Сила тока при зарядке аккумулятора автомобиля
Сила тока заряда автомобильного аккумулятора
Какой ток необходим для зарядки автомобильного аккумулятора
Аккумулятор – такой же важный элемент автомобиля, как и двигатель. Чтобы все системы функционировали как положено, требуется поддерживать генератор в исправном состоянии, при котором он сможет обеспечить должный уровень заряда аккумуляторной батареи при работе двигателя.
Но возникают моменты, когда батарея садится от долгого простоя автомобиля, либо из-за морозов, что является актуальной проблемой многих автомобилистов в зимнюю пору. В таких ситуациях на помощь приходят универсальные зарядные устройства для зарядки автомобильных аккумуляторов.
Тут возникает следующий вопрос – как заряжать? Какими токами? Каким напряжением?
Имеется несколько подходов к процессу зарядки аккумуляторных батарей:
- метод зарядки АКБ постоянным током;
- зарядка при постоянном напряжении;
- комбинированный режим.
Что же касается оптимальной силы тока, необходимой для заряда аккумуляторной батареи, то тут имеется одно универсальное правило, которое гласит, что величина тока, используемая для зарядки на начальном этапе, должна составлять 1/10 часть от обозначенной производителем величины номинальной емкости АКБ.
Минимальная сила тока при зарядке автомобильного аккумулятора
Сила тока, необходимая для зарядки АКБ, как было упомянуто ранее, должна составлять 1/10 емкости аккумулятора. Для достижения наиболее эффективного процесса зарядки следует постепенно снижать силу тока на выходе зарядного устройства, а напряжение – наоборот, повышать. Данный комбинированный метод является самым распространенным в современных зарядных устройствах. При повышении напряжения постепенно снижается сила тока из-за возрастающего сопротивления батареи. При токе в 0.1 от емкости батареи и напряжении 14-14,6 В АКБ зарядится на 75-85 процентов за сутки. В случае необходимости повышения процента, потребуется уже прибегнуть к напряжению большей величины.
Максимальное напряжение зарядки автомобильного аккумулятора
Значение напряжения, при котором происходит процесс зарядки автомобильного аккумулятора, варьируется в зависимости от того, какой метод используется. Согласно общим рекомендациям, значение по напряжению, выдаваемое зарядным устройством, не должно превышать диапазон 14,2 – 14,6 В (в случае отсутствия глубокого разряда батареи). Если напряжение на АКБ упало ниже 12 В, то, скорее всего, потребуется приложения большего напряжения в районе 16 В.
Стоит учитывать, что с повышением данной величины скорость зарядки аккумулятора возрастает, но вместе с тем увеличивается и риск перегрева электролита внутри батареи. Перегрев опасен тем, что АКБ может потерять часть своего емкостного ресурса (в лучшем случае), а то и вовсе взорваться. Поэтому не следует гнаться за скоростью и большим напряжением, а придерживаться правила «тише едешь – дальше будешь». Подобрав лучшее зарядное устройство для автомобиля из имеющихся на данный момент на рынке, можно существенно облегчить свою жизнь и проводить процесс зарядки автомобильных аккумуляторов в автоматическом режиме, не опасаясь за перезаряд АКБ и выход ее из строя.
Оптимальный ток для зарядки автомобильного аккумулятора
Для опытных автомобилистов, которые любят обслуживать свою машину самостоятельно, процесс зарядки аккумулятора не вызывает никаких затруднений. Безусловно, этот вопрос является актуальным именно для новичков в автоделе: для того чтобы правильно обращаться с АКБ, важно, прежде всего, точно знать, каким током заряжать аккумулятор, чтобы он прослужил дольше, с наилучшей отдачей работоспособности.
Что необходимо знать для правильной зарядки аккумулятора
Для того чтобы понять, каким током заряжать автомобильный аккумулятор, прежде всего, нужно знать, какая у него емкость и, исходя из этого, выставлять или ток зарядки автомобильного аккумулятора, или напряжение. Все зависит от того, какой способ выбрать и какое зарядное устройство будет применено.
Если, например, емкость батареи составляет 60 Ач (ампер часов), максимальная сила тока, которую можно поставить, составляет 6 А (10% от номинальной емкости батареи). Если емкость заряжаемой АКБ 75 Ач (ампер часов), ток выставляется 7,5 А.
Для зарядки аккумулятора есть два известных метода:
- постоянный ток зарядки аккумулятора ;
- метод постоянного напряжения.
Если способ постоянного тока приводится в действие ручными настройками, то нужно будет контролировать ток заряда автомобильного аккумулятора каждые 2-3 часа. Ток выставляется, как уже упоминалось, в размере 10 процентов от емкости АКБ. А потом необходимо постепенно снижать его величину по мере увеличения показателя напряжения (U). Сколько заряжать аккумулятор таким способом, точно сказать нельзя. Это займет не меньше 10 часов.
Для современных необслуживаемых аккумуляторов с гелевым содержимым нужно увеличить U до 15 В, а силу тока при этом сделать в два раза меньше, то есть 1,5 ампер, при емкости батареи в 60 Ач. Когда сила тока и U будут стабильно сохранять свои показатели неизменными в течение 1-2 часов, это означает, что автоаккумулятор зарядился полностью. В случае зарядки необслуживаемого аккумулятора процесс заканчивается при U 16,3 В. О том, каким будет напряжение полностью заряженного автомобильного аккумулятора, читайте здесь →
Метод постоянного напряжения прямо зависит от того, сколько вольт подает зарядное устройство батарее. Если заряжать аккумулятор автомобиля непрерывно в течение двух суток (как известно, именно при длительном сроке зарядки обеспечивается наилучшая «прокачка» глубоко разряженной АКБ) — батарея восстановит свою емкость так:
- при U 14,4 В — от 75 до 80% ;
- при U 15 В — от 85 до 90% ;
- при U 16 В — от 95 до 97% .
Если батарея заряжается от 20 до 24 часов, а U при этом составляет 16 В и немного выше, то можно рассчитывать на полный заряд. Для окончания процесса зарядки нужно дождаться стабилизации напряжения на клеммах аккумулятора до 14,4 В. А если ЗУ снабжено индикатором, он зажжется светло-зеленым цветом, сигнализируя о том, что зарядку можно заканчивать.
При правильной установке показателей и грамотном контролировании процесса оба способа одинаково хороши и не принесут вреда батарее. Кстати, многие современные зарядные устройства оснащены контроллерами и могут работать в безопасном авто-режиме.
Быстрый способ подзарядки АКБ большими токами
О методе быстрой подзарядки АКБ большими токами следует упомянуть отдельно. Он является довольно распространенным среди тех автолюбителей, которые все время находятся в спешке, и у них не хватает времени для того, чтобы обеспечить своему аккумулятору полноценное время безопасной зарядки. Для того чтобы аккумуляторы заряжались как можно быстрее, на клеммы батареи в первые часы зарядки подается сила тока 20 ампер и выше, а сам процесс длится не больше 5-6 часов.
Если возникнет практический вопрос, каким током заряжать аккумулятор и сколько ампер лучше подавать батарее именно в экстренных ситуациях — большие токи допускается использовать тогда, когда автолюбитель оказался в безвыходном положении: нужно срочно куда-то ехать, а батарея села. Но всегда следует помнить о том, что самый оптимальный и безопасный ток заряда аккумулятора автомобиля должен составлять не больше, чем 10% от емкости АКБ. А при «прокачке» глубоко разряженной батареи малыми токами — и того меньше.
Зарядка автомобильного аккумулятора с помощью современного ЗУ
Конечно, прежде чем приступить впервые к зарядке АКБ своего автомобиля, нужно не только знать, каким током лучше заряжать батарею.
Для начинающих водителей и для тех, кто особенно не желает вдаваться в подробности физики и электроники, существуют портативные и удобные в использовании современные зарядные устройства для зарядки автомобильных аккумуляторов. В них, кроме ручной, предусмотрена автоматическая система управления. Очень хороший и компактный «зарядник» Т-1021 предлагает российская фирма «Автоэлектрика». Он доступный по стоимости, а по качеству значительно выше популярных в наше время китайских аналогов.
Этим устройством можно заряжать автомобильные аккумуляторы емкостью от 60 Ач и выше. Самым большим его достоинством является контроллер. С его помощью весь процесс зарядки становится абсолютно безопасным. Контроллер не допустит проникновения больших токов в частично заряженную батарею. Он всегда предотвратит опасность коротких замыканий, которые могут возникнуть при случайном соприкосновении клемм между собой.
Чтобы зарядить АКБ с помощью Т-1021, нужно:
- подсоединить плюс ;
- подсоединить минус ;
- включить устройство в сеть ;
- установить ЗУ в положение «автомат» .
Если емкость АКБ 60 Ач, ток должен быть установлен величиной в 6 ампер с помощью регулятора. Когда аккумулятор зарядится, стрелка автоматически падет на ноль. При попытке повернуть ток на более высокую мощность (в случае, если батарея разряжена не полностью) контроллер не позволит этого сделать.
Если имеется достаточное количество времени, и аккумулятор сильно разряжен, его можно «прокачать» по полной программе так же, с помощью автоматических настроек. Главное, изначально правильно задать рекомендуемый показатель тока в 1 ампер.
Ручной режим больше подходит для профессионалов, либо для водителей с большим опытом. Начинающим его лучше не использовтаь, так как надо уметь вычислять время заряда и силу тока.
Когда аккумулятор полностью зарядится, стрелка автоматически опустится на ноль, а индикатор загорится зеленым цветом.
Для того чтобы заряжать аккумулятор самостоятельно, будет достаточно знать основные описанные выше показатели безопасного тока. От них и нужно будет отталкиваться при осуществлении зарядки АКБ. А современные зарядные устройства, оснащенные автоматической системой управления, значительно облегчат эту задачу начинающим автолюбителям.
Каким током заряжать автомобильный аккумулятор 60, 70, 100 АЧ
Небольшой, невзрачный на вид бокс, установленный под капотом, на деле оказывается незаменимым источником энергии. Он обеспечивает работу всех бортовых систем автомобиля на стоянке и даёт энергию стартеру для запуска двигателя. Наш герой это аккумулятор. Но он сам иногда нуждается в поддержке. Все аккумуляторы периодически необходимо заряжать.
Выбор оптимальной силы тока для зарядки АКБ
Аккумулятор постоянно задействован при эксплуатации автомобиля. На стоянке энергия расходуется на часы, компьютер и стандартную утечку тока, потом он крутит стартер, и при работающем двигателе он заряжается. То есть батарея заряжается или заряжается 24 часа в сутки и 365 дней в году. А генератор автомобиля не всегда может обеспечить 100 % зарядку. Поэтому эксплуатируемый аккумулятор необходимо периодически заряжать. Новые аккумуляторы продаются заряженными на 80 % и тоже требуют внимания.
Состояние аккумулятора можно оценить и охарактеризовать по напряжению на клеммах:
- от 12,4 до 12,6 В норма
- от 12,2 до 12,4 В низкий уровень заряда, требует подзарядки
- от 11,9 до 12,2 В низкий уровень и требует незамедлительной зарядки
- ниже 11,9 В использование невозможно и нужна незамедлительная зарядка
Независимо от состояния батареи она должна быть заряжена ещё в двух случаях:
- Осенью.
Зима очень тяжелый период для эксплуатации. Отрицательные температуры уменьшают ёмкость аккумулятора, а стартеру трудно крутить холодный двигатель.
- Перед и после длительной стоянки (один месяц и более). Перед стоянкой это делается, что бы предотвратить сульфирование пластин. После, что бы оживить аккумулятор.
Производители аккумуляторов рекомендуют рассчитывать сила тока в одну десятую от ёмкости. Для АКБ ёмкостью 60, 70 и 100 Ач необходимый ток зарядки соответственно будет 6, 7 и 10 Ампер.
Почти все продаваемые аккумуляторы – кислотные. Независимо от технологии производства их зарядка возможна большинством устройств. Это могут быть старые трансформаторные или новые электронные устройства. Исключение составляют только гелевые. Эти аккумуляторы можно заряжать только импульсными зарядными устройствами.
Способы зарядки
Первым делом следует позаботиться о своей безопасности. Помните, что электролит опасен, это разбавленная серная кислота и при кипении выделяет взрывоопасный газ. Поэтому помещение должно хорошо проветриваться. Берегите руки, глаза и одежду. Места попаданий электролита на кожу нужно немедленно промыть проточной водой. Если он попал в глаза – промыть водой и обратиться к врачу.
Аккумулятор нужно вытереть начисто сухой тряпкой и проверить вентиляционные отверстия. Температура батареи должна быть от 5 до 45 градусов.
Перед зарядкой нужно обратиться к инструкции по эксплуатации аккумулятора и зарядного устройства. Если инструкции отсутствуют, посмотрите данные на корпусах. На зарядном устройстве указываются ток и напряжение. На батарее обычно обозначено только напряжение заряда. Этими величинами и стоит руководствоваться. АКБ считается полностью заряженной при достижении напряжения на клеммах с отсоединенной зарядкой 12,7 – 12,8 В. Это данные для новых или неизношенных аккумуляторов. Для старых нормой считается 12,5 – 12,6 В.
Для кислотных аккумуляторов используют три способа зарядки:
- Поддерживая постоянную силу тока.
Постоянную силу тока равную 1/10 ёмкости, выставляют в начале процесса. Напряжение устанавливается равным рекомендованному производителем. При таком способе придётся постоянно контролировать ток зарядки. Необходимо также периодически отсоединять АКБ и проверять напряжение на клеммах. Когда напряжение на клеммах АКБ достигнет 12,2 В, нужно убавить силу тока в два раза. Следует учитывать, что в этом режиме заряд поднимается на 0,1 В за час. При достижении требуемых 12,7 – 12,8 В процесс считается завершенным. Это быстрый, но очень жёсткий и кропотливый способ зарядки.
- Поддерживая постоянное напряжение. В этом случае придётся поддерживать постоянную величину напряжения. Ток, как и в первом случае, выставляется равным 1/10 ёмкости АКБ. За напряжением ведется наблюдение, оно должно быть равно регламентированному инструкцией. Сила тока будет снижаться и постепенно достигнет 0, что будет свидетельством полного заряда батареи. Этот метод также требует постоянного вмешательства, зато аккумулятор заряжается гораздо мягче.
- Комбинированный. Это самый эффективный и щадящий АКБ способ. Здесь нужно следить за обоими показателями. Процесс длится 20 – 24 часа. За это время силу тока снижают каждые 4 часа в два раза. Напряжение выставляют 12,5 В и ступенчато поднимают до рекомендованного. В конце зарядки сила тока должна упасть до ноля.
Комбинированный способ применяется в автоматическом режиме современными импульсными зарядными устройствами. Необходимо лишь включить способ IUoU, и прибор всё сделает за вас. Он мягко и полностью зарядит АКБ, сэкономив ваше время и нервы.
Гелевые АКБ и особенности их зарядки
Проблемой кислотных аккумуляторов всегда было выкипание, вытекание, разбрызгивание и изменение состава электролита. Инженеры потрудились и решили эти проблемы. В результате экспериментов появились гелевые аккумуляторы. Это всё те же кислотные аккумуляторы, но наполненные гелеобразным электролитом. Гель не разбрызгивается, не закипает, долго сохраняет свойства и лучше контактирует со свинцовыми пластинами.
Аккумуляторы с гелевым электролитом получили ряд преимуществ:
- При небольших повреждениях корпуса гель не вытекает наружу
- Батарею можно устанавливать вертикально и в наклонном положении
- Безопасность использования (при зарядке не выделяются газы)
- Стабильные показатели вплоть до снижения уровня зарядки до 70%
- Заявленная возможность заряда-разряда до 1000 циклов
- Отличная работа при отрицательных температурах
Недостатков немного и они условные. Это требования к качеству напряжения бортовой сети и зарядного устройства, и высокая стоимость. Эти недостатки с лихвой компенсируются отличными эксплуатационными свойствами.
Заряжать гелевые аккумуляторы можно только современными импульсными зарядными устройствами. Но и для них имеется два условия, это обязательный контроль напряжения и стабильная сила тока. Напряжение обычно указывается на корпусе либо в инструкции по эксплуатации батареи. Это может быть надпись на английском языке «Cycle use». Ток зарядки, как и для всех аккумуляторов – 10% от ёмкости аккумулятора.
Зарядка импульсным устройством не требует от пользователя каких либо знаний и умений. Нужно подключить его к батарее, включить и выставить необходимое напряжение. Остальное прибор выполнит сам. При достижении 100% заряда устройство просигнализирует об этом.
Основной принцип управления током зарядки
Главными принципами являются два:
- Не превышать максимальный ток равный 1/10.
- Не устанавливать начальный ниже 1/20 ёмкости АКБ.
Подача электрического тока на клеммы вызывает сложную химическую реакцию в электролите и на поверхности свинцовых пластин. При умеренном протекании процесса они, не подвергаясь опасности, набирают полный заряд.
Превышение необходимого уровня вызывает слишком бурную реакцию. Несколько таких зарядок могут попросту разрушить пластины.
Вреден и малый ток. В этом случае зарядится только внешний слой пластин. После чего ток зарядки упадет до ноля, а напряжение вырастет до заданного. Казалось бы – аккумулятор заряжен. Но это не так! Пластины сульфируются, не берут заряд и становятся пассивными.
В обоих случаях АКБ придётся выкинуть.
Как заряжать в первый раз новый АКБ
Производители отправляют в торговлю АКБ заряженные до 80% ёмкости. Под воздействием низких и высоких температур при перевозке и хранении происходит дополнительная потеря ёмкости. Продавцы обычно делают проверку двумя способами:
- Напряжение измеряют вольтметром без нагрузки, норма 12,5 – 12,7 В.
- Нагрузочной вилкой, нормальным будет падение до 10,5 В и ни делением ниже.
Такая проверка не всегда корректна. Если с напряжением всё понятно, то нагрузочную вилку могут использовать с меньшей нагрузкой. Например, измерить падение напряжения на аккумуляторе ёмкостью 100 Ач вилкой для 60 Ач. Поэтому нужно проверять ампераж вилки. Нелишней будет и проверка даты производства. Лучше не покупать выпущенные более года назад аккумуляторы.
Но даже недавно выпущенный и прошедший проверку аккумулятор, нужно зарядить перед первым использованием.
Первый заряд необходимо выполнить током в 1/10 ёмкости и напряжением рекомендуемым производителем. Зарядка продлится всего пару часов. Силу тока регулировать не нужно, в конце этот показатель упадет до ноля.
Аккумулятор это важная часть автомобиля. Прошли те времена, когда машину можно было завести кривым стартером. Современное авто не простит разряженную батарею, просто не заведётся и не поедет. Поэтому можно и нужно заряжать новые и уже эксплуатируемые АКБ.
Каким током заряжать аккумулятор автомобиля: 60, 70, 100 Ач
Полноценное и безотказное функционирование аккумулятора в равной степени зависит от наличия нежелательных примесей в свинце, соответствия легирующих элементов, использованных в производстве электродов, совершенства технологий и оборудования и грамотного обслуживания батареи. Подавляющее большинство используемых кислотных автомобильных аккумуляторов относится к классу необслуживаемых, соответственно, автолюбителю остается немного – контролировать состояние электролита и правильно выбирать – каким напряжением и током заряжать аккумулятор автомобиля.
Как заряжать в первый раз новый АКБ
В большинстве случаев сервисные центры и автомагазины, предлагая автомобильные аккумуляторы от 55 до 100 Ач, стремятся приобретение новой батареи сделать привлекательным для потенциального клиента, поэтому товар предлагается в заправленном электролитом и заряженном виде. Работники проверят и установят на автомобиль выбранную модель аккумулятора. Иногда степень зарядки батареи пытаются подтвердить показаниями встроенного цветного индикатора заряда – «глазка».
Возможно, это удобно. Не нужно возиться с электролитом, зарядным устройством, переносить довольно тяжелые приборы. Например, автоаккумулятор на 55 Ач весит до 15 кг, а 60 Ач, 70 Ач и 100 Ач имеют вес 16 кг,18 кг и 25 кг соответственно.
Реклама сайтов и многочисленные пожелания экспертов всех марок и мастей говорят, что больше ничего делать не нужно, аккумулятор будет исправно работать в течении всего срока использования. Заводы-производители не занимаются зарядкой готовых батарей, необходимые свойства электродов батареи формируются на специальных технологических линиях и монтируются в корпуса в готовом виде без электролита.
Это так называемый сухозаряженный автомобильный аккумулятор, для его использования достаточно залить электролит, и вы получаете полноценную заряженную батарею – никаким током заряжать аккумулятор не нужно. Подобный способ удобен для транспортировки и складирования, поставки на автомобильные заводы и дилерские центры.
Кроме удобной формы покупки для нас важно – как долго будет жить и работать новый аккумулятор, тем более о судьбе купленной автомобильной батареи ничего не известно. Каким током заряжался ваш новый автомобильный аккумулятор емкостью 60 Ач до того момента, когда батарея была продана, установить сложно. Практически все автомобильные аккумуляторы с залитым электролитом хранятся в складских помещениях с 20-30% дефицитом заряда. Причина одна – как правило, для всех автобатарей используется одно зарядное устройство с минимальными сервисно-контрольными функциями. Вероятнее всего, автомобильные батареи в 55 Ач, 60 Ач, 70 Ач и 100 Ач будут заряжаться одним током и напряжением. Часть батарей подвергнется перезаряду, а часть останется с неполным зарядом. Каким током необходимо заряжать аккумулятор 55 Ач и 100 Ач? Параметры тока должны отличаться по величине почти вдвое.
Параметры зарядки, с какой силой тока и напряжением нужно заряжать автомобильный аккумулятор?
Купив новую автомобильную батарею, не спешите устанавливать его на автомобиль. Новые изделия очень не любят неполный заряд. Подсоедините зарядное устройство с вольтметром и амперметром, выставите вручную параметры зарядки. В первый час заряда ток должен упасть до минимального уровня, и несколько увеличится газообразование.
Например, каким током заряжать автомобильный аккумулятор 70Ач или 75Ач.
Для новых аккумуляторов лучшее значение 7 А, для батарей возраста от 1 до 3 лет не менее 7,5-8,0 А.
Каким током нужно заряжать
Современные зарядные устройства позволяют зарядить аккумуляторную батарею на 90-97%. В сложных схемах организации заряда можно получить даже 105% заявленной производителем емкости, но подобный результат требует глубоких знаний химии свинцово- кислотного аккумулятора и специальной техники, что в большинстве случаев экономически нецелесообразно.
С момента изобретения принципа кислотного аккумулятора использовался постоянное напряжение. После широкого распространения необслуживаемых аккумуляторов появилась серьезная проблема обеспечения срока их службы на уровне, заявленном производителем. Использование методик, разработанных для классического обслуживаемого автомобильного аккумулятора, достаточно быстро приводило в негодность еще новые накопители. Для решения проблем за последнее десятилетие производителями зарядных устройств были предложены различные модификации основного варианта:
- заряд асимметричным током. В течении 0,01сек на клеммы батареи зарядным устройством подается напряжение 14,2 В, в течении следующих 0,01 с полярность меняется на противоположную, с напряжением в 3,6 В;
- импульсный ток. Разновидность предыдущего метода, при котором период подачи напряжения чередуется с периодом отсутствия зарядки, в это время аккумулятор «отдыхает»;
- ступенчатое изменение тока. На клеммах аккумулятора напряжение заряда изменяется по определенному закону от 12,6 В до 14,6 В.
Каким из указанных токов лучше заряжать автомобильный аккумулятор? Любой из приведенных методов по-своему хорош в определенной ситуации.
Заряжать асимметричным током пробовали давно самые разнообразные аккумуляторные элементы, метод оказался эффективным как способ борьбы с сульфатацией, позволяющий восстанавливать утраченную емкость «пожилых» накопителей. Для зарядки новой батареи он не имеет особых преимуществ. Специалисты очень рекомендуют использовать асимметрию напряжения в качестве профилактики возникновения сульфатации пластин. Оптимально чередовать три-четыре зарядки обычным методом и одну с асимметрией тока.
Импульсный ток, как и способ ступенчатого изменения напряжения, наиболее эффективен на завершающем этапе зарядки, когда батарея имеет емкость 90-95% номинальной. Подобный метод заряжания считается перспективным, как составная часть комплексной зарядки, предложенной немецкими специалистами корпорации VARTA. Суть процедуры заключается в проведении постоянного контроля зарядного тока и диагностики с помощью датчиков и микропроцессора, встроенных в батарею. Способ предусматривает взаимодействие с компьютером автомобиля, предполагает управление зарядными токами генератора машины, рассчитан на 20% увеличение жизненного цикла аккумулятора и, возможно, снизит расход топлива.
Основной принцип управления током зарядки
Накопление заряда в батарее не является линейным и постоянным процессом. Необслуживаемые батареи сконструированы таким образом, что оптимальное напряжение 14,2 – 14,6 В, рекомендуемое многими практиками, выше применяемых ранее 13,2-13,8 В на старых конструкциях накопителей.
При стабилизированном напряжении основным контролируемым параметром остается сила тока. Через несколько часов после начала зарядки начальный ток будет ступенчато уменьшаться до определенного критического значения, примерно до 30% первичного. Специалисты рекомендуют в эти моменты останавливать заряд на непродолжительный период «отдыха аккумулятора» для выравнивания концентрации ионов в электролите и порах электродов. Если у вас «интеллектуальное» зарядное устройство, электроника постарается при заряжании скомпенсировать падение тока, что сократит время, но может привести к закипанию банок. В этот момент резко увеличивается перезаряд и нагрев элемента. Продолжение процесса «кипячения», особенно в течение 5-6 часов, может бесповоротно вывести батарею из строя.
Плохие советы
К определенно «убийственным» советам можно отнести широко распространенную в интернете и периодических изданиях информацию о лучших вариантах заряда аккумуляторов:
- даже современные необслуживаемые батареи не в состоянии постоянно работать с зарядным напряжением в 16-16,5 В . Множество разрекламированных устройств, якобы позволяющих восстановить емкость и заряд в течение получаса, в реальности разрушают материал положительных электродов;
- не доверяйте устройствам, способным выдавать мгновенное значение остаточного заряда в батарее. В большинстве, любые электронные устройства подобного типа являются недостоверными. Методики мгновенного определения или измерения остаточной емкости батареи не существует. Оценить величину остаточной энергии можно по падению напряжения и мгновенному значению тока на клеммах каждой из банок батареи под нагрузкой.
Сила тока при зарядке аккумулятора автомобиля
Как правильно зарядить автомобильный аккумулятор?
26.08.09 | Рубрика: Обслуживание аккумулятора. Просмотры: 106 947
С окончанием летнего сезона у автомобилистов все чаще возникает вопрос зарядки своего автомобильного аккумулятора. По многочисленным просьбам читателей портала battery-industry.ru, мы публикуем инструкцию «правильной» зарядки АКБ.
Заряд АКБ
Заряд свинцовых аккумуляторных батарей необходимо производить от источника постоянного (выпрямленного) тока. Можно использовать любые выпрямители, допускающие регулировку зарядного тока или напряжения. При этом зарядное устройство, предназначенное для заряда одной 12-вольтовой батареи, должно обеспечить возможность увеличения зарядного напряжения до 16,0-16,5 В, поскольку иначе не удастся зарядить современную необслуживаемую батарею полностью (до 100% ее фактической емкости).
Положительный провод (клемму) зарядного устройства соединяют с положительным выводом батареи, отрицательный — с отрицательным.
В практике эксплуатации пользуются, как правило, одним из двух методов заряда батареи: заряд при постоянстве тока или заряд при постоянстве напряжения. Оба эти метода равноценны с точки зрения их влияния на долговечность батареи. При выборе зарядного устройства следует руководствоваться информацией, приведенной ниже.
Заряд при постоянстве тока
Заряд батареи производится при постоянной величине зарядного тока, равной 0,1 х С20 (0,1 от номинальной емкости при 20-часовом режиме разряда). Это значит, что для батареи емкостью 60 А•ч ток заряда должен быть равен 6 А. Для поддержания постоянства тока в течение всего процесса заряда необходимо регулирующее устройство.
Недостаток такого способа — необходимость постоянного (каждые 1-2 часа) контроля и регулирования зарядного тока, а также обильное газовыделение в конце заряда.
Для снижения газовыделения и повышения степени заряженности батареи целесообразно ступенчатое снижение силы тока по мере увеличения зарядного напряжения. Когда напряжение достигнет 14,4 В, зарядный ток уменьшают в два раза (3 Ампера для батареи емкостью 60 А•ч) и при таком токе продолжают заряд до начала газовыделения. При заряде батарей последнего поколения, которые не имеют отверстий для доливки воды, целесообразно при увеличении зарядного напряжения до 15 В еще раз уменьшить ток в два раза (1,5 А для батарей емкостью 60 А•ч).
Батарея считается полностью заряженной, когда ток и напряжение при заряде сохраняются без изменения в течение 1-2 часов. Для современных необслуживаемых батарей такое состояние наступает при напряжении 16,3-16,4 В в зависимости от состава сплавов решеток и чистоты электролита.
Заряд при постоянстве напряжения
При заряде этим методом степень заряженности АКБ по окончании заряда напрямую зависит от величины зарядного напряжения, которое обеспечивает зарядное устройство. Так, например, за 24 часа непрерывного заряда при напряжении 14,4 В 12-вольтовая батарея зарядится на 75-85%, при напряжении 15 В — на 85-90%, а при напряжении 16 В — на 95-97%. Полностью зарядить батарею в течение 20-24 часов можно при напряжении зарядного устройства 16,3-16,4 В.
В первый момент включения тока его величина может достигать 40-50 А и более, в зависимости от внутреннего сопротивления (емкости) батареи. Поэтому зарядное устройство снабжают схемными решениями, ограничивающими максимальный ток заряда до 20-25 А.
По мере заряда напряжение на выводах батареи постепенно приближается к напряжению зарядного устройства, а величина зарядного тока, соответственно, снижается и приближается к нулю в конце заряда (если величина зарядного напряжения выпрямителя ниже напряжения начала газовыделения). Это позволяет производить заряд без участия человека в полностью автоматическом режиме. Обычно критерием окончания заряда в подобных устройствах является достижение напряжения на выводах батареи при ее заряде, равного 14,4±0,1 В. При этом, как правило, загорается зеленый сигнал, служащий индикатором достижения заданного конечного напряжения, то есть окончания заряда. Однако, для удовлетворительного (на 90-95%) заряда современных необслуживаемых батарей с помощью выпускаемых промышленностью зарядных устройств, имеющих максимальное зарядное напряжение 14,4-14,5 В, потребуется более суток.
Заряд батареи на автомобиле
При эксплуатации батареи на автомобиле ее заряд происходит при постоянном напряжении. Производители автомобилей по согласованию с разработчиками батарей устанавливают уровень зарядного напряжения 14,1±0,2 В, что ниже напряжения интенсивного газовыделения. С понижением температуры эффективность заряда при постоянном напряжении уменьшается из-за роста внутреннего сопротивления батареи. Поэтому АКБ на автомобиле не всегда восстанавливает свою емкость после разряда полностью. Обычно степень заряженности батареи зимой составляет 70-75%, если напряжение на клеммах батареи равно 13,9-14,3 В при работающем двигателе и включенном дальнем свете. Поэтому в тяжелых условиях зимы (при низких температурах, частых и длительных пусках холодного двигателя и коротких пробегах) целесообразно периодически (желательно не реже одного раза в месяц) производить заряд АКБ от стационарного зарядного устройства и при положительной температуре.
У полностью заряженной батареи плотность электролита составляет 1,28±0,01 г/см3 Линейно снижаясь, по мере разряда АКБ, она составляет 1,20±0,01 г/см3 у батарей, степень заряженности которых снизилась до 50%. У полностью разряженной батареи плотность электролита составляет 1,10±0,01 г/см3.
Если значение плотности во всех аккумуляторах одинаково (с разбросом ±0,01 г/см3), это говорит о степени заряженности батареи и отсутствии внутренних замыканий. При наличии внутреннего короткого замыкания плотность электролита в дефектной банке аккумулятора будет значительно ниже (на 0,10-0,15 г/смі), чем в остальных ячейках.
Для измерения плотности жидкостей применяют ареометры со сменными денситометрами для измерения плотности различных жидкостей, например, антифриза с плотностью от 1,0 до 1,1 г/см3 или электролита с плотностью от 1,1 до 1,3 г/см3.
При измерении поплавок не должен касаться стенок цилиндрической части стеклянной трубки. Одновременно необходимо замерить температуру электролита. Результат измерения плотности приводят к +25°C. Для этого к показаниям денситометра надо прибавить или отнять поправку, указанную в специальной литературе.
Если при измерении окажется, что НРЦ ниже 12,6 В, а плотность электролита ниже 1,24 г/см3, батарею необходимо подзарядить и проверить зарядное напряжение на ее клеммах при работающем двигателе.
Каким током заряжать автомобильный аккумулятор? » АвтоНоватор
Зарядка автомобильного аккумулятора, на первый взгляд может показаться делом сложным, особенно для человека, который раньше не заряжал или не ремонтировал аккумуляторы своими руками.
Общие принципы заряда АКБ
На самом деле, произвести зарядку АКБ не составит труда для человека, который в школе не прогуливал уроки по физико – химии. Самое главное, быть внимательным при изучении технических характеристик АКБ, зарядного устройства, и знать каким током заряжать автомобильный аккумулятор.
Ток заряда автомобильного аккумулятора должен быть постоянным. Собственно для этой цели и служат выпрямители, допускающие регулировку напряжения или зарядного тока. Приобретая зарядное устройство, ознакомьтесь с его возможностями. Зарядка, предназначенная для обслуживания 12-ти вольтовой батареи должна обеспечить возможность увеличения зарядного напряжения до 16,0-16,6 В. Это нужно для зарядки современного необслуживаемого автомобильного аккумулятора.
Методы зарядки аккумуляторных батарей
На практике применяется два метода заряда АКБ, вернее, один из двух: заряд батареи при постоянстве тока и заряд батареи при постоянстве напряжения. Оба эти метода полноценны при правильном соблюдении их технологи.
Заряд АКБ при постоянстве тока
Особенностью этого способа зарядки АКБ является необходимость каждые 1-2 часа контролировать и регулировать ток зарядки аккумуляторной батареи.
Заряд АКБ производят при постоянной величине зарядного тока, которая равна 0,1 от номинальной ёмкости АКБ при 20-ти часовом режиме разряда. Т.е. для АКБ ёмкостью 60А/ч, ток заряда автомобильного аккумулятора должен быть равен 6А. именно для поддержания постоянства тока в процессе заряда требуется регулирующее устройство.
Для повышения степени заряженности АКБ рекомендуется ступенчатое снижение силы тока по мере того, как увеличивается зарядное напряжение.
Для аккумуляторов последнего поколения без отверстий для долива, рекомендуется увеличивая зарядное напряжение до 15В, ещё раз уменьшить ток в 2 раза, т.е 1,5А для АКБ в 60А/ч.
АКБ считается полностью заряжена, в случае, когда ток и напряжение сохраняются в течение 1-2 часов без изменений. Для необслуживаемой батареи такое состояние заряда наступает при напряжении 16,3 – 16,4 В.
Заряд АКБ при постоянстве напряжения
Этот метод напрямую зависит от величины зарядного напряжения, которое обеспечивается зарядным устройством. При 24-часовом цикле непрерывного заряда 12 В АКБ зарядится следующим образом:
- при напряжении 14,4 В на 75-85%;
- при напряжении 15 В на 85-90%;
- при напряжении 16 В на 95-97%;
- полный заряд АКБ происходит при зарядке 20-24 часа и напряжении ЗУ в 16,3-16,4 В.
Как правило, критерием окончания заряда в данных зарядных устройствах, является достижение напряжения на выводах АКБ, равного 14,4±0,1. Устройство сигнализирует зеленым индикатором об окончании процесса заряда батареи.
Специалисты рекомендуют для оптимального в 90-95% заряда необслуживаемых АКБ при помощи промышленного зарядного устройства с максимальным зарядным напряжением 14,4 – 14,5 В, этим способом, требуется не мене суток заряда аккумуляторной батареи.
Удачи вам, любители своего автомобиля.
Мнение эксперта
Руслан Константинов
Эксперт по автомобильной тематике. Окончил ИжГТУ имени М.Т. Калашникова по специальности «Эксплуатация транспортно-технологических машин и комплексов». Опыт профессионального ремонта автомобилей более 10 лет.
Помимо перечисленных методов зарядки среди автолюбителей популярен ещё один способ. Особенно он пользуется спросом у тех, кто постоянно куда-то спешит и времени на полноценную поэтапную зарядку попросту нет. Речь идёт о зарядке на большом токе. Для сокращения времени зарядки, в первые часы на клеммы подаётся сила тока от 20 Ампер, на весь процесс уходит порядка 5 часов. Подобные действия допускаются, но злоупотреблять быстрой зарядкой не нужно. Если так заряжать аккумулятор постоянно срок его службы резко сократится из-за чрезмерно активных процессов химических реакций в банках.
Если же возникли экстренные ситуации, то возникает резонный вопрос: какой ток выбрать и сколько ампер можно подавать. Большой ток полезен только в том случае, если невозможно провести зарядку по всем правилам (нужно срочно ехать, но АКБ разряжен). В таких случаях следует помнить, что относительно безопасный ток заряда не должен превышать более чем на 10% ёмкость батареи. Если батарея сильно разряжена, то ещё меньше.
вопросы и ответы • Проверено лично!
Нужно уяснить, что мы подразумеваем под тренировкой Li-Ion. Если то же, что в случае с NiMH, циклический заряд-разряд для восстановления ёмкости, то для литиевых элементов эта процедура не имеет смысла. В литиевых аккумуляторах совершенно иной химический процесс. Деградация литиевых элементов происходит из-за нарушения структуры катода и разрушения анода. К сожалению, оба этих процесса необратимы.
Однако, иногда «тренировкой» называют балансировку элементов в литиевой батарее. Эта процедура крайне важна, она производится специальными устройствами, наиболее популярным из которых является SkyRC Imax B6. Если батарея состоит из последовательно соединенных литиевых элементов, то при работе раньше разрядятся те, у которых больше внутреннее сопротивление, даже если разница незначительна. Давайте представим механику процесса на примере батареи 2S.
Она состоит из двух литиевых элементов, максимальное напряжение каждого 4,20 вольта. Соответственно, напряжение полностью заряженной батареи 2S — 8,4 В. При работе первый элемент разрядился чуть быстрее, поскольку двух абсолютно идентичных аккумуляторов не бывает. Контроллер отключил питание и мы получили батарею из двух элементов, в первом остаточный заряд 2,7 вольта, а во втором 2,5. Для того, чтобы снова получить готовую к работе заряженную батарею, нам нужно, чтобы каждый элемент зарядился до 4,2 В. Подключаем батарею к зарядному устройству. Она заряжается в нормальном режиме, пока каждый элемент не поднимает своё напряжение на 1,5 вольта. При этом более хороший элемент достигает 4,2 В, но зарядка не прекращается, поскольку полный заряд 8,4 В еще не достигнут, второй элемент набрал только 4,0 В. Зарядное устройство продолжает заряжать батарею, при этом первый элемент, который достиг предела, перегревается и кипит всё то время, пока второй набирает ёмкость. Наконец, батарея заряжается до 8,4 В и ЗУ отключает ток. Теперь у нас первый аккумулятор становится слабым звеном, поскольку кипение отобрало у него немалую часть ёмкости. В таком режиме батарея долго не протянет, десять-двадцать циклов и в утиль.
Поэтому на батареях, состоящих из нескольких элементов, существует балансировочный разъем. В случае с двумя элементами разъем имеет три контакта, это плюс, минус, и еще один контакт, подключаемый между элементами батареи. Зарядное устройство следит за напряжением каждого элемента батареи, и, если один из них зарядился, выключает его из цепи, продолжая заряжать оставшиеся. По этому же принципу работают платы BMS, которые встроены в некоторые батареи, в этом случае на разъем подается нужное напряжение, а BMS сам следит, сколько какой банке следует скормить.
Можно ли заряжать смартфон, наушники или часы более мощной зарядкой? Вольты и амперы для «чайников»
Оценка этой статьи по мнению читателей:Я часто встречаю в интернете одни и те же вопросы, связанные с зарядкой гаджетов. Звучат они примерно так:
— У меня есть телефон, с которым шла зарядка на 5 вольт и 1 ампер (5V и 1A). Можно ли заряжать его от более мощного блока питания на 5V и 3A? Не вредно ли это?
— Мои Bluetooth-наушники шли без блока питания в комплекте, а в инструкции сказано, что заряжать их нужно от USB-разъема компьютера, мощностью 5V и 0.5A. Что будет если я подключу к ним блок питания на 5V и 2A? Не сгорят ли наушники?
Если вы также задавались подобными вопросами, то, скорее всего, находили ответ, который звучал примерно так:
Устройство можно заряжать любой зарядкой на 5 вольт, вне зависимости от количества ампер. Оно не возьмет больше тока, чем ему нужно.
Несмотря на то, что это правильный ответ, многих он не удовлетворяет, так как не совсем понятно, что значит фраза «не возьмет больше ампер, чем нужно».
Значит ли это, что блок питания на 5V и 3A будет силой «заталкивать» в несчастный смартфон очень много тока, но смартфон будет сопротивляться этому, временами нагреваясь, как печка? А может всё дело в «умном» блоке питания, который вначале «спросит» устройство, сколько ампер ему нужно, а затем выдаст соответствующий ток?
Если мы выбираем первый вариант, то как-то не очень радует такая перспектива. Начинаешь прямо ощущать то давление, которое испытывает гаджет, сопротивляясь сильному току. Кажется, рано или поздно он не выдержит этого и даст сбой.
А если выбирать второй вариант, то появляется сомнение — а действительно ли моя зарядка достаточно умная и будет ли она что-то выяснять с устройством? А если она глупая или мое устройство «не говорит» на ее языке и тогда она просто начнет заталкивать силой 3 ампера тока?
На самом деле, какой бы из этих вариантов вы ни выбрали, это представление будет неверным. В реальности из блока питания в USB-кабель просто не выйдет больше тока (больше ампер), чем нужно смартфону, часам или наушникам. И дело не в умном блоке питания, а в законах природы.
Об этом, собственно, я бы и хотел рассказать подробнее, чтобы не просто дать короткий ответ и оставить сомнения, а объяснить на фундаментальном уровне, что в действительности происходит, когда мы подключаем более мощный блок питания, чем тот, на который рассчитано наше устройство.
Она просто упала и напоролась на нож. И так восемь раз подряд!
Не так давно по интернету гуляло шокирующее открытие. Оказалось, человека убивают не 220 вольт из розетки, а количество ампер! Это «открытие» сразу же напомнило мне анекдот о тёще, которая поскользнулась и упала на нож, и так 8 раз подряд…
Естественно, убивает нож (амперы). Но сам по себе нож совершенно безопасен, если только его не возьмет в руку человек, способный нанести удар. И чем сильнее будут его мышцы (вольты), тем опаснее будет нож (амперы). В слабых ручках годовалого ребенка (очень мало вольт) даже острый нож (очень много ампер) не будет представлять для человека никакой угрозы.
И чтобы продолжить разговор, нам нужно сразу же определиться с терминами. Если вы хорошо знаете, что такое вольты и амперы, а также прекрасно понимаете закон Ома, тогда не думаю, что эта статья будет вам интересна. Да и вопросов таких у вас не должно возникать. Поэтому сразу предупреждаю, фраза «для чайников» в заголовке указана неспроста.
Что такое ток?Представьте себе обычный кусок провода. Скажите, в нем есть ток? Думаю, вы не станете проводить эксперименты, подключая этот провод к лампочке, чтобы ответить на мой вопрос. Очевидно, там нет никакого тока.
Но что вообще такое ток?
Думаю, многие знают, что ток — это движение электронов. Если по проводу потекут/поползут электроны, в нем автоматически появится и ток. Но откуда тогда берутся электроны в проводе? Их туда заталкивает блок питания или батарейка?
На самом деле, электроны, которые будут ползти по нашему проводу, уже находятся внутри него. Ведь провод, как и всё в нашем мире, состоит из атомов. И эти атомы, словно детальки конструктора, бывают разными.
Взять, к примеру, золото. Вот вы держите в руке слиток золота и всем сразу понятно, что это не кусок алюминия. Но если дробить этот кусок на более мелкие кусочки, то до каких пор вещество будет оставаться золотом? Правильный ответ — до размера одного атома! И посмотрев на два разных атома, мы без проблем определим, где из них — золото, а где — алюминий.
И дело не в том, что атом золота желтый или блестит на солнце, а атом водорода — жидкий и прозрачный. Конечно нет. Всё дело в ядре атома, а точнее, в количестве протонов, из которых это ядро состоит. Если в атоме будет 79 протонов, мы знаем, что это золото, а если — 29 протонов, то это медь. И сколько бы электронов мы ни отрывали от атома, атом всегда остается золотом или медью.
Если бы мы смогли как-то добавить 4 протона к атому меди, их бы стало 33 и этот атом уже бы не имел никакого отношения к меди, он стал бы мышьяком. К слову, эти циферки (количество протонов) и указываются в таблице Менделеева возле каждого элемента.
Ядро атомаТак вот, протоны (синие шарики на картинке выше) имеют определенный заряд, мы условно называем его положительным («плюсом»). А вокруг ядра парят электроны, также обладающие зарядом, но противоположным заряду протона. Мы называем его отрицательным («минусом»). Именно благодаря электронам атомы и могут соединяться друг с другом, создавая все предметы, вещества и материю. Эти электроны, как липучки, склеивают атомы друг с другом:
Протоны всегда притягивают к себе электроны («плюс» и «минус» всегда притягиваются). Но чем больше энергии у электрона, тем дальше он может отлетать от ядра с протонами. А чем дальше он от ядра, тем слабее с ним связь. Такой электрон может вообще оторваться от ядра и улететь с концами, ведь его отталкивают другие электроны («минус» и «минус» всегда отталкиваются).
Так вот, если мы повлияем на провод какой-то силой, электроны, расположенные дальше всего от ядра, начнут отрываться от атомов, проползать небольшое расстояние и присоединяться к другим атомам, а их электроны, соответственно, оторвутся и отлетят к следующим атомам:
Кусок провода и его атомыПовторюсь, это движение электронов, направленное в одну сторону, и называется током.
Что такое амперы и вольты?Ток — это движение электронов. Но как нам описывать силу тока? Можно, конечно, просто называть количество проползающих по проводу электронов за одну секунду.
Например, говорить: «Не касайся этого провода, там за секунду проплывает 12 миллионов триллионов электронов!», или писать на табличке: «Осторожно, здесь проползает за секунду 30 квинтиллионов электронов».
Согласитесь, звучит как-то странно. Мы даже не можем осознать или представить эти миллионы триллионов или квинтиллионы.
Поэтому мы решили не считать электроны по одному, а сразу учитывать их группами или «пачками». Ведь что толку нам от заряда одного электрона? Он ничтожно мал и не способен проделать никакой полезной работы.
В такую «пачку» (группу) включили 6 241 509 074 460 762 607 электронов. И суммарный заряд этих ~6 квинтиллионов электронов, проходящих по проводу за 1 секунду, решили назвать ампером:
Если мы говорим, что по проводу идет ток 2 ампера (2А), это значит, что там физически за 1 секунду проползает около 12 квинтиллионов электронов (2*6.241).
Кстати, вы наверное заметили, что я использую разные слова для описания движения электронов: проползают, проплывают, пролетают и т.д. Делаю я это потому, что не знаю, каким словом лучше описать такое движение.
Кто-то может подумать, что электроны движутся по проводу с сумасшедшей скоростью, ведь лампочка включается моментально, как только мы прикасаемся к выключателю. На самом же деле, называть эту скорость «сумасшедшей», мягко говоря, не совсем правильно.
Когда вы включаете блок питания в розетку и подключаете по кабелю свой смартфон, то один конкретный электрон, «вылетевший» в это мгновение из блока питания в провод, попадет непосредственно в сам смартфон где-то через 33 минуты. Да, он будет продвигаться вперед не более, чем на полмиллиметра в секунду.
Но почему тогда ток моментально попадает из точки А в точку Б? Ровно по той же причине, почему вода в вашем кране начинает течь мгновенно, как только вы открываете кран, хотя в реальности она должна пройти очень длинный путь.
Электроны уже находятся в проводе и как только первый электрон «заходит» в провод, он выталкивает ближайший электрон, уже находившийся там, а тот сразу же «толкает» следующий. Получается, что ровно в тот момент, когда первый электрон «залетал» в провод, на другом конце вылетал последний (крайний) электрон.
1 ампер — это много или мало? Или поговорим о
вольтахБлок питания на 1А мы считаем слабым, называя такую зарядку «медленной». Но на самом деле, хватит и 5% от этого тока (0,05А), чтобы убить человека. Тем не менее, даже блок питания на 5А (в 100 раз больше электронов, чем нужно для остановки сердца) для нас совершенно безопасен. Почему же так происходит?
Думаю, вы обратили внимание, что я постоянно говорил о какой-то силе, которая нужна, чтобы толкать электроны вперед по проводу. Эта сила называется напряжением и измеряется она в вольтах.
Вспомните, что одинаковые заряды отталкиваются («минус» и «минус» или два электрона). Так вот, если мы каким-то образом соберем очень много одинаковых зарядов (электронов) в одном месте, они будут пытаться оттолкнуться друг от друга. Чем больше их будет, тем сильнее будет сила, которая будет пытаться их вытолкнуть. И как только мы подключим к этому месту провод, эта сила моментально начнет выталкивать электроны, которых собралось в избытке.
Один ампер — это очень много тока. Его хватит, чтобы наверняка убить человека, но для этого нужно сначала как-то «протолкнуть» эти 6 квинтиллионов электронов внутрь тела через кожу. И не просто протолкнуть, а сделать это за одну секунду.
Потребуется толкать электроны очень усердно. Нужно напряжение не 5 вольт, а что-то ближе к 3000 вольт. И это еще сильно зависит от состояния кожи, влажности и других условий. Если же мы хотим протолкнуть за 1 секунду всего 0,05 ампер (что уже может быть опасной «дозой» электронов), то хватит и напряжения в 150 вольт.
В нескольких штатах Америки до сих пор применяется смертная казнь в виде электрического стула. Так вот, с его помощью пытаются протолкнуть в тело человека за 1 секунду 5 ампер тока. Чтобы упростить задачу, на голову осужденному кладут губку, смоченную токопроводящим раствором, чтобы электронам было легче пройти через кожу. И при всём этом требуется 2700 вольт напряжения!
Таким образом, вольты и амперы неразрывно связаны друг с другом. Амперы — это множество электронов, проходящих через точку за 1 секунду, а вольты — это сила, с которой эти электроны выталкиваются.
Можно ли заряжать смартфон или фитнес-браслет более мощной зарядкой?Теперь, понимая что такое амперы и вольты, мы подошли к главному вопросу.
Если смартфон, наушники или фитнес-браслет выдерживают максимум 1А, тогда что произойдет с таким устройством, если мы сможем как-то заталкивать в него по 2 ампера в секунду? Естественно, такое устройство просто сгорит.
Но вся загвоздка в том, что сделать это невозможно. Как невозможно спрыгнуть с крыши дома и «ползти» вниз по воздуху со скоростью 1 сантиметр в час, так и невозможно затолкнуть в устройство больше ампер.
Чтобы осознать это, давайте на секундочку забудем о сложной технике и возьмем банальный крохотный светодиод («лампочку»). Чтобы нагляднее продемонстрировать, я придумал светодиод, который работает от 5 вольт (для реальных светодиодов нужно в среднем 2-3 вольта):
Он будет работать исправно, если через него будет проходить ток с силой около 10 мА (1 миллиампер — это одна тысячная доля ампера или 0.001А).
А теперь давайте подключим к нему блок питания мощностью 5V и 2A. Как вы думаете, что произойдет?
Логика подсказывает, что от такого блока питания нашу лампочку просто разорвет! Ведь сила тока блока питания превышает допустимый ток лампочки в 200 раз (светодиоду нужен ток 10 мА или 0.01А, а блок питания рассчитан на 2000 мА или 2А).
Но в реальности лампочка будет прекрасно работать, не ощущая никакого дискомфорта! Ведь по ней будет протекать ток 10 мА вместо ожидаемых 2000 мА! В чем же здесь подвох? Неужели блок питания настолько умный, что как-то согласовал нужный ток и вместо 2А отправил к лампочке 0.01А!? Конечно же, нет.
Дело в том, что лампочка сопротивляется движению электронов. И всё, что нас окружает, в той или иной степени сопротивляется движению электронов.
Когда мы подключили лампочку к блоку питания на 5 вольт, он моментально со всей своей силы (с напряжением в 5 вольт) начал толкать все электроны (2 ампера) по проводу к лампочке. Первый электрон, попав в провод, ударил по второму, тот — по третьему и так до тех пор, пока не дошло дело до электронов в лампочке.
И вот тут электроны столкнулись с проблемой. Оказывается, двигаться по проводу было очень легко, настолько легко, что силы в 5 вольт хватало для проталкивания по проводу двух ампер тока. Но когда электроны начали проползать по лампочке, что-то начало им мешать. Возможно, атомы внутри расположены более плотно или они немного вибрируют и электроны чаще с ними сталкиваются, что затормаживает всё движение.
Главное — лампочка оказалась не такой «гладкой трассой» для электронов, как провод.
Чтобы лучше это понять, представьте, что вам нужно толкнуть вперед 20-килограммовый ящик, который лежит на очень гладкой поверхности (на рисунке показана синим цветом):
Вашей силы хватит только для того, чтобы передвигать этот ящик каждую секунду на полметра. Ваша сила — это и есть те самые 5 вольт блока питания, а ящик — это 2 ампера электронов. Гладкая поверхность — это провод.
Но теперь представьте, что часть поверхности стала зыбкой, как песок (показано красным цветом):
Естественно, именно на этих участках движение ящика замедлится очень сильно, ведь ваших сил хватало на то, чтобы двигать 20 кг по гладкой поверхности со скоростью полметра в секунду.
Но важно то, что скорость замедлилась не конкретно на участке с песком, а вообще вдоль дороги, так как ящик одновременно лежит и на гладкой, и на песчаной поверхности. Получается, если бы вся дорога была гладкой, вы бы за секунду передвигали ящик на полметра, теперь же эти 20 кг передвигаются за секунду на 30 см.
И связано это не с тем, что вы что-то изменили. Вы ничего не меняли, вы продолжаете толкать ящик с одинаковой силой, но теперь движение замедлилось. Если бы вы заменили 20-килограмовый ящик на 50-килограмовый, то вам бы удавалось передвигать больше груза, но скорость упала бы еще сильнее.
Точно то же происходит и в примере с лампочкой. У блока питания есть определенная сила (5 вольт) и он мог бы проталкивать 2 ампера тока, если бы по всему участку не встречалось никаких преград.
Но как только мы ставим лампочку, она сразу же замедляет всё движение тока на определенное значение. Блоку питания уже не хватает сил (5 вольт), чтобы толкать максимальное количество электронов с той же скоростью (каждую секунду — 2 ампера). Теперь, из-за сопротивления вдоль движения он будет толкать не более 0.01А (1 миллиампер) в секунду.
Смартфон, фитнес-трекер и наушники подчиняются закону ОмаИтак, закон Ома — это и есть та причина, по которой вы можете без малейшего опасения подключать к своему телефону или наушникам блок питания хоть на 5 вольт и 1000 ампер.
Вот как это работает. Сопротивление измеряется в Омах. Первая лампочка имела сопротивление току 500 Ом. Мы узнали это потому, что 5-вольтовый блок питания смог протолкнуть только 0.01 ампер тока. Разделив 5В на 0.01А, мы получили значение 500 Ом.
Делить вольты (обозначаются буквой V) на амперы (обозначаются буквой I), чтобы узнать сопротивление (обозначается буквой R) нам и подсказал тот самый закон Ома:
R=V/I
Теперь возьмем другую лампочку и представим, что ее сопротивление составляет 50 Ом. Получается, она в 10 раз меньше сопротивляется движению электронов. Как и первая лампочка, вторая также работает нормально только при силе тока в 10 мА (0,01А).
Но что произойдет, если мы подключим ее к нашему блоку питания на 5 вольт и 2 ампера? Так как сопротивление лампочки снизилось в 10 раз, логично предположить, что блок питания при той же силе (5 вольт) будет толкать больше электронов. Это как убрать песок с дороги, сделав ее более гладкой и скользкой, чтобы толкать груз быстрее.
Мы даже можем узнать, сколько именно тока (ампер) будет проходить через нашу новую лампочку. Для этого снова воспользуемся законом Ома: I=V/R. То есть, нужно напряжение (5 вольт) поделить на сопротивление (50 Ом) и получим 0.1А или 100 миллиампер.
Теперь тот же блок питания на 5V и 2A будет пропускать через лампочку уже не 10 миллиампер, а 100! Естественно, наша лампочка сразу же сгорит.
Так и было задумано!Блок питания остался тем же, но с новой лампочкой он выдал вместо 10 целых 100 миллиампер! Если бы мы, как разработчики лампочки, предполагали, что ее подключат к блоку питания на 5 вольт, то нам нужно было заранее побеспокоиться о том, чтобы этой силы (5 вольт) никогда не хватило для протекания 100 мА.
Нужно было просто добавить к лампочке немножко материала, который бы увеличил ее сопротивление до 500 Ом. И тогда она бы никогда не пропустила ток свыше 10 мА при использовании 5-вольтового блока питания.
Когда производитель делает схему смартфона или наушников, каждая его деталь (каждый транзистор, резистор, конденсатор и пр.) оказывает какое-то сопротивление току. То есть, можете представить всю схему, как длинный маршрут с разным типом покрытия. Это покрытие придумывает разработчик на этапе проектирования.
Если устройство рассчитано на 5 вольт, сколько бы ампер ни выдавал 5-вольтовый блок питания — это не будет иметь никакого значения, так как общее сопротивление току всех деталей будет таким, что через схему будет протекать заранее известное (безопасное) количество ампер.
Мир вокруг насЧтобы окончательно разобраться с этим вопросом, просто посмотрите вокруг себя. Нас окружает множество электроприборов: лампочки, чайники, кофемашины, тостеры. Как вы думаете, почему они не сгорают сразу, как только вы подключаете их к сети 220 вольт? Ведь обычная розетка выдает 16 ампер и ~220 вольт!
Естественно, через лампочку на 100 Ватт и, скажем, микроволновку на 1000 Ватт должно проходить совершенно разное количество электронов (разное количество ампер). Как же розетка знает, какому прибору и сколько ампер выдать под напряжением 220 вольт?
Да никак! Просто у лампочки на 100 ватт будет гораздо выше сопротивление току и она будет при напряжении 220 вольт пропускать через себя только 0.45А (100 ватт/220 вольт), а через микроволновку на 1000 Ватт будет за секунду проходить 4.5А (1000 ватт/220 вольт).
Выходит, сопротивление у лампочки — 480 Ом (220V/0.45А), а у микроволновки — 48 Ом (220V/4.5A).
Более того, если лампочка и микроволновка — это единственные работающие электрические приборы в вашем доме, тогда несмотря на розетку в 220 вольт и 16 ампер, из нее в общем будет выходить 4.95 ампер тока в секунду (4.5А микроволновки+0.45А лампочки). Сила в 220 вольт просто не способна протолкнуть больше тока, учитывая сопротивление, которое оказывают эти два прибора (лампочка на 480 Ом и микроволновка на 48 Ом).
Ровно то же касается и смартфона, фитнес-трекера или другого гаджета. У каждого из них есть свое внутреннее сопротивление, и до тех пор, пока вы будете заталкивать в них ток под давлением в 5 вольт, из блока питания будет выходить столько ампер, сколько сможет физически протолкнуть сила (или давление) в 5 вольт.
Но проблемы начнутся в том случае, если вы вздумаете увеличить напряжение и воспользоваться блоком питания, скажем, на 12 вольт. Вот тогда его силы хватит, чтобы при том же сопротивлении устройства протолкнуть гораздо больше тока. Это как с толканием ящика. Да, поверхность осталась песчаной, но теперь ящик толкают 3 человека вместо одного.
Но мой смартфон заряжается быстрее от 2А, чем от 1А! И при этом еще греется сильнее!Многие пользователи замечали, что при использовании более мощного блока питания (вместо 5В и 1А, например, 5В и 2А), телефон заряжается быстрее и греется сильнее.
Так действительно может быть. Но, опять-таки, лишь по одной причине — производителем был предусмотрен ток до 2 ампер. Компания разрабатывала свое устройство под напряжение 5 вольт и для этого ей необходимо было контролировать сопротивление на каждом участке схемы, чтобы «давление» в 5 вольт не вызвало выход из строя конкретного блока.
Производителю было важно лишь то, чтобы блок питания выдавал достаточное количество ампер. Верхняя планка его совершенно не волнует. И чтобы вместо одного ампера смартфон принимал 2A, нужно было изменить соответствующим образом сопротивление внутри смартфона. То есть, производитель заложил в устройство механизм снижения сопротивления, чтобы пропустить больше тока.
В противном случае, по законам нашей вселенной оно не сможет принять ни на миллиампер больше тока, какой бы блок питания вы ни подключали, хоть на миллион ампер. Естественно, это справедливо только в том случае, если напряжение не превышает 5 вольт.
И последнее. Конечно, при большем количестве ампер, устройство будет греться сильнее, так как банально через одни и те же детали за 1 секунду будет проходить больше электронов, соответственно, будет больше столкновений с атомами, больше вибраций атомов и сильнее нагрев.
Но, опять-таки, производитель посчитал это нормальным, раз позволил смартфону снизить свое внутреннее сопротивление и пропустить больше тока. Это решил производитель на этапе проектирования схемы, а не более мощный блок питания.
Алексей, глав. редактор Deep-Review
P.S. Мы открыли Telegram-канал и сейчас готовим для публикации очень интересные материалы! Подписывайтесь в Telegram на первый научно-популярный сайт о смартфонах и технологиях, чтобы ничего не пропустить!
Понравилась статья? Поделитесь с другими:
Параметры зарядного устройства для аккумулятора, как их рассчитать
Параметры зарядного устройства для аккумулятора, как их рассчитать
Аккумулятор — устройство для накопления энергии с целью её последующего использования.
Чтобы рассчитать параметры зарядного устройства для конкретного аккумулятора, необходимо прежде всего принять в расчет тип и параметры аккумулятора, который вы собираетесь этим устройством заряжать. Важнейшие характеристики заряжаемого аккумулятора — это: емкость, напряжение полного заряда, максимально допустимый ток заряда, а также диапазон допустимых рабочих температур.
В зависимости от того, что это за аккумулятор, какого типа материалы в нем используются — параметры зарядного устройства должны подбираться индивидуально. Здесь мы рассмотрим свинцово-кислотный и литий-ионный аккумуляторы, а точнее особенности их зарядки.
Правда в том, что если аккумулятор всегда заряжать правильно, с соблюдением оптимальных величин напряжения и тока, то он сохранит свою емкость на протяжении многих циклов заряда-разряда. Разумеется при условии, что и разряжается он тоже с соблюдением ограничений, без перегрузок, без перегревов. Итак, как же рассчитать параметры зарядного устройства для аккумулятора?
Литий-ионный аккумулятор
Главная заряженная частица, отвечающая за образование тока в литий-ионном аккумуляторе, — это положительно заряженный ион лития. Он способен внедряться в кристаллическую решетку материала на аноде, например в углерод в форме графита, а также образовывать соли или оксиды металлов (например с марганцем, кобальтом или с железом и фосфором).
В силу именно такого химического состава, максимальное конечное напряжение заряда между электродами литий-ионного аккумулятора не должно превышать 4,2 вольта, а лучше — 4,1 вольта, это продлит срок его службы, замедлит необратимые изменения.
Заряжать литий-ионный аккумулятор необходимо напряжением в 5 вольт, чтобы не ждать бесконечно долго. При этом оптимальный ток заряда должен составлять от 50 до 100% от значения емкости, то есть аккумулятор емкостью 2400мАч оптимально будет заряжать током от 2,4А до 1,2А.
Для недопущения перезаряда, качественные зарядные устройства заряжают такие аккумуляторы в 2 стадии: на первой стадии на электроды подается 5 вольт и заряд некоторое время идет с предельно разрешенным током до достижения порогового напряжения в районе 4,1 вольт, а потом начинается вторая стадия — с меньшим током, когда напряжение доводится до конечных 4,1-4,2 вольт.
Поэтому мощность зарядного устройства для литий-ионного аккумулятора (для 1 ячейки) рассчитывается так: максимальное напряжение умножить на максимальный ток, допустим 5В*2,4А=1,2Вт — для нашего примера.
Свинцово-кислотный аккумулятор
Свинцово-кислотный аккумулятор работает благодаря химическим реакциям свинца и диоксида свинца в водном растворе серной кислоты. Любой классический автомобильный аккумулятор устроен именно так. В процессе заряда сульфат свинца распадается на ионы (отрицательно заряженный SO4 и положительно заряженный H), на катоде образуется диоксид свинца, на аноде — чистый свинец. При разряде — металлический свинец окисляется до сульфата свинца, диоксид свинца восстанавливается на катоде, а на аноде окисляется свинец.
Если аккумулятор перезарядить (продержать на зарядке чрезмерно долго), то сульфат свинца закончится, останется только вода, и начнется ее электролиз: на аноде при этом будет выделяться кислорода, а на катоде (отрицательном электроде) — водород — в жидком электролите будет видно как пойдут пузырьки.
В силу именно такого химического состава, напряжение максимального заряда одной ячейки свинцово-кислотного аккумулятора составляет 2,17 вольта. В 12 вольтовом аккумуляторе таких последовательно соединенных секций 6, а в 6 вольтовом — 3 последовательно соединенные секции. Поэтому максимальное напряжение заряда 12 вольтного аккумулятора составляет 13,02 вольта. Для 6 вольтного — 6,51 вольт.
Таким образом, зарядное устройство в процессе зарядки должно подавать на электроды постоянное напряжение исходя из по крайней мере 2,45 вольт на элемент (чтобы зарядка не шла бесконечно долго) — для 12 вольтного это 14,7 вольт, а для 6 вольтного получается 7,35 вольт. Начальный ток заряда оптимально принять за 30% от емкости.
В итоге максимальная рабочая мощность зарядного устройства должна рассчитываться как максимальное напряжение умножить на максимальный ток, допустим 14,7В*30А=441Вт — для свинцово-кислотного аккумулятора номинальным напряжением 12 вольт, емкостью 100Ач.
Ранее ЭлектроВести писали, что немецкие учёные не перестают удивлять. Технологический институт Карлсруэ (Karlsruhe Institute of Technology) опубликовал пресс-релиз, в котором сообщил об одном интересном исследовании. Оказывается, параметры литиево-ионных аккумуляторов можно заметно улучшить с помощью обыкновенной яичной скорлупы.
По материалам: electrik.info.
Сила тока заряда автомобильного аккумулятора!
Какой ток необходим для зарядки автомобильного аккумулятора
Аккумулятор – такой же важный элемент автомобиля, как и двигатель. Чтобы все системы функционировали как положено, требуется поддерживать генератор в исправном состоянии, при котором он сможет обеспечить должный уровень заряда аккумуляторной батареи при работе двигателя.
Но возникают моменты, когда батарея садится от долгого простоя автомобиля, либо из-за морозов, что является актуальной проблемой многих автомобилистов в зимнюю пору. В таких ситуациях на помощь приходят универсальные зарядные устройства для зарядки автомобильных аккумуляторов.
Тут возникает следующий вопрос – как заряжать? Какими токами? Каким напряжением?
Имеется несколько подходов к процессу зарядки аккумуляторных батарей:
- метод зарядки АКБ постоянным током;
- зарядка при постоянном напряжении;
- комбинированный режим.
Что же касается оптимальной силы тока, необходимой для заряда аккумуляторной батареи, то тут имеется одно универсальное правило, которое гласит, что величина тока, используемая для зарядки на начальном этапе, должна составлять 1/10 часть от обозначенной производителем величины номинальной емкости АКБ.
Минимальная сила тока при зарядке автомобильного аккумулятора
Сила тока, необходимая для зарядки АКБ, как было упомянуто ранее, должна составлять 1/10 емкости аккумулятора. Для достижения наиболее эффективного процесса зарядки следует постепенно снижать силу тока на выходе зарядного устройства, а напряжение – наоборот, повышать. Данный комбинированный метод является самым распространенным в современных зарядных устройствах. При повышении напряжения постепенно снижается сила тока из-за возрастающего сопротивления батареи. При токе в 0.1 от емкости батареи и напряжении 14-14,6 В АКБ зарядится на 75-85 процентов за сутки. В случае необходимости повышения процента, потребуется уже прибегнуть к напряжению большей величины.
Максимальное напряжение зарядки автомобильного аккумулятора
Значение напряжения, при котором происходит процесс зарядки автомобильного аккумулятора, варьируется в зависимости от того, какой метод используется. Согласно общим рекомендациям, значение по напряжению, выдаваемое зарядным устройством, не должно превышать диапазон 14,2 – 14,6 В (в случае отсутствия глубокого разряда батареи). Если напряжение на АКБ упало ниже 12 В, то, скорее всего, потребуется приложения большего напряжения в районе 16 В.
Стоит учитывать, что с повышением данной величины скорость зарядки аккумулятора возрастает, но вместе с тем увеличивается и риск перегрева электролита внутри батареи. Перегрев опасен тем, что АКБ может потерять часть своего емкостного ресурса (в лучшем случае), а то и вовсе взорваться. Поэтому не следует гнаться за скоростью и большим напряжением, а придерживаться правила «тише едешь – дальше будешь». Подобрав лучшее зарядное устройство для автомобиля из имеющихся на данный момент на рынке, можно существенно облегчить свою жизнь и проводить процесс зарядки автомобильных аккумуляторов в автоматическом режиме, не опасаясь за перезаряд АКБ и выход ее из строя.
Рекомендуем ознакомиться со следующими материалами:
Что нужно знать о зарядке смартфонов
Мне периодически задают всякие вопросы, касающиеся зарядки смартфонов. Например, «Почему мой айфон заряжается три часа, а One Plus 5, который у мужа, - буквально за час?», «Почему от другого адаптера тот же One Plus 5 заряжается аж четыре часа?», «Почему от порта моего ноутбука смартфон заряжается аж шесть часов, а от порта ноутбука мужа — чуть больше трех часов?», «Есть ли какой-нибудь универсальный адаптер, который заряжал бы все смартфоны одинаково быстро?», «Как вообще узнать, подходит моему смартфону какой-то адаптер или нет?», «С помощью какого адаптера можно быстро зарядить смартфон в машине?» — и так далее.
Ну, вот и давайте разберемся.
Продолжительное время смартфоны заряжались при одном и том же значении напряжения — при 5 вольтах. Максимальная сила тока, от которой также зависит скорость зарядки, была 1 ампер.
Емкость аккумуляторов определяется в миллиампер-часах (мА·ч).
Если адаптер питания выдает честные 5В/1А, то аккумулятор с емкостью в 2000 мА·ч от такого адаптера теоретически должен был заряжаться примерно в течение двух часов (по 1000 мА·ч в час), но на практике ему потребуется часа три - потому что до 50% аккумулятор заряжается на максимальных значениях мощности, а потом полный ток уже не берется, так что оставшиеся 50% процентов он будет заряжаться часа два.
Обычный USB-порт компьютера (USB 2.0) выдает 5 В, но не больше 0,5 А. То есть от него аккумулятор с емкостью в 2000 мА·ч будет заряжаться порядка 5-6 часов.
Однако порты USB 3.0 (они синего цвета) при напряжении 5 В могут выдавать до 0,9 А: от такого порта смартфон может заряжаться почти в два раза быстрее, то есть примерно за три часа.
Как посмотреть, какой ток получает ваш смартфон при использовании того или иного вида зарядки? Для этого существуют специальные устройства, однако это все можно выяснить и с помощью самого смартфона. Для каждого смартфона производитель делает так называемое инженерное меню, которое вызывается строго определенным образом после перезагрузки, — там выдается большое количество самых разнообразных параметров.
Впрочем, есть способы заметно проще: например, программа Ampere (или аналогичная, их немало), которая есть под Android (под iOS раньше была, теперь не обнаруживается, но там есть аналоги). Устанавливаете ее, запускаете — и проверяете, какой ток получает ваш смартфон. Если вы используете адаптер, а ток порядка 0,5 А - значит, что-то не то или с адаптером, или с проводом. (Замечу, что эти программы не всегда корректно определяют ток заряда, но пользоваться ими все-таки можно.)
Например, вот на этом телефоне программа показывает, что смартфон получает 1,8 А (то есть 1800 миллиампер).
В любом случае имеет смысл проверить, какой ток получает ваш смартфон при заряде, даже если вы используете приложенный к смартфону адаптер. (Особенно в случае дешевых китайских телефонов.) И уж обязательно нужно проверять всякие другие адаптеры, которые вы решите использовать, а то в случае всякой дешевки иногда бывает, что там не только нет 1 А, но и даже до 0,5 А адаптер не дотягивает, так что смартфон будет заряжаться очень долго.
Также определенное влияние на скорость зарядки может оказывать используемый кабель. Чем дешевле и чем более низкокачественный кабель, который вы используете, тем ниже ток зарядки, да и напряжение тоже. И бывает так, что адаптер выдает свой честный 1 А, а из-за кабеля на смартфон приходит, например, 0,3 А и напряжение 3,5 В. Поэтому и в этом случае надо тестировать разные кабели и проверять ток зарядки на телефоне.
Для нормальных брендовых смартфонов — Samsung, Sony, HTC, Huawei, Lenovo, ZTE, Xiaomi — обычно можно рассчитывать на комплектные кабели: эти производители барахло в коробку не положат. А с какими-нибудь дешевыми смартфонами малоизвестных производителей все может быть, так что обязательно надо проверять.
Я использую кабели проверенных производителей — RoyalFlag, Fonken (вот, кстати, Fonken на Ali), также беру обычно комплекты разных размеров: чем длиннее кабель, тем больше потерь при зарядке, поэтому если адаптер расположен недалеко от смартфона, то лучше использовать кабель покороче. Но помните, что лучше более длинный кабель от известного производителя, чем короткий от черт знает кого.
Что у нас происходит с айфонами? Айфонам технологии быстрых зарядок до сих пор неизвестны, современные айфоны могут заряжаться при 5В/2А, однако Apple в комплект кладет только одноамперный адаптер, так что время зарядки айфона от своего зарядника — примерно три с половиной часа. Если же для айфона использовать адаптер от айпэда, который выдает 2 А, то айфон будет заряжаться в два раза быстрее. Или же придется отдельно покупать адаптер, который выдает 2 А, — Apple его, как обычно, продает довольно задорого. Это Apple, дети, это Apple.
С андроидными телефонами все заметно интереснее. Для них уже несколько лет как придумали различные технологии быстрой зарядки. Однако с этими технологиями есть определенный разброд и шатание, потому что нет единого стандарта быстрой зарядки, который бы поддерживали все производители. Попытки создания единого стандарта производятся, но одни производители их поддерживают, другие - нет. Кроме того, топовые производители создают свои технологии быстрой зарядки, которые поддерживаются только их устройствами и их адаптерами (иногда еще и только их проводами).
Давайте разберемся, что это такое и как работает. Ну и ответим на вопрос, верны ли слухи о том, что быстрая зарядка заметно быстрее убивает аккумулятор смартфона.
Казалось бы, раз чем больше ток, тем быстрее зарядка — давайте же повышать ток! Но ток до бесконечности повышать не получится - это будет плохо влиять на батарею. Также там есть ограничения порта смартфона.
Считается, что максимальный безопасный ток зарядки аккумулятора связан с его емкостью. Для аккумулятора в 3600 мА·ч максимальная сила тока — 3,6 А (ну, на самом деле допускается слегка побольше — до 5 А). Для аккумулятора в 2200 мА·ч максимальная сила тока — 2,2 А (до 3 А).
Важный фактор, влияющий на скорость заряда, — это выдаваемая адаптером мощность, измеряемая в ваттах. А мощность, как известно из школьного курса физики, — это произведение напряжения на ток. То есть если нам нельзя повышать силу тока, то можно повысить напряжение — мощность будет больше, смартфон будет заряжаться быстрее. (При этом контроллер зарядки стал значительно более сложным.)
Ну и в результате были разработаны технологии, где при зарядке заметно повышались напряжение и, соответственно, мощность.
И если первоначально смартфоны заряжались от мощности в 5 ватт (напряжение 5 В, сила тока 1 А), то теперь они могут получать 15, 20, 25 и даже 55 Вт. Соответственно, адаптер при этом может выдавать 5, 9, 12 и 20 вольт с соответствующим максимально возможным уровнем тока.
Кроме того, режимы быстрой зарядки стали очень интеллектуальными. Если батарея пустая, то примерно до уровня в 50% заряда адаптер выдает максимально возможную мощность и смартфон заряжается очень и очень быстро. При этом адаптер, поддерживающий быструю зарядку, постоянно получает от контроллера зарядки информацию о параметрах процесса и о температуре, которую нежелательно заметно повышать, и в соответствии с этим регулирует свои параметры. Ну и по мере повышения уровня мощность снижается — то есть снижаются напряжение и ток. (Именно поэтому производители часто любят приводить скорость зарядки аккумулятора до 50-70%.)
Такой сложный подход призван смягчить нагрузку на аккумулятор и добиться того, что даже при использовании технологии быстрой зарядки аккумулятор прожил достаточно долго.
Например, компания Meizu, разработавшая технологию Super mCharge, где смартфон получает мощность аж 55 Вт (аккумулятор в 3000 мА·ч заряжается всего за 20 минут — это просто фантастика), утверждает, что даже при постоянном использовании такой зарядки емкость аккумулятора упадет не более чем на 20% за 800 циклов. Что такое 800 циклов? Это больше двух лет работы при ежедневной зарядке.
Но давайте уже о стандартах быстрой зарядки. Эти стандарты разрабатывают как производители чипсетов, так и производители смартфонов.
Один из самых распространенных стандартов — это технология Quick Charge от производителя чипсетов Qualcom. Она сейчас уже имеет третью версию.
Первая версия Quick Charge 1.0 — до 10 Вт (5В/2А).
Quick Charge 2.0 — до 18 Вт (5 В, 9 В, 12 В — соответственно 2 A, 2 A, 1,67 A).
Ну и нынешний Quick Charge 3.0 до 18 Вт (от 20 В до 3,6 В, от 4,6 А до 2,5 А).
И там поддерживается эта умная технология обмена информацией с аккумулятором и, соответственно, подстраивания адаптера под наиболее быстрый, но безопасный режим зарядки.
Готовится Quick Charge 4 и 4+ — там уже заявлено до 28 Вт.
Что это означает для покупателей смартфонов? Определенные производители смартфонов поддерживают технологию Quick Charge и в характеристиках пишут, какую именно. Например, Samsung Galaxy S8 поддерживает Quick Charge 2.0 (ожидалось, что будет поддерживать 3.0 - нет, только 2.0). Samsung при этом заряжается на 9В/1,6А, за час с нуля доходит до 75-80%, а полную зарядку его аккумулятор с 3000 мА·ч получает всего за один час тридцать семь минут — это довольно быстро.
Родной адаптер Samsung выдает такие параметры, но если вы будете использовать адаптер известного производителя, который (в смысле, адаптер) также поддерживает Quick Charge 2.0 — никакой разницы с родным адаптером не будет, Samsung будет заряжаться также быстро.
Более того, если вы хотите и в автомобиле получить такую же быструю зарядку, то вам просто нужно приобрести автомобильный адаптер, поддерживающий Quick Charge 2.0.
Вот у меня Samsung от автомобильного адаптера потребляет аж 12 Вт!
Так что если вам важны скорость зарядки и универсальность (возможность использовать разные адаптеры), то имеет смысл искать смартфон с поддержкой технологии Quick Charge.
Компания Mediatek, выпускающая чипсеты, стоящие во многих смартфонах (особенно бюджетных), также разработала свою технологию. Она называется Pump Express, и там уже тоже есть третье поколение. Интересная особенность Pump Express 3.0 - прямая зарядка аккумулятора смартфона через порт USB-C, минуя встроенный контроллер (на самом деле у Quick Charge 3.0 используется что-то похожее). И они обещают зарядку аккумулятора современного смартфона до 70% всего за 20 минут.
Но при этом производители смартфонов не очень любят поддерживать технологии разработчиков чипсетов (по многим причинам, в которые сейчас вдаваться не будем), и они разрабатывают собственные технологии, которые требуют использования их фирменного адаптера и в некоторых случаях — их фирменных проводов.
У Samsung это Adaptive Fast Charging, которая поддерживается начиная с серий Galaxy S6 и Note 4. Там 15 Вт при напряжении 9 В — за полчаса аккумулятор в 3000 мА·ч заряжается до 50%.
У Huawei — Super Charge, где выдается до 22,5 Вт при 5 В и 5 А. Тот же Huawei Mate 10 Pro до 75% заряжается за 45 минут. Но автомобильный адаптер для таких же скоростей придется использовать их фирменный или же заряжать обычным — там будет мощность 10 Вт (5В/2А).
У OnePlus — Dash Charge (до 25 Вт, при этом требуется использовать фирменный адаптер и фирменный провод).
У Meizu — технология Super mCharge, которая выдает невероятную мощность в 55 Вт. И тут тоже, конечно, строго нужно использовать фирменный адаптер и фирменный провод.
Теперь вопрос: что будет, если заряжать не поддерживающие стандарт Quick Charge смартфоны от адаптеров (в том числе автомобильных), поддерживающих этот стандарт? Да ничего плохого не будет, просто смартфоны от таких адаптеров будут заряжаться на 5В/2А (в некоторых случаях — на 3 А), так что скорость зарядки все равно будет достаточно быстрая: аккумуляторы в 3000 мА·ч будут заряжаться где-то за полтора-два часа.
Ну и последний вопрос: какие именно адаптеры покупать, чтобы было удобно, надежно, быстро и безопасно? Ответ простой: проверенных производителей и не брать всякую дешевку.
Один из самых известных производителей, адаптеры которого хвалят практически все ИТ-журналисты и тестировщики, - сингапурская компания Aukey. Я сам использую практически только их адаптеры. Вот их официальный сайт, вот их магазин на Aliexpress. Рекомендую у них взять что-то вроде модельки PA-T14 — два порта Quick Charge 2.0 и один порт Quick Charge 3.0. Я таких несколько штук и купил: два использую дома, один — для разъездов. Если мало портов — у них есть и пятипортовик, да и вообще что угодно.
Также я взял их же автомобильный адаптер с поддержкой Quick Charge 3.0 — на фото выше он Samsung Galaxy S8+ заряжает с мощностью в 12 Вт, так что все четко. (Galaxy S8+ поддерживает только Quick Charge 2.0, но там обратная совместимость, а адаптер с QC 3.0 я взял просто на будущее.)
Также хвалят адаптеры CRDC (я не очень понял, чем они отличаются от Aukey, — выглядят одинаково), адаптеры Fonken (я пару брал потестировать — пока очень доволен), Anker, UGreen, ну и еще минимум с десяток наименований похожего качества и уровня цен.
Еще раз повторю, тут главное — брать проверенных производителей, а не какие-то непонятно чьи адаптеры из серии «зато дешево». Не надо экономить на адаптерах зарядки, тем более что разница по цене фирменных адаптеров со всякими «нонеймами» - достаточно небольшая.
Да, еще хотел показать табличку, сделанную специалистами компании Anandtech. Они вживую протестировали скорость зарядки различных смартфонов на их фирменных зарядках и проводах. Получилась вот такая табличка. Кстати, тут не учитывалась емкость аккумуляторов, а она очень разная, поэтому iPhone SE со своим крохотульным аккумулятором на 1624 мА·ч выбился на третье место. Но вообще айфоны с большими экранами со скоростью зарядки - на последних местах. При этом не сказать, что у них батарея живет дольше, чем у конкурентов. Скорее наоборот: я айфонам супруги три раза аккумуляторы менял.
Ну, вроде все, что хотел, изложил. Если будут вопросы — задавайте в комментариях.
P. S. Наверняка будут спрашивать, что за устройство, с помощью которого я измеряю реальные напряжение и ток, которые подаются на смартфон. Таких устройств вообще немало выпускают, я покупал несколько дешевых — все очень кривые и часто просто не работают. Посмотрел, что используют тестировщики, — в результате купил дорогое, но реально классное и надежное устройство Power-Z KM001 (на Ali оно стоит аж €60, однако я до этого купил три разных плохо работающих устройства по €20 - лучше бы сразу данное купил). Оно, кроме всего прочего, умеет измерять полный профиль зарядки (как изменяются параметры в зависимости от набранной емкости), и эти данные с устройства можно снимать с помощью специального приложения. Обычным пользователям эта штука, конечно, не нужна, хватит программы на смартфоне и банального замера скорости заряда по времени. Это только для тех, кто любит четко знать, что происходит.
Параллельное подключение аккумуляторов — База знаний BatteryGuy.com
Есть два способа подключения батарей: параллельно и серии . На приведенном ниже рисунке показано, как эти варианты подключения могут обеспечивать разное выходное напряжение и ампер-час.
На рисунках мы использовали герметичные свинцово-кислотные батареи, но концепция подключения блоков верна для всех типов батарей.
Различные конфигурации проводки дают нам разные напряжения или емкости в ампер-часах.В этой статье рассматриваются проблемы, связанные с параллельным подключением (например, увеличение емкости в ампер-часах). Дополнительные сведения о последовательном подключении см. В разделе «Последовательное подключение аккумуляторов» или в нашей статье о сборке аккумуляторных батарей.
Параллельное подключение увеличивает емкость только в ампер-часах
Основная концепция заключается в том, что при параллельном подключении вы складываете номиналы батарей в ампер-часах, но напряжение остается неизменным. Например:
- два 6 В 4.Батареи 5 Ач, подключенные параллельно, способны обеспечить 6 вольт 9 ампер-часов (4,5 Ач + 4,5 Ач).
- четыре 1,2 В 2 000 мАч, соединенные параллельно, могут обеспечить 1,2 В 8 000 мАч (2 000 мАч x 4).
Но что произойдет, если вы подключите батареи с разным напряжением и емкостью в ампер-часах параллельно?
Параллельное подключение аккумуляторов разного напряжения
Это большая запретная зона. Батарея с более высоким напряжением будет пытаться зарядить батарею более низким напряжением, чтобы создать баланс в цепи.
- первичные (одноразовые) батареи — они не предназначены для зарядки, поэтому батарея с более низким напряжением может перегреться, протечь или вздуться, а в экстремальных обстоятельствах, когда напряжения сильно различаются, она может взорваться.
- вторичных (аккумуляторных) батарей — эти только честно чуть лучше. Батарея с более низким напряжением не предназначена для зарядки выше определенной точки, но батарея с более высоким напряжением все равно будет пытаться. Результатом может быть перегрев, протечка или вздутие батареи более низкого напряжения и / или перегрев батареи более высокого напряжения, поскольку она быстро разряжается.Опять же, чем больше разница в напряжении, тем больше вероятность возгорания или взрыва.
Стоит отметить, что многие люди каждый день случайно подключают параллельно батареи разного напряжения. Например:
- Если смешать марки даже с одинаковым обозначенным напряжением — могут возникнуть проблемы. Из-за разных производственных процессов точное напряжение аккумуляторов разных производителей может незначительно отличаться. Это означает, что батарея на 1,5 В от марки X на самом деле может быть 1.6 вольт, тогда как батарея на 1,5 вольта марки Y могла быть 1,55 вольт. Если бы они были подключены параллельно, вы вряд ли увидите фейерверк, но возникнут другие проблемы.
- для первичных (одноразовых) батарей — более сильная батарея все равно будет пытаться зарядить более слабую, сокращая срок службы обеих.
- для вторичных (перезаряжаемых) батарей — более сильная батарея будет заряжать более слабую, истощая себя и тратя энергию.
- Если вы подключаете аккумуляторные батареи параллельно, и одна из них разряжается, а другие заряжаются — заряженные батареи будут пытаться зарядить разряженную батарею.При отсутствии сопротивления замедлению процесса зарядки заряженные устройства могут перегреться, поскольку они быстро разряжаются, а разряженная батарея может перегреться, поскольку она пытается зарядиться на уровне, намного превышающем его проектные возможности.
- Если вы смешиваете батареи разного возраста — , старые батареи всегда будут иметь более низкое напряжение, так как все батареи со временем саморазряжаются. Даже аккумуляторные батареи не будут заряжаться до того же уровня, что и новые.
Таким образом, важны следующие рекомендации:
- С первичными (одноразовыми) батареями — используйте только батареи той же марки и возраста (в идеале из той же упаковки).Если это невозможно, дважды проверьте напряжение каждого блока с помощью вольтметра.
- С вторичными (аккумуляторными) батареями — используйте только батареи той же марки и возраста и убедитесь, что все блоки полностью заряжены, прежде чем подключать их вместе параллельно. Если вы не уверены в состоянии заряда, либо подключите их по отдельности к зарядному устройству, пока зарядное устройство не подтвердит, что они полностью заряжены, либо проверьте напряжение с помощью вольтметра.
Подключение аккумуляторов разной емкости в ампер-часах параллельно
Это возможно и не вызовет серьезных проблем, но важно отметить некоторые потенциальные проблемы:
- Проверьте химический состав аккумуляторов. Например, герметичные свинцово-кислотные аккумуляторы имеют точки зарядки, отличные от точек зарядки свинцово-кислотных аккумуляторов.Это означает, что при одновременной подзарядке двух батарей некоторые батареи никогда не будут заряжены полностью. Результатом этого будет сульфатирование тех, которые никогда не достигнут полного заряда, что сократит их срок службы.
- Дважды проверьте напряжение — если вы используете батареи с разной емкостью в ампер-часах, весьма вероятно, что напряжения будут другими (даже если напряжение, указанное на этикетках, совпадает). Проверьте это с помощью вольтметра, иначе у вас возникнут проблемы (описано в , соединяющем батареи разного напряжения параллельно выше).
Именно по этим причинам рекомендуется использовать батареи той же марки, напряжения и емкости. Невыполнение этого требования (если у вас нет знаний и инструментов для проверки того, что вы делаете) может создать потенциально опасную цепь.
Проверка аккумуляторной батареи и системы зарядки
Проверка аккумуляторной батареи и системы зарядкиUP
Тест системы медленного запуска
Свинцово-кислотный батарея имеет определенные определенный характеристики, чем облегчить оценить здоровье зарядки система без вымысла испытательное оборудование.На самом деле испытание в автомобиле лучше, чем снятие деталей. Я надеюсь на это помогает людям не тратить деньги на запчасти. Вот как мы можем проверить система зарядки с несколько простых кусочков оборудования. По сути, вам просто понадобится контрольная лампа и небольшой контрольный прибор.
У меня есть полная схема Мустанга 1989 года здесь. Схема электропроводки Ford Mustang 1989 года выпуска
Генератор
Генератор преобразует механический энергия в электроэнергия. В генераторе переменного тока неизбежны потери мощности.Некоторые потери механические, в первую очередь нагрев подшипников генератора и приводного ремня. Это также электрические потери. На диодах немного падает напряжение, это заставляет диоды становиться горячей. Обмотки и внутренняя проводка генератора переменного тока имеют сопротивление, и это вызывает потерю мощности и нагрев. Изменяющееся магнитное поле также вызывает некоторые потери. Помните, что большая часть нагрузки генератора на Коленчатый вал поступает от электрической нагрузки, потребляемой генератором переменного тока.
Вопреки мифам и тому, во что нас убеждают отделы маркетинга и продавцы, используя под приводом система шкивов делает нет высвободите мощность во время гонок.На самом деле он может делать наоборот! Это освобождает увеличивает мощность на холостом ходу, но нагружает систему сильнее, когда вы увеличиваете двигатель, поскольку генератор пытается догнать недостающий заряд аккумулятора!
Когда частота вращения вала генератора снижается, регулятор напряжения поднимает ток возбуждения. Регулятор, пока вал вращается достаточно быстро, увеличивает ток возбуждения и крутящий момент шкива до тех пор, пока генератор обратный рисунок точно та же мощность двигателя лошадиные силы это потреблял бы поворот при нормальном скорости! Как на самом деле, поскольку эффективность часто падает с уменьшенным ротором скорости, генератор иногда тянет еще мощность двигателя и работать горячее с понижающая передача система шкивов, чем со стандартными скоростями вала!
Единственный способ надежно и существенно уменьшить сопротивление генератора повернуть генератор выключен, пока гонки, хотя поворотные огни и электрические аксессуары выключение во время гонок конечно помогает.Помните, что когда автомобиль запуск генератор пытается поставлять всю нагрузку энергия. В разумно максимальный двигатель скорости, обычно от 1500 об / мин до красная черта с тяжелым нагрузки, и от холостого хода до красная линия со светом электрический аксессуар нагрузки, аккумулятор просто идет на Поездка. На самом деле он ничего не делает, кроме ожидания падения генератора ниже рабочих скоростей. А аккумулятор будет потреблять только заметную мощность двигателя когда батарея низкий заряд и недостающий заряд сейчас пополняется.Батарея, когда она заряжена, на самом деле представляет собой электрический аккумулятор.
НИКОГДА не тяните кабель аккумулятора к проверить генератор. Этот очень грубый тест метод был немного нормально, когда мы была машина с вакуумной трубкой радиоприемники и точечные зажигания, но это очень плохо идея сейчас. В аккумулятор стабилизируется электрические система и загружает генератор предотвращение высокого пика напряжения или скачки напряжения как генератор регулирует магнитный поток для производства такое же среднее напряжение при разном течении требования.Если вы откроете двигатель вверх и вытащить батарею кабель, напряжение генератора может увеличиваться до 100 вольт или выше перед плашки генератора потока достаточно, чтобы принести напряжение обратно до 14 вольт или так. Это может убить компьютер машины и другие дорогие электрические составные части. Я видел, как дуют фары когда парень открыл батарею переключиться в то время как двигатель был реверсирован вверх. Если ты слышишь кто-нибудь говорит кто-то это способ проверить генератор в современный автомобиль, остановка их!
ТЕСТИРОВАНИЕ ГЕНЕРАТОРА — это хорошо или плохо?
Для зарядки аккумулятор, напряжение генератора выход должен превышать минимум зарядка Напряжение.Этот минимальное зарядное напряжение 13,8 вольт постоянного тока батарея клеммы, либо на выходе генератора. Один свинцово-кислотный элемент начинает заряжаться что-либо более 2,25 вольт. С 12 вольт аккумулятор имеет шесть ячеек, любой 12-вольтовой свинцово-кислотной батарее не менее 13,8 вольт до начало заряжать. Этот напряжение будет достаточно, чтобы полностью заряжать или поддерживать аккумулятор на мелкая зарядка, но время зарядки будет быть очень длинным — 13,8 вольт.
Чтобы полностью зарядить в разумные сроки, генератор вывод должен быть 14.От 2 до 14,5 В как измерено прямо через батарейные посты. Напряжение зарядки выше 14,5 вольт, батареи имеют значительно повышенную тенденцию к выделению чрезмерных кислотных паров, газообразный водород и разъедать предметы вокруг батареи. Клемма аккумулятора напряжение зарядки должно быть менее 14,7 В для предотвращения чрезмерного выделения газов. Зарядные напряжения превышают 14,7 вольт могут привести к преждевременной сушке аккумулятор из-за кипячения электролита, и увеличивают риск взрыв водородного газа аккумуляторной батареи.
В этом случае зарядка батареи напряжение 14.61 вольт с двигатель на высоких холостых оборотах. 14,4 вольт — это порог газообразования. Батарея выше будет немного газа, но недостаточно, чтобы быть вредны, а аккумулятор получит быстрая полная зарядка восстановление после начиная. 14,8 будет начать беспокоиться (Там может быть жидкость или коррозия на батарее) и 15 вольт будет настоящая озабоченность, но 14,6 нормально. Меньше чем 14,3 будет «слабый» генератор или регулятор. Значительно меньше чем 14,2 в посте холостой ход плохая проводка, плохой генератор или регулятор, или плохой соединение или предохранитель связь.При работе с нормальной медленной крейсерской частотой вращения двигателя напряжение на клеммы аккумулятора должны оставаться выше 14,3 вольт даже с полной нагрузкой, вроде фары, обогреватель воздуходувка и все остальное, Бег. Если это система была в восстановленный 1966 GT купе, я бы вероятно, измените регулятор для уменьшения максимальный генератор Напряжение. Это бы не допустить ухудшение металл вокруг аккумулятор от чрезмерная зарядка пары. В моем повседневном водителе все нормально, пока я смотрю аккумулятор на предмет продувки. кислотные отложения.
Если вы измерили напряжение батареи, и оно где-то выше 14,2 В и ниже более 14,8 вольт, когда автомобиль работает на малых крейсерских оборотах двигателя и на максимальных оборотах. нагрузки, у вас уже есть генератор большего размера, чем вам нужно. Если напряжение выше 14,2 при максимальных нагрузках на крейсерских оборотах, покупая больший генератор или новый генератор — пустая трата времени и денег.
Поверните мотор выключен без нагрузки (фары и т. д. все выключены) и прочтите напряжение батареи.
При просто заглушенном двигателе аккумулятор напряжение должно быть 13.От 2 вольт до 13,8 вольт. Точное напряжение зависит от батареи, как ты быстро прочитаешь это, и состояние заряд батареи. Это напряжение не так уж и важно потому что аккумулятор будет медленно и стабильно довольствоваться новое напряжение, которое указывает на истинное состояние аккумулятор заряжен, но напряжение, измеренное прямо при выключении двигателя, очень четкое. индикатор если генератор или система зарядки заряжаются. Если напряжение выше 13,2, аккумулятор только что заряжался.
Итак, что произойдет, если ваша батарея все время разряжается, а генератор кажется хороший? Измерение электрического утечка в системе текущийДля проверки электрической системы на утечку нежелательной нагрузки мощность, выключите все в машине.Делай так же, как ты поступаешь, когда парковка автомобиля на ночь. убедитесь, что все освещение и аксессуары выключены.
Снимите отрицательный провод и проверить текущий розыгрыш со всеми электрическими загружается с помощью тестовый свет. (Я сделал контрольную лампу из старой лампы заднего фонаря.)
Тусклое свечение в световая нить указывает на текущая проблема слива. В этот момент я делаю не хочу подключить измеритель тока в проверить утечку потому что короткий может повредить тестовый метр! Если небольшой ясная контрольная лампа как это не свет, тогда это в целом безопасно для непосредственно измерять ток слив с помощью тестового метра.
Измерение Паразитный ток Слив
Со всеми электрические нагрузки отключены подключить счетчик, на низких амперах шкала около 1 ампер или около того, в серия с аккумулятор отрицательный опубликовать в земля. Положительный измерительный провод подключается к шасси автомобиля, и отрицательный провод измерителя к отрицательный пост аккумулятор.
А хорошая электрика разряд батареи системы
Это измеряется по шкале 20 мА.Шкала мА показывает в тысячных долях ампер. Мой Мустанг LX 1989 года, после того, как я изменил плохой генератор диод, сейчас имеет около 1,73 мА разряд батареи. Этот слив все из компьютер EEC-IV объем памяти. Разные радиоприемники и разные компьютеры могли иметь другой режим ожидания стоки, а также аксессуары, такие как часы, но нет случай должен «на ночь выключить» утечку превышают 25 мА или около того. 100 мА как оставив небольшой свет в салоне включен!
Стерео My Kenwood потребляет 1,5 мА, когда связаны.если ты есть цифровые часы что остается будильник, или какой-то другой загрузить этот ток будет выше. В 75 мА, утечка может взломать аккумулятор жизнь нечасто управляемые автомобили. мА — это миллиамперы или одна тысячная ампер.
Указанный выше измеритель имеет шкалу 20 мА и показывает 1,73 мА. То есть ничего. Заряда батареи хватило бы на месяцы сидения.
Плохо аккумулятор паразитный слив
Если контрольная лампа горит, ты захочешь найти провод заряжаем аккумулятор.Сначала убедитесь, что все свет выключен. Ты может сделать это кто-то открытый и закрой вещи с огни, как багажник и наблюдение для определения большого изменение нагрузки. Ты должен увидеть определенное изменение нагрузки при закрытии дверей с огнями, как перчатка отсек.
Подключите тест свет последовательно с отрицательный пост, и начать тянуть подачи проволоки. В сначала проверить это тяжелая зарядка провод от генератор. А плохой или негерметичный диод в генераторе переменного тока очень распространенный источник ночной батареи осушать.
Подключите провода один за раз, чтобы увидеть что за свинец рисует Текущий. В моем случае это было провод генератора! Хотя генератор был заряжается нормально, это также истощал батарея. Мой проблема была плохой диод генератора. Может быть множество других проблемы, как плохие регулятор напряжения или застрявшее реле контакт.
Скачать проводку диаграмма
Я скачал это из Сайт Т. Мосса , г. что я нахожу много полезнее, чем другие источники.Том Мосс делает все возможное, чтобы помогать людям, и он действительно хороший парень. AutoZone и другие есть немного бесплатно схемы тоже.
T.Moss’s диаграмма (ссылка выше) показал мне тяжелый темно-зеленый провод от мое стартерное реле вызывая мою «проблему слива» пошел прямо к моему выход генератора автомобиля. В моем случае один из диоды (маленькие черные «стрелки») в моей машине генератор был плохой. Эта текущая потеря также заставила меня генератор слегка теплый на ощупь, даже когда сидишь выключен на несколько часов.
Другой Полезные напряжения
Напряжение аккумулятора может быть выше 12,6 В сразу после зарядки.
Разомкнутая цепь Напряжение 12 В аккумулятор после машина выключена на один час | Родственник заряд |
12,6 В | 100% |
12,4 В | 75% |
12,2 В | 50% |
12.1 В | 25% |
Менее 12 вольт | Мертвый |
Любой открытый терминал напряжение ниже 12 вольт считается полная разрядка или разряженная батарея.
Стартеры иногда могут хорошо проверить себя вне машины, но могут быть и плохими. Одна общая проблема с дешево построенными или неисправными стартерами — это потеря пускового момента в горячем состоянии. Этот обычно происходит из-за того, что утюг теряет способность удерживать магнитный поток (пусковой ток резко возрастает, когда он горячий), или из-за того, что провод занижены и повышается сопротивление (пусковой ток падает при нагревании), или стартер заклинивает (также вызывая большой ток).
Лучший способ проверить стартер — измерить напряжение и ток .
Для проверки стартера и проводки простым счетчиком:
- Закрепите плюсовой провод расходомера на питании стартера. провод идущий в стартер
- Закрепите черный отрицательный провод расходомера на БЛОКЕ ДВИГАТЕЛЯ
- Убедитесь, что измеритель находится под напряжением и настроен на шкала наименьшего напряжения, показывающая не менее 15 вольт. Другими словами, если на вашем счетчике 2.Шкала 5 В, 25 В и 250 В используйте Шкала 25 вольт. Шкала 25 вольт — это ближайшая шкала к 15 вольт, но не ниже 15 вольт.
- Прикрепив счетчик к стартеру, следите за счетчиком, проворачивая двигатель.
Убедитесь, что аккумулятор в хорошем состоянии. Выше приведена таблица напряжений для аккумулятора. обвинять. Напряжение на клеммах батареи без нагрузки (все выключено) должно быть не менее 12,6 вольт и 13,8 вольт.
Если напряжение запуска стартера опускается ниже 9-10 вольт, у вас проблема со стартерным током, двигатель заземление, или аккумулятор.
Измерьте поперек батареи, исследуя клеммы аккумулятора (НЕ клеммы, которые крепятся к стойкам, а воткнуты непосредственно в выводные столбы выходят из АКБ), и посмотрите сколько АКБ падает при проворачивании. Если он падает, и вы уверены, что генератор работает, возьмите аккумулятор в магазин автомобильных запчастей, который тестирует аккумуляторы. В отличие от стартеров, проверить аккумуляторные батареи ОЧЕНЬ просто и очень просто. надежный.
Если аккумулятор остается на стойках и напряжение стартера упало, возможно, у вас Плохой провод стартера, провод заземления или другая проблема с проводкой.Если батарейный столб напряжение проверяется нормально, но у стартера происходит ненормальное проседание, вероятно, у вас проблема со стартером. Вам необходимо проверить пусковой ток.
Дешевые или плохо изготовленные стартеры обнаруживаются в основном, когда стартер очень сильно поврежден. горячей. Очень часто стартеры не могут быть точно протестированы на стенде, потому что они часто может потерпеть неудачу только когда очень жарко. Я вижу очень мало тракторов, легковых и грузовых автомобилей, которые заводятся нормально, когда холодно и не проворачивайте при горячем, что есть проблемы кроме стартера! Мой дизельный трактор был сукой заводиться в жаркую погоду, но заводился, как мечта, когда холодно, и это было стартером.У моего трактора тоже нет жаток. Только нагрева блока было достаточно, чтобы стартер выключился. У меня был такой же опыт с автомобилями. Когда холодно, то начала работать и тест хорошо! У маргинальных стартеров может быть достаточно энергии, чтобы запускаются правильно, когда система холодная, и выходят из строя, когда система горячая.
Неисправные генераторы или аккумуляторы обычно обнаруживаются, когда машина очень холодная, но и генераторы, и аккумуляторы можно надежно проверить, чтобы убедиться в их исправности.
Установка генератора большего размера не устранит неисправный стартер, батарею или плохая проводка.
Переход на светодиодный Предупреждение
Правильный уход продлевает срок службы литий-ионных аккумуляторов
Литий-ионные и литий-ионно-полимерные аккумуляторы широко распространены, и причина этого вполне обоснована. По сравнению с другими перезаряжаемыми батареями литий-ионные батареи имеют более высокую плотность энергии, более высокое напряжение элементов, низкий саморазряд и очень хороший срок службы, а также экологически безопасны, а также просты в зарядке и обслуживании. Кроме того, из-за их относительно высокого напряжения (2.От 9 В до 4,2 В), многие портативные устройства могут работать от одной ячейки, что упрощает общую конструкцию продукта.
В зависимости от приложения могут возникать споры о том, какая характеристика батареи является наиболее важной. Слишком много внимания было уделено увеличению емкости литий-ионных аккумуляторов, чтобы обеспечить максимальную продолжительность работы продукта при минимальных физических размерах. Бывают случаи, когда более длительный срок службы аккумулятора, увеличенное количество циклов зарядки или более безопасный аккумулятор важнее, чем емкость аккумулятора.
Прежде чем рассматривать роль зарядного устройства в продлении срока службы батареи, давайте рассмотрим характеристики литий-ионной батареи. Литий — один из самых легких металлов, один из самых реактивных и обладающий самым высоким электрохимическим потенциалом, что делает его идеальным материалом для батареи. Литий-ионная батарея не содержит лития в металлическом состоянии, а вместо этого использует ионы лития, которые перемещаются между катодом и анодом батареи во время заряда и разряда соответственно.
Несмотря на то, что существует много различных типов литий-ионных аккумуляторов, наиболее популярные химические продукты, производимые в настоящее время, можно сузить до трех, и все они относятся к их катодным материалам.Литий-кобальтовая химия стала более популярной в ноутбуках, фотоаппаратах и сотовых телефонах, главным образом из-за ее большей емкости заряда. Другие химические составы зависят от необходимости в высоких токах разряда или повышенной безопасности, или от того, где стоимость является движущим фактором. Кроме того, в разработке находятся новые гибридные литий-ионные аккумуляторы, основанные на комбинации катодных материалов, сочетающих лучшие свойства каждого химического состава.
В отличие от аккумуляторов другого химического состава, технология литий-ионных аккумуляторов еще не развита. Продолжаются исследования новых типов аккумуляторов, которые имеют еще более высокую емкость, более длительный срок службы и улучшенные характеристики, чем современные аккумуляторы.Таблица выделяет некоторые важные характеристики каждого типа батарей.
Литий-ионные полимерные батареи
Обладая характеристиками, аналогичными стандартному литий-ионному аккумулятору, вы можете заряжать и разряжать литий-ионный полимерный аккумулятор аналогичным образом. Основное различие между ними заключается в том, что твердый ионопроводящий полимер заменяет жидкий электролит, используемый в стандартной литий-ионной батарее, хотя большинство полимерных батарей также содержат электролитную пасту для снижения внутреннего сопротивления элемента.Отсутствие жидкого электролита позволяет помещать полимерную батарею в мешочек из фольги, а не в тяжелый металлический корпус, необходимый для стандартных литий-ионных аккумуляторов. Литий-ионные полимерные батареи набирают популярность из-за их рентабельной производственной гибкости, которая позволяет изготавливать их во многих различных формах, включая очень тонкие.
Все аккумуляторные батареи изнашиваются, и литий-ионные элементы не являются исключением. Производители аккумуляторов обычно считают, что срок службы аккумулятора заканчивается, когда емкость аккумулятора падает до 80% от номинальной.Тем не менее, батареи по-прежнему могут обеспечивать полезную мощность при зарядке ниже 80%, хотя и сокращают время работы.
Число циклов заряда / разряда обычно используется при оценке срока службы батареи, но срок службы и срок службы батареи (или срок службы) могут быть разными. Зарядка и разрядка в конечном итоге уменьшат активный материал батареи и вызовет другие химические изменения, что приведет к увеличению внутреннего сопротивления и необратимой потере емкости. Но необратимая потеря емкости происходит даже тогда, когда аккумулятор не используется.Постоянная потеря емкости является наибольшей при повышенных температурах, когда напряжение батареи поддерживается на уровне 4,2 В (полностью заряжена).
Для максимального срока хранения аккумуляторы следует хранить с зарядом 40% (3,6 В) при 40 ° F (в холодильнике). Возможно, одно из худших мест для литий-ионного аккумулятора — это портативный компьютер, который ежедневно используется на настольном компьютере с подключенным зарядным устройством. Ноутбуки обычно нагреваются или даже нагреваются, что приводит к повышению температуры батареи, а зарядное устройство поддерживает ее почти на 100%.Оба эти условия сокращают срок службы батареи, который может составлять от шести месяцев до года. Если возможно, пользователя следует проинструктировать о необходимости вынуть аккумулятор и использовать адаптер переменного тока для питания ноутбука, когда он используется в качестве настольного компьютера. Аккумулятор ноутбука, за которым правильно ухаживают, может прослужить от двух до четырех лет и более.
Существует два типа потери емкости аккумулятора: восстанавливаемая и безвозвратная потеря. После полной зарядки литий-ионный аккумулятор обычно теряет около 5% емкости в течение первых 24 часов, затем примерно 3% в месяц из-за саморазряда и дополнительно 3% в месяц, если аккумулятор имеет схему защиты. .Эти потери на саморазряд возникают, когда температура батареи остается около 20 ° C, но значительно увеличиваются с повышением температуры, а также по мере старения батареи. Эту потерю емкости можно восстановить, перезарядив аккумулятор.
Постоянная потеря емкости, как следует из названия, относится к постоянной потере, которая не может быть восстановлена путем зарядки. Постоянная потеря емкости в основном связана с количеством полных циклов зарядки / разрядки, напряжением и температурой аккумулятора. Чем дольше батарея остается на уровне 4.2 В или уровень заряда 100% (или 3,6 В для литий-ионного фосфата), тем быстрее происходит потеря емкости. Это верно независимо от того, заряжается ли аккумулятор или только что он полностью заряжен с напряжением около 4,2 В. Постоянное поддержание литий-ионного аккумулятора в полностью заряженном состоянии сокращает срок его службы. Химические изменения, сокращающие срок службы батареи, начинаются в момент ее изготовления, и эти изменения ускоряются за счет высокого напряжения поплавка и высокой температуры. Необратимая потеря емкости неизбежна, но ее можно свести к минимуму, соблюдая надлежащие методы работы с аккумулятором при зарядке, разрядке или просто хранении аккумулятора.Использование циклов частичной разрядки может значительно увеличить срок службы, а зарядка до уровня менее 100% может еще больше увеличить срок службы батареи.
Буква «C» — термин, обозначающий батарею, используемый для обозначения заявленной производителями батареи разрядной емкости, измеряемой в миллиампер-часах. Например, батарея с номиналом 2000 мАч может обеспечивать нагрузку 2000 мА в течение одного часа, прежде чем напряжение элемента упадет до напряжения нулевой емкости. В том же примере зарядка аккумулятора со скоростью C / 2 будет означать зарядку с током 1000 мА (1 А).C важен для зарядных устройств, поскольку он определяет требуемый ток заряда и время, необходимое для полной зарядки аккумулятора. При обсуждении методов завершения минимального зарядного тока, батарея на 2000 мАч, использующая терминатор C / 10, завершит цикл заряда, когда ток заряда упадет ниже 200 мА.
Увеличение срока службы батареи
Обычно сочетание нескольких факторов увеличивает или уменьшает срок службы батареи. Для увеличения срока службы
- Использовать циклы частичного разряда
Использование только 20% или 30% емкости аккумулятора перед подзарядкой значительно продлит срок службы.Как правило, от 5 до 10 циклов неглубокой разрядки равны одному полному циклу разрядки. Хотя количество циклов частичной разрядки может исчисляться тысячами, поддержание батареи в полностью заряженном состоянии также сокращает срок ее службы. По возможности следует избегать полных циклов разряда (до 2,5 В или 3 В, в зависимости от химического состава).
- Избегайте зарядки до 100% емкости
Это можно сделать, выбрав более низкое напряжение холостого хода. Уменьшение напряжения холостого хода увеличит срок службы и срок службы за счет уменьшения емкости батареи.Падение плавающего напряжения с 100 мВ до 300 мВ может увеличить срок службы от двух до пяти и более раз. Литий-ионный кобальт более чувствителен к более высокому напряжению подзарядки, чем другие химические соединения. Литий-ионные фосфатные элементы обычно имеют более низкое напряжение холостого хода, чем более распространенные литий-ионные аккумуляторы.
- Выберите правильный метод прекращения зарядки
Выбор зарядного устройства, в котором используется терминатор минимального зарядного тока (C / 10 или C / x), также может продлить срок службы батареи за счет отсутствия зарядки до 100% емкости.Например, завершение цикла зарядки при падении тока до C / 5 аналогично уменьшению напряжения холостого хода до 4,1 В. В обоих случаях аккумулятор заряжается только примерно до 85% емкости, что является важным фактором срока службы аккумулятора. .
- Ограничить температуру аккумулятора
Ограничение крайних значений температуры батареи продлевает срок ее службы, особенно запрет зарядки при температуре ниже 0 ° C. При зарядке ниже 0 ° C на аноде батареи появляется металлическое покрытие, которое может перерасти во внутреннее короткое замыкание, выделяя тепло и делая батарею нестабильной и небезопасной.Многие зарядные устройства имеют приспособления для измерения температуры батареи, чтобы гарантировать, что зарядка не происходит при экстремальных температурах.
- Избегайте высоких токов заряда и разряда
Высокие токи заряда и разряда сокращают срок службы. Некоторые химические соединения больше подходят для более высоких токов, например, литий-ионный марганец и литий-ионный фосфат. Высокий ток вызывает чрезмерную нагрузку на аккумулятор.
- Избегайте очень глубоких разрядов (ниже 2 В или 2 В).5 В)
Очень глубокая разрядка быстро и необратимо повредит литий-ионный аккумулятор. Внутреннее металлическое покрытие может вызвать короткое замыкание, сделав аккумулятор непригодным для использования и небезопасным. Большинство литий-ионных аккумуляторов имеют схему защиты в своих аккумуляторных блоках, которая размыкает соединение с аккумулятором, если напряжение аккумулятора меньше 2,5 В или превышает 4,3 В, или если ток аккумулятора превышает предопределенный пороговый уровень при зарядке или разрядке.
Способы зарядки
Рекомендуемый способ зарядки литий-ионного аккумулятора — подавать на аккумулятор постоянный ток с ограничением по напряжению ± 1% до тех пор, пока он не станет полностью заряжен, а затем остановиться.Методы, используемые для определения того, когда аккумулятор полностью заряжен, включают измерение общего времени заряда, мониторинг тока заряда или их комбинацию.
В первом методе применяется постоянный ток с ограничением по напряжению в диапазоне от C / 2 до 1C в течение 2,5–3 часов, таким образом, батарея заряжается до 100%. Вы также можете использовать более низкий ток заряда, но это потребует больше времени. Второй метод аналогичен, но требует контроля зарядного тока. По мере зарядки аккумулятора напряжение повышается, как и в первом способе.Когда он достигает запрограммированного предела напряжения, который также называется плавающим напряжением, ток заряда начинает падать. Когда он впервые начинает падать, аккумулятор заряжен примерно на 50-60%. Поддерживающее напряжение продолжает подаваться до тех пор, пока ток заряда не упадет до достаточно низкого уровня (от C / 10 до C / 20), после чего батарея заряжена приблизительно от 92% до 99%, и цикл зарядки завершится. В настоящее время не существует безопасного метода быстрой зарядки (менее одного часа) стандартной литий-ионной батареи до 100% емкости.
Не рекомендуется подавать постоянное напряжение на аккумулятор после того, как он полностью заряжен, так как это ускорит необратимую потерю емкости и может вызвать внутреннее литиевое покрытие. Это покрытие может перерасти во внутреннее короткое замыкание, что приведет к перегреву и сделает аккумулятор термически нестабильным. Требуемый срок — месяцы.
В некоторых зарядных устройствах для литий-ионных аккумуляторов используется термистор для контроля температуры аккумулятора. Основное назначение такого монитора — предотвратить зарядку, если температура батареи выходит за пределы рекомендуемого диапазона от 0 ° C до 40 ° C.В отличие от никель-кадмиевых или никель-металлгидридных аккумуляторов, температура литий-ионных элементов при зарядке повышается незначительно. Рис. 1 показывает типичный профиль заряда литий-ионных аккумуляторов в зависимости от тока заряда, напряжения и емкости аккумулятора от времени.
Основным определяющим фактором для плавающего напряжения является электрохимический потенциал активных материалов, используемых в катоде батареи, который для лития составляет приблизительно 4 В. Добавление других соединений будет повышать или понижать это напряжение. Второй фактор — это компромисс между емкостью элемента, сроком службы, сроком службы батареи и безопасностью.Кривые на рис. 2 показывают взаимосвязь между емкостью элемента и жизненным циклом.
Большинство производителей литий-ионных аккумуляторов установили напряжение холостого хода 4,2 В как лучший баланс между емкостью и сроком службы. Используя 4,2 В в качестве предела постоянного напряжения (плавающее напряжение), аккумулятор обычно может обеспечить около 500 циклов зарядки / разрядки, прежде чем емкость аккумулятора упадет до 80%. Один цикл зарядки состоит из полной зарядки до полной разрядки. Несколько неглубоких разрядов составляют один полный цикл зарядки.
Хотя зарядка до емкости менее 100% с использованием либо пониженного напряжения холостого хода, либо прекращения минимального зарядного тока приведет к первоначальному уменьшению емкости аккумулятора, поскольку количество циклов превышает 500, емкость аккумулятора при более низком напряжении удержания может превышать более высокое плавающее напряжение. Рис. 3 показывает, как рекомендованное напряжение холостого хода сравнивается с уменьшенным напряжением холостого хода в отношении емкости и количества циклов зарядки.
Из-за различий в химическом составе литий-ионных аккумуляторов и других условий, которые могут повлиять на срок их службы, приведенные здесь кривые являются только оценкой количества циклов зарядки и уровней емкости аккумулятора.Даже одинаковый химический состав аккумуляторов от разных производителей может дать совершенно разные результаты из-за незначительных различий в материалах аккумуляторов и методах изготовления.
Производители аккумуляторов указывают метод заряда и поддерживающее напряжение, которое конечный пользователь должен использовать, чтобы соответствовать спецификациям аккумуляторов в отношении емкости, срока службы и безопасности. Зарядка выше рекомендованного напряжения холостого хода не рекомендуется. Многие батареи включают в себя схему защиты батарейного блока, которая временно размыкает соединение с батареей при превышении максимального напряжения батареи.После открытия подключение аккумуляторной батареи к зарядному устройству обычно приводит к сбросу защиты батареи. На аккумуляторных блоках часто указано напряжение, напечатанное на аккумуляторе, например 3,6 В для одноэлементной батареи. Это напряжение не является постоянным напряжением, а скорее средним напряжением батареи, когда батарея разряжается.
Выбор зарядного устройства
Хотя зарядное устройство не контролирует глубину разряда батареи, ток разряда и температуру батареи, которые влияют на срок службы батареи, многие зарядные устройства имеют функции, которые могут увеличить срок службы батареи.
Роль зарядного устройства в продлении срока службы аккумулятора в основном определяется подзарядным напряжением зарядного устройства и методом завершения заряда. Многие литий-ионные зарядные устройства имеют фиксированное напряжение холостого хода ± 1% (или ниже) 4,2 В, но есть некоторые предложения в 4,1 В и 4 В, а также регулируемые напряжения холостого хода. Использование зарядных устройств для аккумуляторов с пониженным постоянным напряжением может продлить срок службы аккумулятора при зарядке литий-ионного аккумулятора 4,2 В.
Зарядные устройства, которые не предлагают варианты с более низким плавающим напряжением, также способны продлить срок службы батареи.Зарядные устройства, которые обеспечивают методы завершения минимального зарядного тока (C / 10 или C / x), могут продлить срок службы батареи, выбрав правильный уровень зарядного тока, при котором следует завершить цикл зарядки.
Уровень согласованияA C / 10 повысит емкость аккумулятора только примерно до 92%, но это приведет к увеличению срока службы. Уровень согласования C / 5 может удвоить срок службы, хотя емкость заряда батареи еще больше упадет примерно до 85%. Ряд микросхем зарядного устройства обеспечивают режим прекращения заряда C / 10 (порог тока 10%) или C / x (регулируемый порог тока).
Время работы от батареи
С нынешней технологией аккумуляторов и без увеличения размера аккумулятора вы не сможете увеличить время работы и время автономной работы. Для максимального времени работы зарядное устройство должно заряжать аккумулятор до 100% емкости. Это приближает напряжение аккумулятора к рекомендованному производителем напряжению холостого хода, которое обычно составляет 4,2 В ± 1%. К сожалению, зарядка и поддержание уровня заряда батареи вблизи этих уровней сокращает срок ее службы. Одно из решений — выбрать более низкое напряжение холостого хода, которое не позволяет батарее достигать 100% заряда, хотя для этого потребуется батарея большей емкости, чтобы обеспечить такое же время работы.Конечно, во многих портативных устройствах аккумулятор большего размера может не подходить.
Кроме того, использование метода ограничения минимального зарядного тока C / 10 или C / x может иметь такое же влияние на срок службы батареи, как и использование более низкого напряжения холостого хода. Уменьшение напряжения холостого хода на 100 мВ снизит емкость примерно на 15%, но может удвоить срок службы. В то же время завершение цикла зарядки, когда ток заряда упал до 20% (C / 5), также снижает емкость на 15% и обеспечивает такое же удвоение срока службы.
Как и ожидалось, во время разряда напряжение аккумулятора будет медленно падать. Профиль напряжения разряда в зависимости от времени зависит от ряда факторов, включая ток разряда, температуру батареи, возраст батареи и тип анодного материала, используемого в батарее. В настоящее время в большинстве литий-ионных аккумуляторов используется кокс на нефтяной основе или графит. Профили напряжения для каждого из них показаны на Рис. 4 . Более широко используемый графитовый материал обеспечивает более плоское напряжение разряда между 20% и 80% емкости, затем быстро падает ближе к концу, тогда как на коксовом аноде наклон напряжения более крутой и ниже 2.Напряжение отсечки 5 В. Приблизительную оставшуюся емкость батареи легче определить с помощью коксового материала, просто измерив напряжение батареи.
Для увеличения емкости литий-ионные элементы часто подключаются параллельно. Никаких особых требований не требуется, кроме батарей должны быть одного химического состава, производителя и размера. Последовательно соединенные элементы требуют большей осторожности, потому что схемы согласования емкости и балансировки ячеек часто требуются, чтобы гарантировать, что каждая ячейка достигает одного и того же плавающего напряжения и одинакового уровня заряда.
Последовательное соединение двух ячеек (имеющих индивидуальную схему защиты блока) не рекомендуется, поскольку несоответствие емкости может привести к тому, что одна батарея достигнет предела перенапряжения, что приведет к разрыву соединения батареи. Многоэлементные аккумуляторные батареи следует приобретать у производителя аккумуляторов в собранном виде с соответствующей схемой защиты.
Как работают контроллеры заряда | altE
Контроллеры заряда
Заряд контроллер является неотъемлемой частью почти всех энергосистем, которые заряжают батареи, независимо от того, являются ли они солнечными батареями, ветряными, гидроэнергетическими, топливными или инженерная сеть.Его цель — правильно хранить батареи глубокого разряда. сытые и безопасные на долгое время.
Основные функции контроллера довольно просты. Блок контроллеров заряда обратный ток и предотвратить перезарядку аккумулятора. Некоторые контроллеры также предотвращают переразряд батареи, защита от электрической перегрузки и / или отображение батареи статус и поток власти. Рассмотрим каждую функцию индивидуально.
Блокирующий обратный токСолнечные панели работать, прокачивая ток через батарею в одном направлении.Ночью панели могут пропускать ток в обратном направлении, вызывая небольшой разряд от АКБ. (Наш термин «батарея» обозначает одну батарею или батарею.) Потенциальная потеря незначительна, но ее легко предотвратить. Некоторые типы ветряных и гидрогенераторов также потребляют обратный ток, когда они остановка (большинство из них, кроме случаев неисправности).
В большинстве контроллеров зарядный ток проходит через полупроводник (транзистор), который действует как вентиль для управления током.Его называют «полупроводником», потому что он пропускает ток только в одном направлении. Он предотвращает обратный ток без каких-либо дополнительных усилий и затрат.
В некоторых старых контроллерах электромагнитная катушка размыкает и замыкает механический переключатель (называется реле — вы можете слышать, как он включается и выключается). выключено ночью, чтобы заблокировать обратный ток. Эти контроллеры иногда называют в качестве контроллеров шунта вызова.
Если вы используете солнечную батарею только для подзарядки аккумулятора (очень небольшой массив относительно размера АКБ), то зарядка может и не понадобиться контроллер.Это редкое приложение. Пример — крошечный модуль обслуживания. который предотвращает разрядку аккумулятора в припаркованном автомобиле, но не поддерживает значительную нагрузки. В этом случае вы можете установить простой диод, чтобы заблокировать обратный ток. Диод, используемый для этой цели, называется «блокирующим диодом».
Предотвращение завышения ценКогда аккумулятор полностью заряжен, он больше не может накапливать поступающую энергию. Если энергия продолжает подаваться с полной скоростью, напряжение батареи становится слишком высоким.Вода разделяется на водород и кислород и быстро пузырится. (Похоже, он кипит, поэтому мы иногда его так называем, хотя на самом деле он не горячий.) Имеется чрезмерная потеря воды и вероятность того, что газы могут воспламениться и вызвать небольшой взрыв. Батарея также быстро разряжается и может перегреться. Избыточное напряжение также может вызвать перегрузку ваших нагрузок (освещение, бытовые приборы и т. Д.) Или привести к отключению инвертора.
Предотвращение перезарядки — это просто вопрос уменьшения потока энергии на аккумулятор, когда аккумулятор достигает определенного напряжения.Когда напряжение падает из-за более низкой интенсивности солнечного света или увеличения потребления электроэнергии контроллер снова позволяет максимально возможный заряд. Это называется «регулировкой напряжения». Это самая важная функция всех контроллеров заряда. Контроллер «смотрит» на напряжение, и в ответ регулирует зарядку аккумулятора.
Некоторые контроллеры регулируют подачу энергии к батарее, полностью или полностью отключая ток. Это называется «управление включением / выключением». Другие уменьшают ток постепенно.Это называется «широтно-импульсной модуляцией» (ШИМ). Оба метода хорошо работают при правильной настройке для вашего типа батареи.
A PWM контроллеры заряда солнечных батарей поддерживают постоянное напряжение. Если он имеет двухступенчатое регулирование, он сначала будет поддерживать напряжение на безопасном максимуме, чтобы аккумулятор полностью зарядился. Затем он снизит напряжение, чтобы поддерживать «завершающий» или «струйный» заряд. Двухступенчатое регулирование важно для системы, которая может испытывать много дней или недель избытка энергии (или небольшого использования энергии).Он поддерживает полный заряд, но сводит к минимуму потерю воды и стресс.
Напряжения, при которых контроллер изменяет скорость заряда, называются установленными. точки. При определении идеальных уставок существует некоторый компромисс между Быстрая зарядка до захода солнца и небольшая перезарядка аккумулятора. Определение уставок зависит от ожидаемых моделей использования, тип батареи и, в некоторой степени, опыт и философия системный разработчик или оператор. Некоторые контроллеры имеют регулируемые уставки, а другие нет.
Зависимость контрольных уставок от температурыИдеальные уставки напряжения для контроля заряда зависят от температуры аккумулятора. Некоторые контроллеры имеют функцию, называемую «температурной компенсацией». Когда Контроллер обнаруживает низкую температуру батареи, он повышает заданные значения. Иначе когда аккумулятор холодный, он слишком быстро снизит заряд. Если ваши батареи подвергаются перепадам температур более примерно 30 ° F (17 ° C), компенсация необходима.
Некоторые контроллеры имеют встроенный датчик температуры.Такой контроллер должен быть установлен в месте, где температура близка к температуре батарей. У лучших контроллеров есть выносной датчик температуры на небольшом кабеле. Датчик должен быть подключен непосредственно к батарее, чтобы сообщать о своей температуре контроллеру.
Альтернативой автоматической температурной компенсации является ручная регулировка заданных значений (если возможно) в соответствии с сезоном. Может быть, достаточно делать это только два раза в год, весной и осенью.
Контрольные уставки vs.Тип батареиИдеальные уставки для контроля заряда зависят от конструкции аккумулятора. В подавляющем большинстве систем возобновляемой энергетики используются свинцово-кислотные батареи глубокого цикла. либо затопляемого, либо герметичного типа. Залитые батареи залиты с жидкостью. Это стандартные экономичные батареи глубокого разряда.
Герметичные батареи используют пропитанные прокладки между пластинами. Их также называют «регулируемыми клапанами» или «абсорбирующим стекломатом» или просто «необслуживаемыми».«Их нужно регулировать до немного более низкого напряжения, чем залитые батареи, иначе они высохнут и выйдут из строя. У некоторых контроллеров есть средства для выбора типа батареи. Никогда не используйте контроллер, не предназначенный для вашего типа батареи.
Выключатель низкого напряжения (LVD)
Типичные уставки для свинцово-кислотных аккумуляторов 12 В при 25 ° C (77 ° F)(Типичные значения, представлены здесь только для примера.)
Верхний предел (батарея залитого водой): 14,4 В
Верхний предел ( герметичный аккумулятор): 14,0 В
Возобновление полной зарядки: 13.0 ВОтключение низкого напряжения: 10,8 В
Повторное подключение: 12,5 ВТемпературная компенсация для батареи 12 В:
-0,03 В на каждый ° C отклонение от стандартного 25 ° C
Глубокий цикл батареи, используемые в системах возобновляемой энергии, предназначены для разряда примерно на 80 процентов. Если они разряжаются на 100 процентов, они сразу поврежден. Представьте себе кастрюлю с водой, кипящую на кухонной плите. В тот момент, когда это высыхает, кастрюля перегревается.Если подождать, пока прекратится пар, значит, он уже слишком поздно!
Точно так же, если вы подождете, пока ваши огни не станут тусклыми, возможно, некоторое повреждение батареи уже произошло. Каждый раз, когда это происходит, емкость и срок службы батареи будут немного уменьшаться. Если аккумулятор находится в таком чрезмерно разряженном состоянии в течение нескольких дней или недель, он может быстро выйти из строя.
Единственный способ предотвратить чрезмерный разряд, когда все остальное не работает, — это отключить нагрузки (приборы, освещение и т. Д.).), а затем повторно подключить их только после восстановления напряжения из-за значительной зарядки. Когда приближается переразряд, батарея на 12 В падает ниже 11 вольт (батарея на 24 В падает ниже 22 В).
Цепь отключения при низком напряжении отключает нагрузку при достижении этой уставки. Он будет повторно подключать нагрузки только тогда, когда напряжение батареи существенно восстановится из-за накопления некоторого заряда. Типичная точка сброса LVD составляет 13 В (26 В в системе 24 В).
Все современные инверторы имеют встроенный LVD, даже дешевые карманные.Инвертор выключится, чтобы защитить себя и свои нагрузки, а также аккумулятор. Как обычно, инвертор подключается непосредственно к батареям, а не через контроллер заряда, потому что его текущее потребление может быть очень высоким, и потому что он не требует внешнего LVD.
Если у вас есть нагрузки постоянного тока, у вас должен быть LVD. Некоторые контроллеры заряда имеют один встроенный. Вы также можете получить отдельное устройство LVD. Некоторые системы LVD имеют «выключатель милосердия», позволяющий потреблять минимальное количество энергии, по крайней мере, достаточно долго найти свечи и спички! ОКРУГ КОЛУМБИЯ холодильники имеют встроенный LVD.
Если вы покупаете контроллер заряда со встроенным LVD, убедитесь, что его емкость достаточна для обработки ваших нагрузок постоянного тока. Например, предположим, что вам нужен контроллер заряда для работы с током заряда менее 10 ампер, но у вас есть нагнетательный насос постоянного тока, который потребляет 20 ампер (на короткие периоды) плюс световая нагрузка постоянного тока 6 ампер. Подойдет контроллер заряда с LVD на 30 ампер. Не покупайте контроллер заряда на 10 ампер, который имеет нагрузочную способность только 10 или 15 ампер!
Защита от перегрузкиЦепь перегружена, когда ток в ней превышает допустимый безопасно обрабатывать.Это может вызвать перегрев и даже опасность возгорания. Перегрузка может быть вызвано неисправностью (коротким замыканием) в проводке или неисправным прибором (как насос замерзшей воды). Некоторые контроллеры заряда имеют защиту от перегрузки. встроенный, обычно с кнопкой сброса.
Может быть полезна встроенная защита от перегрузки, но для большинства систем требуется дополнительная защита в виде предохранителей или автоматических выключателей. Если у вас есть цепь с размером провода, для которого безопасная пропускная способность (допустимая нагрузка) меньше, чем предел перегрузки контроллера, вы должны защитить эту цепь с помощью предохранителя или прерывателя с подходящим более низким номинальным током.В любом случае соблюдайте требования производителя и Национальный электротехнический кодекс в отношении любых требований к внешним предохранителям или автоматическим выключателям.
Дисплеи и измерения Контроллеры зарядавключают в себя множество возможных дисплеев, от одного красного светового индикатора до цифровых дисплеев напряжения и тока. Эти индикаторы важны и полезны. Представьте себе поездку по стране без приборной панели в машине! Система отображения может отображать поток энергии в систему и из нее, приблизительное состояние заряда аккумулятора и время достижения различных пределов.
Если вам нужен полный и точный мониторинг, потратьте около 200 долларов США на отдельное цифровое устройство, которое включает в себя ампер-час. Он действует как электронный бухгалтер, отслеживая количество энергии, доступной в вашей батарее. Если у вас есть отдельный системный монитор, то наличие цифровых дисплеев в самом контроллере заряда не имеет значения. Даже самая дешевая система должна включать в себя вольтметр в качестве минимального индикатора функционирования и состояния системы.
Иметь все с панелью питанияЕсли вы устанавливаете систему для питания современного дома, вам понадобится безопасность. отсечки и межсоединения для работы с большим током.Электрическое оборудование может быть громоздким, дорогим и трудоемким в установке. Чтобы сделать вещи экономичными и компактный, получить готовый «силовой щит». Может включать в себя контроллер заряда с LVD, инвертор и цифровой мониторинг как опции. Это позволяет электрику легко связывать основные компоненты системы и соответствовать требованиям безопасности Национальный электротехнический кодекс или местные органы власти.
Контроллеры заряда для ветро- и гидроэнергетикиКонтроллер заряда для ветроэлектрической или гидроэлектрической системы зарядки должен защищать аккумуляторы от перезаряда, как и фотоэлектрический контроллер.Однако на генераторе должна быть постоянная нагрузка, чтобы предотвратить превышение частоты вращения турбины. Вместо того, чтобы отключать генератор от батареи (как и большинство фотоэлектрических контроллеров), он направляет избыточную энергию на специальную нагрузку, которая поглощает большую часть энергии от генератора. Эта нагрузка обычно представляет собой нагревательный элемент, который «сжигает» избыточную энергию в виде тепла. Если вы можете использовать тепло с пользой, прекрасно!
Это работает?Как узнать, что контроллер неисправен? Следите за вольтметром, когда батареи полностью заряжаются.Достигает ли напряжение (но не превышает ли оно) соответствующих уставок для вашего типа батареи? Используйте свои уши и глаза — сильно ли пузыряются батарейки? На верхних частях батареек скопилось много влаги? Это признаки возможного завышения цен. Получаете ли вы ожидаемую от аккумуляторной батареи емкость, которую ожидаете? В противном случае может быть проблема с вашим контроллером, и он может повредить ваши батареи.
ЗаключениеКонтроль заряда аккумуляторов настолько важен, что большинство производителей высококачественных аккумуляторов (с гарантией на пять лет и более) устанавливают требования к регулированию напряжения, отключению при низком напряжении и температурной компенсации.Когда эти ограничения не соблюдаются, обычно батареи выходят из строя менее чем через четверть их обычного ожидаемого срока службы, независимо от их качества или стоимости.
Хороший контроллер заряда стоит недорого по отношению к общей стоимости энергосистемы. И это не так уж и загадочно. Я надеюсь, что эта статья дала вам общую информацию, необходимую для правильного выбора элементов управления для вашей системы питания.
Основы управления солнечным зарядом| Северная Аризона Wind & Sun
Купите наш выбор контроллеров заряда от солнечных батарей здесь .
Что такое контроллер заряда от солнечных батарей?
Контроллер заряда или регулятор заряда — это, по сути, регулятор напряжения и / или тока, предназначенный для предотвращения перезарядки аккумуляторов. Он регулирует напряжение и ток, поступающие от солнечных панелей к батарее. Большинство панелей «12 вольт» выдают от 16 до 20 вольт, поэтому, если нет регулирования, батареи будут повреждены из-за перезарядки. Большинству аккумуляторов для полной зарядки требуется от 14 до 14,5 вольт.
Всегда ли нужен контроллер заряда?
Не всегда, но обычно.Как правило, нет необходимости в контроллере заряда с небольшими частями обслуживания или панелях постоянного заряда, таких как панели от 1 до 5 Вт. Приблизительное правило состоит в том, что если панель выдает около 2 Вт или меньше на каждые 50 ампер-часов батареи, то она вам не нужна.
Например, стандартный залитый аккумулятор для гольф-кара составляет около 210 ампер-часов. Таким образом, чтобы поддерживать серию из них (12 В) только для обслуживания или хранения, вам понадобится панель мощностью около 4,2 Вт. Популярные 5-ваттные панели достаточно близки и не нуждаются в контроллере.Если вы обслуживаете батареи AGM глубокого разряда, такие как Concorde Sun Xtender, вы можете использовать панель меньшего размера на 2–2 Вт.
Почему панели на 12 вольт — это 17 вольт?
Тогда возникает очевидный вопрос — «почему панели не созданы только для того, чтобы выдавать 12 вольт». Причина в том, что если вы это сделаете, панели будут обеспечивать питание только в прохладном, идеальном состоянии и на ярком солнце. В большинстве случаев это не то, на что можно рассчитывать. Панели должны обеспечивать дополнительное напряжение, чтобы, когда солнце находится низко в небе, или у вас сильная дымка, облачность или высокие температуры *, вы все равно получаете некоторую мощность от панели.Полностью заряженная «12-вольтовая» батарея составляет около 12,7 вольт в состоянии покоя (примерно от 13,6 до 14,4 в режиме зарядки), поэтому панель должна выдержать, по крайней мере, столько же в худших условиях.
* Вопреки интуиции, солнечные батареи лучше всего работают при более низких температурах. Грубо говоря, панель мощностью 100 Вт при комнатной температуре будет панелью на 83 Вт при температуре 110 градусов.
Подробная информация о контроллерах заряда MPPT.
Контроллер заряда регулирует напряжение на выходе панели от 16 до 20 вольт до уровня, необходимого для батареи в данный момент.Это напряжение будет варьироваться от 10,5 до 14,6, в зависимости от состояния заряда батареи, типа батареи, режима работы контроллера и температуры. (см. полную информацию о напряжениях аккумуляторов в нашем разделе о аккумуляторах).
Использование панелей высокого напряжения (стяжки) с батареями
Почти все фотоэлектрические панели мощностью более 140 Вт НЕ являются стандартными 12-вольтовыми панелями и не могут (или, по крайней мере, не должны) использоваться со стандартными контроллерами заряда. Напряжения на решетчатых панелях сильно различаются, обычно от 21 до 60 вольт или около того.Некоторые из них представляют собой стандартные панели на 24 В, но большинство — нет.
Что происходит при использовании стандартного контроллера
Standard (то есть все, кроме типов MPPT), часто будет работать с панелями высокого напряжения, если не превышено максимальное входное напряжение контроллера заряда. Однако вы потеряете много энергии — от 20 до 60% от того, на что рассчитана ваша панель. Органы управления зарядкой принимают выходной сигнал панелей и подают ток на батарею до тех пор, пока она не будет полностью заряжена, обычно около 13.От 6 до 14,4 вольт. Панель может выдавать только определенное количество ампер, поэтому, хотя напряжение снижается с, скажем, 33 вольт до 13,6 вольт, сила тока с панели не может превышать номинальный ток — так что с панелью 175 ватт, рассчитанной на 23 в / 7,6 вольт. ампер, вы получите только 7,6 ампер при напряжении 12 вольт или около того. Закон Ома гласит, что ватт — это вольт x ампер, поэтому ваша 175-ваттная панель потребляет только около 90 ватт в батарее.
Использование контроллера MPPT с панелями высокого напряжения
Единственный способ получить полную мощность от солнечных панелей с высоковольтной сеткой — это использовать контроллер MPPT.См. Ссылку выше для получения подробной информации о контроле заряда MPPT. Поскольку большинство элементов управления MPPT могут потреблять до 150 В постоянного тока (некоторые могут быть выше, до 600 В постоянного тока) на стороне входа солнечной панели, вы часто можете последовательно соединить две или более панели высокого напряжения, чтобы уменьшить потери в проводе или использовать провод меньшего размера. . Например, с упомянутой выше 175-ваттной панелью 2 из них последовательно дадут вам 46 вольт при 7,6 ампер на контроллер MPPT, но контроллер преобразует это примерно до 29 ампер при 12 вольт.
Типы контроллеров зарядного устройства
Элементы управления зарядкойбывают всех форм, размеров, функций и цен. Они варьируются от небольшого блока управления на 4,5 А (Sunguard) до программируемых контроллеров MPPT от 60 до 80 А с компьютерным интерфейсом. Часто, если требуются токи более 60 ампер, два или более блока от 40 до 80 ампер подключаются параллельно. Наиболее распространенные элементы управления, используемые для всех систем на батарейках, находятся в диапазоне от 4 до 60 ампер, но некоторые из новых элементов управления MPPT, такие как Outback Power FlexMax, достигают 80 ампер.
Элементы управления зарядкой бывают 3 основных типов (с некоторым перекрытием):
Простое одно- или двухступенчатое управление , в котором используются реле или шунтирующие транзисторы для управления напряжением в один или два этапа. По сути, они просто замыкают или отключают солнечную панель при достижении определенного напряжения. С практической точки зрения это динозавры, но некоторые из них все еще встречаются в старых системах, а некоторые из супердешевых продаются в Интернете. Их единственная реальная претензия на славу — их надежность — у них так мало компонентов, что сломать нечего.
3-ступенчатый и / или PWM , например Morningstar, Xantrex, Blue Sky, Steca и многие другие. Сейчас это в значительной степени отраслевой стандарт, но иногда вы все еще будете видеть некоторые из старых типов шунтов / реле, например, в очень дешевых системах, предлагаемых дискаунтерами и массовыми маркетологами.
Отслеживание точки максимальной мощности (MPPT), например, производства Midnite Solar, Xantrex, Outback Power, Morningstar и других. Это лучшие контроллеры с соответствующими ценами, но с эффективностью в диапазоне от 94% до 98% они могут сэкономить значительные деньги на более крупных системах, поскольку они обеспечивают на 10–30% больше энергии для батареи.Для получения дополнительной информации см. Нашу статью о MPPT.
Большинство контроллеров поставляются с каким-либо индикатором: простым светодиодом, серией светодиодов или цифровыми индикаторами. Многие новые модели, такие как Outback Power, Midnite Classic, Morningstar MPPT и другие, теперь имеют встроенные компьютерные интерфейсы для мониторинга и управления. В самых простых обычно есть всего пара маленьких светодиодных ламп, которые показывают, что у вас есть питание и что вы получаете какой-то заряд. Большинство тех, у кого есть измерители, будут показывать как напряжение, так и ток, исходящий от панелей, и напряжение батареи.Некоторые также показывают, сколько тока снимается с клемм НАГРУЗКИ.
Все контроллеры заряда, которые мы имеем в наличии, относятся к трехступенчатому типу PWM и MPPT. (на самом деле «4-этап» — это своего рода рекламный ажиотаж — раньше его называли эквалайзером, но кто-то решил, что 4-й этап лучше, чем 3-й). А сейчас мы даже видим такую, которая рекламируется как «5-ступенчатая» ….
Что такое выравнивание?
Equalization делает то, что следует из названия, — пытается уравновесить — или сделать все ячейки в батарее или блоке батарей точно равным зарядом.По сути, это период перезаряда, обычно в диапазоне от 15 до 15,5 вольт. Если у вас некоторые ячейки в цепочке ниже, чем другие, они все будут загружены на полную мощность. В залитых батареях он также выполняет важную функцию перемешивания жидкости в батареях, вызывая пузырьки газа. Конечно, в трейлере или лодке это обычно не имеет для вас большого значения, если вы не стояли на стоянке в течение нескольких месяцев, поскольку обычное движение приведет к тому же. Кроме того, в системах с небольшими панелями или крупногабаритными аккумуляторными системами вам может не хватить тока, чтобы действительно сильно пузыриться.Во многих автономных системах аккумуляторы также могут быть уравновешены с помощью генератора + зарядного устройства.
Что такое ШИМ?
Довольно много регуляторов заряда имеют режим «ШИМ». ШИМ расшифровывается как широтно-импульсная модуляция. ШИМ часто используется как один из методов подзарядки. Вместо постоянного выходного сигнала контроллера он посылает на батарею серию коротких зарядных импульсов — очень быстрое переключение «вкл / выкл». Контроллер постоянно проверяет состояние батареи, чтобы определить, насколько быстро посылать импульсы и насколько длинными (широкими) будут импульсы.В полностью заряженном аккумуляторе без нагрузки он может просто «тикать» каждые несколько секунд и посылать на аккумулятор короткий импульс. В разряженной батарее импульсы будут очень длинными и почти непрерывными, или контроллер может перейти в режим «полностью включен». Контроллер проверяет уровень заряда аккумулятора между импульсами и каждый раз настраивается сам.
Обратной стороной ШИМ является то, что он также может создавать помехи в радиоприемниках и телевизорах из-за генерируемых им резких импульсов. Если у вас проблемы с шумом от вашего контроллера, см. Эту страницу.
Что такое выход «нагрузка» или «отключение при низком напряжении»?
Некоторые контроллеры также имеют выход «LOAD» или LVD, который можно использовать для небольших нагрузок, таких как небольшие приборы и освещение. Преимущество заключается в том, что клеммы нагрузки имеют низковольтный разъединитель, поэтому он отключит все, что подключено к клеммам нагрузки, и не даст батарее разрядиться слишком сильно. Выход НАГРУЗКА часто используется для небольших некритических нагрузок, таких как освещение. Некоторые из них, такие как Schneider Electric C12, также можно использовать в качестве контроллера освещения, чтобы включать свет в темноте, но контроллер освещения Morningstar SLC обычно является лучшим выбором для этого. Не используйте выход LOAD для работы любых инверторов, кроме очень маленьких. Инверторы могут иметь очень высокие импульсные токи и могут привести к выходу контроллера из строя.
Большинству систем функция LVD не нужна — она может управлять только небольшими нагрузками. В зависимости от номинала контроллера это может быть от 6 до 60 ампер. Вы не можете запустить любой инвертор, кроме самого маленького, с выхода НАГРУЗКА. На некоторых контроллерах, таких как серия Morningstar SS, выход нагрузки может использоваться для управления сверхмощным реле для управления нагрузкой, запуска генератора и т. Д.Выход LOAD или LVD чаще всего используется в RV и удаленных системах, таких как камеры, мониторы и сайты сотовых телефонов, где нагрузка невелика и сайт не обслуживается.
Какие терминалы «Sense» на моем контроллере?
Некоторые контроллеры заряда имеют пару «сенсорных» терминалов. Сенсорные клеммы пропускают очень низкий ток, самое большее около 1/10 миллиампера, поэтому нет падения напряжения. Что он делает, так это «смотрит» на напряжение батареи и сравнивает его с тем, что выдает контроллер.Если есть падение напряжения между контроллером заряда и аккумулятором, он немного поднимет выходной сигнал контроллера для компенсации.
Они используются только тогда, когда у вас есть длинный провод между контроллером и аккумулятором. Эти провода не пропускают ток и могут быть довольно маленькими — от №20 до №16 AWG. Мы предпочитаем использовать №16, потому что его нелегко разрезать или случайно раздавить. Они подключаются к клеммам SENSE на контроллере и к тем же клеммам, что и два провода зарядки на конце аккумулятора.
Что такое «Монитор системы батареи»?
Системные мониторы аккумуляторных батарей, такие как Bogart Engineering TriMetric 2025A, не являются контроллерами. Вместо этого они контролируют вашу систему батарей и дают вам довольно хорошее представление о состоянии вашей батареи, а также о том, что вы используете и генерируете. Они отслеживают общее количество ампер-часов в батареях и разрядах, состояние заряда батареи и другую информацию. Они могут быть очень полезны для средних и крупных систем для точного отслеживания того, что ваша система делает с различными источниками зарядки.Они несколько излишни для небольших систем, но являются своего рода забавной игрушкой, если вы хотите увидеть, что делает каждый усилитель :-). Новая модель TriMetric PentaMetric также имеет компьютерный интерфейс и многие другие функции.
Чтобы получить полный список всех наших контроллеров заряда, узнать цены или сделать заказ в Интернете, посетите нашу страницу Контроллеры заряда в нашем интернет-магазине. Информацию о мониторах батарей, измерителях и шунтах см. На нашей странице «Измерители и мониторы».
5 основных причин преждевременного выхода батарей из строя
Это неоспоримо: батареи сядут в течение долгого времени.Хотя это правда, вы можете помочь продлить ему жизнь. Некоторые бренды, такие как RELiON, даже стремятся продлить срок службы батарей.
К сожалению, многие аккумуляторы рано выходят из строя просто из-за того, что не обслуживаются должным образом. Прежде чем выбросить еще одну батарею раньше времени, прочтите пять основных причин преждевременного выхода батарей из строя и узнайте, как предотвратить это с вами.
- Температура
Батареи очень чувствительны к экстремальным температурам.
При высоких температурах батареи выделяют больше энергии, чем в нормальном диапазоне температур. Тепло вызывает потерю электролита в батарее, что приводит к увеличению разряда и возможному выходу из строя.
Холод может доставлять неприятности. В условиях сильного холода аккумуляторная батарея может потреблять больше энергии для питания оборудования, подключенного к ней. Эта нагрузка на аккумулятор также может привести к преждевременному выходу из строя.
Предотвращение: Храните батареи в помещении с контролируемой температурой .Оставление их на улице при экстремальных температурах только сократит их жизненный цикл.
- Неправильная зарядка
Поместите аккумулятор в зарядное устройство и увеличьте напряжение для ускорения процесса зарядки — отличный способ вызвать преждевременный выход аккумулятора из строя. Производители аккумуляторов указывают диапазон зарядного напряжения для аккумулятора, и его следует соблюдать.
Зарядка при слишком низком напряжении вызовет сульфатирование, а также приведет к потере пластинами батареи активного материала, который заставляет его работать.
Зарядка при слишком высоком напряжении ускоряет коррозию и увеличивает скорость саморазряда. Высокое напряжение создает тепло, которое, в свою очередь, приводит к разрядке аккумулятора.
Предотвращение: Следуйте инструкциям производителя по зарядке. Убедитесь, что на зарядном устройстве установлено рекомендованное напряжение. По возможности также рекомендуется следить за аккумулятором во время процесса зарядки, чтобы предотвратить перезарядку.
- Неправильные методы хранения
При хранении аккумулятора важно знать, как это сделать.Хотя те времена, когда нельзя было хранить аккумуляторы на полу гаража, давно прошли, при отложении аккумуляторов необходимо учитывать ряд вещей.
- Перед тем, как положить аккумулятор на полку, убедитесь, что аккумулятор чистый и полностью заряжен. Если убрать батарею с грязью, пылью или коррозией, она просто разряжается со скоростью, превышающей ее естественный уровень саморазряда.
- Уберите полностью заряженный аккумулятор , чтобы предотвратить его глубокую разрядку, что затруднит последующую зарядку.После того, как аккумулятор будет полностью заряжен, заряжать его нужно будет не чаще, чем раз в месяц.
- Учитывать температуру окружающей среды . Экстремально высокие и низкие температуры резко сокращают срок службы батареи при хранении.
Предотвращение: Перед тем, как убрать аккумулятор, убедитесь, что он чистый, заряженный и находится в помещении с контролируемым микроклиматом.
- Взаимозаменяемые батареи
Тот факт, что батареи похожи друг на друга или используются для одного и того же общего назначения, не означает, что они могут использоваться как взаимозаменяемые.
Производитель оборудования, которое вы пытаетесь запитать, разработал свой продукт для использования определенного типа батареи . Например, для одного типа автомобиля может потребоваться более высокий ток запуска, в то время как другому может потребоваться работа с системой холостого хода-старт-стоп.
Использование неподходящей батареи не только приведет к отказу оборудования, которое вы пытаетесь запитать, но и приведет к необратимому повреждению вашей батареи.
Предупреждение: При замене батареи заменяйте только одинаковые батареи на аналогичные.
- Неправильная установка
Неправильная установка батареи может привести к раннему выходу из строя и даже к серьезным повреждениям, таким как пожар или даже взрыв. Подключение положительного кабеля к отрицательному полюсу, повреждение уплотнений поста или неплотное соединение — все это примеры неправильной установки батареи, которая может привести к ее повреждению и отказу.
Предотвращение: Следуйте всем инструкциям производителя по установке и убедитесь, что все соединения батареи чистые и находятся в надлежащем рабочем состоянии.
Если ваши батареи разрядились и их необходимо заменить, помните, что вы можете утилизировать свои батареи .
Все, что вы должны знать о Power Banks
Что может быть хуже беспокойства по поводу батареи? Мы все становимся зависимыми от прекрасных мобильных технологий, таких как смартфоны, которые делают нашу жизнь проще и приятнее. Хотя эти устройства стали невероятно энергоэффективными, нам еще очень далеко до того, чтобы заряжать их только раз в несколько дней.
Современные смартфоны едва заряжаются за 24 часа при умеренном использовании, поэтому мы привыкли переносить наши устройства с одного зарядного устройства на другое. Мы заряжаемся дома, в машине и на работе. Просто чтобы держать в страхе это страшное предупреждение о «низком заряде батареи».
Вот почему повсеместный «power bank» стал таким популярным за последние несколько лет. В этих компактных кубиках разного размера может храниться достаточно сока, чтобы зарядить ваш телефон в течение нескольких дней. Пауэрбанки, вероятно, спасли положение больше, чем кто-либо знает, но большинство людей используют их, ничего не зная о них.
Конечно, внешний аккумулятор — это продукт, в буквальном смысле «включай и работай», но есть некоторые вещи, которые должен знать каждый пользователь этих популярных устройств. В конце концов, они намного сложнее, чем многие из нас думают. Чтобы помочь вам стать более информированным пользователем (и покупателем) power bank, вот несколько важных фактов, которые вы должны запомнить, прежде чем использовать его снова.
Блоки питания используют (потенциально опасные) литий-ионные батареи
Аккумуляторная технология намного лучше, чем когда-либо прежде, намного лучше .Это может показаться очевидным наблюдением, но мало кто помнит, как старые технологии, такие как никель-кадмий, заряжались целую вечность и почти не обладали мощностью.
К сожалению, с этими современными чудо-батареями есть некоторые оговорки. При такой высокой плотности энергии всегда есть шанс, что батарея высвободит все это одним неконтролируемым всплеском.
Это означает взрыв или пожар, что довольно серьезно! Возможно, вы слышали ужасные истории о домах, сгорающих из-за неисправных ховербордов, или о взрывах телефонов в карманах людей.Вот что происходит, когда литий-ионные батареи выходят из строя.
Единственная причина, по которой фактическое количество аварий является приемлемым, сводится к множеству стандартов безопасности и технологий, встроенных в литиевые устройства. Однако литиевая батарея вашего павербанка может превратиться в опасный объект из-за неправильного использования. Быть пронзенным или раздавленным — один из верных способов вызвать внутреннее короткое замыкание и последующее возгорание.
То же самое касается воздействия тепла из-за лежания в горячем окне автомобиля или нахождения слишком близко к источнику тепла.Так что будьте осмотрительны в отношении того, как вы обращаетесь со своим новым блоком питания, и относитесь к нему с должным уровнем уважения.
В то же время следует покупать и использовать только фирменные аккумуляторы, имеющие сертификаты организаций по безопасности потребителей. Сертификация UL, вероятно, является наиболее распространенным стандартом в США, а на других территориях есть свои эквиваленты.
Блоки питаниядолжны иметь несколько функций, таких как защита от перезаряда, перенапряжения и перегрева, чтобы считаться безопасными для использования.Продукты других производителей, не сертифицированные, могут иметь только некоторые из этих функций или не иметь ни одной из них. Это рецепт катастрофы!
Power Bank — это не всегда то, чем кажется
Энергобанкипочти всегда измеряются в миллиампер-часах, сокращенно «мАч». Это мера того, сколько электрического заряда может удерживать аккумулятор.
Аккумулятор в вашем смартфоне или ноутбуке также имеет номинал в той же единице. Итак, если вы покупаете аккумулятор емкостью 10 000 мАч, а ваш телефон оснащен аккумулятором емкостью 2500 мАч, вы должны получить четыре полных заряда, верно?
Оказывается, здесь имеет место некоторая нечестность в маркетинге, а также накладные расходы, связанные с законами физики.
Маркетинговый ход связан с разницей в напряжении между аккумулятором и зарядным устройством устройства. Литиевые элементы имеют «номинальное» напряжение 3,7 вольт. Однако USB работает при минимальном напряжении в пять вольт, поэтому устройство будет заряжаться, по крайней мере, при этом напряжении.
Чтобы увидеть, как это имеет значение, нам понадобится еще один блок — Вт / час (Вт-ч). Это единица измерения вашего счета за электроэнергию, которая указывает на фактическое потребление энергии.
Используя калькулятор от мАч к Втч, мы видим, что при 3,7 В наш внешний аккумулятор на 10 000 мАч имеет 37 Втч энергии. Однако аккумулятор нашего телефона емкостью 2500 мАч, заряженный от напряжения 5 В, требует 12,5 Втч. Это даст нам всего три полных перезарядки, а не четыре в лучшем случае!
Кроме того, вы должны учитывать, что не существует такой вещи, как преобразование энергии без потерь. Преобразование химической энергии в вашем энергобанке в электричество и обратно в химическое хранилище приведет к сбросу части ее в виде отработанного тепла.
В конце концов, вы можете приблизительно оценить «фактическую» емкость аккумулятора павербанка для зарядки устройств примерно на две трети от емкости, указанной в 3.Номинальное напряжение 7 В. Некоторые аккумуляторные батареи фактически указывают две емкости при обоих напряжениях, что упрощает вашу работу. Просто помните, что значение имеет значение 5V.
Усилители тоже имеют значение
Стандартная зарядка через USB происходит при 5 В и 0,5 А. Если вы оставите напряжение прежним и увеличите силу тока, скорость, с которой течет электричество, возрастет. Это означает, что банк будет разряжаться быстрее, а целевое устройство, в свою очередь, будет заряжаться быстрее. То есть, если он поддерживает зарядку с большей силой тока.
Практически все современные смартфоны и планшеты могут заряжаться от 2,1 А. Следовательно, для Power Bank довольно часто бывает хотя бы один порт с номиналом 2,1 или 2,4 А. Подключайте любое USB-совместимое устройство к порту большой мощности совершенно безопасно. Он будет получать столько тока, сколько запрашивает. При подключении телефона к этому порту он будет заряжаться со скоростью, аналогичной зарядке от настенного зарядного устройства.
Но у этого есть и обратная сторона. Более быстрая разрядка вызывает повышенный нагрев батареи.Чем сильнее нагревается аккумулятор, тем он менее эффективен. Таким образом, использование более быстрого порта может заметно повлиять на то, сколько заряда вы получите в конце дня.
Если вы пытаетесь получить как можно больше от банка, не используйте телефон активно и оставьте его на ночь на выходе 0,5 А. Отключение во время зарядки было бы оптимальным. Это тот сценарий, с которым вы можете столкнуться в походе вдали от электросети. Где каждый ватт на счету.
Если вы собираетесь добраться до места, где вы можете перезарядить свой внешний аккумулятор, прежде чем у вас закончится выбор, то, как правило, лучше всегда использовать порт с высоким током.Особенно, если вы хотите активно использовать телефон для энергоемких приложений, таких как GPS-навигация.
Кстати о зарядке, а как насчет зарядки самого павербанка?
Стандарты быстрой зарядки имеют решающее значение
Если у вас современный смартфон среднего класса или лучше, вы знаете, что он может довольно быстро заряжаться от сети. Так что это может быть удивительно, когда на зарядку многих пауэрбанков может уйти целый день. Для этого есть разные причины, но если вы собираетесь часто использовать внешний аккумулятор, а не просто оставлять его на случай чрезвычайных ситуаций, более быстрое время зарядки имеет решающее значение.
Современные телефоны и планшеты обычно поддерживают ту или иную форму «быстрой» зарядки. Здесь слишком много стандартов зарядки, чтобы обсуждать их здесь, но, к счастью, все, что вам нужно сделать, это убедиться, что заявленные поддерживаемые стандарты банка питания соответствуют хотя бы одному из стандартов, которые предоставляет ваше зарядное устройство. Это значительно сократит общее время, необходимое для пополнения ячеек.
Сквозная зарядка — полезная функция
Это подводит нас к другому вопросу.Предполагая, что у вас есть только одно зарядное устройство, стоит ли сначала зарядить свой внешний аккумулятор или устройство? Если у вас есть внешний аккумулятор с поддержкой сквозной зарядки, вам не придется сталкиваться с этой дилеммой.
Такие аккумуляторы могут заряжаться от сети, одновременно передавая заряд на другое устройство. Одно зарядное устройство, два счастливых устройства. Это функция, на которую стоит обратить внимание.
Некоторые ноутбуки можно заряжать от некоторых источников питания
Телефоны, планшеты и другая небольшая электроника более или менее стандартизированы на питание от USB 5 В, но ноутбуки — другие.Эти более крупные устройства принимают питание 12 В от источника, который преобразует высоковольтный переменный ток, идущий от стены, в нечто приятное для хрупкой электроники внутри вашего любимого грелки для колен.
Существует два основных способа зарядки ноутбука от внешнего аккумулятора. В обоих случаях вам понадобится внешний аккумулятор с нужными функциями. Многие современные ноутбуки, особенно ультрабуки, теперь можно заряжать через USB-C. Если ваш ноутбук можно заряжать через USB-C, который будет использовать прилагаемое зарядное устройство, вы также можете использовать внешний аккумулятор с выходом USB-C и поддерживающий стандарт USB-C PD (Power Delivery).
Вам необходимо использовать настоящий кабель USB-C с овальными разъемами USB-C на обоих концах. Для зарядного устройства вашего ноутбука может использоваться съемный кабель USB C, и в этом случае вы можете просто переместить его в блок питания, когда это необходимо. Кабели USB-C PD рассчитаны на 3 А, но некоторые рассчитаны на 5 А. Если ваше зарядное устройство и ноутбук поддерживают зарядку до 5 А, то стоит приобрести совместимый кабель. Однако в большинстве случаев вы получите зарядку на 3 А с общей мощностью 30 Вт от типичного блока питания, предназначенного для зарядки ноутбуков.
А что, если у вас есть ноутбук, который не поддерживает зарядку через USB-C? Тогда вам понадобится специальный блок питания с выходом для ноутбука 12 В. Это порт без USB, который работает с проприетарным кабелем, предоставленным производителем блока питания.
Вы можете запустить автомобиль с помощью специальных аккумуляторов
Это правда! Есть несколько специализированных аккумуляторов питания, которые поставляются с приспособлением, позволяющим запустить машину от рывка. Они дороже обычных аккумуляторов, и их лучше оставить в безопасном месте в машине.
Они могут быть настоящей палочкой-выручалочкой, поскольку с ними можно не только завести машину, но и зарядить телефон, чтобы позвонить за помощью, если это не сработает. Теперь, чтобы прояснить, вы не можете использовать для этой цели какой-либо блок питания, но основная технология блока питания такая же.
Ограниченная продолжительность жизни — в порядке вещей
Одна из причин, по которой некоторые люди не очень довольны тем, что в современных устройствах нет съемных батарей, заключается в том, что литиевая батарея является одним из компонентов с самым коротким сроком службы.В то время как остальная часть вашего телефона может работать десятилетиями, если вы не повредите ее физически, батарея почти наверняка разрядится в течение нескольких лет.
постепенно теряют свою емкость с каждой перезарядкой. Это не двухпозиционный выключатель, при котором аккумулятор работает одну минуту, а затем останавливается. Общее количество энергии, которое батарея может хранить, постепенно становится меньше, пока она действительно не начнет разряжаться.
В наши дни можно ожидать, что большинство литиевых батарей пройдут около 500 полных циклов зарядки, прежде чем начнут терять заметное количество энергии.Это полный цикл перезарядки . Если вы, например, дважды заряжаете свой внешний аккумулятор с 50% до 100%, это будет считаться только за одну полную перезарядку .
Вы также не можете ожидать, что аккумуляторы будут держать заряд бесконечно. Так что не забывайте доливать их каждые несколько месяцев, если вы ими не пользовались.
Никогда не бойтесь снова выйти из строя
Возможно, однажды мы, наконец, совершим прорыв в области супер-аккумуляторов, который всегда многообещают научные журналы.Какой-то тип суперконденсатора или сверхпроводника, работающего при комнатной температуре, который будет работать на смартфоне 100 лет.
А пока нам придется довольствоваться аккумуляторной технологией, которая не совсем волшебна, но определенно пригодна для использования. Благодаря банкам питания мы можем наслаждаться тонкими, привлекательными устройствами, а также иметь возможность заряжать их, когда они находятся вдали от электросети или автомобильной зарядной розетки. Больше не нужно беспокоиться о FOMO или батарее. Как информированный пользователь power bank, вы можете наслаждаться преимуществами наличия ровно той мощности, которая вам нужна.Где бы ты ни был!
.