15Фев

Бензин химический состав: марки, фракционный, химический состав, производство

Содержание

виды, марки, основные показатели качества

Категория: Химический состав непродовольственных товаров

В настоящее время в России находится в эксплуатации более 40 млн единиц автомобильного транспорта. Большая часть парка машин оснащена бензиновыми (карбюраторными или инжекторными) двигателями внутреннего сгорания.

Современный автомобильный бензин должен удовлетворять требованиям, обеспечивающим экологичную и надежную работу двигателя:

• иметь хорошую испаряемость, позволяющую получить однородную топливовоздушную смесь оптимального состава при любых температурах;

• иметь групповой углеводородный состав, обеспечивающий устойчивый, бездетонационный процесс сгорания на всех режимах работы двигателя;

• не изменять своего состава и свойств при длительном хранении и не оказывать вредного воздействия на детали топливной системы, резервуары, резинотехнические изделия и т.п.

Автомобильный бензин — это легковоспламеняющаяся горючая жидкость, в состав которой входят углеводороды, выкипающие при температуре от 35 до 200 °С.

Важнейшим свойством бензина является его способность в состоянии газообразной смеси воспламеняться и сгорать со скоростью распространения фронта пламени 25 — 35 м/с. В некоторых случаях процесс горения может приобрести взрывной, детонационный характер. Мгновенное сгорание рабочей смеси нежелательно, так как вызывает вибрацию и перегрев деталей двигателя, преждевременный их износ, снижение мощности.

Способность бензина противостоять взрывообразному горению называется детонационной стойкостью. Она оценивается октановым числом. Для любого бензина октановое число определяют путем подбора смеси из двух эталонных углеводородов: изооктана — октановое число 100, и нормального гептана с октановым числом, равным 0, которая по детонационным свойствам эквивалентна испытуемому бензину. Процентное содержание в этой смеси изооктана принимают за октановое число.

Одним из принципов классификации различных марок бензина является октановое число. Существуют два метода его определения: исследовательский (ОЧИ — октановое число по исследовательскому методу) и моторный (ОЧМ — октановое число по моторному методу).

Моторный метод лучше характеризует антидетонационные свойства бензина в условиях форсированной работы двигателя и его высокой теплонапряженности, исследовательский — при эксплуатации двигателя в городе, когда работа его связана с относительно невысокими скоростями, частыми остановками и меньшей теплонапряженностью.

В России производятся автомобильные бензины пяти марок (ГОСТ 2084-77): А-72, А-76, АИ-91, АИ-93 и АИ-95. Буква «И» в маркировке указывает на применение исследовательского метода при определении октанового числа, цифры — октановое число. Бензин А-72 практически не вырабатывается из-за отсутствия техники, которая бы его потребляла. Наиболее велика в производстве доля бензина марок А-76, А-92, который вырабатывается по ТУ 38.001 165 — 97. Кроме перечисленных в ГОСТ 2084—77 в России производятся также автомобильные бензины марок А-80, А-96, АИ-98.

Для повышения детонационной стойкости (повышения октанового числа) в процессе компаундирования можно увеличить в бензине долю высокооктановых компонентов. Однако это весьма дорогостоящий способ, поэтому используют более дешевый — введение в состав бензина специальных химических соединений — антидетонаторов. Наиболее эффективным антидетонатором является тетраэтилсвинец (ТЭС) — вещество крайне ядовитое. Чтобы предупредить образование в двигателе нагара, тетраэтилсвинец вводят вместе с выносителем. В результате образуются летучие вещества, которые удаляются из двигателя с отработавшими газами. При этом соединения свинца попадают в атмосферу, почву, воду, отравляя их.

Смесь тетраэтилсвинца с выносителем называется этиловой жидкостью. Бензин, содержащий этиловую жидкость, называется этилированным. Чтобы предупредить отравление им, этилированный бензин окрашивают в различные цвета.

Тетраэтилсвинец в качестве основного компонента антидетонатора (АД-ТЭС) используется уже 80 лет. Однако затраты на санитарно-гигиенические мероприятия, связанные с применением АД-ТЭС, более чем в 10 раз превышают экономический эффект от его применения. В США, ФРГ, Франции, Японии, Швеции и ряде других стран ТЭС запрещен. В России его перестали выпускать в 2001 г., и его применение тоже практически запрещено.

В настоящее время этилированный бензин заменяется неэтилированным. Это связано с использованием в автомобилях каталитических нейтрализаторов отработавших газов. Оксиды свинца разрушают нейтрализатор и выводят его из строя через несколько часов работы двигателя.

Нейтрализаторы обеспечивают соблюдение экологических требований к автотранспортным средствам, которые регламентируются правилами Европейской экономической комиссии ООН (табл.).

Требования Европейской экономической комиссии ООН к автомобильному бензину

Параметры Euro-2 Euro-3 Euro-4
Максимальное содержание, %:
бензола 5,0 1,0 1,0
серы (для Euro -3, -4 в промилле, %о) 0,05 150 30
ароматических углеводородов 42 30
олефиновых углеводородов 18 14
кислорода 2,3
2,7
Фракционный состав:
до 100°С перегоняется, %, не менее 46 46
до 150°С перегоняется, %, не менее 75 75
Давление насыщенных паров, кПа, не более 60 60
Наличие моющих присадок Обязательно Обязательно

Эти правила периодически пересматриваются в сторону ужесточения. Каждая новая модификация правил получает условное обозначение: Euro-1 (1993 г.), Euro-2 (1996 г.), Euro-3 (2000 г.), Euro-4 (предполагается принять в 2005 г.).

После того как правительство России подписало соглашения Euro-1 и Euro-2, был разработан ГОСТ Р 51105 — 97 на автомобильные бензины, требования которого соответствуют требованиям европейского стандарта EN 228. Единственное отличие в том, что в ГОСТ введен низкооктановый бензин АИ-80 (А-76), необходимость производства которого вызвана наличием в стране большого парка устаревших автомобилей. ГОСТ Р 51105 —97 вступил в силу с 1 января 1999 г. Он устанавливает следующие марки неэтилированных бензинов: «Нормаль-80», «Регуляр-91», «Премиум-95», «Супер-98». Разработан ГОСТ 51313 — 99 «Бензины автомобильные. Общие технические требования» — введен в действие с 1 июля 2000 г.

Октановое число бензина можно повысить, вводя либо антидетонаторы, либо присадки (добавки).

Антидетонаторы увеличивают октановое число, действуя как катализаторы на процесс сгорания топлива, поэтому их применяют в очень малых количествах по отношению к единице топлива. В этом качестве используются производные ферроцена (торговое название ФК-4, в 1994 г. разрешен Госстандартом РФ). Около 10 % валового производства бензина составляет бензин, содержащий ФК-4. Однако повышение нормативного содержания этого антидетонатора в бензине приводит к отложению абразивных частиц оксида железа на деталях камеры сгорания двигателя, в том числе на свечах зажигания, что вызывает различные неполадки.

Очень эффективен антидетонатор на основе циклопентадиенилтрикарбонила марганца — АД-ЦТМ. При его использовании износ двигателей в 1,5 раза меньше, чем при применении АД-ТЭС. Недавно Госстандарт РФ разрешил использование АД-ЦТМ. Наиболее перспективными можно считать антидетонаторы на основе карбонилов металлов.

В отличие от антидетонаторов присадки увеличивают октановое число бензина за счет своего количества. Присадки, как правило, имеют собственное октановое число выше 100.

В качестве октаноповышающих добавок в настоящее время используются метил-трет-бутиловый эфир (МТБЭ), этанол, метил-циклопентадиэтилтрикарбонил марганца (МЦТМ) и этил-трет-бутиловый эфир (ЭТБЭ).

МТБЭ, например, повышает октановое число, а также снижает уровень СО в отработавших газах и способствует более полному сгоранию углеводородов.

Большие мощности по производству МТБЭ имеются в США, Индии, Тринидаде, Великобритании, во Франции, в последние годы в Китае. У нас в стране производство МТБЭ организовано на предприятии «Нижнекамскнефтехим». Недостатком МТБЭ является гигроскопичность, усиленный износ двигателя вследствие образования нагара, плохая совместимость с резинами и другими эластомерами. Кроме того, его высокая концентрация в бензине приводит к увеличению в выбросах концентрации формальдегида, оксида азота, ацетальдегида. Поэтому в Японии установлен норматив введения МТБЭ — не более 7 %. Аналогичные ограничения существуют и в странах Западной Европы.

ЭТБЭ — наиболее устойчивая присадка, она может быть использована даже как альтернативное топливо, однако ее промышленное производство пока не налажено.

За рубежом для улучшения эксплуатационных свойств автомобильного бензина широко используют многофункциональные присадки, уделяя особое внимание моющим. Применение моющих присадок обеспечивает нормальную работу двигателя при его эксплуатации. Впервые бензин с моющими присадками был разработан фирмой SHEVRON в 1954 г., но широкое распространение они получили лишь с введением принудительной системы вентиляции картера.

В России промышленное производство моющих и многофункциональных присадок к автомобильному бензину до 90-х годов отсутствовало. В середине 90-х годов ВНИИ НП разработал бензольную многофункциональную присадку «Афен» — композицию аминоамидов с добавлением поверхностно-активного вещества и бинарного растворителя. «Афен» предотвращает образование льда и коррозию топливной системы, смывает смолистые отложения в карбюраторе автомобиля и предотвращает их образование, что обеспечивает экономию бензина до 5 % и в 1,5 раза снижает концентрацию оксида углерода в отработавших газах. По моющим свойствам «Афен» не уступает зарубежным аналогам. Позже тем же институтом была разработана модификация «Афена» — многофункциональная присадка «Автомат» на базе более доступного сырья.

По результатам испытаний она допущена к применению. На бензин с этой присадкой получен гигиенический сертификат.

Ассортимент присадок (добавок) и антиокислителей, используемых в России

Антидетонационные присадки (добавки)

Хайтек-3000 (фирма Ethyl)…………………….До 50 мг/л Мп

АвтоВЭМ (ТУ 38.401-58-185-97)…………..До 1,3%

Феррада (ТУ 38.401-58-186-97)……………..До 1,3 % (37 мг/л Fe)

АПК (ТУ 38.401-58-189-97)………………….До 0,3% (37 мг/л Fe)

ФероЗ (ТУ 38.401-58-83-94)………………….До 0,02% (37 мг/л Fe)

АДА (ТУ 38.401-58-61-93)…………………….До 1,3%

БВД (ТУ 38.401-58-228-99)…………………..До 1,9%

БОКЭ (ТУ 38.401-58-244-99)…………………До 5 %

МАФ (ТУ 38.401-1045-96)…………………….До 3,5 % (37 мг/л Fe)

Фэтерол ТУ 2421-009-04749189-95)………До 15%

МТБЭ (ТУ 103704-90)…………………………..До 15%

ДАКС (ТУ 0251-003-02066612-96). …………До 3,5 %

Октан-Максимум (ТУ 38.401-144-97)……3-7 мг/л Fe

Моющие и многофункциональные присадки

Хайтек 4449 (фирма Ethyl)…………………….0,035-0,06%

Керопур 3222 (фирма BASF)………………….0,035-0,06%

SAP 9500 (фирма Shell)…………………………0,035 %

Автомат (ТУ 38.401-58-171-96)……………..0,05%

Афен (ТУ 38.401743-89)……………………….0,05%

Антиокислители

Агидол-1 (ТУ 38.5901237-90)………………..До 0,1 %

Агидол-12 (ТУ 38.30216371-88)……………..До 0,3%

Наряду с октановым числом качество бензина формирует его фракционный состав, то есть преобладание той или иной группы углеводородов в природной нефти или в нефтепродуктах, а также присутствие в них серу-, азот- и кислородсодержащих соединений.

Если, к примеру, в бензине есть примесь серы, при его сгорании образуются сернистые соединения, которые загрязняют окружающую среду, вызывая появление «кислотных дождей». Водорастворимые кислоты и щелочи недопустимы, так как они вызывают коррозию двигателя.

Жидкие парафиновые углеводороды (от С5 до С15) почти все при перегонке нефти попадают в бензиновый дистиллят. Если в бензине присутствует значительное количество парафиновых углеводородов так называемого нормального строения, то есть таких, в которых атомы углерода соединены в виде прямой цепочки, качество бензина низкое. И наоборот, парафиновые углеводороды изомерного строения, с разветвленной цепочкой углеводородных атомов, имеют высокое октановое число, а бензин, содержащий такие углеводороды, отличается хорошей октановой характеристикой.

Содержание в бензине цикланов весьма желательно, так как они имеют более высокие октановые числа, чем парафиновые углеводороды нормального строения.

Ароматические углеводороды — бензол, толуол, ксилол, этил-бензол и другие — являются ценным сырьем для производства высокооктанового бензина, они обладают высокими октановыми числами.

Однако усиленное применение ароматических компонентов вместо этиловой жидкости для повышения октановой характеристики бензина может привести к увеличению выбросов ароматических углеводородов, в частности бензола, с отработавшими газами. Поэтому применение неэтилированного бензина на автомобилях без каталитических нейтрализаторов недопустимо.

С фракционным составом бензина связаны такие характеристики двигателя, как его пуск, образование паровых пробок в системе питания, прогрев и приемистость, экономичность и долговечность работы.

Пусковые характеристики двигателя улучшаются по мере увеличения содержания в бензине низкокипящих фракций. Однако при этом увеличивается вероятность образования паровых пробок. При нагревании бензина в системе питания двигателя его низкокипящие углеводороды испаряются, образуя пары, объем которых примерно в 150—200 раз больше объема жидкого бензина. Подача бензина в цилиндры из-за снижения массовой производительности уменьшается, горючая смесь обедняется, что приводит к потере мощности двигателя или даже к прекращению его работы.

Как устранить эти явления? Для бензина установлены ограничения на содержание низкокипящих фракций, регламентированы температура начала кипения бензина (для летних сортов), температура перегонки его 10 %, а также давление насыщенных паров. Кроме того, чтобы избежать образование паровых пробок, следует использовать марку бензина, соответствующую сезону.

Для бензина с высоким содержанием низкокипящих фракций характерны большие потери при хранении и транспортировании. Такой бензин может приводить к обледенению карбюратора, так как быстро испаряющиеся низкокипящие фракции отнимают теплоту из воздуха, в котором происходит испарение, и от металлических деталей впускной системы карбюратора. Чем больше низкокипящих фракций в бензине, тем ниже температура топливо-воздушной смеси.

С учетом противоречивых требований к фракционному составу бензина у нас в стране вырабатывают два вида бензина — зимний и летний. Автомобильный бензин, за исключением марки АИ-98, подразделяется на летний — для применения во всех районах, кроме северных и северо-восточных, в период с 1 апреля по 30 сентября (в южных районах допускается применять летний вид бензина в течение всего года), и зимний — для применения в течение всех сезонов в северо-восточных районах, а в остальных районах с 1 октября по 31 марта. Эти виды бензина имеют оптимальный фракционный состав для определенных температурных условий и позволяют без осложнений эксплуатировать автомобили в различное время года в различных географических районах и климатических условиях.

От наличия в бензине тяжелых фракций углеводородов в значительной мере зависят долговечность двигателя и его экономичность. Количество тяжелых фракций углеводородов обусловливает температуры конца кипения и перегонки 90 % бензина. Если эти температуры достаточно высоки, то тяжелые фракции не успевают испаряться во впускной системе и поступают в цилиндры двигателя в жидком виде. В результате часть их не успевает сгорать — экономичность двигателя снижается.

Тяжелые фракции бензина, осевшие на стенках цилиндра, смывают масло с трущихся поверхностей и ухудшают условия их смазки, они попадают в картер двигателя и снижают вязкость масла, что также увеличивает износ двигателя. Несгоревшее в цилиндре топливо откладывается на поверхности камеры сгорания и поршней в виде нагара, который инициирует детонацию, калильное зажигание и другие нарушения в работе двигателя.

Поэтому, чем ниже температура конца кипения бензина и перегонки его 90 %, тем лучше бензин, двигатель долговечнее и экономичнее. Для бензина установлены нормы температуры перегонки его 90 % и конца его кипения: для летнего — соответственно не выше 180 и 195 °С, для зимнего — соответственно не выше 160 и 185 °С.

В процессе хранения бензин подвергается различным химическим превращениям, ведущим к ухудшению его эксплуатационных свойств. Способность бензина противостоять этим химическим превращениям называют химической стабильностью. Химическая стабильность бензина определяется главным образом содержанием в нем непредельных углеводородов, которые в силу их химической структуры легко взаимодействуют с кислородом воздуха, образуя высокомолекулярные смолистые вещества. На процесс окисления влияют также содержащиеся в бензине неуглеводородные соединения.

Оседая на штоках и тарелках клапанов, в камере сгорания при высокой температуре смолистые вещества превращаются в твердые отложения — нагары. Это приводит к нарушениям в работе двигателя и, как следствие, к снижению его мощности и экономичности. Поэтому необходимы ограничения на содержание в бензине высокомолекулярных смол.

Нагарообразование в двигателе возрастает также с увеличением содержания в бензине тетраэтилсвинца, серы и ароматических углеводородов. Содержание свинца и серы в бензине строго регламентируется. Ароматические углеводороды вследствие своей высокой детонационной стойкости являются желательной составляющей бензина, но из-за повышенного нагарообразования их количество в бензине следует ограничить.

Новыми нормативными документами предусмотрено ужесточение требований к показателям качества. Бензин с улучшенными экологическими свойствами должен содержать: бензола 1 — 3%, серы не более 0,03 %, ароматических углеводородов не более 45 %, олефиновых углеводородов не более 20 % и применяться только с моющими присадками. Кроме того, принято решение, что автомобильный бензин, выпускаемый не по ГОСТ, а по ТУ, проходит обязательную сертификацию на соответствие ГОСТ 51313—99.

В России эксплуатируется значительное число импортного дизельного автотранспорта. Предполагается, что дизели будут устанавливаться и на отечественных автомобилях УАЗ и «Газель». В Европе доля продаж машин, оснащенных дизелями, в среднем достигла почти 30 % (в Германии она составляет 85 %).

Дизельное топливо используется как на передвижных, так и на стационарных установках с дизелем, характеризующимся большими экономичностью, приемистостью, надежностью, долговечностью, меньшей пожароопасностью.

Работа дизеля существенно отличается от работы двигателя карбюраторного. Топливо подается в камеру сгорания через форсунки в капельно-жидком состоянии, смешивается с воздухом и воспламеняется от сжатия.

В качестве дизельного топлива используется нефтяная фракция, основу которой составляют углеводороды с температурой кипения 170 — 360 °С (против 35 — 200 °С для бензинов). В ней содержится по массе 87 % углерода, 13 % водорода, до 0,5 % серы, незначительное количество кислорода и азота. По внешнему виду дизельное топливо — это жидкость от желтого до темно-коричневого цвета с высокой удельной теплотой сгорания (примерно 43 МДж/кг), что позволяет автомобилям с дизельными двигателями иметь большой запас хода. По объемам производства дизельное топливо находится на втором месте, несколько уступая топочному мазуту и в 1,8 раза превосходя автомобильный бензин.

Дизельное топливо должно удовлетворять следующим требованиям:

• для обеспечения хорошего смесеобразования в цилиндрах двигателя иметь определенный фракционный состав. Так, 50 % зимнего дизельного топлива должны выкипать при температуре до 250 °С, летнего — до 280 °С. Чем больше в топливе легкокипящих фракций, тем быстрее оно испаряется после впрыска, обеспечивая лучшую полноту сгорания, малую дымность и более легкий пуск двигателя;

• хорошо течь, что необходимо для бесперебойной подачи в камеру сгорания, облегчения фильтрации и хорошего смесеобразования. Текучесть топлива характеризуется вязкостью при температуре 20 °С;

• температура застывания должна обеспечивать надежность работы двигателя зимой. При температуре ниже установленного значения нарушается прокачиваемость дизельного топлива и невозможна его подача в цилиндры двигателя. Температура застывания летнего топлива должна быть не выше минус 10 °С, зимнего — не выше минус 35 °С, арктического — не выше минус 55 °С;

• быстро воспламеняться и плавно сгорать. Воспламенение топлива, поданного в камеру сгорания, происходит не сразу. Между моментом впрыскивания и воспламенением происходит распыление топлива, перемешивание его с воздухом, нагревание, испарение и окисление. В результате накапливается тепло, повышается температура — топливо воспламеняется. Температуру, до которой нужно нагреть топливо в смеси с кислородом воздуха, чтобы началось его горение, называют температурой самовоспламенения. Чем ниже температура самовоспламенения, тем легче запускается холодный двигатель;

• иметь диапазон цетанового числа (ЦЧ) 45 — 50 единиц. Чем короче период задержки самовоспламенения, тем плавнее и эффективнее сгорает топливо. Этот период оценивается цетановым числом, т. е. процентным содержанием (по объему) цетана (ЦЧ-100) в искусственно приготовленной смеси с α-метилнафталином (ЦЧ-0). Для повышения ЦЧ, особенно для топлива, используемого при низких температурах, к нему добавляют специальные присадки — изопропилнитраты.

Кроме того, дизельное топливо должно обладать способностью обеспечивать чистоту топливоподающей системы, деталей двигателя, не вызывать их коррозии, полностью сгорать, не образуя дыма, быть стабильным при хранении. Эти свойства в стандартах нормируются такими показателями качества, как коксовое число, температура вспышки, фильтруемость, наличие механических примесей и воды, содержание серы, кислотность.

Коксовое число характеризует способность топлива при температуре 800 — 900 °С без доступа воздуха образовывать твердый остаток — кокс. Коксуемость зависит от наличия в топливе смолистых соединений, его вязкости и фракционного состава.

Температура вспышки определяет степень пожароопасности топлива при транспортировании, хранении и применении. Желательно, чтобы она была как можно более высокой.

Фильтруемость дизельного топлива показывает его способность предотвращать засорение фильтров и характеризуется специальным коэффициентом. Чем ближе коэффициент фильтруемости к единице, тем выше качество дизельного топлива.

Содержание механических примесей и воды в дизельном топливе приводит к износу деталей и образованию ледяных пробок в зимнее время года.

Отечественная нефтеперерабатывающая промышленность в соответствии с ГОСТ 305 — 82 вырабатывает дизельное топливо трех марок:

Л — летнее, применяется при температуре окружающего воздуха выше 0 °С;

3 — зимнее, применяется при температуре до минус 30 °С;

А — арктическое, применяется при температуре до минус 50 °С.

Содержание серы в дизельном топливе марок J1 и 3 не должно превышать 0,2 %, марки А — 0,4 %. Для экспорта в соответствии с ТУ 38.401-58-110—94 производится дизельное топливо с содержанием серы 0,2 %.

Коррозионные свойства (кислотность) топлива зависят от содержания в нем органических кислот и серы, содержание их строго ограничивается.

Дизельные топлива, как и бензины, имеют условные обозначения. Например, Л-0,2-40: летнее, содержание серы 0,2%, температура вспышки 40 °С; 3-0,4-35: зимнее, содержание серы 0,4 %, температура застывания минус 35 °С. В обозначение арктического топлива входит только содержание серы.

В последние годы получило распространение наиболее эффективное в условиях России дизельное топливо. Зимнее дизельное топливо с депрессорными присадками (ТУ 38.101889—81) марки ДЗп получают на базе летнего дизельного топлива путем добавления присадки на основе сополимеров этилена с винилацетатом. Присадка обеспечивает снижение температуры застывания до минус 30 °С. В районах с холодным климатом (температура до минус 45 °С) используется топливо, вырабатываемое по ТУ 38.401-58-6— 92. Экологически чистое дизельное топливо (ТУ 38.1011348—89) имеет показатель содержания серы 0,05 и 0,1 %. Такое топливо получают гидроочисткой дизельного топлива. Городское дизельное топливо (ТУ 38.401-58-170—96) предназначено для использования в Москве. Оно отличается от экологически чистого пониженными дымностью и токсичностью отработанных газов на 30 — 50%. Низкотемпературные свойства этого топлива также улучшены.

Бензин – его производство, маркировка, октановое число

Топливо для двигателей внутреннего сгорания, бензин — это жидкость, состоящая из органической смеси углерода и водорода. В зависимости от того, сколько и какие присутствуют добавки, бензин ГОСТ делится по маркам. И уже в зависимости от них, можно понять, какой состав у бензина, а также, для моторов какой техники его применять.

Чтобы не нужно было каждый раз вчитываться в состав топлива и вспоминать уроки химии, принято единое обозначение — октановое число. По нему легко определить вид бензина и его назначение.

Важны также показатели испаряемости бензина. А также другие требования, относительно состава топлива. При этом буквально каждое значение утверждено соответствующим ГОСТом.

Из чего делают бензин

Схема производства бензина

Горючее выпускается на мощностях нефтеперерабатывающих заводов. Сам производственный процесс очень сложен и делится на несколько циклов.

Сначала сырая нефть поступает на предприятие по трубопроводам, закачивается в огромные резервуары, после чего отстаивается. Далее начинается промывка нефти – в нее добавляется вода, а потом пропускается электрический ток. В итоге соли оседают на дно и стенки резервуаров.

Во время последующей атмосферно-вакуумной перегонки происходит подогрев нефти и ее деление на несколько типов. Осуществляются 2 этапа обработки:

  1. Вакуумная;
  2. Термическая.

По завершении процесса первичной переработки начинается каталитический риформинг, во время которого происходит очередное очищение бензина и извлечение фракций 92-го, 95-го и 98-го бензина.


Фото: aif.ru

Это процесс, который еще называют вторичной переработкой, включает 2 основных этапа:

  1. Крекинг – очистка нефти от примесей серы;
  2. Риформинг – наделение субстанции октановым числом.
Видео: Как делают бензин из нефти.
Просто о сложном

По окончании данных этапов проходит контроль качества горючего, который занимает несколько часов.

Примечательно, что отечественные заводы (в большинстве) из 1 тонны нефти получают 240 литров бензина. Остальное приходится на газ, дизтопливо, мазут и авиационное горючее.

Что такое октановое число

Эта фраза известна очень многим, однако далеко не все знают, что именно означает данный термин и почему он так важен.

Октановое число – это способность топлива (в том числе и бензина) противостоять самопроизвольному возгоранию под давлением. Иначе говоря – его детонационная стойкость.

В процессе работы двигателя поршень сжимает топливно-воздушную смесь (такт сжатия). В этот момент, когда готовая смесь находится под давлением, может произойти ее самопроизвольное воспламенение еще до того, как свеча зажигания дала искру. В народе это явления называется одним словом – «детонация». Характерным признаком детонации являются шумы в двигателе – металлический звон.

Следовательно, чем выше октановое число, тем выше способность горючего сопротивляться детонации.

Топливо для бензиновых двигателей и его характеристики

Большинство людей обращают внимание только на октановое число, но это далеко не единственный важный параметр. У углеводородов имеется разная скорость закипания. Качество продукта зависит от данных параметров.

Бензины АИ и Евро различаются процентным соотношением трудно- и легко- закипаемых фракций. От данного параметра зависит способность перегорания. В топливе, применяющемся для бензиновых моторов, содержится сразу несколько фракций.

Некоторые из них могут закипать при 27°C. Таким образом, первичное воспламенение возможно даже при пуске холодного двигателя. Другие фракции закипают при 100°C. Они подходят для поддержания стабильной работы двигателя. Кроме того, в состав топлива входят фракции, закипающие при 200 °C. Одни необходимы для поддержания процесса выключения мотора.

Маркировка бензина

На АЗС можно встретить самые разные наименования, не исключая и наиболее привычные для большинства автомобилистов. Обычно бензин маркируется литерами «А» и «АИ». Их расшифровка:

  1. «А» – это обозначение свидетельствует, что бензин автомобильный;
  2. «АИ» – буква «И» означает метод, которым было определено октановое число.

Существует 2 способа определения октанового числа – исследовательский (АИ) и моторный (АМ).

Исследовательский метод – он определяется путем тестирования топлива на одноцилиндровой силовой установке, при условии переменной степени сжатия, частоте вращения коленвала в 600 об/мин, угле опережения зажигания в 13° и температуре воздуха (всасываемого) в 52 °С. Эти условия аналогичны небольшим и средним нагрузкам.

Моторный метод – его определение осуществляется на аналогичной установке, однако прочие условия другие. Температура воздуха (всасываемого) составляет 149 °С, частота вращения коленвала равна 900 об/мин, а угол опережения зажигания переменный. Такой режим аналогичен высоким нагрузкам – езда в гору, работа мотора под нагрузкой и т. д.

Следовательно, число АМ всегда ниже, нежели АИ, а разница в показаниях свидетельствует о чувствительности горючего к работе силового агрегата в разных режимах. Примечательно, что в некоторых государствах на Западе октановое число определяется как среднее между значениями «АМ» и «АИ». В РФ же обозначается только более высокое значение «АИ», что и можно увидеть на всех АЗС.

Как сделать лучше?

Для повышения октанового числа используются различные способы. Например, добавление присадок, содержащих свинец или поменять состав фракции при получении бензина. Тем не менее, от таких способов отказались, в официальном порядке, так как влияние на окружающую среду при этом совсем не благоприятное.

Кроме официально разрешенных присадок могут быть использованы и другие, например, ацетон, спирт. Это повышает октановое число бензина, уменьшает расход топлива, есть мнение о том, что это очищает «внутренности» вашего авто от различных отложений. Тем не менее, официальных данных по этому вопросу нет, что может грозить серьезными последствиями: такие присадки весьма агрессивны и разъедают детали машины.

В целом можно выделить следующие способы улучшить качество бензина:

  • снижение, а в целом следует стараться и вовсе избегать свинца в топливе, оно вредно и для экологии, и людей, и самого автомобиля;
  • уменьшение уровня содержания серы в горючем до уровня – 0,05%, в идеальном варианте – до 0,003%;
  • наличие смол в бензине должно быть на уровне не больше чем 5 мг на 100 кубических сантиметров;
  • ароматические углеводороды не должны превышать уровень 45%, приветствуется и дальнейшее снижение этой планки при возможности;
  • в определенных климатических условиях нужно использовать определенные виды топлива. Иными словами, с учетом погодных условий и перепада температур топливо делится по своему составу и давлению насыщенных паров. Автомобильные бензины подразделяются на летние и зимние;
  • наличие разных присадок, которые играют положительную роль и улучшают функционал автомобиля.

Марки бензина

Чаще всего на отечественных заправочных станциях встречаются следующие обозначения:

  • Бензин АИ-98. Отличается высоким октановым числом. В отличие от АИ-95, который производится в соответствии с ГОСТом, 98-й выпускается согласно ТУ 38.401-58-122-95, а также ТУ 38.401-58-127-95. В производстве этой марки бензина запрещено применение алкилсвинцовых антидетонаторов. Выпуск данного высокооктанового бензина осуществляется с использованием ряда компонентов – толуола, изопентана, изооктана и алкилбензина.
  • Экстра АИ-95 – бензин повышенного качества, что достигается путем применения присадок антидетонационного типа. Производится из дистиллятного сырья, бензина каталитического крекинга, с добавлением изопарафиновых элементов (ароматических) и газового бензина. В составе нет свинца, что обеспечивает высокое качество бензина.
  • АИ-95 – основное отличие от Экстра АИ-95 в концентрации свинца, которая выше на 30%;
  • АИ-93 – делится на 2 категории: этилированный и неэтилированный. Этилированное топливо выпускается на основе бензина каталитического риформинга (мягкий режим) с добавлением в его состав толуола и алкилбензина, а также бутан-бутиленовой фракции. Неэтилированный выпускается из того же бензина каталитического риформинга (жесткий режим), с добавлением бутан-бутиленовой фракции, алкилбензина и изопентана;
  • АИ-92 – наиболее распространенный на рынке бензин среднего качества, с содержанием присадок антидетонационного типа. Максимальная плотность – 0,77г/смА-923. Может быть как этилированным, так и неэтилированным;
  • АИ-91 – отличается содержанием присадок антидетонационного типа. Это неэтилированный бензин с ненормированной плотностью и определенным процентом свинца в составе;
  • А-80 – состав этого бензина аналогичен таковому у АИ-92. Максимальная плотность – 0,755г/смА-803;
  • А-76 – обычно применяется в сельском хозяйстве. Выпускается этилированный и неэтилированный А-76 с ненормируемой плотностью. В его составе содержатся присадки разных типов (антиокислительные и антидетонационные), прямогонный бензин, а также итоговые продукты коксования, пиролиза и крекинга (термического и каталитического).
Видео: Аи-92 или Аи-95? Разгон до 100км и расход топлива на Mazda Demio (Ford Festiva Mini Wagon)

Экологические требования к топливу

С каждым годом происходит ужесточение требований в экологичности топлива. Это обусловлено тем, что продукты сгорания крайне негативно отражаются на состоянии окружающей среды и способствуют возникновению парникового эффекта.

В топливе марок АИ высоко содержание дополнительных присадок и компонентов, которые способствуют снижению экологических параметров данных продуктов. Высокий выброс отравляющих веществ при сгорании обусловлен устаревшими технологиями производства.

Большей экологичностью отличается топливо класса евро. При сгорании выделяется примерно на 10-12% меньше отравляющих газов. Из-за применения более технологичных методов производства в выхлопах меньше оксида азота, ароматических углеводородов, серы и бензола. Благодаря этому, снижается общий вред, наносимый продуктами сгорания окружающей среде.

В ряде стран запрещена продажа топлива, не соответствующего стандартам экологичности. Меры по ужесточению требований к экологичности топлива стали предпринимать из-за повышения численности людей, которые ежедневно используют личные автомобили. Это спровоцировало повышение количества парниковых газов, усугубляющих состояние атмосферы.

Какой бензин заливать?

Многие ищут ответ на этот вопрос, чтобы ненароком не навредить двигателю. В данном случае все просто – требования к топливу указаны в инструкции по эксплуатации конкретного автомобиля, а также продублированы на обратной стороне лючка бензобака. Если производитель в качестве рекомендуемого топлива указал АИ-95, то заливать нужно именно его, а заправляться 92-м можно только на свой страх и риск. Однако стоит помнить, что в мануале и на этикетке может быть указано как октановое число, так и марка топлива.

Также в мануале могут быть записаны разные типы бензина. Например:

  1. АИ-92 – допустимый;
  2. АИ-95 – рекомендуемый;
  3. АИ-98 – для улучшения характеристик.

Как видно, заливать в бак необходимо только рекомендуемое производителем авто топливо. Впрочем, использование бензина с более высоким октановым числом никакого вреда двигателю не нанесет. Ведь чем выше октановое число, тем медленнее скорость горения и больше КПД топлива, что благотворно сказывается на отдаче двигателя, экономичности и других моментах. Как правило, прибавка в мощности и экономичности достигает 7%. Кроме того, современные машины комплектуются ЭБУ, которые учитывают качество горючего и его октановое число, корректируя настройки.

Это значит, что в бак современного автомобиля с атмосферным мотором необходимо заливать АИ-95 на качественной АЗС. В крайнем случае, допускается АИ-92. Также можно ориентироваться на степень сжатия – если она ниже 10 ед., можно заливать АИ-92. Если выше – только 95-й.

Что касается турбированных двигателей, то для них рекомендуемое топливо – АИ-98 или Экстра АИ-95, но не АИ-92.

Применение

Бензин в основном используется в качестве топлива. Некоторые виды бензина предназначены только для заправки машин. Сейчас выпускают несколько марок топлива, качество которых различается в зависимости от октанового числа и включения присадок. Есть специальный автобензин для зимнего и летнего периода.

Производятся специальные разновидности топлива, использовать которые можно только для заправки самолетов. Осуществляется выпуск бензина, который применяется в качестве растворителя и как сырье для химической промышленности.

Бензин используется в качестве сырья для производства парафина и этилена. Применяется эта жидкость для блендинга и проведения процессов органического синтеза. Используется он для чистки и обезжиривания поверхностей и кожи. Данное вещество применяется для очищения металлических элементов. Он используется для изготовления:

  • красок;
  • лаков;
  • растворителей;
  • мастик;
  • резиновых клеевых составов;
  • конденсаторов;
  • защитных составов, образующих пленку.

Кроме того, этот продукт может применяться даже для выведения жирных пятен с разных поверхностей.

Можно ли смешивать бензин?

Этим вопросом задаются многие. В целом от смешивания горючего с разным октановым числом ничего катастрофического не произойдет, но только если смешивать рекомендуемый бензин с более высоким (по октановом числу). К примеру, рекомендуемый для машины 92-й смешать с 95-м. Однако понижать не нужно. Также стоит помнить, что плотность у бензина с разным октановым числом различается, так что его смешивания может вообще не произойти – горючее с более высоким октановым числом просто окажется вверху бака, а с низким внизу.

В целом, чтобы сохранить двигатель, рекомендуется не экономить, заправляться только на сертифицированных станциях крупных сетей (не франшиза) и лить в бак бензин с октановым числом, рекомендованным изготовителем (но не ниже).

Основные свойства

Основные свойства бензина – его химический состав, способности к испарению, горению, воспламенению, образованию отложений, а также коррозионная активность и стойкость к детонации.

Физико-химические свойства бензина варьируются в зависимости от того, какие углеводороды и в каких пропорциях в нем содержатся. Температура замерзания бензина достигает –60 градусов по Цельсию, в случае применения специальных присадок можно понизить это значение до –71 градуса. Бензин активно испаряется при температуре выше 30 градусов, и с повышением температуры испарение происходит интенсивнее. Когда концентрация его паров в воздухе достигает 74 – 123 граммов на кубический метр, образуется взрывоопасная смесь.

Фракционный состав бензина напрямую влияет на эксплуатационные свойства. При производстве важно добиться правильного соотношения легких и тяжелых фракций, чтобы, с одной стороны, обеспечить достаточно высокую испаряемость при низких температурах, а с другой – не допустить перебоев в работе мотора из-за образования паровых пробок в топливопроводе, которые могут возникнуть вследствие интенсивного испарения большого количества легких фракций. В связи с этим бензины, применяющиеся в местах с жарким климатом и в районе полярного круга, имеют разный химический состав для того, чтобы обеспечить необходимые эксплуатационные свойства.

Получить бензин можно несколькими способами: прямой перегонкой нефти и отбором определенных фракций (такой способ применялся в начале эры автомобилизации), в середине прошлого века стали применять крекинг и риформинг. Основная составляющая бензина, полученного путем прямой перегонки, – цепочки алканов. При крекинге и риформинге они преобразуются в разветвленные алканы и ароматические соединения.

Два последних способа позволяют получить высокооктановое топливо марок АИ-92, 95 и выше.

Бензин автомобильный — Газойл Центр

Бензин автомобильный. Для большинства автомобилей, в качестве топлива, применяется бензин. Смесь углеводородов, имеющих температуру кипения от 30 до 205 градусов Цельсия. Помимо углеводородов в составе бензина имеются примеси, содержащие азот, серу и кислород.

Автомобильный бензин делится на разные марки, имеющие несколько различные эксплуатационные свойства:

  • АИ-92;
  • АИ-95;
  • АИ-98.

В связи с экологическими требованиями бензин, имеющий более низкое октановое число (к примеру: А-76, АИ-80) в настоящее время не производятся.

ОСНОВНЫЕ СВОЙСТВА

Основные свойства бензина (химический состав), способности к испарению, горению, воспламенению, образованию отложений, а также коррозионная активность и стойкость к детонации.

Физико-химические свойства бензина варьируются в зависимости от того, какие углеводороды и в каких пропорциях в нем содержатся. Температура замерзания бензина достигает –60 градусов по Цельсию, в случае применения специальных присадок можно понизить это значение до –71 градуса. Бензин активно испаряется при температуре выше 30 градусов, и с повышением температуры испарение происходит интенсивнее. Когда концентрация его паров в воздухе достигает 74 – 123 граммов на кубический метр, образуется взрывоопасная смесь.

Фракционный состав бензина напрямую влияет на эксплуатационные свойства. При производстве важно добиться правильного соотношения легких и тяжелых фракций, чтобы, с одной стороны, обеспечить достаточно высокую испаряемость при низких температурах, а с другой – не допустить перебоев в работе мотора из-за образования паровых пробок, которые могут возникнуть вследствие интенсивного испарения большого количества легких фракций. В связи с этим бензины, применяющиеся в местах с жарким климатом и в районе полярного круга, имеют разный химический состав для того, чтобы обеспечить необходимые эксплуатационные свойства.

Получить бензин можно несколькими способами: прямой перегонкой нефти и отбором определенных фракций (такой способ применялся в начале эры автомобилизации), в середине прошлого века стали применять крекинг и риформинг. Основная составляющая бензина, полученного путем прямой перегонки, – цепочки алканов. При крекинге и риформинге они преобразуются в разветвленные алканы и ароматические соединения.

Два последних способа позволяют получить высокооктановое топливо марок АИ-92, 95 и выше.

ОКТАНОВОЕ ЧИСЛО

Название марки бензина состоит из буквенно-цифрового обозначения. Буквы А или АИ указывают на метод определения октанового числа:

  1. моторный (А)
  2. исследовательский (АИ)

а цифра определяет октановое число (92, 95 и т.д.).

Значение октанового числа указывает на такое свойство, как стойкость бензина к детонации. Цифра эта относительная. В качестве эталона принимается изооктан, детонационная стойкость которого очень высока и принимается равной 100. Шкала октанового числа была предложена в начале прошлого века. Оно определялось содержанием изооктана в смеси с нормальным гептаном (его детонационная стойкость очень низкая и принимается равной нулю). Соответственно, бензин марки АИ-92 эквивалентен по своей устойчивости к детонации 92-процентной смеси изооктана с гептаном, АИ-95 – 95% и так далее. Октановое число может быть и больше 100, если антидетонационные свойства топлива еще выше, чем у чистого изооктана.

Это значение очень важно, поскольку детонация приводит к быстрому разрушению цилиндро-поршневой группы. Объясняется это скоростью распространения фронта пламени – до 2,5 км/с, тогда как в нормальных условиях пламя распространяется со скоростью не более 60 м/с.

Чтобы повысить антидетонационные свойства, можно либо добавить присадки, содержащие соединения свинца (тетраэтилсвинец), либо изменить фракционный состав при получении. Первый способ получает с легкостью получить из бензина АИ-92 АИ-95, или 98, однако в настоящее время от него отказались. Поскольку, хотя такие присадки значительно повышают эксплуатационные свойства топлива и имеют низкую себестоимость, они так же весьма ядовиты и на экологию оказывают куда более губительное возд
ействие, чем чистый бензин, а также разрушают каталитический нейтрализатор автомобиля (температура сгорания этилированного бензина выше, чем у неэтилированного, в результате керамические элементы нейтрализатора попросту спекаются, и устройство выходит из строя).

В качестве присадок могут быть использованы и другие соединения, менее токсичные, такие как этиловый спирт или ацетон. Например, если добавить 100 мл спирта в литр бензина АИ-92, то октановое число увеличится до 95. Однако применение таких присадок экономически невыгодно.

ХИМИЧЕСКАЯ СТАБИЛЬНОСТЬ

Рассматривая химические свойства бензина, следует основной упор сделать на то, насколько долго состав углеводородов останется неизменным, поскольку при длительном хранении более легкие соединения испаряются, и эксплуатационные свойства сильно ухудшаются. Особенно остро эта проблема стоит в том случае, если из топлива с меньшим октановым числом (например, АИ-92) получили бензин более высокой марки (АИ-95) путем добавления в его состав пропана или метана. Их антидетонационные свойства выше, чем у изооктана, но и испаряются они очень быстро.

Государственный стандарт требует, чтобы химический состав бензина любой марки, будь то АИ-92, 95 или 98 оставался неизменным не менее пяти лет при соблюдении правил хранения. Однако на деле зачастую даже только что купленное горючее уже имеет октановое число ниже заявленного (например, не 95, а 92). Виной тому недобросовестность продавцов, добавляющих сжиженный газ в резервуары с топливом, срок хранения которого истек, и состав не соответствует ГОСТу. Как правило, к одному и тому же бензину добавляют разное количество газа, чтобы получить октановое число, равное 92 или 95. Очевидным подтверждением подобных ухищрений служит сильный запах газа на АЗС. Вполне вероятно, что эксплуатационные свойства такого бензина заметно ухудшатся прямо на глазах, до того времени, как опустеет топливный бак.

3.8: Бензин — более глубокий взгляд

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    31405
  • Цели

    После завершения этого раздела вы сможете

    1. описывают общую природу нефтяных месторождений и объясняют, почему нефть является таким важным источником органических соединений.
    2. в общих чертах объясняет процессы, связанные с переработкой нефти.
    3. определяют октановое число топлива и связывают октановое число с химической структурой.
    Ключевые термины

    Убедитесь, что вы можете определить и использовать в контексте ключевые термины ниже.

    • каталитический крекинг
    • каталитический риформинг
    • фракционная перегонка
    • октановое число (октановое число)
    Учебные заметки

    Переработка нефти в пригодные для использования фракции является очень важным промышленным процессом. В лабораторной части этого курса у вас будет возможность сравнить этот промышленный процесс с процедурой дистилляции, как она выполняется в студенческой лаборатории.

    Нефть

    Нефть, выкачиваемая из-под земли, представляет собой сложную смесь нескольких тысяч органических соединений, включая алканы с прямой цепью, циклоалканы, алкены и ароматические углеводороды, содержащие от четырех до нескольких сотен атомов углерода. Идентичность и относительное количество компонентов варьируются в зависимости от источника — сырая нефть Техаса несколько отличается от сырой нефти Саудовской Аравии. Фактически, анализ нефти из разных месторождений может дать «отпечатки пальцев» каждого из них, что полезно при отслеживании источников разлитой сырой нефти. Например, сырая нефть из Техаса является «сладкой», что означает, что она содержит небольшое количество серосодержащих молекул, тогда как сырая нефть из Саудовской Аравии является «кислой», что означает, что она содержит относительно большое количество серосодержащих молекул.

    Бензин

    Нефть преобразуется в полезные продукты, такие как бензин, в три этапа: дистилляция, крекинг и риформинг. Напомним из главы 1, что дистилляция разделяет соединения на основе их относительной летучести, которая обычно обратно пропорциональна их температурам кипения. В части (а) на рис. 3.8.1 показан разрез колонны, используемой в нефтяной промышленности для разделения компонентов сырой нефти. Нефть нагревается примерно до 400°C (750°F) и становится смесью жидкости и пара. Эта смесь, называемая исходным сырьем, вводится в рафинировочную башню. Наиболее летучие компоненты (с самой низкой температурой кипения) конденсируются в верхней части колонны, где она холоднее, а менее летучие компоненты конденсируются ближе к низу. Некоторые вещества настолько нелетучи, что собираются на дне, не испаряясь вообще. Таким образом, состав жидкости, конденсирующейся на каждом уровне, различен. Эти разные фракции, каждая из которых обычно состоит из смеси соединений с одинаковым числом атомов углерода, отбираются отдельно. Часть (b) на рис. 3.8.1 показывает типичные фракции, собираемые на нефтеперерабатывающих заводах, количество содержащихся в них атомов углерода, их температуры кипения и их конечное использование. Эти продукты варьируются от газов, используемых в природном и баллонном газе, до жидкостей, используемых в горюче-смазочных материалах, до смолистых твердых веществ, используемых в качестве смолы на дорогах и крышах.

    Рисунок 3.8.1: Перегонка нефти. (а) Это схема дистилляционной колонны, используемой для разделения нефтяных фракций. (b) Нефтяные фракции конденсируются при разных температурах, в зависимости от числа атомов углерода в молекулах, и удаляются из колонны. Наиболее летучие компоненты (с самой низкой температурой кипения) конденсируются в верхней части колонны, а наименее летучие (с самой высокой температурой кипения) конденсируются в нижней части. (CC BY-NC-SA; анонимно)

    Экономика нефтепереработки сложна. Например, потребность рынка в керосине и смазочных материалах намного ниже потребности в бензине, при этом все три фракции получают из ректификационной колонны в сопоставимых количествах. Кроме того, большинство бензинов и реактивного топлива представляют собой смеси с очень тщательно контролируемым составом, который не может изменяться, как исходное сырье. Чтобы сделать переработку нефти более прибыльной, менее летучие и низкоценные фракции превращаются в более летучие и более ценные смеси, состав которых тщательно контролируется. Первым процессом, используемым для осуществления этого превращения, является крекинг, при котором более крупные и тяжелые углеводороды в керосиновой и высококипящей фракциях нагреваются до температуры до 9°С.00°С. Высокотемпературные реакции вызывают разрыв углерод-углеродных связей, что превращает соединения в более легкие молекулы, подобные молекулам бензиновой фракции. Так, при крекинге алкан с прямой цепью с числом атомов углерода, соответствующим керосиновой фракции, превращается в смесь углеводородов с числом атомов углерода, соответствующим более легкой бензиновой фракции. Второй процесс, используемый для увеличения количества ценных продуктов, называется риформингом; это химическое превращение алканов с прямой цепью либо в алканы с разветвленной цепью, либо в смеси ароматических углеводородов. Использование таких металлов, как платина, вызывает необходимые химические реакции. Смеси продуктов крекинга и риформинга разделяют фракционной перегонкой.

    Октановое число

    Качество топлива определяется его октановым числом, которое является мерой его способности сгорать в двигателе внутреннего сгорания без детонации или стука. Стук и стук сигнализируют о преждевременном сгорании (рис. 3.8.2), что может быть вызвано либо неисправностью двигателя, либо слишком быстрым сгоранием топлива. В любом случае бензино-воздушная смесь детонирует не в тот момент цикла двигателя, что снижает выходную мощность и может повредить клапаны, поршни, подшипники и другие компоненты двигателя. Различные составы бензина предназначены для получения смеси углеводородов, которая с наименьшей вероятностью вызовет детонацию или детонацию в двигателе данного типа, работающем на определенном уровне.

    Рисунок 3.8.2: Сжигание бензина в двигателе внутреннего сгорания. (a) Обычно топливо воспламеняется от свечи зажигания, и горение распространяется равномерно наружу. (b) Бензин со слишком низким октановым числом для двигателя может воспламениться преждевременно, что приведет к неравномерному сгоранию, вызывающему детонацию и стук. (CC BY-NC-SA; анонимно)

    Шкала октанового числа была установлена ​​в 1927 году с использованием стандартного испытательного двигателя и двух чистых соединений: н-гептана и изооктана (2,2,4-триметилпентана). Октановое число н-гептану, вызывающему сильную детонацию при сгорании, было присвоено 0, в то время как изооктану, очень легко сгорающему топливу, было присвоено октановое число 100. Химики присваивают октановое число различным смесям бензина путем сжигание образца каждого из них в испытательном двигателе и сравнение наблюдаемой детонации с интенсивностью детонации, вызванной конкретными смесями н-гептана и изооктана. Например, октановое число смеси 89.% изооктана и 11% н-гептана — это просто среднее значение октановых чисел компонентов, взвешенных по относительным количествам каждого из них в смеси. Преобразовывая проценты в десятичные дроби, получаем октановое число смеси:

    \[0,89(100) + 0,11(0) = 89 \label{3. 8.1}\]

    Как показано в таблице \(\PageIndex{1 }\), многие доступные в настоящее время соединения имеют октановое число выше 100, что означает, что они являются лучшим топливом, чем чистый изооктан. Кроме того, были разработаны антидетонаторы, также называемые октаноповышателями. Одним из наиболее широко используемых в течение многих лет был тетраэтилсвинец [(C 2 H 5 ) 4 Pb], что при концентрации примерно 3 г/гал дает увеличение октанового числа на 10–15 пунктов. Однако с 1975 года соединения свинца перестали использоваться в качестве присадок к бензину из-за их высокой токсичности. Вместо них были разработаны другие усилители, такие как метил-трет-бутиловый эфир (МТБЭ). Они сочетают в себе высокое октановое число и минимальную коррозию деталей двигателя и топливной системы. К сожалению, когда бензин, содержащий МТБЭ, вытекает из подземных резервуаров для хранения, это приводит к загрязнению грунтовых вод в некоторых местах, что приводит к ограничению или прямому запрету на использование МТБЭ в определенных районах. В результате увеличивается использование альтернативных усилителей октанового числа, таких как этанол, который можно получить из возобновляемых ресурсов, таких как кукуруза, сахарный тростник и, в конечном счете, кукурузные стебли и травы.

    Таблица \(\PageIndex{1}\): Октановые числа некоторых углеводородов и обычных присадок
    Имя Концентрированная структурная формула Октановое число Имя Концентрированная структурная формула Октановое число
    n -гептан CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 CH 3 0 o — ксилол скелетная структура о-ксилола. cdxml 107
    n -гексан CH 3 CH 2 CH 2 CH 2 CH 2 CH 3 25 этанол CH 3 CH 2 OH 108
    n -пентан CH 3 CH 2 CH 2 CH 2 CH 3 62 т -спирт бутиловый (CH 3 ) 3 COH 113
    изооктан (CH 3 ) 3 CCH 2 CH(CH 3 ) 2 100 р -ксилол 116
    бензол 106 метил т бутиловый эфир H 3 КОК(CH 3 ) 3 116
    метанол CH 3 ОН 107 толуол 118

    3. 8: Бензин — Более глубокий взгляд распространяется под лицензией CC BY-SA 4.0, автором, ремиксом и/или куратором выступили Стивен Фармер, Дитмар Кеннеполь, Криста Каннингем и Криста Каннингем.

    1. Наверх
    • Была ли эта статья полезной?
    1. Тип изделия
      Раздел или Страница
      Лицензия
      CC BY-SA
      Версия лицензии
      4,0
      Показать страницу TOC
      нет на странице
    2. Теги
      1. автор@Дитмар Кеннеполь
      2. автор@Криста Каннингем
      3. автор@Стивен Фармер
      4. бензин
      5. Октановая шкала
      6. нефть
      7. тетраэтилсвинец

    Химико-кинетическое моделирование смесей компонентов, относящихся к бензину (Конференция)

    Химико-кинетическое моделирование смесей компонентов, относящихся к бензину (Конференция) | ОСТИ. GOV

    перейти к основному содержанию

    • Полная запись
    • Другие родственные исследования

    Реальные топлива представляют собой сложные смеси тысяч углеводородных соединений, включая линейные и разветвленные парафины, нафтены, олефины и ароматические углеводороды. Принято считать, что их поведение можно эффективно воспроизвести с помощью более простых заменителей топлива, содержащих ограниченное количество компонентов. В этой работе недавно пересмотренная авторами версия кинетической модели используется для анализа поведения при сгорании нескольких компонентов, имеющих отношение к рецептуре заменителя бензина. Особое внимание уделено линейным и разветвленным предельным углеводородам (смеси ПРФ), олефинам (1-гексен) и ароматическим соединениям (толуол). Прогнозы моделей для чистых компонентов, бинарных смесей и многокомпонентных заменителей бензина сравниваются с недавней экспериментальной информацией, полученной в машинах быстрого сжатия, реакторах с ударной трубой и струйных реакторах с перемешиванием, охватывающих широкий диапазон условий, относящихся к двигателям внутреннего сгорания. Обсуждаются результаты моделирования с акцентом на эффекты смешения компонентов топлива.

    Авторов:
    Мель, М; Курран, Х.Дж.; Питц, В.Дж.; Уэстбрук, CK
    Дата публикации:
    Исследовательская организация:
    Ливерморская национальная лаборатория Лоуренса. (LLNL), Ливермор, Калифорния (США)
    Организация-спонсор:
    USDOE
    Идентификатор ОСТИ:
    952084
    Номер(а) отчета:
    LLNL-CONF-410968
    РН: US200913%%363
    Номер контракта с Министерством энергетики:  
    W-7405-ENG-48
    Тип ресурса:
    Конференция
    Отношение ресурсов:
    Конференция
    : Представлено на: 4-й Европейской конференции по сжиганию топлива, Вена, Австрия, 14–17 апреля 2009 г.
    Страна публикации:
    США
    Язык:
    Английский
    Тема:
    02 НЕФТЬ; 37 НЕОРГАНИЧЕСКАЯ, ОРГАНИЧЕСКАЯ, ФИЗИЧЕСКАЯ И АНАЛИТИЧЕСКАЯ ХИМИЯ; 29 ЭНЕРГЕТИЧЕСКОЕ ПЛАНИРОВАНИЕ, ПОЛИТИКА И ЭКОНОМИКА; АЛКАНЫ; АЛКЕНЫ; АРОМАТИКА; БИНАРНЫЕ СМЕСИ; ГОРЕНИЕ; СЖАТИЕ; ФОКУСИРОВКА; БЕНЗИН; ГИДРОАРОМАТИКА; УГЛЕВОДОРОДЫ; ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ; КИНЕТИКА; СМЕСИ; УДАРНЫЕ ТРУБЫ; МОДЕЛИРОВАНИЕ; ТОЛУОЛ

    Форматы цитирования

    • MLA
    • АПА
    • Чикаго
    • БибТекс

    Мель М., Карран Х. Дж., Питц В. Дж. и Вестбрук С. К. Химико-кинетическое моделирование смесей компонентов, относящихся к бензину . США: Н. П., 2009. Веб.

    Копировать в буфер обмена

    Mehl, M, Curran, HJ, Pitz, WJ, & Westbrook, CK. Химико-кинетическое моделирование смесей компонентов, относящихся к бензину . Соединенные Штаты.

    Копировать в буфер обмена

    Мель, М., Карран, Х. Дж., Питц, В. Дж., и Уэстбрук, С. К. 2009. «Химико-кинетическое моделирование смесей компонентов, относящихся к бензину». Соединенные Штаты. https://www.osti.gov/servlets/purl/952084.

    Копировать в буфер обмена

    @статья{osti_952084,
    title = {Химико-кинетическое моделирование смесей компонентов, относящихся к бензину},
    автор = {Mehl, M и Curran, HJ и Pitz, WJ и Westbrook, CK},
    abstractNote = {Настоящие топлива представляют собой сложные смеси тысяч углеводородных соединений, включая линейные и разветвленные парафины, нафтены, олефины и ароматические соединения. Принято считать, что их поведение можно эффективно воспроизвести с помощью более простых заменителей топлива, содержащих ограниченное количество компонентов. В этой работе недавно пересмотренная авторами версия кинетической модели используется для анализа поведения при сгорании нескольких компонентов, имеющих отношение к рецептуре заменителя бензина. Особое внимание уделено линейным и разветвленным предельным углеводородам (смеси ПРФ), олефинам (1-гексен) и ароматическим соединениям (толуол). Прогнозы моделей для чистых компонентов, бинарных смесей и многокомпонентных заменителей бензина сравниваются с недавней экспериментальной информацией, полученной в машинах быстрого сжатия, реакторах с ударной трубой и струйных реакторах с перемешиванием, охватывающих широкий диапазон условий, относящихся к двигателям внутреннего сгорания. Обсуждаются результаты моделирования с акцентом на эффекты смешения компонентов топлива.},
    дои = {},
    URL = {https://www.osti.gov/biblio/952084}, журнал = {},
    номер =,
    объем = ,
    место = {США},
    год = {2009},
    месяц = ​​{2}
    }

    Копировать в буфер обмена


    Просмотр конференции (1,59 МБ)

    Дополнительную информацию о получении полнотекстового документа см. в разделе «Доступность документа». Постоянные посетители библиотек могут искать в WorldCat библиотеки, в которых проводится эта конференция.


    Экспорт метаданных

    Сохранить в моей библиотеке

    Вы должны войти в систему или создать учетную запись, чтобы сохранять документы в своей библиотеке.

    Аналогичных записей в сборниках OSTI.GOV:

    • Аналогичные записи

    Бензин | Инжиниринг | Fandom

    Бензин (нефтяной спирт) перенаправляется сюда.

    Бензин (или бензин ) представляет собой полученную из нефти жидкую смесь, состоящую в основном из углеводородов, используемую в качестве топлива в двигателях внутреннего сгорания.

    Содержание

    • 1 Использование слова
    • 2 Производство
    • 3 Химический состав
      • 3.1 Волатильность
      • 3,2 Октановое число
    • 4 опасности
    • 5 Содержание энергии
    • 6 Добавки
      • 6.1 Свинец
      • 6,2 млн т
      • 6.3 Смешивание кислорода
    • 7 Стабильность
    • 8 заменителей
    • 9 См. также
    • 10 Внешние ссылки

    Словоупотребление[]

    Многие страны Содружества Наций [1] используют термин бензин (сокращенно от петролейный спирт ). Термин бензин обычно используется в Северной Америке [2]. Слово обычно сокращается в разговорной речи [3] до «газ» (см. другие значения). Срок mogas , сокращение от автомобильный бензин , для использования в автомобилях используется, чтобы отличить его от avgas, авиационный бензин используется в легких самолетах. При использовании его следует отличать от настоящего газообразного топлива, используемого в двигателях внутреннего сгорания, такого как водород.

    Производство[]

    Бензин производится на нефтеперерабатывающих заводах. Материал, который отделяется от сырой нефти путем перегонки, называемый природным бензином, не соответствует требованиям, предъявляемым к современным двигателям (в частности, октановому числу; см. ниже), но входит в состав смеси.

    Химический состав[]

    Основной объем обычного бензина состоит из углеводородов, содержащих от 5 до 12 атомов углерода на молекулу.

    Различные потоки нефтеперерабатывающих заводов смешиваются для получения бензина с разными характеристиками. Некоторые важные потоки:

    • Риформат , произведенный в установке каталитического риформинга с высоким октановым числом и высоким содержанием ароматических соединений и очень низким содержанием олефинов (алкенов)[4].
    • Крекинг-бензин Cat или Каталитическая нафта крекинга , полученная на установке каталитического крекинга, с умеренным октановым числом, высоким содержанием олефинов (алкенов) и умеренным содержанием ароматических соединений. Здесь «кот» — это сокращение от «катализатор».
    • Гидрокрекинг (тяжелый, средний и легкий), произведенный на установке гидрокрекинга, с октановым числом от среднего до низкого и умеренным уровнем ароматики.
    • Природный бензин (имеет очень много названий), непосредственно из сырой нефти с низким октановым числом, низким содержанием ароматических соединений (в зависимости от сырой нефти), некоторыми нафтенами (циклоалканы [5]) и нулевым содержанием олефинов (алкены).
    • Алкилат , произведенный на установке алкилирования [6], с высоким октановым числом и представляющий собой чистый парафин [7] (алкан), преимущественно с разветвленными цепями.
    • Изомерат (различные названия), который производится путем изомеризации природного бензина для повышения его октанового числа и имеет очень низкое содержание ароматических соединений.

    (Термины, используемые здесь, не всегда являются правильными химическими терминами. Как правило, они устарели, но это термины, обычно используемые в нефтяной промышленности. Точная терминология для этих потоков зависит от нефтяной компании и страны.)

    В целом типичный бензин представляет собой преимущественно смесь парафинов (алканов [8]), нафтенов (циклоалканов), ароматических углеводородов [9] и олефинов (алкенов). Точные соотношения могут зависеть от

    • нефтеперерабатывающий завод, производящий бензин, поскольку не все нефтеперерабатывающие заводы имеют одинаковый набор технологических установок.
    • сырая нефть, используемая нефтеперерабатывающим заводом в конкретный день.
    • марка бензина, в частности октановое число.

    Бензин также может содержать некоторые другие органические соединения: например, органические эфиры (преднамеренно добавленные), а также небольшие количества загрязняющих веществ, в частности соединения серы [10], такие как дисульфиды [11] и тиофены [12]. Некоторые загрязнения, в частности тиолы [13] и сероводород [14], необходимо удалять, поскольку они вызывают коррозию двигателей.

    Летучесть[]

    Бензин более летуч, чем дизельное топливо или керосин, не только из-за основных компонентов, но и из-за присадок, которые в него добавляют. Окончательный контроль летучести часто осуществляется путем смешивания бутана. Желаемая летучесть зависит от температуры окружающей среды.

    Максимальная летучесть бензина во многих странах была снижена в последние годы для уменьшения выбросов при заправке.

    Октановое число[]

    Шаблон:Подробнее Наиболее важной характеристикой бензина является его октановое число, которое является мерой устойчивости бензина к преждевременной детонации (детонации). Измеряется относительно смеси 2,2,4-триметилпентана (изомера октана) и гептана [15]. Бензин с октановым числом 87 имеет такую ​​же стойкость к детонации, как смесь 87% изооктана и 13% н-гептана. Система октанового числа была разработана химиком Расселом Маркером.

    Опасности[]

    Многие неалифатические углеводороды, естественно присутствующие в бензине (особенно ароматические, такие как бензол), а также многие антидетонационные присадки являются канцерогенными. Из-за этого любые крупномасштабные или продолжающиеся утечки бензина представляют угрозу для здоровья населения и окружающей среды, если бензин попадет в общественные источники питьевой воды. Основные риски таких утечек связаны не с транспортными средствами, а с авариями бензовозов и утечками из резервуаров для хранения. Из-за этого риска в большинстве (подземных) резервуаров для хранения теперь предусмотрены обширные меры для обнаружения и предотвращения любых таких утечек, например, расходуемые аноды.

    Бензин довольно летуч (это означает, что он легко испаряется), поэтому необходимо, чтобы резервуары для хранения на суше и в транспортных средствах были должным образом герметизированы. Высокая летучесть также означает, что он легко воспламеняется в холодных погодных условиях, в отличие, например, от дизельного топлива. Для обеспечения одинакового уровня давления внутри и снаружи необходима соответствующая вентиляция.

    Бензин также опасно реагирует с некоторыми обычными химическими веществами; например, бензин и кристалл Drāno (гидроксид натрия) реагируют вместе в результате самовозгорания.

    Это также одна из немногих жидкостей, которую не следует выбрасывать из организма из-за ее способности обжигать горло.

    Бензин также является одним из источников загрязняющих газов. Даже бензин, не содержащий соединений свинца или серы, образует в выхлопе работающего на нем двигателя углекислый газ, оксиды азота и окись углерода.

    Неправильное использование бензина в качестве ингалятора также наносит вред здоровью. «Нюхание бензина» — это распространенный способ получить кайф для многих людей, который стал эпидемией во многих более бедных сообществах, например, среди коренных австралийцев. В ответ на это на нефтеперерабатывающем заводе BP Kwinana в Австралии было разработано опаловое топливо, которое содержит только 5% ароматических соединений (в отличие от обычных 25%), которые подавляют эффекты вдыхания.

    Содержание энергии[]

    Бензин содержит около 45 мегаджоулей на килограмм (МДж/кг) или 135 МДж/галлон США.
    Объемная плотность энергии некоторых видов топлива по сравнению с бензином:

    Тип топлива     МДж/л     МДж/кг     БТЕ/имп гал     БТЕ/галлон США     Октановое число по исследовательскому методу
    (RON)
    Бензин 29,0 45 150 000 125 000 91–98
    СНГ 22. 16 34,39 114 660 95 475 115
    Этанол 19,59 30,40 101 360 84 400 129
    Метанол 14,57 22,61 75 420 62 800 123
    Газохол (10% этанол + 90% бензина) 28.06 43,54 145 200 120 900 93/94
    Дизель 40,9 63,47 176 000 147 000 н/д (см. цетановое число)

    Топливо с высоким октановым числом, такое как сжиженный нефтяной газ, имеет более низкое содержание энергии, чем бензин с более низким октановым числом, что приводит к более низкой выходной мощности при обычной степени сжатия, при которой двигатель работает на бензине. Однако с двигателем, настроенным на использование сжиженного нефтяного газа (т. е. за счет более высокой степени сжатия, такой как 12: 1 вместо 8: 1), эту более низкую выходную мощность можно преодолеть. Это связано с тем, что топливо с более высоким октановым числом обеспечивает более высокую степень сжатия — это означает меньшее пространство в цилиндре на такте сгорания, следовательно, более высокую температуру цилиндра, меньшее количество потерянных углеводородов (следовательно, меньшее загрязнение и потерянная энергия), и, следовательно, более высокие уровни мощности в сочетании. с меньшим загрязнением в целом из-за большей эффективности.

    Основной причиной более низкого содержания энергии (на литр) СНГ по сравнению с бензином является его меньшая плотность. Энергоемкость на килограмм выше, чем у бензина (более высокое отношение водорода к углероду).

    В разных странах существуют некоторые различия в том, какое октановое число по исследовательскому методу является стандартным для бензина или бензина. В Великобритании обычный обычный неэтилированный бензин имеет 91 RON (недоступен), неэтилированный бензин премиум-класса всегда 95 RON, а супернеэтилированный бензин обычно 9.7-98 РОН. В США октановое число топлива может варьироваться от 86-87 AKI (91-92 RON) для обычного топлива, до 89-90 (94-95) для среднего класса (European Premium) и до 90-94 (RON 95). -99) для неэтилированного бензина премиум-класса или E10 (Super в Европе)

    Присадки[]

    Свинец[]

    Смесь, известная как бензин, при использовании в двигателях внутреннего сгорания с высокой степенью сжатия имеет тенденцию к раннему воспламенению ( преждевременное зажигание или детонация ), вызывая детонацию в двигателе. «(также называемый «пинг») шум. Открытие того, что свинцовые добавки изменили это поведение, привело к широкому внедрению этой практики в XIX веке.20-х и, следовательно, более мощные двигатели с более высокой степенью сжатия. Самой популярной добавкой был тетраэтилсвинец. Однако с признанием вреда окружающей среде, причиняемого свинцом, и несовместимости свинца с каталитическими нейтрализаторами, присутствующими практически во всех автомобилях с 1975 года, эта практика пошла на убыль в 1980-х годах. Большинство стран отказываются от этилированного топлива; различные добавки заменили соединения свинца. К наиболее популярным добавкам относятся ароматические углеводороды, эфиры и спирт (обычно этанол или метанол).

    В США, где свинец смешивали с бензином, в первую очередь для повышения октанового числа, с начала 1920-х годов стандарты поэтапного отказа от этилированного бензина были впервые введены в 1973 году. В 1995 году этилированный бензин составлял всего 0,6% от общего объема продаж бензина. и менее 2000 тонн свинца в год. С 1 января 1996 года Закон о чистом воздухе запрещает продажу этилированного топлива для использования в дорожных транспортных средствах. Однако топливо, содержащее свинец, может по-прежнему продаваться для использования вне дорог, включая самолеты, гоночные автомобили, сельскохозяйственное оборудование и морские двигатели. Предполагалось, что запрет на этилированный бензин приведет к снижению уровня свинца в крови людей и приведет к удалению тысяч тонн свинца из воздуха.

    Побочным эффектом свинцовых присадок была защита седел клапанов от эрозии. Двигатели многих классических автомобилей нуждались в модификации для использования неэтилированного топлива, поскольку этилированное топливо стало недоступным.

    Бензин, подаваемый на заправку, также содержит присадки для уменьшения нагара внутри двигателя, улучшения сгорания и облегчения запуска в холодном климате.

    MMT[]

    Метилциклопентадиенилтрикарбонил марганца (MMT) уже много лет используется в Канаде и недавно в Австралии для повышения октанового числа. Это также помогает старым автомобилям, предназначенным для этилированного топлива, работать на неэтилированном топливе без необходимости использования присадок для предотвращения проблем с клапанами.

    В настоящее время ведутся споры о том, вреден ли ММТ для окружающей среды и токсичен ли он для человека. Тем не менее, федеральные источники США заявляют, что ММТ предположительно является мощным нейротоксином и респираторным токсином.

    Кислородная смесь[]

    Кислородная смесь добавляет кислород к топливу в кислородсодержащих соединениях, таких как МТБЭ [16], этанол и ЭТБЭ, и таким образом уменьшает количество окиси углерода и несгоревшего топлива в выхлопных газах, таким образом уменьшение смога. Во многих районах США смешивание оксигенатов является обязательным. Например, в Южной Калифорнии топливо должно содержать 2% кислорода по весу. Полученное топливо часто называют реформулированный бензин (RFG) или кислородсодержащий бензин . Федеральное требование что РФГ содержат кислород, отменяется с 6 мая 2006 г. [17].

    Использование МТБЭ постепенно прекращается в некоторых штатах из-за проблем с загрязнением грунтовых вод. Кое-где он уже запрещен. Этанол и, в меньшей степени, ЭТБЭ, полученный из этанола, являются обычными заменителями. Особенно часто встречается этанол, полученный из биоматериала, такого как кукуруза, сахарный тростник или зерно, его часто называют 9.0435 био -этанол. Смесь этанола и бензина, состоящая из 10% этанола, смешанного с бензином, называется бензином. Смесь этанола и бензина, состоящая из 85% этанола, смешанного с бензином, называется E85. Наиболее широко этанол используется в Бразилии, где этанол получают из сахарного тростника. Более 3 400 миллионов галлонов США (13 000 000 м³) этанола, в основном произведенного из кукурузы, было произведено в Соединенных Штатах в 2004 году для использования в качестве топлива, и E85 быстро становится доступным на большей части территории Соединенных Штатов. Использование биоэтанола [18] как прямо, так и косвенно путем превращения такого этанола в bio -ETBE, рекомендуется Директивой ЕС по биотопливу.

    Однако немецкие авиационные двигатели были с непосредственным впрыском топлива и могли использовать впрыск метанола-воды и впрыск закиси азота, что давало на 50% больше мощности двигателя в течение пяти минут воздушного боя. Это можно было сделать только пять раз или после 40 часов наработки, после чего двигатель пришлось бы ремонтировать. В большинстве немецких авиадвигателей использовалось топливо с октановым числом 87 (называемое B4), в то время как в некоторых мощных двигателях использовалось топливо с октановым числом 100 (C2 / C3).

    Стабильность[]

    Если бензин не используется в течение определенного периода времени, в бензине могут скапливаться и осаждаться смолы и лаки, вызывая «старение топлива». Это приведет к скоплению смолы в цилиндрах, а также в топливопроводах, что затруднит запуск двигателя. Смолы и лаки должны быть удалены профессионалом, чтобы продлить срок службы двигателя. Автомобильный бензин можно хранить до 60 дней в утвержденной таре. Если его предполагается хранить в течение более длительного периода времени, можно использовать стабилизатор топлива. Это продлит срок службы топлива примерно до 1–2 лет и сохранит его свежим для следующего использования. Стабилизатор топлива обычно используется для небольших двигателей, таких как двигатели газонокосилок и тракторов, для обеспечения более быстрого и надежного запуска.

    Заменители[]

    • Биодизель
    • Этанол
    • Е85
    • Водородное топливо
    • Гибридные двигатели

    См. также[]

    • Топливо этанол
    • Дизель
    • Автозаправочная станция
    • Нефтеперерабатывающий завод
    • Двигатель внутреннего сгорания
    • Дизельный двигатель
    • Двигатель Ванкеля

    Внешние ссылки[]

    Информация:

    • Часто задаваемые вопросы по бензину
    • Паспорт безопасности бензина (паспорт безопасности материала) включает информацию о составе, температуре воспламенения, мерах предосторожности при обращении и т. д.
    • FTC: низкие цены на высокооктановый бензин
    • этанол, информация о переходе на e85
    • В чем разница между премиальным и обычным газом? (из The Straight Dope)
    • MMT-US EPA

    Данные

    • ОВОС — обновление бензина и дизельного топлива
    • Все о детонации двигателя (и других тайнах внутреннего сгорания) Хорошая статья о том, почему возникают детонации.