Датчик Холла в автомобиле ✔ Что такое датчик Холла?
Современные автомобили напичканы электроникой — датчики, сенсоры, блоки управления, блоки слежения, индикаторы, цифровые табло, экраны и т.д. В этой статье мы разберемся с одним из немаловажных датчиков автомобиля – датчиком холла.
Что такое датчик холла в автомобиле
Датчик холла автомобиля выполняет очень важную роль – участвует в старте двигателя. Датчик холла необходим для считывания показаний распределительного вала двигателя, чтобы определять его вращение. Другими словами, этот сенсор считывает количество зубцов распредвала и отправляет электрические сигналы в электронный блок управления (ЭБУ) автомобиля. ЭБУ по показаниям датчика холла определяет исправность системы зажигания и старта – работает ли стартер и вращается ли коленчатый вал.
Устанавливается датчик холла непосредственно напротив зубцов вала на расстоянии не более 1см.
Выходом с датчика холла является напряжение 5В или 12В – тот уровень, который ЭБУ автомобиля сможет распознать. У каждого автомобиля это напряжение разное, и для взаимозаменяемости датчиков с одной машины на другую потребуется лишь дополнительно установить в электрическую схему резистор. Схема подключения дополнительного резистора показана на рисунке ниже.
Как диагностировать неисправность датчика холла в машине
Основной симптом при неисправности ДХ – нестабильный запуск двигателя. Двигатель может заводиться без проблем практически всегда, а может не заводиться по 15 минут, как бы водитель ни крутил ключ зажигания. Датчик холла может проявлять неисправность в совершенно разных условиях – на горячую, на холодную, в дождь, в снег, в абсолютно сухую погоду, неважно. Двигатель может с первого раза завестись, а при повторном запуске – нет.
Стоит отметить, что современные ЭБУ сами могут диагностировать неисправность ДХ, причем производят это в автоматическом режиме. В случае обнаружения ошибки в сигнале ДХ, машина подсветит значок Check Engine на приборной панели, и выдаст ошибку в CAN-шину для возможности ее считывания на СТО.
Кстати, датчики холла от автомобилей ВАЗ подходят практически ко всем двигателям иномарок. Имеет артикулы А473.407529.002, 2108-3706800,16.3855, 1112.3855. Основная доработка – изменение напряжения путем добавления резистора, как описано выше.
Что такое датчик холла и его электрические принципы функционирования рассказываются в следующем видео:
принцип работы и применение устройства в автомобиле
Датчик Холла — это устройство, которое применяется в современных автомобилях с бесконтактным принципом зажигания. Назначение и использование прибора зависит от его технических характеристик.
Содержание
[ Раскрыть]
[ Скрыть]
Принцип работы
Закон работы заключается в том, что при перемещении проводника через магнитное поле возникает потенциал ЭДС. Такое действие было разработано известным американским ученым Э. Холлом еще в 1879 году.
Эффект Холла состоит в возникновении напряжения на пластинах датчика при изменении магнитной индукции электромагнитного поля.
Схема работы устройства ХоллаБесконтактный датчик Холла — это устройство, которое работает по следующему принципу:
- Через пластины полупроводника протекает электрический ток.
- В магнитном поле возникает разность потенциалов, которая гасится постоянным магнитом. Диапазон напряжения на выходе составляет от микровольт до сотен милливольт.
- При прохождении сигнала на вход устройства возникает постоянный прямоугольный импульс, который можно увидеть только на осциллографе.
- Происходит преобразование индукции магнитного поля в электрическое напряжение, поступающее на элемент управления мотором автомобиля. Значение угла опережения зажигания зависит от ЭДС датчика.
- Измеритель определяет положение распределительного и коленчатого вала автомобиля. Двигатель при несоответствии положения ГРМ может выйти из строя.
Каналом Радиолюбитель представлено описание работы датчиков Холла.
Основные виды
Прибор Холла имеет следующую классификацию:
- Аналоговый. Превращает магнитную индуктивность в ЭДС.
- Цифровой. Действует при превышении значений магнитной индуктивности электрического поля. Эти устройства делятся на униполярники и биполярники. Первые датчики выполняют свои функции при увеличении электромагнитного поля. Вторые — реагируют на прямую или обратную полярность. Цифровые приборы обладают зависимой чувствительностью при изменении индуктивности электрического поля.
Для чего нужен датчик Холла
Применение датчика в автомобилях обеспечивает правильный угол опережения системы зажигания.В старых моделях авто он используется для разрешения подачи искры на высоковольтные свечи. Аналоговые приспособления в основном встроены в электрические средства измерений и систему учета электроэнергии. Современные цифровые вольтметры и амперметры производят замер значений с помощью системы Холла. В крупном производстве можно встретить эксплуатацию датчиков на электрических приводах конвейеров.
Загрузка …Видео «Обзор датчиков Холла»
На видео от канала chipdip представлен подробный обзор и техническое описание датчиков Холла.
Была ли эта статья полезна?
Спасибо за Ваше мнение!
Статья была полезнаПожалуйста, поделитесь информацией с друзьями
Да (100.00%)
Нет
Датчик Холла — принцип работы
В системах и устройствах каждого автомобиля есть масса приборов, которые несут только функцию информирования о том или ином процессе. На основе информации, которые эти устройства предоставляют, высшие по иерархии системы принимают решения о том или действии. Эти шпионы называются датчиками и собирают информацию о работе деталей и узлов, а после передают ее водителю. На современных автомобилях водитель избавлен от принятия большинства решений, поэтому всю работу делают за него электронные системы. Бесконтактная система зажигания и датчик Хoлла — яркий тому пример.
Содержание:
- Датчик Холла, что это такое
- Применение датчика в автомобиле
- Преимущества автомобильного датчика Холла
- Зажигание с датчиком Холла
- Подключение и проверка датчика Холла
Датчик Холла, что это такое
Все автомобильные датчики классифицируются по параметру, который они определяют. Это может быть датчик температуры, датчик массового расхода воздуха, датчик движения или датчик положения. Датчик на эффекте Холла как раз применяется для того, чтобы определять положение коленчатого или распределительного вала.
Вкратце разберемся с этим эффектом, тогда станет понятнее, что представляет собой это устройство. Гальваномагнитное явление было открыто в 1879 году Эдвином Холлом, а суть этого открытия в том, что при установке проводника с постоянным потенциалом в магнитное поле, появляется разность потенциалов, то есть электрический импульс. На основе этого являения работает не только часть системы зажигания автомобиля, но и ионные ракетные двигатели, приборы, которые измеряют напряженность магнитного поля, и даже во многих мобильных устройствах в виде основы для работы электронного компаса.
Применение датчика в автомобиле
Холловское напряжение давно применяется в машиностроении и конструкции серводвигателей. Он идеально подходит для того, чтобы определять углы положения валов, а на машинах архаичной конструкции, датчик применялся для определения момента возникновения искры. Схема датчика проста и мы ее помещаем ниже.
Суть работы устройства в том, что когда подают ток на две клеммы участка полупроводникового материала (на чертеже — клеммы «а») и помещают его в магнитное поле, на двух других клеммах возникает импульсное напряжение, а оно может восприниматься устройством-приемником, как сигнал к определенным действиям.
Автомобильный датчик Холла принцип работы которого показан на схеме ниже, но буквально ее воспринимать было бы ошибкой. Дело в том, что современные датчики Холла представляют собой все элементы начерченного датчика в одном крошечном корпусе. Это стало возможным тогда, когда появились миниатюрные полупроводниковые приборы.
Преимущества автомобильного датчика Холла
Микроэлектроника позволила добиться от устройства очень маленьких размеров, при этом, сохранив полную функциональность. Основные преимущества устройства современного датчика Холла в следующем:
- компактность;
- возможность разместить в любой точке двигателя или любого другого механизма;
- стабильность работы, то есть при любых оборотах вала, датчик будет корректно реагировать на его вращение;
- стабильность не только в работе, но и стабильность характеристики сигнала.
Наряду с бесспорными достоинствами и функциональностью устройства, оно имеет некоторые проблемы:
- Помехи — главный враг любого электромагнитного устройства. А помех в электрической цепи автомобиля более, чем достаточно.
- Цена. Датчик, основанный на эффекте Холла дороже обычного магнитоэлектрического датчика.
- Работоспособность датчика Холла сильно зависит от электронной схемы.
- Микросхемы могут иметь нестабильные характеристики, что может повлиять на корректность показаний.
Зажигание с датчиком Холла
Теперь попробуем применить датчик на практике, а, точнее, интегрировать его в систему зажигания. А установим мы его в прямо в трамблер для того, чтобы руководить процессом искрообразования в бесконтактной системе. Схема установки датчика Холла показана на рисунке. Он установлен возле вала прерывателя-распределителя, на котором установлена магнитопроводящая пластина. Пластина-ротор имеет столько вращающихся сердечников, сколько цилиндров у двигателя.
Поэтому при прохождении пластины ротора возле датчика с поданным на него напряжением, возникает эффект Холла, с выводов датчика снимается импульс и подается на коммутатор, а оттуда на катушку зажигания. Она преобразует слабый импульс в высоковольтный и передает его по высоковольтному проводу на свечу зажигания.
Подключение и проверка датчика Холла
Подключить любой датчик Холла довольно просто, поскольку он имеет всего три вывода, один из которых минусовой и идет на массу, второй — питание, третий — сигнальный, с него и поступает импульс на коммутатор. Проверить, работает ли датчик довольно просто. Если автомобиль подает признаки неисправности системы зажигания, которые выражаются в плохом пуске или нестабильности работы, первое, что нужно проверить — именно этот датчик.
Для этого не нужно никаких сложных осциллографов, хотя по науке ДХ проверяют именно при помощи осциллографа. Для проверки работоспособности устройства, достаточно просто закоротить 3-й и 6-й вывод на колодке трамблёра. При включенном зажигании закороченные выводы приведут к образованию искры, что говорит о том, что датчик свое отжил.
Замена датчика — занятие на 10 минут, но чтобы не покупать новый, лучше проверить установленный, вполне возможно, что зажигание работает некорректно по другой причине. Таким образом, можно обнаружить поломку, сэкономить время и не покупать лишние детали. Следите за простейшими приборами, и неприятные сюрпризы будут обходить автомобиль стороной. Плотной всем искры и удачи в дороге!
Читайте также:
мир электроники — Датчик Холла
Электронные компоненты
материалы в категории
Что такое датчик Холла и как он работает
В 1879 году Эдвин Холл открыл удивительный эффект (его впоследствии так и назвали- Эффект Холла): если в магнитное поле поместить пластину с подключенным к нему постоянным током то под воздействием магнитного поля на краях этой пластины начинают скапливаться заряды.
На рисунке выше:
1. проводник с потоком электронов от источника постоянного тока
2. Пластина-датчик
3. Магниты
4. Магнитное поле
5. Источник тока.
Как видно на рисунке- поток электронов под воздействием магнитного поля сместился к одному краю и получилось что заряженный потенциал на этом крае пластины оказался выше чем на другом.
Открытие Эффекта Холла позволило создать датчик (его назвали Датчик Холла), который позволяет измерять магнитное поле.
Область применения Датчиков Холла
Чаще всего Датчики Холла применяют в устройствах контроля вращения: на вращающийся механизм устанавливаются магниты и при помощи датчика Холла можно следить за частотой вращения (например с целью контроля скорости вращения или регулировки).
Основное достоинство датчика Холла заключается в его гальванической развязке: он может устанавливаться в не зависимости от измеряемого устройства- было-бы магнитное поле.
Примеры практического применение датчика Холла
В автомобильных системах зажигания.
Здесь он отслеживает частоту вращения вала распределителя для управления системой зажигания (на рисунке это элемент под названием К-97).
В радиоаппаратуре датчики Холла применялись для отслеживания частоты вращения двигателей с целью точной подстройки скорости вращения: в основном в видеомагнитофонах а также на некоторых кассетных магнитофонах высокого класса например Вега- МП122. Выглядят там датчики Холла так (расположены между катушек)
Как проверить датчик Холла
Проверка датчика Холла не очень сложная процедура: достаточно просто вспомнить о его основном свойстве: он реагирует на изменяющееся магнитное поле. То есть при изменении магнитного поля на его выходах будет меняться потенциал.
Поэтому: если речь идет о проверке датчика Холла в радиоэлектронном устройстве (видеомагнитофон или магнитофон), то достаточно просто подключиться осциллографом к выводам датчика Холла и крутануть вал электродвигателя. При исправном датчике мы увидим на выходе изменяющее напряжение.
Проверка датчика Холла на автомобиле так-же не сильно сложная процедура: все требуется лишь отвертка, вольтметр с пределом измерения 15 В или контрольная лампа на 12 Вольт.
Подключите согласно приведенной схеме вольтметр или контрольную лампу. Включите зажигание (не пуская двигатель) и медленно вращайте коленчатый вал двигателя за болт крепления шкива коленчатого вала. Напряжение должно резко меняться от 0,4 до 8 В (min). Контрольная лампа должна мигать. Если этого не происходит,
Зачем в телефоне датчик холла
Современный смартфон может быть настолько многофункциональным, что его владелец не всегда в курсе всех характеристик и возможностей своего аппарата. Например, вы знаете, что такое датчик Холла в смартфоне? Как он работает и для чего нужен? Предлагаем вам узнать об этой характеристике больше!
Что значит датчик Холла в смартфоне?
Мы уже в курсе, зачем гаджету модуль приближения или гироскоп. Но что такое датчик Холла в смартфоне? Это определитель положения, чье действие основано на эффекте Холла. Данный приборчик фиксирует как наличие магнитного поля, так и измеряет его напряженность.
Датчик и сам эффект назван по имени известного физика Э. Холла. Именно этот ученый установил, что при помещении в центр магнитного поля проводника-пластины, по которой идет переменный ток, в нем (поле) проявится холловское напряжение — поперечная разность потенциалов.
В описанном случае электроны в проводнике отклоняются строго перпендикулярно направлению самого магнитного поля. Отсюда их плотность на разных частях пластины будет отличной. Вот эту разность потенциалов и фиксирует измеритель.
А что такое датчик Холла в смартфоне? Это еще более простой прибор — он призван определять лишь наличие магнитного поля, не измеряя его напряженность. Кроме того, гаджет наверняка снабжён еще и магнитным датчиком, который позволяет использовать ваш смартфон в качестве компаса.
Где он применяется?
Мы с вами установили, что такое датчик Холла в смартфоне. Однако гаджеты — это не единственная сфера применения изобретения, которое также отличается возможностью бесконтактного управления каким-либо устройством.
Надо сказать, что эффект Холла был открыт сравнительно давно — в 1879 году. А впервые применили его на практике только спустя 75 лет после этого события. Полезен он оказался для автомобилей — датчик использовали для измерения угла расположения коленвала, распредвала. В более старых моделях машин датчик Холла определял момент образования искры.
Далее по пути прогресса прибор стали применять и в сложных системах:
- бесконтактные выключатели;
- системы, предназначенные для чтения магнитных кодов;
- устройства, используемые для бесконтактного определения в проводниках силы тока;
- измерители уровня жидкости;
- ионные ракетные двигатели.
Кроме того, было выяснено, что датчик Холла способен заменять магнитоуправляемые герметичные контакты — герконы. Они имеют широкую сферу применения: микроэлектроника, охранные сигнализации, клавиатуры, лифты, наушники.
Зачем датчик Холла в смартфоне?
Мы с вами выяснили, что данный прибор определяет наличие магнитного поля. Но тогда для чего нужен датчик Холла в смартфоне сегодня? Все просто — он определяет, открыт или закрыт «умный» чехол с магнитной застежкой. Если магнит далеко (датчик «не видит» его на определенном расстоянии), то дается команда на включение дисплея. Если же застежка близко (а значит, пользователь закрыл чехол), то датчик сигнализирует системе, что экран нужно перевести в спящий режим.
Полезен этот измеритель и для бамперов для смартфонов с «окошком» на дисплее. Так, например, если вы захлопнули чехол, то датчик Холла это фиксирует. Он дает сигнал системе, что нужно транслировать на экране заставку, специально предназначенную для «оконца». Чаще всего это время, дата, важные уведомления. Убрали дверку чехла — команда от датчика на отображение на дисплее полной информации.
Другие функции в смартфонах
Взаимодействие с магнитными крышками — это самое распространенное применение датчика в современных гаджетах. Однако надо отметить, что он с успехом использовался в более ранних моделях смартфонов:
- Функция «цифровой компас» действовала благодаря датчику Холла. И сегодня он используется навигационными приложениями для общего улучшения позиционирования и более высокой точности определения вектора движения.
- Активация/дезактивация подсветки при открытии/закрытии устройства-«раскладушки». Здесь действие схоже с современной ситуацией с магнитными крышками чехлов.
Есть ли в моем телефоне датчик Холла?
Чтобы ответить на вопрос в подзаголовке, проще всего обратиться к характеристике вашего гаджета на официальном сайте производителя или в инструкции к девайсу. Однако не все изготовители указывают, снабжено ли конкретное устройство датчиком Холла.
Но существует простой способ проверки. Если к модели вашего смартфона выпускаются «умные» обложки или чехлы (в т. ч. и с «окошками»), имеющие магнитную застежку, то, скорее всего, в аппарате датчик Холла есть.
Среди популярных сегодня на рынке моделей этот модуль имеют следующие:
- Lenovo Vibe S1.
- Meizu Pro5.
- Meizu M2 Mini.
- LG Nexus 5X.
- Meizu M2 Note и проч.
К сожалению, в современных смартфонах возможности датчика Холла сильно усечены. Это объясняется минимизацией толщины корпуса, желанием производителя снизить расход заряда батареи, отсутствием потребности в расширенных за счет него функциях. Сегодня задач у датчика две — взаимодействие с «умным» чехлом или обложкой и карманный компас.
Современный смартфон может быть настолько многофункциональным, что его владелец не всегда в курсе всех характеристик и возможностей своего аппарата. Например, вы знаете, что такое датчик Холла в смартфоне? Как он работает и для чего нужен? Предлагаем вам узнать об этой характеристике больше!
Что значит датчик Холла в смартфоне?
Мы уже в курсе, зачем гаджету модуль приближения или гироскоп. Но что такое датчик Холла в смартфоне? Это определитель положения, чье действие основано на эффекте Холла. Данный приборчик фиксирует как наличие магнитного поля, так и измеряет его напряженность.
Датчик и сам эффект назван по имени известного физика Э. Холла. Именно этот ученый установил, что при помещении в центр магнитного поля проводника-пластины, по которой идет переменный ток, в нем (поле) проявится холловское напряжение — поперечная разность потенциалов.
В описанном случае электроны в проводнике отклоняются строго перпендикулярно направлению самого магнитного поля. Отсюда их плотность на разных частях пластины будет отличной. Вот эту разность потенциалов и фиксирует измеритель.
А что такое датчик Холла в смартфоне? Это еще более простой прибор — он призван определять лишь наличие магнитного поля, не измеряя его напряженность. Кроме того, гаджет наверняка снабжён еще и магнитным датчиком, который позволяет использовать ваш смартфон в качестве компаса.
Где он применяется?
Мы с вами установили, что такое датчик Холла в смартфоне. Однако гаджеты — это не единственная сфера применения изобретения, которое также отличается возможностью бесконтактного управления каким-либо устройством.
Надо сказать, что эффект Холла был открыт сравнительно давно — в 1879 году. А впервые применили его на практике только спустя 75 лет после этого события. Полезен он оказался для автомобилей — датчик использовали для измерения угла расположения коленвала, распредвала. В более старых моделях машин датчик Холла определял момент образования искры.
Далее по пути прогресса прибор стали применять и в сложных системах:
- бесконтактные выключатели;
- системы, предназначенные для чтения магнитных кодов;
- устройства, используемые для бесконтактного определения в проводниках силы тока;
- измерители уровня жидкости;
- ионные ракетные двигатели.
Кроме того, было выяснено, что датчик Холла способен заменять магнитоуправляемые герметичные контакты — герконы. Они имеют широкую сферу применения: микроэлектроника, охранные сигнализации, клавиатуры, лифты, наушники.
Зачем датчик Холла в смартфоне?
Мы с вами выяснили, что данный прибор определяет наличие магнитного поля. Но тогда для чего нужен датчик Холла в смартфоне сегодня? Все просто — он определяет, открыт или закрыт «умный» чехол с магнитной застежкой. Если магнит далеко (датчик «не видит» его на определенном расстоянии), то дается команда на включение дисплея. Если же застежка близко (а значит, пользователь закрыл чехол), то датчик сигнализирует системе, что экран нужно перевести в спящий режим.
Полезен этот измеритель и для бамперов для смартфонов с «окошком» на дисплее. Так, например, если вы захлопнули чехол, то датчик Холла это фиксирует. Он дает сигнал системе, что нужно транслировать на экране заставку, специально предназначенную для «оконца». Чаще всего это время, дата, важные уведомления. Убрали дверку чехла — команда от датчика на отображение на дисплее полной информации.
Другие функции в смартфонах
Взаимодействие с магнитными крышками — это самое распространенное применение датчика в современных гаджетах. Однако надо отметить, что он с успехом использовался в более ранних моделях смартфонов:
- Функция «цифровой компас» действовала благодаря датчику Холла. И сегодня он используется навигационными приложениями для общего улучшения позиционирования и более высокой точности определения вектора движения.
- Активация/дезактивация подсветки при открытии/закрытии устройства-«раскладушки». Здесь действие схоже с современной ситуацией с магнитными крышками чехлов.
Есть ли в моем телефоне датчик Холла?
Чтобы ответить на вопрос в подзаголовке, проще всего обратиться к характеристике вашего гаджета на официальном сайте производителя или в инструкции к девайсу. Однако не все изготовители указывают, снабжено ли конкретное устройство датчиком Холла.
Но существует простой способ проверки. Если к модели вашего смартфона выпускаются «умные» обложки или чехлы (в т. ч. и с «окошками»), имеющие магнитную застежку, то, скорее всего, в аппарате датчик Холла есть.
Среди популярных сегодня на рынке моделей этот модуль имеют следующие:
- Lenovo Vibe S1.
- Meizu Pro5.
- Meizu M2 Mini.
- LG Nexus 5X.
- Meizu M2 Note и проч.
К сожалению, в современных смартфонах возможности датчика Холла сильно усечены. Это объясняется минимизацией толщины корпуса, желанием производителя снизить расход заряда батареи, отсутствием потребности в расширенных за счет него функциях. Сегодня задач у датчика две — взаимодействие с «умным» чехлом или обложкой и карманный компас.
Владимир Нимин
Продолжаем разбираться в устройстве смартфона. В прошлый раз смотрели экраны, а сегодня поговорим про датчики.
Акселерометр, также называют G-сенсор. Официальное определение гласит, что это устройство, измеряющее проекцию кажущегося ускорения. А если простым языком, то акселерометр помогает смартфону определить положение в пространстве, а также расстояние перемещения. Основные функции акселерометра:
- Автоповорот ориентации экрана;
- Также акселерометр можно настроить так, чтоб он реагировал на жесты и действия. Например, потрясти смартфон или перевернуть экраном вниз, чтоб заглушить вызов;
- Ещё акселерометр помогает считать шаги и помогает ориентироваться на картах (Google Maps и прочих)
Акселерометр – это громоздкое устройство, внутри которого находится инертная масса, реагирующая на все перемещения. Такой вариант для смартфона не подходил, поэтому придумали чип, имеющий кристаллическую структуру, пьезоэлектрический элемент и сенсор ёмкостного сопротивления. Когда смартфон перемещается/вращается, то пьезоэлектрический элемент выдаёт разряды, а сенсор их интерпретирует, таким образом определяя положение и скорость.
Акселерометр – базовый датчик, который есть в любом, даже самом дешевом, смартфоне. Хотя это на удивление технически сложный продукт. В смартфонах акселерометр понимает движения по 3 осям. Третья нужна для 3D позиционирования. К слову, акселерометр есть и во всех современных автомобилях, но там он обычно двухосевой (ибо автомобиль не крутится в воздухе).
Не все акселерометры одинаковые. Их делают из разных материалов. Соответственно, некоторые более чувствительные, некоторые менее.
Гироскоп – это один самых классных датчиков, о полезности которого для смартфонов долгое время никто не подозревал, пока на сцену не вышел Стив Джобс и не объяснил, как оно должно быть. Посмотрите презентацию этой шикарной функции, и как зал взорвался от восторга.
Не следует путать гироскоп и акселерометр. Эти датчики частично дублируют и дополняют друг друга. Гироскоп также служит для отслеживания положения устройства в пространстве, но он делает это путем определения собственного угла наклона относительно земной поверхности. Это очень важно, так как это означает, что в условиях нулевой гравитации, вы не сможете поиграть в Asphalt 9, используя в качестве управления наклоны устройства. Будьте внимательны!
Гироскоп (в отличие от акселерометра) не может измерять проделанное расстояние, зато гораздо точнее определяет положение в пространстве. Для понимания посмотрите, пожалуйста, видео со Стивом Джобсом выше. Начиная с времени 1:10 Джобс показывает, как определяет положение объекта в пространстве акселерометр и как гироскоп.
Обычно в современных смартфонах оба датчика работают в тандеме. Гироскоп важен для игр, дополненной реальности, а также ряда других приложений. Нередко в дешевых смартфонах производитель предпочитает экономить на гироскопе.
Датчик приближения (proximity sensor). Как видно из названия, это датчик, который помогает определить наличие перед ним объекта. Самый простой пример – это отключение экрана, когда смартфон подносят к уху. Также датчик приближения исключает фантомные включения экрана, когда смартфон находится в сумке или кармане. Такой датчик может сам или в комбинации с фронтальной камерой отслеживать движения рукой над экраном для выполнения каких-либо функций. Например, пролистывание странички в браузере и тому подобное. Существует множество технологий датчика приближения. Он может работать по типу радара, сонара, эффекта Доплера, есть инфракрасный датчик приближения, а иногда ставят и фотоэлемент.
Базовый датчик приближения, отключающий экран при поднесении к уху, есть, кажется, уже во всех смартфонах. Но продвинутость датчика можно оценить по наличию дополнительных функций.
Датчик освещения – здесь всё просто и понятно. Такой датчик помогает автоматически выставить яркость экрана. Датчик освещения уже считается базовым датчиком, но в дешевых смартфонах на нем могут сэкономить. И тогда придется каждый раз выставлять яркость вручную.
Современный датчик освещения обычно работает в комбинации с ИИ смартфона. Например, если датчик выставил определенную яркость, а вы его вручную поправили, то смартфон возьмёт на заметку и в следующий раз самостоятельно сделает экран поярче. Соответственно, всегда давайте датчику освещения освоится и подстроиться под ваши привычки прежде, чем осуждать его работу.
Датчик Холла – один из самых таинственных датчиков в смартфоне, ибо мало кто знает, зачем он нужен. Датчик, основанный на, так называемом, эффекте Холла, фиксирует магнитное поле и измеряет его напряженность. Говоря языком физики: электроны в проводнике всегда перпендекулярны (угол 90 градусов) направлению магнитного поля. Плотность электронов на разных сторонах проводника будет отличаться, возникает разность потенциалов, которую и фиксирует датчик Холла.
Но в смартфонах используется упрощенный датчик Холла, фиксирующий только наличие магнитного поля.
Обычно датчик Холла нужен для дополнительных аксессуаров. Например, именно он включает экран iPad, когда пользователь снимает магнитный чехол. Кстати, в этой функции датчик приближения вполне может подменить датчик Холла.
Также датчик Холла работает в паре с компасом, делая работу последнего более точной.
Компас (магнитомер) – это очень важный датчик, даже если вы не занимаетесь спортивным ориентированием. Именно компас отвечает за то, что на Google Maps пользователь видит не просто точку, а стрелочку, указывающую в какую-сторону вы смотрите.
Когда компас откалиброван, то отображение направления узкое. Чтобы откалибровать компас, откройте карты Google и крутите смартфон «восьмеркой»:
Барометр – обычно наличием подобного датчика могут похвастаться только флагманы. Барометр ассистирует GPS и помогает определить высоту. Наличие такого датчика полезно, так как на Google Maps уже появляются схемы зданий, и барометр определит на каком этаже вы находитесь. Также барометр используется в приложениях, определяющих физическую активность. Суть такая же: определить, сколько этажей вы прошли.
Датчик влажности – когда-то такой датчик был в Samsung Galaxy Note 4, а потом Samsung от него отказались. Роль очевидная. Датчик определяет уровень влажности.
Датчик сердцебиения/датчик кислорода в крови – ещё один фирменный датчик от Samsung, но он есть и во многих фитнес-браслетах. Работает совместно с LED-вспышкой. Прикладываете палец, LED светит вам свозь палец, а датчик измеряет, как отражаются световые волны. Волны отражаются по-разному в зависимости от пульса: кровеносные сосуды, то сужаются, то расширяются. По этому же принципу работает и функция определения кислорода в крови.
GPS – глобальная система позиционирования. По сути, это даже не датчик, а наличие у смартфона возможности коммуницировать со спутниками благодаря или отдельному, или мульти-чипу, поддерживающему сразу несколько систем. Сейчас у каждой развитой страны, есть своя система спутников. ГЛОНАСС в России, Galileo в Европе, BDS (или BeiDou) в Китае, QZSS (или Quasi-Zenith Satellite System) в Японии. Можно скачать программу GPS Test, которая покажет, какие спутники видит ваш смартфон. Например, на скриншоте ниже отображаются флаги GPS, ГЛОНАСС и Galileo.
GPS прекрасная технология, но медленная (пока там все спутники найдешь и опросишь) и потребляющая много энергии и хорошо работающая на открытой местности, поэтому была придумана ещё A-GPS (Assisted GPS). Принцип основан на том, что пока GPS ищет спутники, смартфон успевает опросить сотовые вышки, Wi-Fi сети, Bluetooth устройства на предмет местонахождения. Таким образом существенно увеличивается время «холодного» старта, а также снижается расход энергии.
Двухдиапазонный GPS. Поддержка этой опции появилась в устройствах начbfz с Android 7 и старше. iPhone так не умеет.
Обычно спутники посылают два сигнала: грубый и точный. Если говорить про GPS, то это каналы L1 и L5, а у Галилео это E1 и Е5. L1 – это грубый канал. В городе любой сигнал достигает до спутника не только напрямую, но и отражаясь от сторонних объектов (например, зданий), то есть к спутнику прилетает сразу несколько сигналов. Соответственно, и возвращается он также не один, и образуется примерная область нахождения, где все вернувшиеся сигналы пересекаются. Ещё есть точный канал L5. Этот канал гораздо меньше подвержен искажением, так как работает по принципу: Первый достигший спутника сигнал и есть верный (ведь он идет по самому короткому пути, а не через отражения), а остальные можно игнорировать.
Раньше L5 принадлежал только военным и спец объектам, но теперь спутников в небе стало много, и L5-спутников хватит на всех, поэтому было решено поделиться.
Вместо заключения
Счётчик Гейгера – самый неожиданный датчик, правда? Это японская тема. И насколько есть информация в интернете, такой датчик был только в телефоне Sharp Pantone 5, который вышел после аварии на атомной станции Фукусима-1.
Современный смартфон должен иметь на борту: акселерометр, гироскоп, датчик приближения и освещения. Также обязательно наличие компаса. Если без гироскопа можно обойтись, то точка на карте без направления раздражает. A-GPS уже есть во всех смартфонах. Отлично если GPS будет работать в двух диапазонах. Шикарно, если будет барометр.
Что такое Датчик Холла — Отключить иммобилайзер
Датчик Холла
Официальное название — датчик положения на эффекте Холла.
Датчик Холла это датчик, работающий на эффекте Холла, суть которого заключается в том, что при при помещении в магнитное поле некоторого проводника с постоянным током, в этом проводнике возникает поперечная разность потенциалов. Также называет холловским напряжением.
Цифровые датчики определяют наличие, либо же отсутствие поля. То есть, если индукция достигает некого порога — датчик выдаёт присутствие поля в виде некой логической единицы, если порог не достигнут – Датчик Холла выдаёт логический ноль. То есть, при слабой индукции и соответственно чувствительности датчика — наличие поля может быть не зафиксировано. Минус такого датчика – наличие зоны нечувствительности между порогами.
Цифровые Датчик Холла так же разделены на: биполярные и униполярные.
Униполярные – срабатывают при наличии поля определённой полярности и отключаются при снижении индукции поля.
Биполярные – реагируют на смену полярности поля, то есть одна полярность – включает датчик, другая – выключает.
Аналоговые Датчик Холла – преобразуют индукцию поля в напряжение, величина показанная датчиком зависит от полярности поля и его силы. Но опять же, нужно учитывать расстояние, на котором установлен датчик.
Где применяется Датчик Холла?
Датчики Холла стали частью многих приборов. В основном, конечно же, они используются по прямому назначению и измеряют напряжённость магнитного поля. Применяются в электродвигателях и даже в таких инновациях, как ионные двигатели ракет. Чаще всего с датчиком Холла приходится сталкиваться при использовании системы зажигания автомобиля.
Такие простые примеры: бесконтактные выключатели, измерители уровня жидкости, бесконтактное измерение силы тока в проводниках, управление двигателями, чтение магнитных кодов, и, конечно же, датчики Холла не могли не прийти на замену герконам, ведь главное их достоинство – бесконтактное воздействие.
Принцип работы Датчик Холла
Как же устроен датчик Холла и откуда берётся это бесконтактное воздействие? Холл заметил, что если в магнитное поле поместить пластину под напряжением, то есть с протекающим по ней током, то электроны в этой пластине отклонятся перпендикулярно направлению магнитного потока. Направление такого отклонения зависит от полярности магнитного поля. Явление названо – эффектом Холла. Таким образом, плотность электронов на разных сторонах пластины будет отличаться, что создаст и разность потенциалов. Вот эту разность и улавливают датчики Холла.
Ниже вы можете наглядно увидеть процесс работы датчика Холла, на примере взят узел системы зажигания автомобиля.
Датчик Холла весьма широко распространен в автомобилестроении, с его помощью измеряют угол положения распредвала, на некоторых автомобилях — угол положения коленвала, на более старых автомобилях он сигнализировал о моменте искрообразования.
Эффект Холла заключается в том, что при пропускании тока через клеммы «а» полупроводниковой пластины, помещенной в поле магнита, на боковых клеммах «б» появляется напряжение.
Еще в 1879 году американский физик Э. Холл, работавший в балтиморском университете, открыл интересное явление, суть которого состояла в следующем. Если в магнитное поле поместить прямоугольную полупроводниковую пластину и к узким ее граням подвести электрический ток, то на широких, гранях пластины возникнет напряжение, величина которого может быть от десятков микровольт до сотен милливольт. Однако техническое применение этого эффекта вынужденно задержалось почти на 75 лет, до той поры, когда началось промышленное производство полупроводниковых пленок с нужными свойствами.
Еще позже, при развитии микроэлектроники, удалось сделать миниатюрный датчик, содержащий все необходимое — постоянный магнит и микросхему с чувствительным элементом. Такое устройство обладает рядом неоспоримых достоинств.
Во-первых — малые размеры.
Во-вторых, и это особенно важно, изменение частоты срабатывания (иными словами — оборотов двигателя) не вызывает смещения момента измерения.
В-третьих, электрический сигнал от датчика имеет, по терминологии специалистов, прямоугольную форму: при включении он сразу набирает определенную и постоянную величину, а не носит характер всплесков. Для управления электроникой это немалый плюс.
Есть у датчика и другие достоинства, но упомянем о недостатках. Главный из них тот, что присущ всякой электронной схеме: датчик чувствителен к электромагнитным помехам, возникающим в цепи питания (о мерах предосторожности, диктуемых этим обстоятельством, скажем ниже). Кроме того, датчик Холла дороже магнитоэлектрического и теоретически менее надежен, поскольку содержит электронную схему, однако крупномасштабное производство и развитие технологии сводят эти факторы к минимуму.
Работает датчик Холла следующим образом. Когда через зазор проходит металлическая лопасть ротора, магнитный поток шунтируется и индукция на микросхеме равна нулю. При этом сигнал на выходе из датчика относительно «массы» имеет высокий уровень, то есть почти равен напряжению питания.
Проверять датчик лучше всего осциллографом. Но с известной осторожностью можно и более простым оборудованием, прямо на машине.
Первое что нужно сделать — отсоединить разъем кабеля, подходящего к датчику. Важнейшее условие, которое следует свято соблюдать: зажигание при этом должно быть выключено! Несоблюдение этого условия — одна из основных причин выхода из строя датчиков Холла в эксплуатации. Теперь соберите простую схему, показанную на рисунке. При прохождении магнита мимо датчика светодиод должен попеременно загораться и гаснуть, указывая на наличие сигнала.
Еще одно важное замечание: ни в коем случае не проверяйте датчик контрольной лампой! Именно так погублено множество приборов.
Поделиться новостью с друзьями:
ПохожееДатчик Холла | Электротехническая Компания Меандр
СНЯТО С ПРОИЗВОДСТВА АНАЛОГОВ НЕТ |
ВИКО-Х-102-М8 |
Диаметр корпуса 8мм
Диапазон питающего напряжения DC5…24В
Рабочая зона 0…10мм
Высокая частота переключения 320кГц
Выход NPN транзистор с открытым коллектором, нормально открыт
Защита от переполюсовки питающего напряжения
Большой ресурс срабатываний
МАГНИТ В КОМПЛЕКТЕ 10Х4 мм
НАЗНАЧЕНИЕ ДАТЧИКА ХОЛЛА
Бесконтактный датчик ВИКО-Х-102-М8 (далее датчик) предназначен для работы в составе устройств индикации оборотов валов с высокой скоростью вращения, объектов сложной формы из ферромагнитных материалов (зубчатых колёс), в качестве датчика скорости для двигателей с возбуждением на постоянных магнитах. Датчик может использоваться в качестве конечного выключателя в системах автоматических приводов.
РАБОТА ДАТЧИКА
Принцип работы датчика основан на эффекте Холла — изменение характеристик чувствительного элемента при воздействии внешнего магнитного поля.
При увеличении внешнего магнитного поля до некоторого значения, происходит срабатывание триггера и изменение коммутационного состояния выключателя. Дальнейшее увеличение магнитного поля не влияет на состояние выключателя. При уменьшении напряжённости магнитного поля происходит обратный процесс и выключатель возвращается в исходное состояние.
При входе в чувствительную зону объекта из ферромагнитного материала, уменьшается напряжённость внешнего магнитного поля до некоторого значения, происходит срабатывание триггера и изменение состояния выхода датчика. Дальнейшее уменьшение напряжённости магнитного поля не влияет на состояние выхода. При удалении объекта из чувствительной зоны, напряжённость магнитного поля возрастает и происходит обратный процесс – выключатель возвращается в исходное состояние.
Параметр | Ед.изм. | Значение |
Тип исполнения по принципу действия |
| Эффект Холла
|
Напряжение питания | В | DC5…24 |
Напряженность магнитного поля | мТ | 22 |
Номинальный ток нагрузки | мА | 200 |
Падение напряжения на выходе (в открытом состоянии), не более | В | 1,5 |
Ток потребления, не более | мА | 8 |
Расстояние воздействия, Sn | мм | 0…10 |
Максимальная частота переключения | кГц | 320 |
Регулировка чувствительности |
| нет |
Степень защиты датчика |
| IP67 |
Схема подключения |
| трёхпроводная |
Способ подключения |
| кабель 3×0,2 мм2 — 2м |
Температура окружающей среды | 0C | -25…+70 |
Материал корпуса |
| Латунь (ХРОМ) |
Масса, не более | кг | 0,1 |
СХЕМА ПОДКЛЮЧЕНИЯ ДАТЧИКА
ГАБАРИТНЫЕ РАЗМЕРЫ ДАТЧИКА
Серия ВИКО-Х | М | А | Б | В | Г | Д | Е |
ВИКО-Х-102-М8 | 8х1 | 35 | 28 | — | 2,5 | 7 | 12 |
ТУ 4218-004-31928807-2014
Форум и обсуждения — здесь
Наименование | Заказной код (артикул) | Файл для скачивания (паспорт) | Дата файла |
ВИКО-Х-102-М8 | 4640016932979 | 13.04.2015 |
Что такое датчик Холла?
Датчик на эффекте Холла — это электронное устройство, предназначенное для обнаружения эффекта Холла и преобразования его результатов в электронные данные, для включения и выключения цепи, для измерения переменного магнитного поля или обработки с помощью встроенного компьютера. или отображается в интерфейсе. В 1879 году ученый Эдвин Холл обнаружил, что если магнит поместить перпендикулярно проводнику с постоянным потоком тока, электроны, протекающие внутри проводника, тянутся в одну сторону, создавая разность потенциалов в заряде (т.е. Напряжение). Таким образом, эффект Холла указывает на наличие и величину магнитного поля вблизи проводника.
Используя магнитные поля, датчики на эффекте Холла используются для обнаружения таких переменных, как близость, скорость или смещение механической системы. Датчики на эффекте Холла являются бесконтактными, что означает, что они не должны контактировать с физическим элементом. Они могут генерировать цифровой (включенный и выключенный) или аналоговый (непрерывный) сигнал в зависимости от их конструкции и предполагаемой функции.
Переключатели и защелки на эффекте Холла включены или выключены. Переключатель на эффекте Холла включается при наличии магнитного поля и выключается при удалении магнита. Защелка на эффекте Холла включается (закрывается) при приложении положительного магнитного поля и остается включенной даже при удалении магнита. При наложении отрицательного магнитного поля защелка на эффекте Холла отключается (открывается) и остается выключенной даже после удаления магнита.
Линейные датчики Холла (аналоговые) обеспечивают точные и непрерывные измерения на основе напряженности магнитного поля; они не включаются и не выключаются.В датчике на эффекте Холла элемент Холла передает разность электрических потенциалов (напряжение, вызванное магнитными помехами) в усилитель, чтобы сделать изменение напряжения достаточно большим, чтобы оно было воспринято встроенной системой.
Датчикина эффекте Холла используются в сотовых телефонах и GPS, сборочных линиях, автомобилях, медицинских устройствах и многих устройствах Интернета вещей. Ожидается, что рынок датчиков на эффекте Холла будет расти более чем на 10% в год и к 2026 году достигнет 7,55 млрд долларов.
Как работают датчики на эффекте Холла
Как работают датчики на эффекте Холла.Реклама
Криса Вудфорда. Последнее изменение: 13 августа 2020 г.
Измерить электричество очень просто — мы все знакомы с электрическими единицами, такими как вольт, ампер и ватт (и большинство из нас видели счетчики с подвижной катушкой в той или иной форме). Немного сложнее измерить магнетизм. Спросите больше всего люди, как измерить силу магнитного поля (невидимое область магнетизма, простирающаяся вокруг магнита) или единицы в какая напряженность поля измеряется (Вебер или тесла, в зависимости от того, как вы измеряете), и они не будут иметь ни малейшего понятия.
Но есть простой способ измерить магнетизм прибором. называется датчиком или зондом на эффекте Холла, который использует хитроумный элемент наука, открытая в 1879 году американским физиком Эдвин Х. Холл (1855–1938). Работа Холла была гениальной и на много лет опередила свое время — на 20 лет до открытия электрона — и никто не знал, что с ним делать, пока спустя десятилетия не стали лучше разбираться в полупроводниках, таких как кремний. В наши дни Эдвин Холл был бы в восторге найти датчики, названные в его честь, используются во всех виды интересных способов.Давайте посмотрим внимательнее!
Фото: Магнитное испытательное оборудование, используемое для изучения эффекта Холла. Фото любезно предоставлено Брукхейвенской национальной лабораторией и Министерством энергетики США.
Что такое эффект Холла?
Работая вместе, электричество и магнетизм могут заставить вещи двигаться: электродвигатели, громкоговорители и наушники — лишь некоторые из незаменимых современные гаджеты, которые так работают. Отправить колеблющийся электрический ток через катушку из медного провода и (хотя вы этого не видите происходит) вы создадите временное магнитное поле вокруг катушки тоже.Поместите катушку рядом с большим постоянным магнитом и временным магнитное поле, создаваемое катушкой, будет либо притягивать, либо отталкивать магнитное поле от постоянного магнита. Если катушка свободна двигаться, он будет двигаться — либо к постоянному магниту, либо от него. В электродвигатель, катушка настроена так, что может вращаться на месте и поверните колесо; в громкоговорителях и наушники, катушка приклеена на кусок бумага, пластик или ткань, которая движется вперед и назад к выкачать звук.
Фото: вы не видите магнитное поле, но можете измерить его с помощью эффекта Холла.фото любезно предоставлено Wikimedia Commons.
“ Если электрический ток в фиксированном проводе сам притягивается магнитом, ток должен отводиться на одну сторону провода … ”
Эдвин Холл , 1879
Что, если поместить кусок токоведущего провода в магнитное поле, а провод? не может двигаться? То, что мы называем электричеством, обычно представляет собой поток заряженные частицы через кристаллические (обычные, твердые) материалы (либо отрицательно заряженные электроны изнутри атомов, либо иногда положительно заряженные «дыры» — зазоры там, где должны находиться электроны).Вообще говоря, если подцепить пластину из проводящего материала к батарее, электроны будут проходить через пластину по прямой линии. Как движущиеся электрические заряды, они также будут создавать магнитное поле. Если вы поместите плиту между полюса постоянного магнита, электроны отклонятся в изогнутый путь, когда они движутся через материал, потому что их собственная магнитное поле будет взаимодействовать с полем постоянного магнита. (Для справки, то, что заставляет их отклоняться, называется Сила Лоренца, но нам не нужно здесь вдаваться во все детали.) Это означает, что одна сторона материала будет видеть больше электронов, чем другой, так что разность потенциалов (напряжение) появится на материал под прямым углом к магнитному полю от постоянный магнит и ток. Это то, что физики называют эффектом Холла. Чем больше магнитное поле, тем больше отклоняются электроны; чем больше ток, тем больше электронов нужно отклонить. В любом случае, чем больше разность потенциалов (известная как напряжение Холла) будет.В другом словами, напряжение Холла пропорционально величине как электрического ток и магнитное поле. Все это имеет больше смысла в наша небольшая анимация ниже.
Как работает эффект Холла?
- Когда электрический ток течет через материал, электроны (показаны здесь синими пятнами) движутся через него практически по прямой линии.
- Поместите материал в магнитное поле, и электроны внутри него тоже будут в этом поле. На них действует сила (сила Лоренца) и заставляет отклоняться от их прямолинейного пути.
- Теперь, глядя сверху, электроны в этом примере будут изгибаться, как показано: с их точки зрения слева направо. Если на правой стороне материала (внизу на этом рисунке) больше электронов, чем на левой (вверху на этом снимке), между двумя сторонами будет разница в потенциале (напряжении), как показано зеленым линия со стрелками. Величина этого напряжения прямо пропорциональна величине электрического тока и напряженности магнитного поля.
Куда они идут?
Как определить, в каком направлении будут двигаться электроны? Вы можете определить направление силы Лоренца с помощью правила левой руки Флеминга (если вы сделаете поправку на обычный ток) или его правила правой руки (если вы этого не сделаете).
Иллюстрация: заряженные частицы, движущиеся в магнитном поле, испытывают силу (сила Лоренца), которая меняет свое направление, вызывая эффект Холла. Вы можете использовать правило левой руки Флеминга (правило двигателя), чтобы определить направление силы, если вы помните, что правило применяется к обычному току (поток положительных зарядов), а поле течет с севера на юг. В этом примере, если у нас есть поток электронов на страницу, обычный ток вытекает из страницы (так что это направление, в котором должен указывать ваш второй палец).Если поле течет слева направо (указательный палец), наш большой палец говорит нам, что электроны будут двигаться вверх.
Использование эффекта Холла
Вы можете обнаруживать и измерять все виды вещей с помощью эффекта Холла, используя то, что известно. как датчик или зонд на эффекте Холла. Эти термины иногда используются взаимозаменяемо, но, строго говоря, относятся к разным вещам:
- Датчики на эффекте Холла простые, недорогие, электронные чипы, которые используются во всевозможных широко доступных гаджетах и товарах. Зонды
- на эффекте Холла — более дорогие и сложные инструменты. в научных лабораториях для таких вещей, как измерение напряженности магнитного поля с очень высокой точностью.
Фото: 1) Типичный кремниевый датчик Холла. Это выглядит
очень похоже на транзистор — что неудивительно, поскольку он сделан аналогичным образом.
Автор фото: Expainthatstuff.com. 2) Зонд на эффекте Холла, использовавшийся НАСА в середине 1960-х годов. Фото любезно предоставлено
Исследовательский центр НАСА Гленна (NASA-GRC).
Обычно изготавливается из полупроводников (таких материалов, как кремний и германий), эффект Холла датчики работают, измеряя напряжение Холла на двух сторонах когда вы помещаете их в магнитное поле. Некоторые датчики Холла упакованы в удобные микросхемы со схемой управления и могут быть подключается непосредственно к более крупным электронным схемам. Самый простой способ использование одного из этих устройств позволяет определить положение чего-либо. Для Например, вы можете разместить датчик Холла на дверной коробке и магнит на двери, поэтому датчик определяет, открыта дверь или закрыта от наличия магнитного поля.Такое устройство называется датчик приближения. Конечно, вы можете выполнять ту же работу так же легко с магнитным герконом (нет общего правила относительно того, герконовые переключатели старого образца или современные датчики на эффекте Холла лучше — это зависит от приложения). В отличие от герконов, которые являются механическими и полагаются на контакты движущиеся в магнитном поле датчики Холла полностью электронные и не имеют движущихся частей, поэтому (по крайней мере теоретически) они должны быть надежнее. Одна вещь, которую вы не можете сделать с герконом, — это определить степень «включения» — силу магнетизма, — потому что геркон либо включен, либо выключен.Вот что делает датчик на эффекте Холла таким полезным.
Для чего используются датчики на эффекте Холла?
Фото: Этот небольшой бесщеточный двигатель постоянного тока из старого дисковода для гибких дисков имеет три датчика Холла. (обозначены красными кружками), расположенные по его краю, которые обнаруживают движение ротора двигателя (вращающегося постоянного магнита) над ними (не показано на этой фотографии). На датчики особо не на что смотреть, как вы можете видеть на фото крупным планом справа!
Датчики на эффекте Холладешевы, прочные и надежные, крошечные и простые в использовании. так что вы найдете их во множестве разных машин и повседневных устройств, от автомобильных зажиганий до компьютерных клавиатур и заводских роботов до велотренажеров
Вот один очень распространенный пример, который вы сейчас можете использовать на своем компьютере.В бесщеточный двигатель постоянного тока (используется в таких устройствах, как жесткие и гибкие диски), вам необходимо в любой момент точно определить, где находится двигатель. Датчик Холла расположенный рядом с ротором (вращающаяся часть двигателя) сможет очень точно определить его ориентацию, измеряя вариации магнитное поле. Подобные датчики также можно использовать для измерения скорости. (например, чтобы посчитать, насколько быстро колесо или двигатель автомобиля кулачок или коленчатый вал вращается). Вы часто найдете их в электронных спидометрах и анемометры (измерители скорости ветра), где они могут быть использованы аналогично герконовым переключателям.
Революционное открытие Эдвина Холла прижилось за несколько десятилетий, но теперь оно используется в самых разных местах — даже в электромагнитных космических ракетных двигателях. Без преувеличения можно сказать, что новаторская работа Холла произвела на меня большое впечатление!
Изображение: Как упакован типичный датчик Холла. Магнитные поля могут быть очень маленькими, поэтому нам нужно, чтобы наши детекторы были как можно более чувствительными, и вот один из способов добиться этого. Сам чип Холла (зеленый, 17) установлен на железной несущей пластине (серый, 16), зажатой внутри двух формованных пластиковых секций (серый, 11, 12).Микросхема подключена выводами (19) к контактам (синим), с помощью которых ее можно подключить в цепь. Но действительно важными частями являются два «концентратора потока» из мягкого железа (оранжевый, 15, 21), которые делают устройство намного более чувствительным. Когда вы помещаете магнит (22) рядом с датчиком, эти концентраторы позволяют магнитному потоку («плотность» магнетизма, создаваемого магнитным полем) течь по непрерывной петле через кристалл Холла, создавая либо положительное, либо отрицательное напряжение. Если магнит переместится на другую сторону датчика, он создаст противоположное напряжение.Иллюстрация из патента США № 3 845 445: Модульное устройство на эффекте Холла Роланда Брауна и др., Корпорация IBM, 29 октября 1974 г., любезно предоставлено Управлением по патентам и товарным знакам США.
Если вам понравилась эта статья …
… вам могут понравиться мои книги. Мой последний Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.
Узнать больше
На этом сайте
Статьи
История
- [PDF] Открытие эффекта Холла Дж.S. Leadstone, Physics Education, Volume 14, 1979. Как Холл открыл свой эффект и выяснил, что он означает, оспаривая некоторые из более ранних работ Джеймса Клерка Максвелла.
Статьи Эдвина Холла
- О новом действии магнита на электрические токи. Эдвин Х. Холл, Американский журнал математики, Vol. 2, No. 3 (сентябрь 1879 г.), стр. 287–292. Оригинальная статья Холла.
- Объяснение феномена Холла Эдвином Х. Холлом, Наука, Vol. 3, No. 60 (мар.28, 1884), стр. 386–387. Собственное описание и объяснение Холла своего первоначального эксперимента.
- Теория эффекта Холла и связанного с ним эффекта для некоторых металлов, Эдвин Х. Холл, PNAS USA, Vol. 9, No. 2 (15 февраля 1923 г.), стр. 41–46. Одна из более поздних работ Холла.
Книги
- Датчики на эффекте Холла: теория и применение Эдварда Рамсдена. Newnes, 2006. Охватывает физику, лежащую в основе датчиков Холла, и способы их включения в практические схемы. Включает в себя датчики приближения, датчики тока и датчики скорости и времени.Также есть удобный глоссарий и список поставщиков.
- Устройства на эффекте Холла Р. С. Поповича. Институт физики, 2004. Несколько большая и более подробная книга, но охватывающая схожую тему с смесью теории, практических схем и повседневных приложений.
- Эффект Холла в металлах и сплавах Колина Херда. Springer 1972/2012. Современное переиздание вступления 1970-х годов.
Практические проекты
Видео
Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты
статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.
Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.
Подписывайтесь на нас
Поделиться страницей
Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:
Цитировать эту страницу
Вудфорд, Крис.(2009/2020) Датчики на эффекте Холла. Получено с https://www.explainthatstuff.com/hall-effect-sensors.html. [Доступ (укажите дату здесь)]
Больше на нашем сайте …
Что такое ИС на эффекте Холла?
- Что такое эффект Холла IC
- Принципы работы ИС на эффекте Холла
- Конфигурация ИС на эффекте Холла
- Типы ИС на эффекте Холла
- Методы обнаружения эффекта Холла IC
- Как выбрать подходящий эффект Холла IC
IC
на эффекте Холла ABLICЧто такое эффект Холла IC
Элементы Холлаявляются характерным примером среди различных типов магнитных датчиков, в которых используются полупроводники.Элементы Холла — это датчики, использующие гальваномагнитный эффект, называемый эффектом Холла. На элементе Холла можно получить очень небольшое напряжение, поэтому для таких элементов обычно требуются усилители, такие как операционные усилители. Поскольку ИС на эффекте Холла объединяет элемент Холла и операционный усилитель, количество подключаемых извне компонентов может быть уменьшено, а схемотехника упрощена.
Можно различить магнитные полюса с помощью единственной ИС на эффекте Холла. Такие ИС используются для самых разных целей, включая общее и автомобильное.Основные цели обнаружения ИС на эффекте Холла включают обнаружение вращения, обнаружение положения, обнаружение открытия / закрытия, обнаружение тока, обнаружение направления и многие другие. ИС общего назначения на эффекте Холла используются в широком спектре продуктов, от крупной бытовой техники, такой как стиральные машины и холодильники, до мобильных телефонов. ИС автомобильного назначения, естественно, используются для определения того, открыты или закрыты окна и двери, но многие ИС с эффектом Холла также используются для таких целей, как определение высоты транспортного средства, скорости и количества оборотов двигателя.
Принципы работы ИС на эффекте Холла
ИС на эффекте Холла содержит элемент Холла. Ток протекает через этот элемент, и, когда магнитное поле (от магнита), перпендикулярное направлению тока, приближается к элементу, на носитель, который ведет ток, действует сила Лоренца. Сила Лоренца приводит к генерации напряжения (напряжения Холла) в направлении, перпендикулярном току и магнитному полю (эффект Холла). ИС на эффекте Холла обнаруживает наличие магнитного поля (от магнита), обнаруживая это напряжение.Выходное напряжение увеличивается прямо пропорционально плотности магнитного потока.
Согласно правилу левой руки Флеминга, направление перпендикулярного напряжения (напряжение Холла) изменяется в зависимости от направления магнитного поля (северный или южный полюс). Следовательно, ИС на эффекте Холла может обнаруживать не только наличие магнитного поля, но и направление поля (северный или южный полюс) на основе направления этого напряжения.
Рис.1 Принципы работы элемента ХоллаКонфигурация ИС на эффекте Холла
Переключатель Холла IC усиливает выходное напряжение (напряжение Холла) элементом Холла и выдает сигнал путем обработки сигналов внутри ИС в зависимости от плотности магнитного потока.
Существует два типа ИС на эффекте Холла. Один — это высокоскоростной тип работы для обнаружения вращения двигателей и т. Д., А другой — тип с низким потреблением тока для оборудования с батарейным питанием.
В таблице 1 и на рисунке 2 ниже показана внутренняя конфигурация ИС с низким потреблением тока на эффекте Холла.
| Блок | Описание |
|---|---|
| Элемент Холла | Обнаруживает магнитное поле (от магнита) и выдает напряжение (напряжение Холла). |
| Усилитель прерывателя | Усиливает выходное напряжение (напряжение Холла) элементом Холла. |
| Цепь сна / бодрствования | Это контролирует работу и бездействие, осуществляя периодическое управление. |
| Компаратор с гистерезисом (схема сравнения) | Они управляют выходом и выводят сигнал высокого или низкого уровня в зависимости от плотности магнитного потока. |
| Выходной инвертор (или N-канальный транзистор) |
Типы ИС на эффекте Холла
ИС на эффекте Холла, которые используют различные методы обнаружения, могут быть выбраны в зависимости от назначения.В этой главе описаны типичные типы микросхем Hal.
Существует два основных типа ИС на эффекте Холла: с линейным выходом (тип аналогового выхода, тип цифрового выхода), который используется для получения выходного напряжения, прямо пропорционального напряженности магнитного поля, и тип переключения (цифровой выход). type), который используется для получения сигнала включения / выключения. Все микросхемы на эффекте Холла серий S-5711A и S-5712 представляют собой ИС переключаемого типа с гистерезисными характеристиками, к которым были добавлены схемы Шмитта.
Типы ИС на эффекте Холла
- Тип линейного выхода: Используется для получения выходного напряжения, прямо пропорционального напряженности магнитного поля
- Тип переключения: Используется для получения сигнала включения / выключения
Методы обнаружения эффекта Холла IC
ИС на эффекте Холла обнаруживают магнитные поля, которые имеют северный или южный полюс. В этом разделе описаны четыре типа обнаружения ИС на эффекте Холла: униполярное обнаружение , которое является обнаружением северного или южного полюса, многополярное обнаружение , которое является обнаружением как северного, так и южного полюсов без дискриминации, биполярного обнаружения , что является обнаружением поочередно северного и южного полюсов.Биполярное обнаружение используется не только для определения силы магнитного поля, но также для различения северного и южного полюсов, что является характеристикой ИС с эффектом Холла. Четвертый метод обнаружения — ZCL TM (Zero Crossing Latch) , который представляет собой обнаружение изменения полярности точки (точка пересечения нуля). ZCL TM — первый в мире метод обнаружения.
Выберите подходящий метод обнаружения в соответствии с типом применения, в котором будет использоваться ИС на эффекте Холла.ABLIC массово производит ИС на эффекте Холла, в которых используются все четыре вышеупомянутых метода обнаружения.
Униполярное обнаружение
Для этого метода обнаруживается только один полюс магнитного поля (северный или южный), и операция включения / выключения выполняется в соответствии с плотностью магнитного потока для вывода сигнала высокого или низкого уровня.
Униполярное обнаружение (для продукта, который выдает сигнал низкого уровня при обнаружении южного полюса.)Всеполярное обнаружение
Для этого метода обнаруживаются оба полюса магнитного поля (северный и южный), и операция включения / выключения выполняется в соответствии с плотностью магнитного потока для вывода сигнала высокого или низкого уровня.
Многополярное обнаружение (для продукта, который выдает сигнал низкого уровня при обнаружении любого полюса).Обнаружение биполярного сигнала
Для этого метода оба полюса магнитного поля (северный и южный) обнаруживаются поочередно, и операция включения / выключения выполняется в соответствии с плотностью магнитного потока и полярностью для вывода сигнала высокого или низкого уровня.
ZCL
TM (Защелка нулевого перехода) Обнаружение ZCL обнаруживает точку, когда S-полюс приложенной плотности магнитного потока изменяется на N-полюс или наоборот, то есть когда происходит изменение полярности.
Оптимизированный для управления бесщеточным двигателем постоянного тока, обнаружение ZCL может легко предотвратить падение КПД двигателя в результате колебаний температуры и производственных изменений. > Дополнительная информация «Что такое интегральная схема на эффекте Холла ZCL?»
«ZCL» — зарегистрированная торговая марка ABLIC Inc.
Давайте сократим трудозатраты на проектирование, чтобы создать идеальный двигатель
с первым в мире методом обнаружения
Что может сделать микросхема с эффектом Холла ZCL
Как выбрать подходящий эффект Холла IC
ABLIC предлагает широкий выбор ИС на эффекте Холла по запросу клиентов.Вы можете выбрать подходящую ИС на эффекте Холла, рассмотрев приведенный ниже порядок.
Таблица выбора ИС на эффекте Холла
IC эффекта Холла ABLIC
Что такое датчик Холла?
Автор: Морин ВанДайк |
Датчики на эффекте Холлаиспользуются для обнаружения и измерения приближения, положения и скорости благодаря их способности распознавать магнитные поля. В качестве бесконтактных датчиков они полезны для измерения переменного и постоянного тока.В этом блоге будут объяснены принципы, лежащие в основе датчиков на эффекте Холла, и их промышленное применение.
Что такое датчик на эффекте Холла?
Эффект Холла, названный в честь его первооткрывателя Эдвина Холла, относится к генерации напряжения в проводнике с током, перпендикулярном направлению тока, когда проводник погружен в магнитное поле. Датчик на эффекте Холла представляет собой тонкий кусок проводника, по длине которого течет ток, и датчик напряжения, подключенный по его ширине.Когда электрический ток проходит через датчик в магнитном поле, датчик регистрирует небольшое напряжение. Это напряжение можно использовать для измерения колебаний магнитного поля, вызванных изменениями положения, близости, давления, скорости, температуры или других факторов.
Поскольку датчики на эффекте Холла не имеют движущихся частей, они более надежны и долговечны, чем герконы. Однако они также более дорогие, поскольку через них протекает постоянный электрический ток.
Типы датчиков Холла
Датчикина эффекте Холла делятся на две категории: аналоговые и цифровые. Аналоговые датчики выдают постоянно меняющееся выходное напряжение, в то время как цифровая версия имеет только два выходных напряжения: высокое или низкое.
Некоторые подкатегории переключателей на эффекте Холла включают:
ПластинчатыйЭто цифровые датчики приближения, которые обнаруживают наличие или отсутствие железной лопасти, которая проходит через зазор между двумя компонентами лопаточного датчика: постоянным магнитом и датчиком на эффекте Холла.
Цифровой токЭтот датчик также имеет два компонента в непосредственной близости: датчик Холла и электромагнит. Магнитное поле, создаваемое электромагнитом при прохождении тока через его катушки, изменяет выходной сигнал датчика Холла.
Линейный токАналогичен цифровому датчику тока, но имеет аналоговый выход.
Ток замкнутой цепиТакже называемые датчиками тока нулевого баланса, они работают, обнуляя воспринимаемое магнитное поле, управляя током, полученным на выходе датчика.Хотя они обладают отличными характеристиками отклика, точности и линейности, они громоздки и дороги из-за дополнительных компонентов, необходимых для генерации тока нулевого баланса.
Зуб шестерниКак следует из названия, эти датчики обнаруживают зубья шестерни, когда они проходят мимо датчика. Датчики зубьев шестерни аналогичны датчикам с лопастным приводом, но имеют дополнительную схему для точного измерения скорости. Они используются в различных приложениях для подсчета и измерения скорости.
Приложения для датчиков Холла
Как видно из различных категорий датчиков, упомянутых выше, датчики на эффекте Холла могут использоваться в широком диапазоне приложений, например:
- Автоматизированная обработка продуктов
- Оборудование с ЧПУ
- Компакторы / Пресс-подборщики
- Датчики движения
- Датчики положения (например, двери)
- Робототехника (например, концевые выключатели)
- Защитные блокировки (например: аварийные выключатели безопасности)
Рекомендации по проектированию датчика Холла
Важными факторами, влияющими на конструкцию датчика Холла, являются:
- Магнитные поля. Поле, создаваемое магнитом, зависит от его формы и размера, материала, из которого он изготовлен, материала на пути магнитного потока и от того, используется ли он в качестве униполярного или биполярного магнита.
- Электрооборудование. Какой максимальный ток должен выдержать датчик? Есть ли источник постоянного напряжения для питания датчика? Какой максимальный поток он испытает? Выход должен быть аналоговым или цифровым?
- Операционная среда. Температурный диапазон, в котором должен работать датчик, является важным фактором окружающей среды. Для наружного применения может потребоваться водонепроницаемый корпус для защиты от дождя и снега.
- Как и все промышленные компоненты, стоимость датчиков Холла является важным вопросом. Диапазон рабочих температур, требования к упаковке, точность и чувствительность выходного сигнала, а также другие характеристики, требуемые приложением, определяют окончательную стоимость датчика Холла.
Датчики на эффекте Холла от MagneLink
MagneLink имеет более чем 25-летний опыт разработки высококачественных индивидуальных магнитных переключателей и датчиков.Свяжитесь с нами по всем вопросам, касающимся магнитного переключателя на эффекте Холла.
Опубликовано в Переключатель на эффекте Холла
| 2Dex В РАЗРАБОТКЕ | InAs — стабильный | InAs — чувствительный | GaAs | |
| Что заставляет работать? Слова, которые произведут впечатление на вашего начальника | Тонкопленочная технология с использованием структуры двумерного электронного газа (2DEG) | Объемный материал из арсенида индия, легированный для обеспечения высокой стабильности | Объемный материал из арсенида индия, легированный для обеспечения высокой чувствительности | Тонкая пленка из арсенида галлия |
| Диапазон температур Преимущество датчиков Холла без кремния — возможность использования при более экстремальных температурах | от 1 K до 402 K (от -272 ° C до 125 ° C) | 1.От 5 K до 375 K (от -271,5 ° C до 102 ° C) | от 208 K до 373 K (от -65 ° C до 100 ° C) | от 233 K до 402 K (от -40 ° C до 125 ° C) |
| Взаимозаменяемость Возможность работы с несколькими датчиками с идентичным приводом и измерительными установками | Хорошо — узкий диапазон значений чувствительности, отличная линейность и малое напряжение смещения | Плохое — диапазон чувствительности достаточно велик, чтобы требовать знания среднего значения чувствительности | Плохо — диапазон чувствительности достаточно велик, чтобы требовать знания средней чувствительности значение | Плохо — диапазон чувствительности достаточно велик, чтобы требовать знания среднего значения чувствительности |
| Прочность Способность выдерживать удары и вибрацию | Хорошо | Плохо | Плохо | Хорошо |
| Совместимость прибора Lake Shore Совместимость гауссметра / тесламетра для этих датчиков, позволяющая автоматически отображать значения поля прибором | Тесламетр F71 или F41 с датчиками plug-and-play — полный калибровка датчика и температурная компенсация, обеспечивающая точность, эквивалентную полному тесламетру зонда | 425 или 475 гауссметра с использованием кабеля HMCBL; преобразование поля выполняется только с одним значением чувствительности, то есть линейность и температурная компенсация не выполняется гауссметром | ,, 425 или 475 гауссметром с использованием кабеля HMCBL; преобразование поля выполняется только с одним значением чувствительности, что означает, что линейность и температурная компенсация не выполняется гауссметром | Нет |
| Плоский эффект Холла Физическое свойство, связанное с толщиной элемента Холла, которое вносит ошибку измерения, когда поле в плоскости с чувствительным элементом | Отсутствуют, что делает эти датчики идеальными для измерения полей с неизвестной ориентацией. | Значительный — объемный материал производит достаточно плоского эффекта Холла, поэтому для точных измерений требуются поля с известными направлениями. | Значительное — объемный материал создает достаточно планарный эффект Холла. что для точных измерений требуются поля с известными направлениями | Некоторые тонкопленочные элементы могут иметь небольшую плоскую погрешность эффекта Холла |
| Чувствительность при номинальном токе Влияет на точность измерения и разрешение — чем больше число, тем лучше | Ожидаемое значение от 50 до 53 мВ / т | 5.От 5 до 11 мВ / T | от 55 до 125 мВ / T | от 110 до 280 мВ / T |
| Температурный коэффициент чувствительности Влияет на точность при больших изменениях температуры | 200 ppm / ° C ожидаемый | 50 ppm / ° C | 800 ppm / ° C | 600 ppm / ° C |
| Номинальный ток привода Рекомендуемый уровень возбуждения для этих датчиков | 1 мА | 100 мА | 100 мА | 1 мА |
| Типичное входное сопротивление Полезно при выборе схемы управления | 800 Ом | 2 Ом | 2 Ом | 750 Ом |
| Типичный температурный коэффициент входного сопротивления Дополнительный источник погрешности измерения при использовании источника напряжения (а не источника тока) для питания датчика | 0.7% / ° C ожидаемое | 0,15% / ° C | 0,18% / ° C | 0,2% / ° C |
| Лучшее напряжение смещения (эквивалент поля) Составляющая ошибки, имеющая большее влияние на небольших полях Рис. 1 by Lewis Loflin Датчики на эффекте Холла — это твердотельные магнитные сенсорные устройства, используемые либо в качестве магнитных переключателей, либо для измерения магнитных полей.Здесь меня интересуют три основных типа: переключатель на эффекте Холла, защелка на эффекте Холла и логометрический или аналоговый выходной датчик. Подробнее об общих принципах работы см. В моем видео на YouTube выше. Здесь я хочу проиллюстрировать различные электронные схемы, а также то, как подключать датчики и использовать их. Переключатель на эффекте Холла включается при наличии южного магнитного поля на его лицевой стороне или северного магнитного поля на противоположной стороне. Он выключится, когда магнит будет удален. Защелка на эффекте Холла работает как выключатель, но остается включенной после удаления магнита. Он выключится, если приложить к лицу северный полюс или отключить питание. Ниже у меня есть схема использования переключателя Холла для включения / выключения однополюсного переключателя. Логометрический датчик на эффекте Холла выдает аналоговое напряжение, пропорциональное напряженности магнитного поля. Устройства, которые я буду использовать на отдельной странице, являются однополярными, и, как правило, без приложения магнитного поля выходное напряжение составляет половину напряжения питания.Напряжение будет увеличиваться с южным магнитным полюсом на лице или уменьшаться с северным магнитным полюсом на лице. См. Использование ратиометрических датчиков эффекта Холла Здесь мы рассмотрим переключатели и защелки, которые начинаются как логометрические, а затем добавим компараторы, триггеры Шмитта и выходные транзисторы. Ниже приведен список спецификаций датчиков Холла, используемых в моем видео на YouTube. На рисунке выше показаны типичные выводы датчиков Холла. Южный полюс магнита направлен в сторону «лица», включающего устройство.Северный полюс на лице не будет иметь никакого эффекта, если устройство не является защелкой, которую он выключит, если он уже включен. Рассмотрим пятивольтовый переключатель Холла UGN3013T. Для срабатывания переключателя обычно требуется от 500 до 750 Гс. Но для того, чтобы отпустить или отключить, обычно требуется от 225 Гс до 110 Гс. Таким образом, у нас есть разумный диапазон 275, в котором нам нужно оставаться для надежной работы. Таким образом, очевидно, что даже небольшой железный магнит может работать хорошо или должен находиться очень близко к датчику.Обратите внимание, что это старая устаревшая деталь, которая у меня случайно оказалась. Новые устройства намного более чувствительны. Рис. 2 На рисунке выше показана внутренняя блок-схема переключателя на эффекте Холла в данном случае UGN3013T. Он включает пластину Холла, усилитель, триггер Шмитта и транзисторный выход с открытым коллектором. Некоторые могут использовать МОП-транзистор с открытым стоком вместо биполярного транзистора. Рис. 3 Логометрический датчик Холла с компаратором LM311 образует переключатель на эффекте Холла с выходом с открытым коллектором, образующий переключатель с регулируемой точкой срабатывания.Vcc составляет 5 вольт при использовании датчика, такого как UGN3502, и 12 вольт для TL174C. Его можно напрямую подключить к входному порту микроконтроллера или другой 5-вольтовой цифровой логике. Рис. 4 Добавляя JK-триггер к нашему переключателю на эффекте Холла на рис. 3, мы формируем защелку на эффекте Холла. Состояния Q и QNOT «меняются» с каждым циклом включения-выключения на TP2. Рис. 5 На Рис. 5 показано, как использовать переключатель Холла с выходом «открытый коллектор / сток» с триггером CD4027 JK для формирования схемы защелки. На этом мы завершаем введение в датчики и схемы на эффекте Холла. Веб-сайт Авторские права Льюис Лофлин, Все права защищены. Что такое датчики на эффекте Холла и какова их роль в двигателях постоянного тока?Двигатели постоянного тока могут быть щеточными с механической коммутацией или бесщеточными с электрической коммутацией.В бесщеточных двигателях постоянного тока (BLDC) датчики Холла используются вместо механического коммутатора и щеток. Датчики на эффекте Холла — это твердотельные датчики магнитного поля. Они работают по принципу, что, когда проводник с текущим по нему током помещается в магнитное поле, магнитное поле индуцирует поперечную (или боковую) силу на носителях заряда, которая толкает их к сторонам проводника — отрицательно на единицу. сторону и положительно с другой стороны. Это накопление заряда по бокам проводника вызывает напряжение.Этот эффект получил название эффекта Холла в честь его первооткрывателя Эдвина Холла. Бесщеточный двигатель постоянного тока с тремя датчиками Холла для определения положения ротора. Изображение предоставлено: Honeywell International Inc.Цель коммутации, механической или электрической, состоит в том, чтобы запитать обмотки статора в определенной последовательности, при этом одна положительная обмотка, одна отрицательная и третья отключены. Производство крутящего момента вызывается притяжением и отталкиванием между полем статора и постоянными магнитами ротора.. Максимальный крутящий момент достигается, когда эти два поля ориентированы под углом 90 градусов друг к другу, а крутящий момент уменьшается по мере выравнивания полей. Следовательно, чтобы двигатель продолжал вращаться, магнитное поле статора должно менять положение, когда поле ротора «догоняет» его. Для подачи питания на правильную обмотку статора необходимо знать положение ротора. |
