и заказать приводные системы и разработку двигателей на стороне?
  • Хотите сэкономить время и силы на перепроектирование существующих механических компонентов при замене двигателя?

Уникальное требование

  • Нужен нестандартный двигатель для вашего продукта, но ваш обычный поставщик отказался?
  • Не можете найти двигатель, который дает вам требуемый контроль, и почти теряете надежду?

Ищете ответы на эти вопросы? Свяжитесь с ASPINA, мы здесь, чтобы помочь.

Ссылки на глоссарий и страницы часто задаваемых вопросов

Главная — Baldor.com

Главная — Baldor.com

Английский

Английский
французский (Канада)

Веб-сайт АББ использует файлы cookie. Оставаясь здесь, вы соглашаетесь на использование нами файлов cookie    -> Подробнее

Более 100 лет назад мы решили создать более совершенный двигатель, и это до сих пор остается нашей целью. Сегодня ABB является производителем двигателей NEMA номер один в мире, и мы гордимся тем, что поддерживаем вас на местном уровне с помощью торговой марки Baldor-Reliance.

Выбирая двигатель ABB Baldor-Reliance, вы получаете продукт, разработанный и изготовленный с учетом требований качества и надежности, поддерживаемый глобальной сетью специалистов по продажам и поддержке, стремящихся обеспечить качество обслуживания клиентов мирового класса.

Предложение продуктов

Двигатели переменного тока

  • Общего назначения
  • Тяжелая работа
  • Обязанность стирки
  • Взрывозащищенный
  • Насос
  • Двигатели HVAC
  • Сельскохозяйственные двигатели
  • Двигатели переменного тока с регулируемой скоростью
  • Морской долг
  • Двигатели погрузочно-разгрузочных работ
  • Двигатели определенного назначения
  • Специальные двигатели переменного тока
  • Рамные двигатели IEC
  • Тормозные двигатели
  • Сцепления и тормоза

Бесщеточные серводвигатели переменного тока

  • Бесщеточные серводвигатели переменного тока серии HDS
  • Бесщеточные серводвигатели переменного тока BSM серии B
  • Бесщеточные серводвигатели переменного тока BSM серии C
  • Бесщеточные серводвигатели переменного тока BSM серии N
  • Бесщеточные серводвигатели переменного тока из нержавеющей стали
  • Прецизионные редукторы для сервоприводов

Большие двигатели переменного тока

  • Большие асинхронные двигатели
  • Большие синхронные двигатели

Электродвигатели постоянного тока и средства управления

  • Встроенные двигатели постоянного тока HP и RPM III
  • Двигатели постоянного тока с дробными и постоянными магнитами
  • Устройства обратной связи для двигателей переменного и постоянного тока

Шлифовальные станки, буферы, токарные станки

  • Измельчители
  • Буферы
  • Станки для полировки
  • Ленточные шлифовальные машины

Все новости

  • Инвестируйте в кадровый резерв для сильного производственного сектора | Внешний артикул

    Промышленность может преодолеть неправильные представления, которые могут стать препятствием для молодых людей, занимающихся производством. Пандемия ускорила уже существующие преобразования в производстве, особенно потребность в большей цифровизации. Это также подчеркивает экономическую важность производства. По данным Национальной ассоциации производителей (NAM), этот сектор ежегодно вносит в экономику 2,71 триллиона долларов, что делает производство США эквивалентным по стоимости восьмой по величине экономикой мира.

  • Компания ABB обеспечивает успех в гонках на электромобилях со средней школой Flowery Branch

    Уже второй год завод ABB по производству двигателей NEMA в Флауэри-Бранч, недалеко от Гейнсвилля, штат Джорджия, США, будет поддерживать усилия своей местной средней школы по разработке и созданию электромобиля для участия в гонках на выносливость Georgia Electraton. Georgia Electrathon — это организация учителей, студентов и пропагандистов технологий с батарейным питанием, цель которой — пробудить интерес к науке, технике и технологиям путем вовлечения участников в проектирование, строительство, испытания и разработку конкурентоспособных электромобилей.

Просмотреть все

Новости компании

  • Упрощение выбора двигателя для производителей агрегатов | Внешний артикул

    Техническое обслуживание двигателя имеет решающее значение для продления срока службы конвейеров. Фактически, первоначальный выбор правильного двигателя может существенно изменить процедуру технического обслуживания. Понимая требования к крутящему моменту двигателя и выбирая правильные механические характеристики, можно выбрать двигатель, который прослужит много лет после гарантийного срока при минимальном техническом обслуживании.

  • Инвестируйте в кадровый резерв для сильного производственного сектора | Внешний артикул

    Промышленность может преодолеть неправильные представления, которые могут стать препятствием для молодых людей, занимающихся производством. Пандемия ускорила уже существующие преобразования в производстве, особенно потребность в большей цифровизации. Это также подчеркивает экономическую важность производства. По данным Национальной ассоциации производителей (NAM), этот сектор ежегодно вносит в экономику 2,71 триллиона долларов, что делает производство США эквивалентным по стоимости восьмой по величине экономикой мира.

  • Просмотреть все

    Новости отрасли

    • Цифровая технология помогает понять суть насосов | Внешний артикул

      Насосы буквально являются сердцем пищевого завода, перемещая жизненно важные жидкости. И, как и в случае с человеческими сердцами, электронный мониторинг их состояния может обеспечить постоянное здоровье. Цифровые технологии повысили производительность и техническое обслуживание многих видов промышленного оборудования, и насосы не являются исключением. Правильный контроль и управление насосами, а также двигателями и приводами, которые их приводят в действие, может иметь большое значение для повышения их производительности и обеспечения их непрерывной работы.

    • Различия между электродвигателями NEMA и IEC | Внешний артикул

      Большинство читателей журнала Plant Engineering знакомы с электродвигателями, изготовленными по стандартам Национальной ассоциации производителей электрооборудования (NEMA), которые обычно используются в США, Канаде, Мексике, некоторых частях Южной Америки и Саудовской Аравии. Но почти 70% промышленных двигателей, продаваемых по всему миру, производятся в соответствии со стандартами Международной электротехнической комиссии (МЭК). Стандартами двигателей для этих двигателей являются MG 1 для NEMA и серии 60034 и 60071 для IEC, которые определяют механические, электрические и рабочие характеристики.

    Просмотреть все

    Новые продукты

    • Компания АББ расширяет ассортимент двигателей для тяжелых условий эксплуатации с двигателем Baldor-Reliance XT | Пресс-релиз

      Двигатель Baldor-Reliance Severe Duty XT от АББ — это двигатель для тяжелых условий эксплуатации, занимающий промежуточное положение между линейками двигателей Baldor-Reliance General Purpose и XEX премиум-класса для тяжелых условий эксплуатации.

    • Установка втулки Dodge QD | Видео

      Быстроразъемные соединения или втулки QD представляют собой метод крепления концентрических валов, позволяющий легко устанавливать и снимать шкивы клиновидных ремней, звездочки и муфты.

    • Новый интеллектуальный и безопасный способ контроля двигателей во взрывоопасных зонах | Пресс-релиз

      Компания АББ расширила сферу применения интеллектуальных датчиков АББ, предложив конструкцию нового поколения для двигателей во взрывоопасных зонах. Заказчики химической и нефтегазовой промышленности теперь могут извлечь выгоду из экономичного мониторинга состояния в самых разных областях применения.

    Просмотреть все

    Награды и признание

    • АББ сохраняет высшие награды за электродвигатели в ежегодном конкурсе Control Design Readers Choice Awards

      Результаты есть! В очередной раз двигатели ABB и Baldor-Reliance были признаны наиболее предпочтительными в категории технологий электродвигателей в ходе 30-го ежегодного голосования журнала Control Design Magazine по версии Reader’s Choice Awards. Читатели, принявшие участие в опросе анонимно, представляют различные перерабатывающие отрасли, причем большинство ответов приходится на Северную Америку.

    • Глобальный менеджер по продукции АББ выбран для Лидерства Гринвилл

      Участники, выбранные для лидерства в Гринвилле, делятся разнообразным опытом в рамках общественных проектов, чтобы обеспечить качественное лидерство в этом районе.

    • Выделение члена Партнерства Зеленой Звезды Теннесси | Внешняя ссылка

      Tennessee Green Star Partnership — это добровольная программа экологического лидерства, предназначенная для признания отраслей в штате, приверженных принципам устойчивого развития.