1Июл

Бензин и его свойства: Физические свойства бензина | ЭНЕРГИЯ / Сеть АЗС в Новосибирске

Содержание

АВТО Дело/Эксплуатационные материалы/Эксплуатационные свойства бензинов

АВТО Дело/Эксплуатационные материалы/Эксплуатационные свойства бензинов

1.1 Эксплуатационные свойства бензинов.

Автомобильные  бензины являются основным материалом, который расходуется при использовании автомобилей с карбюраторными  двигателями. От качества бензина зависит надежность работы двигателя и, следовательно, расходы на его обслуживание и ремонт. Знание свойств бензина и умение правильно его применять является одним из звеньев, определяющих эффективность использования автомобилей.

Автомобильный бензин – смесь углеводородов, имеющих температуры кипения в пределах от 40 до 200оС. По внешнему виду он представляет собой прозрачную маловязкую бесцветную или окрашенную жидкость, обладающую специфическим запахом и быстро испаряющуюся в нормальных условиях. Бензин легче воды, практически в ней не растворяется и при соответствующих условиях сгорает без остатка.

  • теплота сгорания топлива;

  • испаряемость;

  • детонационная стойкость;

  • стабильность;

  • коррозионное воздействие на металлы;

  • наличие механических примесей и воды.

Теплота сгорания топлива — количество тепла, которое выделяется при полном сгорании топлива.

Теплоту сгорания топлива измеряют в джоулях (Дж). Для автомобильного бензина теплота сгорания составляет 43,5 – 44,5 МДж/кг.

От теплоты сгорания топлива зависят удельный расход горючего в двигателе, следовательно, дальность пробега машины.

Испаряемость бензинов характеризуется способностью их переходить из жидкого состояния в парообразное. При плохой испаряемости бензина наблюдается неравномерное распределение рабочей смеси по цилиндрам двигателя, неполное испарение бензина, что влечет к повышенным износам цилиндропоршневой группы и повышенному расходу горючего.

Затрудняется запуск двигателя. Однако и высокая испаряемость вредна, так как она вызывает образование паровых пробок, увеличивает потери горючего и делает его более опасным в пожарном отношении. Испаряемость бензина оценивается по двум показателям: фракционному составу и давлению насыщенных паров.

Фракционный состав бензина влияет на пуск и длительность прогрева двигателя после пуска, приемистость двигателя и динамичность автомобиля в целом, полнота сгорания горючего и другие эксплуатационные показатели. Эти свойства бензина оценивают по пяти характерным точкам кривой фракционного состава, используя прибор для фракционной разгонки топлива:

Рис.1. Прибор для фракционной разгонки топлива.

  • tн.п.- температура начала перегонки, в градусах С;

  • t 10%, t 50%, t 90%, — температура перегонки 10, 50 и 90%, в градусах С;

  • tк- температура конца кипения, в градусах С;

Температура начала перегонки характеризует наличие в горючем наиболее легких фракций углеводородов, обуславливающих его летучесть, огнеопасность и склонность к образованию паро-воздушных пробок в топливной системе машины. Температура начала перегонки должна быть не ниже 35оС.

Температура перегонки 10% горючего характеризует пусковые качества бензина и его склонность к образованию паро-воздушных пробок в системе питания двигателя и льда в карбюраторе. Чем ниже температура перегонки 10% бензина, тем лучше его пусковые свойства, но тем больше опасность появления паровых пробок в системе питания и обледенения карбюратора.

Температура перегонки 50% бензина характеризует его среднюю испаряемость, прогрев, устойчивость работы двигателя и на обледенение карбюратора. Чем ниже температура перегонки 50% бензина, тем выше его испаряемость, лучше приемистость и устойчивость работы двигателя на этом бензине, но тем больше опасность обледенения карбюратора.

Температура перегонки 90% бензина характеризует наличие в бензине тяжелых, трудно испаряющихся фракций. С повышением данной температуры увеличивается расход бензина, так как тяжелые фракции не успевают испариться и сгореть, больше бензина проникает в картер, смывая масло со стенок цилиндра и разжижая масло в картере, что ведет к износу деталей и повышенному расходу масла.

Разгонка бензинов как метод оценки их испаряемости имеет один серьезный недостаток: на стандартном аппарате невозможно сконденсировать и поэтому точно оценить особо легкие фракции, наиболее опасные с точки зрения образования паровых пробок в топливо проводах. По этой причине в стандарты на бензины введен дополнительный показатель испаряемости – давление насыщенных паров, определяемых при температуре 380С в стандартных герметически закрывающихся приборах (лабораторная бомба).

Рис.2. Лабораторная бомба для определения давления насыщенных паров бензина.

Лабораторная бомба (Рис.2) состоит из двух камер, соединенных трубкой. Верхняя камера по объему в четыре раза больше нижней, снабжена манометром для измерения давления. В нижнюю камеру заливают бензин, верхнюю – заполняют воздухом, затем бомбу помещают в нагретую воду (водяную баню). По манометру замеряют давление паров бензина в бомбе в миллиметрах ртутного столба.

Получается, что с одной стороны, высокое давление паров бензина вредно, так как ведет к образованию паровых пробок и повышенным потерям при хранении, а с другой – полезно, поскольку от него зависят легкость пуска и быстрый прогрев двигателя. Примирить между собой столь противоречивые свойства невозможно. Нельзя создать бензин, который не образовывал бы паровых пробок и в то же время обеспечивал легкий пуск двигателя летом и зимой. Поэтому промышленность выпускает бензин с таким давлением насыщенных паров, чтобы склонность к образованию паровых пробок была минимальна летом, но чтобы он обладал необходимыми пусковыми свойствами зимой.

Детонационная стойкость — способность бензинов обеспечивать работу двигателей без детонации.

Детонацией называется ненормальная работа двигателя с воспламенением от искрового разряда свечи, вызванная взрывным детонационным сгоранием части горючей смеси и сопровождающаяся резким металлическими стуками, дымным выхлопом, падением мощности, перегревом двигателя, вплоть до механического повреждения отдельных деталей двигателя. Скорость распространения пламени в очагах детонации достигает 1500-2500 м/с, а при нормальном процессе сгорания она составляет всего несколько десятков метров в секунду.

Детонационная стойкость бензинов оценивается октановым числом.

Октановое число — это показатель детонационной стойкости бензина, численно равный объемной доле изооктана в смеси  с н-гептаном, эквивалентной по своей детонационной стойкости бензину, испытываемому в стандартных условиях  (например бензин А76 смесь 76% изооктана и 24% н-гептана ).

Октановые числа автомобильных бензинов определяют по двум методам: по исследовательскому (ОЧИМ) и моторному (ОЧММ). Определение октанового числа проводится на специальной установке (Рис.3.)

Рис.3. Специальная установка для определения октанового числа бензинов.

Определение октанового числа по моторному методу ведется при 15 с-1 и подогреве рабочей смеси до 1500 С, а по исследовательскому – при 10 с-1, но без какого-либо ее подогрева. Условия испытания по исследовательскому методу оказываются более легкими, чем по моторному, поэтому октановое число одного и того же бензина, определенное по первому методу, оказывается выше, чем по второму. Например, у бензина марки АИ-93 должно быть октановое число определенное по ОЧИМ не менее 93, а по ОЧММ – не менее 85.

Большая часть бензинов, получаемых перегонкой нефти и крекингом, не обладает необходимыми октановыми числами, обеспечивающими бездетонационную работу современных автомобильных двигателей. В связи с этим возникает необходимость в применении специальных методов облагораживания, благодаря которым достигается требующаяся детонационная стойкость.

Повышение октанового числа бензина в основном достигается двумя способами, а именно воздействием на их химический состав и введением в них специальных присадок – антидетонаторов.

Самый распространённый способ повышения октанового числа бензинов – использование антидетонаторов.

Наиболее эффективными антидетонаторами, являются тетраэтилсвинец (ТЭС) и тетрометилсвинец. Другой способ повышения октанового числа состоит в добавлении к бензину высокооктановых компонентов. Высокооктановыми компонентами называют индивидуальные углеводороды или смеси углеводородов, добавление которых к бензину повышает его антидетонационные свойства. Обычно высокооктановые компоненты имеют октановое число от 90 и выше. В отличие от антидетонатора, массовое содержание которого в бензине не превышает 0,3%, высокооктановые компоненты добавляют к бензину в количестве 10-40%.

Известны различные высокооктановые компоненты: изооктан, изопентан, алкилат (смесь изопарафиновых углеводородов), алкилбензол (смесь ароматических углеводородов), толуол.

Третий способ повышения октановых чисел основан на одновременном добавлении к бензину антидетонатора и одного или нескольких высокооктановых компонентов.

Стабильность. Под стабильностью горючего понимают способность сохранять эксплуатационные свойства, определяющие их качества в процессе транспортирования, хранения и применения.

Физическая стабильность бензинов – это способность их противостоять физическим изменениям.

При хранении, транспортировании и применении бензинов улетучиваются легкие фракции. В результате испарения легких фракций снижается давление насыщенных паров бензина, что приводит к ухудшению свойств бензина.

Так, от испарения 3-4% бензина давление насыщенных паров снижается в 2,0-2,5 раза.

Следовательно, давление насыщенных паров является чувствительным показателем физической стабильности бензинов.

Химическая стабильность – это склонность бензина изменять свои свойства в результате химических превращений.

В процессе хранения и транспортирования под воздействием температуры, кислорода воздуха в бензинах происходят сложные химические превращения. В качестве конечных продуктов образуются органические кислоты и смолы, которые нерастворимы в бензинах.

Склонность бензинов к окислению и смолообразованию при длительном хранении оценивается индукционным периодом (время, выраженное в минутах, в течении которого бензин в среде чистого кислорода под давлением 7 кг/см2 и при температуре +1000 С практически не подвергается окислению). Чем больше индукционный период, тем стабильнее бензин и тем дольше можно его хранить до появления опасной концентрации смол. Допустимые сроки хранения автомобильных бензинов (в годах) для северного, среднего и южного климатических поясов:


Бензин

АВТОМОБИЛЬНЫЕ БЕНЗИНЫ

Современные автомобильные и авиационные бензины должны удовлетворять ряду требований, обеспечивающих экономичную и надежную работу двигателя, и требованиям эксплуатации:

  • иметь хорошую испаряемость, позволяющую получить однородную топливовоздушную смесь оптимального состава при любых температурах;
  • иметь групповой углеводородный состав, обеспечивающий устойчивый, бездетонационный процесс сгорания на всех режимах работы двигателя;
  • не изменять своего состава и свойств при длительном хранении и не оказывать вредного влияния на детали топливной системы, резервуары, резинотехнические изделия;
  • иметь хорошие антидетонационные характеристики и др.
  • в последние годы экологические свойства топлива выдвигаются на первый план.

Испаряемость

Для обеспечения полного сгорания топлива в двигателе необходимо перевести его в короткий промежуток времени из жидкого состояния в парообразное и смешать с воздухом в определенном соотношении — 1:14 — т.е. создать рабочую смесь. К физико-химическим показателям, от которых зависит испаряемость бензинов, относят давление насыщенных паров, фракционный состав, скрытую теплоту испарения, коэффициент диффузии паров, вязкость, поверхностное натяжение, теплоемкость, плотность. Из перечисленных показателей важнейшими, определяющими испаряемость бензинов, являются давление насыщенных паров и фракционный состав. По вязкости, поверхностному натяжению, скрытой теплоте испарения, коэффициенту диффузии паров, теплоемкости бензины разного состава сравнительно мало различаются между собой, и эти различия нивелируются конструктивными особенностями двигателей. Давление насыщенных паров и фракционный состав являются функциями состава бензина, и эти показатели могут существенно различаться для разных бензинов. Эти два параметра определяют пусковые свойства бензинов, их склонность к образованию паровых пробок, физическую стабильность.

Давление насыщенных паров

Давление насыщенных паров зависит от температуры и от соотношения паровой и жидкой фаз и уменьшается с уменьшением температуры и увеличением отношения паровой фазы к жидкой. В лабораторных условиях давление насыщенных паров определяют при температуре 37,8°С и соотношении паровой и жидкой фаз (3,8-4,2):1 в «Бомбе Рейда» (ГОСТ 1756-52) или аппарате с механическим диспергированием типа «Вихрь» (ГОСТ 28781-90).

Фракционный состав

Фракционный состав бензинов определяют перегонкой на специальном приборе, при этом отмечают температуру начала перегонки, температуру выпаривания 10, 50, 90 % и конца кипения, или объем выпаривания при 70, 100 и 180°С. Требования к фракционному составу и давлению насыщенных паров бензинов определяются конструкцией автомобильного двигателя и климатическими условиями его эксплуатации.

1. С одной стороны, необходимо обеспечить запуск двигателя при низких температурах, с другой стороны — предотвратить нарушения в работе двигателя, связанные с образованием паровых пробок при высоких температурах. Пусковые свойства бензина зависят от содержания в нем легких фракций, которое может быть определено по давлению насыщенных паров и температуре перегонки 10 % или объему легких фракций, выкипающих при температуре до 70°С. Чем ниже температура окружающего воздуха, тем больше легких фракций требуется для запуска двигателя. Однако чрезмерное содержание низкокипящих фракций в составе бензинов может вызвать неполадки в работе прогретого двигателя, связанные с образованием паровых пробок в системе топливоподачи. Причиной образования паровых пробок в автомобильном двигателе является интенсивное испарение топлива вследствие его перегрева. В условиях жаркого климата это явление может иметь массовый характер. Образование паровых пробок зависит от испаряемости бензина, температуры и конструкции двигателя. Чем выше давление насыщенных паров бензина, ниже температуры начала кипения и перегонки 10 % и больше объем фракции, выкипающей при температуре до 70 °С, тем больше его склонность к образованию паровых пробок.

От содержания в бензине легкокипящих фракций зависит его физическая стабильность, т.е. склонность к потерям от испарения. Наибольшие потери от испарения имеют бензины, содержащие в своем составе низкокипящие углеводороды.

2. От фракционного состава зависят такие показатели как скорость прогрева двигателя, его приемистость, износ цилиндро-поршневой группы. Приемистость — способность бензинов к повышению детонационной стойкости при добавлении антидетонаторов. Наиболее существенное влияние на скорость прогрева двигателя и  его приемистость оказывает температура перегонки 50 % бензина. Температура выкипания 90 % бензина также влияет на эти характеристики, но в меньшей степени. Скорость прогрева двигателя, его приемистость зависят и от температуры окружающего воздуха. Чем ниже температура воздуха, тем ниже должна быть температура перегонки 50 % бензина для обеспечения быстрого прогрева и хорошей приемистости двигателя. При понижении температуры это влияние усиливается. Поэтому нормы на этот показатель также зависят от температурных условий эксплуатации и различаются по сезону и климатическим зонам.

3. Для нормальной работы двигателя большое значение имеет полнота испарения топлива, которая характеризуется температурой перегонки 90 % бензина и температурой конца кипения. При неполном испарении бензина во впускной системе часть его может поступать в камеру сгорания в жидком виде, смывая масло со стенок цилиндров. Жидкая пленка через зазоры поршневых колец может проникать в картер, при этом происходит разжижение масла. Это приводит к повышенным износам и отрицательно влияет на мощность и экономичность работы двигателя. Снижение температуры конца кипения бензинов может повысить их эксплуатационные свойства, однако это снижает ресурс бензинов. Температура конца  кипения (tк.к.)  бензинов также характеризует полноту сгорания бензинов и равномерность распределения рабочей смеси по цилиндрам двигателя; при tк.к. выше 220 оС происходит неполное сгорание бензинов, повышается его расход, а также увеличивается износ двигателя, снижаются его экономичность и мощность.

Как было указано выше, требования к испаряемости автомобильных бензинов в значительной мере зависят от температурных условий их применения. С учетом климатических особенностей нашей страны автомобильные бензины по фракционному составу и давлению насыщенных паров подразделяют на два вида: зимний и летний. Для обеспечения нормальной эксплуатации автомобилей и рационального использования бензинов введено пять классов испаряемости для применения в различных климатических районах. Наряду с определением температуры перегонки бензина при заданном объеме предусмотрено определение объема испарившегося бензина при заданной температуре 70, 100 и 180 °С (табл. 2).

Таблица 2


Характеристики испаряемости бензинов всех марок


Показатели

Класс

1

2

3

4

5

1. Давление насыщенных паров бензина, кПа

35-70

45-80

55-90

60-95

80-100

2. Фракционный состав: 

  температура начала перегонки, °С, не ниже

35

35

не нормир.

не нормир.

не нормир.

  пределы перегонки, °С, не выше: 

  — 10%

75

70

65

60

55

  — 50%

120

115

110

105

100

  — 90%

190

185

180

170

160

  конец кипения, °С,

  не выше

215

  объемная доля остатка в колбе, %

2

  остаток и потери, %

4

  объем испарившегося  бензина, %, при  температуре: 

  70 °С

10-45

15-45

15-47

15-50

15-50

  100 °С

35-65

40-70

40-70

40-70

40-70

  180 °С, не менее

85

85

85

85

85

3. Индекс испаряемости, не более

900

1000

1100

1200

1300

Детонационная стойкость

Этот показатель характеризует способность автомобильных бензинов противостоять самовоспламенению при сжатии. Высокая детонационная стойкость топлив обеспечивает их нормальное сгорание на всех режимах эксплуатации двигателя. Процесс горения топлива в двигателе носит радикальный характер. При сжатии рабочей смеси температура и давление повышаются и начинается окисление углеводородов, которое интенсифицируется после воспламенения смеси. Если углеводороды несгоревшей части топлива обладают недостаточной стойкостью к окислению, начинается интенсивное накапливание перекисных соединений, а затем их взрывной распад. При высокой концентрации перекисных соединений происходит тепловой взрыв, который вызывает самовоспламенение топлива. Самовоспламенение части рабочей смеси перед фронтом пламени приводит к взрывному горению оставшейся части топлива, к так называемому детонационному сгоранию. Детонация вызывает перегрев, повышенный износ или даже местные разрушения двигателя и сопровождается резким характерным звуком, падением мощности, увеличением дымности выхлопа. На возникновение детонации оказывает влияние состав применяемого бензина и конструктивные особенности двигателя.

Показателем детонационной стойкости автомобильных бензинов является октановое число.  Октановое число численно равно содержанию (% об.) изооктана (2,2,4,-триметилпентана) в его смеси с н — гептаном, которая по детонационной стойкости эквивалентна топливу, испытуемому на одноцилиндровом двигателе с переменной степенью сжатия в стандартных условиях на бедной рабочей смеси. В лабораторных условиях октановое число автомобильных бензинов и их компонентов определяют на одноцилиндровых моторных установках УИТ-85 или УИТ-65. Склонность исследуемого топлива к детонации оценивается сравнением его с эталонным топливом, детонационная стойкость которого известна. Октановое число на установках определяется двумя методами: моторным (по ГОСТ 511-82) и исследовательским (по ГОСТ 8226-82).

Методы отличаются условиями проведения испытаний. Испытания по моторному методу проводят при более напряженном режиме работы одноцилиндровой установки, чем по исследовательскому. Поэтому октановое число, определенное моторным методом, обычно ниже октанового числа, определенного исследовательским методом. Октановое число, полученное моторным методом в большей степени характеризует детонационную стойкость топлива при эксплуатации автомобиля в условиях повышенного теплового форсированного режима, октановое число, полученное исследовательским методом, больше характеризует бензин при работе на частичных нагрузках в условиях городской езды.

Детонационная стойкость автомобильных бензинов определяется их углеводородным составом. Наибольшей детонационной стойкостью обладают ароматические углеводороды. Самая низкая детонационная стойкость у парафиновых углеводородов нормального строения, причем она уменьшается с увеличением их молекулярной массы. Изопарафины и олефиновые углеводороды обладают более высокими антидетонационными свойствами по сравнению с нормальными парафинами. Увеличение степени разветвленности и снижение молекулярной массы повышает их детонационную стойкость. По детонационной стойкости нафтены превосходят парафиновые углеводороды, но уступают ароматическим углеводородам. Октановое число углеводородов снижается в следующем порядке:

ароматические >изопарафины  > олефины > нафтены > н-парафины.

Разницу между октановыми числами бензина, определенными двумя методами, называют чувствительностью бензина. Наибольшую чувствительность имеют олефиновые углеводороды. Чувствительность ароматических углеводородов несколько ниже. Для парафиновых углеводородов эта разница очень мала, а высокомолекулярные низкооктановые парафиновые углеводороды имеют отрицательную чувствительность. Соответственно   более по чувствительности (9-12 ед.) отличаются бензины каталитического крекинга и каталитического риформинга, содержащие непредельные и ароматические углеводороды. Менее чувствительны (1-2 ед.) к режиму работы двигателя алкилбензин и прямогонные бензины, состоящие из парафиновых и изопарафиновых углеводородов.

Для повышения октановых чисел товарных бензинов используют также специальные антидетонационные присадки и высокооктановые компоненты (этиловую жидкость, органические соединения марганца, железа, ароматические амины, метил-третбутиловый эфир).

Химическая стабильность

Этот показатель характеризует способность бензина сохранять свои свойства и состав при длительном хранении, перекачках, транспортировании или при нагревании впускной системы двигателя. Химические изменения в бензине, происходящие в условиях транспортирования или хранения, связаны с окислением входящих в его состав углеводородов. Следовательно, химическая стабильность бензинов определяется скоростью реакций окисления, которая зависит от условий процесса и строения окисляемых углеводородов.

При окислении бензинов происходит накопление в них смолистых веществ, образующихся в результате окислительной полимеризации и конденсации продуктов окисления. На начальных стадиях окисления содержание в бензине смолистых веществ невелико, и они полностью растворимы в нем. По мере углубления процесса окисления количество смолистых веществ увеличивается, и снижается их растворимость в бензине. Накопление в бензинах продуктов окисления резко ухудшает их эксплуатационные свойства. Смолянистые вещества могут выпадать из топлива, образуя отложения в резервуарах, трубопроводах и др. Окисление нестабильных бензинов при нагревании во впускной системе двигателя приводит к образованию отложений на ее элементах, а также увеличивает склонность к нагарообразованию на клапанах, в камере сгорания и на свечах зажигания.

Окисление топлив представляет собой сложный, многостадийный свободнорадикальный процесс, происходящий в присутствии кислорода воздуха. Скорость реакции окисления углеводородов резко возрастает с повышением температуры. Контакт с металлом оказывает каталитическое воздействие на процесс окисления. Низкую химическую стабильность имеют олефиновые углеводороды, особенно диолефины с сопряженными двойными связями. Высокой реакционной способностью обладают также ароматические углеводороды с двойной связью в боковой цепи. Наиболее устойчивы к окислению парафиновые углеводороды нормального строения и ароматические углеводороды. Химическая стабильность автомобильных бензинов определяется в основном их углеводородным составом.

Наибольшей склонностью к окислению обладают бензины термического крекинга, коксования, пиролиза, каталитического крекинга, которые в значительных количествах содержат олефиновые и диолефиновые углеводороды. Бензины каталитического риформинга, прямогонные бензины, алкилбензин химически стабильны.

Химическую стабильность товарных бензинов и их компонентов оценивают стандартными методами путем ускоренного окисления при температуре 100°С и давлении кислорода по ГОСТ 4039-88. Этим методом определяют индукционный период, т.е. время от начала испытания до начала процесса окисления бензина. Чем выше индукционный период, тем выше стойкость бензина к окислению при длительном хранении. По индукционным периодам бензины различных технологических процессов существенно различаются. Индукционные периоды бензинов термического крекинга составляют 50-250 мин; каталитического крекинга — 240-1000 мин; прямой перегонки — более 1200 мин; каталитического риформинга — более 1500 мин.

Установлено, что бензины, характеризующиеся индукционным периодом не менее 900 мин, могут сохранять свои свойства в течение гарантийного срока хранения (5 лет). Так как не все бензины предназначены для длительного хранения, в нормативно-технической документации нормы на индукционный период установлены от 360 до 1200 мин.

Химическая стабильность бензинов в определенной степени может быть охарактеризована йодным числом, которое является показателем наличия в бензине непредельных углеводородов.

Химическая стабильность этилированных бензинов зависит также от содержания в них этиловой жидкости, так как тетраэтилсвинец при хранении подвергается окислению с образованием нерастворимого осадка.

Для обеспечения требуемого уровня химической стабильности в автомобильные бензины, содержащие нестабильные компоненты, разрешается добавлять антиокислительные присадки Агидол-1 или Агидол-12.

Склонность к образованию отложений и нагарообразованию

Применение автомобильных бензинов, особенно этилированных, сопровождается образованием отложений во впускной системе двигателя, в топливном баке, на впускных клапанах и поршневых кольцах, а также нагара в камере сгорания. Наиболее интенсивное образование отложений происходит на деталях карбюратора. Образование отложений на указанных деталях приводит к нарушению регулировки карбюратора, уменьшению мощности и ухудшению экономичности работы двигателя, увеличению токсичности отработавших газов. Образование отложений в топливной системе частично зависит от содержания в бензинах смолистых веществ, нестабильных углеводородов, неуглеводородных примесей, от фракционного и группового состава, которые определяют моющие свойства бензина. Установлено, что повышенному нагарообразованию способствует высокое содержание в бензинах олефиновых и ароматических углеводородов, особенно высококипящих. Содержание ароматических и олефиновых углеводородов в товарных бензинах ограничивается соответственно 55 и 25 % (об.). Однако в большей степени этот процесс определяется конструктивными особенностями двигателя.

Наиболее эффективным способом борьбы с образованием отложений во впускной системе двигателя является применение специальных моющих или многофункциональных присадок. Такие присадки широко применяют за рубежом. В России также разработаны и допущены к применению присадки аналогичного назначения.

Эксплуатационные свойства

Автомобильные бензины должны быть химически нейтральными и не вызывать коррозию металлов и емкостей, а продукты их сгорания — коррозию деталей двигателя. Коррозионная активность бензинов и продуктов их сгорания зависит от содержания общей и меркаптановой серы, кислотности, содержания водорастворимых кислот и щелочей, присутствия воды. Эти показатели нормируются в нормативно-технической документации на бензины. Бензин должен выдерживать испытание на медной пластинке. Эффективным средством защиты от коррозии топливной аппаратуры является добавление в бензины специальных антикоррозионных или многофункциональных присадок.

<div><img src=»//mc.yandex.ru/watch/8489629″ mce_src=»//mc.yandex.ru/watch/8489629″ alt=»» /></div>

Топливо для карбюраторного двигателя

Топливо для карбюраторного двигателя

1. Марки автомобильных бензинов

Автомобильный карбюраторный двигатель может развивать необходимую мощность и иметь нормальный износ деталей только при работе на бензине определенного качества.

Качество бензина характеризуется рядом показателей, каждый из которых определяет те или иные его свойства. В совокупности все показатели, или, как их называют, физико-химические свойства, характеризуют бесперебойность и надежность работы двигателя на данном бензине, необходимую мощность, нормальный износ его деталей, нормальный расход картерного масла и бензина.

Рекламные предложения на основе ваших интересов:

Дополнительные материалы по теме:

Автомобильный бензин должен отвечать следующим требованиям:
1) обеспечивать образование в двигателе смеси бензина с воздухом необходимого состава и качества, т. е. бензин должен обладать необходимыми карбюрационными свойствами;
2) обеспечивать бездетонационное сгорание при работе двигателя на всех режимах, т. е. иметь определенные антидетонационные качества;
3) не вызывать коррозии деталей двигателя;
4) не ухудшать качества и состава при хранении и применении, т. е. обладать определенной стабильностью.

С усовершенствованием конструкции двигателей требования к качеству бензина возрастают.

В послевоенный период отечественной автомобильной промышленностью организован выпуск первоклассных автомобилей, требующих применения бензина повышенного качества. Параллельно с этим нефтяной промышленностью было организовано снабжение автомобильного транспорта соответствующими сортами бензина, отвечающими возросшим к нему требованиям.

Автомобильные бензины выпускаются трех марок: А-66, А-70 и А-74 В этом условном обозначении марок бензина буква А означает «автомобильный бензин», а число, стоящее за буквой, указывает октановое число данной марки бензина.

Бензин А-74 имеет облегченный фракционный состав и обладает более высокими качествами, чем бензины А-70 и А-66, и он предназначен только для легковых автомобилей типа ЗИС-110. Применять бензин А-74 для других марок отечественных легковых и грузовых автомобилей не рекомендуется. Учитывая небольшую потребность автотранспорта в бензине А-74 и нецелесообразность его смешивания с другими ‘бензинами, он, как правило, поставляется в отдельных бочках.

Основными марками бензина на автотранспорте являются бензины А-66 и А-70. В соответствии с существующим стандартом (ГОСТ 2084-51) к этим бензинам может добавляться этиловая жидкость Р-9 в количестве до 1,5 мл на 1 кг бензина. Такой бензин называется этилированным.

Этиловая жидкость добавляется для повышения октанового числа бензина, определяющего одно из основных свойств бензина — его детонационную стойкость. Вместе с тем этиловая жидкость является сильнейшим ядом, и добавка ее к бензину даже в таких незначительных количествах делает бензин ядовитым; поэтому при применении этилированного бензина необходимо соблюдать особые меры предосторожности.

Кроме автомобильных бензинов, промышленность выпускает авиационные бензины и бензины для специальных технических нужд, например, для использования в качестве растворителя сырой резины при изготовлении резинового клея, и др.

2. Физико-химические свойства бензинов

Октановое число характеризует детонационную стойкость бензина. Явление детонации, которое может наблюдаться при сгорании бензина, чрезвычайно нежелательно и отрицательно сказывается на работе двигателя.

Сгорание бензина с детонацией сопровождается появлением резких металлических стуков, черного дыма на выхлопе, увеличением расхода бензина, снижением мощности двигателя и другими отрицательными явлениями.

В результате работы с детонацией двигатель быстро изнашивается — прогорают днища поршней, появляются трещины в блоке, выкрашиваются шатунные подшипники и т. д.

Октановым числом называется показатель детонационной стойкости бензина, численно равный такому процентному содержанию изооктана в смеси с нормальным гептаном, при котором детонационная стойкость этой смеси и сравниваемого с ней бензина одинаковы.

Октановое число изооктана условно принято за 100, а нормального гептана — за 0 (изооктан и гептан — углеводороды).

Чем выше октановое число бензина, тем лучше его антидетонационные свойства.

Октановое число бензина определяется по моторному методу. Для этой цели производят испытание бензина на специаль-

ном одноцилиндровом двигателе с переменной степенью сжатия. При работе двигателя на испытуемом бензине изменяют степень сжатия и фиксируют момент начала появления детонации. После этого подбирают такой состав изооктано-гептановой смеси, работа на которой сопровождается появлением детонационных стуков такой же силы, как и при работе на испытуемом бензине.

Допустим, что такая смесь состоит из 70% изооктана и 30% нормального гептана. В этом случае октановое число испытуемого бензина будет равно 70. Помимо сорта бензина и степени сжатия двигателя, на появление детонации влияют: число оборотов коленчатого вала, состав и температура рабочей смеси, сте-пень охлаждения цилиндров и головки блока, наличие нагара в камере сгорания и конструкция двигателя.

Повышение числа оборотов уменьшает склонность к детонации, так как при этом уменьшается время пребывания рабочей смеси в сжатом состоянии до начала ее воспламенения при такте сжатия. Таким образом, сокращается время, в течение которого могут образовываться продукты разложения бензина, вызывающие детонацию. С обеднением рабочей смеси склонность к детонации также уменьшается. Значительное влияние на появление детонации оказывает недостаточность охлаждения двигателя. Чем выше температура в конце сжатия рабочей смеси, тем выше склонность бензина к детонации. Наличие накипи в блоке цилиндров и нагара в камере сгорания двигателя значительно повышают детонацию.

На детонацию влияют также конструктивные элементы двигателя: диаметр цилиндров, форма камеры сгорания, расположение свечи зажигания и др.

Фракционный состав является одним из главнейших показателей, по которому судят о качестве бензина.

Бензин состоит из веществ, имеющих разные температуры кипения. Поэтому если бензин нагревать, то сперва будут закипать легкие частицы, имеющие низкую температуру кипения, а при дальнейшем повышении температуры начнут кипеть более тяжелые частицы и так далее, пока не выкипит весь бензин. Температура, при которой закипают первые, самые легкие частицы бензина, ниже температуры выкипания последних, самых тяжелых его частиц.

Известно, что кипение сопровождается испарением; поэтому если нагревать бензин и при определенных температурах отбирать в разную посуду выделяющиеся пары и охлаждать их до превращения снова в жидкий бензин, то мы получим части бензина, отделенные друг от друга, которые имеют разные темпера? туры кипения.

Так, например, если подогреть 100 см3 бензина, то может оказаться, что при нагреве до температуры 80° выкипит 10 смз его, при дальнейшем нагреве от 80 до 150° выкипит еще 40 смз и “при нагреве от 150 до 205° выкипит остальной бензин, за исключением незначительного количества (обычно 1—2 смз), которое остается в виде остатка, и, кроме того, 2—3 смз могут быть потеряны при разгонке бензина.

Отдельные части бензина, имеющие различные температуры кипения, носят название фракций, а количество тех или иных фракций в данном бензине определяет его фракционный состав.

Фракционный состав топлива часто изображается графически в виде кривых разгонок, показывающих, какой процент топлива отгоняется при той или иной температуре. На рис. 29 показаны две кривые разгонки: одна — бензинов А-66 и А-70, другая — бензина А-74.

Для характеристики фракционного состава указываются температура начала перегонки и температура, при которой перегоняется 10, 50 и 90% бензина, а также температура конца кипения, количество оставшегося бензина и сумма оставшегося и потерянного бензина.

Фракционный состав в основном определяет испаряемость бензина, т. е. способность переходить из жидкого состояния в парообразное. В свою очередь, от испаряемости зависят качество рабочей смеси, ее однородность и интенсивность распыла, т. е. карбюрационные свойства бензина.

От фракционного состава топлива зависят износ двигателя, развиваемая им мощность, устойчивость и бесперебойность работы, бездетонационная работа, легкость пуска двигателя в холодное и теплое время, расход бензина и наконец, величина потерь бензина от испарения во время хранения.

Легкость пуска двигателя характеризуется температурой выкипания 10% бензина. Бензин с низкой температурой выкипания 10% его, а также низкой температурой начала кипения значительно облегчает пуск двигателя в холодное время. Вместе с тем работа на таком бензине в жаркое время может вызвать перебои вследствие образования паровых пробок в системе питания и ухудшения наполнения двигателя. Для бензинов А-66 и А-70 температура выкипания не должна быть более 79°, а для бензинов А-74 — 70°, т. е. бензин А-74 имеет фракции, выкипающие при более низкой температуре.

Таким образом, требования двигателя к топливу изменяются в зависимости от внешних температурных условий. Это вызывает необходимость выпуска и применения так называемых сезонных бензинов — летних и зимних.

По температуре выкипания 50% бензина судят о скорости прогрева и надежности работы прогретого двигателя на данном

Рис. 29. Кривые разгонки автомобильных бензинов:
1 — А-66 и А-70: 2 — А-74

бензине. Чем выше эта температура, тем больше времени требуется для прогрева холодного двигателя. По температуре выкипания 90% и температуре конца разгонки бензина судят о полноте его испарения во всасывающей системе двигателя. От температуры выкипания 90% бензина зависит также приемистость двигателя и плавность перехода его с одного режима работы на другой.

Бензин с высокой температурой конца кипения, или, как его называют, утяжеленный или тяжелый бензин, ведет к преждевременному износу двигателей. При работе на бензине с концом кипения 225° износы двигателя на 30—40% больше по сравнению с износами, наблюдаемыми при эксплуатации на бензине с концом кипения 200°. Одной из причин такого увеличения из-носов является ухудшение испаряемости бензина утяжеленного фракционного состава и в связи с этим увеличение поступления в цилиндры двигателя топлива в жидком, неиспарившемся виде, что вызывает неравномерное распределение рабочей смеси по цилиндрам, разжижение и смывание смазки со стенок цилиндров и т. д. Вместе с тем утяжеление фракционного состава бензина ухудшает его антидетовационные качества. Так, например, фракции, выкипающие до 80°, имеют октановое число 80, а выкипающие при 220° имеют октановое число 30.

Потери при разгонке бензина характеризуют наличие в нем легких фракций, которые могут испаряться при транспортировке, хранении, заправке и непосредственном использовании на автомобиле.

При применении в жаркое время бензинов с повышенным процентом потерь, т. е. с большим количеством легких фракций, должно быть обращено особое внимание на мероприятия, уменьшающие потери от испарения бензина при его транспортировке и хранении.

Фактические смолы, т. е. вещества, способные вызывать смолообразование и нагарообразование в двигателе, представляют собой сложные по химическому строению продукты. Их содержание в бензине выражается количеством смол, остающихся после выпаривания топлива.

Добиться полного отсутствия в бензине фактических смол не удается, и поэтому для бензинов А-66 и А-70 допускается их содержание не свыше 10 мг на 100 мл бензина, а в бензине А-74 — не свыше 6 мг на 100 мл.

Сера в бензине еще более нежелательна, чем смолы. Однако полностью избежать ее присутствия также не удается, и она допускается в количестве не свыше 0,15% для А-66 и А-70 и 0,1% для А-74, а для бензинов, полученных из нефтей, в которых сера содержится в больших количествах, так называемых сернистых нефтей, ее содержание допускается до 0,4—0,6%. Отрицательное действие серы сказывается в том, что она увеличивает износ двигателя, вызывая коррозию металла, и ухудшает качество масла двигателя. Чем больше содержится серы в бензине, тем сильнее сказывается ее вредное действие. Так, например, повышение содержания серы в бензине с 0,05 до 0,6% снижает мощность и экономичность двигателя на 25—35”/о и уменьшает срок его службы не менее чем в четыре раза.

Проба на медную пластинку показывает коррозирующие свойства свободной серы и активных сернистых соединений, присутствующих в бензинах. Испытание заключается в наблюдении за изменением цвета пластинки из электролитической меди, которая должна находиться некоторое время при определенной температуре в испытуемом бензине. Чем сильнее коррозирующее действие, тем больше будет потемнение пластинки.

Водорастворимые кислоты и щелочи вызывают сильную коррозию, а следовательно, и износы металлических деталей двигателя. Поэтому стандартом на бензин не допускаются в нем водорастворимые кислоты и щелочи даже в самых незначительных количествах

Стандартом на бензин также не допускается присутствие в нем механических примесей и воды, содержание которых вызывает повышенный износ двигателя и увеличенное нагарообразо-вание.

Присутствие воды в бензине увеличивает износы цилиндров и поршней вследствие отложения на их стенках при испарении воды растворенных в ней солей. Отложившиеся соли действуют подобно наждаку, увеличивая износ трущихся деталей.

Упругостью паров бензина называется наибольшее давление его насыщенных паров при температуре 38°.

Испарение бензина тесно связано с упругостью паров. Чем меньше упругость паров, тем медленнее испаряется бензин, и наоборот. Вместе с этим в стандарте на бензин ограничивается наиболее допустимая упругость паров, которая не должна превышать 500 мм ртутного столба.

Применение бензинов с большей упругостью паров может вызвать образование в системе питания пробок паров бензина и перебои в работе двигателя. Бензин с высокой упругостью паров не применяется еще и потому, что он очень легко испаряется, вызывая потери при хранении.

Первоначальное качество бензина во время его хранения может изменяться. Объясняется это тем, что в результате соприкосновения бензина с кислородом воздуха он окисляется, отчего в нем образуются смолы. Склонность бензина к образованию смол в процессе хранения определяется так называемым индукционным периодом, выражаемым в минутах.

Индукционным периодом называется время, в течение которого бензин, находящийся при температуре 100° и давлении 7 кг/см2, не поглощает кислорода.

Для бензинов А-66 и А-70 индукционный период равен 240, а для А-74 — 800 мин. Чем больше индукционный период, тем более длительное время может храниться бензин без ухудшения его качества. Упругость паров и индукционный период характеризуют стабильность бензина, т. е. сохранение его свойств при хранении и транспортировке.

3. Способы оценки качества бензинов и плотности нефтепродуктов

Перечисленные выше основные физико-химические свойства бензинов достаточно полно характеризуют их качество. Однако для определения этих свойств требуются специальное лабораторное оборудование и известные навыки. В обычных автохозяйствах проводить такие химические анализы бензинов нет возможности. Нефтебазы, отпускающие бензин, выдают на него паспорт с подробным химическим анализом, с которым всегда можно ознакомиться.

Важность применения бензинов соответствующего качества очевидна. В тех случаях, когда качество бензина вызывает сомнение, должен быть произведен физико-химический анализ его в соответствующих лабораториях. Наличие в бензине посторонних примесей и воды может быть проверено простейшим способом. Для этой цели бензин наливается в мензурку диаметром 40—65 мм, в которой он отстаивается в течение суток. После отстоя доброкачественный бензин должен быть прозрачным и не содержать взвешенных и осевших на дно мензурки посторонних примесей и воды.

В связи с тем, что учет бензина и других нефтепродуктов осуществляется как в весовых, так и в объемных единицах, часто приходится пользоваться их плотностью или удельным весом, которые позволяют производить пересчет количества нефтепродуктов, замеренного в весовых единицах (кг, т), в объемные (л) и наоборот.

Плотностью (обозначается р) нефтепродукта считается его масса, заклю ченная в единице объема; ее размерность — г/см3.

Нефтепродукты при нагревании расширяются, их первоначальный объем увеличивается, и в результате этого плотность уменьшается. Поэтому, когда говорится о плотности, указывается, при какой температуре она замерялась. Для нефтепродуктов температура замера принята 20°. Если плотность замерялась при другой температуре, то путем пересчета можно определить плотность при 20°.

Существует несколько способов определения плотности, из которых самым доступным является способ определения плотности с помощью нефтеденси-метра (ареометра) (рис. 30). Верхняя шкала нефтеденсиметра указывает плотность, а нижняя — температуру, при которой она измерена.

Рис. 30. Нефте-денсиметр

Нефтеденсиметр опускают в сосуд с нефтепродуктом и по глубине его погружения, отсчитываемой по шкале, определяют плотность.

Записав плотность и температуру, при которой происходило ее определение, с помощью табл. 17 можно определить плотность при 20°.

Если температура, при которой определялась плотность, была больше 20°, то поправка прибавляется к плотности, указанной на шкале, если же меньше, то поправка вычитается.

4. Сведения о каменноугольном бензоле, пиробензоле и спирте

Каменноугольный бензол является продуктом переработки каменного угля и в смеси с бензином нашел применение в качестве топлива для автомобилей с карбюраторными двигателями. Применяется он в следующем соотношении с бензином: 25% бензола и 75% бензина. Такая смесь является удовлетворительной по испаряемости и другим карбюрационным свойствам, а также по возможности использования при низких температурах (выпадение кристаллов при температуре порядка минус 30°). Применять в качестве автомобильного топлива чистый бензол не представляется возможным, потому что он имеет очень высокую температуру застывания, равную плюс 5°, в то время как бензин не застывает при температуре минус 60° и ниже.

В сравнении с бензином бензол обладает значительно лучшими антидетонационными качествами, его октановое число равно 100.

При применении бензино-бензоловых смесей необходимо несколько понижать уровень топлива в карбюраторе путем соответствующей регулировки, так как плотность бензола выше бензина и равна около 0,88 г/слг3.

Фракционный состав бензола однороднее бензина (меньшая разница в температуре начала разгонки и конца кипения). Температура начала разгонки бензола 79,5° и конца кипения — 80,6°. Испаряемость бензола хуже, чем бензина, при его сгорании образуется большое количество нагара. Горение бензола, а также и бензино-бензоловых смесей происходит медленнее, чем бензина; поэтому при их применении нужно увеличивать угол опережения зажигания, чтобы избежать перегрева двигателя, снижения мощности и ухудшения экономичности.

Заметим, что бензол обладает некоторой ядовитостью, поэтому при его применении должны соблюдаться специальные санитарные правила.

Пиробензол является продуктом высокотемпературной переработки нефтяных дестиллатов и (так же, как и каменноугольный бензол) применяется в смеси с бензином в качестве автомобильного топлива. Эти два вида бензола сравнительно немного отличаются друг от друга по большинству показателей. Температура застывания пиробензола минус 12°.

В качестве топлива автомобильных карбюраторных двигате-телей могут применяться этиловый (винный) и метиловый спирты, а также смесь этилового спирта — ректификата и бутилового спирта. Этиловый спирт получают из злаков и корнеплодов, а технический этиловый и метиловый спирты вырабатывают из древесины. Бутиловый спирт получается как побочный продукт при производстве синтетического каучука.

Кроме повышенного октанового числа, которое у спиртов около 100, и небольшого нагарообразования и смолообразования, спирты почти по всем остальным показателям как топливо уступают бензинам. Они имеют более низкую испаряемость и поэтому почти исключается возможность пуска в ход на них холодных двигателей. Кроме этого, они вызывают большую коррозию. Применять один спирт можно лишь при условии пуска и прогрева двигателя на бензине с переключением на спирт только вполне прогретого двигателя. Двигатель, работающий на спирте, должен быть оборудован приспособлениями для усиленного подогрева. Спирты в смеси с бензином следует применять с содержанием спирта до 30%. Такая смесь обеспечивает вполне удовлетворительную работу двигателя.

Метиловый спирт ядовит и вдыхание его паров может вызвать отравление; поэтому при работе на нем кабина автомобиля должна хорошо вентилироваться.

Что такое бензин? Структура и свойства

Бензин с температурой кипения 32-204 °С и удельным весом от 0,680 до 0,760 г/см³, представляющий собой бесцветную смесь углеводородов со своеобразным запахом. Количество углерода, образующегося в бензине, колеблется в пределах 4 х с 10. Хотя из нефти поступает очень мало S, это тяжелые и легкие НС (сера) и N (азот), которые при нормальных условиях являются жидкими НС. парафины в бензине, этилен и бензол включают нафтеновые углеводороды.

Бензин, XIX. В последнюю четверть века он использовался в двигателе, работающем по циклу Отто. Мазут — это мазут, полученный в результате первого процесса нефтепереработки после открытия.

Заполнение общей формулы CnHm замкнутая формула состоит из выраженного hc. для окрашивания используются присадки для улучшения структуры и характеристик бензина. Помимо образующихся в результате нефти и небольшого количества нежелательных элементов, таких как сера и азот, она также включена.

Структура бензина УВ;

– Cnh3n + парафиновые УВ, обозначенные двумя нечетными формулами,
– Cnhn представленные формулой этиленово-замкнутые (легкие) УВ,
– Cnh3n нафтеновые УВ, указанные замкнутой формулой,
– Cnh3n-6 имеют бензольные УВ, указанные замкнутой формулой .

Лучше всего работают бензиновые двигатели соответственно; бензольные углеводороды, нафтеновые и углеводороды, углеводороды и, наконец, этиленпарафиновые углеводороды. Чем выше содержание бензола в бензине, как следует из этого утверждения, тем лучше для бензиновых двигателей. Основная причина этого в том, что они имеют высокое октановое число бензола. Группа НС желательна в наименьшем количестве бензина с парафиновой структурой. Гептан из наиболее часто используемых парафинов имеет нулевое октановое число, что объясняет необходимость снижения количества газа.

Сырая нефть 3800C’n, «При нагревании выше углеводороды превращаются в более мелкие молекулы, разрушающие углеводороды. Это явление называется растрескиванием. Например, молекула гексадекана С16 х44 октан (С8 х28) и октан (С8 х26) распадается на молекулы. Это позволяет производить больше топлива благодаря этому химическому изменению при нагреве масла под давлением. Крекинговая тяжелая углеводородная составляющая подается к первому остатку. Таким образом, соотношение нефтяного газа составляет 40% — 60%. Еще одним важным аспектом процесса крекинга является повышение стойкости бензина к детонации. Также он обеспечивает удаление многих побочных продуктов.

Разыскивается в свойствах бензина

Топливо, используемое в двигателе, должно иметь определенные характеристики. Некоторые из этих особенностей части, защищающей часть двигателя при улучшении характеристик двигателя, также необходимы для безопасности транспортного средства. Перечисленные ниже характеристики должны присутствовать в бензине.

– Должен обеспечивать легкий запуск двигателя в холодную погоду.
– Предотвращает паровой буфер.
— Способен реагировать на внезапные изменения мощности двигателя.
— Должен быть экономичным.
– Должна образоваться смола.
– Горящий конец вызовет коррозию, не следует тратить.
– Не должен ухудшать смазочные свойства масла.
– Должна быть ударопрочной.

Холодная погода Первое движение и летучесть

Бензин и другие жидкости, еще без газа называется способность переключаться на все еще летучие. У каждой жидкости летучесть меняется в зависимости от температуры. Летучесть этой жидкости, такой как вода, которую мы рассматриваем, увеличивается по мере приближения к точке кипения. Способность бензина к летучести слишком высока по отношению к воде. Это связано с запуском уже при 32°С до температуры кипения топлива. Мы упоминали, что УВ находятся в разных структурах в газе. температура кипения колеблется от 32 до 180°С для УВ. Низкотемпературное испарение топлива для использования в двигателях с искровым зажиганием обязательно. Жидкость с высокой температурой кипения имеет низкую летучесть, высокую температуру кипения и низкую летучесть.

Легкие углеводороды, присутствующие в топливе при низких температурах, желательно испаряются. Подача достаточного количества топлива в холодный двигатель, особенно в первом движении, напрямую связана с летучестью топлива. Насколько хорошо нестабильность топлива при первом движении была бы легкой при такой скорости. Испаряемость бензинового двигателя для обеспечения топлива в зависимости от различных условий эксплуатации.

Предотвращение буферного пара

Тот факт, что может потребоваться большая летучесть жидкого топлива. Поскольку тепловой двигатель, компоненты топливной системы и повысится температура топлива из-за повышения температуры, они будут испаряться до того, как они достигнут двигателя, что приведет к засорению топливного насоса или паровой трубы. Это нежелательно. Испаряемость бензина является выражением давления паров не более 37,5°С, 0,8 атмосферы (по Рейду на пар) должно быть давлением. Это связано с испарением бензина летучестью. Волатильность увеличивает вероятность возникновения более высоких паровых пробок. Чтобы предотвратить высокую летучесть, низкую летучесть, требующую буфера пара для холодной погоды, требуется первое движение. оптимальное значение летучести доступно в соответствии с условиями работы двигателя, а качество газа делает его хорошим топливом.

Встреча резкого изменения мощности двигателя

Резкий переход на высокие обороты газа при нажатии на педаль резко увеличивается количество воздуха, подсасывающего двигатель. Этот двигатель воздуха при резком увеличении должен дать больше топлива воздуху внутри, чтобы разогнаться лучше. Он должен иметь высокую летучесть топлива, чтобы обеспечить прирост топлива. Бензин является подходящим топливом для двигателей с летучестью, способной адаптироваться к внезапным изменениям мощности.

Эконом

Также для экономичного топлива требуется чуткость ко всем условиям работы двигателя. Недостаток с точки зрения экономии топлива приводит к потерям топлива, вызванным тем, что более летучие бензины испаряются. Помимо высокой летучести, что влечет за собой трудности с хранением.

Смолообразование (клей и лак)

Жидкое топливо, вступая в реакцию с кислородом, создает депрессии в среде, где оно хранится. Это называется смолой разрушаться. Эти углубления нежелательны, поскольку они могут вызвать закупорку топливной системы. Коэффициент смолы в бензине 5 мг/см 3 должен быть меньше десяти. Прилипание смолы к клапанному двигателю и тем самым вызывает закупорку топливного канала. Слишком долгое ожидание газа в течение длительного времени будет увеличиваться, если образование смолы не должно храниться.

Коррозия

В двигателях с искровым зажиганием сгорание не должно прекращаться после воздействия коррозии. Коррозионное горение увеличивается прямо пропорционально количеству конечных продуктов серы. Поэтому количество серы в бензине должно быть не более 0,001. Более высокое количество серы в конце сгорания вызывает образование сульфокислоты (h3SO3). Отрицательно влияет на ресурс такие кислоты вызывают коррозию металлических поверхностей в деталях двигателя.

Влияние смазочного масла

Летучесть топлива, используемого в двигателе, недостаточна для того, чтобы часть топлива, попадающего в цилиндры, была жидкостью. Жидкая фаза бензина, масла, вызывающая истончение масла в стенке цилиндра, препятствует смазочной функции. Это также очищает и вязкость масляного поддона падает, что приводит к тому, что смазка не справляется со своей задачей. Как мы видели, волатильность — очень важная характеристика. Бензин является топливом, которое может реагировать на изменяющийся спрос на углеводороды, содержащие летучесть из-за различного содержания.

Детонационная стойкость

В четырехтактном двигателе с искровым зажиганием второй раз в конце сгорания смесь воспламеняется от застрявшей в камере сгорания свечи зажигания смесь нормального времени, называется нормальным сгоранием. Начав искровое пламя, горящее до тех пор, пока смесь полностью не перевернула комнату, она как бы распространилась на другие части круглого кольца. скорость пламени, обеспечивающая его распространение, называемая скоростью распространения пламени. Нормальная скорость распространения пламени возникает при более высоких скачках давления. Это явление называется стуком. Детонация связана с октановым числом топлива. Число высокооктановых топлив с высокой детонационной стойкостью. Октановое число бензина зависит от используемого двигателя.

Присадки к бензину

Присадки к бензину можно разделить на две группы. присадки, используемые для повышения октанового числа бензина первой группы, могут быть отнесены к присадкам, применяемым для профилактических целей, ко второй группе.

Добавки повышающие октановое число

При производстве бензина крекингом, риформингом, полимеризацией, изомеризацией с использованием таких методов, как октановое число повышается. после производства с целью повышения октанового числа;

– Тетраэтилсвинец – это максимум 0,8 л бензина, допустим см³ и присадка, повышающая октановое число до 7-10. неблагоприятное воздействие на компоненты двигателя сегодня необходимо как для здоровья человека, так и для окружающей среды, от вреда, причиняемого применением, очень мало, в нашей стране это запрещено.
– При добавлении бензола октановое число увеличивается. Обычно добавляют до 10% бензола.
– Пентан карбонил железа,
– Монометиланилин
– Спирты метанол и этанол, участвующие в октановом числе, могут быть повышены.

Прочие присадки

Присадки для очистки двигателя, придания цвета, присадки к бензину используются для защиты. Их можно перечислить следующим образом:

– соединения фосфора для очистки камеры сгорания и свечей зажигания от отложений и бромистого этилена,
– моющие средства для предотвращения отложений в карбюраторе и коллекторе,
– предотвращение фрагментации смолообразования тетраэтилсвинца и антиоксиданты,
– Верхняя часть клапанов и цилиндров смазка легкими маслами,
— Антикоррозийные средства для предотвращения ржавчины,
— Асинт этилендибромит для предотвращения,
— Во избежание обледенения 1% изопропиловый спирт, 0,005% 0,2% гликоли или аммонийные соли фосфатов,
— 1% используется метиловый спирт, используемый для предотвращения замерзания газа .

Все компании для повышения качества и чистоты газа в быстро меняющейся конкурентной среде используют разное количество присадок.

Октановое число

Октановое число степени сжатия бензинового двигателя, поэтому эффективность является характеристикой близко. Детонационная стойкость топлива тем выше, чем выше октановое число. Количество топлива с учетом структурно-эксплуатационных характеристик двигателя рядом с физико-химическими свойствами октанового числа неодинаково. Октановое число, как мы сообщали, зависит от соотношения изооктана в топливе. То, как октановое число, октановое число (контрольное), моторное октановое число (МОС), октановое число по исследовательскому методу (АОС), мы можем видеть тремя различными способами. (YOS) двигатель, работающий в нормальных дорожных условиях с учетом предела определения детонации (MOS), в результате получены эксперименты, проведенные в сложных условиях в двигателе CFR. (АОС) – октановое число, полученное по окончании экспериментальных исследований в более мягких условиях.

Топливо, у которого aos 85 (MOS) может быть 75. Разница здесь называется осведомленностью о топливе, и тесты показывают, что на нее влияет изменение şartlarl. Требования к испытаниям, проводимым способом контроля, признаются применимыми. (YOS) обычно (MOS) меньше (AOS), чем при большом значении.

Детонация двигателя в экспериментах проводится для определения октанового числа и измеряется в начале детонации. Тенденция октанового числа топлива определяется путем сравнения эталонного топлива.

CFR (совместное исследование топлива) степень сжатия для определения октанового числа используемых методов может быть заменен двигателем. Это называется двигатель двигателя CFR. Октановое число, испытанное при различной степени сжатия в двигателе CFR на топливе, подлежит измерению. После обнаружения начала степени сжатия химическим путем получают детонацию, смесь i-октана и н-гептана в качестве степени сжатия смеси для инициирования степени детонации определяют. Результаты (MOS) как бы дают октановое число топлива. Ниже представлено схематическое изображение сменного двигателя CFR со степенью сжатия.

Детонация (Detanasyo’s)

При зажигании поршневой двигатель внутреннего сгорания со свечой зажигания в конце такта сжатия цилиндра топливовоздушная смесь с искрой и собиралась тутуштурулуй совершала дело с выставленным повышением давления. После искры пламя, горящее пламя скорость распространения волн начинает распространяться в помещении примерно 25-40 м/с. вне фронта пламени фронт пламени распространяется, фронт пламени расширяется, температура и давление, создаваемые свечой зажигания, называют растущей еще несгоревшей концевой газовой смесью. Перед достижением ядра пламени до конечного газа вызывается температура конечного газа и возникающее в результате горение давление давления и генерируются фронты вторичного пламени детонации. Скорость фронта пламени, образуемого последним газом, 500-700 м/с. Это о. Это столкновение двух пламени с высокой скоростью распространения фронта пламени приводит к значительно более быстрому, чем обычно, увеличению давления. Это быстрое увеличение давления создает звук удара молотка по поршню двигателя и стенке цилиндра. Этот объем дает понимание стука.

На следующем рисунке показано схематическое изображение движения и турбулентного фронта пламени нормального фронта пламени.

Ход фронта пламени

Ниже показан результат измерения индикатора давления детонации. Другая форма горения схематично показана возникновением стука в помещении.

Детонация и низкий КПД в двигателе, при быстром повышении давления могут повредить образовавшиеся детали двигателя. недостатки стука можно перечислить следующим образом:

– Тревожный звук, который может быть слышен водителю.
– Из-за высокого давления при езде внезапная нагрузка на поверхность поршня приводит к высоким нагрузкам и механическим повреждениям.
– Из-за утечки газа в сегменте высокого давления просачивающиеся газы вызывают ухудшение свойств смазочного масла.
— Мощность и вызывает потерю эффективности.
— Стук это тоже вопрос влияния на химический состав отработавших газов сгорания.

Предотвращение детонации

Высокие степени сжатия увеличивают склонность к детонации. Поэтому следует определять степень сжатия по октановому числу, указывающему на детонационную стойкость топлива. Давление в двигателе и температура полученной смеси при повышенной температуре и давлении в конце сжатия высоки, что приводит к уменьшению задержки воспламенения детонации. Давление и температура на входе должны поддерживаться на низком уровне. На детонацию влияет частота вращения двигателя, увеличение оборотов и изменение давления и температуры в последней зоне сгорания газа. Двигатель должен работать с соответствующей скоростью. Следует обеспечить минимально возможное опережение зажигания. Потому что увеличение значений давления и температуры с увеличением опережения зажигания выявляет тенденцию к детонации. Соотношение воздух/топливо также влияет на детонацию. Плохая склонность к детонации в смеси больше. Соотношение топливо/воздух должно быть оптимальным. на выходное давление выхлопных газов влияет детонация. Высокое давление выхлопных газов, увеличивающее компрессию, вызывает детонацию. Последнее давление, оставшееся в выхлопных газах цилиндра, уменьшает тенденцию к увеличению количества детонации. Выпускной клапан всегда будет теплым. Свеча зажигания, если выпускной клапан отойдет на секунду от температуры зажигания, то может застучать. Свечи зажигания должны располагаться как можно ближе к выпускным клапанам. Форма камеры сгорания важна при окраске. Отношение поверхности камеры сгорания к объему имеет тенденцию к уменьшению, стук становится меньше. Например, глобальная камера сгорания. Цилиндры должны хорошо охлаждаться. Неохлаждаемые горячие точки, образующиеся в цилиндре, увеличивают склонность к детонации.

Преждевременное зажигание

Топливо в цилиндре / зажигание называется преждевременным воспламенением воздушной смеси до искры зажигания. Цилиндр может плохо охлаждаться, неправильно подобраны свечи зажигания, пластина клапана истончена, аккумулируемое тепло приводит к накоплению тепла в указанных местах, например, неправильная установка дверного уплотнителя и вызывает преждевременное зажигание.

Это приведет к преждевременному воспламенению двигателя, детонации сгорания, и повреждение двигателя детонации похоже на последствия обратной вспышки.

– Тревожный звук, который может быть слышен водителю.
– Из-за высокого давления возникает внезапная нагрузка на несущую поверхность поршня, что в свою очередь приводит к высоким нагрузкам и механическим повреждениям.
– Из-за утечки газа в сегменте высокого давления просачивающиеся газы вызывают ухудшение свойств смазочного масла.
— Мощность и вызывает потерю эффективности.
— Стук это тоже вопрос влияния на химический состав отработавших газов сгорания.

Предотвращение детонации

Подавляющее большинство проблем с цилиндром раннего зажигания вызвано тем, что он хорошо охлажден. Так что первый ролик для предотвращения преждевременного возгорания нужно хорошо охлаждать.

Нагар, образующийся в цилиндре и вызывающий обратное пламя, доходит до корпуса накаливания. Этот углерод необходимо очистить или избежать образования луж. Необходимо использовать подходящие штекеры. В противном случае электроды свечи зажигания перегреются и вызовут преждевременное воспламенение раскаленного корпуса.

Источник: MEGEP

Теги: Октановое число • Что такое бензин?

Что такое бензин? Определение бензина, значение бензина

Что такое бензин? Определение бензина, Значение бензина — Economic Times

представлены фонды

Pro Investing By Aditya Birla Sun Vife Mutual Fund

Invest Now

Избранные фонды

★ ★ ★ ★

Мирэ Ассистентного Гибридного Фонда Фонда Фонда Фонда Прямой Фонд Фонда Фонда актива актива.

Возврат через 5 лет

12,54 %

Инвестировать сейчас

Поиск

+

Новости бизнеса›Определения›Товары›Бензин

Предложить новое определение

Предлагаемые определения будут рассмотрены для включения в Economictimes.com Определение: Бензин или бензин – это производный продукт сырой нефти/нефтепродуктов. Он получается в процессе фракционной перегонки и имеет полупрозрачную жидкую форму. В сыром виде не используется. Различные добавки добавляются как этанол, чтобы использовать его в качестве топлива для легковых автомобилей. В США и странах Латинской Америки используется термин бензин, а в странах Европы и Азии он называется бензином.

Описание: В основном во всем мире бензин используется в качестве топлива для автомобилей. Это один из основных продуктов, который активно потребляется во всем мире. Таким образом, это влияет на WPI стран или инфляцию. Основным драйвером цен на бензин являются цены на сырую нефть, которая является одним из наиболее важных макроэкономических показателей для мира. США являются крупнейшим потребителем бензина во всем мире, где потребляется почти 45%. У них самые высокие показатели использования на человека.

Другими крупными потребителями являются Великобритания, Китай, Япония и Индия. США также являются крупнейшим нефтеперерабатывающим заводом в мире. Другие крупные страны также занимаются нефтепереработкой, но все потребляется внутри самих этих стран. В европейских странах самые высокие цены на бензин по сравнению с остальным миром, поскольку они в основном являются импортерами бензина. В Индии цены на бензин изначально субсидировались, но теперь цены на него устанавливаются на открытом рынке под контролем государства.

Некоторые биржи товарных деривативов, предлагающие контракты на бензин, включают NYMEX (США), TOCOM (Япония) и MCX (Индия).

Прочитайте больше новостей на

  • Petrolgasolineoilinflation
  • Marketmcxwpicrude
  • Petroleumpetrol PriceRefiner

utilities.CMSWebUtility» xmlns:listval=»com.indiatimes.cms.utilities.CMSDateUtility» xmlns:java=»java»> News

2222229. поскольку после вторжения на Украину Индия стала крупнейшим покупателем российской нефти, которой избегают, а ее нефтеперерабатывающие заводы изо всех сил стараются производить топливо. Повышение мировых цен на продукцию побудило частные нефтеперерабатывающие заводы Индии увеличить экспорт, создав дефицит, который государственные переработчики теперь спешат решить за счет дополнительного импорта.
  • Сколько стоит газ? Во всем мире чувствуется боль в заправкеПо всему миру водители пересматривают свои привычки и личные финансы на фоне стремительного роста цен на бензин и дизельное топливо, вызванного войной России в Украине и глобальным восстановлением после пандемии COVID-19.
  • Палата представителей США приняла законопроект о борьбе с взвинчиванием цен на бензин Палата представителей США приняла в четверг законопроект в попытке обуздать стремительно растущие цены на газ, а также пресечь взвинчивание цен на топливо, а также облегчить американским семьям проблемы с заправочными станциями.
  • У Индии есть электрическая возможность сосредоточиться на бюджетных автомобиляхРоскошные бренды агрессивно нацелены на самых богатых людей страны. Tesla торгуется за налоговые льготы, чтобы увеличить продажи в Индии, в то время как Mercedes-Benz в этом году выпускает EQS местной сборки, электрическую версию своего флагманского седана S-класса. BMW также планирует выпустить несколько моделей с подключаемыми модулями.
  • Стремительно растущие цены на дизельное топливо и бензин распространяются на судоходствоСтоимость судового топлива в Роттердаме достигла самого высокого уровня по крайней мере с конца 2019 года.в начале этой недели, что на 23% больше, чем в начале года.
  • Нефть дорожает, поскольку спрос на топливо сохраняется, несмотря на рост случаев заражения Omicron. Цены на нефть выросли в четверг, продлив рост несколько дней подряд, чему способствовали данные, показывающие, что спрос на топливо в США остается хорошим, несмотря на стремительный рост случаев заражения коронавирусом Omicron. Фьючерсы на нефть марки Brent подорожали на 17 центов, или на 0,2%, до 79,40 доллара за баррель в 02:17 по Гринвичу, повышаясь четвертый день подряд.
  • Цены на топливо в США: Что происходит с бензином? Цены на нефть снижаются уже несколько дней, так как рынок нефти ожидает новостей о потенциальном релизе. Однако, поскольку для внедрения стратегического релиза в процесс переработки требуется время, водители вряд ли увидят падение цен на насосы, когда в четверг отправятся в путь на праздник Дня Благодарения в США.
  • Нефть продолжает снижаться, поскольку США надеются возглавить шоковую обработку SPRСША. нефть находилась под давлением в четверг, добавив к резкому падению после сообщения Reuters о том, что Соединенные Штаты просят крупных потребителей нефти, таких как Китай и Япония, рассмотреть вопрос о скоординированном высвобождении запасов нефти для снижения цен. Попытка администрации США шокировать рынки возникает, когда инфляционное давление, отчасти вызванное ростом цен на энергоносители, начинает вызывать политическую реакцию, поскольку мир судорожно восстанавливается после худшего кризиса в области здравоохранения за столетие.
  • Нефть падает после того, как Китай обнародовал запасы бензина и дизельного топлива Цены на нефть упали в понедельник после того, как Китай заявил, что обнародовал резервы бензина и дизельного топлива для увеличения предложения, в то время как инвесторы закрыли длинные позиции в преддверии встречи ОПЕК+ 4 ноября. Китай раскрыл запасы нефти. два вида топлива для увеличения предложения на рынке и поддержания стабильности цен в некоторых регионах, заявила в воскресенье Национальная администрация продовольственных и стратегических резервов.
  • Нефть падает второй день, так как ралли, обусловленное предложением, сходит на нетЦены на нефть упали второй день подряд в среду, поскольку вновь возникли сомнения в отношении спроса из-за COVID-19случаи продолжают расти во всем мире и нехватка бензина в некоторых регионах. Нефть марки Brent подешевела на 1,03 доллара, или 1,3%, до 78,06 доллара за баррель к 01:30 по Гринвичу, упав почти на 2 доллара во вторник после достижения 80,75 доллара, самого высокого уровня почти за три года.
  • Загрузить еще

    Trending Definitions Долговые фонды Ставка репоВзаимный фондВаловой внутренний продуктСбор данныхРекламаПродуктМонополияКриптографияАмортизация

    Общедоступные данные о свойствах качества бензина и топлива0003 Программы стандартов на бензин

    Агентства по охране окружающей среды предназначены для борьбы с приземным озоном или «смогом» и для снижения токсичных выбросов от топлива, сжигаемого в легковых и грузовых автомобилях.

    Используйте приложение ниже, чтобы узнать больше о свойствах бензинового топлива и о том, как они менялись с течением времени в связи со стандартами EPA и изменениями в динамике рынка. Представленные здесь результаты составлены на основе данных, переданных в EPA нефтепереработчиками и импортерами для проверки соответствия стандартам качества бензина EPA. Данные включают некоторые химические и физические свойства бензина из 1999 – 2020. Данные о свойствах топлива передаются в EPA для партий бензина, произведенных на нефтеперерабатывающих заводах или импортированных в США.  

    Создайте свой собственный анализ, изучив набор данных на диаграмме или в таблице ниже. Выберите интересующий параметр (сера, бензол, РВП и т. д.). Чтобы отобразить среднегодовые значения для каждого свойства, щелкните правой кнопкой мыши диаграмму и выберите «Просмотреть диаграмму». Щелкните правой кнопкой мыши представление данных и выберите «Просмотреть диаграмму», чтобы вернуться к визуализации. Для получения дополнительной информации о любом из свойств см. список определений в нижней части этой веб-страницы.

    Таблица экспорта будет экспортировать данные в виде файла CSV.

    О данных

    • Свойства данных о партиях измеряются на нефтеперерабатывающих заводах и предприятиях по импорту. Свойства CG не полностью учитывают эффект смешивания с этанолом на терминалах ниже по течению от нефтеперерабатывающих заводов и объектов импорта. Свойства RFG включают влияние всего этанола, который смешивается с RFG на терминалах ниже по потоку от нефтеперерабатывающих заводов и объектов импорта, потому что нефтеперерабатывающие заводы и импортеры RFG должны учитывать этанол, смешанный с ним, в своих отчетных данных о свойствах бензина.
    • Объемы, отображаемые для различных свойств, – это объемы, для которых это свойство фактически было указано для каждой партии (включая нулевые значения свойств). Объемы будут различаться для разных свойств, поскольку некоторые свойства вообще не сообщаются (т. е. оставляются пустыми) для некоторых пакетов. Например, в 2017 году сообщалось о содержании серы в партиях объемом 122,88 млрд галлонов бензина, а о содержании этанола — только в партиях объемом 92,76 млрд галлонов бензина.
    • Данные не включают бензин, экспортируемый за пределы США, и не включают бензин, проданный в Калифорнии (но включают бензин, произведенный в Калифорнии и проданный для использования в других штатах, кроме Калифорнии).
    • Эти данные также не включают бензин, заявленный в EPA, который классифицируется как «бензин, обработанный как смесь» (GTAB), или представленный в EPA независимыми сторонними лабораториями и производителями оксигенатов, чтобы предотвратить двойной учет этих объемов и свойств бензина.
    • Представленные данные за определенный период соответствия (месяц или год) соответствуют дате производства партии, сообщаемой нефтеперерабатывающими заводами и импортерами.
    • Хотя эти цифры рассчитаны на основе данных, полученных из отчетов о соответствии, представленных переработчиками и импортерами, приведенные здесь цифры не представляют фактическую информацию о соответствии, используемую для определения того, выполнила ли какая-либо конкретная регулирующая сторона свои законодательные и нормативные требования.
    • Узнайте больше о стандартах бензина: https://www.epa.gov/gasoline-standards/learn-about-gasoline
    • Технический анализ тенденций в области топлива: https://www.epa.gov/fuels-registration-reporting-and-compliance-help/gasoline-properties-over-time

    Определения

    • Ароматические углеводороды – Класс углеводородов в бензине, содержащий по крайней мере одно бензольное кольцо.
    • Бензол – особый ненасыщенный углеводород (см. определение олефина), содержащий шесть атомов углерода и шесть атомов водорода.
    • CG – Обычный бензин, производимый для продажи в регионах, не входящих в РФГ.
    • CG Summer Southern – Летний CG сообщил EPA с кодом VOC 1 или V1.
    • CG Summer Northern – Летний CG сообщил EPA с кодом VOC 2 или V2.
    • E200 – объемный процент образца бензина, выкипавшего при нагревании образца до 200 градусов по Фаренгейту.
    • E300 – объемный процент образца бензина, выкипавшего при нагревании образца до 300 градусов по Фаренгейту.
    • Олефины – Класс ненасыщенных углеводородов, что означает отсутствие пары атомов водорода у соседних атомов углерода, которые заменены двойной связью между этими двумя атомами углерода. Олефины гораздо более химически активны, чем другие углеводороды.
    • частей на миллион – Частей на миллион
    • RFG — Реформированный бензин, произведенный для продажи в зонах RFG, определенных в 40 CFR 80.